c1_LinearScan.cpp revision 5776:de6a9e811145
1/*
2 * Copyright (c) 2005, 2013, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "c1/c1_CFGPrinter.hpp"
27#include "c1/c1_CodeStubs.hpp"
28#include "c1/c1_Compilation.hpp"
29#include "c1/c1_FrameMap.hpp"
30#include "c1/c1_IR.hpp"
31#include "c1/c1_LIRGenerator.hpp"
32#include "c1/c1_LinearScan.hpp"
33#include "c1/c1_ValueStack.hpp"
34#include "utilities/bitMap.inline.hpp"
35#ifdef TARGET_ARCH_x86
36# include "vmreg_x86.inline.hpp"
37#endif
38#ifdef TARGET_ARCH_sparc
39# include "vmreg_sparc.inline.hpp"
40#endif
41#ifdef TARGET_ARCH_zero
42# include "vmreg_zero.inline.hpp"
43#endif
44#ifdef TARGET_ARCH_arm
45# include "vmreg_arm.inline.hpp"
46#endif
47#ifdef TARGET_ARCH_ppc
48# include "vmreg_ppc.inline.hpp"
49#endif
50
51
52#ifndef PRODUCT
53
54  static LinearScanStatistic _stat_before_alloc;
55  static LinearScanStatistic _stat_after_asign;
56  static LinearScanStatistic _stat_final;
57
58  static LinearScanTimers _total_timer;
59
60  // helper macro for short definition of timer
61  #define TIME_LINEAR_SCAN(timer_name)  TraceTime _block_timer("", _total_timer.timer(LinearScanTimers::timer_name), TimeLinearScan || TimeEachLinearScan, Verbose);
62
63  // helper macro for short definition of trace-output inside code
64  #define TRACE_LINEAR_SCAN(level, code)       \
65    if (TraceLinearScanLevel >= level) {       \
66      code;                                    \
67    }
68
69#else
70
71  #define TIME_LINEAR_SCAN(timer_name)
72  #define TRACE_LINEAR_SCAN(level, code)
73
74#endif
75
76// Map BasicType to spill size in 32-bit words, matching VMReg's notion of words
77#ifdef _LP64
78static int type2spill_size[T_CONFLICT+1]={ -1, 0, 0, 0, 1, 1, 1, 2, 1, 1, 1, 2, 2, 2, 0, 2,  1, 2, 1, -1};
79#else
80static int type2spill_size[T_CONFLICT+1]={ -1, 0, 0, 0, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 0, 1, -1, 1, 1, -1};
81#endif
82
83
84// Implementation of LinearScan
85
86LinearScan::LinearScan(IR* ir, LIRGenerator* gen, FrameMap* frame_map)
87 : _compilation(ir->compilation())
88 , _ir(ir)
89 , _gen(gen)
90 , _frame_map(frame_map)
91 , _num_virtual_regs(gen->max_virtual_register_number())
92 , _has_fpu_registers(false)
93 , _num_calls(-1)
94 , _max_spills(0)
95 , _unused_spill_slot(-1)
96 , _intervals(0)   // initialized later with correct length
97 , _new_intervals_from_allocation(new IntervalList())
98 , _sorted_intervals(NULL)
99 , _needs_full_resort(false)
100 , _lir_ops(0)     // initialized later with correct length
101 , _block_of_op(0) // initialized later with correct length
102 , _has_info(0)
103 , _has_call(0)
104 , _scope_value_cache(0) // initialized later with correct length
105 , _interval_in_loop(0, 0) // initialized later with correct length
106 , _cached_blocks(*ir->linear_scan_order())
107#ifdef X86
108 , _fpu_stack_allocator(NULL)
109#endif
110{
111  assert(this->ir() != NULL,          "check if valid");
112  assert(this->compilation() != NULL, "check if valid");
113  assert(this->gen() != NULL,         "check if valid");
114  assert(this->frame_map() != NULL,   "check if valid");
115}
116
117
118// ********** functions for converting LIR-Operands to register numbers
119//
120// Emulate a flat register file comprising physical integer registers,
121// physical floating-point registers and virtual registers, in that order.
122// Virtual registers already have appropriate numbers, since V0 is
123// the number of physical registers.
124// Returns -1 for hi word if opr is a single word operand.
125//
126// Note: the inverse operation (calculating an operand for register numbers)
127//       is done in calc_operand_for_interval()
128
129int LinearScan::reg_num(LIR_Opr opr) {
130  assert(opr->is_register(), "should not call this otherwise");
131
132  if (opr->is_virtual_register()) {
133    assert(opr->vreg_number() >= nof_regs, "found a virtual register with a fixed-register number");
134    return opr->vreg_number();
135  } else if (opr->is_single_cpu()) {
136    return opr->cpu_regnr();
137  } else if (opr->is_double_cpu()) {
138    return opr->cpu_regnrLo();
139#ifdef X86
140  } else if (opr->is_single_xmm()) {
141    return opr->fpu_regnr() + pd_first_xmm_reg;
142  } else if (opr->is_double_xmm()) {
143    return opr->fpu_regnrLo() + pd_first_xmm_reg;
144#endif
145  } else if (opr->is_single_fpu()) {
146    return opr->fpu_regnr() + pd_first_fpu_reg;
147  } else if (opr->is_double_fpu()) {
148    return opr->fpu_regnrLo() + pd_first_fpu_reg;
149  } else {
150    ShouldNotReachHere();
151    return -1;
152  }
153}
154
155int LinearScan::reg_numHi(LIR_Opr opr) {
156  assert(opr->is_register(), "should not call this otherwise");
157
158  if (opr->is_virtual_register()) {
159    return -1;
160  } else if (opr->is_single_cpu()) {
161    return -1;
162  } else if (opr->is_double_cpu()) {
163    return opr->cpu_regnrHi();
164#ifdef X86
165  } else if (opr->is_single_xmm()) {
166    return -1;
167  } else if (opr->is_double_xmm()) {
168    return -1;
169#endif
170  } else if (opr->is_single_fpu()) {
171    return -1;
172  } else if (opr->is_double_fpu()) {
173    return opr->fpu_regnrHi() + pd_first_fpu_reg;
174  } else {
175    ShouldNotReachHere();
176    return -1;
177  }
178}
179
180
181// ********** functions for classification of intervals
182
183bool LinearScan::is_precolored_interval(const Interval* i) {
184  return i->reg_num() < LinearScan::nof_regs;
185}
186
187bool LinearScan::is_virtual_interval(const Interval* i) {
188  return i->reg_num() >= LIR_OprDesc::vreg_base;
189}
190
191bool LinearScan::is_precolored_cpu_interval(const Interval* i) {
192  return i->reg_num() < LinearScan::nof_cpu_regs;
193}
194
195bool LinearScan::is_virtual_cpu_interval(const Interval* i) {
196#if defined(__SOFTFP__) || defined(E500V2)
197  return i->reg_num() >= LIR_OprDesc::vreg_base;
198#else
199  return i->reg_num() >= LIR_OprDesc::vreg_base && (i->type() != T_FLOAT && i->type() != T_DOUBLE);
200#endif // __SOFTFP__ or E500V2
201}
202
203bool LinearScan::is_precolored_fpu_interval(const Interval* i) {
204  return i->reg_num() >= LinearScan::nof_cpu_regs && i->reg_num() < LinearScan::nof_regs;
205}
206
207bool LinearScan::is_virtual_fpu_interval(const Interval* i) {
208#if defined(__SOFTFP__) || defined(E500V2)
209  return false;
210#else
211  return i->reg_num() >= LIR_OprDesc::vreg_base && (i->type() == T_FLOAT || i->type() == T_DOUBLE);
212#endif // __SOFTFP__ or E500V2
213}
214
215bool LinearScan::is_in_fpu_register(const Interval* i) {
216  // fixed intervals not needed for FPU stack allocation
217  return i->reg_num() >= nof_regs && pd_first_fpu_reg <= i->assigned_reg() && i->assigned_reg() <= pd_last_fpu_reg;
218}
219
220bool LinearScan::is_oop_interval(const Interval* i) {
221  // fixed intervals never contain oops
222  return i->reg_num() >= nof_regs && i->type() == T_OBJECT;
223}
224
225
226// ********** General helper functions
227
228// compute next unused stack index that can be used for spilling
229int LinearScan::allocate_spill_slot(bool double_word) {
230  int spill_slot;
231  if (double_word) {
232    if ((_max_spills & 1) == 1) {
233      // alignment of double-word values
234      // the hole because of the alignment is filled with the next single-word value
235      assert(_unused_spill_slot == -1, "wasting a spill slot");
236      _unused_spill_slot = _max_spills;
237      _max_spills++;
238    }
239    spill_slot = _max_spills;
240    _max_spills += 2;
241
242  } else if (_unused_spill_slot != -1) {
243    // re-use hole that was the result of a previous double-word alignment
244    spill_slot = _unused_spill_slot;
245    _unused_spill_slot = -1;
246
247  } else {
248    spill_slot = _max_spills;
249    _max_spills++;
250  }
251
252  int result = spill_slot + LinearScan::nof_regs + frame_map()->argcount();
253
254  // the class OopMapValue uses only 11 bits for storing the name of the
255  // oop location. So a stack slot bigger than 2^11 leads to an overflow
256  // that is not reported in product builds. Prevent this by checking the
257  // spill slot here (altough this value and the later used location name
258  // are slightly different)
259  if (result > 2000) {
260    bailout("too many stack slots used");
261  }
262
263  return result;
264}
265
266void LinearScan::assign_spill_slot(Interval* it) {
267  // assign the canonical spill slot of the parent (if a part of the interval
268  // is already spilled) or allocate a new spill slot
269  if (it->canonical_spill_slot() >= 0) {
270    it->assign_reg(it->canonical_spill_slot());
271  } else {
272    int spill = allocate_spill_slot(type2spill_size[it->type()] == 2);
273    it->set_canonical_spill_slot(spill);
274    it->assign_reg(spill);
275  }
276}
277
278void LinearScan::propagate_spill_slots() {
279  if (!frame_map()->finalize_frame(max_spills())) {
280    bailout("frame too large");
281  }
282}
283
284// create a new interval with a predefined reg_num
285// (only used for parent intervals that are created during the building phase)
286Interval* LinearScan::create_interval(int reg_num) {
287  assert(_intervals.at(reg_num) == NULL, "overwriting exisiting interval");
288
289  Interval* interval = new Interval(reg_num);
290  _intervals.at_put(reg_num, interval);
291
292  // assign register number for precolored intervals
293  if (reg_num < LIR_OprDesc::vreg_base) {
294    interval->assign_reg(reg_num);
295  }
296  return interval;
297}
298
299// assign a new reg_num to the interval and append it to the list of intervals
300// (only used for child intervals that are created during register allocation)
301void LinearScan::append_interval(Interval* it) {
302  it->set_reg_num(_intervals.length());
303  _intervals.append(it);
304  _new_intervals_from_allocation->append(it);
305}
306
307// copy the vreg-flags if an interval is split
308void LinearScan::copy_register_flags(Interval* from, Interval* to) {
309  if (gen()->is_vreg_flag_set(from->reg_num(), LIRGenerator::byte_reg)) {
310    gen()->set_vreg_flag(to->reg_num(), LIRGenerator::byte_reg);
311  }
312  if (gen()->is_vreg_flag_set(from->reg_num(), LIRGenerator::callee_saved)) {
313    gen()->set_vreg_flag(to->reg_num(), LIRGenerator::callee_saved);
314  }
315
316  // Note: do not copy the must_start_in_memory flag because it is not necessary for child
317  //       intervals (only the very beginning of the interval must be in memory)
318}
319
320
321// ********** spill move optimization
322// eliminate moves from register to stack if stack slot is known to be correct
323
324// called during building of intervals
325void LinearScan::change_spill_definition_pos(Interval* interval, int def_pos) {
326  assert(interval->is_split_parent(), "can only be called for split parents");
327
328  switch (interval->spill_state()) {
329    case noDefinitionFound:
330      assert(interval->spill_definition_pos() == -1, "must no be set before");
331      interval->set_spill_definition_pos(def_pos);
332      interval->set_spill_state(oneDefinitionFound);
333      break;
334
335    case oneDefinitionFound:
336      assert(def_pos <= interval->spill_definition_pos(), "positions are processed in reverse order when intervals are created");
337      if (def_pos < interval->spill_definition_pos() - 2) {
338        // second definition found, so no spill optimization possible for this interval
339        interval->set_spill_state(noOptimization);
340      } else {
341        // two consecutive definitions (because of two-operand LIR form)
342        assert(block_of_op_with_id(def_pos) == block_of_op_with_id(interval->spill_definition_pos()), "block must be equal");
343      }
344      break;
345
346    case noOptimization:
347      // nothing to do
348      break;
349
350    default:
351      assert(false, "other states not allowed at this time");
352  }
353}
354
355// called during register allocation
356void LinearScan::change_spill_state(Interval* interval, int spill_pos) {
357  switch (interval->spill_state()) {
358    case oneDefinitionFound: {
359      int def_loop_depth = block_of_op_with_id(interval->spill_definition_pos())->loop_depth();
360      int spill_loop_depth = block_of_op_with_id(spill_pos)->loop_depth();
361
362      if (def_loop_depth < spill_loop_depth) {
363        // the loop depth of the spilling position is higher then the loop depth
364        // at the definition of the interval -> move write to memory out of loop
365        // by storing at definitin of the interval
366        interval->set_spill_state(storeAtDefinition);
367      } else {
368        // the interval is currently spilled only once, so for now there is no
369        // reason to store the interval at the definition
370        interval->set_spill_state(oneMoveInserted);
371      }
372      break;
373    }
374
375    case oneMoveInserted: {
376      // the interval is spilled more then once, so it is better to store it to
377      // memory at the definition
378      interval->set_spill_state(storeAtDefinition);
379      break;
380    }
381
382    case storeAtDefinition:
383    case startInMemory:
384    case noOptimization:
385    case noDefinitionFound:
386      // nothing to do
387      break;
388
389    default:
390      assert(false, "other states not allowed at this time");
391  }
392}
393
394
395bool LinearScan::must_store_at_definition(const Interval* i) {
396  return i->is_split_parent() && i->spill_state() == storeAtDefinition;
397}
398
399// called once before asignment of register numbers
400void LinearScan::eliminate_spill_moves() {
401  TIME_LINEAR_SCAN(timer_eliminate_spill_moves);
402  TRACE_LINEAR_SCAN(3, tty->print_cr("***** Eliminating unnecessary spill moves"));
403
404  // collect all intervals that must be stored after their definion.
405  // the list is sorted by Interval::spill_definition_pos
406  Interval* interval;
407  Interval* temp_list;
408  create_unhandled_lists(&interval, &temp_list, must_store_at_definition, NULL);
409
410#ifdef ASSERT
411  Interval* prev = NULL;
412  Interval* temp = interval;
413  while (temp != Interval::end()) {
414    assert(temp->spill_definition_pos() > 0, "invalid spill definition pos");
415    if (prev != NULL) {
416      assert(temp->from() >= prev->from(), "intervals not sorted");
417      assert(temp->spill_definition_pos() >= prev->spill_definition_pos(), "when intervals are sorted by from, then they must also be sorted by spill_definition_pos");
418    }
419
420    assert(temp->canonical_spill_slot() >= LinearScan::nof_regs, "interval has no spill slot assigned");
421    assert(temp->spill_definition_pos() >= temp->from(), "invalid order");
422    assert(temp->spill_definition_pos() <= temp->from() + 2, "only intervals defined once at their start-pos can be optimized");
423
424    TRACE_LINEAR_SCAN(4, tty->print_cr("interval %d (from %d to %d) must be stored at %d", temp->reg_num(), temp->from(), temp->to(), temp->spill_definition_pos()));
425
426    temp = temp->next();
427  }
428#endif
429
430  LIR_InsertionBuffer insertion_buffer;
431  int num_blocks = block_count();
432  for (int i = 0; i < num_blocks; i++) {
433    BlockBegin* block = block_at(i);
434    LIR_OpList* instructions = block->lir()->instructions_list();
435    int         num_inst = instructions->length();
436    bool        has_new = false;
437
438    // iterate all instructions of the block. skip the first because it is always a label
439    for (int j = 1; j < num_inst; j++) {
440      LIR_Op* op = instructions->at(j);
441      int op_id = op->id();
442
443      if (op_id == -1) {
444        // remove move from register to stack if the stack slot is guaranteed to be correct.
445        // only moves that have been inserted by LinearScan can be removed.
446        assert(op->code() == lir_move, "only moves can have a op_id of -1");
447        assert(op->as_Op1() != NULL, "move must be LIR_Op1");
448        assert(op->as_Op1()->result_opr()->is_virtual(), "LinearScan inserts only moves to virtual registers");
449
450        LIR_Op1* op1 = (LIR_Op1*)op;
451        Interval* interval = interval_at(op1->result_opr()->vreg_number());
452
453        if (interval->assigned_reg() >= LinearScan::nof_regs && interval->always_in_memory()) {
454          // move target is a stack slot that is always correct, so eliminate instruction
455          TRACE_LINEAR_SCAN(4, tty->print_cr("eliminating move from interval %d to %d", op1->in_opr()->vreg_number(), op1->result_opr()->vreg_number()));
456          instructions->at_put(j, NULL); // NULL-instructions are deleted by assign_reg_num
457        }
458
459      } else {
460        // insert move from register to stack just after the beginning of the interval
461        assert(interval == Interval::end() || interval->spill_definition_pos() >= op_id, "invalid order");
462        assert(interval == Interval::end() || (interval->is_split_parent() && interval->spill_state() == storeAtDefinition), "invalid interval");
463
464        while (interval != Interval::end() && interval->spill_definition_pos() == op_id) {
465          if (!has_new) {
466            // prepare insertion buffer (appended when all instructions of the block are processed)
467            insertion_buffer.init(block->lir());
468            has_new = true;
469          }
470
471          LIR_Opr from_opr = operand_for_interval(interval);
472          LIR_Opr to_opr = canonical_spill_opr(interval);
473          assert(from_opr->is_fixed_cpu() || from_opr->is_fixed_fpu(), "from operand must be a register");
474          assert(to_opr->is_stack(), "to operand must be a stack slot");
475
476          insertion_buffer.move(j, from_opr, to_opr);
477          TRACE_LINEAR_SCAN(4, tty->print_cr("inserting move after definition of interval %d to stack slot %d at op_id %d", interval->reg_num(), interval->canonical_spill_slot() - LinearScan::nof_regs, op_id));
478
479          interval = interval->next();
480        }
481      }
482    } // end of instruction iteration
483
484    if (has_new) {
485      block->lir()->append(&insertion_buffer);
486    }
487  } // end of block iteration
488
489  assert(interval == Interval::end(), "missed an interval");
490}
491
492
493// ********** Phase 1: number all instructions in all blocks
494// Compute depth-first and linear scan block orders, and number LIR_Op nodes for linear scan.
495
496void LinearScan::number_instructions() {
497  {
498    // dummy-timer to measure the cost of the timer itself
499    // (this time is then subtracted from all other timers to get the real value)
500    TIME_LINEAR_SCAN(timer_do_nothing);
501  }
502  TIME_LINEAR_SCAN(timer_number_instructions);
503
504  // Assign IDs to LIR nodes and build a mapping, lir_ops, from ID to LIR_Op node.
505  int num_blocks = block_count();
506  int num_instructions = 0;
507  int i;
508  for (i = 0; i < num_blocks; i++) {
509    num_instructions += block_at(i)->lir()->instructions_list()->length();
510  }
511
512  // initialize with correct length
513  _lir_ops = LIR_OpArray(num_instructions);
514  _block_of_op = BlockBeginArray(num_instructions);
515
516  int op_id = 0;
517  int idx = 0;
518
519  for (i = 0; i < num_blocks; i++) {
520    BlockBegin* block = block_at(i);
521    block->set_first_lir_instruction_id(op_id);
522    LIR_OpList* instructions = block->lir()->instructions_list();
523
524    int num_inst = instructions->length();
525    for (int j = 0; j < num_inst; j++) {
526      LIR_Op* op = instructions->at(j);
527      op->set_id(op_id);
528
529      _lir_ops.at_put(idx, op);
530      _block_of_op.at_put(idx, block);
531      assert(lir_op_with_id(op_id) == op, "must match");
532
533      idx++;
534      op_id += 2; // numbering of lir_ops by two
535    }
536    block->set_last_lir_instruction_id(op_id - 2);
537  }
538  assert(idx == num_instructions, "must match");
539  assert(idx * 2 == op_id, "must match");
540
541  _has_call = BitMap(num_instructions); _has_call.clear();
542  _has_info = BitMap(num_instructions); _has_info.clear();
543}
544
545
546// ********** Phase 2: compute local live sets separately for each block
547// (sets live_gen and live_kill for each block)
548
549void LinearScan::set_live_gen_kill(Value value, LIR_Op* op, BitMap& live_gen, BitMap& live_kill) {
550  LIR_Opr opr = value->operand();
551  Constant* con = value->as_Constant();
552
553  // check some asumptions about debug information
554  assert(!value->type()->is_illegal(), "if this local is used by the interpreter it shouldn't be of indeterminate type");
555  assert(con == NULL || opr->is_virtual() || opr->is_constant() || opr->is_illegal(), "asumption: Constant instructions have only constant operands");
556  assert(con != NULL || opr->is_virtual(), "asumption: non-Constant instructions have only virtual operands");
557
558  if ((con == NULL || con->is_pinned()) && opr->is_register()) {
559    assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
560    int reg = opr->vreg_number();
561    if (!live_kill.at(reg)) {
562      live_gen.set_bit(reg);
563      TRACE_LINEAR_SCAN(4, tty->print_cr("  Setting live_gen for value %c%d, LIR op_id %d, register number %d", value->type()->tchar(), value->id(), op->id(), reg));
564    }
565  }
566}
567
568
569void LinearScan::compute_local_live_sets() {
570  TIME_LINEAR_SCAN(timer_compute_local_live_sets);
571
572  int  num_blocks = block_count();
573  int  live_size = live_set_size();
574  bool local_has_fpu_registers = false;
575  int  local_num_calls = 0;
576  LIR_OpVisitState visitor;
577
578  BitMap2D local_interval_in_loop = BitMap2D(_num_virtual_regs, num_loops());
579  local_interval_in_loop.clear();
580
581  // iterate all blocks
582  for (int i = 0; i < num_blocks; i++) {
583    BlockBegin* block = block_at(i);
584
585    BitMap live_gen(live_size);  live_gen.clear();
586    BitMap live_kill(live_size); live_kill.clear();
587
588    if (block->is_set(BlockBegin::exception_entry_flag)) {
589      // Phi functions at the begin of an exception handler are
590      // implicitly defined (= killed) at the beginning of the block.
591      for_each_phi_fun(block, phi,
592        live_kill.set_bit(phi->operand()->vreg_number())
593      );
594    }
595
596    LIR_OpList* instructions = block->lir()->instructions_list();
597    int num_inst = instructions->length();
598
599    // iterate all instructions of the block. skip the first because it is always a label
600    assert(visitor.no_operands(instructions->at(0)), "first operation must always be a label");
601    for (int j = 1; j < num_inst; j++) {
602      LIR_Op* op = instructions->at(j);
603
604      // visit operation to collect all operands
605      visitor.visit(op);
606
607      if (visitor.has_call()) {
608        _has_call.set_bit(op->id() >> 1);
609        local_num_calls++;
610      }
611      if (visitor.info_count() > 0) {
612        _has_info.set_bit(op->id() >> 1);
613      }
614
615      // iterate input operands of instruction
616      int k, n, reg;
617      n = visitor.opr_count(LIR_OpVisitState::inputMode);
618      for (k = 0; k < n; k++) {
619        LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::inputMode, k);
620        assert(opr->is_register(), "visitor should only return register operands");
621
622        if (opr->is_virtual_register()) {
623          assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
624          reg = opr->vreg_number();
625          if (!live_kill.at(reg)) {
626            live_gen.set_bit(reg);
627            TRACE_LINEAR_SCAN(4, tty->print_cr("  Setting live_gen for register %d at instruction %d", reg, op->id()));
628          }
629          if (block->loop_index() >= 0) {
630            local_interval_in_loop.set_bit(reg, block->loop_index());
631          }
632          local_has_fpu_registers = local_has_fpu_registers || opr->is_virtual_fpu();
633        }
634
635#ifdef ASSERT
636        // fixed intervals are never live at block boundaries, so
637        // they need not be processed in live sets.
638        // this is checked by these assertions to be sure about it.
639        // the entry block may have incoming values in registers, which is ok.
640        if (!opr->is_virtual_register() && block != ir()->start()) {
641          reg = reg_num(opr);
642          if (is_processed_reg_num(reg)) {
643            assert(live_kill.at(reg), "using fixed register that is not defined in this block");
644          }
645          reg = reg_numHi(opr);
646          if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
647            assert(live_kill.at(reg), "using fixed register that is not defined in this block");
648          }
649        }
650#endif
651      }
652
653      // Add uses of live locals from interpreter's point of view for proper debug information generation
654      n = visitor.info_count();
655      for (k = 0; k < n; k++) {
656        CodeEmitInfo* info = visitor.info_at(k);
657        ValueStack* stack = info->stack();
658        for_each_state_value(stack, value,
659          set_live_gen_kill(value, op, live_gen, live_kill)
660        );
661      }
662
663      // iterate temp operands of instruction
664      n = visitor.opr_count(LIR_OpVisitState::tempMode);
665      for (k = 0; k < n; k++) {
666        LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::tempMode, k);
667        assert(opr->is_register(), "visitor should only return register operands");
668
669        if (opr->is_virtual_register()) {
670          assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
671          reg = opr->vreg_number();
672          live_kill.set_bit(reg);
673          if (block->loop_index() >= 0) {
674            local_interval_in_loop.set_bit(reg, block->loop_index());
675          }
676          local_has_fpu_registers = local_has_fpu_registers || opr->is_virtual_fpu();
677        }
678
679#ifdef ASSERT
680        // fixed intervals are never live at block boundaries, so
681        // they need not be processed in live sets
682        // process them only in debug mode so that this can be checked
683        if (!opr->is_virtual_register()) {
684          reg = reg_num(opr);
685          if (is_processed_reg_num(reg)) {
686            live_kill.set_bit(reg_num(opr));
687          }
688          reg = reg_numHi(opr);
689          if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
690            live_kill.set_bit(reg);
691          }
692        }
693#endif
694      }
695
696      // iterate output operands of instruction
697      n = visitor.opr_count(LIR_OpVisitState::outputMode);
698      for (k = 0; k < n; k++) {
699        LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::outputMode, k);
700        assert(opr->is_register(), "visitor should only return register operands");
701
702        if (opr->is_virtual_register()) {
703          assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
704          reg = opr->vreg_number();
705          live_kill.set_bit(reg);
706          if (block->loop_index() >= 0) {
707            local_interval_in_loop.set_bit(reg, block->loop_index());
708          }
709          local_has_fpu_registers = local_has_fpu_registers || opr->is_virtual_fpu();
710        }
711
712#ifdef ASSERT
713        // fixed intervals are never live at block boundaries, so
714        // they need not be processed in live sets
715        // process them only in debug mode so that this can be checked
716        if (!opr->is_virtual_register()) {
717          reg = reg_num(opr);
718          if (is_processed_reg_num(reg)) {
719            live_kill.set_bit(reg_num(opr));
720          }
721          reg = reg_numHi(opr);
722          if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
723            live_kill.set_bit(reg);
724          }
725        }
726#endif
727      }
728    } // end of instruction iteration
729
730    block->set_live_gen (live_gen);
731    block->set_live_kill(live_kill);
732    block->set_live_in  (BitMap(live_size)); block->live_in().clear();
733    block->set_live_out (BitMap(live_size)); block->live_out().clear();
734
735    TRACE_LINEAR_SCAN(4, tty->print("live_gen  B%d ", block->block_id()); print_bitmap(block->live_gen()));
736    TRACE_LINEAR_SCAN(4, tty->print("live_kill B%d ", block->block_id()); print_bitmap(block->live_kill()));
737  } // end of block iteration
738
739  // propagate local calculated information into LinearScan object
740  _has_fpu_registers = local_has_fpu_registers;
741  compilation()->set_has_fpu_code(local_has_fpu_registers);
742
743  _num_calls = local_num_calls;
744  _interval_in_loop = local_interval_in_loop;
745}
746
747
748// ********** Phase 3: perform a backward dataflow analysis to compute global live sets
749// (sets live_in and live_out for each block)
750
751void LinearScan::compute_global_live_sets() {
752  TIME_LINEAR_SCAN(timer_compute_global_live_sets);
753
754  int  num_blocks = block_count();
755  bool change_occurred;
756  bool change_occurred_in_block;
757  int  iteration_count = 0;
758  BitMap live_out(live_set_size()); live_out.clear(); // scratch set for calculations
759
760  // Perform a backward dataflow analysis to compute live_out and live_in for each block.
761  // The loop is executed until a fixpoint is reached (no changes in an iteration)
762  // Exception handlers must be processed because not all live values are
763  // present in the state array, e.g. because of global value numbering
764  do {
765    change_occurred = false;
766
767    // iterate all blocks in reverse order
768    for (int i = num_blocks - 1; i >= 0; i--) {
769      BlockBegin* block = block_at(i);
770
771      change_occurred_in_block = false;
772
773      // live_out(block) is the union of live_in(sux), for successors sux of block
774      int n = block->number_of_sux();
775      int e = block->number_of_exception_handlers();
776      if (n + e > 0) {
777        // block has successors
778        if (n > 0) {
779          live_out.set_from(block->sux_at(0)->live_in());
780          for (int j = 1; j < n; j++) {
781            live_out.set_union(block->sux_at(j)->live_in());
782          }
783        } else {
784          live_out.clear();
785        }
786        for (int j = 0; j < e; j++) {
787          live_out.set_union(block->exception_handler_at(j)->live_in());
788        }
789
790        if (!block->live_out().is_same(live_out)) {
791          // A change occurred.  Swap the old and new live out sets to avoid copying.
792          BitMap temp = block->live_out();
793          block->set_live_out(live_out);
794          live_out = temp;
795
796          change_occurred = true;
797          change_occurred_in_block = true;
798        }
799      }
800
801      if (iteration_count == 0 || change_occurred_in_block) {
802        // live_in(block) is the union of live_gen(block) with (live_out(block) & !live_kill(block))
803        // note: live_in has to be computed only in first iteration or if live_out has changed!
804        BitMap live_in = block->live_in();
805        live_in.set_from(block->live_out());
806        live_in.set_difference(block->live_kill());
807        live_in.set_union(block->live_gen());
808      }
809
810#ifndef PRODUCT
811      if (TraceLinearScanLevel >= 4) {
812        char c = ' ';
813        if (iteration_count == 0 || change_occurred_in_block) {
814          c = '*';
815        }
816        tty->print("(%d) live_in%c  B%d ", iteration_count, c, block->block_id()); print_bitmap(block->live_in());
817        tty->print("(%d) live_out%c B%d ", iteration_count, c, block->block_id()); print_bitmap(block->live_out());
818      }
819#endif
820    }
821    iteration_count++;
822
823    if (change_occurred && iteration_count > 50) {
824      BAILOUT("too many iterations in compute_global_live_sets");
825    }
826  } while (change_occurred);
827
828
829#ifdef ASSERT
830  // check that fixed intervals are not live at block boundaries
831  // (live set must be empty at fixed intervals)
832  for (int i = 0; i < num_blocks; i++) {
833    BlockBegin* block = block_at(i);
834    for (int j = 0; j < LIR_OprDesc::vreg_base; j++) {
835      assert(block->live_in().at(j)  == false, "live_in  set of fixed register must be empty");
836      assert(block->live_out().at(j) == false, "live_out set of fixed register must be empty");
837      assert(block->live_gen().at(j) == false, "live_gen set of fixed register must be empty");
838    }
839  }
840#endif
841
842  // check that the live_in set of the first block is empty
843  BitMap live_in_args(ir()->start()->live_in().size());
844  live_in_args.clear();
845  if (!ir()->start()->live_in().is_same(live_in_args)) {
846#ifdef ASSERT
847    tty->print_cr("Error: live_in set of first block must be empty (when this fails, virtual registers are used before they are defined)");
848    tty->print_cr("affected registers:");
849    print_bitmap(ir()->start()->live_in());
850
851    // print some additional information to simplify debugging
852    for (unsigned int i = 0; i < ir()->start()->live_in().size(); i++) {
853      if (ir()->start()->live_in().at(i)) {
854        Instruction* instr = gen()->instruction_for_vreg(i);
855        tty->print_cr("* vreg %d (HIR instruction %c%d)", i, instr == NULL ? ' ' : instr->type()->tchar(), instr == NULL ? 0 : instr->id());
856
857        for (int j = 0; j < num_blocks; j++) {
858          BlockBegin* block = block_at(j);
859          if (block->live_gen().at(i)) {
860            tty->print_cr("  used in block B%d", block->block_id());
861          }
862          if (block->live_kill().at(i)) {
863            tty->print_cr("  defined in block B%d", block->block_id());
864          }
865        }
866      }
867    }
868
869#endif
870    // when this fails, virtual registers are used before they are defined.
