1/*
2 * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "aot/aotLoader.hpp"
27#include "code/codeBlob.hpp"
28#include "code/codeCache.hpp"
29#include "code/compiledIC.hpp"
30#include "code/dependencies.hpp"
31#include "code/icBuffer.hpp"
32#include "code/nmethod.hpp"
33#include "code/pcDesc.hpp"
34#include "compiler/compileBroker.hpp"
35#include "gc/shared/gcLocker.hpp"
36#include "memory/allocation.inline.hpp"
37#include "memory/iterator.hpp"
38#include "memory/resourceArea.hpp"
39#include "oops/method.hpp"
40#include "oops/objArrayOop.hpp"
41#include "oops/oop.inline.hpp"
42#include "oops/verifyOopClosure.hpp"
43#include "runtime/arguments.hpp"
44#include "runtime/compilationPolicy.hpp"
45#include "runtime/deoptimization.hpp"
46#include "runtime/handles.inline.hpp"
47#include "runtime/icache.hpp"
48#include "runtime/java.hpp"
49#include "runtime/mutexLocker.hpp"
50#include "runtime/sweeper.hpp"
51#include "services/memoryService.hpp"
52#include "trace/tracing.hpp"
53#include "utilities/align.hpp"
54#include "utilities/vmError.hpp"
55#include "utilities/xmlstream.hpp"
56#ifdef COMPILER1
57#include "c1/c1_Compilation.hpp"
58#include "c1/c1_Compiler.hpp"
59#endif
60#ifdef COMPILER2
61#include "opto/c2compiler.hpp"
62#include "opto/compile.hpp"
63#include "opto/node.hpp"
64#endif
65
66// Helper class for printing in CodeCache
67class CodeBlob_sizes {
68 private:
69  int count;
70  int total_size;
71  int header_size;
72  int code_size;
73  int stub_size;
74  int relocation_size;
75  int scopes_oop_size;
76  int scopes_metadata_size;
77  int scopes_data_size;
78  int scopes_pcs_size;
79
80 public:
81  CodeBlob_sizes() {
82    count            = 0;
83    total_size       = 0;
84    header_size      = 0;
85    code_size        = 0;
86    stub_size        = 0;
87    relocation_size  = 0;
88    scopes_oop_size  = 0;
89    scopes_metadata_size  = 0;
90    scopes_data_size = 0;
91    scopes_pcs_size  = 0;
92  }
93
94  int total()                                    { return total_size; }
95  bool is_empty()                                { return count == 0; }
96
97  void print(const char* title) {
98    tty->print_cr(" #%d %s = %dK (hdr %d%%,  loc %d%%, code %d%%, stub %d%%, [oops %d%%, metadata %d%%, data %d%%, pcs %d%%])",
99                  count,
100                  title,
101                  (int)(total() / K),
102                  header_size             * 100 / total_size,
103                  relocation_size         * 100 / total_size,
104                  code_size               * 100 / total_size,
105                  stub_size               * 100 / total_size,
106                  scopes_oop_size         * 100 / total_size,
107                  scopes_metadata_size    * 100 / total_size,
108                  scopes_data_size        * 100 / total_size,
109                  scopes_pcs_size         * 100 / total_size);
110  }
111
112  void add(CodeBlob* cb) {
113    count++;
114    total_size       += cb->size();
115    header_size      += cb->header_size();
116    relocation_size  += cb->relocation_size();
117    if (cb->is_nmethod()) {
118      nmethod* nm = cb->as_nmethod_or_null();
119      code_size        += nm->insts_size();
120      stub_size        += nm->stub_size();
121
122      scopes_oop_size  += nm->oops_size();
123      scopes_metadata_size  += nm->metadata_size();
124      scopes_data_size += nm->scopes_data_size();
125      scopes_pcs_size  += nm->scopes_pcs_size();
126    } else {
127      code_size        += cb->code_size();
128    }
129  }
130};
131
132// Iterate over all CodeHeaps
133#define FOR_ALL_HEAPS(heap) for (GrowableArrayIterator<CodeHeap*> heap = _heaps->begin(); heap != _heaps->end(); ++heap)
134#define FOR_ALL_NMETHOD_HEAPS(heap) for (GrowableArrayIterator<CodeHeap*> heap = _nmethod_heaps->begin(); heap != _nmethod_heaps->end(); ++heap)
135#define FOR_ALL_ALLOCABLE_HEAPS(heap) for (GrowableArrayIterator<CodeHeap*> heap = _allocable_heaps->begin(); heap != _allocable_heaps->end(); ++heap)
136
137// Iterate over all CodeBlobs (cb) on the given CodeHeap
138#define FOR_ALL_BLOBS(cb, heap) for (CodeBlob* cb = first_blob(heap); cb != NULL; cb = next_blob(heap, cb))
139
140address CodeCache::_low_bound = 0;
141address CodeCache::_high_bound = 0;
142int CodeCache::_number_of_nmethods_with_dependencies = 0;
143bool CodeCache::_needs_cache_clean = false;
144nmethod* CodeCache::_scavenge_root_nmethods = NULL;
145
146// Initialize arrays of CodeHeap subsets
147GrowableArray<CodeHeap*>* CodeCache::_heaps = new(ResourceObj::C_HEAP, mtCode) GrowableArray<CodeHeap*> (CodeBlobType::All, true);
148GrowableArray<CodeHeap*>* CodeCache::_compiled_heaps = new(ResourceObj::C_HEAP, mtCode) GrowableArray<CodeHeap*> (CodeBlobType::All, true);
149GrowableArray<CodeHeap*>* CodeCache::_nmethod_heaps = new(ResourceObj::C_HEAP, mtCode) GrowableArray<CodeHeap*> (CodeBlobType::All, true);
150GrowableArray<CodeHeap*>* CodeCache::_allocable_heaps = new(ResourceObj::C_HEAP, mtCode) GrowableArray<CodeHeap*> (CodeBlobType::All, true);
151
152void CodeCache::check_heap_sizes(size_t non_nmethod_size, size_t profiled_size, size_t non_profiled_size, size_t cache_size, bool all_set) {
153  size_t total_size = non_nmethod_size + profiled_size + non_profiled_size;
154  // Prepare error message
155  const char* error = "Invalid code heap sizes";
156  err_msg message("NonNMethodCodeHeapSize (" SIZE_FORMAT "K) + ProfiledCodeHeapSize (" SIZE_FORMAT "K)"
157                  " + NonProfiledCodeHeapSize (" SIZE_FORMAT "K) = " SIZE_FORMAT "K",
158          non_nmethod_size/K, profiled_size/K, non_profiled_size/K, total_size/K);
159
160  if (total_size > cache_size) {
161    // Some code heap sizes were explicitly set: total_size must be <= cache_size
162    message.append(" is greater than ReservedCodeCacheSize (" SIZE_FORMAT "K).", cache_size/K);
163    vm_exit_during_initialization(error, message);
164  } else if (all_set && total_size != cache_size) {
165    // All code heap sizes were explicitly set: total_size must equal cache_size
166    message.append(" is not equal to ReservedCodeCacheSize (" SIZE_FORMAT "K).", cache_size/K);
167    vm_exit_during_initialization(error, message);
168  }
169}
170
171void CodeCache::initialize_heaps() {
172  bool non_nmethod_set      = FLAG_IS_CMDLINE(NonNMethodCodeHeapSize);
173  bool profiled_set         = FLAG_IS_CMDLINE(ProfiledCodeHeapSize);
174  bool non_profiled_set     = FLAG_IS_CMDLINE(NonProfiledCodeHeapSize);
175  size_t min_size           = os::vm_page_size();
176  size_t cache_size         = ReservedCodeCacheSize;
177  size_t non_nmethod_size   = NonNMethodCodeHeapSize;
178  size_t profiled_size      = ProfiledCodeHeapSize;
179  size_t non_profiled_size  = NonProfiledCodeHeapSize;
180  // Check if total size set via command line flags exceeds the reserved size
181  check_heap_sizes((non_nmethod_set  ? non_nmethod_size  : min_size),
182                   (profiled_set     ? profiled_size     : min_size),
183                   (non_profiled_set ? non_profiled_size : min_size),
184                   cache_size,
185                   non_nmethod_set && profiled_set && non_profiled_set);
186
187  // Determine size of compiler buffers
188  size_t code_buffers_size = 0;
189#ifdef COMPILER1
190  // C1 temporary code buffers (see Compiler::init_buffer_blob())
191  const int c1_count = CompilationPolicy::policy()->compiler_count(CompLevel_simple);
192  code_buffers_size += c1_count * Compiler::code_buffer_size();
193#endif
194#ifdef COMPILER2
195  // C2 scratch buffers (see Compile::init_scratch_buffer_blob())
196  const int c2_count = CompilationPolicy::policy()->compiler_count(CompLevel_full_optimization);
197  // Initial size of constant table (this may be increased if a compiled method needs more space)
198  code_buffers_size += c2_count * C2Compiler::initial_code_buffer_size();
199#endif
200
201  // Increase default non_nmethod_size to account for compiler buffers
202  if (!non_nmethod_set) {
203    non_nmethod_size += code_buffers_size;
204  }
205  // Calculate default CodeHeap sizes if not set by user
206  if (!non_nmethod_set && !profiled_set && !non_profiled_set) {
207    // Check if we have enough space for the non-nmethod code heap
208    if (cache_size > non_nmethod_size) {
209      // Use the default value for non_nmethod_size and one half of the
210      // remaining size for non-profiled and one half for profiled methods
211      size_t remaining_size = cache_size - non_nmethod_size;
212      profiled_size = remaining_size / 2;
213      non_profiled_size = remaining_size - profiled_size;
214    } else {
215      // Use all space for the non-nmethod heap and set other heaps to minimal size
216      non_nmethod_size = cache_size - 2 * min_size;
217      profiled_size = min_size;
218      non_profiled_size = min_size;
219    }
220  } else if (!non_nmethod_set || !profiled_set || !non_profiled_set) {
221    // The user explicitly set some code heap sizes. Increase or decrease the (default)
222    // sizes of the other code heaps accordingly. First adapt non-profiled and profiled
223    // code heap sizes and then only change non-nmethod code heap size if still necessary.
