relocInfo.hpp revision 1879:f95d63e2154a
1/*
2 * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#ifndef SHARE_VM_CODE_RELOCINFO_HPP
26#define SHARE_VM_CODE_RELOCINFO_HPP
27
28#include "memory/allocation.hpp"
29#include "utilities/top.hpp"
30
31// Types in this file:
32//    relocInfo
33//      One element of an array of halfwords encoding compressed relocations.
34//      Also, the source of relocation types (relocInfo::oop_type, ...).
35//    Relocation
36//      A flyweight object representing a single relocation.
37//      It is fully unpacked from the compressed relocation array.
38//    oop_Relocation, ... (subclasses of Relocation)
39//      The location of some type-specific operations (oop_addr, ...).
40//      Also, the source of relocation specs (oop_Relocation::spec, ...).
41//    RelocationHolder
42//      A ValueObj type which acts as a union holding a Relocation object.
43//      Represents a relocation spec passed into a CodeBuffer during assembly.
44//    RelocIterator
45//      A StackObj which iterates over the relocations associated with
46//      a range of code addresses.  Can be used to operate a copy of code.
47//    PatchingRelocIterator
48//      Specialized subtype of RelocIterator which removes breakpoints
49//      temporarily during iteration, then restores them.
50//    BoundRelocation
51//      An _internal_ type shared by packers and unpackers of relocations.
52//      It pastes together a RelocationHolder with some pointers into
53//      code and relocInfo streams.
54
55
56// Notes on relocType:
57//
58// These hold enough information to read or write a value embedded in
59// the instructions of an CodeBlob.  They're used to update:
60//
61//   1) embedded oops     (isOop()          == true)
62//   2) inline caches     (isIC()           == true)
63//   3) runtime calls     (isRuntimeCall()  == true)
64//   4) internal word ref (isInternalWord() == true)
65//   5) external word ref (isExternalWord() == true)
66//
67// when objects move (GC) or if code moves (compacting the code heap).
68// They are also used to patch the code (if a call site must change)
69//
70// A relocInfo is represented in 16 bits:
71//   4 bits indicating the relocation type
72//  12 bits indicating the offset from the previous relocInfo address
73//
74// The offsets accumulate along the relocInfo stream to encode the
75// address within the CodeBlob, which is named RelocIterator::addr().
76// The address of a particular relocInfo always points to the first
77// byte of the relevant instruction (and not to any of its subfields
78// or embedded immediate constants).
79//
80// The offset value is scaled appropriately for the target machine.
81// (See relocInfo_<arch>.hpp for the offset scaling.)
82//
83// On some machines, there may also be a "format" field which may provide
84// additional information about the format of the instruction stream
85// at the corresponding code address.  The format value is usually zero.
86// Any machine (such as Intel) whose instructions can sometimes contain
87// more than one relocatable constant needs format codes to distinguish
88// which operand goes with a given relocation.
89//
90// If the target machine needs N format bits, the offset has 12-N bits,
91// the format is encoded between the offset and the type, and the
92// relocInfo_<arch>.hpp file has manifest constants for the format codes.
93//
94// If the type is "data_prefix_tag" then the offset bits are further encoded,
95// and in fact represent not a code-stream offset but some inline data.
96// The data takes the form of a counted sequence of halfwords, which
97// precedes the actual relocation record.  (Clients never see it directly.)
98// The interpetation of this extra data depends on the relocation type.
99//
100// On machines that have 32-bit immediate fields, there is usually
101// little need for relocation "prefix" data, because the instruction stream
102// is a perfectly reasonable place to store the value.  On machines in
103// which 32-bit values must be "split" across instructions, the relocation
104// data is the "true" specification of the value, which is then applied
105// to some field of the instruction (22 or 13 bits, on SPARC).
106//
107// Whenever the location of the CodeBlob changes, any PC-relative
108// relocations, and any internal_word_type relocations, must be reapplied.
109// After the GC runs, oop_type relocations must be reapplied.
110//
111//
112// Here are meanings of the types:
113//
114// relocInfo::none -- a filler record
115//   Value:  none
116//   Instruction: The corresponding code address is ignored
117//   Data:  Any data prefix and format code are ignored
118//   (This means that any relocInfo can be disabled by setting
119//   its type to none.  See relocInfo::remove.)
120//
121// relocInfo::oop_type -- a reference to an oop
122//   Value:  an oop, or else the address (handle) of an oop
123//   Instruction types: memory (load), set (load address)
124//   Data:  []       an oop stored in 4 bytes of instruction
125//          [n]      n is the index of an oop in the CodeBlob's oop pool
126//          [[N]n l] and l is a byte offset to be applied to the oop
127//          [Nn Ll]  both index and offset may be 32 bits if necessary
128//   Here is a special hack, used only by the old compiler:
129//          [[N]n 00] the value is the __address__ of the nth oop in the pool
130//   (Note that the offset allows optimal references to class variables.)
131//
132// relocInfo::internal_word_type -- an address within the same CodeBlob
133// relocInfo::section_word_type -- same, but can refer to another section
134//   Value:  an address in the CodeBlob's code or constants section
135//   Instruction types: memory (load), set (load address)
136//   Data:  []     stored in 4 bytes of instruction
137//          [[L]l] a relative offset (see [About Offsets] below)
138//   In the case of section_word_type, the offset is relative to a section
139//   base address, and the section number (e.g., SECT_INSTS) is encoded
140//   into the low two bits of the offset L.
141//
142// relocInfo::external_word_type -- a fixed address in the runtime system
143//   Value:  an address
144//   Instruction types: memory (load), set (load address)
145//   Data:  []   stored in 4 bytes of instruction
146//          [n]  the index of a "well-known" stub (usual case on RISC)
147//          [Ll] a 32-bit address
148//
149// relocInfo::runtime_call_type -- a fixed subroutine in the runtime system
150//   Value:  an address
151//   Instruction types: PC-relative call (or a PC-relative branch)
152//   Data:  []   stored in 4 bytes of instruction
153//
154// relocInfo::static_call_type -- a static call
155//   Value:  an CodeBlob, a stub, or a fixup routine
156//   Instruction types: a call
157//   Data:  []
158//   The identity of the callee is extracted from debugging information.
159//   //%note reloc_3
160//
161// relocInfo::virtual_call_type -- a virtual call site (which includes an inline
162//                                 cache)
163//   Value:  an CodeBlob, a stub, the interpreter, or a fixup routine
164//   Instruction types: a call, plus some associated set-oop instructions
165//   Data:  []       the associated set-oops are adjacent to the call
166//          [n]      n is a relative offset to the first set-oop
167//          [[N]n l] and l is a limit within which the set-oops occur
168//          [Nn Ll]  both n and l may be 32 bits if necessary
169//   The identity of the callee is extracted from debugging information.