871    assert(false, "live_in set of first block must be empty");
872    // bailout of if this occurs in product mode.
873    bailout("live_in set of first block not empty");
874  }
875}
876
877
878// ********** Phase 4: build intervals
879// (fills the list _intervals)
880
881void LinearScan::add_use(Value value, int from, int to, IntervalUseKind use_kind) {
882  assert(!value->type()->is_illegal(), "if this value is used by the interpreter it shouldn't be of indeterminate type");
883  LIR_Opr opr = value->operand();
884  Constant* con = value->as_Constant();
885
886  if ((con == NULL || con->is_pinned()) && opr->is_register()) {
887    assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
888    add_use(opr, from, to, use_kind);
889  }
890}
891
892
893void LinearScan::add_def(LIR_Opr opr, int def_pos, IntervalUseKind use_kind) {
894  TRACE_LINEAR_SCAN(2, tty->print(" def "); opr->print(tty); tty->print_cr(" def_pos %d (%d)", def_pos, use_kind));
895  assert(opr->is_register(), "should not be called otherwise");
896
897  if (opr->is_virtual_register()) {
898    assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
899    add_def(opr->vreg_number(), def_pos, use_kind, opr->type_register());
900
901  } else {
902    int reg = reg_num(opr);
903    if (is_processed_reg_num(reg)) {
904      add_def(reg, def_pos, use_kind, opr->type_register());
905    }
906    reg = reg_numHi(opr);
907    if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
908      add_def(reg, def_pos, use_kind, opr->type_register());
909    }
910  }
911}
912
913void LinearScan::add_use(LIR_Opr opr, int from, int to, IntervalUseKind use_kind) {
914  TRACE_LINEAR_SCAN(2, tty->print(" use "); opr->print(tty); tty->print_cr(" from %d to %d (%d)", from, to, use_kind));
915  assert(opr->is_register(), "should not be called otherwise");
916
917  if (opr->is_virtual_register()) {
918    assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
919    add_use(opr->vreg_number(), from, to, use_kind, opr->type_register());
920
921  } else {
922    int reg = reg_num(opr);
923    if (is_processed_reg_num(reg)) {
924      add_use(reg, from, to, use_kind, opr->type_register());
925    }
926    reg = reg_numHi(opr);
927    if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
928      add_use(reg, from, to, use_kind, opr->type_register());
929    }
930  }
931}
932
933void LinearScan::add_temp(LIR_Opr opr, int temp_pos, IntervalUseKind use_kind) {
934  TRACE_LINEAR_SCAN(2, tty->print(" temp "); opr->print(tty); tty->print_cr(" temp_pos %d (%d)", temp_pos, use_kind));
935  assert(opr->is_register(), "should not be called otherwise");
936
937  if (opr->is_virtual_register()) {
938    assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
939    add_temp(opr->vreg_number(), temp_pos, use_kind, opr->type_register());
940
941  } else {
942    int reg = reg_num(opr);
943    if (is_processed_reg_num(reg)) {
944      add_temp(reg, temp_pos, use_kind, opr->type_register());
945    }
946    reg = reg_numHi(opr);
947    if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
948      add_temp(reg, temp_pos, use_kind, opr->type_register());
949    }
950  }
951}
952
953
954void LinearScan::add_def(int reg_num, int def_pos, IntervalUseKind use_kind, BasicType type) {
955  Interval* interval = interval_at(reg_num);
956  if (interval != NULL) {
957    assert(interval->reg_num() == reg_num, "wrong interval");
958
959    if (type != T_ILLEGAL) {
960      interval->set_type(type);
961    }
962
963    Range* r = interval->first();
964    if (r->from() <= def_pos) {
965      // Update the starting point (when a range is first created for a use, its
966      // start is the beginning of the current block until a def is encountered.)
967      r->set_from(def_pos);
968      interval->add_use_pos(def_pos, use_kind);
969
970    } else {
971      // Dead value - make vacuous interval
972      // also add use_kind for dead intervals
973      interval->add_range(def_pos, def_pos + 1);
974      interval->add_use_pos(def_pos, use_kind);
975      TRACE_LINEAR_SCAN(2, tty->print_cr("Warning: def of reg %d at %d occurs without use", reg_num, def_pos));
976    }
977
978  } else {
979    // Dead value - make vacuous interval
980    // also add use_kind for dead intervals
981    interval = create_interval(reg_num);
982    if (type != T_ILLEGAL) {
983      interval->set_type(type);
984    }
985
986    interval->add_range(def_pos, def_pos + 1);
987    interval->add_use_pos(def_pos, use_kind);
988    TRACE_LINEAR_SCAN(2, tty->print_cr("Warning: dead value %d at %d in live intervals", reg_num, def_pos));
989  }
990
991  change_spill_definition_pos(interval, def_pos);
992  if (use_kind == noUse && interval->spill_state() <= startInMemory) {
993        // detection of method-parameters and roundfp-results
994        // TODO: move this directly to position where use-kind is computed
995    interval->set_spill_state(startInMemory);
996  }
997}
998
999void LinearScan::add_use(int reg_num, int from, int to, IntervalUseKind use_kind, BasicType type) {
1000  Interval* interval = interval_at(reg_num);
1001  if (interval == NULL) {
1002    interval = create_interval(reg_num);
1003  }
1004  assert(interval->reg_num() == reg_num, "wrong interval");
1005
1006  if (type != T_ILLEGAL) {
1007    interval->set_type(type);
1008  }
1009
1010  interval->add_range(from, to);
1011  interval->add_use_pos(to, use_kind);
1012}
1013
1014void LinearScan::add_temp(int reg_num, int temp_pos, IntervalUseKind use_kind, BasicType type) {
1015  Interval* interval = interval_at(reg_num);
1016  if (interval == NULL) {
1017    interval = create_interval(reg_num);
1018  }
1019  assert(interval->reg_num() == reg_num, "wrong interval");
1020
1021  if (type != T_ILLEGAL) {
1022    interval->set_type(type);
1023  }
1024
1025  interval->add_range(temp_pos, temp_pos + 1);
1026  interval->add_use_pos(temp_pos, use_kind);
1027}
1028
1029
1030// the results of this functions are used for optimizing spilling and reloading
1031// if the functions return shouldHaveRegister and the interval is spilled,
1032// it is not reloaded to a register.
1033IntervalUseKind LinearScan::use_kind_of_output_operand(LIR_Op* op, LIR_Opr opr) {
1034  if (op->code() == lir_move) {
1035    assert(op->as_Op1() != NULL, "lir_move must be LIR_Op1");
1036    LIR_Op1* move = (LIR_Op1*)op;
1037    LIR_Opr res = move->result_opr();
1038    bool result_in_memory = res->is_virtual() && gen()->is_vreg_flag_set(res->vreg_number(), LIRGenerator::must_start_in_memory);
1039
1040    if (result_in_memory) {
1041      // Begin of an interval with must_start_in_memory set.
1042      // This interval will always get a stack slot first, so return noUse.
1043      return noUse;
1044
1045    } else if (move->in_opr()->is_stack()) {
1046      // method argument (condition must be equal to handle_method_arguments)
1047      return noUse;
1048
1049    } else if (move->in_opr()->is_register() && move->result_opr()->is_register()) {
1050      // Move from register to register
1051      if (block_of_op_with_id(op->id())->is_set(BlockBegin::osr_entry_flag)) {
1052        // special handling of phi-function moves inside osr-entry blocks
1053        // input operand must have a register instead of output operand (leads to better register allocation)
1054        return shouldHaveRegister;
1055      }
1056    }
1057  }
1058
1059  if (opr->is_virtual() &&
1060      gen()->is_vreg_flag_set(opr->vreg_number(), LIRGenerator::must_start_in_memory)) {
1061    // result is a stack-slot, so prevent immediate reloading
1062    return noUse;
1063  }
1064
1065  // all other operands require a register
1066  return mustHaveRegister;
1067}
1068
1069IntervalUseKind LinearScan::use_kind_of_input_operand(LIR_Op* op, LIR_Opr opr) {
1070  if (op->code() == lir_move) {
1071    assert(op->as_Op1() != NULL, "lir_move must be LIR_Op1");
1072    LIR_Op1* move = (LIR_Op1*)op;
1073    LIR_Opr res = move->result_opr();
1074    bool result_in_memory = res->is_virtual() && gen()->is_vreg_flag_set(res->vreg_number(), LIRGenerator::must_start_in_memory);
1075
1076    if (result_in_memory) {
1077      // Move to an interval with must_start_in_memory set.
1078      // To avoid moves from stack to stack (not allowed) force the input operand to a register
1079      return mustHaveRegister;
1080
1081    } else if (move->in_opr()->is_register() && move->result_opr()->is_register()) {
1082      // Move from register to register
1083      if (block_of_op_with_id(op->id())->is_set(BlockBegin::osr_entry_flag)) {
1084        // special handling of phi-function moves inside osr-entry blocks
1085        // input operand must have a register instead of output operand (leads to better register allocation)
1086        return mustHaveRegister;
1087      }
1088
1089      // The input operand is not forced to a register (moves from stack to register are allowed),
1090      // but it is faster if the input operand is in a register
1091      return shouldHaveRegister;
1092    }
1093  }
1094
1095
1096#ifdef X86
1097  if (op->code() == lir_cmove) {
1098    // conditional moves can handle stack operands
1099    assert(op->result_opr()->is_register(), "result must always be in a register");
1100    return shouldHaveRegister;
1101  }
1102
1103  // optimizations for second input operand of arithmehtic operations on Intel
1104  // this operand is allowed to be on the stack in some cases
1105  BasicType opr_type = opr->type_register();
1106  if (opr_type == T_FLOAT || opr_type == T_DOUBLE) {
1107    if ((UseSSE == 1 && opr_type == T_FLOAT) || UseSSE >= 2) {
1108      // SSE float instruction (T_DOUBLE only supported with SSE2)
1109      switch (op->code()) {
1110        case lir_cmp:
1111        case lir_add:
1112        case lir_sub:
1113        case lir_mul:
1114        case lir_div:
1115        {
1116          assert(op->as_Op2() != NULL, "must be LIR_Op2");
1117          LIR_Op2* op2 = (LIR_Op2*)op;
1118          if (op2->in_opr1() != op2->in_opr2() && op2->in_opr2() == opr) {
1119            assert((op2->result_opr()->is_register() || op->code() == lir_cmp) && op2->in_opr1()->is_register(), "cannot mark second operand as stack if others are not in register");
1120            return shouldHaveRegister;
1121          }
1122        }
1123      }
1124    } else {
1125      // FPU stack float instruction
1126      switch (op->code()) {
1127        case lir_add:
1128        case lir_sub:
1129        case lir_mul:
1130        case lir_div:
1131        {
1132          assert(op->as_Op2() != NULL, "must be LIR_Op2");
1133          LIR_Op2* op2 = (LIR_Op2*)op;
1134          if (op2->in_opr1() != op2->in_opr2() && op2->in_opr2() == opr) {
1135            assert((op2->result_opr()->is_register() || op->code() == lir_cmp) && op2->in_opr1()->is_register(), "cannot mark second operand as stack if others are not in register");
1136            return shouldHaveRegister;
1137          }
1138        }
1139      }
1140    }
1141    // We want to sometimes use logical operations on pointers, in particular in GC barriers.
1142    // Since 64bit logical operations do not current support operands on stack, we have to make sure
1143    // T_OBJECT doesn't get spilled along with T_LONG.
1144  } else if (opr_type != T_LONG LP64_ONLY(&& opr_type != T_OBJECT)) {
1145    // integer instruction (note: long operands must always be in register)
1146    switch (op->code()) {
1147      case lir_cmp:
1148      case lir_add:
1149      case lir_sub:
1150      case lir_logic_and:
1151      case lir_logic_or:
1152      case lir_logic_xor:
1153      {
1154        assert(op->as_Op2() != NULL, "must be LIR_Op2");
1155        LIR_Op2* op2 = (LIR_Op2*)op;
1156        if (op2->in_opr1() != op2->in_opr2() && op2->in_opr2() == opr) {
1157          assert((op2->result_opr()->is_register() || op->code() == lir_cmp) && op2->in_opr1()->is_register(), "cannot mark second operand as stack if others are not in register");
1158          return shouldHaveRegister;
1159        }
1160      }
1161    }
1162  }
1163#endif // X86
1164
1165  // all other operands require a register
1166  return mustHaveRegister;
1167}
1168
1169
1170void LinearScan::handle_method_arguments(LIR_Op* op) {
1171  // special handling for method arguments (moves from stack to virtual register):
1172  // the interval gets no register assigned, but the stack slot.
1173  // it is split before the first use by the register allocator.
1174
1175  if (op->code() == lir_move) {
1176    assert(op->as_Op1() != NULL, "must be LIR_Op1");
1177    LIR_Op1* move = (LIR_Op1*)op;
1178
1179    if (move->in_opr()->is_stack()) {
1180#ifdef ASSERT
1181      int arg_size = compilation()->method()->arg_size();
1182      LIR_Opr o = move->in_opr();
1183      if (o->is_single_stack()) {
1184        assert(o->single_stack_ix() >= 0 && o->single_stack_ix() < arg_size, "out of range");
1185      } else if (o->is_double_stack()) {
1186        assert(o->double_stack_ix() >= 0 && o->double_stack_ix() < arg_size, "out of range");
1187      } else {
1188        ShouldNotReachHere();
1189      }
1190
1191      assert(move->id() > 0, "invalid id");
1192      assert(block_of_op_with_id(move->id())->number_of_preds() == 0, "move from stack must be in first block");
1193      assert(move->result_opr()->is_virtual(), "result of move must be a virtual register");
1194
1195      TRACE_LINEAR_SCAN(4, tty->print_cr("found move from stack slot %d to vreg %d", o->is_single_stack() ? o->single_stack_ix() : o->double_stack_ix(), reg_num(move->result_opr())));
1196#endif
1197
1198      Interval* interval = interval_at(reg_num(move->result_opr()));
1199
1200      int stack_slot = LinearScan::nof_regs + (move->in_opr()->is_single_stack() ? move->in_opr()->single_stack_ix() : move->in_opr()->double_stack_ix());
1201      interval->set_canonical_spill_slot(stack_slot);
1202      interval->assign_reg(stack_slot);
1203    }
1204  }
1205}
1206
1207void LinearScan::handle_doubleword_moves(LIR_Op* op) {
1208  // special handling for doubleword move from memory to register:
1209  // in this case the registers of the input address and the result
1210  // registers must not overlap -> add a temp range for the input registers
1211  if (op->code() == lir_move) {
1212    assert(op->as_Op1() != NULL, "must be LIR_Op1");
1213    LIR_Op1* move = (LIR_Op1*)op;
1214
1215    if (move->result_opr()->is_double_cpu() && move->in_opr()->is_pointer()) {
1216      LIR_Address* address = move->in_opr()->as_address_ptr();
1217      if (address != NULL) {
1218        if (address->base()->is_valid()) {
1219          add_temp(address->base(), op->id(), noUse);
1220        }
1221        if (address->index()->is_valid()) {
1222          add_temp(address->index(), op->id(), noUse);
1223        }
1224      }
1225    }
1226  }
1227}
1228
1229void LinearScan::add_register_hints(LIR_Op* op) {
1230  switch (op->code()) {
1231    case lir_move:      // fall through
1232    case lir_convert: {
1233      assert(op->as_Op1() != NULL, "lir_move, lir_convert must be LIR_Op1");
1234      LIR_Op1* move = (LIR_Op1*)op;
1235
1236      LIR_Opr move_from = move->in_opr();
1237      LIR_Opr move_to = move->result_opr();
1238
1239      if (move_to->is_register() && move_from->is_register()) {
1240        Interval* from = interval_at(reg_num(move_from));
1241        Interval* to = interval_at(reg_num(move_to));
1242        if (from != NULL && to != NULL) {
1243          to->set_register_hint(from);
1244          TRACE_LINEAR_SCAN(4, tty->print_cr("operation at op_id %d: added hint from interval %d to %d", move->id(), from->reg_num(), to->reg_num()));
1245        }
1246      }
1247      break;
1248    }
1249    case lir_cmove: {
1250      assert(op->as_Op2() != NULL, "lir_cmove must be LIR_Op2");
1251      LIR_Op2* cmove = (LIR_Op2*)op;
1252
1253      LIR_Opr move_from = cmove->in_opr1();
1254      LIR_Opr move_to = cmove->result_opr();
1255
1256      if (move_to->is_register() && move_from->is_register()) {
1257        Interval* from = interval_at(reg_num(move_from));
1258        Interval* to = interval_at(reg_num(move_to));
1259        if (from != NULL && to != NULL) {
1260          to->set_register_hint(from);
1261          TRACE_LINEAR_SCAN(4, tty->print_cr("operation at op_id %d: added hint from interval %d to %d", cmove->id(), from->reg_num(), to->reg_num()));
1262        }
1263      }
1264      break;
1265    }
1266  }
1267}
1268
1269
1270void LinearScan::build_intervals() {
1271  TIME_LINEAR_SCAN(timer_build_intervals);
1272
1273  // initialize interval list with expected number of intervals
1274  // (32 is added to have some space for split children without having to resize the list)
1275  _intervals = IntervalList(num_virtual_regs() + 32);
1276  // initialize all slots that are used by build_intervals
1277  _intervals.at_put_grow(num_virtual_regs() - 1, NULL, NULL);
1278
1279  // create a list with all caller-save registers (cpu, fpu, xmm)
1280  // when an instruction is a call, a temp range is created for all these registers
1281  int num_caller_save_registers = 0;
1282  int caller_save_registers[LinearScan::nof_regs];
1283
1284  int i;
1285  for (i = 0; i < FrameMap::nof_caller_save_cpu_regs(); i++) {
1286    LIR_Opr opr = FrameMap::caller_save_cpu_reg_at(i);
1287    assert(opr->is_valid() && opr->is_register(), "FrameMap should not return invalid operands");
1288    assert(reg_numHi(opr) == -1, "missing addition of range for hi-register");
1289    caller_save_registers[num_caller_save_registers++] = reg_num(opr);
1290  }
1291
1292  // temp ranges for fpu registers are only created when the method has
1293  // virtual fpu operands. Otherwise no allocation for fpu registers is
1294  // perfomed and so the temp ranges would be useless
1295  if (has_fpu_registers()) {
1296#ifdef X86
1297    if (UseSSE < 2) {
1298#endif
1299      for (i = 0; i < FrameMap::nof_caller_save_fpu_regs; i++) {
1300        LIR_Opr opr = FrameMap::caller_save_fpu_reg_at(i);
1301        assert(opr->is_valid() && opr->is_register(), "FrameMap should not return invalid operands");
1302        assert(reg_numHi(opr) == -1, "missing addition of range for hi-register");
1303        caller_save_registers[num_caller_save_registers++] = reg_num(opr);
1304      }
1305#ifdef X86
1306    }
1307    if (UseSSE > 0) {
1308      for (i = 0; i < FrameMap::nof_caller_save_xmm_regs; i++) {
1309        LIR_Opr opr = FrameMap::caller_save_xmm_reg_at(i);
1310        assert(opr->is_valid() && opr->is_register(), "FrameMap should not return invalid operands");
1311        assert(reg_numHi(opr) == -1, "missing addition of range for hi-register");
1312        caller_save_registers[num_caller_save_registers++] = reg_num(opr);
1313      }
1314    }
1315#endif
1316  }
1317  assert(num_caller_save_registers <= LinearScan::nof_regs, "out of bounds");
1318
1319
1320  LIR_OpVisitState visitor;
1321
1322  // iterate all blocks in reverse order
1323  for (i = block_count() - 1; i >= 0; i--) {
1324    BlockBegin* block = block_at(i);
1325    LIR_OpList* instructions = block->lir()->instructions_list();
1326    int         block_from =   block->first_lir_instruction_id();
1327    int         block_to =     block->last_lir_instruction_id();
1328
1329    assert(block_from == instructions->at(0)->id(), "must be");
1330    assert(block_to   == instructions->at(instructions->length() - 1)->id(), "must be");
1331
1332    // Update intervals for registers live at the end of this block;
1333    BitMap live = block->live_out();
1334    int size = (int)live.size();
1335    for (int number = (int)live.get_next_one_offset(0, size); number < size; number = (int)live.get_next_one_offset(number + 1, size)) {
1336      assert(live.at(number), "should not stop here otherwise");
1337      assert(number >= LIR_OprDesc::vreg_base, "fixed intervals must not be live on block bounds");
1338      TRACE_LINEAR_SCAN(2, tty->print_cr("live in %d to %d", number, block_to + 2));
1339
1340      add_use(number, block_from, block_to + 2, noUse, T_ILLEGAL);
1341
1342      // add special use positions for loop-end blocks when the
1343      // interval is used anywhere inside this loop.  It's possible
1344      // that the block was part of a non-natural loop, so it might
1345      // have an invalid loop index.
1346      if (block->is_set(BlockBegin::linear_scan_loop_end_flag) &&
1347          block->loop_index() != -1 &&
1348          is_interval_in_loop(number, block->loop_index())) {
1349        interval_at(number)->add_use_pos(block_to + 1, loopEndMarker);
1350      }
1351    }
1352
1353    // iterate all instructions of the block in reverse order.
1354    // skip the first instruction because it is always a label
1355    // definitions of intervals are processed before uses
1356    assert(visitor.no_operands(instructions->at(0)), "first operation must always be a label");
1357    for (int j = instructions->length() - 1; j >= 1; j--) {
1358      LIR_Op* op = instructions->at(j);
1359      int op_id = op->id();
1360
1361      // visit operation to collect all operands
1362      visitor.visit(op);
1363
1364      // add a temp range for each register if operation destroys caller-save registers
1365      if (visitor.has_call()) {
1366        for (int k = 0; k < num_caller_save_registers; k++) {
1367          add_temp(caller_save_registers[k], op_id, noUse, T_ILLEGAL);
1368        }
1369        TRACE_LINEAR_SCAN(4, tty->print_cr("operation destroys all caller-save registers"));
1370      }
1371
1372      // Add any platform dependent temps
1373      pd_add_temps(op);
1374
1375      // visit definitions (output and temp operands)
1376      int k, n;
1377      n = visitor.opr_count(LIR_OpVisitState::outputMode);
1378      for (k = 0; k < n; k++) {
1379        LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::outputMode, k);
1380        assert(opr->is_register(), "visitor should only return register operands");
1381        add_def(opr, op_id, use_kind_of_output_operand(op, opr));
1382      }
1383
1384      n = visitor.opr_count(LIR_OpVisitState::tempMode);
1385      for (k = 0; k < n; k++) {
1386        LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::tempMode, k);
1387        assert(opr->is_register(), "visitor should only return register operands");
1388        add_temp(opr, op_id, mustHaveRegister);
1389      }
1390
1391      // visit uses (input operands)
1392      n = visitor.opr_count(LIR_OpVisitState::inputMode);
1393      for (k = 0; k < n; k++) {
1394        LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::inputMode, k);
1395        assert(opr->is_register(), "visitor should only return register operands");
1396        add_use(opr, block_from, op_id, use_kind_of_input_operand(op, opr));
1397      }
1398
1399      // Add uses of live locals from interpreter's point of view for proper
1400      // debug information generation
1401      // Treat these operands as temp values (if the life range is extended
1402      // to a call site, the value would be in a register at the call otherwise)
1403      n = visitor.info_count();
1404      for (k = 0; k < n; k++) {
1405        CodeEmitInfo* info = visitor.info_at(k);
1406        ValueStack* stack = info->stack();
1407        for_each_state_value(stack, value,
1408          add_use(value, block_from, op_id + 1, noUse);
1409        );
1410      }
1411
1412      // special steps for some instructions (especially moves)
1413      handle_method_arguments(op);
1414      handle_doubleword_moves(op);
1415      add_register_hints(op);
1416
1417    } // end of instruction iteration
1418  } // end of block iteration
1419
1420
1421  // add the range [0, 1[ to all fixed intervals
1422  // -> the register allocator need not handle unhandled fixed intervals
1423  for (int n = 0; n < LinearScan::nof_regs; n++) {
1424    Interval* interval = interval_at(n);
1425    if (interval != NULL) {
1426      interval->add_range(0, 1);
1427    }
1428  }
1429}
1430
1431
1432// ********** Phase 5: actual register allocation
1433
1434int LinearScan::interval_cmp(Interval** a, Interval** b) {
1435  if (*a != NULL) {
1436    if (*b != NULL) {
1437      return (*a)->from() - (*b)->from();
1438    } else {
1439      return -1;
1440    }
1441  } else {
1442    if (*b != NULL) {
1443      return 1;
1444    } else {
1445      return 0;
1446    }
1447  }
1448}
1449
1450#ifndef PRODUCT
1451bool LinearScan::is_sorted(IntervalArray* intervals) {
1452  int from = -1;
1453  int i, j;
1454  for (i = 0; i < intervals->length(); i ++) {
1455    Interval* it = intervals->at(i);
1456    if (it != NULL) {
1457      if (from > it->from()) {
1458        assert(false, "");
1459        return false;
1460      }
1461      from = it->from();
1462    }
1463  }
1464
1465  // check in both directions if sorted list and unsorted list contain same intervals
1466  for (i = 0; i < interval_count(); i++) {
1467    if (interval_at(i) != NULL) {
1468      int num_found = 0;
1469      for (j = 0; j < intervals->length(); j++) {
1470        if (interval_at(i) == intervals->at(j)) {
1471          num_found++;
1472        }
1473      }
1474      assert(num_found == 1, "lists do not contain same intervals");
1475    }
1476  }
1477  for (j = 0; j < intervals->length(); j++) {
1478    int num_found = 0;
1479    for (i = 0; i < interval_count(); i++) {
1480      if (interval_at(i) == intervals->at(j)) {
1481        num_found++;
1482      }
1483    }
1484    assert(num_found == 1, "lists do not contain same intervals");
1485  }
1486
1487  return true;
1488}
1489#endif
1490
1491void LinearScan::add_to_list(Interval** first, Interval** prev, Interval* interval) {
1492  if (*prev != NULL) {
1493    (*prev)->set_next(interval);
1494  } else {
1495    *first = interval;
1496  }
1497  *prev = interval;
1498}
1499
1500void LinearScan::create_unhandled_lists(Interval** list1, Interval** list2, bool (is_list1)(const Interval* i), bool (is_list2)(const Interval* i)) {
1501  assert(is_sorted(_sorted_intervals), "interval list is not sorted");
1502
1503  *list1 = *list2 = Interval::end();
1504
1505  Interval* list1_prev = NULL;
1506  Interval* list2_prev = NULL;
1507  Interval* v;
1508
1509  const int n = _sorted_intervals->length();
1510  for (int i = 0; i < n; i++) {
1511    v = _sorted_intervals->at(i);
1512    if (v == NULL) continue;
1513
1514    if (is_list1(v)) {
1515      add_to_list(list1, &list1_prev, v);
1516    } else if (is_list2 == NULL || is_list2(v)) {
1517      add_to_list(list2, &list2_prev, v);
1518    }
1519  }
1520
1521  if (list1_prev != NULL) list1_prev->set_next(Interval::end());
1522  if (list2_prev != NULL) list2_prev->set_next(Interval::end());
1523
1524  assert(list1_prev == NULL || list1_prev->next() == Interval::end(), "linear list ends not with sentinel");
1525  assert(list2_prev == NULL || list2_prev->next() == Interval::end(), "linear list ends not with sentinel");
1526}
1527
1528
1529void LinearScan::sort_intervals_before_allocation() {
1530  TIME_LINEAR_SCAN(timer_sort_intervals_before);
1531
1532  if (_needs_full_resort) {
1533    // There is no known reason why this should occur but just in case...
1534    assert(false, "should never occur");
1535    // Re-sort existing interval list because an Interval::from() has changed
1536    _sorted_intervals->sort(interval_cmp);
1537    _needs_full_resort = false;
1538  }
1539
1540  IntervalList* unsorted_list = &_intervals;
1541  int unsorted_len = unsorted_list->length();
1542  int sorted_len = 0;
1543  int unsorted_idx;
1544  int sorted_idx = 0;
1545  int sorted_from_max = -1;
1546
1547  // calc number of items for sorted list (sorted list must not contain NULL values)
1548  for (unsorted_idx = 0; unsorted_idx < unsorted_len; unsorted_idx++) {
1549    if (unsorted_list->at(unsorted_idx) != NULL) {
1550      sorted_len++;
1551    }
1552  }
1553  IntervalArray* sorted_list = new IntervalArray(sorted_len);
1554
1555  // special sorting algorithm: the original interval-list is almost sorted,
1556  // only some intervals are swapped. So this is much faster than a complete QuickSort
1557  for (unsorted_idx = 0; unsorted_idx < unsorted_len; unsorted_idx++) {
1558    Interval* cur_interval = unsorted_list->at(unsorted_idx);
1559
1560    if (cur_interval != NULL) {
1561      int cur_from = cur_interval->from();
1562
1563      if (sorted_from_max <= cur_from) {
1564        sorted_list->at_put(sorted_idx++, cur_interval);
1565        sorted_from_max = cur_interval->from();
1566      } else {
1567        // the asumption that the intervals are already sorted failed,
1568        // so this interval must be sorted in manually
1569        int j;
1570        for (j = sorted_idx - 1; j >= 0 && cur_from < sorted_list->at(j)->from(); j--) {
1571          sorted_list->at_put(j + 1, sorted_list->at(j));
1572        }
1573        sorted_list->at_put(j + 1, cur_interval);
1574        sorted_idx++;
1575      }
1576    }
1577  }
1578  _sorted_intervals = sorted_list;
1579  assert(is_sorted(_sorted_intervals), "intervals unsorted");
1580}
1581
1582void LinearScan::sort_intervals_after_allocation() {
1583  TIME_LINEAR_SCAN(timer_sort_intervals_after);
1584
1585  if (_needs_full_resort) {
1586    // Re-sort existing interval list because an Interval::from() has changed
1587    _sorted_intervals->sort(interval_cmp);
1588    _needs_full_resort = false;
1589  }
1590
1591  IntervalArray* old_list      = _sorted_intervals;
1592  IntervalList*  new_list      = _new_intervals_from_allocation;
1593  int old_len = old_list->length();
1594  int new_len = new_list->length();
1595
1596  if (new_len == 0) {
1597    // no intervals have been added during allocation, so sorted list is already up to date
1598    assert(is_sorted(_sorted_intervals), "intervals unsorted");
1599    return;
1600  }
1601
1602  // conventional sort-algorithm for new intervals
1603  new_list->sort(interval_cmp);
1604
1605  // merge old and new list (both already sorted) into one combined list
1606  IntervalArray* combined_list = new IntervalArray(old_len + new_len);
1607  int old_idx = 0;
1608  int new_idx = 0;
1609
1610  while (old_idx + new_idx < old_len + new_len) {
1611    if (new_idx >= new_len || (old_idx < old_len && old_list->at(old_idx)->from() <= new_list->at(new_idx)->from())) {
1612      combined_list->at_put(old_idx + new_idx, old_list->at(old_idx));
1613      old_idx++;
1614    } else {
1615      combined_list->at_put(old_idx + new_idx, new_list->at(new_idx));
1616      new_idx++;
1617    }
1618  }
1619
1620  _sorted_intervals = combined_list;
1621  assert(is_sorted(_sorted_intervals), "intervals unsorted");
1622}
1623
1624
1625void LinearScan::allocate_registers() {
1626  TIME_LINEAR_SCAN(timer_allocate_registers);
1627
1628  Interval* precolored_cpu_intervals, *not_precolored_cpu_intervals;
1629  Interval* precolored_fpu_intervals, *not_precolored_fpu_intervals;
1630
1631  create_unhandled_lists(&precolored_cpu_intervals, &not_precolored_cpu_intervals, is_precolored_cpu_interval, is_virtual_cpu_interval);
1632  if (has_fpu_registers()) {
1633    create_unhandled_lists(&precolored_fpu_intervals, &not_precolored_fpu_intervals, is_precolored_fpu_interval, is_virtual_fpu_interval);
1634#ifdef ASSERT
1635  } else {
1636    // fpu register allocation is omitted because no virtual fpu registers are present
1637    // just check this again...