224    intx diff_size = cache_size - (non_nmethod_size + profiled_size + non_profiled_size);
225    if (non_profiled_set) {
226      if (!profiled_set) {
227        // Adapt size of profiled code heap
228        if (diff_size < 0 && ((intx)profiled_size + diff_size) <= 0) {
229          // Not enough space available, set to minimum size
230          diff_size += profiled_size - min_size;
231          profiled_size = min_size;
232        } else {
233          profiled_size += diff_size;
234          diff_size = 0;
235        }
236      }
237    } else if (profiled_set) {
238      // Adapt size of non-profiled code heap
239      if (diff_size < 0 && ((intx)non_profiled_size + diff_size) <= 0) {
240        // Not enough space available, set to minimum size
241        diff_size += non_profiled_size - min_size;
242        non_profiled_size = min_size;
243      } else {
244        non_profiled_size += diff_size;
245        diff_size = 0;
246      }
247    } else if (non_nmethod_set) {
248      // Distribute remaining size between profiled and non-profiled code heaps
249      diff_size = cache_size - non_nmethod_size;
250      profiled_size = diff_size / 2;
251      non_profiled_size = diff_size - profiled_size;
252      diff_size = 0;
253    }
254    if (diff_size != 0) {
255      // Use non-nmethod code heap for remaining space requirements
256      assert(!non_nmethod_set && ((intx)non_nmethod_size + diff_size) > 0, "sanity");
257      non_nmethod_size += diff_size;
258    }
259  }
260
261  // We do not need the profiled CodeHeap, use all space for the non-profiled CodeHeap
262  if(!heap_available(CodeBlobType::MethodProfiled)) {
263    non_profiled_size += profiled_size;
264    profiled_size = 0;
265  }
266  // We do not need the non-profiled CodeHeap, use all space for the non-nmethod CodeHeap
267  if(!heap_available(CodeBlobType::MethodNonProfiled)) {
268    non_nmethod_size += non_profiled_size;
269    non_profiled_size = 0;
270  }
271  // Make sure we have enough space for VM internal code
272  uint min_code_cache_size = CodeCacheMinimumUseSpace DEBUG_ONLY(* 3);
273  if (non_nmethod_size < (min_code_cache_size + code_buffers_size)) {
274    vm_exit_during_initialization(err_msg(
275        "Not enough space in non-nmethod code heap to run VM: " SIZE_FORMAT "K < " SIZE_FORMAT "K",
276        non_nmethod_size/K, (min_code_cache_size + code_buffers_size)/K));
277  }
278
279  // Verify sizes and update flag values
280  assert(non_profiled_size + profiled_size + non_nmethod_size == cache_size, "Invalid code heap sizes");
281  FLAG_SET_ERGO(uintx, NonNMethodCodeHeapSize, non_nmethod_size);
282  FLAG_SET_ERGO(uintx, ProfiledCodeHeapSize, profiled_size);
283  FLAG_SET_ERGO(uintx, NonProfiledCodeHeapSize, non_profiled_size);
284
285  // Align CodeHeaps
286  size_t alignment = heap_alignment();
287  non_nmethod_size = align_up(non_nmethod_size, alignment);
288  profiled_size   = align_down(profiled_size, alignment);
289
290  // Reserve one continuous chunk of memory for CodeHeaps and split it into
291  // parts for the individual heaps. The memory layout looks like this:
292  // ---------- high -----------
293  //    Non-profiled nmethods
294  //      Profiled nmethods
295  //         Non-nmethods
296  // ---------- low ------------
297  ReservedCodeSpace rs = reserve_heap_memory(cache_size);
298  ReservedSpace non_method_space    = rs.first_part(non_nmethod_size);
299  ReservedSpace rest                = rs.last_part(non_nmethod_size);
300  ReservedSpace profiled_space      = rest.first_part(profiled_size);
301  ReservedSpace non_profiled_space  = rest.last_part(profiled_size);
302
303  // Non-nmethods (stubs, adapters, ...)
304  add_heap(non_method_space, "CodeHeap 'non-nmethods'", CodeBlobType::NonNMethod);
305  // Tier 2 and tier 3 (profiled) methods
306  add_heap(profiled_space, "CodeHeap 'profiled nmethods'", CodeBlobType::MethodProfiled);
307  // Tier 1 and tier 4 (non-profiled) methods and native methods
308  add_heap(non_profiled_space, "CodeHeap 'non-profiled nmethods'", CodeBlobType::MethodNonProfiled);
309}
310
311size_t CodeCache::heap_alignment() {
312  // If large page support is enabled, align code heaps according to large
313  // page size to make sure that code cache is covered by large pages.
314  const size_t page_size = os::can_execute_large_page_memory() ?
315             os::page_size_for_region_unaligned(ReservedCodeCacheSize, 8) :
316             os::vm_page_size();
317  return MAX2(page_size, (size_t) os::vm_allocation_granularity());
318}
319
320ReservedCodeSpace CodeCache::reserve_heap_memory(size_t size) {
321  // Determine alignment
322  const size_t page_size = os::can_execute_large_page_memory() ?