170//
171// relocInfo::opt_virtual_call_type -- a virtual call site that is statically bound
172//
173//    Same info as a static_call_type. We use a special type, so the handling of
174//    virtuals and statics are separated.
175//
176//
177//   The offset n points to the first set-oop.  (See [About Offsets] below.)
178//   In turn, the set-oop instruction specifies or contains an oop cell devoted
179//   exclusively to the IC call, which can be patched along with the call.
180//
181//   The locations of any other set-oops are found by searching the relocation
182//   information starting at the first set-oop, and continuing until all
183//   relocations up through l have been inspected.  The value l is another
184//   relative offset.  (Both n and l are relative to the call's first byte.)
185//
186//   The limit l of the search is exclusive.  However, if it points within
187//   the call (e.g., offset zero), it is adjusted to point after the call and
188//   any associated machine-specific delay slot.
189//
190//   Since the offsets could be as wide as 32-bits, these conventions
191//   put no restrictions whatever upon code reorganization.
192//
193//   The compiler is responsible for ensuring that transition from a clean
194//   state to a monomorphic compiled state is MP-safe.  This implies that
195//   the system must respond well to intermediate states where a random
196//   subset of the set-oops has been correctly from the clean state
197//   upon entry to the VEP of the compiled method.  In the case of a
198//   machine (Intel) with a single set-oop instruction, the 32-bit
199//   immediate field must not straddle a unit of memory coherence.
200//   //%note reloc_3
201//
202// relocInfo::breakpoint_type -- a conditional breakpoint in the code
203//   Value:  none
204//   Instruction types: any whatsoever
205//   Data:  [b [T]t  i...]
206//   The b is a bit-packed word representing the breakpoint's attributes.
207//   The t is a target address which the breakpoint calls (when it is enabled).
208//   The i... is a place to store one or two instruction words overwritten
209//   by a trap, so that the breakpoint may be subsequently removed.
210//
211// relocInfo::static_stub_type -- an extra stub for each static_call_type
212//   Value:  none
213//   Instruction types: a virtual call:  { set_oop; jump; }
214//   Data:  [[N]n]  the offset of the associated static_call reloc
215//   This stub becomes the target of a static call which must be upgraded
216//   to a virtual call (because the callee is interpreted).
217//   See [About Offsets] below.
218//   //%note reloc_2
219//
220// For example:
221//
222//   INSTRUCTIONS                        RELOC: TYPE    PREFIX DATA
223//   ------------                               ----    -----------
224// sethi      %hi(myObject),  R               oop_type [n(myObject)]
225// ld      [R+%lo(myObject)+fldOffset], R2    oop_type [n(myObject) fldOffset]
226// add R2, 1, R2
227// st  R2, [R+%lo(myObject)+fldOffset]        oop_type [n(myObject) fldOffset]
228//%note reloc_1
229//
230// This uses 4 instruction words, 8 relocation halfwords,
231// and an entry (which is sharable) in the CodeBlob's oop pool,
232// for a total of 36 bytes.
233//
234// Note that the compiler is responsible for ensuring the "fldOffset" when
235// added to "%lo(myObject)" does not overflow the immediate fields of the
236// memory instructions.
237//
238//
239// [About Offsets] Relative offsets are supplied to this module as
240// positive byte offsets, but they may be internally stored scaled
241// and/or negated, depending on what is most compact for the target
242// system.  Since the object pointed to by the offset typically
243// precedes the relocation address, it is profitable to store
244// these negative offsets as positive numbers, but this decision
245// is internal to the relocation information abstractions.
246//
247
248class Relocation;
249class CodeBuffer;
250class CodeSection;
251class RelocIterator;
252
253class relocInfo VALUE_OBJ_CLASS_SPEC {
254  friend class RelocIterator;
255 public:
256  enum relocType {
257    none                    =  0, // Used when no relocation should be generated
258    oop_type                =  1, // embedded oop
259    virtual_call_type       =  2, // a standard inline cache call for a virtual send
260    opt_virtual_call_type   =  3, // a virtual call that has been statically bound (i.e., no IC cache)
261    static_call_type        =  4, // a static send
262    static_stub_type        =  5, // stub-entry for static send  (takes care of interpreter case)
263    runtime_call_type       =  6, // call to fixed external routine
264    external_word_type      =  7, // reference to fixed external address
265    internal_word_type      =  8, // reference within the current code blob
266    section_word_type       =  9, // internal, but a cross-section reference
267    poll_type               = 10, // polling instruction for safepoints
268    poll_return_type        = 11, // polling instruction for safepoints at return
269    breakpoint_type         = 12, // an initialization barrier or safepoint
270    yet_unused_type         = 13, // Still unused
271    yet_unused_type_2       = 14, // Still unused
272    data_prefix_tag         = 15, // tag for a prefix (carries data arguments)
273    type_mask               = 15  // A mask which selects only the above values
274  };
275
276 protected:
277  unsigned short _value;
278
279  enum RawBitsToken { RAW_BITS };
280  relocInfo(relocType type, RawBitsToken ignore, int bits)
281    : _value((type << nontype_width) + bits) { }
282
283  relocInfo(relocType type, RawBitsToken ignore, int off, int f)
284    : _value((type << nontype_width) + (off / (unsigned)offset_unit) + (f << offset_width)) { }
285
286 public:
287  // constructor
288  relocInfo(relocType type, int offset, int format = 0)
289#ifndef ASSERT
290  {
291    (*this) = relocInfo(type, RAW_BITS, offset, format);
292  }
293#else
294  // Put a bunch of assertions out-of-line.