1638    create_unhandled_lists(&precolored_fpu_intervals, &not_precolored_fpu_intervals, is_precolored_fpu_interval, is_virtual_fpu_interval);
1639    assert(not_precolored_fpu_intervals == Interval::end(), "missed an uncolored fpu interval");
1640#endif
1641  }
1642
1643  // allocate cpu registers
1644  LinearScanWalker cpu_lsw(this, precolored_cpu_intervals, not_precolored_cpu_intervals);
1645  cpu_lsw.walk();
1646  cpu_lsw.finish_allocation();
1647
1648  if (has_fpu_registers()) {
1649    // allocate fpu registers
1650    LinearScanWalker fpu_lsw(this, precolored_fpu_intervals, not_precolored_fpu_intervals);
1651    fpu_lsw.walk();
1652    fpu_lsw.finish_allocation();
1653  }
1654}
1655
1656
1657// ********** Phase 6: resolve data flow
1658// (insert moves at edges between blocks if intervals have been split)
1659
1660// wrapper for Interval::split_child_at_op_id that performs a bailout in product mode
1661// instead of returning NULL
1662Interval* LinearScan::split_child_at_op_id(Interval* interval, int op_id, LIR_OpVisitState::OprMode mode) {
1663  Interval* result = interval->split_child_at_op_id(op_id, mode);
1664  if (result != NULL) {
1665    return result;
1666  }
1667
1668  assert(false, "must find an interval, but do a clean bailout in product mode");
1669  result = new Interval(LIR_OprDesc::vreg_base);
1670  result->assign_reg(0);
1671  result->set_type(T_INT);
1672  BAILOUT_("LinearScan: interval is NULL", result);
1673}
1674
1675
1676Interval* LinearScan::interval_at_block_begin(BlockBegin* block, int reg_num) {
1677  assert(LinearScan::nof_regs <= reg_num && reg_num < num_virtual_regs(), "register number out of bounds");
1678  assert(interval_at(reg_num) != NULL, "no interval found");
1679
1680  return split_child_at_op_id(interval_at(reg_num), block->first_lir_instruction_id(), LIR_OpVisitState::outputMode);
1681}
1682
1683Interval* LinearScan::interval_at_block_end(BlockBegin* block, int reg_num) {
1684  assert(LinearScan::nof_regs <= reg_num && reg_num < num_virtual_regs(), "register number out of bounds");
1685  assert(interval_at(reg_num) != NULL, "no interval found");
1686
1687  return split_child_at_op_id(interval_at(reg_num), block->last_lir_instruction_id() + 1, LIR_OpVisitState::outputMode);
1688}
1689
1690Interval* LinearScan::interval_at_op_id(int reg_num, int op_id) {
1691  assert(LinearScan::nof_regs <= reg_num && reg_num < num_virtual_regs(), "register number out of bounds");
1692  assert(interval_at(reg_num) != NULL, "no interval found");
1693
1694  return split_child_at_op_id(interval_at(reg_num), op_id, LIR_OpVisitState::inputMode);
1695}
1696
1697
1698void LinearScan::resolve_collect_mappings(BlockBegin* from_block, BlockBegin* to_block, MoveResolver &move_resolver) {
1699  DEBUG_ONLY(move_resolver.check_empty());
1700
1701  const int num_regs = num_virtual_regs();
1702  const int size = live_set_size();
1703  const BitMap live_at_edge = to_block->live_in();
1704
1705  // visit all registers where the live_at_edge bit is set
1706  for (int r = (int)live_at_edge.get_next_one_offset(0, size); r < size; r = (int)live_at_edge.get_next_one_offset(r + 1, size)) {
1707    assert(r < num_regs, "live information set for not exisiting interval");
1708    assert(from_block->live_out().at(r) && to_block->live_in().at(r), "interval not live at this edge");
1709
1710    Interval* from_interval = interval_at_block_end(from_block, r);
1711    Interval* to_interval = interval_at_block_begin(to_block, r);
1712
1713    if (from_interval != to_interval && (from_interval->assigned_reg() != to_interval->assigned_reg() || from_interval->assigned_regHi() != to_interval->assigned_regHi())) {
1714      // need to insert move instruction
1715      move_resolver.add_mapping(from_interval, to_interval);
1716    }
1717  }
1718}
1719
1720
1721void LinearScan::resolve_find_insert_pos(BlockBegin* from_block, BlockBegin* to_block, MoveResolver &move_resolver) {
1722  if (from_block->number_of_sux() <= 1) {
1723    TRACE_LINEAR_SCAN(4, tty->print_cr("inserting moves at end of from_block B%d", from_block->block_id()));
1724
1725    LIR_OpList* instructions = from_block->lir()->instructions_list();
1726    LIR_OpBranch* branch = instructions->last()->as_OpBranch();
1727    if (branch != NULL) {
1728      // insert moves before branch
1729      assert(branch->cond() == lir_cond_always, "block does not end with an unconditional jump");
1730      move_resolver.set_insert_position(from_block->lir(), instructions->length() - 2);
1731    } else {
1732      move_resolver.set_insert_position(from_block->lir(), instructions->length() - 1);
1733    }
1734
1735  } else {
1736    TRACE_LINEAR_SCAN(4, tty->print_cr("inserting moves at beginning of to_block B%d", to_block->block_id()));
1737#ifdef ASSERT
1738    assert(from_block->lir()->instructions_list()->at(0)->as_OpLabel() != NULL, "block does not start with a label");
1739
1740    // because the number of predecessor edges matches the number of
1741    // successor edges, blocks which are reached by switch statements
1742    // may have be more than one predecessor but it will be guaranteed
1743    // that all predecessors will be the same.
1744    for (int i = 0; i < to_block->number_of_preds(); i++) {
1745      assert(from_block == to_block->pred_at(i), "all critical edges must be broken");
1746    }
1747#endif
1748
1749    move_resolver.set_insert_position(to_block->lir(), 0);
1750  }
1751}
1752
1753
1754// insert necessary moves (spilling or reloading) at edges between blocks if interval has been split
1755void LinearScan::resolve_data_flow() {
1756  TIME_LINEAR_SCAN(timer_resolve_data_flow);
1757
1758  int num_blocks = block_count();
1759  MoveResolver move_resolver(this);
1760  BitMap block_completed(num_blocks);  block_completed.clear();
1761  BitMap already_resolved(num_blocks); already_resolved.clear();
1762
1763  int i;
1764  for (i = 0; i < num_blocks; i++) {
1765    BlockBegin* block = block_at(i);
1766
1767    // check if block has only one predecessor and only one successor
1768    if (block->number_of_preds() == 1 && block->number_of_sux() == 1 && block->number_of_exception_handlers() == 0) {
1769      LIR_OpList* instructions = block->lir()->instructions_list();
1770      assert(instructions->at(0)->code() == lir_label, "block must start with label");
1771      assert(instructions->last()->code() == lir_branch, "block with successors must end with branch");
1772      assert(instructions->last()->as_OpBranch()->cond() == lir_cond_always, "block with successor must end with unconditional branch");
1773
1774      // check if block is empty (only label and branch)
1775      if (instructions->length() == 2) {
1776        BlockBegin* pred = block->pred_at(0);
1777        BlockBegin* sux = block->sux_at(0);
1778
1779        // prevent optimization of two consecutive blocks
1780        if (!block_completed.at(pred->linear_scan_number()) && !block_completed.at(sux->linear_scan_number())) {
1781          TRACE_LINEAR_SCAN(3, tty->print_cr("**** optimizing empty block B%d (pred: B%d, sux: B%d)", block->block_id(), pred->block_id(), sux->block_id()));
1782          block_completed.set_bit(block->linear_scan_number());
1783
1784          // directly resolve between pred and sux (without looking at the empty block between)
1785          resolve_collect_mappings(pred, sux, move_resolver);
1786          if (move_resolver.has_mappings()) {
1787            move_resolver.set_insert_position(block->lir(), 0);
1788            move_resolver.resolve_and_append_moves();
1789          }
1790        }
1791      }
1792    }
1793  }
1794
1795
1796  for (i = 0; i < num_blocks; i++) {
1797    if (!block_completed.at(i)) {
1798      BlockBegin* from_block = block_at(i);
1799      already_resolved.set_from(block_completed);
1800
1801      int num_sux = from_block->number_of_sux();
1802      for (int s = 0; s < num_sux; s++) {
1803        BlockBegin* to_block = from_block->sux_at(s);
1804
1805        // check for duplicate edges between the same blocks (can happen with switch blocks)
1806        if (!already_resolved.at(to_block->linear_scan_number())) {
1807          TRACE_LINEAR_SCAN(3, tty->print_cr("**** processing edge between B%d and B%d", from_block->block_id(), to_block->block_id()));
1808          already_resolved.set_bit(to_block->linear_scan_number());
1809
1810          // collect all intervals that have been split between from_block and to_block
1811          resolve_collect_mappings(from_block, to_block, move_resolver);
1812          if (move_resolver.has_mappings()) {
1813            resolve_find_insert_pos(from_block, to_block, move_resolver);
1814            move_resolver.resolve_and_append_moves();
1815          }
1816        }
1817      }
1818    }
1819  }
1820}
1821
1822
1823void LinearScan::resolve_exception_entry(BlockBegin* block, int reg_num, MoveResolver &move_resolver) {
1824  if (interval_at(reg_num) == NULL) {
1825    // if a phi function is never used, no interval is created -> ignore this
1826    return;
1827  }
1828
1829  Interval* interval = interval_at_block_begin(block, reg_num);
1830  int reg = interval->assigned_reg();
1831  int regHi = interval->assigned_regHi();
1832
1833  if ((reg < nof_regs && interval->always_in_memory()) ||
1834      (use_fpu_stack_allocation() && reg >= pd_first_fpu_reg && reg <= pd_last_fpu_reg)) {
1835    // the interval is split to get a short range that is located on the stack
1836    // in the following two cases:
1837    // * the interval started in memory (e.g. method parameter), but is currently in a register
1838    //   this is an optimization for exception handling that reduces the number of moves that
1839    //   are necessary for resolving the states when an exception uses this exception handler
1840    // * the interval would be on the fpu stack at the begin of the exception handler
1841    //   this is not allowed because of the complicated fpu stack handling on Intel
1842
1843    // range that will be spilled to memory
1844    int from_op_id = block->first_lir_instruction_id();
1845    int to_op_id = from_op_id + 1;  // short live range of length 1
1846    assert(interval->from() <= from_op_id && interval->to() >= to_op_id,
1847           "no split allowed between exception entry and first instruction");
1848
1849    if (interval->from() != from_op_id) {
1850      // the part before from_op_id is unchanged
1851      interval = interval->split(from_op_id);
1852      interval->assign_reg(reg, regHi);
1853      append_interval(interval);
1854    } else {
1855      _needs_full_resort = true;
1856    }
1857    assert(interval->from() == from_op_id, "must be true now");
1858
1859    Interval* spilled_part = interval;
1860    if (interval->to() != to_op_id) {
1861      // the part after to_op_id is unchanged
1862      spilled_part = interval->split_from_start(to_op_id);
1863      append_interval(spilled_part);
1864      move_resolver.add_mapping(spilled_part, interval);
1865    }
1866    assign_spill_slot(spilled_part);
1867
1868    assert(spilled_part->from() == from_op_id && spilled_part->to() == to_op_id, "just checking");
1869  }
1870}
1871
1872void LinearScan::resolve_exception_entry(BlockBegin* block, MoveResolver &move_resolver) {
1873  assert(block->is_set(BlockBegin::exception_entry_flag), "should not call otherwise");
1874  DEBUG_ONLY(move_resolver.check_empty());
1875
1876  // visit all registers where the live_in bit is set
1877  int size = live_set_size();
1878  for (int r = (int)block->live_in().get_next_one_offset(0, size); r < size; r = (int)block->live_in().get_next_one_offset(r + 1, size)) {
1879    resolve_exception_entry(block, r, move_resolver);
1880  }
1881
1882  // the live_in bits are not set for phi functions of the xhandler entry, so iterate them separately
1883  for_each_phi_fun(block, phi,
1884    resolve_exception_entry(block, phi->operand()->vreg_number(), move_resolver)
1885  );
1886
1887  if (move_resolver.has_mappings()) {
1888    // insert moves after first instruction
1889    move_resolver.set_insert_position(block->lir(), 0);
1890    move_resolver.resolve_and_append_moves();
1891  }
1892}
1893
1894
1895void LinearScan::resolve_exception_edge(XHandler* handler, int throwing_op_id, int reg_num, Phi* phi, MoveResolver &move_resolver) {
1896  if (interval_at(reg_num) == NULL) {
1897    // if a phi function is never used, no interval is created -> ignore this
1898    return;
1899  }
1900
1901  // the computation of to_interval is equal to resolve_collect_mappings,
1902  // but from_interval is more complicated because of phi functions
1903  BlockBegin* to_block = handler->entry_block();
1904  Interval* to_interval = interval_at_block_begin(to_block, reg_num);
1905
1906  if (phi != NULL) {
1907    // phi function of the exception entry block
1908    // no moves are created for this phi function in the LIR_Generator, so the
1909    // interval at the throwing instruction must be searched using the operands
1910    // of the phi function
1911    Value from_value = phi->operand_at(handler->phi_operand());
1912
1913    // with phi functions it can happen that the same from_value is used in
1914    // multiple mappings, so notify move-resolver that this is allowed
1915    move_resolver.set_multiple_reads_allowed();
1916
1917    Constant* con = from_value->as_Constant();
1918    if (con != NULL && !con->is_pinned()) {
1919      // unpinned constants may have no register, so add mapping from constant to interval
1920      move_resolver.add_mapping(LIR_OprFact::value_type(con->type()), to_interval);
1921    } else {
1922      // search split child at the throwing op_id
1923      Interval* from_interval = interval_at_op_id(from_value->operand()->vreg_number(), throwing_op_id);
1924      move_resolver.add_mapping(from_interval, to_interval);
1925    }
1926
1927  } else {
1928    // no phi function, so use reg_num also for from_interval
1929    // search split child at the throwing op_id
1930    Interval* from_interval = interval_at_op_id(reg_num, throwing_op_id);
1931    if (from_interval != to_interval) {
1932      // optimization to reduce number of moves: when to_interval is on stack and
1933      // the stack slot is known to be always correct, then no move is necessary
1934      if (!from_interval->always_in_memory() || from_interval->canonical_spill_slot() != to_interval->assigned_reg()) {
1935        move_resolver.add_mapping(from_interval, to_interval);
1936      }
1937    }
1938  }
1939}
1940
1941void LinearScan::resolve_exception_edge(XHandler* handler, int throwing_op_id, MoveResolver &move_resolver) {
1942  TRACE_LINEAR_SCAN(4, tty->print_cr("resolving exception handler B%d: throwing_op_id=%d", handler->entry_block()->block_id(), throwing_op_id));
1943
1944  DEBUG_ONLY(move_resolver.check_empty());
1945  assert(handler->lir_op_id() == -1, "already processed this xhandler");
1946  DEBUG_ONLY(handler->set_lir_op_id(throwing_op_id));
1947  assert(handler->entry_code() == NULL, "code already present");
1948
1949  // visit all registers where the live_in bit is set
1950  BlockBegin* block = handler->entry_block();
1951  int size = live_set_size();
1952  for (int r = (int)block->live_in().get_next_one_offset(0, size); r < size; r = (int)block->live_in().get_next_one_offset(r + 1, size)) {
1953    resolve_exception_edge(handler, throwing_op_id, r, NULL, move_resolver);
1954  }
1955
1956  // the live_in bits are not set for phi functions of the xhandler entry, so iterate them separately
1957  for_each_phi_fun(block, phi,
1958    resolve_exception_edge(handler, throwing_op_id, phi->operand()->vreg_number(), phi, move_resolver)
1959  );
1960
1961  if (move_resolver.has_mappings()) {
1962    LIR_List* entry_code = new LIR_List(compilation());
1963    move_resolver.set_insert_position(entry_code, 0);
1964    move_resolver.resolve_and_append_moves();
1965
1966    entry_code->jump(handler->entry_block());
1967    handler->set_entry_code(entry_code);
1968  }
1969}
1970
1971
1972void LinearScan::resolve_exception_handlers() {
1973  MoveResolver move_resolver(this);
1974  LIR_OpVisitState visitor;
1975  int num_blocks = block_count();
1976
1977  int i;
1978  for (i = 0; i < num_blocks; i++) {
1979    BlockBegin* block = block_at(i);
1980    if (block->is_set(BlockBegin::exception_entry_flag)) {
1981      resolve_exception_entry(block, move_resolver);
1982    }
1983  }
1984
1985  for (i = 0; i < num_blocks; i++) {
1986    BlockBegin* block = block_at(i);
1987    LIR_List* ops = block->lir();
1988    int num_ops = ops->length();
1989
1990    // iterate all instructions of the block. skip the first because it is always a label
1991    assert(visitor.no_operands(ops->at(0)), "first operation must always be a label");
1992    for (int j = 1; j < num_ops; j++) {
1993      LIR_Op* op = ops->at(j);
1994      int op_id = op->id();
1995
1996      if (op_id != -1 && has_info(op_id)) {
1997        // visit operation to collect all operands
1998        visitor.visit(op);
1999        assert(visitor.info_count() > 0, "should not visit otherwise");
2000
2001        XHandlers* xhandlers = visitor.all_xhandler();
2002        int n = xhandlers->length();
2003        for (int k = 0; k < n; k++) {
2004          resolve_exception_edge(xhandlers->handler_at(k), op_id, move_resolver);
2005        }
2006
2007#ifdef ASSERT
2008      } else {
2009        visitor.visit(op);
2010        assert(visitor.all_xhandler()->length() == 0, "missed exception handler");
2011#endif
2012      }
2013    }
2014  }
2015}
2016
2017
2018// ********** Phase 7: assign register numbers back to LIR
2019// (includes computation of debug information and oop maps)
2020
2021VMReg LinearScan::vm_reg_for_interval(Interval* interval) {
2022  VMReg reg = interval->cached_vm_reg();
2023  if (!reg->is_valid() ) {
2024    reg = vm_reg_for_operand(operand_for_interval(interval));
2025    interval->set_cached_vm_reg(reg);
2026  }
2027  assert(reg == vm_reg_for_operand(operand_for_interval(interval)), "wrong cached value");
2028  return reg;
2029}
2030
2031VMReg LinearScan::vm_reg_for_operand(LIR_Opr opr) {
2032  assert(opr->is_oop(), "currently only implemented for oop operands");
2033  return frame_map()->regname(opr);
2034}
2035
2036
2037LIR_Opr LinearScan::operand_for_interval(Interval* interval) {
2038  LIR_Opr opr = interval->cached_opr();
2039  if (opr->is_illegal()) {
2040    opr = calc_operand_for_interval(interval);
2041    interval->set_cached_opr(opr);
2042  }
2043
2044  assert(opr == calc_operand_for_interval(interval), "wrong cached value");
2045  return opr;
2046}
2047
2048LIR_Opr LinearScan::calc_operand_for_interval(const Interval* interval) {
2049  int assigned_reg = interval->assigned_reg();
2050  BasicType type = interval->type();
2051
2052  if (assigned_reg >= nof_regs) {
2053    // stack slot
2054    assert(interval->assigned_regHi() == any_reg, "must not have hi register");
2055    return LIR_OprFact::stack(assigned_reg - nof_regs, type);
2056
2057  } else {
2058    // register
2059    switch (type) {
2060      case T_OBJECT: {
2061        assert(assigned_reg >= pd_first_cpu_reg && assigned_reg <= pd_last_cpu_reg, "no cpu register");
2062        assert(interval->assigned_regHi() == any_reg, "must not have hi register");
2063        return LIR_OprFact::single_cpu_oop(assigned_reg);
2064      }
2065
2066      case T_ADDRESS: {
2067        assert(assigned_reg >= pd_first_cpu_reg && assigned_reg <= pd_last_cpu_reg, "no cpu register");
2068        assert(interval->assigned_regHi() == any_reg, "must not have hi register");
2069        return LIR_OprFact::single_cpu_address(assigned_reg);
2070      }
2071
2072      case T_METADATA: {
2073        assert(assigned_reg >= pd_first_cpu_reg && assigned_reg <= pd_last_cpu_reg, "no cpu register");
2074        assert(interval->assigned_regHi() == any_reg, "must not have hi register");
2075        return LIR_OprFact::single_cpu_metadata(assigned_reg);
2076      }
2077
2078#ifdef __SOFTFP__
2079      case T_FLOAT:  // fall through
2080#endif // __SOFTFP__
2081      case T_INT: {
2082        assert(assigned_reg >= pd_first_cpu_reg && assigned_reg <= pd_last_cpu_reg, "no cpu register");
2083        assert(interval->assigned_regHi() == any_reg, "must not have hi register");
2084        return LIR_OprFact::single_cpu(assigned_reg);
2085      }
2086
2087#ifdef __SOFTFP__
2088      case T_DOUBLE:  // fall through
2089#endif // __SOFTFP__
2090      case T_LONG: {
2091        int assigned_regHi = interval->assigned_regHi();
2092        assert(assigned_reg >= pd_first_cpu_reg && assigned_reg <= pd_last_cpu_reg, "no cpu register");
2093        assert(num_physical_regs(T_LONG) == 1 ||
2094               (assigned_regHi >= pd_first_cpu_reg && assigned_regHi <= pd_last_cpu_reg), "no cpu register");
2095
2096        assert(assigned_reg != assigned_regHi, "invalid allocation");
2097        assert(num_physical_regs(T_LONG) == 1 || assigned_reg < assigned_regHi,
2098               "register numbers must be sorted (ensure that e.g. a move from eax,ebx to ebx,eax can not occur)");
2099        assert((assigned_regHi != any_reg) ^ (num_physical_regs(T_LONG) == 1), "must be match");
2100        if (requires_adjacent_regs(T_LONG)) {
2101          assert(assigned_reg % 2 == 0 && assigned_reg + 1 == assigned_regHi, "must be sequential and even");
2102        }
2103
2104#ifdef _LP64
2105        return LIR_OprFact::double_cpu(assigned_reg, assigned_reg);
2106#else
2107#if defined(SPARC) || defined(PPC)
2108        return LIR_OprFact::double_cpu(assigned_regHi, assigned_reg);
2109#else
2110        return LIR_OprFact::double_cpu(assigned_reg, assigned_regHi);
2111#endif // SPARC
2112#endif // LP64
2113      }
2114
2115#ifndef __SOFTFP__
2116      case T_FLOAT: {
2117#ifdef X86
2118        if (UseSSE >= 1) {
2119          assert(assigned_reg >= pd_first_xmm_reg && assigned_reg <= pd_last_xmm_reg, "no xmm register");
2120          assert(interval->assigned_regHi() == any_reg, "must not have hi register");
2121          return LIR_OprFact::single_xmm(assigned_reg - pd_first_xmm_reg);
2122        }
2123#endif
2124
2125        assert(assigned_reg >= pd_first_fpu_reg && assigned_reg <= pd_last_fpu_reg, "no fpu register");
2126        assert(interval->assigned_regHi() == any_reg, "must not have hi register");
2127        return LIR_OprFact::single_fpu(assigned_reg - pd_first_fpu_reg);
2128      }
2129
2130      case T_DOUBLE: {
2131#ifdef X86
2132        if (UseSSE >= 2) {
2133          assert(assigned_reg >= pd_first_xmm_reg && assigned_reg <= pd_last_xmm_reg, "no xmm register");
2134          assert(interval->assigned_regHi() == any_reg, "must not have hi register (double xmm values are stored in one register)");
2135          return LIR_OprFact::double_xmm(assigned_reg - pd_first_xmm_reg);
2136        }
2137#endif
2138
2139#ifdef SPARC
2140        assert(assigned_reg >= pd_first_fpu_reg && assigned_reg <= pd_last_fpu_reg, "no fpu register");
2141        assert(interval->assigned_regHi() >= pd_first_fpu_reg && interval->assigned_regHi() <= pd_last_fpu_reg, "no fpu register");
2142        assert(assigned_reg % 2 == 0 && assigned_reg + 1 == interval->assigned_regHi(), "must be sequential and even");
2143        LIR_Opr result = LIR_OprFact::double_fpu(interval->assigned_regHi() - pd_first_fpu_reg, assigned_reg - pd_first_fpu_reg);
2144#elif defined(ARM)
2145        assert(assigned_reg >= pd_first_fpu_reg && assigned_reg <= pd_last_fpu_reg, "no fpu register");
2146        assert(interval->assigned_regHi() >= pd_first_fpu_reg && interval->assigned_regHi() <= pd_last_fpu_reg, "no fpu register");
2147        assert(assigned_reg % 2 == 0 && assigned_reg + 1 == interval->assigned_regHi(), "must be sequential and even");
2148        LIR_Opr result = LIR_OprFact::double_fpu(assigned_reg - pd_first_fpu_reg, interval->assigned_regHi() - pd_first_fpu_reg);
2149#else
2150        assert(assigned_reg >= pd_first_fpu_reg && assigned_reg <= pd_last_fpu_reg, "no fpu register");
2151        assert(interval->assigned_regHi() == any_reg, "must not have hi register (double fpu values are stored in one register on Intel)");
2152        LIR_Opr result = LIR_OprFact::double_fpu(assigned_reg - pd_first_fpu_reg);
2153#endif
2154        return result;
2155      }
2156#endif // __SOFTFP__
2157
2158      default: {
2159        ShouldNotReachHere();
2160        return LIR_OprFact::illegalOpr;
2161      }
2162    }
2163  }
2164}
2165
2166LIR_Opr LinearScan::canonical_spill_opr(Interval* interval) {
2167  assert(interval->canonical_spill_slot() >= nof_regs, "canonical spill slot not set");
2168  return LIR_OprFact::stack(interval->canonical_spill_slot() - nof_regs, interval->type());
2169}
2170
2171LIR_Opr LinearScan::color_lir_opr(LIR_Opr opr, int op_id, LIR_OpVisitState::OprMode mode) {
2172  assert(opr->is_virtual(), "should not call this otherwise");
2173
2174  Interval* interval = interval_at(opr->vreg_number());
2175  assert(interval != NULL, "interval must exist");
2176
2177  if (op_id != -1) {
2178#ifdef ASSERT
2179    BlockBegin* block = block_of_op_with_id(op_id);
2180    if (block->number_of_sux() <= 1 && op_id == block->last_lir_instruction_id()) {
2181      // check if spill moves could have been appended at the end of this block, but
2182      // before the branch instruction. So the split child information for this branch would
2183      // be incorrect.
2184      LIR_OpBranch* branch = block->lir()->instructions_list()->last()->as_OpBranch();
2185      if (branch != NULL) {
2186        if (block->live_out().at(opr->vreg_number())) {
2187          assert(branch->cond() == lir_cond_always, "block does not end with an unconditional jump");
2188          assert(false, "can't get split child for the last branch of a block because the information would be incorrect (moves are inserted before the branch in resolve_data_flow)");
2189        }
2190      }
2191    }
2192#endif
2193
2194    // operands are not changed when an interval is split during allocation,
2195    // so search the right interval here
2196    interval = split_child_at_op_id(interval, op_id, mode);
2197  }
2198
2199  LIR_Opr res = operand_for_interval(interval);
2200
2201#ifdef X86
2202  // new semantic for is_last_use: not only set on definite end of interval,
2203  // but also before hole
2204  // This may still miss some cases (e.g. for dead values), but it is not necessary that the
2205  // last use information is completely correct
2206  // information is only needed for fpu stack allocation
2207  if (res->is_fpu_register()) {
2208    if (opr->is_last_use() || op_id == interval->to() || (op_id != -1 && interval->has_hole_between(op_id, op_id + 1))) {
2209      assert(op_id == -1 || !is_block_begin(op_id), "holes at begin of block may also result from control flow");
2210      res = res->make_last_use();
2211    }
2212  }
2213#endif
2214
2215  assert(!gen()->is_vreg_flag_set(opr->vreg_number(), LIRGenerator::callee_saved) || !FrameMap::is_caller_save_register(res), "bad allocation");
2216
2217  return res;
2218}
2219
2220
2221#ifdef ASSERT
2222// some methods used to check correctness of debug information
2223
2224void assert_no_register_values(GrowableArray<ScopeValue*>* values) {
2225  if (values == NULL) {
2226    return;
2227  }
2228
2229  for (int i = 0; i < values->length(); i++) {
2230    ScopeValue* value = values->at(i);
2231
2232    if (value->is_location()) {
2233      Location location = ((LocationValue*)value)->location();
2234      assert(location.where() == Location::on_stack, "value is in register");
2235    }
2236  }
2237}
2238
2239void assert_no_register_values(GrowableArray<MonitorValue*>* values) {
2240  if (values == NULL) {
2241    return;
2242  }
2243
2244  for (int i = 0; i < values->length(); i++) {
2245    MonitorValue* value = values->at(i);
2246
2247    if (value->owner()->is_location()) {
2248      Location location = ((LocationValue*)value->owner())->location();
2249      assert(location.where() == Location::on_stack, "owner is in register");
2250    }
2251    assert(value->basic_lock().where() == Location::on_stack, "basic_lock is in register");
2252  }
2253}
2254
2255void assert_equal(Location l1, Location l2) {
2256  assert(l1.where() == l2.where() && l1.type() == l2.type() && l1.offset() == l2.offset(), "");
2257}
2258
2259void assert_equal(ScopeValue* v1, ScopeValue* v2) {
2260  if (v1->is_location()) {
2261    assert(v2->is_location(), "");
2262    assert_equal(((LocationValue*)v1)->location(), ((LocationValue*)v2)->location());
2263  } else if (v1->is_constant_int()) {
2264    assert(v2->is_constant_int(), "");
2265    assert(((ConstantIntValue*)v1)->value() == ((ConstantIntValue*)v2)->value(), "");
2266  } else if (v1->is_constant_double()) {
2267    assert(v2->is_constant_double(), "");
2268    assert(((ConstantDoubleValue*)v1)->value() == ((ConstantDoubleValue*)v2)->value(), "");
2269  } else if (v1->is_constant_long()) {
2270    assert(v2->is_constant_long(), "");
2271    assert(((ConstantLongValue*)v1)->value() == ((ConstantLongValue*)v2)->value(), "");
2272  } else if (v1->is_constant_oop()) {
2273    assert(v2->is_constant_oop(), "");
2274    assert(((ConstantOopWriteValue*)v1)->value() == ((ConstantOopWriteValue*)v2)->value(), "");
2275  } else {
2276    ShouldNotReachHere();
2277  }
2278}
2279
2280void assert_equal(MonitorValue* m1, MonitorValue* m2) {
2281  assert_equal(m1->owner(), m2->owner());
2282  assert_equal(m1->basic_lock(), m2->basic_lock());
2283}
2284
2285void assert_equal(IRScopeDebugInfo* d1, IRScopeDebugInfo* d2) {
2286  assert(d1->scope() == d2->scope(), "not equal");
2287  assert(d1->bci() == d2->bci(), "not equal");
2288
2289  if (d1->locals() != NULL) {
2290    assert(d1->locals() != NULL && d2->locals() != NULL, "not equal");
2291    assert(d1->locals()->length() == d2->locals()->length(), "not equal");
2292    for (int i = 0; i < d1->locals()->length(); i++) {
2293      assert_equal(d1->locals()->at(i), d2->locals()->at(i));
2294    }
2295  } else {
2296    assert(d1->locals() == NULL && d2->locals() == NULL, "not equal");
2297  }
2298
2299  if (d1->expressions() != NULL) {
2300    assert(d1->expressions() != NULL && d2->expressions() != NULL, "not equal");
2301    assert(d1->expressions()->length() == d2->expressions()->length(), "not equal");
2302    for (int i = 0; i < d1->expressions()->length(); i++) {
2303      assert_equal(d1->expressions()->at(i), d2->expressions()->at(i));
2304    }
2305  } else {
2306    assert(d1->expressions() == NULL && d2->expressions() == NULL, "not equal");
2307  }
2308
2309  if (d1->monitors() != NULL) {
2310    assert(d1->monitors() != NULL && d2->monitors() != NULL, "not equal");
2311    assert(d1->monitors()->length() == d2->monitors()->length(), "not equal");
2312    for (int i = 0; i < d1->monitors()->length(); i++) {
2313      assert_equal(d1->monitors()->at(i), d2->monitors()->at(i));
2314    }
2315  } else {
2316    assert(d1->monitors() == NULL && d2->monitors() == NULL, "not equal");
2317  }
2318
2319  if (d1->caller() != NULL) {
2320    assert(d1->caller() != NULL && d2->caller() != NULL, "not equal");
2321    assert_equal(d1->caller(), d2->caller());
2322  } else {
2323    assert(d1->caller() == NULL && d2->caller() == NULL, "not equal");
2324  }
2325}
2326
2327void check_stack_depth(CodeEmitInfo* info, int stack_end) {
2328  if (info->stack()->bci() != SynchronizationEntryBCI && !info->scope()->method()->is_native()) {
2329    Bytecodes::Code code = info->scope()->method()->java_code_at_bci(info->stack()->bci());
2330    switch (code) {
2331      case Bytecodes::_ifnull    : // fall through
2332      case Bytecodes::_ifnonnull : // fall through
2333      case Bytecodes::_ifeq      : // fall through
2334      case Bytecodes::_ifne      : // fall through
2335      case Bytecodes::_iflt      : // fall through
2336      case Bytecodes::_ifge      : // fall through
2337      case Bytecodes::_ifgt      : // fall through
2338      case Bytecodes::_ifle      : // fall through
2339      case Bytecodes::_if_icmpeq : // fall through
2340      case Bytecodes::_if_icmpne : // fall through
2341      case Bytecodes::_if_icmplt : // fall through
2342      case Bytecodes::_if_icmpge : // fall through
2343      case Bytecodes::_if_icmpgt : // fall through
2344      case Bytecodes::_if_icmple : // fall through
2345      case Bytecodes::_if_acmpeq : // fall through
2346      case Bytecodes::_if_acmpne :
2347        assert(stack_end >= -Bytecodes::depth(code), "must have non-empty expression stack at if bytecode");
2348        break;
2349    }
2350  }
2351}
2352
2353#endif // ASSERT
2354
2355
2356IntervalWalker* LinearScan::init_compute_oop_maps() {
2357  // setup lists of potential oops for walking
2358  Interval* oop_intervals;
2359  Interval* non_oop_intervals;
2360
2361  create_unhandled_lists(&oop_intervals, &non_oop_intervals, is_oop_interval, NULL);
2362
2363  // intervals that have no oops inside need not to be processed
2364  // to ensure a walking until the last instruction id, add a dummy interval
2365  // with a high operation id
2366  non_oop_intervals = new Interval(any_reg);
2367  non_oop_intervals->add_range(max_jint - 2, max_jint - 1);
2368
2369  return new IntervalWalker(this, oop_intervals, non_oop_intervals);
2370}
2371
2372
2373OopMap* LinearScan::compute_oop_map(IntervalWalker* iw, LIR_Op* op, CodeEmitInfo* info, bool is_call_site) {
2374  TRACE_LINEAR_SCAN(3, tty->print_cr("creating oop map at op_id %d", op->id()));
2375
2376  // walk before the current operation -> intervals that start at
2377  // the operation (= output operands of the operation) are not
2378  // included in the oop map
2379  iw->walk_before(op->id());
2380
2381  int frame_size = frame_map()->framesize();
2382  int arg_count = frame_map()->oop_map_arg_count();
2383  OopMap* map = new OopMap(frame_size, arg_count);
2384
2385  // Check if this is a patch site.