323          MIN2(os::page_size_for_region_aligned(InitialCodeCacheSize, 8),
324               os::page_size_for_region_aligned(size, 8)) :
325          os::vm_page_size();
326  const size_t granularity = os::vm_allocation_granularity();
327  const size_t r_align = MAX2(page_size, granularity);
328  const size_t r_size = align_up(size, r_align);
329  const size_t rs_align = page_size == (size_t) os::vm_page_size() ? 0 :
330    MAX2(page_size, granularity);
331
332  ReservedCodeSpace rs(r_size, rs_align, rs_align > 0);
333
334  if (!rs.is_reserved()) {
335    vm_exit_during_initialization("Could not reserve enough space for code cache");
336  }
337
338  // Initialize bounds
339  _low_bound = (address)rs.base();
340  _high_bound = _low_bound + rs.size();
341
342  return rs;
343}
344
345// Heaps available for allocation
346bool CodeCache::heap_available(int code_blob_type) {
347  if (!SegmentedCodeCache) {
348    // No segmentation: use a single code heap
349    return (code_blob_type == CodeBlobType::All);
350  } else if (Arguments::is_interpreter_only()) {
351    // Interpreter only: we don't need any method code heaps
352    return (code_blob_type == CodeBlobType::NonNMethod);
353  } else if (TieredCompilation && (TieredStopAtLevel > CompLevel_simple)) {
354    // Tiered compilation: use all code heaps
355    return (code_blob_type < CodeBlobType::All);
356  } else {
357    // No TieredCompilation: we only need the non-nmethod and non-profiled code heap
358    return (code_blob_type == CodeBlobType::NonNMethod) ||
359           (code_blob_type == CodeBlobType::MethodNonProfiled);
360  }
361}
362
363const char* CodeCache::get_code_heap_flag_name(int code_blob_type) {
364  switch(code_blob_type) {
365  case CodeBlobType::NonNMethod:
366    return "NonNMethodCodeHeapSize";
367    break;
368  case CodeBlobType::MethodNonProfiled:
369    return "NonProfiledCodeHeapSize";
370    break;
371  case CodeBlobType::MethodProfiled:
372    return "ProfiledCodeHeapSize";
373    break;
374  }
375  ShouldNotReachHere();
376  return NULL;
377}
378
379int CodeCache::code_heap_compare(CodeHeap* const &lhs, CodeHeap* const &rhs) {
380  if (lhs->code_blob_type() == rhs->code_blob_type()) {
381    return (lhs > rhs) ? 1 : ((lhs < rhs) ? -1 : 0);
382  } else {
383    return lhs->code_blob_type() - rhs->code_blob_type();
384  }
385}
386
387void CodeCache::add_heap(CodeHeap* heap) {
388  assert(!Universe::is_fully_initialized(), "late heap addition?");
389
390  _heaps->insert_sorted<code_heap_compare>(heap);
391
392  int type = heap->code_blob_type();
393  if (code_blob_type_accepts_compiled(type)) {
394    _compiled_heaps->insert_sorted<code_heap_compare>(heap);
395  }
396  if (code_blob_type_accepts_nmethod(type)) {
397    _nmethod_heaps->insert_sorted<code_heap_compare>(heap);
398  }
399  if (code_blob_type_accepts_allocable(type)) {
400    _allocable_heaps->insert_sorted<code_heap_compare>(heap);
401  }
402}
403
404void CodeCache::add_heap(ReservedSpace rs, const char* name, int code_blob_type) {
405  // Check if heap is needed
406  if (!heap_available(code_blob_type)) {
407    return;
408  }
409
410  // Create CodeHeap
411  CodeHeap* heap = new CodeHeap(name, code_blob_type);
412  add_heap(heap);
413
414  // Reserve Space
415  size_t size_initial = MIN2(InitialCodeCacheSize, rs.size());
416  size_initial = align_up(size_initial, os::vm_page_size());
417  if (!heap->reserve(rs, size_initial, CodeCacheSegmentSize)) {
418    vm_exit_during_initialization("Could not reserve enough space for code cache");
419  }
420
421  // Register the CodeHeap
422  MemoryService::add_code_heap_memory_pool(heap, name);
423}
424
425CodeHeap* CodeCache::get_code_heap_containing(void* start) {
426  FOR_ALL_HEAPS(heap) {
427    if ((*heap)->contains(start)) {
428      return *heap;
429    }
430  }
431  return NULL;
432}
433
434CodeHeap* CodeCache::get_code_heap(const CodeBlob* cb) {
435  assert(cb != NULL, "CodeBlob is null");
436  FOR_ALL_HEAPS(heap) {
437    if ((*heap)->contains_blob(cb)) {
438      return *heap;
439    }
440  }
441  ShouldNotReachHere();
442  return NULL;
443}
444
445CodeHeap* CodeCache::get_code_heap(int code_blob_type) {
446  FOR_ALL_HEAPS(heap) {
447    if ((*heap)->accepts(code_blob_type)) {
448      return *heap;
449    }
450  }
451  return NULL;
452}
453
454CodeBlob* CodeCache::first_blob(CodeHeap* heap) {
455  assert_locked_or_safepoint(CodeCache_lock);
456  assert(heap != NULL, "heap is null");
457  return (CodeBlob*)heap->first();
458}
459
460CodeBlob* CodeCache::first_blob(int code_blob_type) {
461  if (heap_available(code_blob_type)) {
462    return first_blob(get_code_heap(code_blob_type));
463  } else {
464    return NULL;
465  }
466}
467
468CodeBlob* CodeCache::next_blob(CodeHeap* heap, CodeBlob* cb) {
469  assert_locked_or_safepoint(CodeCache_lock);
470  assert(heap != NULL, "heap is null");
471  return (CodeBlob*)heap->next(cb);
472}
473
474/**
475 * Do not seize the CodeCache lock here--if the caller has not
476 * already done so, we are going to lose bigtime, since the code
477 * cache will contain a garbage CodeBlob until the caller can
478 * run the constructor for the CodeBlob subclass he is busy
479 * instantiating.
480 */
481CodeBlob* CodeCache::allocate(int size, int code_blob_type, int orig_code_blob_type) {
482  // Possibly wakes up the sweeper thread.
483  NMethodSweeper::notify(code_blob_type);
484  assert_locked_or_safepoint(CodeCache_lock);
485  assert(size > 0, "Code cache allocation request must be > 0 but is %d", size);
486  if (size <= 0) {
487    return NULL;
488  }
489  CodeBlob* cb = NULL;
490
491  // Get CodeHeap for the given CodeBlobType
492  CodeHeap* heap = get_code_heap(code_blob_type);
493  assert(heap != NULL, "heap is null");
494
495  while (true) {
496    cb = (CodeBlob*)heap->allocate(size);
497    if (cb != NULL) break;
498    if (!heap->expand_by(CodeCacheExpansionSize)) {
499      // Save original type for error reporting
500      if (orig_code_blob_type == CodeBlobType::All) {
501        orig_code_blob_type = code_blob_type;
502      }
503      // Expansion failed
504      if (SegmentedCodeCache) {
505        // Fallback solution: Try to store code in another code heap.
506        // NonNMethod -> MethodNonProfiled -> MethodProfiled (-> MethodNonProfiled)
507        // Note that in the sweeper, we check the reverse_free_ratio of the code heap
508        // and force stack scanning if less than 10% of the code heap are free.
509        int type = code_blob_type;
510        switch (type) {
511        case CodeBlobType::NonNMethod:
512          type = CodeBlobType::MethodNonProfiled;
513          break;
514        case CodeBlobType::MethodNonProfiled:
515          type = CodeBlobType::MethodProfiled;
516          break;
517        case CodeBlobType::MethodProfiled:
518          // Avoid loop if we already tried that code heap
519          if (type == orig_code_blob_type) {
520            type = CodeBlobType::MethodNonProfiled;
521          }
522          break;
523        }
524        if (type != code_blob_type && type != orig_code_blob_type && heap_available(type)) {
525          if (PrintCodeCacheExtension) {
526            tty->print_cr("Extension of %s failed. Trying to allocate in %s.",
527                          heap->name(), get_code_heap(type)->name());
528          }
529          return allocate(size, type, orig_code_blob_type);
530        }
531      }
532      MutexUnlockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
533      CompileBroker::handle_full_code_cache(orig_code_blob_type);
534      return NULL;
535    }
536    if (PrintCodeCacheExtension) {
537      ResourceMark rm;
538      if (_nmethod_heaps->length() >= 1) {
539        tty->print("%s", heap->name());
540      } else {
541        tty->print("CodeCache");
542      }
543      tty->print_cr(" extended to [" INTPTR_FORMAT ", " INTPTR_FORMAT "] (" SSIZE_FORMAT " bytes)",
544                    (intptr_t)heap->low_boundary(), (intptr_t)heap->high(),
545                    (address)heap->high() - (address)heap->low_boundary());
546    }
547  }
548  print_trace("allocation", cb, size);
549  return cb;
550}
551
552void CodeCache::free(CodeBlob* cb) {
553  assert_locked_or_safepoint(CodeCache_lock);
554  CodeHeap* heap = get_code_heap(cb);
555  print_trace("free", cb);
556  if (cb->is_nmethod()) {
557    heap->set_nmethod_count(heap->nmethod_count() - 1);
558    if (((nmethod *)cb)->has_dependencies()) {
559      _number_of_nmethods_with_dependencies--;
560    }
561  }
562  if (cb->is_adapter_blob()) {
563    heap->set_adapter_count(heap->adapter_count() - 1);
564  }
565
566  // Get heap for given CodeBlob and deallocate
567  get_code_heap(cb)->deallocate(cb);
568
569  assert(heap->blob_count() >= 0, "sanity check");
570}
571
572void CodeCache::commit(CodeBlob* cb) {
573  // this is called by nmethod::nmethod, which must already own CodeCache_lock
574  assert_locked_or_safepoint(CodeCache_lock);
575  CodeHeap* heap = get_code_heap(cb);
576  if (cb->is_nmethod()) {
577    heap->set_nmethod_count(heap->nmethod_count() + 1);
578    if (((nmethod *)cb)->has_dependencies()) {
579      _number_of_nmethods_with_dependencies++;
580    }
581  }
582  if (cb->is_adapter_blob()) {
583    heap->set_adapter_count(heap->adapter_count() + 1);
584  }
585
586  // flush the hardware I-cache
587  ICache::invalidate_range(cb->content_begin(), cb->content_size());
588}
589
590bool CodeCache::contains(void *p) {
591  // S390 uses contains() in current_frame(), which is used before
592  // code cache initialization if NativeMemoryTracking=detail is set.