295  ;
296#endif
297
298  #define APPLY_TO_RELOCATIONS(visitor) \
299    visitor(oop) \
300    visitor(virtual_call) \
301    visitor(opt_virtual_call) \
302    visitor(static_call) \
303    visitor(static_stub) \
304    visitor(runtime_call) \
305    visitor(external_word) \
306    visitor(internal_word) \
307    visitor(poll) \
308    visitor(poll_return) \
309    visitor(breakpoint) \
310    visitor(section_word) \
311
312
313 public:
314  enum {
315    value_width             = sizeof(unsigned short) * BitsPerByte,
316    type_width              = 4,   // == log2(type_mask+1)
317    nontype_width           = value_width - type_width,
318    datalen_width           = nontype_width-1,
319    datalen_tag             = 1 << datalen_width,  // or-ed into _value
320    datalen_limit           = 1 << datalen_width,
321    datalen_mask            = (1 << datalen_width)-1
322  };
323
324  // accessors
325 public:
326  relocType  type()       const { return (relocType)((unsigned)_value >> nontype_width); }
327  int  format()           const { return format_mask==0? 0: format_mask &
328                                         ((unsigned)_value >> offset_width); }
329  int  addr_offset()      const { assert(!is_prefix(), "must have offset");
330                                  return (_value & offset_mask)*offset_unit; }
331
332 protected:
333  const short* data()     const { assert(is_datalen(), "must have data");
334                                  return (const short*)(this + 1); }
335  int          datalen()  const { assert(is_datalen(), "must have data");
336                                  return (_value & datalen_mask); }
337  int         immediate() const { assert(is_immediate(), "must have immed");
338                                  return (_value & datalen_mask); }
339 public:
340  static int addr_unit()        { return offset_unit; }
341  static int offset_limit()     { return (1 << offset_width) * offset_unit; }
342
343  void set_type(relocType type);
344  void set_format(int format);
345
346  void remove() { set_type(none); }
347
348 protected:
349  bool is_none()                const { return type() == none; }
350  bool is_prefix()              const { return type() == data_prefix_tag; }
351  bool is_datalen()             const { assert(is_prefix(), "must be prefix");
352                                        return (_value & datalen_tag) != 0; }
353  bool is_immediate()           const { assert(is_prefix(), "must be prefix");
354                                        return (_value & datalen_tag) == 0; }
355
356 public:
357  // Occasionally records of type relocInfo::none will appear in the stream.
358  // We do not bother to filter these out, but clients should ignore them.
359  // These records serve as "filler" in three ways:
360  //  - to skip large spans of unrelocated code (this is rare)
361  //  - to pad out the relocInfo array to the required oop alignment
362  //  - to disable old relocation information which is no longer applicable
363
364  inline friend relocInfo filler_relocInfo();
365
366  // Every non-prefix relocation may be preceded by at most one prefix,
367  // which supplies 1 or more halfwords of associated data.  Conventionally,
368  // an int is represented by 0, 1, or 2 halfwords, depending on how
369  // many bits are required to represent the value.  (In addition,
370  // if the sole halfword is a 10-bit unsigned number, it is made
371  // "immediate" in the prefix header word itself.  This optimization
372  // is invisible outside this module.)
373
374  inline friend relocInfo prefix_relocInfo(int datalen = 0);
375
376 protected:
377  // an immediate relocInfo optimizes a prefix with one 10-bit unsigned value
378  static relocInfo immediate_relocInfo(int data0) {
379    assert(fits_into_immediate(data0), "data0 in limits");
380    return relocInfo(relocInfo::data_prefix_tag, RAW_BITS, data0);
381  }
382  static bool fits_into_immediate(int data0) {
383    return (data0 >= 0 && data0 < datalen_limit);
384  }
385
386 public:
387  // Support routines for compilers.
388
389  // This routine takes an infant relocInfo (unprefixed) and
390  // edits in its prefix, if any.  It also updates dest.locs_end.
391  void initialize(CodeSection* dest, Relocation* reloc);
392
393  // This routine updates a prefix and returns the limit pointer.
394  // It tries to compress the prefix from 32 to 16 bits, and if
395  // successful returns a reduced "prefix_limit" pointer.
396  relocInfo* finish_prefix(short* prefix_limit);
397
398  // bit-packers for the data array:
399
400  // As it happens, the bytes within the shorts are ordered natively,
401  // but the shorts within the word are ordered big-endian.
402  // This is an arbitrary choice, made this way mainly to ease debugging.
403  static int data0_from_int(jint x)         { return x >> value_width; }
404  static int data1_from_int(jint x)         { return (short)x; }
405  static jint jint_from_data(short* data) {
406    return (data[0] << value_width) + (unsigned short)data[1];
407  }
408
409  static jint short_data_at(int n, short* data, int datalen) {
410    return datalen > n ? data[n] : 0;
411  }
412
413  static jint jint_data_at(int n, short* data, int datalen) {
414    return datalen > n+1 ? jint_from_data(&data[n]) : short_data_at(n, data, datalen);
415  }
416
417  // Update methods for relocation information
418  // (since code is dynamically patched, we also need to dynamically update the relocation info)
419  // Both methods takes old_type, so it is able to performe sanity checks on the information removed.
420  static void change_reloc_info_for_address(RelocIterator *itr, address pc, relocType old_type, relocType new_type);
421  static void remove_reloc_info_for_address(RelocIterator *itr, address pc, relocType old_type);
422
423  // Machine dependent stuff
424#ifdef TARGET_ARCH_x86
425# include "relocInfo_x86.hpp"
426#endif
427#ifdef TARGET_ARCH_sparc
428# include "relocInfo_sparc.hpp"
429#endif
430#ifdef TARGET_ARCH_zero
431# include "relocInfo_zero.hpp"
432#endif
433
434
435 protected:
436  // Derived constant, based on format_width which is PD:
437  enum {
438    offset_width       = nontype_width - format_width,
439    offset_mask        = (1<<offset_width) - 1,
440    format_mask        = (1<<format_width) - 1
441  };
442 public:
443  enum {
444    // Conservatively large estimate of maximum length (in shorts)
445    // of any relocation record (probably breakpoints are largest).
446    // Extended format is length prefix, data words, and tag/offset suffix.
447    length_limit       = 1 + 1 + (3*BytesPerWord/BytesPerShort) + 1,
448    have_format        = format_width > 0
449  };
450};
451
452#define FORWARD_DECLARE_EACH_CLASS(name)              \
453class name##_Relocation;
454APPLY_TO_RELOCATIONS(FORWARD_DECLARE_EACH_CLASS)
455#undef FORWARD_DECLARE_EACH_CLASS
456
457
458
459inline relocInfo filler_relocInfo() {
460  return relocInfo(relocInfo::none, relocInfo::offset_limit() - relocInfo::offset_unit);
461}
462
463inline relocInfo prefix_relocInfo(int datalen) {
464  assert(relocInfo::fits_into_immediate(datalen), "datalen in limits");
465  return relocInfo(relocInfo::data_prefix_tag, relocInfo::RAW_BITS, relocInfo::datalen_tag | datalen);
466}
467
468
469// Holder for flyweight relocation objects.
470// Although the flyweight subclasses are of varying sizes,
471// the holder is "one size fits all".