2386  bool is_patch_info = false;
2387  if (op->code() == lir_move) {
2388    assert(!is_call_site, "move must not be a call site");
2389    assert(op->as_Op1() != NULL, "move must be LIR_Op1");
2390    LIR_Op1* move = (LIR_Op1*)op;
2391
2392    is_patch_info = move->patch_code() != lir_patch_none;
2393  }
2394
2395  // Iterate through active intervals
2396  for (Interval* interval = iw->active_first(fixedKind); interval != Interval::end(); interval = interval->next()) {
2397    int assigned_reg = interval->assigned_reg();
2398
2399    assert(interval->current_from() <= op->id() && op->id() <= interval->current_to(), "interval should not be active otherwise");
2400    assert(interval->assigned_regHi() == any_reg, "oop must be single word");
2401    assert(interval->reg_num() >= LIR_OprDesc::vreg_base, "fixed interval found");
2402
2403    // Check if this range covers the instruction. Intervals that
2404    // start or end at the current operation are not included in the
2405    // oop map, except in the case of patching moves.  For patching
2406    // moves, any intervals which end at this instruction are included
2407    // in the oop map since we may safepoint while doing the patch
2408    // before we've consumed the inputs.
2409    if (is_patch_info || op->id() < interval->current_to()) {
2410
2411      // caller-save registers must not be included into oop-maps at calls
2412      assert(!is_call_site || assigned_reg >= nof_regs || !is_caller_save(assigned_reg), "interval is in a caller-save register at a call -> register will be overwritten");
2413
2414      VMReg name = vm_reg_for_interval(interval);
2415      set_oop(map, name);
2416
2417      // Spill optimization: when the stack value is guaranteed to be always correct,
2418      // then it must be added to the oop map even if the interval is currently in a register
2419      if (interval->always_in_memory() &&
2420          op->id() > interval->spill_definition_pos() &&
2421          interval->assigned_reg() != interval->canonical_spill_slot()) {
2422        assert(interval->spill_definition_pos() > 0, "position not set correctly");
2423        assert(interval->canonical_spill_slot() >= LinearScan::nof_regs, "no spill slot assigned");
2424        assert(interval->assigned_reg() < LinearScan::nof_regs, "interval is on stack, so stack slot is registered twice");
2425
2426        set_oop(map, frame_map()->slot_regname(interval->canonical_spill_slot() - LinearScan::nof_regs));
2427      }
2428    }
2429  }
2430
2431  // add oops from lock stack
2432  assert(info->stack() != NULL, "CodeEmitInfo must always have a stack");
2433  int locks_count = info->stack()->total_locks_size();
2434  for (int i = 0; i < locks_count; i++) {
2435    set_oop(map, frame_map()->monitor_object_regname(i));
2436  }
2437
2438  return map;
2439}
2440
2441
2442void LinearScan::compute_oop_map(IntervalWalker* iw, const LIR_OpVisitState &visitor, LIR_Op* op) {
2443  assert(visitor.info_count() > 0, "no oop map needed");
2444
2445  // compute oop_map only for first CodeEmitInfo
2446  // because it is (in most cases) equal for all other infos of the same operation
2447  CodeEmitInfo* first_info = visitor.info_at(0);
2448  OopMap* first_oop_map = compute_oop_map(iw, op, first_info, visitor.has_call());
2449
2450  for (int i = 0; i < visitor.info_count(); i++) {
2451    CodeEmitInfo* info = visitor.info_at(i);
2452    OopMap* oop_map = first_oop_map;
2453
2454    if (info->stack()->locks_size() != first_info->stack()->locks_size()) {
2455      // this info has a different number of locks then the precomputed oop map
2456      // (possible for lock and unlock instructions) -> compute oop map with
2457      // correct lock information
2458      oop_map = compute_oop_map(iw, op, info, visitor.has_call());
2459    }
2460
2461    if (info->_oop_map == NULL) {
2462      info->_oop_map = oop_map;
2463    } else {
2464      // a CodeEmitInfo can not be shared between different LIR-instructions
2465      // because interval splitting can occur anywhere between two instructions
2466      // and so the oop maps must be different
2467      // -> check if the already set oop_map is exactly the one calculated for this operation
2468      assert(info->_oop_map == oop_map, "same CodeEmitInfo used for multiple LIR instructions");
2469    }
2470  }
2471}
2472
2473
2474// frequently used constants
2475// Allocate them with new so they are never destroyed (otherwise, a
2476// forced exit could destroy these objects while they are still in
2477// use).
2478ConstantOopWriteValue* LinearScan::_oop_null_scope_value = new (ResourceObj::C_HEAP, mtCompiler) ConstantOopWriteValue(NULL);
2479ConstantIntValue*      LinearScan::_int_m1_scope_value = new (ResourceObj::C_HEAP, mtCompiler) ConstantIntValue(-1);
2480ConstantIntValue*      LinearScan::_int_0_scope_value =  new (ResourceObj::C_HEAP, mtCompiler) ConstantIntValue(0);
2481ConstantIntValue*      LinearScan::_int_1_scope_value =  new (ResourceObj::C_HEAP, mtCompiler) ConstantIntValue(1);
2482ConstantIntValue*      LinearScan::_int_2_scope_value =  new (ResourceObj::C_HEAP, mtCompiler) ConstantIntValue(2);
2483LocationValue*         _illegal_value = new (ResourceObj::C_HEAP, mtCompiler) LocationValue(Location());
2484
2485void LinearScan::init_compute_debug_info() {
2486  // cache for frequently used scope values
2487  // (cpu registers and stack slots)
2488  _scope_value_cache = ScopeValueArray((LinearScan::nof_cpu_regs + frame_map()->argcount() + max_spills()) * 2, NULL);
2489}
2490
2491MonitorValue* LinearScan::location_for_monitor_index(int monitor_index) {
2492  Location loc;
2493  if (!frame_map()->location_for_monitor_object(monitor_index, &loc)) {
2494    bailout("too large frame");
2495  }
2496  ScopeValue* object_scope_value = new LocationValue(loc);
2497
2498  if (!frame_map()->location_for_monitor_lock(monitor_index, &loc)) {
2499    bailout("too large frame");
2500  }
2501  return new MonitorValue(object_scope_value, loc);
2502}
2503
2504LocationValue* LinearScan::location_for_name(int name, Location::Type loc_type) {
2505  Location loc;
2506  if (!frame_map()->locations_for_slot(name, loc_type, &loc)) {
2507    bailout("too large frame");
2508  }
2509  return new LocationValue(loc);
2510}
2511
2512
2513int LinearScan::append_scope_value_for_constant(LIR_Opr opr, GrowableArray<ScopeValue*>* scope_values) {
2514  assert(opr->is_constant(), "should not be called otherwise");
2515
2516  LIR_Const* c = opr->as_constant_ptr();
2517  BasicType t = c->type();
2518  switch (t) {
2519    case T_OBJECT: {
2520      jobject value = c->as_jobject();
2521      if (value == NULL) {
2522        scope_values->append(_oop_null_scope_value);
2523      } else {
2524        scope_values->append(new ConstantOopWriteValue(c->as_jobject()));
2525      }
2526      return 1;
2527    }
2528
2529    case T_INT: // fall through
2530    case T_FLOAT: {
2531      int value = c->as_jint_bits();
2532      switch (value) {
2533        case -1: scope_values->append(_int_m1_scope_value); break;
2534        case 0:  scope_values->append(_int_0_scope_value); break;
2535        case 1:  scope_values->append(_int_1_scope_value); break;
2536        case 2:  scope_values->append(_int_2_scope_value); break;
2537        default: scope_values->append(new ConstantIntValue(c->as_jint_bits())); break;
2538      }
2539      return 1;
2540    }
2541
2542    case T_LONG: // fall through
2543    case T_DOUBLE: {
2544#ifdef _LP64
2545      scope_values->append(_int_0_scope_value);
2546      scope_values->append(new ConstantLongValue(c->as_jlong_bits()));
2547#else
2548      if (hi_word_offset_in_bytes > lo_word_offset_in_bytes) {
2549        scope_values->append(new ConstantIntValue(c->as_jint_hi_bits()));
2550        scope_values->append(new ConstantIntValue(c->as_jint_lo_bits()));
2551      } else {
2552        scope_values->append(new ConstantIntValue(c->as_jint_lo_bits()));
2553        scope_values->append(new ConstantIntValue(c->as_jint_hi_bits()));
2554      }
2555#endif
2556      return 2;
2557    }
2558
2559    case T_ADDRESS: {
2560#ifdef _LP64
2561      scope_values->append(new ConstantLongValue(c->as_jint()));
2562#else
2563      scope_values->append(new ConstantIntValue(c->as_jint()));
2564#endif
2565      return 1;
2566    }
2567
2568    default:
2569      ShouldNotReachHere();
2570      return -1;
2571  }
2572}
2573
2574int LinearScan::append_scope_value_for_operand(LIR_Opr opr, GrowableArray<ScopeValue*>* scope_values) {
2575  if (opr->is_single_stack()) {
2576    int stack_idx = opr->single_stack_ix();
2577    bool is_oop = opr->is_oop_register();
2578    int cache_idx = (stack_idx + LinearScan::nof_cpu_regs) * 2 + (is_oop ? 1 : 0);
2579
2580    ScopeValue* sv = _scope_value_cache.at(cache_idx);
2581    if (sv == NULL) {
2582      Location::Type loc_type = is_oop ? Location::oop : Location::normal;
2583      sv = location_for_name(stack_idx, loc_type);
2584      _scope_value_cache.at_put(cache_idx, sv);
2585    }
2586
2587    // check if cached value is correct
2588    DEBUG_ONLY(assert_equal(sv, location_for_name(stack_idx, is_oop ? Location::oop : Location::normal)));
2589
2590    scope_values->append(sv);
2591    return 1;
2592
2593  } else if (opr->is_single_cpu()) {
2594    bool is_oop = opr->is_oop_register();
2595    int cache_idx = opr->cpu_regnr() * 2 + (is_oop ? 1 : 0);
2596    Location::Type int_loc_type = NOT_LP64(Location::normal) LP64_ONLY(Location::int_in_long);
2597
2598    ScopeValue* sv = _scope_value_cache.at(cache_idx);
2599    if (sv == NULL) {
2600      Location::Type loc_type = is_oop ? Location::oop : int_loc_type;
2601      VMReg rname = frame_map()->regname(opr);
2602      sv = new LocationValue(Location::new_reg_loc(loc_type, rname));
2603      _scope_value_cache.at_put(cache_idx, sv);
2604    }
2605
2606    // check if cached value is correct
2607    DEBUG_ONLY(assert_equal(sv, new LocationValue(Location::new_reg_loc(is_oop ? Location::oop : int_loc_type, frame_map()->regname(opr)))));
2608
2609    scope_values->append(sv);
2610    return 1;
2611
2612#ifdef X86
2613  } else if (opr->is_single_xmm()) {
2614    VMReg rname = opr->as_xmm_float_reg()->as_VMReg();
2615    LocationValue* sv = new LocationValue(Location::new_reg_loc(Location::normal, rname));
2616
2617    scope_values->append(sv);
2618    return 1;
2619#endif
2620
2621  } else if (opr->is_single_fpu()) {
2622#ifdef X86
2623    // the exact location of fpu stack values is only known
2624    // during fpu stack allocation, so the stack allocator object
2625    // must be present
2626    assert(use_fpu_stack_allocation(), "should not have float stack values without fpu stack allocation (all floats must be SSE2)");
2627    assert(_fpu_stack_allocator != NULL, "must be present");
2628    opr = _fpu_stack_allocator->to_fpu_stack(opr);
2629#endif
2630
2631    Location::Type loc_type = float_saved_as_double ? Location::float_in_dbl : Location::normal;
2632    VMReg rname = frame_map()->fpu_regname(opr->fpu_regnr());
2633#ifndef __SOFTFP__
2634#ifndef VM_LITTLE_ENDIAN
2635    if (! float_saved_as_double) {
2636      // On big endian system, we may have an issue if float registers use only
2637      // the low half of the (same) double registers.
2638      // Both the float and the double could have the same regnr but would correspond
2639      // to two different addresses once saved.
2640
2641      // get next safely (no assertion checks)
2642      VMReg next = VMRegImpl::as_VMReg(1+rname->value());
2643      if (next->is_reg() &&
2644          (next->as_FloatRegister() == rname->as_FloatRegister())) {
2645        // the back-end does use the same numbering for the double and the float
2646        rname = next; // VMReg for the low bits, e.g. the real VMReg for the float
2647      }
2648    }
2649#endif
2650#endif
2651    LocationValue* sv = new LocationValue(Location::new_reg_loc(loc_type, rname));
2652
2653    scope_values->append(sv);
2654    return 1;
2655
2656  } else {
2657    // double-size operands
2658
2659    ScopeValue* first;
2660    ScopeValue* second;
2661
2662    if (opr->is_double_stack()) {
2663#ifdef _LP64
2664      Location loc1;
2665      Location::Type loc_type = opr->type() == T_LONG ? Location::lng : Location::dbl;
2666      if (!frame_map()->locations_for_slot(opr->double_stack_ix(), loc_type, &loc1, NULL)) {
2667        bailout("too large frame");
2668      }
2669      // Does this reverse on x86 vs. sparc?
2670      first =  new LocationValue(loc1);
2671      second = _int_0_scope_value;
2672#else
2673      Location loc1, loc2;
2674      if (!frame_map()->locations_for_slot(opr->double_stack_ix(), Location::normal, &loc1, &loc2)) {
2675        bailout("too large frame");
2676      }
2677      first =  new LocationValue(loc1);
2678      second = new LocationValue(loc2);
2679#endif // _LP64
2680
2681    } else if (opr->is_double_cpu()) {
2682#ifdef _LP64
2683      VMReg rname_first = opr->as_register_lo()->as_VMReg();
2684      first = new LocationValue(Location::new_reg_loc(Location::lng, rname_first));
2685      second = _int_0_scope_value;
2686#else
2687      VMReg rname_first = opr->as_register_lo()->as_VMReg();
2688      VMReg rname_second = opr->as_register_hi()->as_VMReg();
2689
2690      if (hi_word_offset_in_bytes < lo_word_offset_in_bytes) {
2691        // lo/hi and swapped relative to first and second, so swap them
2692        VMReg tmp = rname_first;
2693        rname_first = rname_second;
2694        rname_second = tmp;
2695      }
2696
2697      first = new LocationValue(Location::new_reg_loc(Location::normal, rname_first));
2698      second = new LocationValue(Location::new_reg_loc(Location::normal, rname_second));
2699#endif //_LP64
2700
2701
2702#ifdef X86
2703    } else if (opr->is_double_xmm()) {
2704      assert(opr->fpu_regnrLo() == opr->fpu_regnrHi(), "assumed in calculation");
2705      VMReg rname_first  = opr->as_xmm_double_reg()->as_VMReg();
2706#  ifdef _LP64
2707      first = new LocationValue(Location::new_reg_loc(Location::dbl, rname_first));
2708      second = _int_0_scope_value;
2709#  else
2710      first = new LocationValue(Location::new_reg_loc(Location::normal, rname_first));
2711      // %%% This is probably a waste but we'll keep things as they were for now
2712      if (true) {
2713        VMReg rname_second = rname_first->next();
2714        second = new LocationValue(Location::new_reg_loc(Location::normal, rname_second));
2715      }
2716#  endif
2717#endif
2718
2719    } else if (opr->is_double_fpu()) {
2720      // On SPARC, fpu_regnrLo/fpu_regnrHi represents the two halves of
2721      // the double as float registers in the native ordering. On X86,
2722      // fpu_regnrLo is a FPU stack slot whose VMReg represents
2723      // the low-order word of the double and fpu_regnrLo + 1 is the
2724      // name for the other half.  *first and *second must represent the
2725      // least and most significant words, respectively.
2726
2727#ifdef X86
2728      // the exact location of fpu stack values is only known
2729      // during fpu stack allocation, so the stack allocator object
2730      // must be present
2731      assert(use_fpu_stack_allocation(), "should not have float stack values without fpu stack allocation (all floats must be SSE2)");
2732      assert(_fpu_stack_allocator != NULL, "must be present");
2733      opr = _fpu_stack_allocator->to_fpu_stack(opr);
2734
2735      assert(opr->fpu_regnrLo() == opr->fpu_regnrHi(), "assumed in calculation (only fpu_regnrLo is used)");
2736#endif
2737#ifdef SPARC
2738      assert(opr->fpu_regnrLo() == opr->fpu_regnrHi() + 1, "assumed in calculation (only fpu_regnrHi is used)");
2739#endif
2740#ifdef ARM
2741      assert(opr->fpu_regnrHi() == opr->fpu_regnrLo() + 1, "assumed in calculation (only fpu_regnrLo is used)");
2742#endif
2743#ifdef PPC
2744      assert(opr->fpu_regnrLo() == opr->fpu_regnrHi(), "assumed in calculation (only fpu_regnrHi is used)");
2745#endif
2746
2747#ifdef VM_LITTLE_ENDIAN
2748      VMReg rname_first = frame_map()->fpu_regname(opr->fpu_regnrLo());
2749#else
2750      VMReg rname_first = frame_map()->fpu_regname(opr->fpu_regnrHi());
2751#endif
2752
2753#ifdef _LP64
2754      first = new LocationValue(Location::new_reg_loc(Location::dbl, rname_first));
2755      second = _int_0_scope_value;
2756#else
2757      first = new LocationValue(Location::new_reg_loc(Location::normal, rname_first));
2758      // %%% This is probably a waste but we'll keep things as they were for now
2759      if (true) {
2760        VMReg rname_second = rname_first->next();
2761        second = new LocationValue(Location::new_reg_loc(Location::normal, rname_second));
2762      }
2763#endif
2764
2765    } else {
2766      ShouldNotReachHere();
2767      first = NULL;
2768      second = NULL;
2769    }
2770
2771    assert(first != NULL && second != NULL, "must be set");
2772    // The convention the interpreter uses is that the second local
2773    // holds the first raw word of the native double representation.
2774    // This is actually reasonable, since locals and stack arrays
2775    // grow downwards in all implementations.
2776    // (If, on some machine, the interpreter's Java locals or stack
2777    // were to grow upwards, the embedded doubles would be word-swapped.)
2778    scope_values->append(second);
2779    scope_values->append(first);
2780    return 2;
2781  }
2782}
2783
2784
2785int LinearScan::append_scope_value(int op_id, Value value, GrowableArray<ScopeValue*>* scope_values) {
2786  if (value != NULL) {
2787    LIR_Opr opr = value->operand();
2788    Constant* con = value->as_Constant();
2789
2790    assert(con == NULL || opr->is_virtual() || opr->is_constant() || opr->is_illegal(), "asumption: Constant instructions have only constant operands (or illegal if constant is optimized away)");
2791    assert(con != NULL || opr->is_virtual(), "asumption: non-Constant instructions have only virtual operands");
2792
2793    if (con != NULL && !con->is_pinned() && !opr->is_constant()) {
2794      // Unpinned constants may have a virtual operand for a part of the lifetime
2795      // or may be illegal when it was optimized away,
2796      // so always use a constant operand
2797      opr = LIR_OprFact::value_type(con->type());
2798    }
2799    assert(opr->is_virtual() || opr->is_constant(), "other cases not allowed here");
2800
2801    if (opr->is_virtual()) {
2802      LIR_OpVisitState::OprMode mode = LIR_OpVisitState::inputMode;
2803
2804      BlockBegin* block = block_of_op_with_id(op_id);
2805      if (block->number_of_sux() == 1 && op_id == block->last_lir_instruction_id()) {
2806        // generating debug information for the last instruction of a block.
2807        // if this instruction is a branch, spill moves are inserted before this branch
2808        // and so the wrong operand would be returned (spill moves at block boundaries are not
2809        // considered in the live ranges of intervals)
2810        // Solution: use the first op_id of the branch target block instead.
2811        if (block->lir()->instructions_list()->last()->as_OpBranch() != NULL) {
2812          if (block->live_out().at(opr->vreg_number())) {
2813            op_id = block->sux_at(0)->first_lir_instruction_id();
2814            mode = LIR_OpVisitState::outputMode;
2815          }
2816        }
2817      }
2818
2819      // Get current location of operand
2820      // The operand must be live because debug information is considered when building the intervals
2821      // if the interval is not live, color_lir_opr will cause an assertion failure
2822      opr = color_lir_opr(opr, op_id, mode);
2823      assert(!has_call(op_id) || opr->is_stack() || !is_caller_save(reg_num(opr)), "can not have caller-save register operands at calls");
2824
2825      // Append to ScopeValue array
2826      return append_scope_value_for_operand(opr, scope_values);
2827
2828    } else {
2829      assert(value->as_Constant() != NULL, "all other instructions have only virtual operands");
2830      assert(opr->is_constant(), "operand must be constant");
2831
2832      return append_scope_value_for_constant(opr, scope_values);
2833    }
2834  } else {
2835    // append a dummy value because real value not needed
2836    scope_values->append(_illegal_value);
2837    return 1;
2838  }
2839}
2840
2841
2842IRScopeDebugInfo* LinearScan::compute_debug_info_for_scope(int op_id, IRScope* cur_scope, ValueStack* cur_state, ValueStack* innermost_state) {
2843  IRScopeDebugInfo* caller_debug_info = NULL;
2844
2845  ValueStack* caller_state = cur_state->caller_state();
2846  if (caller_state != NULL) {
2847    // process recursively to compute outermost scope first
2848    caller_debug_info = compute_debug_info_for_scope(op_id, cur_scope->caller(), caller_state, innermost_state);
2849  }
2850
2851  // initialize these to null.
2852  // If we don't need deopt info or there are no locals, expressions or monitors,
2853  // then these get recorded as no information and avoids the allocation of 0 length arrays.
2854  GrowableArray<ScopeValue*>*   locals      = NULL;
2855  GrowableArray<ScopeValue*>*   expressions = NULL;
2856  GrowableArray<MonitorValue*>* monitors    = NULL;
2857
2858  // describe local variable values
2859  int nof_locals = cur_state->locals_size();
2860  if (nof_locals > 0) {
2861    locals = new GrowableArray<ScopeValue*>(nof_locals);
2862
2863    int pos = 0;
2864    while (pos < nof_locals) {
2865      assert(pos < cur_state->locals_size(), "why not?");
2866
2867      Value local = cur_state->local_at(pos);
2868      pos += append_scope_value(op_id, local, locals);
2869
2870      assert(locals->length() == pos, "must match");
2871    }
2872    assert(locals->length() == cur_scope->method()->max_locals(), "wrong number of locals");
2873    assert(locals->length() == cur_state->locals_size(), "wrong number of locals");
2874  } else if (cur_scope->method()->max_locals() > 0) {
2875    assert(cur_state->kind() == ValueStack::EmptyExceptionState, "should be");
2876    nof_locals = cur_scope->method()->max_locals();
2877    locals = new GrowableArray<ScopeValue*>(nof_locals);
2878    for(int i = 0; i < nof_locals; i++) {
2879      locals->append(_illegal_value);
2880    }
2881  }
2882
2883  // describe expression stack
2884  int nof_stack = cur_state->stack_size();
2885  if (nof_stack > 0) {
2886    expressions = new GrowableArray<ScopeValue*>(nof_stack);
2887
2888    int pos = 0;
2889    while (pos < nof_stack) {
2890      Value expression = cur_state->stack_at_inc(pos);
2891      append_scope_value(op_id, expression, expressions);
2892
2893      assert(expressions->length() == pos, "must match");
2894    }
2895    assert(expressions->length() == cur_state->stack_size(), "wrong number of stack entries");
2896  }
2897
2898  // describe monitors
2899  int nof_locks = cur_state->locks_size();
2900  if (nof_locks > 0) {
2901    int lock_offset = cur_state->caller_state() != NULL ? cur_state->caller_state()->total_locks_size() : 0;
2902    monitors = new GrowableArray<MonitorValue*>(nof_locks);
2903    for (int i = 0; i < nof_locks; i++) {
2904      monitors->append(location_for_monitor_index(lock_offset + i));
2905    }
2906  }
2907
2908  return new IRScopeDebugInfo(cur_scope, cur_state->bci(), locals, expressions, monitors, caller_debug_info);
2909}
2910
2911
2912void LinearScan::compute_debug_info(CodeEmitInfo* info, int op_id) {
2913  TRACE_LINEAR_SCAN(3, tty->print_cr("creating debug information at op_id %d", op_id));
2914
2915  IRScope* innermost_scope = info->scope();
2916  ValueStack* innermost_state = info->stack();
2917
2918  assert(innermost_scope != NULL && innermost_state != NULL, "why is it missing?");
2919
2920  DEBUG_ONLY(check_stack_depth(info, innermost_state->stack_size()));
2921
2922  if (info->_scope_debug_info == NULL) {
2923    // compute debug information
2924    info->_scope_debug_info = compute_debug_info_for_scope(op_id, innermost_scope, innermost_state, innermost_state);
2925  } else {
2926    // debug information already set. Check that it is correct from the current point of view
2927    DEBUG_ONLY(assert_equal(info->_scope_debug_info, compute_debug_info_for_scope(op_id, innermost_scope, innermost_state, innermost_state)));
2928  }
2929}
2930
2931
2932void LinearScan::assign_reg_num(LIR_OpList* instructions, IntervalWalker* iw) {
2933  LIR_OpVisitState visitor;
2934  int num_inst = instructions->length();
2935  bool has_dead = false;
2936
2937  for (int j = 0; j < num_inst; j++) {
2938    LIR_Op* op = instructions->at(j);
2939    if (op == NULL) {  // this can happen when spill-moves are removed in eliminate_spill_moves
2940      has_dead = true;
2941      continue;
2942    }
2943    int op_id = op->id();
2944
2945    // visit instruction to get list of operands
2946    visitor.visit(op);
2947
2948    // iterate all modes of the visitor and process all virtual operands
2949    for_each_visitor_mode(mode) {
2950      int n = visitor.opr_count(mode);
2951      for (int k = 0; k < n; k++) {
2952        LIR_Opr opr = visitor.opr_at(mode, k);
2953        if (opr->is_virtual_register()) {
2954          visitor.set_opr_at(mode, k, color_lir_opr(opr, op_id, mode));
2955        }
2956      }
2957    }
2958
2959    if (visitor.info_count() > 0) {
2960      // exception handling
2961      if (compilation()->has_exception_handlers()) {
2962        XHandlers* xhandlers = visitor.all_xhandler();
2963        int n = xhandlers->length();
2964        for (int k = 0; k < n; k++) {
2965          XHandler* handler = xhandlers->handler_at(k);
2966          if (handler->entry_code() != NULL) {
2967            assign_reg_num(handler->entry_code()->instructions_list(), NULL);
2968          }
2969        }
2970      } else {
2971        assert(visitor.all_xhandler()->length() == 0, "missed exception handler");
2972      }
2973
2974      // compute oop map
2975      assert(iw != NULL, "needed for compute_oop_map");
2976      compute_oop_map(iw, visitor, op);
2977
2978      // compute debug information
2979      if (!use_fpu_stack_allocation()) {
2980        // compute debug information if fpu stack allocation is not needed.
2981        // when fpu stack allocation is needed, the debug information can not
2982        // be computed here because the exact location of fpu operands is not known
2983        // -> debug information is created inside the fpu stack allocator
2984        int n = visitor.info_count();
2985        for (int k = 0; k < n; k++) {
2986          compute_debug_info(visitor.info_at(k), op_id);
2987        }
2988      }
2989    }
2990
2991#ifdef ASSERT
2992    // make sure we haven't made the op invalid.
2993    op->verify();
2994#endif
2995
2996    // remove useless moves
2997    if (op->code() == lir_move) {
2998      assert(op->as_Op1() != NULL, "move must be LIR_Op1");
2999      LIR_Op1* move = (LIR_Op1*)op;
3000      LIR_Opr src = move->in_opr();
3001      LIR_Opr dst = move->result_opr();
3002      if (dst == src ||
3003          !dst->is_pointer() && !src->is_pointer() &&
3004          src->is_same_register(dst)) {
3005        instructions->at_put(j, NULL);
3006        has_dead = true;
3007      }
3008    }
3009  }
3010
3011  if (has_dead) {
3012    // iterate all instructions of the block and remove all null-values.