593  S390_ONLY(if (_heaps == NULL) return false;)
594  // It should be ok to call contains without holding a lock.
595  FOR_ALL_HEAPS(heap) {
596    if ((*heap)->contains(p)) {
597      return true;
598    }
599  }
600  return false;
601}
602
603bool CodeCache::contains(nmethod *nm) {
604  return contains((void *)nm);
605}
606
607// This method is safe to call without holding the CodeCache_lock, as long as a dead CodeBlob is not
608// looked up (i.e., one that has been marked for deletion). It only depends on the _segmap to contain
609// valid indices, which it will always do, as long as the CodeBlob is not in the process of being recycled.
610CodeBlob* CodeCache::find_blob(void* start) {
611  CodeBlob* result = find_blob_unsafe(start);
612  // We could potentially look up non_entrant methods
613  guarantee(result == NULL || !result->is_zombie() || result->is_locked_by_vm() || VMError::is_error_reported(), "unsafe access to zombie method");
614  return result;
615}
616
617// Lookup that does not fail if you lookup a zombie method (if you call this, be sure to know
618// what you are doing)
619CodeBlob* CodeCache::find_blob_unsafe(void* start) {
620  // NMT can walk the stack before code cache is created
621  if (_heaps != NULL) {
622    CodeHeap* heap = get_code_heap_containing(start);
623    if (heap != NULL) {
624      return heap->find_blob_unsafe(start);
625    }
626  }
627  return NULL;
628}
629
630nmethod* CodeCache::find_nmethod(void* start) {
631  CodeBlob* cb = find_blob(start);
632  assert(cb->is_nmethod(), "did not find an nmethod");
633  return (nmethod*)cb;
634}
635
636void CodeCache::blobs_do(void f(CodeBlob* nm)) {
637  assert_locked_or_safepoint(CodeCache_lock);
638  FOR_ALL_HEAPS(heap) {
639    FOR_ALL_BLOBS(cb, *heap) {
640      f(cb);
641    }
642  }
643}
644
645void CodeCache::nmethods_do(void f(nmethod* nm)) {
646  assert_locked_or_safepoint(CodeCache_lock);
647  NMethodIterator iter;
648  while(iter.next()) {
649    f(iter.method());
650  }
651}
652
653void CodeCache::metadata_do(void f(Metadata* m)) {
654  assert_locked_or_safepoint(CodeCache_lock);
655  NMethodIterator iter;
656  while(iter.next_alive()) {
657    iter.method()->metadata_do(f);
658  }
659  AOTLoader::metadata_do(f);
660}
661
662int CodeCache::alignment_unit() {
663  return (int)_heaps->first()->alignment_unit();
664}
665
666int CodeCache::alignment_offset() {
667  return (int)_heaps->first()->alignment_offset();
668}
669
670// Mark nmethods for unloading if they contain otherwise unreachable oops.
671void CodeCache::do_unloading(BoolObjectClosure* is_alive, bool unloading_occurred) {
672  assert_locked_or_safepoint(CodeCache_lock);
673  CompiledMethodIterator iter;
674  while(iter.next_alive()) {
675    iter.method()->do_unloading(is_alive, unloading_occurred);
676  }
677}
678
679void CodeCache::blobs_do(CodeBlobClosure* f) {
680  assert_locked_or_safepoint(CodeCache_lock);
681  FOR_ALL_ALLOCABLE_HEAPS(heap) {
682    FOR_ALL_BLOBS(cb, *heap) {
683      if (cb->is_alive()) {
684        f->do_code_blob(cb);
685#ifdef ASSERT
686        if (cb->is_nmethod())
687        ((nmethod*)cb)->verify_scavenge_root_oops();
688#endif //ASSERT
689      }
690    }
691  }
692}
693
694// Walk the list of methods which might contain non-perm oops.
695void CodeCache::scavenge_root_nmethods_do(CodeBlobToOopClosure* f) {
696  assert_locked_or_safepoint(CodeCache_lock);
697
698  if (UseG1GC) {
699    return;
700  }
701
702  const bool fix_relocations = f->fix_relocations();
703  debug_only(mark_scavenge_root_nmethods());
704
705  nmethod* prev = NULL;
706  nmethod* cur = scavenge_root_nmethods();
707  while (cur != NULL) {
708    debug_only(cur->clear_scavenge_root_marked());
709    assert(cur->scavenge_root_not_marked(), "");
710    assert(cur->on_scavenge_root_list(), "else shouldn't be on this list");
711
712    bool is_live = (!cur->is_zombie() && !cur->is_unloaded());
713    if (TraceScavenge) {
714      cur->print_on(tty, is_live ? "scavenge root" : "dead scavenge root"); tty->cr();
715    }
716    if (is_live) {
717      // Perform cur->oops_do(f), maybe just once per nmethod.
718      f->do_code_blob(cur);
719    }
720    nmethod* const next = cur->scavenge_root_link();
721    // The scavengable nmethod list must contain all methods with scavengable
722    // oops. It is safe to include more nmethod on the list, but we do not
723    // expect any live non-scavengable nmethods on the list.
724    if (fix_relocations) {
725      if (!is_live || !cur->detect_scavenge_root_oops()) {
726        unlink_scavenge_root_nmethod(cur, prev);
727      } else {
728        prev = cur;
729      }
730    }
731    cur = next;
732  }
733
734  // Check for stray marks.
735  debug_only(verify_perm_nmethods(NULL));
736}
737
738void CodeCache::add_scavenge_root_nmethod(nmethod* nm) {
739  assert_locked_or_safepoint(CodeCache_lock);
740
741  if (UseG1GC) {
742    return;
743  }
744
745  nm->set_on_scavenge_root_list();
746  nm->set_scavenge_root_link(_scavenge_root_nmethods);
747  set_scavenge_root_nmethods(nm);
748  print_trace("add_scavenge_root", nm);
749}
750
751void CodeCache::unlink_scavenge_root_nmethod(nmethod* nm, nmethod* prev) {
752  assert_locked_or_safepoint(CodeCache_lock);
753
754  assert((prev == NULL && scavenge_root_nmethods() == nm) ||
755         (prev != NULL && prev->scavenge_root_link() == nm), "precondition");
756
757  assert(!UseG1GC, "G1 does not use the scavenge_root_nmethods list");
758
759  print_trace("unlink_scavenge_root", nm);
760  if (prev == NULL) {
761    set_scavenge_root_nmethods(nm->scavenge_root_link());
762  } else {
763    prev->set_scavenge_root_link(nm->scavenge_root_link());
764  }
765  nm->set_scavenge_root_link(NULL);
766  nm->clear_on_scavenge_root_list();
767}
768
769void CodeCache::drop_scavenge_root_nmethod(nmethod* nm) {
770  assert_locked_or_safepoint(CodeCache_lock);
771
772  if (UseG1GC) {
773    return;
774  }
775
776  print_trace("drop_scavenge_root", nm);
777  nmethod* prev = NULL;
778  for (nmethod* cur = scavenge_root_nmethods(); cur != NULL; cur = cur->scavenge_root_link()) {
779    if (cur == nm) {
780      unlink_scavenge_root_nmethod(cur, prev);
781      return;
782    }
783    prev = cur;
784  }
785  assert(false, "should have been on list");
786}
787
788void CodeCache::prune_scavenge_root_nmethods() {
789  assert_locked_or_safepoint(CodeCache_lock);
790
791  if (UseG1GC) {
792    return;
793  }
794
795  debug_only(mark_scavenge_root_nmethods());
796
797  nmethod* last = NULL;
798  nmethod* cur = scavenge_root_nmethods();
799  while (cur != NULL) {
800    nmethod* next = cur->scavenge_root_link();
801    debug_only(cur->clear_scavenge_root_marked());
802    assert(cur->scavenge_root_not_marked(), "");
803    assert(cur->on_scavenge_root_list(), "else shouldn't be on this list");
804
805    if (!cur->is_zombie() && !cur->is_unloaded()
806        && cur->detect_scavenge_root_oops()) {
807      // Keep it.  Advance 'last' to prevent deletion.