472class RelocationHolder VALUE_OBJ_CLASS_SPEC {
473  friend class Relocation;
474  friend class CodeSection;
475
476 private:
477  // this preallocated memory must accommodate all subclasses of Relocation
478  // (this number is assertion-checked in Relocation::operator new)
479  enum { _relocbuf_size = 5 };
480  void* _relocbuf[ _relocbuf_size ];
481
482 public:
483  Relocation* reloc() const { return (Relocation*) &_relocbuf[0]; }
484  inline relocInfo::relocType type() const;
485
486  // Add a constant offset to a relocation.  Helper for class Address.
487  RelocationHolder plus(int offset) const;
488
489  inline RelocationHolder();                // initializes type to none
490
491  inline RelocationHolder(Relocation* r);   // make a copy
492
493  static const RelocationHolder none;
494};
495
496// A RelocIterator iterates through the relocation information of a CodeBlob.
497// It is a variable BoundRelocation which is able to take on successive
498// values as it is advanced through a code stream.
499// Usage:
500//   RelocIterator iter(nm);
501//   while (iter.next()) {
502//     iter.reloc()->some_operation();
503//   }
504// or:
505//   RelocIterator iter(nm);
506//   while (iter.next()) {
507//     switch (iter.type()) {
508//      case relocInfo::oop_type          :
509//      case relocInfo::ic_type           :
510//      case relocInfo::prim_type         :
511//      case relocInfo::uncommon_type     :
512//      case relocInfo::runtime_call_type :
513//      case relocInfo::internal_word_type:
514//      case relocInfo::external_word_type:
515//      ...
516//     }
517//   }
518
519class RelocIterator : public StackObj {
520  enum { SECT_LIMIT = 3 };  // must be equal to CodeBuffer::SECT_LIMIT, checked in ctor
521  friend class Relocation;
522  friend class relocInfo;       // for change_reloc_info_for_address only
523  typedef relocInfo::relocType relocType;
524
525 private:
526  address    _limit;   // stop producing relocations after this _addr
527  relocInfo* _current; // the current relocation information
528  relocInfo* _end;     // end marker; we're done iterating when _current == _end
529  nmethod*   _code;    // compiled method containing _addr
530  address    _addr;    // instruction to which the relocation applies
531  short      _databuf; // spare buffer for compressed data
532  short*     _data;    // pointer to the relocation's data
533  short      _datalen; // number of halfwords in _data
534  char       _format;  // position within the instruction
535
536  // Base addresses needed to compute targets of section_word_type relocs.
537  address    _section_start[SECT_LIMIT];
538  address    _section_end  [SECT_LIMIT];
539
540  void set_has_current(bool b) {
541    _datalen = !b ? -1 : 0;
542    debug_only(_data = NULL);
543  }
544  void set_current(relocInfo& ri) {
545    _current = &ri;
546    set_has_current(true);
547  }
548
549  RelocationHolder _rh; // where the current relocation is allocated
550
551  relocInfo* current() const { assert(has_current(), "must have current");
552                               return _current; }
553
554  void set_limits(address begin, address limit);
555
556  void advance_over_prefix();    // helper method
557
558  void initialize_misc();
559
560  void initialize(nmethod* nm, address begin, address limit);
561
562  friend class PatchingRelocIterator;
563  // make an uninitialized one, for PatchingRelocIterator:
564  RelocIterator() { initialize_misc(); }
565
566 public:
567  // constructor
568  RelocIterator(nmethod* nm,     address begin = NULL, address limit = NULL);
569  RelocIterator(CodeSection* cb, address begin = NULL, address limit = NULL);
570
571  // get next reloc info, return !eos
572  bool next() {
573    _current++;
574    assert(_current <= _end, "must not overrun relocInfo");
575    if (_current == _end) {
576      set_has_current(false);
577      return false;
578    }
579    set_has_current(true);
580
581    if (_current->is_prefix()) {
582      advance_over_prefix();
583      assert(!current()->is_prefix(), "only one prefix at a time");
584    }
585
586    _addr += _current->addr_offset();
587
588    if (_limit != NULL && _addr >= _limit) {
589      set_has_current(false);
590      return false;
591    }
592
593    if (relocInfo::have_format)  _format = current()->format();
594    return true;
595  }
596
597  // accessors
598  address      limit()        const { return _limit; }
599  void     set_limit(address x);
600  relocType    type()         const { return current()->type(); }
601  int          format()       const { return (relocInfo::have_format) ? current()->format() : 0; }
602  address      addr()         const { return _addr; }
603  nmethod*     code()         const { return _code; }
604  short*       data()         const { return _data; }
605  int          datalen()      const { return _datalen; }
606  bool     has_current()      const { return _datalen >= 0; }
607
608  void       set_addr(address addr) { _addr = addr; }
609  bool   addr_in_const()      const;
610
611  address section_start(int n) const {
612    assert(_section_start[n], "must be initialized");
613    return _section_start[n];
614  }
615  address section_end(int n) const {
616    assert(_section_end[n], "must be initialized");
617    return _section_end[n];
618  }
619
620  // The address points to the affected displacement part of the instruction.
621  // For RISC, this is just the whole instruction.
622  // For Intel, this is an unaligned 32-bit word.
623
624  // type-specific relocation accessors:  oop_Relocation* oop_reloc(), etc.
625  #define EACH_TYPE(name)                               \
626  inline name##_Relocation* name##_reloc();
627  APPLY_TO_RELOCATIONS(EACH_TYPE)
628  #undef EACH_TYPE
629  // generic relocation accessor; switches on type to call the above
630  Relocation* reloc();
631
632  // CodeBlob's have relocation indexes for faster random access:
633  static int locs_and_index_size(int code_size, int locs_size);
634  // Store an index into [dest_start+dest_count..dest_end).
635  // At dest_start[0..dest_count] is the actual relocation information.
636  // Everything else up to dest_end is free space for the index.
637  static void create_index(relocInfo* dest_begin, int dest_count, relocInfo* dest_end);
638
639#ifndef PRODUCT
640 public:
641  void print();
642  void print_current();
643#endif
644};
645
646
647// A Relocation is a flyweight object allocated within a RelocationHolder.
648// It represents the relocation data of relocation record.
649// So, the RelocIterator unpacks relocInfos into Relocations.
650
651class Relocation VALUE_OBJ_CLASS_SPEC {
652  friend class RelocationHolder;
653  friend class RelocIterator;
654
655 private:
656  static void guarantee_size();
657
658  // When a relocation has been created by a RelocIterator,
659  // this field is non-null.  It allows the relocation to know
660  // its context, such as the address to which it applies.