3013    int insert_point = 0;
3014    for (int j = 0; j < num_inst; j++) {
3015      LIR_Op* op = instructions->at(j);
3016      if (op != NULL) {
3017        if (insert_point != j) {
3018          instructions->at_put(insert_point, op);
3019        }
3020        insert_point++;
3021      }
3022    }
3023    instructions->truncate(insert_point);
3024  }
3025}
3026
3027void LinearScan::assign_reg_num() {
3028  TIME_LINEAR_SCAN(timer_assign_reg_num);
3029
3030  init_compute_debug_info();
3031  IntervalWalker* iw = init_compute_oop_maps();
3032
3033  int num_blocks = block_count();
3034  for (int i = 0; i < num_blocks; i++) {
3035    BlockBegin* block = block_at(i);
3036    assign_reg_num(block->lir()->instructions_list(), iw);
3037  }
3038}
3039
3040
3041void LinearScan::do_linear_scan() {
3042  NOT_PRODUCT(_total_timer.begin_method());
3043
3044  number_instructions();
3045
3046  NOT_PRODUCT(print_lir(1, "Before Register Allocation"));
3047
3048  compute_local_live_sets();
3049  compute_global_live_sets();
3050  CHECK_BAILOUT();
3051
3052  build_intervals();
3053  CHECK_BAILOUT();
3054  sort_intervals_before_allocation();
3055
3056  NOT_PRODUCT(print_intervals("Before Register Allocation"));
3057  NOT_PRODUCT(LinearScanStatistic::compute(this, _stat_before_alloc));
3058
3059  allocate_registers();
3060  CHECK_BAILOUT();
3061
3062  resolve_data_flow();
3063  if (compilation()->has_exception_handlers()) {
3064    resolve_exception_handlers();
3065  }
3066  // fill in number of spill slots into frame_map
3067  propagate_spill_slots();
3068  CHECK_BAILOUT();
3069
3070  NOT_PRODUCT(print_intervals("After Register Allocation"));
3071  NOT_PRODUCT(print_lir(2, "LIR after register allocation:"));
3072
3073  sort_intervals_after_allocation();
3074
3075  DEBUG_ONLY(verify());
3076
3077  eliminate_spill_moves();
3078  assign_reg_num();
3079  CHECK_BAILOUT();
3080
3081  NOT_PRODUCT(print_lir(2, "LIR after assignment of register numbers:"));
3082  NOT_PRODUCT(LinearScanStatistic::compute(this, _stat_after_asign));
3083
3084  { TIME_LINEAR_SCAN(timer_allocate_fpu_stack);
3085
3086    if (use_fpu_stack_allocation()) {
3087      allocate_fpu_stack(); // Only has effect on Intel
3088      NOT_PRODUCT(print_lir(2, "LIR after FPU stack allocation:"));
3089    }
3090  }
3091
3092  { TIME_LINEAR_SCAN(timer_optimize_lir);
3093
3094    EdgeMoveOptimizer::optimize(ir()->code());
3095    ControlFlowOptimizer::optimize(ir()->code());
3096    // check that cfg is still correct after optimizations
3097    ir()->verify();
3098  }
3099
3100  NOT_PRODUCT(print_lir(1, "Before Code Generation", false));
3101  NOT_PRODUCT(LinearScanStatistic::compute(this, _stat_final));
3102  NOT_PRODUCT(_total_timer.end_method(this));
3103}
3104
3105
3106// ********** Printing functions
3107
3108#ifndef PRODUCT
3109
3110void LinearScan::print_timers(double total) {
3111  _total_timer.print(total);
3112}
3113
3114void LinearScan::print_statistics() {
3115  _stat_before_alloc.print("before allocation");
3116  _stat_after_asign.print("after assignment of register");
3117  _stat_final.print("after optimization");
3118}
3119
3120void LinearScan::print_bitmap(BitMap& b) {
3121  for (unsigned int i = 0; i < b.size(); i++) {
3122    if (b.at(i)) tty->print("%d ", i);
3123  }
3124  tty->cr();
3125}
3126
3127void LinearScan::print_intervals(const char* label) {
3128  if (TraceLinearScanLevel >= 1) {
3129    int i;
3130    tty->cr();
3131    tty->print_cr("%s", label);
3132
3133    for (i = 0; i < interval_count(); i++) {
3134      Interval* interval = interval_at(i);
3135      if (interval != NULL) {
3136        interval->print();
3137      }
3138    }
3139
3140    tty->cr();
3141    tty->print_cr("--- Basic Blocks ---");
3142    for (i = 0; i < block_count(); i++) {
3143      BlockBegin* block = block_at(i);
3144      tty->print("B%d [%d, %d, %d, %d] ", block->block_id(), block->first_lir_instruction_id(), block->last_lir_instruction_id(), block->loop_index(), block->loop_depth());
3145    }
3146    tty->cr();
3147    tty->cr();
3148  }
3149
3150  if (PrintCFGToFile) {
3151    CFGPrinter::print_intervals(&_intervals, label);
3152  }
3153}
3154
3155void LinearScan::print_lir(int level, const char* label, bool hir_valid) {
3156  if (TraceLinearScanLevel >= level) {
3157    tty->cr();
3158    tty->print_cr("%s", label);
3159    print_LIR(ir()->linear_scan_order());
3160    tty->cr();
3161  }
3162
3163  if (level == 1 && PrintCFGToFile) {
3164    CFGPrinter::print_cfg(ir()->linear_scan_order(), label, hir_valid, true);
3165  }
3166}
3167
3168#endif //PRODUCT
3169
3170
3171// ********** verification functions for allocation
3172// (check that all intervals have a correct register and that no registers are overwritten)
3173#ifdef ASSERT
3174
3175void LinearScan::verify() {
3176  TRACE_LINEAR_SCAN(2, tty->print_cr("********* verifying intervals ******************************************"));
3177  verify_intervals();
3178
3179  TRACE_LINEAR_SCAN(2, tty->print_cr("********* verifying that no oops are in fixed intervals ****************"));
3180  verify_no_oops_in_fixed_intervals();
3181
3182  TRACE_LINEAR_SCAN(2, tty->print_cr("********* verifying that unpinned constants are not alive across block boundaries"));
3183  verify_constants();
3184
3185  TRACE_LINEAR_SCAN(2, tty->print_cr("********* verifying register allocation ********************************"));
3186  verify_registers();
3187
3188  TRACE_LINEAR_SCAN(2, tty->print_cr("********* no errors found **********************************************"));
3189}
3190
3191void LinearScan::verify_intervals() {
3192  int len = interval_count();
3193  bool has_error = false;
3194
3195  for (int i = 0; i < len; i++) {
3196    Interval* i1 = interval_at(i);
3197    if (i1 == NULL) continue;
3198
3199    i1->check_split_children();
3200
3201    if (i1->reg_num() != i) {
3202      tty->print_cr("Interval %d is on position %d in list", i1->reg_num(), i); i1->print(); tty->cr();
3203      has_error = true;
3204    }
3205
3206    if (i1->reg_num() >= LIR_OprDesc::vreg_base && i1->type() == T_ILLEGAL) {
3207      tty->print_cr("Interval %d has no type assigned", i1->reg_num()); i1->print(); tty->cr();
3208      has_error = true;
3209    }
3210
3211    if (i1->assigned_reg() == any_reg) {
3212      tty->print_cr("Interval %d has no register assigned", i1->reg_num()); i1->print(); tty->cr();
3213      has_error = true;
3214    }
3215
3216    if (i1->assigned_reg() == i1->assigned_regHi()) {
3217      tty->print_cr("Interval %d: low and high register equal", i1->reg_num()); i1->print(); tty->cr();
3218      has_error = true;
3219    }
3220
3221    if (!is_processed_reg_num(i1->assigned_reg())) {
3222      tty->print_cr("Can not have an Interval for an ignored register"); i1->print(); tty->cr();
3223      has_error = true;
3224    }
3225
3226    if (i1->first() == Range::end()) {
3227      tty->print_cr("Interval %d has no Range", i1->reg_num()); i1->print(); tty->cr();
3228      has_error = true;
3229    }
3230
3231    for (Range* r = i1->first(); r != Range::end(); r = r->next()) {
3232      if (r->from() >= r->to()) {
3233        tty->print_cr("Interval %d has zero length range", i1->reg_num()); i1->print(); tty->cr();
3234        has_error = true;
3235      }
3236    }
3237
3238    for (int j = i + 1; j < len; j++) {
3239      Interval* i2 = interval_at(j);
3240      if (i2 == NULL) continue;
3241
3242      // special intervals that are created in MoveResolver
3243      // -> ignore them because the range information has no meaning there
3244      if (i1->from() == 1 && i1->to() == 2) continue;
3245      if (i2->from() == 1 && i2->to() == 2) continue;
3246
3247      int r1 = i1->assigned_reg();
3248      int r1Hi = i1->assigned_regHi();
3249      int r2 = i2->assigned_reg();
3250      int r2Hi = i2->assigned_regHi();
3251      if (i1->intersects(i2) && (r1 == r2 || r1 == r2Hi || (r1Hi != any_reg && (r1Hi == r2 || r1Hi == r2Hi)))) {
3252        tty->print_cr("Intervals %d and %d overlap and have the same register assigned", i1->reg_num(), i2->reg_num());
3253        i1->print(); tty->cr();
3254        i2->print(); tty->cr();
3255        has_error = true;
3256      }
3257    }
3258  }
3259
3260  assert(has_error == false, "register allocation invalid");
3261}
3262
3263
3264void LinearScan::verify_no_oops_in_fixed_intervals() {
3265  Interval* fixed_intervals;
3266  Interval* other_intervals;
3267  create_unhandled_lists(&fixed_intervals, &other_intervals, is_precolored_cpu_interval, NULL);
3268
3269  // to ensure a walking until the last instruction id, add a dummy interval
3270  // with a high operation id
3271  other_intervals = new Interval(any_reg);
3272  other_intervals->add_range(max_jint - 2, max_jint - 1);
3273  IntervalWalker* iw = new IntervalWalker(this, fixed_intervals, other_intervals);
3274
3275  LIR_OpVisitState visitor;
3276  for (int i = 0; i < block_count(); i++) {
3277    BlockBegin* block = block_at(i);
3278
3279    LIR_OpList* instructions = block->lir()->instructions_list();
3280
3281    for (int j = 0; j < instructions->length(); j++) {
3282      LIR_Op* op = instructions->at(j);
3283      int op_id = op->id();
3284
3285      visitor.visit(op);
3286
3287      if (visitor.info_count() > 0) {
3288        iw->walk_before(op->id());
3289        bool check_live = true;
3290        if (op->code() == lir_move) {
3291          LIR_Op1* move = (LIR_Op1*)op;
3292          check_live = (move->patch_code() == lir_patch_none);
3293        }
3294        LIR_OpBranch* branch = op->as_OpBranch();
3295        if (branch != NULL && branch->stub() != NULL && branch->stub()->is_exception_throw_stub()) {
3296          // Don't bother checking the stub in this case since the
3297          // exception stub will never return to normal control flow.
3298          check_live = false;
3299        }
3300
3301        // Make sure none of the fixed registers is live across an
3302        // oopmap since we can't handle that correctly.
3303        if (check_live) {
3304          for (Interval* interval = iw->active_first(fixedKind);
3305               interval != Interval::end();
3306               interval = interval->next()) {
3307            if (interval->current_to() > op->id() + 1) {
3308              // This interval is live out of this op so make sure
3309              // that this interval represents some value that's
3310              // referenced by this op either as an input or output.
3311              bool ok = false;
3312              for_each_visitor_mode(mode) {
3313                int n = visitor.opr_count(mode);
3314                for (int k = 0; k < n; k++) {
3315                  LIR_Opr opr = visitor.opr_at(mode, k);
3316                  if (opr->is_fixed_cpu()) {
3317                    if (interval_at(reg_num(opr)) == interval) {
3318                      ok = true;
3319                      break;
3320                    }
3321                    int hi = reg_numHi(opr);
3322                    if (hi != -1 && interval_at(hi) == interval) {
3323                      ok = true;
3324                      break;
3325                    }
3326                  }
3327                }
3328              }
3329              assert(ok, "fixed intervals should never be live across an oopmap point");
3330            }
3331          }
3332        }
3333      }
3334
3335      // oop-maps at calls do not contain registers, so check is not needed
3336      if (!visitor.has_call()) {
3337
3338        for_each_visitor_mode(mode) {
3339          int n = visitor.opr_count(mode);
3340          for (int k = 0; k < n; k++) {
3341            LIR_Opr opr = visitor.opr_at(mode, k);
3342
3343            if (opr->is_fixed_cpu() && opr->is_oop()) {
3344              // operand is a non-virtual cpu register and contains an oop
3345              TRACE_LINEAR_SCAN(4, op->print_on(tty); tty->print("checking operand "); opr->print(); tty->cr());
3346
3347              Interval* interval = interval_at(reg_num(opr));
3348              assert(interval != NULL, "no interval");
3349
3350              if (mode == LIR_OpVisitState::inputMode) {
3351                if (interval->to() >= op_id + 1) {
3352                  assert(interval->to() < op_id + 2 ||
3353                         interval->has_hole_between(op_id, op_id + 2),
3354                         "oop input operand live after instruction");
3355                }
3356              } else if (mode == LIR_OpVisitState::outputMode) {
3357                if (interval->from() <= op_id - 1) {
3358                  assert(interval->has_hole_between(op_id - 1, op_id),
3359                         "oop input operand live after instruction");
3360                }
3361              }
3362            }
3363          }
3364        }
3365      }
3366    }
3367  }
3368}
3369
3370
3371void LinearScan::verify_constants() {
3372  int num_regs = num_virtual_regs();
3373  int size = live_set_size();
3374  int num_blocks = block_count();
3375
3376  for (int i = 0; i < num_blocks; i++) {
3377    BlockBegin* block = block_at(i);
3378    BitMap live_at_edge = block->live_in();
3379
3380    // visit all registers where the live_at_edge bit is set
3381    for (int r = (int)live_at_edge.get_next_one_offset(0, size); r < size; r = (int)live_at_edge.get_next_one_offset(r + 1, size)) {
3382      TRACE_LINEAR_SCAN(4, tty->print("checking interval %d of block B%d", r, block->block_id()));
3383
3384      Value value = gen()->instruction_for_vreg(r);
3385
3386      assert(value != NULL, "all intervals live across block boundaries must have Value");
3387      assert(value->operand()->is_register() && value->operand()->is_virtual(), "value must have virtual operand");
3388      assert(value->operand()->vreg_number() == r, "register number must match");
3389      // TKR assert(value->as_Constant() == NULL || value->is_pinned(), "only pinned constants can be alive accross block boundaries");
3390    }
3391  }
3392}
3393
3394
3395class RegisterVerifier: public StackObj {
3396 private:
3397  LinearScan*   _allocator;
3398  BlockList     _work_list;      // all blocks that must be processed
3399  IntervalsList _saved_states;   // saved information of previous check
3400
3401  // simplified access to methods of LinearScan
3402  Compilation*  compilation() const              { return _allocator->compilation(); }
3403  Interval*     interval_at(int reg_num) const   { return _allocator->interval_at(reg_num); }
3404  int           reg_num(LIR_Opr opr) const       { return _allocator->reg_num(opr); }
3405
3406  // currently, only registers are processed
3407  int           state_size()                     { return LinearScan::nof_regs; }
3408
3409  // accessors
3410  IntervalList* state_for_block(BlockBegin* block) { return _saved_states.at(block->block_id()); }
3411  void          set_state_for_block(BlockBegin* block, IntervalList* saved_state) { _saved_states.at_put(block->block_id(), saved_state); }
3412  void          add_to_work_list(BlockBegin* block) { if (!_work_list.contains(block)) _work_list.append(block); }
3413
3414  // helper functions
3415  IntervalList* copy(IntervalList* input_state);
3416  void          state_put(IntervalList* input_state, int reg, Interval* interval);
3417  bool          check_state(IntervalList* input_state, int reg, Interval* interval);
3418
3419  void process_block(BlockBegin* block);
3420  void process_xhandler(XHandler* xhandler, IntervalList* input_state);
3421  void process_successor(BlockBegin* block, IntervalList* input_state);
3422  void process_operations(LIR_List* ops, IntervalList* input_state);
3423
3424 public:
3425  RegisterVerifier(LinearScan* allocator)
3426    : _allocator(allocator)
3427    , _work_list(16)
3428    , _saved_states(BlockBegin::number_of_blocks(), NULL)
3429  { }
3430
3431  void verify(BlockBegin* start);
3432};
3433
3434
3435// entry function from LinearScan that starts the verification
3436void LinearScan::verify_registers() {
3437  RegisterVerifier verifier(this);
3438  verifier.verify(block_at(0));
3439}
3440
3441
3442void RegisterVerifier::verify(BlockBegin* start) {
3443  // setup input registers (method arguments) for first block
3444  IntervalList* input_state = new IntervalList(state_size(), NULL);
3445  CallingConvention* args = compilation()->frame_map()->incoming_arguments();
3446  for (int n = 0; n < args->length(); n++) {
3447    LIR_Opr opr = args->at(n);
3448    if (opr->is_register()) {
3449      Interval* interval = interval_at(reg_num(opr));
3450
3451      if (interval->assigned_reg() < state_size()) {
3452        input_state->at_put(interval->assigned_reg(), interval);
3453      }
3454      if (interval->assigned_regHi() != LinearScan::any_reg && interval->assigned_regHi() < state_size()) {
3455        input_state->at_put(interval->assigned_regHi(), interval);
3456      }
3457    }
3458  }
3459
3460  set_state_for_block(start, input_state);
3461  add_to_work_list(start);
3462
3463  // main loop for verification
3464  do {
3465    BlockBegin* block = _work_list.at(0);
3466    _work_list.remove_at(0);
3467
3468    process_block(block);
3469  } while (!_work_list.is_empty());
3470}
3471
3472void RegisterVerifier::process_block(BlockBegin* block) {
3473  TRACE_LINEAR_SCAN(2, tty->cr(); tty->print_cr("process_block B%d", block->block_id()));
3474
3475  // must copy state because it is modified
3476  IntervalList* input_state = copy(state_for_block(block));
3477
3478  if (TraceLinearScanLevel >= 4) {
3479    tty->print_cr("Input-State of intervals:");
3480    tty->print("    ");
3481    for (int i = 0; i < state_size(); i++) {
3482      if (input_state->at(i) != NULL) {
3483        tty->print(" %4d", input_state->at(i)->reg_num());
3484      } else {
3485        tty->print("   __");
3486      }
3487    }
3488    tty->cr();
3489    tty->cr();
3490  }
3491
3492  // process all operations of the block
3493  process_operations(block->lir(), input_state);
3494
3495  // iterate all successors
3496  for (int i = 0; i < block->number_of_sux(); i++) {
3497    process_successor(block->sux_at(i), input_state);
3498  }
3499}
3500
3501void RegisterVerifier::process_xhandler(XHandler* xhandler, IntervalList* input_state) {
3502  TRACE_LINEAR_SCAN(2, tty->print_cr("process_xhandler B%d", xhandler->entry_block()->block_id()));
3503
3504  // must copy state because it is modified
3505  input_state = copy(input_state);
3506
3507  if (xhandler->entry_code() != NULL) {
3508    process_operations(xhandler->entry_code(), input_state);
3509  }
3510  process_successor(xhandler->entry_block(), input_state);
3511}
3512
3513void RegisterVerifier::process_successor(BlockBegin* block, IntervalList* input_state) {
3514  IntervalList* saved_state = state_for_block(block);
3515
3516  if (saved_state != NULL) {
3517    // this block was already processed before.
3518    // check if new input_state is consistent with saved_state
3519
3520    bool saved_state_correct = true;
3521    for (int i = 0; i < state_size(); i++) {
3522      if (input_state->at(i) != saved_state->at(i)) {
3523        // current input_state and previous saved_state assume a different
3524        // interval in this register -> assume that this register is invalid
3525        if (saved_state->at(i) != NULL) {
3526          // invalidate old calculation only if it assumed that
3527          // register was valid. when the register was already invalid,
3528          // then the old calculation was correct.
3529          saved_state_correct = false;
3530          saved_state->at_put(i, NULL);
3531
3532          TRACE_LINEAR_SCAN(4, tty->print_cr("process_successor B%d: invalidating slot %d", block->block_id(), i));
3533        }
3534      }
3535    }
3536
3537    if (saved_state_correct) {
3538      // already processed block with correct input_state
3539      TRACE_LINEAR_SCAN(2, tty->print_cr("process_successor B%d: previous visit already correct", block->block_id()));
3540    } else {
3541      // must re-visit this block
3542      TRACE_LINEAR_SCAN(2, tty->print_cr("process_successor B%d: must re-visit because input state changed", block->block_id()));
3543      add_to_work_list(block);
3544    }
3545
3546  } else {
3547    // block was not processed before, so set initial input_state
3548    TRACE_LINEAR_SCAN(2, tty->print_cr("process_successor B%d: initial visit", block->block_id()));
3549
3550    set_state_for_block(block, copy(input_state));
3551    add_to_work_list(block);
3552  }
3553}
3554
3555
3556IntervalList* RegisterVerifier::copy(IntervalList* input_state) {
3557  IntervalList* copy_state = new IntervalList(input_state->length());
3558  copy_state->push_all(input_state);
3559  return copy_state;
3560}
3561
3562void RegisterVerifier::state_put(IntervalList* input_state, int reg, Interval* interval) {
3563  if (reg != LinearScan::any_reg && reg < state_size()) {
3564    if (interval != NULL) {
3565      TRACE_LINEAR_SCAN(4, tty->print_cr("        reg[%d] = %d", reg, interval->reg_num()));
3566    } else if (input_state->at(reg) != NULL) {
3567      TRACE_LINEAR_SCAN(4, tty->print_cr("        reg[%d] = NULL", reg));
3568    }
3569
3570    input_state->at_put(reg, interval);
3571  }
3572}
3573
3574bool RegisterVerifier::check_state(IntervalList* input_state, int reg, Interval* interval) {
3575  if (reg != LinearScan::any_reg && reg < state_size()) {
3576    if (input_state->at(reg) != interval) {
3577      tty->print_cr("!! Error in register allocation: register %d does not contain interval %d", reg, interval->reg_num());
3578      return true;
3579    }
3580  }
3581  return false;
3582}
3583
3584void RegisterVerifier::process_operations(LIR_List* ops, IntervalList* input_state) {
3585  // visit all instructions of the block
3586  LIR_OpVisitState visitor;
3587  bool has_error = false;
3588
3589  for (int i = 0; i < ops->length(); i++) {
3590    LIR_Op* op = ops->at(i);
3591    visitor.visit(op);
3592
3593    TRACE_LINEAR_SCAN(4, op->print_on(tty));
3594
3595    // check if input operands are correct
3596    int j;
3597    int n = visitor.opr_count(LIR_OpVisitState::inputMode);
3598    for (j = 0; j < n; j++) {
3599      LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::inputMode, j);
3600      if (opr->is_register() && LinearScan::is_processed_reg_num(reg_num(opr))) {
3601        Interval* interval = interval_at(reg_num(opr));
3602        if (op->id() != -1) {
3603          interval = interval->split_child_at_op_id(op->id(), LIR_OpVisitState::inputMode);
3604        }
3605
3606        has_error |= check_state(input_state, interval->assigned_reg(),   interval->split_parent());
3607        has_error |= check_state(input_state, interval->assigned_regHi(), interval->split_parent());
3608
3609        // When an operand is marked with is_last_use, then the fpu stack allocator
3610        // removes the register from the fpu stack -> the register contains no value
3611        if (opr->is_last_use()) {
3612          state_put(input_state, interval->assigned_reg(),   NULL);
3613          state_put(input_state, interval->assigned_regHi(), NULL);
3614        }
3615      }
3616    }
3617
3618    // invalidate all caller save registers at calls
3619    if (visitor.has_call()) {
3620      for (j = 0; j < FrameMap::nof_caller_save_cpu_regs(); j++) {
3621        state_put(input_state, reg_num(FrameMap::caller_save_cpu_reg_at(j)), NULL);
3622      }
3623      for (j = 0; j < FrameMap::nof_caller_save_fpu_regs; j++) {
3624        state_put(input_state, reg_num(FrameMap::caller_save_fpu_reg_at(j)), NULL);
3625      }
3626
3627#ifdef X86
3628      for (j = 0; j < FrameMap::nof_caller_save_xmm_regs; j++) {
3629        state_put(input_state, reg_num(FrameMap::caller_save_xmm_reg_at(j)), NULL);
3630      }
3631#endif
3632    }
3633
3634    // process xhandler before output and temp operands
3635    XHandlers* xhandlers = visitor.all_xhandler();
3636    n = xhandlers->length();
3637    for (int k = 0; k < n; k++) {
3638      process_xhandler(xhandlers->handler_at(k), input_state);
3639    }
3640
3641    // set temp operands (some operations use temp operands also as output operands, so can't set them NULL)
3642    n = visitor.opr_count(LIR_OpVisitState::tempMode);
3643    for (j = 0; j < n; j++) {
3644      LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::tempMode, j);
3645      if (opr->is_register() && LinearScan::is_processed_reg_num(reg_num(opr))) {
3646        Interval* interval = interval_at(reg_num(opr));
3647        if (op->id() != -1) {
3648          interval = interval->split_child_at_op_id(op->id(), LIR_OpVisitState::tempMode);
3649        }
3650
3651        state_put(input_state, interval->assigned_reg(),   interval->split_parent());
3652        state_put(input_state, interval->assigned_regHi(), interval->split_parent());
3653      }
3654    }
3655
3656    // set output operands
3657    n = visitor.opr_count(LIR_OpVisitState::outputMode);
3658    for (j = 0; j < n; j++) {
3659      LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::outputMode, j);
3660      if (opr->is_register() && LinearScan::is_processed_reg_num(reg_num(opr))) {
3661        Interval* interval = interval_at(reg_num(opr));
3662        if (op->id() != -1) {
3663          interval = interval->split_child_at_op_id(op->id(), LIR_OpVisitState::outputMode);
3664        }
3665
3666        state_put(input_state, interval->assigned_reg(),   interval->split_parent());
3667        state_put(input_state, interval->assigned_regHi(), interval->split_parent());
3668      }
3669    }
3670  }
3671  assert(has_error == false, "Error in register allocation");
3672}
3673
3674#endif // ASSERT
3675
3676
3677
3678// **** Implementation of MoveResolver ******************************
3679
3680MoveResolver::MoveResolver(LinearScan* allocator) :
3681  _allocator(allocator),
3682  _multiple_reads_allowed(false),
3683  _mapping_from(8),
3684  _mapping_from_opr(8),
3685  _mapping_to(8),
3686  _insert_list(NULL),
3687  _insert_idx(-1),
3688  _insertion_buffer()
3689{
3690  for (int i = 0; i < LinearScan::nof_regs; i++) {
3691    _register_blocked[i] = 0;
3692  }
3693  DEBUG_ONLY(check_empty());
3694}
3695
3696
3697#ifdef ASSERT
3698
3699void MoveResolver::check_empty() {
3700  assert(_mapping_from.length() == 0 && _mapping_from_opr.length() == 0 && _mapping_to.length() == 0, "list must be empty before and after processing");
3701  for (int i = 0; i < LinearScan::nof_regs; i++) {
3702    assert(register_blocked(i) == 0, "register map must be empty before and after processing");
3703  }
3704  assert(_multiple_reads_allowed == false, "must have default value");
3705}
3706
3707void MoveResolver::verify_before_resolve() {
3708  assert(_mapping_from.length() == _mapping_from_opr.length(), "length must be equal");
3709  assert(_mapping_from.length() == _mapping_to.length(), "length must be equal");
3710  assert(_insert_list != NULL && _insert_idx != -1, "insert position not set");
3711
3712  int i, j;
3713  if (!_multiple_reads_allowed) {
3714    for (i = 0; i < _mapping_from.length(); i++) {
3715      for (j = i + 1; j < _mapping_from.length(); j++) {
3716        assert(_mapping_from.at(i) == NULL || _mapping_from.at(i) != _mapping_from.at(j), "cannot read from same interval twice");
3717      }
3718    }
3719  }
3720
3721  for (i = 0; i < _mapping_to.length(); i++) {
3722    for (j = i + 1; j < _mapping_to.length(); j++) {
3723      assert(_mapping_to.at(i) != _mapping_to.at(j), "cannot write to same interval twice");
3724    }
3725  }
3726
3727
3728  BitMap used_regs(LinearScan::nof_regs + allocator()->frame_map()->argcount() + allocator()->max_spills());
3729  used_regs.clear();
3730  if (!_multiple_reads_allowed) {
3731    for (i = 0; i < _mapping_from.length(); i++) {
3732      Interval* it = _mapping_from.at(i);
3733      if (it != NULL) {
3734        assert(!used_regs.at(it->assigned_reg()), "cannot read from same register twice");
3735        used_regs.set_bit(it->assigned_reg());
3736
3737        if (it->assigned_regHi() != LinearScan::any_reg) {
3738          assert(!used_regs.at(it->assigned_regHi()), "cannot read from same register twice");
3739          used_regs.set_bit(it->assigned_regHi());
3740        }
3741      }
3742    }
3743  }
3744
3745  used_regs.clear();
3746  for (i = 0; i < _mapping_to.length(); i++) {
3747    Interval* it = _mapping_to.at(i);
3748    assert(!used_regs.at(it->assigned_reg()), "cannot write to same register twice");
3749    used_regs.set_bit(it->assigned_reg());
3750
3751    if (it->assigned_regHi() != LinearScan::any_reg) {
3752      assert(!used_regs.at(it->assigned_regHi()), "cannot write to same register twice");
3753      used_regs.set_bit(it->assigned_regHi());
3754    }
3755  }
3756
3757  used_regs.clear();
3758  for (i = 0; i < _mapping_from.length(); i++) {
3759    Interval* it = _mapping_from.at(i);
3760    if (it != NULL && it->assigned_reg() >= LinearScan::nof_regs) {
3761      used_regs.set_bit(it->assigned_reg());
3762    }
3763  }
3764  for (i = 0; i < _mapping_to.length(); i++) {
3765    Interval* it = _mapping_to.at(i);
3766    assert(!used_regs.at(it->assigned_reg()) || it->assigned_reg() == _mapping_from.at(i)->assigned_reg(), "stack slots used in _mapping_from must be disjoint to _mapping_to");
3767  }
3768}
3769
3770#endif // ASSERT
3771
3772
3773// mark assigned_reg and assigned_regHi of the interval as blocked
3774void MoveResolver::block_registers(Interval* it) {
3775  int reg = it->assigned_reg();
3776  if (reg < LinearScan::nof_regs) {
3777    assert(_multiple_reads_allowed || register_blocked(reg) == 0, "register already marked as used");
3778    set_register_blocked(reg, 1);
3779  }
3780  reg = it->assigned_regHi();
3781  if (reg != LinearScan::any_reg && reg < LinearScan::nof_regs) {
3782    assert(_multiple_reads_allowed || register_blocked(reg) == 0, "register already marked as used");
3783    set_register_blocked(reg, 1);
3784  }
3785}
3786
3787// mark assigned_reg and assigned_regHi of the interval as unblocked
3788void MoveResolver::unblock_registers(Interval* it) {
3789  int reg = it->assigned_reg();
3790  if (reg < LinearScan::nof_regs) {
3791    assert(register_blocked(reg) > 0, "register already marked as unused");
3792    set_register_blocked(reg, -1);
3793  }
3794  reg = it->assigned_regHi();
3795  if (reg != LinearScan::any_reg && reg < LinearScan::nof_regs) {
3796    assert(register_blocked(reg) > 0, "register already marked as unused");
3797    set_register_blocked(reg, -1);
3798  }
3799}
3800
3801// check if assigned_reg and assigned_regHi of the to-interval are not blocked (or only blocked by from)
3802bool MoveResolver::save_to_process_move(Interval* from, Interval* to) {
3803  int from_reg = -1;
3804  int from_regHi = -1;
3805  if (from != NULL) {
3806    from_reg = from->assigned_reg();
3807    from_regHi = from->assigned_regHi();
3808  }
3809
3810  int reg = to->assigned_reg();
3811  if (reg < LinearScan::nof_regs) {
3812    if (register_blocked(reg) > 1 || (register_blocked(reg) == 1 && reg != from_reg && reg != from_regHi)) {
3813      return false;
3814    }
3815  }
3816  reg = to->assigned_regHi();
3817  if (reg != LinearScan::any_reg && reg < LinearScan::nof_regs) {
3818    if (register_blocked(reg) > 1 || (register_blocked(reg) == 1 && reg != from_reg && reg != from_regHi)) {
3819      return false;
3820    }
3821  }
3822
3823  return true;
3824}
3825
3826
3827void MoveResolver::create_insertion_buffer(LIR_List* list) {
3828  assert(!_insertion_buffer.initialized(), "overwriting existing buffer");
3829  _insertion_buffer.init(list);
3830}
3831
3832void MoveResolver::append_insertion_buffer() {
3833  if (_insertion_buffer.initialized()) {
3834    _insertion_buffer.lir_list()->append(&_insertion_buffer);
3835  }
3836  assert(!_insertion_buffer.initialized(), "must be uninitialized now");
3837
3838  _insert_list = NULL;
3839  _insert_idx = -1;
3840}
3841
3842void MoveResolver::insert_move(Interval* from_interval, Interval* to_interval) {
3843  assert(from_interval->reg_num() != to_interval->reg_num(), "from and to interval equal");
3844  assert(from_interval->type() == to_interval->type(), "move between different types");
3845  assert(_insert_list != NULL && _insert_idx != -1, "must setup insert position first");
3846  assert(_insertion_buffer.lir_list() == _insert_list, "wrong insertion buffer");
3847
3848  LIR_Opr from_opr = LIR_OprFact::virtual_register(from_interval->reg_num(), from_interval->type());
3849  LIR_Opr to_opr = LIR_OprFact::virtual_register(to_interval->reg_num(), to_interval->type());
3850
3851  if (!_multiple_reads_allowed) {
3852    // the last_use flag is an optimization for FPU stack allocation. When the same
3853    // input interval is used in more than one move, then it is too difficult to determine
3854    // if this move is really the last use.