808      last = cur;
809    } else {
810      // Prune it from the list, so we don't have to look at it any more.
811      print_trace("prune_scavenge_root", cur);
812      unlink_scavenge_root_nmethod(cur, last);
813    }
814    cur = next;
815  }
816
817  // Check for stray marks.
818  debug_only(verify_perm_nmethods(NULL));
819}
820
821#ifndef PRODUCT
822void CodeCache::asserted_non_scavengable_nmethods_do(CodeBlobClosure* f) {
823  if (UseG1GC) {
824    return;
825  }
826
827  // While we are here, verify the integrity of the list.
828  mark_scavenge_root_nmethods();
829  for (nmethod* cur = scavenge_root_nmethods(); cur != NULL; cur = cur->scavenge_root_link()) {
830    assert(cur->on_scavenge_root_list(), "else shouldn't be on this list");
831    cur->clear_scavenge_root_marked();
832  }
833  verify_perm_nmethods(f);
834}
835
836// Temporarily mark nmethods that are claimed to be on the non-perm list.
837void CodeCache::mark_scavenge_root_nmethods() {
838  NMethodIterator iter;
839  while(iter.next_alive()) {
840    nmethod* nm = iter.method();
841    assert(nm->scavenge_root_not_marked(), "clean state");
842    if (nm->on_scavenge_root_list())
843      nm->set_scavenge_root_marked();
844  }
845}
846
847// If the closure is given, run it on the unlisted nmethods.
848// Also make sure that the effects of mark_scavenge_root_nmethods is gone.
849void CodeCache::verify_perm_nmethods(CodeBlobClosure* f_or_null) {
850  NMethodIterator iter;
851  while(iter.next_alive()) {
852    nmethod* nm = iter.method();
853    bool call_f = (f_or_null != NULL);
854    assert(nm->scavenge_root_not_marked(), "must be already processed");
855    if (nm->on_scavenge_root_list())
856      call_f = false;  // don't show this one to the client
857    nm->verify_scavenge_root_oops();
858    if (call_f)  f_or_null->do_code_blob(nm);
859  }
860}
861#endif //PRODUCT
862
863void CodeCache::verify_clean_inline_caches() {
864#ifdef ASSERT
865  NMethodIterator iter;
866  while(iter.next_alive()) {
867    nmethod* nm = iter.method();
868    assert(!nm->is_unloaded(), "Tautology");
869    nm->verify_clean_inline_caches();
870    nm->verify();
871  }
872#endif
873}
874
875void CodeCache::verify_icholder_relocations() {
876#ifdef ASSERT
877  // make sure that we aren't leaking icholders
878  int count = 0;
879  FOR_ALL_HEAPS(heap) {
880    FOR_ALL_BLOBS(cb, *heap) {
881      CompiledMethod *nm = cb->as_compiled_method_or_null();
882      if (nm != NULL) {
883        count += nm->verify_icholder_relocations();
884      }
885    }
886  }
887  assert(count + InlineCacheBuffer::pending_icholder_count() + CompiledICHolder::live_not_claimed_count() ==
888         CompiledICHolder::live_count(), "must agree");
889#endif
890}
891
892void CodeCache::gc_prologue() {
893}
894
895void CodeCache::gc_epilogue() {
896  assert_locked_or_safepoint(CodeCache_lock);
897  NOT_DEBUG(if (needs_cache_clean())) {
898    CompiledMethodIterator iter;
899    while(iter.next_alive()) {
900      CompiledMethod* cm = iter.method();
901      assert(!cm->is_unloaded(), "Tautology");
902      DEBUG_ONLY(if (needs_cache_clean())) {
903        cm->cleanup_inline_caches();
904      }
905      DEBUG_ONLY(cm->verify());
906      DEBUG_ONLY(cm->verify_oop_relocations());
907    }
908  }
909
910  set_needs_cache_clean(false);
911  prune_scavenge_root_nmethods();
912
913  verify_icholder_relocations();
914}
915
916void CodeCache::verify_oops() {
917  MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
918  VerifyOopClosure voc;
919  NMethodIterator iter;
920  while(iter.next_alive()) {
921    nmethod* nm = iter.method();
922    nm->oops_do(&voc);
923    nm->verify_oop_relocations();
924  }
925}
926
927int CodeCache::blob_count(int code_blob_type) {
928  CodeHeap* heap = get_code_heap(code_blob_type);
929  return (heap != NULL) ? heap->blob_count() : 0;
930}
931
932int CodeCache::blob_count() {
933  int count = 0;
934  FOR_ALL_HEAPS(heap) {
935    count += (*heap)->blob_count();
936  }
937  return count;
938}
939
940int CodeCache::nmethod_count(int code_blob_type) {
941  CodeHeap* heap = get_code_heap(code_blob_type);
942  return (heap != NULL) ? heap->nmethod_count() : 0;
943}
944
945int CodeCache::nmethod_count() {
946  int count = 0;
947  FOR_ALL_NMETHOD_HEAPS(heap) {
948    count += (*heap)->nmethod_count();
949  }
950  return count;
951}
952
953int CodeCache::adapter_count(int code_blob_type) {
954  CodeHeap* heap = get_code_heap(code_blob_type);
955  return (heap != NULL) ? heap->adapter_count() : 0;
956}
957
958int CodeCache::adapter_count() {
959  int count = 0;
960  FOR_ALL_HEAPS(heap) {
961    count += (*heap)->adapter_count();
962  }
963  return count;
964}
965
966address CodeCache::low_bound(int code_blob_type) {
967  CodeHeap* heap = get_code_heap(code_blob_type);
968  return (heap != NULL) ? (address)heap->low_boundary() : NULL;
969}
970
971address CodeCache::high_bound(int code_blob_type) {
972  CodeHeap* heap = get_code_heap(code_blob_type);
973  return (heap != NULL) ? (address)heap->high_boundary() : NULL;
974}
975
976size_t CodeCache::capacity() {
977  size_t cap = 0;
978  FOR_ALL_ALLOCABLE_HEAPS(heap) {
979    cap += (*heap)->capacity();
980  }
981  return cap;
982}
983
984size_t CodeCache::unallocated_capacity(int code_blob_type) {
985  CodeHeap* heap = get_code_heap(code_blob_type);
986  return (heap != NULL) ? heap->unallocated_capacity() : 0;
987}
988
989size_t CodeCache::unallocated_capacity() {
990  size_t unallocated_cap = 0;
991  FOR_ALL_ALLOCABLE_HEAPS(heap) {
992    unallocated_cap += (*heap)->unallocated_capacity();
993  }
994  return unallocated_cap;
995}
996
997size_t CodeCache::max_capacity() {
998  size_t max_cap = 0;
999  FOR_ALL_ALLOCABLE_HEAPS(heap) {
1000    max_cap += (*heap)->max_capacity();
1001  }
1002  return max_cap;
1003}
1004
1005/**
1006 * Returns the reverse free ratio. E.g., if 25% (1/4) of the code heap
1007 * is free, reverse_free_ratio() returns 4.
1008 */
1009double CodeCache::reverse_free_ratio(int code_blob_type) {
1010  CodeHeap* heap = get_code_heap(code_blob_type);
1011  if (heap == NULL) {
1012    return 0;
1013  }
1014
1015  double unallocated_capacity = MAX2((double)heap->unallocated_capacity(), 1.0); // Avoid division by 0;
1016  double max_capacity = (double)heap->max_capacity();
1017  double result = max_capacity / unallocated_capacity;
1018  assert (max_capacity >= unallocated_capacity, "Must be");
1019  assert (result >= 1.0, "reverse_free_ratio must be at least 1. It is %f", result);
1020  return result;
1021}
1022
1023size_t CodeCache::bytes_allocated_in_freelists() {
1024  size_t allocated_bytes = 0;
1025  FOR_ALL_ALLOCABLE_HEAPS(heap) {
1026    allocated_bytes += (*heap)->allocated_in_freelist();
1027  }
1028  return allocated_bytes;
1029}
1030
1031int CodeCache::allocated_segments() {
1032  int number_of_segments = 0;
1033  FOR_ALL_ALLOCABLE_HEAPS(heap) {
1034    number_of_segments += (*heap)->allocated_segments();
1035  }
1036  return number_of_segments;
1037}
1038
1039size_t CodeCache::freelists_length() {
1040  size_t length = 0;
1041  FOR_ALL_ALLOCABLE_HEAPS(heap) {
1042    length += (*heap)->freelist_length();
1043  }
1044  return length;
1045}
1046
1047void icache_init();
1048
1049void CodeCache::initialize() {
1050  assert(CodeCacheSegmentSize >= (uintx)CodeEntryAlignment, "CodeCacheSegmentSize must be large enough to align entry points");
1051#ifdef COMPILER2
1052  assert(CodeCacheSegmentSize >= (uintx)OptoLoopAlignment,  "CodeCacheSegmentSize must be large enough to align inner loops");
1053#endif
1054  assert(CodeCacheSegmentSize >= sizeof(jdouble),    "CodeCacheSegmentSize must be large enough to align constants");
1055  // This was originally just a check of the alignment, causing failure, instead, round
1056  // the code cache to the page size.  In particular, Solaris is moving to a larger
1057  // default page size.