661  RelocIterator* _binding;
662
663 protected:
664  RelocIterator* binding() const {
665    assert(_binding != NULL, "must be bound");
666    return _binding;
667  }
668  void set_binding(RelocIterator* b) {
669    assert(_binding == NULL, "must be unbound");
670    _binding = b;
671    assert(_binding != NULL, "must now be bound");
672  }
673
674  Relocation() {
675    _binding = NULL;
676  }
677
678  static RelocationHolder newHolder() {
679    return RelocationHolder();
680  }
681
682 public:
683  void* operator new(size_t size, const RelocationHolder& holder) {
684    if (size > sizeof(holder._relocbuf)) guarantee_size();
685    assert((void* const *)holder.reloc() == &holder._relocbuf[0], "ptrs must agree");
686    return holder.reloc();
687  }
688
689  // make a generic relocation for a given type (if possible)
690  static RelocationHolder spec_simple(relocInfo::relocType rtype);
691
692  // here is the type-specific hook which writes relocation data:
693  virtual void pack_data_to(CodeSection* dest) { }
694
695  // here is the type-specific hook which reads (unpacks) relocation data:
696  virtual void unpack_data() {
697    assert(datalen()==0 || type()==relocInfo::none, "no data here");
698  }
699
700 protected:
701  // Helper functions for pack_data_to() and unpack_data().
702
703  // Most of the compression logic is confined here.
704  // (The "immediate data" mechanism of relocInfo works independently
705  // of this stuff, and acts to further compress most 1-word data prefixes.)
706
707  // A variable-width int is encoded as a short if it will fit in 16 bits.
708  // The decoder looks at datalen to decide whether to unpack short or jint.
709  // Most relocation records are quite simple, containing at most two ints.
710
711  static bool is_short(jint x) { return x == (short)x; }
712  static short* add_short(short* p, int x)  { *p++ = x; return p; }
713  static short* add_jint (short* p, jint x) {
714    *p++ = relocInfo::data0_from_int(x); *p++ = relocInfo::data1_from_int(x);
715    return p;
716  }
717  static short* add_var_int(short* p, jint x) {   // add a variable-width int
718    if (is_short(x))  p = add_short(p, x);
719    else              p = add_jint (p, x);
720    return p;
721  }
722
723  static short* pack_1_int_to(short* p, jint x0) {
724    // Format is one of:  [] [x] [Xx]
725    if (x0 != 0)  p = add_var_int(p, x0);
726    return p;
727  }
728  int unpack_1_int() {
729    assert(datalen() <= 2, "too much data");
730    return relocInfo::jint_data_at(0, data(), datalen());
731  }
732
733  // With two ints, the short form is used only if both ints are short.
734  short* pack_2_ints_to(short* p, jint x0, jint x1) {
735    // Format is one of:  [] [x y?] [Xx Y?y]
736    if (x0 == 0 && x1 == 0) {
737      // no halfwords needed to store zeroes
738    } else if (is_short(x0) && is_short(x1)) {
739      // 1-2 halfwords needed to store shorts
740      p = add_short(p, x0); if (x1!=0) p = add_short(p, x1);
741    } else {
742      // 3-4 halfwords needed to store jints
743      p = add_jint(p, x0);             p = add_var_int(p, x1);
744    }
745    return p;
746  }
747  void unpack_2_ints(jint& x0, jint& x1) {
748    int    dlen = datalen();
749    short* dp  = data();
750    if (dlen <= 2) {
751      x0 = relocInfo::short_data_at(0, dp, dlen);
752      x1 = relocInfo::short_data_at(1, dp, dlen);
753    } else {
754      assert(dlen <= 4, "too much data");
755      x0 = relocInfo::jint_data_at(0, dp, dlen);
756      x1 = relocInfo::jint_data_at(2, dp, dlen);
757    }
758  }
759
760 protected:
761  // platform-dependent utilities for decoding and patching instructions
762  void       pd_set_data_value       (address x, intptr_t off); // a set or mem-ref
763  address    pd_call_destination     (address orig_addr = NULL);
764  void       pd_set_call_destination (address x);
765  void       pd_swap_in_breakpoint   (address x, short* instrs, int instrlen);
766  void       pd_swap_out_breakpoint  (address x, short* instrs, int instrlen);
767  static int pd_breakpoint_size      ();
768
769  // this extracts the address of an address in the code stream instead of the reloc data
770  address* pd_address_in_code       ();
771
772  // this extracts an address from the code stream instead of the reloc data
773  address  pd_get_address_from_code ();
774
775  // these convert from byte offsets, to scaled offsets, to addresses
776  static jint scaled_offset(address x, address base) {
777    int byte_offset = x - base;
778    int offset = -byte_offset / relocInfo::addr_unit();
779    assert(address_from_scaled_offset(offset, base) == x, "just checkin'");
780    return offset;
781  }
782  static jint scaled_offset_null_special(address x, address base) {
783    // Some relocations treat offset=0 as meaning NULL.
784    // Handle this extra convention carefully.
785    if (x == NULL)  return 0;
786    assert(x != base, "offset must not be zero");
787    return scaled_offset(x, base);
788  }
789  static address address_from_scaled_offset(jint offset, address base) {
790    int byte_offset = -( offset * relocInfo::addr_unit() );
791    return base + byte_offset;
792  }
793
794  // these convert between indexes and addresses in the runtime system
795  static int32_t runtime_address_to_index(address runtime_address);
796  static address index_to_runtime_address(int32_t index);
797
798  // helpers for mapping between old and new addresses after a move or resize
799  address old_addr_for(address newa, const CodeBuffer* src, CodeBuffer* dest);
800  address new_addr_for(address olda, const CodeBuffer* src, CodeBuffer* dest);
801  void normalize_address(address& addr, const CodeSection* dest, bool allow_other_sections = false);
802
803 public:
804  // accessors which only make sense for a bound Relocation
805  address  addr()         const { return binding()->addr(); }
806  nmethod* code()         const { return binding()->code(); }
807  bool     addr_in_const() const { return binding()->addr_in_const(); }
808 protected:
809  short*   data()         const { return binding()->data(); }
810  int      datalen()      const { return binding()->datalen(); }
811  int      format()       const { return binding()->format(); }
812
813 public:
814  virtual relocInfo::relocType type()            { return relocInfo::none; }
815
816  // is it a call instruction?
817  virtual bool is_call()                         { return false; }
818
819  // is it a data movement instruction?