3855    from_opr = from_opr->make_last_use();
3856  }
3857  _insertion_buffer.move(_insert_idx, from_opr, to_opr);
3858
3859  TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: inserted move from register %d (%d, %d) to %d (%d, %d)", from_interval->reg_num(), from_interval->assigned_reg(), from_interval->assigned_regHi(), to_interval->reg_num(), to_interval->assigned_reg(), to_interval->assigned_regHi()));
3860}
3861
3862void MoveResolver::insert_move(LIR_Opr from_opr, Interval* to_interval) {
3863  assert(from_opr->type() == to_interval->type(), "move between different types");
3864  assert(_insert_list != NULL && _insert_idx != -1, "must setup insert position first");
3865  assert(_insertion_buffer.lir_list() == _insert_list, "wrong insertion buffer");
3866
3867  LIR_Opr to_opr = LIR_OprFact::virtual_register(to_interval->reg_num(), to_interval->type());
3868  _insertion_buffer.move(_insert_idx, from_opr, to_opr);
3869
3870  TRACE_LINEAR_SCAN(4, tty->print("MoveResolver: inserted move from constant "); from_opr->print(); tty->print_cr("  to %d (%d, %d)", to_interval->reg_num(), to_interval->assigned_reg(), to_interval->assigned_regHi()));
3871}
3872
3873
3874void MoveResolver::resolve_mappings() {
3875  TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: resolving mappings for Block B%d, index %d", _insert_list->block() != NULL ? _insert_list->block()->block_id() : -1, _insert_idx));
3876  DEBUG_ONLY(verify_before_resolve());
3877
3878  // Block all registers that are used as input operands of a move.
3879  // When a register is blocked, no move to this register is emitted.
3880  // This is necessary for detecting cycles in moves.
3881  int i;
3882  for (i = _mapping_from.length() - 1; i >= 0; i--) {
3883    Interval* from_interval = _mapping_from.at(i);
3884    if (from_interval != NULL) {
3885      block_registers(from_interval);
3886    }
3887  }
3888
3889  int spill_candidate = -1;
3890  while (_mapping_from.length() > 0) {
3891    bool processed_interval = false;
3892
3893    for (i = _mapping_from.length() - 1; i >= 0; i--) {
3894      Interval* from_interval = _mapping_from.at(i);
3895      Interval* to_interval = _mapping_to.at(i);
3896
3897      if (save_to_process_move(from_interval, to_interval)) {
3898        // this inverval can be processed because target is free
3899        if (from_interval != NULL) {
3900          insert_move(from_interval, to_interval);
3901          unblock_registers(from_interval);
3902        } else {
3903          insert_move(_mapping_from_opr.at(i), to_interval);
3904        }
3905        _mapping_from.remove_at(i);
3906        _mapping_from_opr.remove_at(i);
3907        _mapping_to.remove_at(i);
3908
3909        processed_interval = true;
3910      } else if (from_interval != NULL && from_interval->assigned_reg() < LinearScan::nof_regs) {
3911        // this interval cannot be processed now because target is not free
3912        // it starts in a register, so it is a possible candidate for spilling
3913        spill_candidate = i;
3914      }
3915    }
3916
3917    if (!processed_interval) {
3918      // no move could be processed because there is a cycle in the move list
3919      // (e.g. r1 -> r2, r2 -> r1), so one interval must be spilled to memory
3920      assert(spill_candidate != -1, "no interval in register for spilling found");
3921
3922      // create a new spill interval and assign a stack slot to it
3923      Interval* from_interval = _mapping_from.at(spill_candidate);
3924      Interval* spill_interval = new Interval(-1);
3925      spill_interval->set_type(from_interval->type());
3926
3927      // add a dummy range because real position is difficult to calculate
3928      // Note: this range is a special case when the integrity of the allocation is checked
3929      spill_interval->add_range(1, 2);
3930
3931      //       do not allocate a new spill slot for temporary interval, but
3932      //       use spill slot assigned to from_interval. Otherwise moves from
3933      //       one stack slot to another can happen (not allowed by LIR_Assembler
3934      int spill_slot = from_interval->canonical_spill_slot();
3935      if (spill_slot < 0) {
3936        spill_slot = allocator()->allocate_spill_slot(type2spill_size[spill_interval->type()] == 2);
3937        from_interval->set_canonical_spill_slot(spill_slot);
3938      }
3939      spill_interval->assign_reg(spill_slot);
3940      allocator()->append_interval(spill_interval);
3941
3942      TRACE_LINEAR_SCAN(4, tty->print_cr("created new Interval %d for spilling", spill_interval->reg_num()));
3943
3944      // insert a move from register to stack and update the mapping
3945      insert_move(from_interval, spill_interval);
3946      _mapping_from.at_put(spill_candidate, spill_interval);
3947      unblock_registers(from_interval);
3948    }
3949  }
3950
3951  // reset to default value
3952  _multiple_reads_allowed = false;
3953
3954  // check that all intervals have been processed
3955  DEBUG_ONLY(check_empty());
3956}
3957
3958
3959void MoveResolver::set_insert_position(LIR_List* insert_list, int insert_idx) {
3960  TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: setting insert position to Block B%d, index %d", insert_list->block() != NULL ? insert_list->block()->block_id() : -1, insert_idx));
3961  assert(_insert_list == NULL && _insert_idx == -1, "use move_insert_position instead of set_insert_position when data already set");
3962
3963  create_insertion_buffer(insert_list);
3964  _insert_list = insert_list;
3965  _insert_idx = insert_idx;
3966}
3967
3968void MoveResolver::move_insert_position(LIR_List* insert_list, int insert_idx) {
3969  TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: moving insert position to Block B%d, index %d", insert_list->block() != NULL ? insert_list->block()->block_id() : -1, insert_idx));
3970
3971  if (_insert_list != NULL && (insert_list != _insert_list || insert_idx != _insert_idx)) {
3972    // insert position changed -> resolve current mappings
3973    resolve_mappings();
3974  }
3975
3976  if (insert_list != _insert_list) {
3977    // block changed -> append insertion_buffer because it is
3978    // bound to a specific block and create a new insertion_buffer
3979    append_insertion_buffer();
3980    create_insertion_buffer(insert_list);
3981  }
3982
3983  _insert_list = insert_list;
3984  _insert_idx = insert_idx;
3985}
3986
3987void MoveResolver::add_mapping(Interval* from_interval, Interval* to_interval) {
3988  TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: adding mapping from %d (%d, %d) to %d (%d, %d)", from_interval->reg_num(), from_interval->assigned_reg(), from_interval->assigned_regHi(), to_interval->reg_num(), to_interval->assigned_reg(), to_interval->assigned_regHi()));
3989
3990  _mapping_from.append(from_interval);
3991  _mapping_from_opr.append(LIR_OprFact::illegalOpr);
3992  _mapping_to.append(to_interval);
3993}
3994
3995
3996void MoveResolver::add_mapping(LIR_Opr from_opr, Interval* to_interval) {
3997  TRACE_LINEAR_SCAN(4, tty->print("MoveResolver: adding mapping from "); from_opr->print(); tty->print_cr(" to %d (%d, %d)", to_interval->reg_num(), to_interval->assigned_reg(), to_interval->assigned_regHi()));
3998  assert(from_opr->is_constant(), "only for constants");
3999
4000  _mapping_from.append(NULL);
4001  _mapping_from_opr.append(from_opr);
4002  _mapping_to.append(to_interval);
4003}
4004
4005void MoveResolver::resolve_and_append_moves() {
4006  if (has_mappings()) {
4007    resolve_mappings();
4008  }
4009  append_insertion_buffer();
4010}
4011
4012
4013
4014// **** Implementation of Range *************************************
4015
4016Range::Range(int from, int to, Range* next) :
4017  _from(from),
4018  _to(to),
4019  _next(next)
4020{
4021}
4022
4023// initialize sentinel
4024Range* Range::_end = NULL;
4025void Range::initialize(Arena* arena) {
4026  _end = new (arena) Range(max_jint, max_jint, NULL);
4027}
4028
4029int Range::intersects_at(Range* r2) const {
4030  const Range* r1 = this;
4031
4032  assert(r1 != NULL && r2 != NULL, "null ranges not allowed");
4033  assert(r1 != _end && r2 != _end, "empty ranges not allowed");
4034
4035  do {
4036    if (r1->from() < r2->from()) {
4037      if (r1->to() <= r2->from()) {
4038        r1 = r1->next(); if (r1 == _end) return -1;
4039      } else {
4040        return r2->from();
4041      }
4042    } else if (r2->from() < r1->from()) {
4043      if (r2->to() <= r1->from()) {
4044        r2 = r2->next(); if (r2 == _end) return -1;
4045      } else {
4046        return r1->from();
4047      }
4048    } else { // r1->from() == r2->from()
4049      if (r1->from() == r1->to()) {
4050        r1 = r1->next(); if (r1 == _end) return -1;
4051      } else if (r2->from() == r2->to()) {
4052        r2 = r2->next(); if (r2 == _end) return -1;
4053      } else {
4054        return r1->from();
4055      }
4056    }
4057  } while (true);
4058}
4059
4060#ifndef PRODUCT
4061void Range::print(outputStream* out) const {
4062  out->print("[%d, %d[ ", _from, _to);
4063}
4064#endif
4065
4066
4067
4068// **** Implementation of Interval **********************************
4069
4070// initialize sentinel
4071Interval* Interval::_end = NULL;
4072void Interval::initialize(Arena* arena) {
4073  Range::initialize(arena);
4074  _end = new (arena) Interval(-1);
4075}
4076
4077Interval::Interval(int reg_num) :
4078  _reg_num(reg_num),
4079  _type(T_ILLEGAL),
4080  _first(Range::end()),
4081  _use_pos_and_kinds(12),
4082  _current(Range::end()),
4083  _next(_end),
4084  _state(invalidState),
4085  _assigned_reg(LinearScan::any_reg),
4086  _assigned_regHi(LinearScan::any_reg),
4087  _cached_to(-1),
4088  _cached_opr(LIR_OprFact::illegalOpr),
4089  _cached_vm_reg(VMRegImpl::Bad()),
4090  _split_children(0),
4091  _canonical_spill_slot(-1),
4092  _insert_move_when_activated(false),
4093  _register_hint(NULL),
4094  _spill_state(noDefinitionFound),
4095  _spill_definition_pos(-1)
4096{
4097  _split_parent = this;
4098  _current_split_child = this;
4099}
4100
4101int Interval::calc_to() {
4102  assert(_first != Range::end(), "interval has no range");
4103
4104  Range* r = _first;
4105  while (r->next() != Range::end()) {
4106    r = r->next();
4107  }
4108  return r->to();
4109}
4110
4111
4112#ifdef ASSERT
4113// consistency check of split-children
4114void Interval::check_split_children() {
4115  if (_split_children.length() > 0) {
4116    assert(is_split_parent(), "only split parents can have children");
4117
4118    for (int i = 0; i < _split_children.length(); i++) {
4119      Interval* i1 = _split_children.at(i);
4120
4121      assert(i1->split_parent() == this, "not a split child of this interval");
4122      assert(i1->type() == type(), "must be equal for all split children");
4123      assert(i1->canonical_spill_slot() == canonical_spill_slot(), "must be equal for all split children");
4124
4125      for (int j = i + 1; j < _split_children.length(); j++) {
4126        Interval* i2 = _split_children.at(j);
4127
4128        assert(i1->reg_num() != i2->reg_num(), "same register number");
4129
4130        if (i1->from() < i2->from()) {
4131          assert(i1->to() <= i2->from() && i1->to() < i2->to(), "intervals overlapping");
4132        } else {
4133          assert(i2->from() < i1->from(), "intervals start at same op_id");
4134          assert(i2->to() <= i1->from() && i2->to() < i1->to(), "intervals overlapping");
4135        }
4136      }
4137    }
4138  }
4139}
4140#endif // ASSERT
4141
4142Interval* Interval::register_hint(bool search_split_child) const {
4143  if (!search_split_child) {
4144    return _register_hint;
4145  }
4146
4147  if (_register_hint != NULL) {
4148    assert(_register_hint->is_split_parent(), "ony split parents are valid hint registers");
4149
4150    if (_register_hint->assigned_reg() >= 0 && _register_hint->assigned_reg() < LinearScan::nof_regs) {
4151      return _register_hint;
4152
4153    } else if (_register_hint->_split_children.length() > 0) {
4154      // search the first split child that has a register assigned
4155      int len = _register_hint->_split_children.length();
4156      for (int i = 0; i < len; i++) {
4157        Interval* cur = _register_hint->_split_children.at(i);
4158
4159        if (cur->assigned_reg() >= 0 && cur->assigned_reg() < LinearScan::nof_regs) {
4160          return cur;
4161        }
4162      }
4163    }
4164  }
4165
4166  // no hint interval found that has a register assigned
4167  return NULL;
4168}
4169
4170
4171Interval* Interval::split_child_at_op_id(int op_id, LIR_OpVisitState::OprMode mode) {
4172  assert(is_split_parent(), "can only be called for split parents");
4173  assert(op_id >= 0, "invalid op_id (method can not be called for spill moves)");
4174
4175  Interval* result;
4176  if (_split_children.length() == 0) {
4177    result = this;
4178  } else {
4179    result = NULL;
4180    int len = _split_children.length();
4181
4182    // in outputMode, the end of the interval (op_id == cur->to()) is not valid
4183    int to_offset = (mode == LIR_OpVisitState::outputMode ? 0 : 1);
4184
4185    int i;
4186    for (i = 0; i < len; i++) {
4187      Interval* cur = _split_children.at(i);
4188      if (cur->from() <= op_id && op_id < cur->to() + to_offset) {
4189        if (i > 0) {
4190          // exchange current split child to start of list (faster access for next call)
4191          _split_children.at_put(i, _split_children.at(0));
4192          _split_children.at_put(0, cur);
4193        }
4194
4195        // interval found
4196        result = cur;
4197        break;
4198      }
4199    }
4200
4201#ifdef ASSERT
4202    for (i = 0; i < len; i++) {
4203      Interval* tmp = _split_children.at(i);
4204      if (tmp != result && tmp->from() <= op_id && op_id < tmp->to() + to_offset) {
4205        tty->print_cr("two valid result intervals found for op_id %d: %d and %d", op_id, result->reg_num(), tmp->reg_num());
4206        result->print();
4207        tmp->print();
4208        assert(false, "two valid result intervals found");
4209      }
4210    }
4211#endif
4212  }
4213
4214  assert(result != NULL, "no matching interval found");
4215  assert(result->covers(op_id, mode), "op_id not covered by interval");
4216
4217  return result;
4218}
4219
4220
4221// returns the last split child that ends before the given op_id
4222Interval* Interval::split_child_before_op_id(int op_id) {
4223  assert(op_id >= 0, "invalid op_id");
4224
4225  Interval* parent = split_parent();
4226  Interval* result = NULL;
4227
4228  int len = parent->_split_children.length();
4229  assert(len > 0, "no split children available");
4230
4231  for (int i = len - 1; i >= 0; i--) {
4232    Interval* cur = parent->_split_children.at(i);
4233    if (cur->to() <= op_id && (result == NULL || result->to() < cur->to())) {
4234      result = cur;
4235    }
4236  }
4237
4238  assert(result != NULL, "no split child found");
4239  return result;
4240}
4241
4242
4243// checks if op_id is covered by any split child
4244bool Interval::split_child_covers(int op_id, LIR_OpVisitState::OprMode mode) {
4245  assert(is_split_parent(), "can only be called for split parents");
4246  assert(op_id >= 0, "invalid op_id (method can not be called for spill moves)");
4247
4248  if (_split_children.length() == 0) {
4249    // simple case if interval was not split
4250    return covers(op_id, mode);
4251
4252  } else {
4253    // extended case: check all split children
4254    int len = _split_children.length();
4255    for (int i = 0; i < len; i++) {
4256      Interval* cur = _split_children.at(i);
4257      if (cur->covers(op_id, mode)) {
4258        return true;
4259      }
4260    }
4261    return false;
4262  }
4263}
4264
4265
4266// Note: use positions are sorted descending -> first use has highest index
4267int Interval::first_usage(IntervalUseKind min_use_kind) const {
4268  assert(LinearScan::is_virtual_interval(this), "cannot access use positions for fixed intervals");
4269
4270  for (int i = _use_pos_and_kinds.length() - 2; i >= 0; i -= 2) {
4271    if (_use_pos_and_kinds.at(i + 1) >= min_use_kind) {
4272      return _use_pos_and_kinds.at(i);
4273    }
4274  }
4275  return max_jint;
4276}
4277
4278int Interval::next_usage(IntervalUseKind min_use_kind, int from) const {
4279  assert(LinearScan::is_virtual_interval(this), "cannot access use positions for fixed intervals");
4280
4281  for (int i = _use_pos_and_kinds.length() - 2; i >= 0; i -= 2) {
4282    if (_use_pos_and_kinds.at(i) >= from && _use_pos_and_kinds.at(i + 1) >= min_use_kind) {
4283      return _use_pos_and_kinds.at(i);
4284    }
4285  }
4286  return max_jint;
4287}
4288
4289int Interval::next_usage_exact(IntervalUseKind exact_use_kind, int from) const {
4290  assert(LinearScan::is_virtual_interval(this), "cannot access use positions for fixed intervals");
4291
4292  for (int i = _use_pos_and_kinds.length() - 2; i >= 0; i -= 2) {
4293    if (_use_pos_and_kinds.at(i) >= from && _use_pos_and_kinds.at(i + 1) == exact_use_kind) {
4294      return _use_pos_and_kinds.at(i);
4295    }
4296  }
4297  return max_jint;
4298}
4299
4300int Interval::previous_usage(IntervalUseKind min_use_kind, int from) const {
4301  assert(LinearScan::is_virtual_interval(this), "cannot access use positions for fixed intervals");
4302
4303  int prev = 0;
4304  for (int i = _use_pos_and_kinds.length() - 2; i >= 0; i -= 2) {
4305    if (_use_pos_and_kinds.at(i) > from) {
4306      return prev;
4307    }
4308    if (_use_pos_and_kinds.at(i + 1) >= min_use_kind) {
4309      prev = _use_pos_and_kinds.at(i);
4310    }
4311  }
4312  return prev;
4313}
4314
4315void Interval::add_use_pos(int pos, IntervalUseKind use_kind) {
4316  assert(covers(pos, LIR_OpVisitState::inputMode), "use position not covered by live range");
4317
4318  // do not add use positions for precolored intervals because
4319  // they are never used
4320  if (use_kind != noUse && reg_num() >= LIR_OprDesc::vreg_base) {
4321#ifdef ASSERT
4322    assert(_use_pos_and_kinds.length() % 2 == 0, "must be");
4323    for (int i = 0; i < _use_pos_and_kinds.length(); i += 2) {
4324      assert(pos <= _use_pos_and_kinds.at(i), "already added a use-position with lower position");
4325      assert(_use_pos_and_kinds.at(i + 1) >= firstValidKind && _use_pos_and_kinds.at(i + 1) <= lastValidKind, "invalid use kind");
4326      if (i > 0) {
4327        assert(_use_pos_and_kinds.at(i) < _use_pos_and_kinds.at(i - 2), "not sorted descending");
4328      }
4329    }
4330#endif
4331
4332    // Note: add_use is called in descending order, so list gets sorted
4333    //       automatically by just appending new use positions
4334    int len = _use_pos_and_kinds.length();
4335    if (len == 0 || _use_pos_and_kinds.at(len - 2) > pos) {
4336      _use_pos_and_kinds.append(pos);
4337      _use_pos_and_kinds.append(use_kind);
4338    } else if (_use_pos_and_kinds.at(len - 1) < use_kind) {
4339      assert(_use_pos_and_kinds.at(len - 2) == pos, "list not sorted correctly");
4340      _use_pos_and_kinds.at_put(len - 1, use_kind);
4341    }
4342  }
4343}
4344
4345void Interval::add_range(int from, int to) {
4346  assert(from < to, "invalid range");
4347  assert(first() == Range::end() || to < first()->next()->from(), "not inserting at begin of interval");
4348  assert(from <= first()->to(), "not inserting at begin of interval");
4349
4350  if (first()->from() <= to) {
4351    // join intersecting ranges
4352    first()->set_from(MIN2(from, first()->from()));
4353    first()->set_to  (MAX2(to,   first()->to()));
4354  } else {
4355    // insert new range
4356    _first = new Range(from, to, first());
4357  }
4358}
4359
4360Interval* Interval::new_split_child() {
4361  // allocate new interval
4362  Interval* result = new Interval(-1);
4363  result->set_type(type());
4364
4365  Interval* parent = split_parent();
4366  result->_split_parent = parent;
4367  result->set_register_hint(parent);
4368
4369  // insert new interval in children-list of parent
4370  if (parent->_split_children.length() == 0) {
4371    assert(is_split_parent(), "list must be initialized at first split");
4372
4373    parent->_split_children = IntervalList(4);
4374    parent->_split_children.append(this);
4375  }
4376  parent->_split_children.append(result);
4377
4378  return result;
4379}
4380
4381// split this interval at the specified position and return
4382// the remainder as a new interval.
4383//
4384// when an interval is split, a bi-directional link is established between the original interval
4385// (the split parent) and the intervals that are split off this interval (the split children)
4386// When a split child is split again, the new created interval is also a direct child
4387// of the original parent (there is no tree of split children stored, but a flat list)
4388// All split children are spilled to the same stack slot (stored in _canonical_spill_slot)
4389//
4390// Note: The new interval has no valid reg_num
4391Interval* Interval::split(int split_pos) {
4392  assert(LinearScan::is_virtual_interval(this), "cannot split fixed intervals");
4393
4394  // allocate new interval
4395  Interval* result = new_split_child();
4396
4397  // split the ranges
4398  Range* prev = NULL;
4399  Range* cur = _first;
4400  while (cur != Range::end() && cur->to() <= split_pos) {
4401    prev = cur;
4402    cur = cur->next();
4403  }
4404  assert(cur != Range::end(), "split interval after end of last range");
4405
4406  if (cur->from() < split_pos) {
4407    result->_first = new Range(split_pos, cur->to(), cur->next());
4408    cur->set_to(split_pos);
4409    cur->set_next(Range::end());
4410
4411  } else {
4412    assert(prev != NULL, "split before start of first range");
4413    result->_first = cur;
4414    prev->set_next(Range::end());
4415  }
4416  result->_current = result->_first;
4417  _cached_to = -1; // clear cached value
4418
4419  // split list of use positions
4420  int total_len = _use_pos_and_kinds.length();
4421  int start_idx = total_len - 2;
4422  while (start_idx >= 0 && _use_pos_and_kinds.at(start_idx) < split_pos) {
4423    start_idx -= 2;
4424  }
4425
4426  intStack new_use_pos_and_kinds(total_len - start_idx);
4427  int i;
4428  for (i = start_idx + 2; i < total_len; i++) {
4429    new_use_pos_and_kinds.append(_use_pos_and_kinds.at(i));
4430  }
4431
4432  _use_pos_and_kinds.truncate(start_idx + 2);
4433  result->_use_pos_and_kinds = _use_pos_and_kinds;
4434  _use_pos_and_kinds = new_use_pos_and_kinds;
4435
4436#ifdef ASSERT
4437  assert(_use_pos_and_kinds.length() % 2 == 0, "must have use kind for each use pos");
4438  assert(result->_use_pos_and_kinds.length() % 2 == 0, "must have use kind for each use pos");
4439  assert(_use_pos_and_kinds.length() + result->_use_pos_and_kinds.length() == total_len, "missed some entries");
4440
4441  for (i = 0; i < _use_pos_and_kinds.length(); i += 2) {
4442    assert(_use_pos_and_kinds.at(i) < split_pos, "must be");
4443    assert(_use_pos_and_kinds.at(i + 1) >= firstValidKind && _use_pos_and_kinds.at(i + 1) <= lastValidKind, "invalid use kind");
4444  }
4445  for (i = 0; i < result->_use_pos_and_kinds.length(); i += 2) {
4446    assert(result->_use_pos_and_kinds.at(i) >= split_pos, "must be");
4447    assert(result->_use_pos_and_kinds.at(i + 1) >= firstValidKind && result->_use_pos_and_kinds.at(i + 1) <= lastValidKind, "invalid use kind");
4448  }
4449#endif
4450
4451  return result;
4452}
4453
4454// split this interval at the specified position and return
4455// the head as a new interval (the original interval is the tail)
4456//
4457// Currently, only the first range can be split, and the new interval
4458// must not have split positions
4459Interval* Interval::split_from_start(int split_pos) {
4460  assert(LinearScan::is_virtual_interval(this), "cannot split fixed intervals");
4461  assert(split_pos > from() && split_pos < to(), "can only split inside interval");
4462  assert(split_pos > _first->from() && split_pos <= _first->to(), "can only split inside first range");
4463  assert(first_usage(noUse) > split_pos, "can not split when use positions are present");
4464
4465  // allocate new interval
4466  Interval* result = new_split_child();
4467
4468  // the new created interval has only one range (checked by assertion above),
4469  // so the splitting of the ranges is very simple
4470  result->add_range(_first->from(), split_pos);
4471
4472  if (split_pos == _first->to()) {
4473    assert(_first->next() != Range::end(), "must not be at end");
4474    _first = _first->next();
4475  } else {
4476    _first->set_from(split_pos);
4477  }
4478
4479  return result;
4480}
4481
4482
4483// returns true if the op_id is inside the interval
4484bool Interval::covers(int op_id, LIR_OpVisitState::OprMode mode) const {
4485  Range* cur  = _first;
4486
4487  while (cur != Range::end() && cur->to() < op_id) {
4488    cur = cur->next();
4489  }
4490  if (cur != Range::end()) {
4491    assert(cur->to() != cur->next()->from(), "ranges not separated");
4492
4493    if (mode == LIR_OpVisitState::outputMode) {
4494      return cur->from() <= op_id && op_id < cur->to();
4495    } else {
4496      return cur->from() <= op_id && op_id <= cur->to();
4497    }
4498  }
4499  return false;
4500}
4501
4502// returns true if the interval has any hole between hole_from and hole_to
4503// (even if the hole has only the length 1)
4504bool Interval::has_hole_between(int hole_from, int hole_to) {
4505  assert(hole_from < hole_to, "check");
4506  assert(from() <= hole_from && hole_to <= to(), "index out of interval");
4507
4508  Range* cur  = _first;
4509  while (cur != Range::end()) {
4510    assert(cur->to() < cur->next()->from(), "no space between ranges");
4511
4512    // hole-range starts before this range -> hole
4513    if (hole_from < cur->from()) {
4514      return true;
4515
4516    // hole-range completely inside this range -> no hole
4517    } else if (hole_to <= cur->to()) {
4518      return false;
4519
4520    // overlapping of hole-range with this range -> hole
4521    } else if (hole_from <= cur->to()) {
4522      return true;
4523    }
4524
4525    cur = cur->next();
4526  }
4527
4528  return false;
4529}
4530
4531
4532#ifndef PRODUCT
4533void Interval::print(outputStream* out) const {
4534  const char* SpillState2Name[] = { "no definition", "no spill store", "one spill store", "store at definition", "start in memory", "no optimization" };
4535  const char* UseKind2Name[] = { "N", "L", "S", "M" };
4536
4537  const char* type_name;
4538  LIR_Opr opr = LIR_OprFact::illegal();
4539  if (reg_num() < LIR_OprDesc::vreg_base) {
4540    type_name = "fixed";
4541    // need a temporary operand for fixed intervals because type() cannot be called
4542    if (assigned_reg() >= pd_first_cpu_reg && assigned_reg() <= pd_last_cpu_reg) {
4543      opr = LIR_OprFact::single_cpu(assigned_reg());
4544    } else if (assigned_reg() >= pd_first_fpu_reg && assigned_reg() <= pd_last_fpu_reg) {
4545      opr = LIR_OprFact::single_fpu(assigned_reg() - pd_first_fpu_reg);
4546#ifdef X86
4547    } else if (assigned_reg() >= pd_first_xmm_reg && assigned_reg() <= pd_last_xmm_reg) {
4548      opr = LIR_OprFact::single_xmm(assigned_reg() - pd_first_xmm_reg);
4549#endif
4550    } else {
4551      ShouldNotReachHere();
4552    }
4553  } else {
4554    type_name = type2name(type());
4555    if (assigned_reg() != -1 &&
4556        (LinearScan::num_physical_regs(type()) == 1 || assigned_regHi() != -1)) {
4557      opr = LinearScan::calc_operand_for_interval(this);
4558    }
4559  }
4560
4561  out->print("%d %s ", reg_num(), type_name);
4562  if (opr->is_valid()) {
4563    out->print("\"");
4564    opr->print(out);
4565    out->print("\" ");
4566  }
4567  out->print("%d %d ", split_parent()->reg_num(), (register_hint(false) != NULL ? register_hint(false)->reg_num() : -1));
4568
4569  // print ranges
4570  Range* cur = _first;
4571  while (cur != Range::end()) {
4572    cur->print(out);
4573    cur = cur->next();
4574    assert(cur != NULL, "range list not closed with range sentinel");
4575  }
4576
4577  // print use positions
4578  int prev = 0;
4579  assert(_use_pos_and_kinds.length() % 2 == 0, "must be");
4580  for (int i =_use_pos_and_kinds.length() - 2; i >= 0; i -= 2) {
4581    assert(_use_pos_and_kinds.at(i + 1) >= firstValidKind && _use_pos_and_kinds.at(i + 1) <= lastValidKind, "invalid use kind");
4582    assert(prev < _use_pos_and_kinds.at(i), "use positions not sorted");
4583
4584    out->print("%d %s ", _use_pos_and_kinds.at(i), UseKind2Name[_use_pos_and_kinds.at(i + 1)]);
4585    prev = _use_pos_and_kinds.at(i);
4586  }
4587
4588  out->print(" \"%s\"", SpillState2Name[spill_state()]);
4589  out->cr();
4590}
4591#endif
4592
4593
4594
4595// **** Implementation of IntervalWalker ****************************
4596
4597IntervalWalker::IntervalWalker(LinearScan* allocator, Interval* unhandled_fixed_first, Interval* unhandled_any_first)
4598 : _compilation(allocator->compilation())
4599 , _allocator(allocator)
4600{
4601  _unhandled_first[fixedKind] = unhandled_fixed_first;
4602  _unhandled_first[anyKind]   = unhandled_any_first;
4603  _active_first[fixedKind]    = Interval::end();
4604  _inactive_first[fixedKind]  = Interval::end();
4605  _active_first[anyKind]      = Interval::end();
4606  _inactive_first[anyKind]    = Interval::end();
4607  _current_position = -1;
4608  _current = NULL;
4609  next_interval();
4610}
4611
4612
4613// append interval at top of list
4614void IntervalWalker::append_unsorted(Interval** list, Interval* interval) {
4615  interval->set_next(*list); *list = interval;
4616}
4617
4618
4619// append interval in order of current range from()
4620void IntervalWalker::append_sorted(Interval** list, Interval* interval) {
4621  Interval* prev = NULL;