1058  CodeCacheExpansionSize = align_up(CodeCacheExpansionSize, os::vm_page_size());
1059
1060  if (SegmentedCodeCache) {
1061    // Use multiple code heaps
1062    initialize_heaps();
1063  } else {
1064    // Use a single code heap
1065    FLAG_SET_ERGO(uintx, NonNMethodCodeHeapSize, 0);
1066    FLAG_SET_ERGO(uintx, ProfiledCodeHeapSize, 0);
1067    FLAG_SET_ERGO(uintx, NonProfiledCodeHeapSize, 0);
1068    ReservedCodeSpace rs = reserve_heap_memory(ReservedCodeCacheSize);
1069    add_heap(rs, "CodeCache", CodeBlobType::All);
1070  }
1071
1072  // Initialize ICache flush mechanism
1073  // This service is needed for os::register_code_area
1074  icache_init();
1075
1076  // Give OS a chance to register generated code area.
1077  // This is used on Windows 64 bit platforms to register
1078  // Structured Exception Handlers for our generated code.
1079  os::register_code_area((char*)low_bound(), (char*)high_bound());
1080}
1081
1082void codeCache_init() {
1083  CodeCache::initialize();
1084  // Load AOT libraries and add AOT code heaps.
1085  AOTLoader::initialize();
1086}
1087
1088//------------------------------------------------------------------------------------------------
1089
1090int CodeCache::number_of_nmethods_with_dependencies() {
1091  return _number_of_nmethods_with_dependencies;
1092}
1093
1094void CodeCache::clear_inline_caches() {
1095  assert_locked_or_safepoint(CodeCache_lock);
1096  CompiledMethodIterator iter;
1097  while(iter.next_alive()) {
1098    iter.method()->clear_inline_caches();
1099  }
1100}
1101
1102void CodeCache::cleanup_inline_caches() {
1103  assert_locked_or_safepoint(CodeCache_lock);
1104  NMethodIterator iter;
1105  while(iter.next_alive()) {
1106    iter.method()->cleanup_inline_caches(/*clean_all=*/true);
1107  }
1108}
1109
1110// Keeps track of time spent for checking dependencies
1111NOT_PRODUCT(static elapsedTimer dependentCheckTime;)
1112
1113int CodeCache::mark_for_deoptimization(KlassDepChange& changes) {
1114  MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1115  int number_of_marked_CodeBlobs = 0;
1116
1117  // search the hierarchy looking for nmethods which are affected by the loading of this class
1118
1119  // then search the interfaces this class implements looking for nmethods
1120  // which might be dependent of the fact that an interface only had one
1121  // implementor.
1122  // nmethod::check_all_dependencies works only correctly, if no safepoint
1123  // can happen
1124  NoSafepointVerifier nsv;
1125  for (DepChange::ContextStream str(changes, nsv); str.next(); ) {
1126    Klass* d = str.klass();
1127    number_of_marked_CodeBlobs += InstanceKlass::cast(d)->mark_dependent_nmethods(changes);
1128  }
1129
1130#ifndef PRODUCT
1131  if (VerifyDependencies) {
1132    // Object pointers are used as unique identifiers for dependency arguments. This
1133    // is only possible if no safepoint, i.e., GC occurs during the verification code.
1134    dependentCheckTime.start();
1135    nmethod::check_all_dependencies(changes);
1136    dependentCheckTime.stop();
1137  }
1138#endif
1139
1140  return number_of_marked_CodeBlobs;
1141}
1142
1143CompiledMethod* CodeCache::find_compiled(void* start) {
1144  CodeBlob *cb = find_blob(start);
1145  assert(cb == NULL || cb->is_compiled(), "did not find an compiled_method");
1146  return (CompiledMethod*)cb;
1147}
1148
1149bool CodeCache::is_far_target(address target) {
1150#if INCLUDE_AOT
1151  return NativeCall::is_far_call(_low_bound,  target) ||
1152         NativeCall::is_far_call(_high_bound, target);
1153#else
1154  return false;
1155#endif
1156}
1157
1158#ifdef HOTSWAP
1159int CodeCache::mark_for_evol_deoptimization(InstanceKlass* dependee) {
1160  MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1161  int number_of_marked_CodeBlobs = 0;
1162
1163  // Deoptimize all methods of the evolving class itself
1164  Array<Method*>* old_methods = dependee->methods();
1165  for (int i = 0; i < old_methods->length(); i++) {
1166    ResourceMark rm;
1167    Method* old_method = old_methods->at(i);
1168    CompiledMethod* nm = old_method->code();
1169    if (nm != NULL) {
1170      nm->mark_for_deoptimization();
1171      number_of_marked_CodeBlobs++;
1172    }
1173  }
1174
1175  CompiledMethodIterator iter;
1176  while(iter.next_alive()) {
1177    CompiledMethod* nm = iter.method();
1178    if (nm->is_marked_for_deoptimization()) {
1179      // ...Already marked in the previous pass; don't count it again.
1180    } else if (nm->is_evol_dependent_on(dependee)) {
1181      ResourceMark rm;
1182      nm->mark_for_deoptimization();
1183      number_of_marked_CodeBlobs++;
1184    } else  {
1185      // flush caches in case they refer to a redefined Method*
1186      nm->clear_inline_caches();
1187    }
1188  }
1189
1190  return number_of_marked_CodeBlobs;
1191}
1192#endif // HOTSWAP
1193
1194
1195// Deoptimize all methods
1196void CodeCache::mark_all_nmethods_for_deoptimization() {
1197  MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1198  CompiledMethodIterator iter;
1199  while(iter.next_alive()) {
1200    CompiledMethod* nm = iter.method();
1201    if (!nm->method()->is_method_handle_intrinsic()) {
1202      nm->mark_for_deoptimization();
1203    }
1204  }
1205}
1206
1207int CodeCache::mark_for_deoptimization(Method* dependee) {
1208  MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1209  int number_of_marked_CodeBlobs = 0;
1210
1211  CompiledMethodIterator iter;
1212  while(iter.next_alive()) {
1213    CompiledMethod* nm = iter.method();
1214    if (nm->is_dependent_on_method(dependee)) {
1215      ResourceMark rm;
1216      nm->mark_for_deoptimization();
1217      number_of_marked_CodeBlobs++;
1218    }
1219  }
1220
1221  return number_of_marked_CodeBlobs;
1222}
1223
1224void CodeCache::make_marked_nmethods_not_entrant() {
1225  assert_locked_or_safepoint(CodeCache_lock);
1226  CompiledMethodIterator iter;
1227  while(iter.next_alive()) {
1228    CompiledMethod* nm = iter.method();
1229    if (nm->is_marked_for_deoptimization() && !nm->is_not_entrant()) {
1230      nm->make_not_entrant();
1231    }
1232  }
1233}
1234
1235// Flushes compiled methods dependent on dependee.
1236void CodeCache::flush_dependents_on(InstanceKlass* dependee) {
1237  assert_lock_strong(Compile_lock);
1238
1239  if (number_of_nmethods_with_dependencies() == 0) return;
1240
1241  // CodeCache can only be updated by a thread_in_VM and they will all be
1242  // stopped during the safepoint so CodeCache will be safe to update without
1243  // holding the CodeCache_lock.
1244
1245  KlassDepChange changes(dependee);
1246
1247  // Compute the dependent nmethods
1248  if (mark_for_deoptimization(changes) > 0) {
1249    // At least one nmethod has been marked for deoptimization
1250    VM_Deoptimize op;
1251    VMThread::execute(&op);
1252  }
1253}
1254
1255#ifdef HOTSWAP
1256// Flushes compiled methods dependent on dependee in the evolutionary sense
1257void CodeCache::flush_evol_dependents_on(InstanceKlass* ev_k) {
1258  // --- Compile_lock is not held. However we are at a safepoint.