820  virtual bool is_data()                         { return false; }
821
822  // some relocations can compute their own values
823  virtual address  value();
824
825  // all relocations are able to reassert their values
826  virtual void set_value(address x);
827
828  virtual void clear_inline_cache()              { }
829
830  // This method assumes that all virtual/static (inline) caches are cleared (since for static_call_type and
831  // ic_call_type is not always posisition dependent (depending on the state of the cache)). However, this is
832  // probably a reasonable assumption, since empty caches simplifies code reloacation.
833  virtual void fix_relocation_after_move(const CodeBuffer* src, CodeBuffer* dest) { }
834
835  void print();
836};
837
838
839// certain inlines must be deferred until class Relocation is defined:
840
841inline RelocationHolder::RelocationHolder() {
842  // initialize the vtbl, just to keep things type-safe
843  new(*this) Relocation();
844}
845
846
847inline RelocationHolder::RelocationHolder(Relocation* r) {
848  // wordwise copy from r (ok if it copies garbage after r)
849  for (int i = 0; i < _relocbuf_size; i++) {
850    _relocbuf[i] = ((void**)r)[i];
851  }
852}
853
854
855relocInfo::relocType RelocationHolder::type() const {
856  return reloc()->type();
857}
858
859// A DataRelocation always points at a memory or load-constant instruction..
860// It is absolute on most machines, and the constant is split on RISCs.
861// The specific subtypes are oop, external_word, and internal_word.
862// By convention, the "value" does not include a separately reckoned "offset".
863class DataRelocation : public Relocation {
864 public:
865  bool          is_data()                      { return true; }
866
867  // both target and offset must be computed somehow from relocation data
868  virtual int    offset()                      { return 0; }
869  address         value()                      = 0;
870  void        set_value(address x)             { set_value(x, offset()); }
871  void        set_value(address x, intptr_t o) {
872    if (addr_in_const())
873      *(address*)addr() = x;
874    else
875      pd_set_data_value(x, o);
876  }
877
878  // The "o" (displacement) argument is relevant only to split relocations
879  // on RISC machines.  In some CPUs (SPARC), the set-hi and set-lo ins'ns
880  // can encode more than 32 bits between them.  This allows compilers to
881  // share set-hi instructions between addresses that differ by a small
882  // offset (e.g., different static variables in the same class).
883  // On such machines, the "x" argument to set_value on all set-lo
884  // instructions must be the same as the "x" argument for the
885  // corresponding set-hi instructions.  The "o" arguments for the
886  // set-hi instructions are ignored, and must not affect the high-half
887  // immediate constant.  The "o" arguments for the set-lo instructions are
888  // added into the low-half immediate constant, and must not overflow it.
889};
890
891// A CallRelocation always points at a call instruction.
892// It is PC-relative on most machines.
893class CallRelocation : public Relocation {
894 public:
895  bool is_call() { return true; }
896
897  address  destination()                    { return pd_call_destination(); }
898  void     set_destination(address x); // pd_set_call_destination
899
900  void     fix_relocation_after_move(const CodeBuffer* src, CodeBuffer* dest);
901  address  value()                          { return destination();  }
902  void     set_value(address x)             { set_destination(x); }
903};
904
905class oop_Relocation : public DataRelocation {
906  relocInfo::relocType type() { return relocInfo::oop_type; }
907
908 public:
909  // encode in one of these formats:  [] [n] [n l] [Nn l] [Nn Ll]
910  // an oop in the CodeBlob's oop pool
911  static RelocationHolder spec(int oop_index, int offset = 0) {
912    assert(oop_index > 0, "must be a pool-resident oop");
913    RelocationHolder rh = newHolder();
914    new(rh) oop_Relocation(oop_index, offset);
915    return rh;
916  }
917  // an oop in the instruction stream
918  static RelocationHolder spec_for_immediate() {
919    const int oop_index = 0;
920    const int offset    = 0;    // if you want an offset, use the oop pool
921    RelocationHolder rh = newHolder();
922    new(rh) oop_Relocation(oop_index, offset);
923    return rh;
924  }
925
926 private:
927  jint _oop_index;                  // if > 0, index into CodeBlob::oop_at
928  jint _offset;                     // byte offset to apply to the oop itself
929
930  oop_Relocation(int oop_index, int offset) {
931    _oop_index = oop_index; _offset = offset;
932  }
933
934  friend class RelocIterator;
935  oop_Relocation() { }
936
937 public:
938  int oop_index() { return _oop_index; }
939  int offset()    { return _offset; }
940
941  // data is packed in "2_ints" format:  [i o] or [Ii Oo]
942  void pack_data_to(CodeSection* dest);
943  void unpack_data();
944
945  void fix_oop_relocation();        // reasserts oop value
946
947  address value()  { return (address) *oop_addr(); }
948
949  bool oop_is_immediate()  { return oop_index() == 0; }
950
951  oop* oop_addr();                  // addr or &pool[jint_data]
952  oop  oop_value();                 // *oop_addr
953  // Note:  oop_value transparently converts Universe::non_oop_word to NULL.
954};
955
956class virtual_call_Relocation : public CallRelocation {
957  relocInfo::relocType type() { return relocInfo::virtual_call_type; }
958
959 public:
960  // "first_oop" points to the first associated set-oop.
961  // The oop_limit helps find the last associated set-oop.
962  // (See comments at the top of this file.)
963  static RelocationHolder spec(address first_oop, address oop_limit = NULL) {
964    RelocationHolder rh = newHolder();
965    new(rh) virtual_call_Relocation(first_oop, oop_limit);
966    return rh;
967  }
968
969  virtual_call_Relocation(address first_oop, address oop_limit) {
970    _first_oop = first_oop; _oop_limit = oop_limit;
971    assert(first_oop != NULL, "first oop address must be specified");
972  }
973
974 private:
975  address _first_oop;               // location of first set-oop instruction
976  address _oop_limit;               // search limit for set-oop instructions
977
978  friend class RelocIterator;
979  virtual_call_Relocation() { }
980
981
982 public:
983  address first_oop();
984  address oop_limit();
985
986  // data is packed as scaled offsets in "2_ints" format:  [f l] or [Ff Ll]
987  // oop_limit is set to 0 if the limit falls somewhere within the call.
988  // When unpacking, a zero oop_limit is taken to refer to the end of the call.
989  // (This has the effect of bringing in the call's delay slot on SPARC.)