4622  Interval* cur  = *list;
4623  while (cur->current_from() < interval->current_from()) {
4624    prev = cur; cur = cur->next();
4625  }
4626  if (prev == NULL) {
4627    *list = interval;
4628  } else {
4629    prev->set_next(interval);
4630  }
4631  interval->set_next(cur);
4632}
4633
4634void IntervalWalker::append_to_unhandled(Interval** list, Interval* interval) {
4635  assert(interval->from() >= current()->current_from(), "cannot append new interval before current walk position");
4636
4637  Interval* prev = NULL;
4638  Interval* cur  = *list;
4639  while (cur->from() < interval->from() || (cur->from() == interval->from() && cur->first_usage(noUse) < interval->first_usage(noUse))) {
4640    prev = cur; cur = cur->next();
4641  }
4642  if (prev == NULL) {
4643    *list = interval;
4644  } else {
4645    prev->set_next(interval);
4646  }
4647  interval->set_next(cur);
4648}
4649
4650
4651inline bool IntervalWalker::remove_from_list(Interval** list, Interval* i) {
4652  while (*list != Interval::end() && *list != i) {
4653    list = (*list)->next_addr();
4654  }
4655  if (*list != Interval::end()) {
4656    assert(*list == i, "check");
4657    *list = (*list)->next();
4658    return true;
4659  } else {
4660    return false;
4661  }
4662}
4663
4664void IntervalWalker::remove_from_list(Interval* i) {
4665  bool deleted;
4666
4667  if (i->state() == activeState) {
4668    deleted = remove_from_list(active_first_addr(anyKind), i);
4669  } else {
4670    assert(i->state() == inactiveState, "invalid state");
4671    deleted = remove_from_list(inactive_first_addr(anyKind), i);
4672  }
4673
4674  assert(deleted, "interval has not been found in list");
4675}
4676
4677
4678void IntervalWalker::walk_to(IntervalState state, int from) {
4679  assert (state == activeState || state == inactiveState, "wrong state");
4680  for_each_interval_kind(kind) {
4681    Interval** prev = state == activeState ? active_first_addr(kind) : inactive_first_addr(kind);
4682    Interval* next   = *prev;
4683    while (next->current_from() <= from) {
4684      Interval* cur = next;
4685      next = cur->next();
4686
4687      bool range_has_changed = false;
4688      while (cur->current_to() <= from) {
4689        cur->next_range();
4690        range_has_changed = true;
4691      }
4692
4693      // also handle move from inactive list to active list
4694      range_has_changed = range_has_changed || (state == inactiveState && cur->current_from() <= from);
4695
4696      if (range_has_changed) {
4697        // remove cur from list
4698        *prev = next;
4699        if (cur->current_at_end()) {
4700          // move to handled state (not maintained as a list)
4701          cur->set_state(handledState);
4702          interval_moved(cur, kind, state, handledState);
4703        } else if (cur->current_from() <= from){
4704          // sort into active list
4705          append_sorted(active_first_addr(kind), cur);
4706          cur->set_state(activeState);
4707          if (*prev == cur) {
4708            assert(state == activeState, "check");
4709            prev = cur->next_addr();
4710          }
4711          interval_moved(cur, kind, state, activeState);
4712        } else {
4713          // sort into inactive list
4714          append_sorted(inactive_first_addr(kind), cur);
4715          cur->set_state(inactiveState);
4716          if (*prev == cur) {
4717            assert(state == inactiveState, "check");
4718            prev = cur->next_addr();
4719          }
4720          interval_moved(cur, kind, state, inactiveState);
4721        }
4722      } else {
4723        prev = cur->next_addr();
4724        continue;
4725      }
4726    }
4727  }
4728}
4729
4730
4731void IntervalWalker::next_interval() {
4732  IntervalKind kind;
4733  Interval* any   = _unhandled_first[anyKind];
4734  Interval* fixed = _unhandled_first[fixedKind];
4735
4736  if (any != Interval::end()) {
4737    // intervals may start at same position -> prefer fixed interval
4738    kind = fixed != Interval::end() && fixed->from() <= any->from() ? fixedKind : anyKind;
4739
4740    assert (kind == fixedKind && fixed->from() <= any->from() ||
4741            kind == anyKind   && any->from() <= fixed->from(), "wrong interval!!!");
4742    assert(any == Interval::end() || fixed == Interval::end() || any->from() != fixed->from() || kind == fixedKind, "if fixed and any-Interval start at same position, fixed must be processed first");
4743
4744  } else if (fixed != Interval::end()) {
4745    kind = fixedKind;
4746  } else {
4747    _current = NULL; return;
4748  }
4749  _current_kind = kind;
4750  _current = _unhandled_first[kind];
4751  _unhandled_first[kind] = _current->next();
4752  _current->set_next(Interval::end());
4753  _current->rewind_range();
4754}
4755
4756
4757void IntervalWalker::walk_to(int lir_op_id) {
4758  assert(_current_position <= lir_op_id, "can not walk backwards");
4759  while (current() != NULL) {
4760    bool is_active = current()->from() <= lir_op_id;
4761    int id = is_active ? current()->from() : lir_op_id;
4762
4763    TRACE_LINEAR_SCAN(2, if (_current_position < id) { tty->cr(); tty->print_cr("walk_to(%d) **************************************************************", id); })
4764
4765    // set _current_position prior to call of walk_to
4766    _current_position = id;
4767
4768    // call walk_to even if _current_position == id
4769    walk_to(activeState, id);
4770    walk_to(inactiveState, id);
4771
4772    if (is_active) {
4773      current()->set_state(activeState);
4774      if (activate_current()) {
4775        append_sorted(active_first_addr(current_kind()), current());
4776        interval_moved(current(), current_kind(), unhandledState, activeState);
4777      }
4778
4779      next_interval();
4780    } else {
4781      return;
4782    }
4783  }
4784}
4785
4786void IntervalWalker::interval_moved(Interval* interval, IntervalKind kind, IntervalState from, IntervalState to) {
4787#ifndef PRODUCT
4788  if (TraceLinearScanLevel >= 4) {
4789    #define print_state(state) \
4790    switch(state) {\
4791      case unhandledState: tty->print("unhandled"); break;\
4792      case activeState: tty->print("active"); break;\
4793      case inactiveState: tty->print("inactive"); break;\
4794      case handledState: tty->print("handled"); break;\
4795      default: ShouldNotReachHere(); \
4796    }
4797
4798    print_state(from); tty->print(" to "); print_state(to);
4799    tty->fill_to(23);
4800    interval->print();
4801
4802    #undef print_state
4803  }
4804#endif
4805}
4806
4807
4808
4809// **** Implementation of LinearScanWalker **************************
4810
4811LinearScanWalker::LinearScanWalker(LinearScan* allocator, Interval* unhandled_fixed_first, Interval* unhandled_any_first)
4812  : IntervalWalker(allocator, unhandled_fixed_first, unhandled_any_first)
4813  , _move_resolver(allocator)
4814{
4815  for (int i = 0; i < LinearScan::nof_regs; i++) {
4816    _spill_intervals[i] = new IntervalList(2);
4817  }
4818}
4819
4820
4821inline void LinearScanWalker::init_use_lists(bool only_process_use_pos) {
4822  for (int i = _first_reg; i <= _last_reg; i++) {
4823    _use_pos[i] = max_jint;
4824
4825    if (!only_process_use_pos) {
4826      _block_pos[i] = max_jint;
4827      _spill_intervals[i]->clear();
4828    }
4829  }
4830}
4831
4832inline void LinearScanWalker::exclude_from_use(int reg) {
4833  assert(reg < LinearScan::nof_regs, "interval must have a register assigned (stack slots not allowed)");
4834  if (reg >= _first_reg && reg <= _last_reg) {
4835    _use_pos[reg] = 0;
4836  }
4837}
4838inline void LinearScanWalker::exclude_from_use(Interval* i) {
4839  assert(i->assigned_reg() != any_reg, "interval has no register assigned");
4840
4841  exclude_from_use(i->assigned_reg());
4842  exclude_from_use(i->assigned_regHi());
4843}
4844
4845inline void LinearScanWalker::set_use_pos(int reg, Interval* i, int use_pos, bool only_process_use_pos) {
4846  assert(use_pos != 0, "must use exclude_from_use to set use_pos to 0");
4847
4848  if (reg >= _first_reg && reg <= _last_reg) {
4849    if (_use_pos[reg] > use_pos) {
4850      _use_pos[reg] = use_pos;
4851    }
4852    if (!only_process_use_pos) {
4853      _spill_intervals[reg]->append(i);
4854    }
4855  }
4856}
4857inline void LinearScanWalker::set_use_pos(Interval* i, int use_pos, bool only_process_use_pos) {
4858  assert(i->assigned_reg() != any_reg, "interval has no register assigned");
4859  if (use_pos != -1) {
4860    set_use_pos(i->assigned_reg(), i, use_pos, only_process_use_pos);
4861    set_use_pos(i->assigned_regHi(), i, use_pos, only_process_use_pos);
4862  }
4863}
4864
4865inline void LinearScanWalker::set_block_pos(int reg, Interval* i, int block_pos) {
4866  if (reg >= _first_reg && reg <= _last_reg) {
4867    if (_block_pos[reg] > block_pos) {
4868      _block_pos[reg] = block_pos;
4869    }
4870    if (_use_pos[reg] > block_pos) {
4871      _use_pos[reg] = block_pos;
4872    }
4873  }
4874}
4875inline void LinearScanWalker::set_block_pos(Interval* i, int block_pos) {
4876  assert(i->assigned_reg() != any_reg, "interval has no register assigned");
4877  if (block_pos != -1) {
4878    set_block_pos(i->assigned_reg(), i, block_pos);
4879    set_block_pos(i->assigned_regHi(), i, block_pos);
4880  }
4881}
4882
4883
4884void LinearScanWalker::free_exclude_active_fixed() {
4885  Interval* list = active_first(fixedKind);
4886  while (list != Interval::end()) {
4887    assert(list->assigned_reg() < LinearScan::nof_regs, "active interval must have a register assigned");
4888    exclude_from_use(list);
4889    list = list->next();
4890  }
4891}
4892
4893void LinearScanWalker::free_exclude_active_any() {
4894  Interval* list = active_first(anyKind);
4895  while (list != Interval::end()) {
4896    exclude_from_use(list);
4897    list = list->next();
4898  }
4899}
4900
4901void LinearScanWalker::free_collect_inactive_fixed(Interval* cur) {
4902  Interval* list = inactive_first(fixedKind);
4903  while (list != Interval::end()) {
4904    if (cur->to() <= list->current_from()) {
4905      assert(list->current_intersects_at(cur) == -1, "must not intersect");
4906      set_use_pos(list, list->current_from(), true);
4907    } else {
4908      set_use_pos(list, list->current_intersects_at(cur), true);
4909    }
4910    list = list->next();
4911  }
4912}
4913
4914void LinearScanWalker::free_collect_inactive_any(Interval* cur) {
4915  Interval* list = inactive_first(anyKind);
4916  while (list != Interval::end()) {
4917    set_use_pos(list, list->current_intersects_at(cur), true);
4918    list = list->next();
4919  }
4920}
4921
4922void LinearScanWalker::free_collect_unhandled(IntervalKind kind, Interval* cur) {
4923  Interval* list = unhandled_first(kind);
4924  while (list != Interval::end()) {
4925    set_use_pos(list, list->intersects_at(cur), true);
4926    if (kind == fixedKind && cur->to() <= list->from()) {
4927      set_use_pos(list, list->from(), true);
4928    }
4929    list = list->next();
4930  }
4931}
4932
4933void LinearScanWalker::spill_exclude_active_fixed() {
4934  Interval* list = active_first(fixedKind);
4935  while (list != Interval::end()) {
4936    exclude_from_use(list);
4937    list = list->next();
4938  }
4939}
4940
4941void LinearScanWalker::spill_block_unhandled_fixed(Interval* cur) {
4942  Interval* list = unhandled_first(fixedKind);
4943  while (list != Interval::end()) {
4944    set_block_pos(list, list->intersects_at(cur));
4945    list = list->next();
4946  }
4947}
4948
4949void LinearScanWalker::spill_block_inactive_fixed(Interval* cur) {
4950  Interval* list = inactive_first(fixedKind);
4951  while (list != Interval::end()) {
4952    if (cur->to() > list->current_from()) {
4953      set_block_pos(list, list->current_intersects_at(cur));
4954    } else {
4955      assert(list->current_intersects_at(cur) == -1, "invalid optimization: intervals intersect");
4956    }
4957
4958    list = list->next();
4959  }
4960}
4961
4962void LinearScanWalker::spill_collect_active_any() {
4963  Interval* list = active_first(anyKind);
4964  while (list != Interval::end()) {
4965    set_use_pos(list, MIN2(list->next_usage(loopEndMarker, _current_position), list->to()), false);
4966    list = list->next();
4967  }
4968}
4969
4970void LinearScanWalker::spill_collect_inactive_any(Interval* cur) {
4971  Interval* list = inactive_first(anyKind);
4972  while (list != Interval::end()) {
4973    if (list->current_intersects(cur)) {
4974      set_use_pos(list, MIN2(list->next_usage(loopEndMarker, _current_position), list->to()), false);
4975    }
4976    list = list->next();
4977  }
4978}
4979
4980
4981void LinearScanWalker::insert_move(int op_id, Interval* src_it, Interval* dst_it) {
4982  // output all moves here. When source and target are equal, the move is
4983  // optimized away later in assign_reg_nums
4984
4985  op_id = (op_id + 1) & ~1;
4986  BlockBegin* op_block = allocator()->block_of_op_with_id(op_id);
4987  assert(op_id > 0 && allocator()->block_of_op_with_id(op_id - 2) == op_block, "cannot insert move at block boundary");
4988
4989  // calculate index of instruction inside instruction list of current block
4990  // the minimal index (for a block with no spill moves) can be calculated because the
4991  // numbering of instructions is known.
4992  // When the block already contains spill moves, the index must be increased until the
4993  // correct index is reached.
4994  LIR_OpList* list = op_block->lir()->instructions_list();
4995  int index = (op_id - list->at(0)->id()) / 2;
4996  assert(list->at(index)->id() <= op_id, "error in calculation");
4997
4998  while (list->at(index)->id() != op_id) {
4999    index++;
5000    assert(0 <= index && index < list->length(), "index out of bounds");
5001  }
5002  assert(1 <= index && index < list->length(), "index out of bounds");
5003  assert(list->at(index)->id() == op_id, "error in calculation");
5004
5005  // insert new instruction before instruction at position index
5006  _move_resolver.move_insert_position(op_block->lir(), index - 1);
5007  _move_resolver.add_mapping(src_it, dst_it);
5008}
5009
5010
5011int LinearScanWalker::find_optimal_split_pos(BlockBegin* min_block, BlockBegin* max_block, int max_split_pos) {
5012  int from_block_nr = min_block->linear_scan_number();
5013  int to_block_nr = max_block->linear_scan_number();
5014
5015  assert(0 <= from_block_nr && from_block_nr < block_count(), "out of range");
5016  assert(0 <= to_block_nr && to_block_nr < block_count(), "out of range");
5017  assert(from_block_nr < to_block_nr, "must cross block boundary");
5018
5019  // Try to split at end of max_block. If this would be after
5020  // max_split_pos, then use the begin of max_block
5021  int optimal_split_pos = max_block->last_lir_instruction_id() + 2;
5022  if (optimal_split_pos > max_split_pos) {
5023    optimal_split_pos = max_block->first_lir_instruction_id();
5024  }
5025
5026  int min_loop_depth = max_block->loop_depth();
5027  for (int i = to_block_nr - 1; i >= from_block_nr; i--) {
5028    BlockBegin* cur = block_at(i);
5029
5030    if (cur->loop_depth() < min_loop_depth) {
5031      // block with lower loop-depth found -> split at the end of this block
5032      min_loop_depth = cur->loop_depth();
5033      optimal_split_pos = cur->last_lir_instruction_id() + 2;
5034    }
5035  }
5036  assert(optimal_split_pos > allocator()->max_lir_op_id() || allocator()->is_block_begin(optimal_split_pos), "algorithm must move split pos to block boundary");
5037
5038  return optimal_split_pos;
5039}
5040
5041
5042int LinearScanWalker::find_optimal_split_pos(Interval* it, int min_split_pos, int max_split_pos, bool do_loop_optimization) {
5043  int optimal_split_pos = -1;
5044  if (min_split_pos == max_split_pos) {
5045    // trivial case, no optimization of split position possible
5046    TRACE_LINEAR_SCAN(4, tty->print_cr("      min-pos and max-pos are equal, no optimization possible"));
5047    optimal_split_pos = min_split_pos;
5048
5049  } else {
5050    assert(min_split_pos < max_split_pos, "must be true then");
5051    assert(min_split_pos > 0, "cannot access min_split_pos - 1 otherwise");
5052
5053    // reason for using min_split_pos - 1: when the minimal split pos is exactly at the
5054    // beginning of a block, then min_split_pos is also a possible split position.
5055    // Use the block before as min_block, because then min_block->last_lir_instruction_id() + 2 == min_split_pos
5056    BlockBegin* min_block = allocator()->block_of_op_with_id(min_split_pos - 1);
5057
5058    // reason for using max_split_pos - 1: otherwise there would be an assertion failure
5059    // when an interval ends at the end of the last block of the method
5060    // (in this case, max_split_pos == allocator()->max_lir_op_id() + 2, and there is no
5061    // block at this op_id)
5062    BlockBegin* max_block = allocator()->block_of_op_with_id(max_split_pos - 1);
5063
5064    assert(min_block->linear_scan_number() <= max_block->linear_scan_number(), "invalid order");
5065    if (min_block == max_block) {
5066      // split position cannot be moved to block boundary, so split as late as possible
5067      TRACE_LINEAR_SCAN(4, tty->print_cr("      cannot move split pos to block boundary because min_pos and max_pos are in same block"));
5068      optimal_split_pos = max_split_pos;
5069
5070    } else if (it->has_hole_between(max_split_pos - 1, max_split_pos) && !allocator()->is_block_begin(max_split_pos)) {
5071      // Do not move split position if the interval has a hole before max_split_pos.
5072      // Intervals resulting from Phi-Functions have more than one definition (marked
5073      // as mustHaveRegister) with a hole before each definition. When the register is needed
5074      // for the second definition, an earlier reloading is unnecessary.
5075      TRACE_LINEAR_SCAN(4, tty->print_cr("      interval has hole just before max_split_pos, so splitting at max_split_pos"));
5076      optimal_split_pos = max_split_pos;
5077
5078    } else {
5079      // seach optimal block boundary between min_split_pos and max_split_pos
5080      TRACE_LINEAR_SCAN(4, tty->print_cr("      moving split pos to optimal block boundary between block B%d and B%d", min_block->block_id(), max_block->block_id()));
5081
5082      if (do_loop_optimization) {
5083        // Loop optimization: if a loop-end marker is found between min- and max-position,
5084        // then split before this loop
5085        int loop_end_pos = it->next_usage_exact(loopEndMarker, min_block->last_lir_instruction_id() + 2);
5086        TRACE_LINEAR_SCAN(4, tty->print_cr("      loop optimization: loop end found at pos %d", loop_end_pos));
5087
5088        assert(loop_end_pos > min_split_pos, "invalid order");
5089        if (loop_end_pos < max_split_pos) {
5090          // loop-end marker found between min- and max-position
5091          // if it is not the end marker for the same loop as the min-position, then move
5092          // the max-position to this loop block.
5093          // Desired result: uses tagged as shouldHaveRegister inside a loop cause a reloading
5094          // of the interval (normally, only mustHaveRegister causes a reloading)
5095          BlockBegin* loop_block = allocator()->block_of_op_with_id(loop_end_pos);
5096
5097          TRACE_LINEAR_SCAN(4, tty->print_cr("      interval is used in loop that ends in block B%d, so trying to move max_block back from B%d to B%d", loop_block->block_id(), max_block->block_id(), loop_block->block_id()));
5098          assert(loop_block != min_block, "loop_block and min_block must be different because block boundary is needed between");
5099
5100          optimal_split_pos = find_optimal_split_pos(min_block, loop_block, loop_block->last_lir_instruction_id() + 2);
5101          if (optimal_split_pos == loop_block->last_lir_instruction_id() + 2) {
5102            optimal_split_pos = -1;
5103            TRACE_LINEAR_SCAN(4, tty->print_cr("      loop optimization not necessary"));
5104          } else {
5105            TRACE_LINEAR_SCAN(4, tty->print_cr("      loop optimization successful"));
5106          }
5107        }
5108      }
5109
5110      if (optimal_split_pos == -1) {
5111        // not calculated by loop optimization
5112        optimal_split_pos = find_optimal_split_pos(min_block, max_block, max_split_pos);
5113      }
5114    }
5115  }
5116  TRACE_LINEAR_SCAN(4, tty->print_cr("      optimal split position: %d", optimal_split_pos));
5117
5118  return optimal_split_pos;
5119}
5120
5121
5122/*
5123  split an interval at the optimal position between min_split_pos and
5124  max_split_pos in two parts:
5125  1) the left part has already a location assigned
5126  2) the right part is sorted into to the unhandled-list
5127*/
5128void LinearScanWalker::split_before_usage(Interval* it, int min_split_pos, int max_split_pos) {
5129  TRACE_LINEAR_SCAN(2, tty->print   ("----- splitting interval: "); it->print());
5130  TRACE_LINEAR_SCAN(2, tty->print_cr("      between %d and %d", min_split_pos, max_split_pos));
5131
5132  assert(it->from() < min_split_pos,         "cannot split at start of interval");
5133  assert(current_position() < min_split_pos, "cannot split before current position");
5134  assert(min_split_pos <= max_split_pos,     "invalid order");
5135  assert(max_split_pos <= it->to(),          "cannot split after end of interval");
5136
5137  int optimal_split_pos = find_optimal_split_pos(it, min_split_pos, max_split_pos, true);
5138
5139  assert(min_split_pos <= optimal_split_pos && optimal_split_pos <= max_split_pos, "out of range");
5140  assert(optimal_split_pos <= it->to(),  "cannot split after end of interval");
5141  assert(optimal_split_pos > it->from(), "cannot split at start of interval");
5142
5143  if (optimal_split_pos == it->to() && it->next_usage(mustHaveRegister, min_split_pos) == max_jint) {
5144    // the split position would be just before the end of the interval
5145    // -> no split at all necessary
5146    TRACE_LINEAR_SCAN(4, tty->print_cr("      no split necessary because optimal split position is at end of interval"));
5147    return;
5148  }
5149
5150  // must calculate this before the actual split is performed and before split position is moved to odd op_id
5151  bool move_necessary = !allocator()->is_block_begin(optimal_split_pos) && !it->has_hole_between(optimal_split_pos - 1, optimal_split_pos);
5152
5153  if (!allocator()->is_block_begin(optimal_split_pos)) {
5154    // move position before actual instruction (odd op_id)
5155    optimal_split_pos = (optimal_split_pos - 1) | 1;
5156  }
5157
5158  TRACE_LINEAR_SCAN(4, tty->print_cr("      splitting at position %d", optimal_split_pos));
5159  assert(allocator()->is_block_begin(optimal_split_pos) || (optimal_split_pos % 2 == 1), "split pos must be odd when not on block boundary");
5160  assert(!allocator()->is_block_begin(optimal_split_pos) || (optimal_split_pos % 2 == 0), "split pos must be even on block boundary");
5161
5162  Interval* split_part = it->split(optimal_split_pos);
5163
5164  allocator()->append_interval(split_part);
5165  allocator()->copy_register_flags(it, split_part);
5166  split_part->set_insert_move_when_activated(move_necessary);
5167  append_to_unhandled(unhandled_first_addr(anyKind), split_part);
5168
5169  TRACE_LINEAR_SCAN(2, tty->print_cr("      split interval in two parts (insert_move_when_activated: %d)", move_necessary));
5170  TRACE_LINEAR_SCAN(2, tty->print   ("      "); it->print());
5171  TRACE_LINEAR_SCAN(2, tty->print   ("      "); split_part->print());
5172}
5173
5174/*
5175  split an interval at the optimal position between min_split_pos and
5176  max_split_pos in two parts:
5177  1) the left part has already a location assigned
5178  2) the right part is always on the stack and therefore ignored in further processing
5179*/
5180void LinearScanWalker::split_for_spilling(Interval* it) {
5181  // calculate allowed range of splitting position
5182  int max_split_pos = current_position();
5183  int min_split_pos = MAX2(it->previous_usage(shouldHaveRegister, max_split_pos) + 1, it->from());
5184
5185  TRACE_LINEAR_SCAN(2, tty->print   ("----- splitting and spilling interval: "); it->print());
5186  TRACE_LINEAR_SCAN(2, tty->print_cr("      between %d and %d", min_split_pos, max_split_pos));
5187
5188  assert(it->state() == activeState,     "why spill interval that is not active?");
5189  assert(it->from() <= min_split_pos,    "cannot split before start of interval");
5190  assert(min_split_pos <= max_split_pos, "invalid order");
5191  assert(max_split_pos < it->to(),       "cannot split at end end of interval");
5192  assert(current_position() < it->to(),  "interval must not end before current position");
5193
5194  if (min_split_pos == it->from()) {
5195    // the whole interval is never used, so spill it entirely to memory
5196    TRACE_LINEAR_SCAN(2, tty->print_cr("      spilling entire interval because split pos is at beginning of interval"));
5197    assert(it->first_usage(shouldHaveRegister) > current_position(), "interval must not have use position before current_position");
5198
5199    allocator()->assign_spill_slot(it);
5200    allocator()->change_spill_state(it, min_split_pos);
5201
5202    // Also kick parent intervals out of register to memory when they have no use
5203    // position. This avoids short interval in register surrounded by intervals in
5204    // memory -> avoid useless moves from memory to register and back
5205    Interval* parent = it;
5206    while (parent != NULL && parent->is_split_child()) {
5207      parent = parent->split_child_before_op_id(parent->from());
5208
5209      if (parent->assigned_reg() < LinearScan::nof_regs) {
5210        if (parent->first_usage(shouldHaveRegister) == max_jint) {
5211          // parent is never used, so kick it out of its assigned register
5212          TRACE_LINEAR_SCAN(4, tty->print_cr("      kicking out interval %d out of its register because it is never used", parent->reg_num()));
5213          allocator()->assign_spill_slot(parent);
5214        } else {
5215          // do not go further back because the register is actually used by the interval
5216          parent = NULL;
5217        }
5218      }
5219    }
5220
5221  } else {
5222    // search optimal split pos, split interval and spill only the right hand part
5223    int optimal_split_pos = find_optimal_split_pos(it, min_split_pos, max_split_pos, false);
5224
5225    assert(min_split_pos <= optimal_split_pos && optimal_split_pos <= max_split_pos, "out of range");
5226    assert(optimal_split_pos < it->to(), "cannot split at end of interval");
5227    assert(optimal_split_pos >= it->from(), "cannot split before start of interval");
5228
5229    if (!allocator()->is_block_begin(optimal_split_pos)) {
5230      // move position before actual instruction (odd op_id)
5231      optimal_split_pos = (optimal_split_pos - 1) | 1;
5232    }
5233
5234    TRACE_LINEAR_SCAN(4, tty->print_cr("      splitting at position %d", optimal_split_pos));
5235    assert(allocator()->is_block_begin(optimal_split_pos)  || (optimal_split_pos % 2 == 1), "split pos must be odd when not on block boundary");
5236    assert(!allocator()->is_block_begin(optimal_split_pos) || (optimal_split_pos % 2 == 0), "split pos must be even on block boundary");
5237
5238    Interval* spilled_part = it->split(optimal_split_pos);
5239    allocator()->append_interval(spilled_part);
5240    allocator()->assign_spill_slot(spilled_part);
5241    allocator()->change_spill_state(spilled_part, optimal_split_pos);
5242
5243    if (!allocator()->is_block_begin(optimal_split_pos)) {
5244      TRACE_LINEAR_SCAN(4, tty->print_cr("      inserting move from interval %d to %d", it->reg_num(), spilled_part->reg_num()));
5245      insert_move(optimal_split_pos, it, spilled_part);
5246    }
5247
5248    // the current_split_child is needed later when moves are inserted for reloading
5249    assert(spilled_part->current_split_child() == it, "overwriting wrong current_split_child");
5250    spilled_part->make_current_split_child();
5251
5252    TRACE_LINEAR_SCAN(2, tty->print_cr("      split interval in two parts"));
5253    TRACE_LINEAR_SCAN(2, tty->print   ("      "); it->print());
5254    TRACE_LINEAR_SCAN(2, tty->print   ("      "); spilled_part->print());
5255  }
5256}
5257
5258
5259void LinearScanWalker::split_stack_interval(Interval* it) {
5260  int min_split_pos = current_position() + 1;
5261  int max_split_pos = MIN2(it->first_usage(shouldHaveRegister), it->to());
5262
5263  split_before_usage(it, min_split_pos, max_split_pos);
5264}
5265
5266void LinearScanWalker::split_when_partial_register_available(Interval* it, int register_available_until) {
5267  int min_split_pos = MAX2(it->previous_usage(shouldHaveRegister, register_available_until), it->from() + 1);
5268  int max_split_pos = register_available_until;
5269
5270  split_before_usage(it, min_split_pos, max_split_pos);
5271}
5272
5273void LinearScanWalker::split_and_spill_interval(Interval* it) {
5274  assert(it->state() == activeState || it->state() == inactiveState, "other states not allowed");
5275
5276  int current_pos = current_position();
5277  if (it->state() == inactiveState) {
5278    // the interval is currently inactive, so no spill slot is needed for now.
5279    // when the split part is activated, the interval has a new chance to get a register,
5280    // so in the best case no stack slot is necessary
5281    assert(it->has_hole_between(current_pos - 1, current_pos + 1), "interval can not be inactive otherwise");
5282    split_before_usage(it, current_pos + 1, current_pos + 1);
5283
5284  } else {
5285    // search the position where the interval must have a register and split
5286    // at the optimal position before.