1259  assert_locked_or_safepoint(Compile_lock);
1260  if (number_of_nmethods_with_dependencies() == 0 && !UseAOT) return;
1261
1262  // CodeCache can only be updated by a thread_in_VM and they will all be
1263  // stopped during the safepoint so CodeCache will be safe to update without
1264  // holding the CodeCache_lock.
1265
1266  // Compute the dependent nmethods
1267  if (mark_for_evol_deoptimization(ev_k) > 0) {
1268    // At least one nmethod has been marked for deoptimization
1269
1270    // All this already happens inside a VM_Operation, so we'll do all the work here.
1271    // Stuff copied from VM_Deoptimize and modified slightly.
1272
1273    // We do not want any GCs to happen while we are in the middle of this VM operation
1274    ResourceMark rm;
1275    DeoptimizationMarker dm;
1276
1277    // Deoptimize all activations depending on marked nmethods
1278    Deoptimization::deoptimize_dependents();
1279
1280    // Make the dependent methods not entrant
1281    make_marked_nmethods_not_entrant();
1282  }
1283}
1284#endif // HOTSWAP
1285
1286
1287// Flushes compiled methods dependent on dependee
1288void CodeCache::flush_dependents_on_method(const methodHandle& m_h) {
1289  // --- Compile_lock is not held. However we are at a safepoint.
1290  assert_locked_or_safepoint(Compile_lock);
1291
1292  // CodeCache can only be updated by a thread_in_VM and they will all be
1293  // stopped dring the safepoint so CodeCache will be safe to update without
1294  // holding the CodeCache_lock.
1295
1296  // Compute the dependent nmethods
1297  if (mark_for_deoptimization(m_h()) > 0) {
1298    // At least one nmethod has been marked for deoptimization
1299
1300    // All this already happens inside a VM_Operation, so we'll do all the work here.
1301    // Stuff copied from VM_Deoptimize and modified slightly.
1302
1303    // We do not want any GCs to happen while we are in the middle of this VM operation
1304    ResourceMark rm;
1305    DeoptimizationMarker dm;
1306
1307    // Deoptimize all activations depending on marked nmethods
1308    Deoptimization::deoptimize_dependents();
1309
1310    // Make the dependent methods not entrant
1311    make_marked_nmethods_not_entrant();
1312  }
1313}
1314
1315void CodeCache::verify() {
1316  assert_locked_or_safepoint(CodeCache_lock);
1317  FOR_ALL_HEAPS(heap) {
1318    (*heap)->verify();
1319    FOR_ALL_BLOBS(cb, *heap) {
1320      if (cb->is_alive()) {
1321        cb->verify();
1322      }
1323    }
1324  }
1325}
1326
1327// A CodeHeap is full. Print out warning and report event.
1328PRAGMA_DIAG_PUSH
1329PRAGMA_FORMAT_NONLITERAL_IGNORED
1330void CodeCache::report_codemem_full(int code_blob_type, bool print) {
1331  // Get nmethod heap for the given CodeBlobType and build CodeCacheFull event
1332  CodeHeap* heap = get_code_heap(code_blob_type);
1333  assert(heap != NULL, "heap is null");
1334
1335  if ((heap->full_count() == 0) || print) {
1336    // Not yet reported for this heap, report
1337    if (SegmentedCodeCache) {
1338      ResourceMark rm;
1339      stringStream msg1_stream, msg2_stream;
1340      msg1_stream.print("%s is full. Compiler has been disabled.",
1341                        get_code_heap_name(code_blob_type));
1342      msg2_stream.print("Try increasing the code heap size using -XX:%s=",
1343                 get_code_heap_flag_name(code_blob_type));
1344      const char *msg1 = msg1_stream.as_string();
1345      const char *msg2 = msg2_stream.as_string();
1346
1347      log_warning(codecache)(msg1);
1348      log_warning(codecache)(msg2);
1349      warning(msg1);
1350      warning(msg2);
1351    } else {
1352      const char *msg1 = "CodeCache is full. Compiler has been disabled.";
1353      const char *msg2 = "Try increasing the code cache size using -XX:ReservedCodeCacheSize=";
1354
1355      log_warning(codecache)(msg1);
1356      log_warning(codecache)(msg2);
1357      warning(msg1);
1358      warning(msg2);
1359    }
1360    ResourceMark rm;
1361    stringStream s;
1362    // Dump code cache  into a buffer before locking the tty,
1363    {
1364      MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1365      print_summary(&s);
1366    }
1367    ttyLocker ttyl;
1368    tty->print("%s", s.as_string());
1369  }
1370
1371  heap->report_full();
1372
1373  EventCodeCacheFull event;
1374  if (event.should_commit()) {
1375    event.set_codeBlobType((u1)code_blob_type);
1376    event.set_startAddress((u8)heap->low_boundary());
1377    event.set_commitedTopAddress((u8)heap->high());
1378    event.set_reservedTopAddress((u8)heap->high_boundary());
1379    event.set_entryCount(heap->blob_count());
1380    event.set_methodCount(heap->nmethod_count());
1381    event.set_adaptorCount(heap->adapter_count());
1382    event.set_unallocatedCapacity(heap->unallocated_capacity());
1383    event.set_fullCount(heap->full_count());
1384    event.commit();
1385  }
1386}
1387PRAGMA_DIAG_POP
1388
1389void CodeCache::print_memory_overhead() {
1390  size_t wasted_bytes = 0;
1391  FOR_ALL_ALLOCABLE_HEAPS(heap) {
1392      CodeHeap* curr_heap = *heap;
1393      for (CodeBlob* cb = (CodeBlob*)curr_heap->first(); cb != NULL; cb = (CodeBlob*)curr_heap->next(cb)) {
1394        HeapBlock* heap_block = ((HeapBlock*)cb) - 1;
1395        wasted_bytes += heap_block->length() * CodeCacheSegmentSize - cb->size();
1396      }
1397  }
1398  // Print bytes that are allocated in the freelist
1399  ttyLocker ttl;
1400  tty->print_cr("Number of elements in freelist: " SSIZE_FORMAT,       freelists_length());
1401  tty->print_cr("Allocated in freelist:          " SSIZE_FORMAT "kB",  bytes_allocated_in_freelists()/K);
1402  tty->print_cr("Unused bytes in CodeBlobs:      " SSIZE_FORMAT "kB",  (wasted_bytes/K));
1403  tty->print_cr("Segment map size:               " SSIZE_FORMAT "kB",  allocated_segments()/K); // 1 byte per segment
1404}
1405
1406//------------------------------------------------------------------------------------------------
1407// Non-product version
1408
1409#ifndef PRODUCT
1410
1411void CodeCache::print_trace(const char* event, CodeBlob* cb, int size) {
1412  if (PrintCodeCache2) {  // Need to add a new flag
1413    ResourceMark rm;
1414    if (size == 0)  size = cb->size();
1415    tty->print_cr("CodeCache %s:  addr: " INTPTR_FORMAT ", size: 0x%x", event, p2i(cb), size);
1416  }
1417}
1418
1419void CodeCache::print_internals() {
1420  int nmethodCount = 0;
1421  int runtimeStubCount = 0;
1422  int adapterCount = 0;
1423  int deoptimizationStubCount = 0;
1424  int uncommonTrapStubCount = 0;
1425  int bufferBlobCount = 0;
1426  int total = 0;
1427  int nmethodAlive = 0;
1428  int nmethodNotEntrant = 0;
1429  int nmethodZombie = 0;
1430  int nmethodUnloaded = 0;
1431  int nmethodJava = 0;
1432  int nmethodNative = 0;
1433  int max_nm_size = 0;
1434  ResourceMark rm;
1435
1436  int i = 0;
1437  FOR_ALL_ALLOCABLE_HEAPS(heap) {
1438    if ((_nmethod_heaps->length() >= 1) && Verbose) {
1439      tty->print_cr("-- %s --", (*heap)->name());
1440    }
1441    FOR_ALL_BLOBS(cb, *heap) {
1442      total++;
1443      if (cb->is_nmethod()) {
1444        nmethod* nm = (nmethod*)cb;
1445
1446        if (Verbose && nm->method() != NULL) {
1447          ResourceMark rm;