990  void pack_data_to(CodeSection* dest);
991  void unpack_data();
992
993  void clear_inline_cache();
994
995  // Figure out where an ic_call is hiding, given a set-oop or call.
996  // Either ic_call or first_oop must be non-null; the other is deduced.
997  // Code if non-NULL must be the nmethod, else it is deduced.
998  // The address of the patchable oop is also deduced.
999  // The returned iterator will enumerate over the oops and the ic_call,
1000  // as well as any other relocations that happen to be in that span of code.
1001  // Recognize relevant set_oops with:  oop_reloc()->oop_addr() == oop_addr.
1002  static RelocIterator parse_ic(nmethod* &nm, address &ic_call, address &first_oop, oop* &oop_addr, bool *is_optimized);
1003};
1004
1005
1006class opt_virtual_call_Relocation : public CallRelocation {
1007  relocInfo::relocType type() { return relocInfo::opt_virtual_call_type; }
1008
1009 public:
1010  static RelocationHolder spec() {
1011    RelocationHolder rh = newHolder();
1012    new(rh) opt_virtual_call_Relocation();
1013    return rh;
1014  }
1015
1016 private:
1017  friend class RelocIterator;
1018  opt_virtual_call_Relocation() { }
1019
1020 public:
1021  void clear_inline_cache();
1022
1023  // find the matching static_stub
1024  address static_stub();
1025};
1026
1027
1028class static_call_Relocation : public CallRelocation {
1029  relocInfo::relocType type() { return relocInfo::static_call_type; }
1030
1031 public:
1032  static RelocationHolder spec() {
1033    RelocationHolder rh = newHolder();
1034    new(rh) static_call_Relocation();
1035    return rh;
1036  }
1037
1038 private:
1039  friend class RelocIterator;
1040  static_call_Relocation() { }
1041
1042 public:
1043  void clear_inline_cache();
1044
1045  // find the matching static_stub
1046  address static_stub();
1047};
1048
1049class static_stub_Relocation : public Relocation {
1050  relocInfo::relocType type() { return relocInfo::static_stub_type; }
1051
1052 public:
1053  static RelocationHolder spec(address static_call) {
1054    RelocationHolder rh = newHolder();
1055    new(rh) static_stub_Relocation(static_call);
1056    return rh;
1057  }
1058
1059 private:
1060  address _static_call;             // location of corresponding static_call
1061
1062  static_stub_Relocation(address static_call) {
1063    _static_call = static_call;
1064  }
1065
1066  friend class RelocIterator;
1067  static_stub_Relocation() { }
1068
1069 public:
1070  void clear_inline_cache();
1071
1072  address static_call() { return _static_call; }
1073
1074  // data is packed as a scaled offset in "1_int" format:  [c] or [Cc]
1075  void pack_data_to(CodeSection* dest);
1076  void unpack_data();
1077};
1078
1079class runtime_call_Relocation : public CallRelocation {
1080  relocInfo::relocType type() { return relocInfo::runtime_call_type; }
1081
1082 public:
1083  static RelocationHolder spec() {
1084    RelocationHolder rh = newHolder();
1085    new(rh) runtime_call_Relocation();
1086    return rh;
1087  }
1088
1089 private:
1090  friend class RelocIterator;
1091  runtime_call_Relocation() { }
1092
1093 public:
1094};
1095
1096class external_word_Relocation : public DataRelocation {
1097  relocInfo::relocType type() { return relocInfo::external_word_type; }
1098
1099 public:
1100  static RelocationHolder spec(address target) {
1101    assert(target != NULL, "must not be null");
1102    RelocationHolder rh = newHolder();
1103    new(rh) external_word_Relocation(target);
1104    return rh;
1105  }
1106
1107  // Use this one where all 32/64 bits of the target live in the code stream.
1108  // The target must be an intptr_t, and must be absolute (not relative).
1109  static RelocationHolder spec_for_immediate() {
1110    RelocationHolder rh = newHolder();
1111    new(rh) external_word_Relocation(NULL);
1112    return rh;
1113  }
1114
1115 private:
1116  address _target;                  // address in runtime
1117
1118  external_word_Relocation(address target) {
1119    _target = target;
1120  }
1121
1122  friend class RelocIterator;
1123  external_word_Relocation() { }
1124
1125 public:
1126  // data is packed as a well-known address in "1_int" format:  [a] or [Aa]
1127  // The function runtime_address_to_index is used to turn full addresses
1128  // to short indexes, if they are pre-registered by the stub mechanism.
1129  // If the "a" value is 0 (i.e., _target is NULL), the address is stored
1130  // in the code stream.  See external_word_Relocation::target().
1131  void pack_data_to(CodeSection* dest);
1132  void unpack_data();
1133
1134  void fix_relocation_after_move(const CodeBuffer* src, CodeBuffer* dest);
1135  address  target();        // if _target==NULL, fetch addr from code stream
1136  address  value()          { return target(); }
1137};
1138
1139class internal_word_Relocation : public DataRelocation {
1140  relocInfo::relocType type() { return relocInfo::internal_word_type; }
1141
1142 public:
1143  static RelocationHolder spec(address target) {
1144    assert(target != NULL, "must not be null");
1145    RelocationHolder rh = newHolder();
1146    new(rh) internal_word_Relocation(target);
1147    return rh;
1148  }
1149
1150  // use this one where all the bits of the target can fit in the code stream:
1151  static RelocationHolder spec_for_immediate() {
1152    RelocationHolder rh = newHolder();
1153    new(rh) internal_word_Relocation(NULL);
1154    return rh;
1155  }
1156
1157  internal_word_Relocation(address target) {
1158    _target  = target;
1159    _section = -1;  // self-relative
1160  }
1161
1162 protected:
1163  address _target;                  // address in CodeBlob
1164  int     _section;                 // section providing base address, if any
1165
1166  friend class RelocIterator;
1167  internal_word_Relocation() { }
1168
1169  // bit-width of LSB field in packed offset, if section >= 0
1170  enum { section_width = 2 }; // must equal CodeBuffer::sect_bits
1171
1172 public:
1173  // data is packed as a scaled offset in "1_int" format:  [o] or [Oo]
1174  // If the "o" value is 0 (i.e., _target is NULL), the offset is stored
1175  // in the code stream.  See internal_word_Relocation::target().
1176  // If _section is not -1, it is appended to the low bits of the offset.