1448          char *method_name = nm->method()->name_and_sig_as_C_string();
1449          tty->print("%s", method_name);
1450          if(nm->is_alive()) { tty->print_cr(" alive"); }
1451          if(nm->is_not_entrant()) { tty->print_cr(" not-entrant"); }
1452          if(nm->is_zombie()) { tty->print_cr(" zombie"); }
1453        }
1454
1455        nmethodCount++;
1456
1457        if(nm->is_alive()) { nmethodAlive++; }
1458        if(nm->is_not_entrant()) { nmethodNotEntrant++; }
1459        if(nm->is_zombie()) { nmethodZombie++; }
1460        if(nm->is_unloaded()) { nmethodUnloaded++; }
1461        if(nm->method() != NULL && nm->is_native_method()) { nmethodNative++; }
1462
1463        if(nm->method() != NULL && nm->is_java_method()) {
1464          nmethodJava++;
1465          max_nm_size = MAX2(max_nm_size, nm->size());
1466        }
1467      } else if (cb->is_runtime_stub()) {
1468        runtimeStubCount++;
1469      } else if (cb->is_deoptimization_stub()) {
1470        deoptimizationStubCount++;
1471      } else if (cb->is_uncommon_trap_stub()) {
1472        uncommonTrapStubCount++;
1473      } else if (cb->is_adapter_blob()) {
1474        adapterCount++;
1475      } else if (cb->is_buffer_blob()) {
1476        bufferBlobCount++;
1477      }
1478    }
1479  }
1480
1481  int bucketSize = 512;
1482  int bucketLimit = max_nm_size / bucketSize + 1;
1483  int *buckets = NEW_C_HEAP_ARRAY(int, bucketLimit, mtCode);
1484  memset(buckets, 0, sizeof(int) * bucketLimit);
1485
1486  NMethodIterator iter;
1487  while(iter.next()) {
1488    nmethod* nm = iter.method();
1489    if(nm->method() != NULL && nm->is_java_method()) {
1490      buckets[nm->size() / bucketSize]++;
1491    }
1492  }
1493
1494  tty->print_cr("Code Cache Entries (total of %d)",total);
1495  tty->print_cr("-------------------------------------------------");
1496  tty->print_cr("nmethods: %d",nmethodCount);
1497  tty->print_cr("\talive: %d",nmethodAlive);
1498  tty->print_cr("\tnot_entrant: %d",nmethodNotEntrant);
1499  tty->print_cr("\tzombie: %d",nmethodZombie);
1500  tty->print_cr("\tunloaded: %d",nmethodUnloaded);
1501  tty->print_cr("\tjava: %d",nmethodJava);
1502  tty->print_cr("\tnative: %d",nmethodNative);
1503  tty->print_cr("runtime_stubs: %d",runtimeStubCount);
1504  tty->print_cr("adapters: %d",adapterCount);
1505  tty->print_cr("buffer blobs: %d",bufferBlobCount);
1506  tty->print_cr("deoptimization_stubs: %d",deoptimizationStubCount);
1507  tty->print_cr("uncommon_traps: %d",uncommonTrapStubCount);
1508  tty->print_cr("\nnmethod size distribution (non-zombie java)");
1509  tty->print_cr("-------------------------------------------------");
1510
1511  for(int i=0; i<bucketLimit; i++) {
1512    if(buckets[i] != 0) {
1513      tty->print("%d - %d bytes",i*bucketSize,(i+1)*bucketSize);
1514      tty->fill_to(40);
1515      tty->print_cr("%d",buckets[i]);
1516    }
1517  }
1518
1519  FREE_C_HEAP_ARRAY(int, buckets);
1520  print_memory_overhead();
1521}
1522
1523#endif // !PRODUCT
1524
1525void CodeCache::print() {
1526  print_summary(tty);
1527
1528#ifndef PRODUCT
1529  if (!Verbose) return;
1530
1531  CodeBlob_sizes live;
1532  CodeBlob_sizes dead;
1533
1534  FOR_ALL_ALLOCABLE_HEAPS(heap) {
1535    FOR_ALL_BLOBS(cb, *heap) {
1536      if (!cb->is_alive()) {
1537        dead.add(cb);
1538      } else {
1539        live.add(cb);
1540      }
1541    }
1542  }
1543
1544  tty->print_cr("CodeCache:");
1545  tty->print_cr("nmethod dependency checking time %fs", dependentCheckTime.seconds());
1546
1547  if (!live.is_empty()) {
1548    live.print("live");
1549  }
1550  if (!dead.is_empty()) {
1551    dead.print("dead");
1552  }
1553
1554  if (WizardMode) {
1555     // print the oop_map usage
1556    int code_size = 0;
1557    int number_of_blobs = 0;
1558    int number_of_oop_maps = 0;
1559    int map_size = 0;
1560    FOR_ALL_ALLOCABLE_HEAPS(heap) {
1561      FOR_ALL_BLOBS(cb, *heap) {
1562        if (cb->is_alive()) {
1563          number_of_blobs++;
1564          code_size += cb->code_size();
1565          ImmutableOopMapSet* set = cb->oop_maps();
1566          if (set != NULL) {
1567            number_of_oop_maps += set->count();
1568            map_size           += set->nr_of_bytes();
1569          }
1570        }
1571      }
1572    }
1573    tty->print_cr("OopMaps");
1574    tty->print_cr("  #blobs    = %d", number_of_blobs);
1575    tty->print_cr("  code size = %d", code_size);
1576    tty->print_cr("  #oop_maps = %d", number_of_oop_maps);
1577    tty->print_cr("  map size  = %d", map_size);
1578  }
1579
1580#endif // !PRODUCT
1581}
1582
1583void CodeCache::print_summary(outputStream* st, bool detailed) {
1584  FOR_ALL_HEAPS(heap_iterator) {
1585    CodeHeap* heap = (*heap_iterator);
1586    size_t total = (heap->high_boundary() - heap->low_boundary());
1587    if (_heaps->length() >= 1) {
1588      st->print("%s:", heap->name());
1589    } else {
1590      st->print("CodeCache:");
1591    }
1592    st->print_cr(" size=" SIZE_FORMAT "Kb used=" SIZE_FORMAT
1593                 "Kb max_used=" SIZE_FORMAT "Kb free=" SIZE_FORMAT "Kb",
1594                 total/K, (total - heap->unallocated_capacity())/K,
1595                 heap->max_allocated_capacity()/K, heap->unallocated_capacity()/K);
1596
1597    if (detailed) {
1598      st->print_cr(" bounds [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT "]",
1599                   p2i(heap->low_boundary()),
1600                   p2i(heap->high()),
1601                   p2i(heap->high_boundary()));
1602    }
1603  }
1604
1605  if (detailed) {
1606    st->print_cr(" total_blobs=" UINT32_FORMAT " nmethods=" UINT32_FORMAT
1607                       " adapters=" UINT32_FORMAT,
1608                       blob_count(), nmethod_count(), adapter_count());
1609    st->print_cr(" compilation: %s", CompileBroker::should_compile_new_jobs() ?
1610                 "enabled" : Arguments::mode() == Arguments::_int ?
1611                 "disabled (interpreter mode)" :
1612                 "disabled (not enough contiguous free space left)");
1613  }
1614}
1615
1616void CodeCache::print_codelist(outputStream* st) {
1617  MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1618
1619  CompiledMethodIterator iter;
1620  while (iter.next_alive()) {
1621    CompiledMethod* cm = iter.method();
1622    ResourceMark rm;
1623    char* method_name = cm->method()->name_and_sig_as_C_string();
1624    st->print_cr("%d %d %d %s [" INTPTR_FORMAT ", " INTPTR_FORMAT " - " INTPTR_FORMAT "]",
1625                 cm->compile_id(), cm->comp_level(), cm->get_state(),
1626                 method_name,
1627                 (intptr_t)cm->header_begin(), (intptr_t)cm->code_begin(), (intptr_t)cm->code_end());
1628  }
1629}
1630
1631void CodeCache::print_layout(outputStream* st) {
1632  MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1633  ResourceMark rm;
1634  print_summary(st, true);
1635}
1636
1637void CodeCache::log_state(outputStream* st) {
1638  st->print(" total_blobs='" UINT32_FORMAT "' nmethods='" UINT32_FORMAT "'"
1639            " adapters='" UINT32_FORMAT "' free_code_cache='" SIZE_FORMAT "'",
1640            blob_count(), nmethod_count(), adapter_count(),
1641            unallocated_capacity());
1642}
1643
1644