1177  void pack_data_to(CodeSection* dest);
1178  void unpack_data();
1179
1180  void fix_relocation_after_move(const CodeBuffer* src, CodeBuffer* dest);
1181  address  target();        // if _target==NULL, fetch addr from code stream
1182  int      section()        { return _section;   }
1183  address  value()          { return target();   }
1184};
1185
1186class section_word_Relocation : public internal_word_Relocation {
1187  relocInfo::relocType type() { return relocInfo::section_word_type; }
1188
1189 public:
1190  static RelocationHolder spec(address target, int section) {
1191    RelocationHolder rh = newHolder();
1192    new(rh) section_word_Relocation(target, section);
1193    return rh;
1194  }
1195
1196  section_word_Relocation(address target, int section) {
1197    assert(target != NULL, "must not be null");
1198    assert(section >= 0, "must be a valid section");
1199    _target  = target;
1200    _section = section;
1201  }
1202
1203  //void pack_data_to -- inherited
1204  void unpack_data();
1205
1206 private:
1207  friend class RelocIterator;
1208  section_word_Relocation() { }
1209};
1210
1211
1212class poll_Relocation : public Relocation {
1213  bool          is_data()                      { return true; }
1214  relocInfo::relocType type() { return relocInfo::poll_type; }
1215  void     fix_relocation_after_move(const CodeBuffer* src, CodeBuffer* dest);
1216};
1217
1218class poll_return_Relocation : public Relocation {
1219  bool          is_data()                      { return true; }
1220  relocInfo::relocType type() { return relocInfo::poll_return_type; }
1221  void     fix_relocation_after_move(const CodeBuffer* src, CodeBuffer* dest);
1222};
1223
1224
1225class breakpoint_Relocation : public Relocation {
1226  relocInfo::relocType type() { return relocInfo::breakpoint_type; }
1227
1228  enum {
1229    // attributes which affect the interpretation of the data:
1230    removable_attr = 0x0010,   // buffer [i...] allows for undoing the trap
1231    internal_attr  = 0x0020,   // the target is an internal addr (local stub)
1232    settable_attr  = 0x0040,   // the target is settable
1233
1234    // states which can change over time:
1235    enabled_state  = 0x0100,   // breakpoint must be active in running code
1236    active_state   = 0x0200,   // breakpoint instruction actually in code
1237
1238    kind_mask      = 0x000F,   // mask for extracting kind
1239    high_bit       = 0x4000    // extra bit which is always set
1240  };
1241
1242 public:
1243  enum {
1244    // kinds:
1245    initialization = 1,
1246    safepoint      = 2
1247  };
1248
1249  // If target is NULL, 32 bits are reserved for a later set_target().
1250  static RelocationHolder spec(int kind, address target = NULL, bool internal_target = false) {
1251    RelocationHolder rh = newHolder();
1252    new(rh) breakpoint_Relocation(kind, target, internal_target);
1253    return rh;
1254  }
1255
1256 private:
1257  // We require every bits value to NOT to fit into relocInfo::datalen_width,
1258  // because we are going to actually store state in the reloc, and so
1259  // cannot allow it to be compressed (and hence copied by the iterator).
1260
1261  short   _bits;                  // bit-encoded kind, attrs, & state
1262  address _target;
1263
1264  breakpoint_Relocation(int kind, address target, bool internal_target);
1265
1266  friend class RelocIterator;
1267  breakpoint_Relocation() { }
1268
1269  short    bits()       const { return _bits; }
1270  short&   live_bits()  const { return data()[0]; }
1271  short*   instrs()     const { return data() + datalen() - instrlen(); }
1272  int      instrlen()   const { return removable() ? pd_breakpoint_size() : 0; }
1273
1274  void set_bits(short x) {
1275    assert(live_bits() == _bits, "must be the only mutator of reloc info");
1276    live_bits() = _bits = x;
1277  }
1278
1279 public:
1280  address  target()     const;
1281  void set_target(address x);
1282
1283  int  kind()           const { return  bits() & kind_mask; }
1284  bool enabled()        const { return (bits() &  enabled_state) != 0; }
1285  bool active()         const { return (bits() &   active_state) != 0; }
1286  bool internal()       const { return (bits() &  internal_attr) != 0; }
1287  bool removable()      const { return (bits() & removable_attr) != 0; }
1288  bool settable()       const { return (bits() &  settable_attr) != 0; }
1289
1290  void set_enabled(bool b);     // to activate, you must also say set_active
1291  void set_active(bool b);      // actually inserts bpt (must be enabled 1st)
1292
1293  // data is packed as 16 bits, followed by the target (1 or 2 words), followed
1294  // if necessary by empty storage for saving away original instruction bytes.
1295  void pack_data_to(CodeSection* dest);
1296  void unpack_data();
1297
1298  // during certain operations, breakpoints must be out of the way:
1299  void fix_relocation_after_move(const CodeBuffer* src, CodeBuffer* dest) {
1300    assert(!active(), "cannot perform relocation on enabled breakpoints");
1301  }
1302};
1303
1304
1305// We know all the xxx_Relocation classes, so now we can define these:
1306#define EACH_CASE(name)                                         \
1307inline name##_Relocation* RelocIterator::name##_reloc() {       \
1308  assert(type() == relocInfo::name##_type, "type must agree");  \
1309  /* The purpose of the placed "new" is to re-use the same */   \
1310  /* stack storage for each new iteration. */                   \
1311  name##_Relocation* r = new(_rh) name##_Relocation();          \
1312  r->set_binding(this);                                         \
1313  r->name##_Relocation::unpack_data();                          \
1314  return r;                                                     \
1315}
1316APPLY_TO_RELOCATIONS(EACH_CASE);
1317#undef EACH_CASE
1318
1319inline RelocIterator::RelocIterator(nmethod* nm, address begin, address limit) {
1320  initialize(nm, begin, limit);
1321}
1322
1323// if you are going to patch code, you should use this subclass of
1324// RelocIterator
1325class PatchingRelocIterator : public RelocIterator {
1326 private:
1327  RelocIterator _init_state;
1328
1329  void prepass();               // deactivates all breakpoints
1330  void postpass();              // reactivates all enabled breakpoints
1331
1332  // do not copy these puppies; it would have unpredictable side effects
1333  // these are private and have no bodies defined because they should not be called
1334  PatchingRelocIterator(const RelocIterator&);
1335  void        operator=(const RelocIterator&);
1336
1337 public:
1338  PatchingRelocIterator(nmethod* nm, address begin = NULL, address limit = NULL)
1339    : RelocIterator(nm, begin, limit)                { prepass();  }
1340
1341  ~PatchingRelocIterator()                           { postpass(); }
1342};
1343
1344#endif // SHARE_VM_CODE_RELOCINFO_HPP
1345