5287    // The new created part is added to the unhandled list and will get a register
5288    // when it is activated
5289    int min_split_pos = current_pos + 1;
5290    int max_split_pos = MIN2(it->next_usage(mustHaveRegister, min_split_pos), it->to());
5291
5292    split_before_usage(it, min_split_pos, max_split_pos);
5293
5294    assert(it->next_usage(mustHaveRegister, current_pos) == max_jint, "the remaining part is spilled to stack and therefore has no register");
5295    split_for_spilling(it);
5296  }
5297}
5298
5299
5300int LinearScanWalker::find_free_reg(int reg_needed_until, int interval_to, int hint_reg, int ignore_reg, bool* need_split) {
5301  int min_full_reg = any_reg;
5302  int max_partial_reg = any_reg;
5303
5304  for (int i = _first_reg; i <= _last_reg; i++) {
5305    if (i == ignore_reg) {
5306      // this register must be ignored
5307
5308    } else if (_use_pos[i] >= interval_to) {
5309      // this register is free for the full interval
5310      if (min_full_reg == any_reg || i == hint_reg || (_use_pos[i] < _use_pos[min_full_reg] && min_full_reg != hint_reg)) {
5311        min_full_reg = i;
5312      }
5313    } else if (_use_pos[i] > reg_needed_until) {
5314      // this register is at least free until reg_needed_until
5315      if (max_partial_reg == any_reg || i == hint_reg || (_use_pos[i] > _use_pos[max_partial_reg] && max_partial_reg != hint_reg)) {
5316        max_partial_reg = i;
5317      }
5318    }
5319  }
5320
5321  if (min_full_reg != any_reg) {
5322    return min_full_reg;
5323  } else if (max_partial_reg != any_reg) {
5324    *need_split = true;
5325    return max_partial_reg;
5326  } else {
5327    return any_reg;
5328  }
5329}
5330
5331int LinearScanWalker::find_free_double_reg(int reg_needed_until, int interval_to, int hint_reg, bool* need_split) {
5332  assert((_last_reg - _first_reg + 1) % 2 == 0, "adjust algorithm");
5333
5334  int min_full_reg = any_reg;
5335  int max_partial_reg = any_reg;
5336
5337  for (int i = _first_reg; i < _last_reg; i+=2) {
5338    if (_use_pos[i] >= interval_to && _use_pos[i + 1] >= interval_to) {
5339      // this register is free for the full interval
5340      if (min_full_reg == any_reg || i == hint_reg || (_use_pos[i] < _use_pos[min_full_reg] && min_full_reg != hint_reg)) {
5341        min_full_reg = i;
5342      }
5343    } else if (_use_pos[i] > reg_needed_until && _use_pos[i + 1] > reg_needed_until) {
5344      // this register is at least free until reg_needed_until
5345      if (max_partial_reg == any_reg || i == hint_reg || (_use_pos[i] > _use_pos[max_partial_reg] && max_partial_reg != hint_reg)) {
5346        max_partial_reg = i;
5347      }
5348    }
5349  }
5350
5351  if (min_full_reg != any_reg) {
5352    return min_full_reg;
5353  } else if (max_partial_reg != any_reg) {
5354    *need_split = true;
5355    return max_partial_reg;
5356  } else {
5357    return any_reg;
5358  }
5359}
5360
5361
5362bool LinearScanWalker::alloc_free_reg(Interval* cur) {
5363  TRACE_LINEAR_SCAN(2, tty->print("trying to find free register for "); cur->print());
5364
5365  init_use_lists(true);
5366  free_exclude_active_fixed();
5367  free_exclude_active_any();
5368  free_collect_inactive_fixed(cur);
5369  free_collect_inactive_any(cur);
5370//  free_collect_unhandled(fixedKind, cur);
5371  assert(unhandled_first(fixedKind) == Interval::end(), "must not have unhandled fixed intervals because all fixed intervals have a use at position 0");
5372
5373  // _use_pos contains the start of the next interval that has this register assigned
5374  // (either as a fixed register or a normal allocated register in the past)
5375  // only intervals overlapping with cur are processed, non-overlapping invervals can be ignored safely
5376  TRACE_LINEAR_SCAN(4, tty->print_cr("      state of registers:"));
5377  TRACE_LINEAR_SCAN(4, for (int i = _first_reg; i <= _last_reg; i++) tty->print_cr("      reg %d: use_pos: %d", i, _use_pos[i]));
5378
5379  int hint_reg, hint_regHi;
5380  Interval* register_hint = cur->register_hint();
5381  if (register_hint != NULL) {
5382    hint_reg = register_hint->assigned_reg();
5383    hint_regHi = register_hint->assigned_regHi();
5384
5385    if (allocator()->is_precolored_cpu_interval(register_hint)) {
5386      assert(hint_reg != any_reg && hint_regHi == any_reg, "must be for fixed intervals");
5387      hint_regHi = hint_reg + 1;  // connect e.g. eax-edx
5388    }
5389    TRACE_LINEAR_SCAN(4, tty->print("      hint registers %d, %d from interval ", hint_reg, hint_regHi); register_hint->print());
5390
5391  } else {
5392    hint_reg = any_reg;
5393    hint_regHi = any_reg;
5394  }
5395  assert(hint_reg == any_reg || hint_reg != hint_regHi, "hint reg and regHi equal");
5396  assert(cur->assigned_reg() == any_reg && cur->assigned_regHi() == any_reg, "register already assigned to interval");
5397
5398  // the register must be free at least until this position
5399  int reg_needed_until = cur->from() + 1;
5400  int interval_to = cur->to();
5401
5402  bool need_split = false;
5403  int split_pos = -1;
5404  int reg = any_reg;
5405  int regHi = any_reg;
5406
5407  if (_adjacent_regs) {
5408    reg = find_free_double_reg(reg_needed_until, interval_to, hint_reg, &need_split);
5409    regHi = reg + 1;
5410    if (reg == any_reg) {
5411      return false;
5412    }
5413    split_pos = MIN2(_use_pos[reg], _use_pos[regHi]);
5414
5415  } else {
5416    reg = find_free_reg(reg_needed_until, interval_to, hint_reg, any_reg, &need_split);
5417    if (reg == any_reg) {
5418      return false;
5419    }
5420    split_pos = _use_pos[reg];
5421
5422    if (_num_phys_regs == 2) {
5423      regHi = find_free_reg(reg_needed_until, interval_to, hint_regHi, reg, &need_split);
5424
5425      if (_use_pos[reg] < interval_to && regHi == any_reg) {
5426        // do not split interval if only one register can be assigned until the split pos
5427        // (when one register is found for the whole interval, split&spill is only
5428        // performed for the hi register)
5429        return false;
5430
5431      } else if (regHi != any_reg) {
5432        split_pos = MIN2(split_pos, _use_pos[regHi]);
5433
5434        // sort register numbers to prevent e.g. a move from eax,ebx to ebx,eax
5435        if (reg > regHi) {
5436          int temp = reg;
5437          reg = regHi;
5438          regHi = temp;
5439        }
5440      }
5441    }
5442  }
5443
5444  cur->assign_reg(reg, regHi);
5445  TRACE_LINEAR_SCAN(2, tty->print_cr("selected register %d, %d", reg, regHi));
5446
5447  assert(split_pos > 0, "invalid split_pos");
5448  if (need_split) {
5449    // register not available for full interval, so split it
5450    split_when_partial_register_available(cur, split_pos);
5451  }
5452
5453  // only return true if interval is completely assigned
5454  return _num_phys_regs == 1 || regHi != any_reg;
5455}
5456
5457
5458int LinearScanWalker::find_locked_reg(int reg_needed_until, int interval_to, int hint_reg, int ignore_reg, bool* need_split) {
5459  int max_reg = any_reg;
5460
5461  for (int i = _first_reg; i <= _last_reg; i++) {
5462    if (i == ignore_reg) {
5463      // this register must be ignored
5464
5465    } else if (_use_pos[i] > reg_needed_until) {
5466      if (max_reg == any_reg || i == hint_reg || (_use_pos[i] > _use_pos[max_reg] && max_reg != hint_reg)) {
5467        max_reg = i;
5468      }
5469    }
5470  }
5471
5472  if (max_reg != any_reg && _block_pos[max_reg] <= interval_to) {
5473    *need_split = true;
5474  }
5475
5476  return max_reg;
5477}
5478
5479int LinearScanWalker::find_locked_double_reg(int reg_needed_until, int interval_to, int hint_reg, bool* need_split) {
5480  assert((_last_reg - _first_reg + 1) % 2 == 0, "adjust algorithm");
5481
5482  int max_reg = any_reg;
5483
5484  for (int i = _first_reg; i < _last_reg; i+=2) {
5485    if (_use_pos[i] > reg_needed_until && _use_pos[i + 1] > reg_needed_until) {
5486      if (max_reg == any_reg || _use_pos[i] > _use_pos[max_reg]) {
5487        max_reg = i;
5488      }
5489    }
5490  }
5491
5492  if (_block_pos[max_reg] <= interval_to || _block_pos[max_reg + 1] <= interval_to) {
5493    *need_split = true;
5494  }
5495
5496  return max_reg;
5497}
5498
5499void LinearScanWalker::split_and_spill_intersecting_intervals(int reg, int regHi) {
5500  assert(reg != any_reg, "no register assigned");
5501
5502  for (int i = 0; i < _spill_intervals[reg]->length(); i++) {
5503    Interval* it = _spill_intervals[reg]->at(i);
5504    remove_from_list(it);
5505    split_and_spill_interval(it);
5506  }
5507
5508  if (regHi != any_reg) {
5509    IntervalList* processed = _spill_intervals[reg];
5510    for (int i = 0; i < _spill_intervals[regHi]->length(); i++) {
5511      Interval* it = _spill_intervals[regHi]->at(i);
5512      if (processed->index_of(it) == -1) {
5513        remove_from_list(it);
5514        split_and_spill_interval(it);
5515      }
5516    }
5517  }
5518}
5519
5520
5521// Split an Interval and spill it to memory so that cur can be placed in a register
5522void LinearScanWalker::alloc_locked_reg(Interval* cur) {
5523  TRACE_LINEAR_SCAN(2, tty->print("need to split and spill to get register for "); cur->print());
5524
5525  // collect current usage of registers
5526  init_use_lists(false);
5527  spill_exclude_active_fixed();
5528//  spill_block_unhandled_fixed(cur);
5529  assert(unhandled_first(fixedKind) == Interval::end(), "must not have unhandled fixed intervals because all fixed intervals have a use at position 0");
5530  spill_block_inactive_fixed(cur);
5531  spill_collect_active_any();
5532  spill_collect_inactive_any(cur);
5533
5534#ifndef PRODUCT
5535  if (TraceLinearScanLevel >= 4) {
5536    tty->print_cr("      state of registers:");
5537    for (int i = _first_reg; i <= _last_reg; i++) {
5538      tty->print("      reg %d: use_pos: %d, block_pos: %d, intervals: ", i, _use_pos[i], _block_pos[i]);
5539      for (int j = 0; j < _spill_intervals[i]->length(); j++) {
5540        tty->print("%d ", _spill_intervals[i]->at(j)->reg_num());
5541      }
5542      tty->cr();
5543    }
5544  }
5545#endif
5546
5547  // the register must be free at least until this position
5548  int reg_needed_until = MIN2(cur->first_usage(mustHaveRegister), cur->from() + 1);
5549  int interval_to = cur->to();
5550  assert (reg_needed_until > 0 && reg_needed_until < max_jint, "interval has no use");
5551
5552  int split_pos = 0;
5553  int use_pos = 0;
5554  bool need_split = false;
5555  int reg, regHi;
5556
5557  if (_adjacent_regs) {
5558    reg = find_locked_double_reg(reg_needed_until, interval_to, any_reg, &need_split);
5559    regHi = reg + 1;
5560
5561    if (reg != any_reg) {
5562      use_pos = MIN2(_use_pos[reg], _use_pos[regHi]);
5563      split_pos = MIN2(_block_pos[reg], _block_pos[regHi]);
5564    }
5565  } else {
5566    reg = find_locked_reg(reg_needed_until, interval_to, any_reg, cur->assigned_reg(), &need_split);
5567    regHi = any_reg;
5568
5569    if (reg != any_reg) {
5570      use_pos = _use_pos[reg];
5571      split_pos = _block_pos[reg];
5572
5573      if (_num_phys_regs == 2) {
5574        if (cur->assigned_reg() != any_reg) {
5575          regHi = reg;
5576          reg = cur->assigned_reg();
5577        } else {
5578          regHi = find_locked_reg(reg_needed_until, interval_to, any_reg, reg, &need_split);
5579          if (regHi != any_reg) {
5580            use_pos = MIN2(use_pos, _use_pos[regHi]);
5581            split_pos = MIN2(split_pos, _block_pos[regHi]);
5582          }
5583        }
5584
5585        if (regHi != any_reg && reg > regHi) {
5586          // sort register numbers to prevent e.g. a move from eax,ebx to ebx,eax
5587          int temp = reg;
5588          reg = regHi;
5589          regHi = temp;
5590        }
5591      }
5592    }
5593  }
5594
5595  if (reg == any_reg || (_num_phys_regs == 2 && regHi == any_reg) || use_pos <= cur->first_usage(mustHaveRegister)) {
5596    // the first use of cur is later than the spilling position -> spill cur
5597    TRACE_LINEAR_SCAN(4, tty->print_cr("able to spill current interval. first_usage(register): %d, use_pos: %d", cur->first_usage(mustHaveRegister), use_pos));
5598
5599    if (cur->first_usage(mustHaveRegister) <= cur->from() + 1) {
5600      assert(false, "cannot spill interval that is used in first instruction (possible reason: no register found)");
5601      // assign a reasonable register and do a bailout in product mode to avoid errors
5602      allocator()->assign_spill_slot(cur);
5603      BAILOUT("LinearScan: no register found");
5604    }
5605
5606    split_and_spill_interval(cur);
5607  } else {
5608    TRACE_LINEAR_SCAN(4, tty->print_cr("decided to use register %d, %d", reg, regHi));
5609    assert(reg != any_reg && (_num_phys_regs == 1 || regHi != any_reg), "no register found");
5610    assert(split_pos > 0, "invalid split_pos");
5611    assert(need_split == false || split_pos > cur->from(), "splitting interval at from");
5612
5613    cur->assign_reg(reg, regHi);
5614    if (need_split) {
5615      // register not available for full interval, so split it
5616      split_when_partial_register_available(cur, split_pos);
5617    }
5618
5619    // perform splitting and spilling for all affected intervalls
5620    split_and_spill_intersecting_intervals(reg, regHi);
5621  }
5622}
5623
5624bool LinearScanWalker::no_allocation_possible(Interval* cur) {
5625#ifdef X86
5626  // fast calculation of intervals that can never get a register because the
5627  // the next instruction is a call that blocks all registers
5628  // Note: this does not work if callee-saved registers are available (e.g. on Sparc)
5629
5630  // check if this interval is the result of a split operation
5631  // (an interval got a register until this position)
5632  int pos = cur->from();
5633  if ((pos & 1) == 1) {
5634    // the current instruction is a call that blocks all registers
5635    if (pos < allocator()->max_lir_op_id() && allocator()->has_call(pos + 1)) {
5636      TRACE_LINEAR_SCAN(4, tty->print_cr("      free register cannot be available because all registers blocked by following call"));
5637
5638      // safety check that there is really no register available
5639      assert(alloc_free_reg(cur) == false, "found a register for this interval");
5640      return true;
5641    }
5642
5643  }
5644#endif
5645  return false;
5646}
5647
5648void LinearScanWalker::init_vars_for_alloc(Interval* cur) {
5649  BasicType type = cur->type();
5650  _num_phys_regs = LinearScan::num_physical_regs(type);
5651  _adjacent_regs = LinearScan::requires_adjacent_regs(type);
5652
5653  if (pd_init_regs_for_alloc(cur)) {
5654    // the appropriate register range was selected.
5655  } else if (type == T_FLOAT || type == T_DOUBLE) {
5656    _first_reg = pd_first_fpu_reg;
5657    _last_reg = pd_last_fpu_reg;
5658  } else {
5659    _first_reg = pd_first_cpu_reg;
5660    _last_reg = FrameMap::last_cpu_reg();
5661  }
5662
5663  assert(0 <= _first_reg && _first_reg < LinearScan::nof_regs, "out of range");
5664  assert(0 <= _last_reg && _last_reg < LinearScan::nof_regs, "out of range");
5665}
5666
5667
5668bool LinearScanWalker::is_move(LIR_Op* op, Interval* from, Interval* to) {
5669  if (op->code() != lir_move) {
5670    return false;
5671  }
5672  assert(op->as_Op1() != NULL, "move must be LIR_Op1");
5673
5674  LIR_Opr in = ((LIR_Op1*)op)->in_opr();
5675  LIR_Opr res = ((LIR_Op1*)op)->result_opr();
5676  return in->is_virtual() && res->is_virtual() && in->vreg_number() == from->reg_num() && res->vreg_number() == to->reg_num();
5677}
5678
5679// optimization (especially for phi functions of nested loops):
5680// assign same spill slot to non-intersecting intervals
5681void LinearScanWalker::combine_spilled_intervals(Interval* cur) {
5682  if (cur->is_split_child()) {
5683    // optimization is only suitable for split parents
5684    return;
5685  }
5686
5687  Interval* register_hint = cur->register_hint(false);
5688  if (register_hint == NULL) {
5689    // cur is not the target of a move, otherwise register_hint would be set
5690    return;
5691  }
5692  assert(register_hint->is_split_parent(), "register hint must be split parent");
5693
5694  if (cur->spill_state() != noOptimization || register_hint->spill_state() != noOptimization) {
5695    // combining the stack slots for intervals where spill move optimization is applied
5696    // is not benefitial and would cause problems
5697    return;
5698  }
5699
5700  int begin_pos = cur->from();
5701  int end_pos = cur->to();
5702  if (end_pos > allocator()->max_lir_op_id() || (begin_pos & 1) != 0 || (end_pos & 1) != 0) {
5703    // safety check that lir_op_with_id is allowed
5704    return;
5705  }
5706
5707  if (!is_move(allocator()->lir_op_with_id(begin_pos), register_hint, cur) || !is_move(allocator()->lir_op_with_id(end_pos), cur, register_hint)) {
5708    // cur and register_hint are not connected with two moves
5709    return;
5710  }
5711
5712  Interval* begin_hint = register_hint->split_child_at_op_id(begin_pos, LIR_OpVisitState::inputMode);
5713  Interval* end_hint = register_hint->split_child_at_op_id(end_pos, LIR_OpVisitState::outputMode);
5714  if (begin_hint == end_hint || begin_hint->to() != begin_pos || end_hint->from() != end_pos) {
5715    // register_hint must be split, otherwise the re-writing of use positions does not work
5716    return;
5717  }
5718
5719  assert(begin_hint->assigned_reg() != any_reg, "must have register assigned");
5720  assert(end_hint->assigned_reg() == any_reg, "must not have register assigned");
5721  assert(cur->first_usage(mustHaveRegister) == begin_pos, "must have use position at begin of interval because of move");
5722  assert(end_hint->first_usage(mustHaveRegister) == end_pos, "must have use position at begin of interval because of move");
5723
5724  if (begin_hint->assigned_reg() < LinearScan::nof_regs) {
5725    // register_hint is not spilled at begin_pos, so it would not be benefitial to immediately spill cur
5726    return;
5727  }
5728  assert(register_hint->canonical_spill_slot() != -1, "must be set when part of interval was spilled");
5729
5730  // modify intervals such that cur gets the same stack slot as register_hint
5731  // delete use positions to prevent the intervals to get a register at beginning
5732  cur->set_canonical_spill_slot(register_hint->canonical_spill_slot());
5733  cur->remove_first_use_pos();
5734  end_hint->remove_first_use_pos();
5735}
5736
5737
5738// allocate a physical register or memory location to an interval
5739bool LinearScanWalker::activate_current() {
5740  Interval* cur = current();
5741  bool result = true;
5742
5743  TRACE_LINEAR_SCAN(2, tty->print   ("+++++ activating interval "); cur->print());
5744  TRACE_LINEAR_SCAN(4, tty->print_cr("      split_parent: %d, insert_move_when_activated: %d", cur->split_parent()->reg_num(), cur->insert_move_when_activated()));
5745
5746  if (cur->assigned_reg() >= LinearScan::nof_regs) {
5747    // activating an interval that has a stack slot assigned -> split it at first use position
5748    // used for method parameters
5749    TRACE_LINEAR_SCAN(4, tty->print_cr("      interval has spill slot assigned (method parameter) -> split it before first use"));
5750
5751    split_stack_interval(cur);
5752    result = false;
5753
5754  } else if (allocator()->gen()->is_vreg_flag_set(cur->reg_num(), LIRGenerator::must_start_in_memory)) {
5755    // activating an interval that must start in a stack slot, but may get a register later
5756    // used for lir_roundfp: rounding is done by store to stack and reload later
5757    TRACE_LINEAR_SCAN(4, tty->print_cr("      interval must start in stack slot -> split it before first use"));
5758    assert(cur->assigned_reg() == any_reg && cur->assigned_regHi() == any_reg, "register already assigned");
5759
5760    allocator()->assign_spill_slot(cur);
5761    split_stack_interval(cur);
5762    result = false;
5763
5764  } else if (cur->assigned_reg() == any_reg) {
5765    // interval has not assigned register -> normal allocation
5766    // (this is the normal case for most intervals)
5767    TRACE_LINEAR_SCAN(4, tty->print_cr("      normal allocation of register"));
5768
5769    // assign same spill slot to non-intersecting intervals
5770    combine_spilled_intervals(cur);
5771
5772    init_vars_for_alloc(cur);
5773    if (no_allocation_possible(cur) || !alloc_free_reg(cur)) {
5774      // no empty register available.
5775      // split and spill another interval so that this interval gets a register
5776      alloc_locked_reg(cur);
5777    }
5778
5779    // spilled intervals need not be move to active-list
5780    if (cur->assigned_reg() >= LinearScan::nof_regs) {
5781      result = false;
5782    }
5783  }
5784
5785  // load spilled values that become active from stack slot to register
5786  if (cur->insert_move_when_activated()) {
5787    assert(cur->is_split_child(), "must be");
5788    assert(cur->current_split_child() != NULL, "must be");
5789    assert(cur->current_split_child()->reg_num() != cur->reg_num(), "cannot insert move between same interval");
5790    TRACE_LINEAR_SCAN(4, tty->print_cr("Inserting move from interval %d to %d because insert_move_when_activated is set", cur->current_split_child()->reg_num(), cur->reg_num()));
5791
5792    insert_move(cur->from(), cur->current_split_child(), cur);
5793  }
5794  cur->make_current_split_child();
5795
5796  return result; // true = interval is moved to active list
5797}
5798
5799
5800// Implementation of EdgeMoveOptimizer
5801
5802EdgeMoveOptimizer::EdgeMoveOptimizer() :
5803  _edge_instructions(4),
5804  _edge_instructions_idx(4)
5805{
5806}
5807
5808void EdgeMoveOptimizer::optimize(BlockList* code) {
5809  EdgeMoveOptimizer optimizer = EdgeMoveOptimizer();
5810
5811  // ignore the first block in the list (index 0 is not processed)
5812  for (int i = code->length() - 1; i >= 1; i--) {
5813    BlockBegin* block = code->at(i);
5814
5815    if (block->number_of_preds() > 1 && !block->is_set(BlockBegin::exception_entry_flag)) {
5816      optimizer.optimize_moves_at_block_end(block);
5817    }
5818    if (block->number_of_sux() == 2) {
5819      optimizer.optimize_moves_at_block_begin(block);
5820    }
5821  }
5822}
5823
5824
5825// clear all internal data structures
5826void EdgeMoveOptimizer::init_instructions() {
5827  _edge_instructions.clear();
5828  _edge_instructions_idx.clear();
5829}
5830
5831// append a lir-instruction-list and the index of the current operation in to the list
5832void EdgeMoveOptimizer::append_instructions(LIR_OpList* instructions, int instructions_idx) {
5833  _edge_instructions.append(instructions);
5834  _edge_instructions_idx.append(instructions_idx);
5835}
5836
5837// return the current operation of the given edge (predecessor or successor)
5838LIR_Op* EdgeMoveOptimizer::instruction_at(int edge) {
5839  LIR_OpList* instructions = _edge_instructions.at(edge);
5840  int idx = _edge_instructions_idx.at(edge);
5841
5842  if (idx < instructions->length()) {
5843    return instructions->at(idx);
5844  } else {
5845    return NULL;
5846  }
5847}
5848
5849// removes the current operation of the given edge (predecessor or successor)
5850void EdgeMoveOptimizer::remove_cur_instruction(int edge, bool decrement_index) {
5851  LIR_OpList* instructions = _edge_instructions.at(edge);
5852  int idx = _edge_instructions_idx.at(edge);
5853  instructions->remove_at(idx);
5854
5855  if (decrement_index) {
5856    _edge_instructions_idx.at_put(edge, idx - 1);
5857  }
5858}
5859
5860
5861bool EdgeMoveOptimizer::operations_different(LIR_Op* op1, LIR_Op* op2) {
5862  if (op1 == NULL || op2 == NULL) {
5863    // at least one block is already empty -> no optimization possible
5864    return true;
5865  }
5866
5867  if (op1->code() == lir_move && op2->code() == lir_move) {
5868    assert(op1->as_Op1() != NULL, "move must be LIR_Op1");
5869    assert(op2->as_Op1() != NULL, "move must be LIR_Op1");
5870    LIR_Op1* move1 = (LIR_Op1*)op1;
5871    LIR_Op1* move2 = (LIR_Op1*)op2;
5872    if (move1->info() == move2->info() && move1->in_opr() == move2->in_opr() && move1->result_opr() == move2->result_opr()) {
5873      // these moves are exactly equal and can be optimized
5874      return false;
5875    }
5876
5877  } else if (op1->code() == lir_fxch && op2->code() == lir_fxch) {
5878    assert(op1->as_Op1() != NULL, "fxch must be LIR_Op1");
5879    assert(op2->as_Op1() != NULL, "fxch must be LIR_Op1");
5880    LIR_Op1* fxch1 = (LIR_Op1*)op1;
5881    LIR_Op1* fxch2 = (LIR_Op1*)op2;
5882    if (fxch1->in_opr()->as_jint() == fxch2->in_opr()->as_jint()) {
5883      // equal FPU stack operations can be optimized
5884      return false;
5885    }
5886
5887  } else if (op1->code() == lir_fpop_raw && op2->code() == lir_fpop_raw) {
5888    // equal FPU stack operations can be optimized
5889    return false;
5890  }
5891
5892  // no optimization possible
5893  return true;
5894}
5895
5896void EdgeMoveOptimizer::optimize_moves_at_block_end(BlockBegin* block) {
5897  TRACE_LINEAR_SCAN(4, tty->print_cr("optimizing moves at end of block B%d", block->block_id()));
5898
5899  if (block->is_predecessor(block)) {
5900    // currently we can't handle this correctly.
5901    return;
5902  }
5903
5904  init_instructions();
5905  int num_preds = block->number_of_preds();
5906  assert(num_preds > 1, "do not call otherwise");
5907  assert(!block->is_set(BlockBegin::exception_entry_flag), "exception handlers not allowed");
5908
5909  // setup a list with the lir-instructions of all predecessors
5910  int i;
5911  for (i = 0; i < num_preds; i++) {
5912    BlockBegin* pred = block->pred_at(i);
5913    LIR_OpList* pred_instructions = pred->lir()->instructions_list();
5914
5915    if (pred->number_of_sux() != 1) {
5916      // this can happen with switch-statements where multiple edges are between
5917      // the same blocks.
5918      return;
5919    }
5920
5921    assert(pred->number_of_sux() == 1, "can handle only one successor");
5922    assert(pred->sux_at(0) == block, "invalid control flow");
5923    assert(pred_instructions->last()->code() == lir_branch, "block with successor must end with branch");
5924    assert(pred_instructions->last()->as_OpBranch() != NULL, "branch must be LIR_OpBranch");
5925    assert(pred_instructions->last()->as_OpBranch()->cond() == lir_cond_always, "block must end with unconditional branch");
5926
5927    if (pred_instructions->last()->info() != NULL) {
5928      // can not optimize instructions when debug info is needed
5929      return;
5930    }
5931
5932    // ignore the unconditional branch at the end of the block
5933    append_instructions(pred_instructions, pred_instructions->length() - 2);
5934  }
5935
5936
5937  // process lir-instructions while all predecessors end with the same instruction
5938  while (true) {
5939    LIR_Op* op = instruction_at(0);
5940    for (i = 1; i < num_preds; i++) {
5941      if (operations_different(op, instruction_at(i))) {
5942        // these instructions are different and cannot be optimized ->
5943        // no further optimization possible
5944        return;
5945      }
5946    }
5947
5948    TRACE_LINEAR_SCAN(4, tty->print("found instruction that is equal in all %d predecessors: ", num_preds); op->print());
5949
5950    // insert the instruction at the beginning of the current block
5951    block->lir()->insert_before(1, op);
5952
5953    // delete the instruction at the end of all predecessors
5954    for (i = 0; i < num_preds; i++) {
5955      remove_cur_instruction(i, true);
5956    }
5957  }
5958}
5959
5960
5961void EdgeMoveOptimizer::optimize_moves_at_block_begin(BlockBegin* block) {
5962  TRACE_LINEAR_SCAN(4, tty->print_cr("optimization moves at begin of block B%d", block->block_id()));
5963
5964  init_instructions();
5965  int num_sux = block->number_of_sux();
5966
5967  LIR_OpList* cur_instructions = block->lir()->instructions_list();
5968
5969  assert(num_sux == 2, "method should not be called otherwise");
5970  assert(cur_instructions->last()->code() == lir_branch, "block with successor must end with branch");
5971  assert(cur_instructions->last()->as_OpBranch() != NULL, "branch must be LIR_OpBranch");
5972  assert(cur_instructions->last()->as_OpBranch()->cond() == lir_cond_always, "block must end with unconditional branch");
5973
5974  if (cur_instructions->last()->info() != NULL) {
5975    // can no optimize instructions when debug info is needed
5976    return;
5977  }
5978
5979  LIR_Op* branch = cur_instructions->at(cur_instructions->length() - 2);
5980  if (branch->info() != NULL || (branch->code() != lir_branch && branch->code() != lir_cond_float_branch)) {
5981    // not a valid case for optimization
5982    // currently, only blocks that end with two branches (conditional branch followed
5983    // by unconditional branch) are optimized
5984    return;
5985  }
5986
5987  // now it is guaranteed that the block ends with two branch instructions.
5988  // the instructions are inserted at the end of the block before these two branches
5989  int insert_idx = cur_instructions->length() - 2;
5990
5991  int i;
5992#ifdef ASSERT
5993  for (i = insert_idx - 1; i >= 0; i--) {
5994    LIR_Op* op = cur_instructions->at(i);
5995    if ((op->code() == lir_branch || op->code() == lir_cond_float_branch) && ((LIR_OpBranch*)op)->block() != NULL) {
5996      assert(false, "block with two successors can have only two branch instructions");
5997    }
5998  }
5999#endif
6000
6001  // setup a list with the lir-instructions of all successors
6002  for (i = 0; i < num_sux; i++) {
6003    BlockBegin* sux = block->sux_at(i);
6004    LIR_OpList* sux_instructions = sux->lir()->instructions_list();
6005
6006    assert(sux_instructions->at(0)->code() == lir_label, "block must start with label");
6007
6008    if (sux->number_of_preds() != 1) {
6009      // this can happen with switch-statements where multiple edges are between
6010      // the same blocks.
6011      return;
6012    }
6013    assert(sux->pred_at(0) == block, "invalid control flow");
6014    assert(!sux->is_set(BlockBegin::exception_entry_flag), "exception handlers not allowed");
6015
6016    // ignore the label at the beginning of the block
6017    append_instructions(sux_instructions, 1);
6018  }
6019
6020  // process lir-instructions while all successors begin with the same instruction
6021  while (true) {
6022    LIR_Op* op = instruction_at(0);
6023    for (i = 1; i < num_sux; i++) {
6024      if (operations_different(op, instruction_at(i))) {
6025        // these instructions are different and cannot be optimized ->
6026        // no further optimization possible
6027        return;
6028      }
6029    }
6030
6031    TRACE_LINEAR_SCAN(4, tty->print("----- found instruction that is equal in all %d successors: ", num_sux); op->print());
6032
6033    // insert instruction at end of current block
6034    block->lir()->insert_before(insert_idx, op);
6035    insert_idx++;
6036
6037    // delete the instructions at the beginning of all successors
6038    for (i = 0; i < num_sux; i++) {
6039      remove_cur_instruction(i, false);
6040    }
6041  }
6042}
6043
6044
6045// Implementation of ControlFlowOptimizer
6046
6047ControlFlowOptimizer::ControlFlowOptimizer() :
6048  _original_preds(4)
6049{
6050}
6051
6052void ControlFlowOptimizer::optimize(BlockList* code) {
6053  ControlFlowOptimizer optimizer = ControlFlowOptimizer();
6054
6055  // push the OSR entry block to the end so that we're not jumping over it.
6056  BlockBegin* osr_entry = code->at(0)->end()->as_Base()->osr_entry();
6057  if (osr_entry) {
6058    int index = osr_entry->linear_scan_number();
6059    assert(code->at(index) == osr_entry, "wrong index");
6060    code->remove_at(index);
6061    code->append(osr_entry);
6062  }
6063
6064  optimizer.reorder_short_loops(code);
6065  optimizer.delete_empty_blocks(code);
6066  optimizer.delete_unnecessary_jumps(code);
6067  optimizer.delete_jumps_to_return(code);
6068}
6069
6070void ControlFlowOptimizer::reorder_short_loop(BlockList* code, BlockBegin* header_block, int header_idx) {
6071  int i = header_idx + 1;
6072  int max_end = MIN2(header_idx + ShortLoopSize, code->length());
6073  while (i < max_end && code->at(i)->loop_depth() >= header_block->loop_depth()) {
6074    i++;
6075  }
6076
6077  if (i == code->length() || code->at(i)->loop_depth() < header_block->loop_depth()) {
6078    int end_idx = i - 1;
6079    BlockBegin* end_block = code->at(end_idx);
6080
6081    if (end_block->number_of_sux() == 1 && end_block->sux_at(0) == header_block) {
6082      // short loop from header_idx to end_idx found -> reorder blocks such that
6083      // the header_block is the last block instead of the first block of the loop
6084      TRACE_LINEAR_SCAN(1, tty->print_cr("Reordering short loop: length %d, header B%d, end B%d",
6085                                         end_idx - header_idx + 1,
6086                                         header_block->block_id(), end_block->block_id()));
6087
6088      for (int j = header_idx; j < end_idx; j++) {
6089        code->at_put(j, code->at(j + 1));
6090      }
6091      code->at_put(end_idx, header_block);
6092
6093      // correct the flags so that any loop alignment occurs in the right place.
6094      assert(code->at(end_idx)->is_set(BlockBegin::backward_branch_target_flag), "must be backward branch target");
6095      code->at(end_idx)->clear(BlockBegin::backward_branch_target_flag);
6096      code->at(header_idx)->set(BlockBegin::backward_branch_target_flag);
6097    }
6098  }
6099}
6100
6101void ControlFlowOptimizer::reorder_short_loops(BlockList* code) {
6102  for (int i = code->length() - 1; i >= 0; i--) {
6103    BlockBegin* block = code->at(i);
6104
6105    if (block->is_set(BlockBegin::linear_scan_loop_header_flag)) {
6106      reorder_short_loop(code, block, i);
6107    }
6108  }
6109
6110  DEBUG_ONLY(verify(code));
6111}
6112
6113// only blocks with exactly one successor can be deleted. Such blocks
6114// must always end with an unconditional branch to this successor
6115bool ControlFlowOptimizer::can_delete_block(BlockBegin* block) {
6116  if (block->number_of_sux() != 1 || block->number_of_exception_handlers() != 0 || block->is_entry_block()) {
6117    return false;
6118  }
6119
6120  LIR_OpList* instructions = block->lir()->instructions_list();
6121
6122  assert(instructions->length() >= 2, "block must have label and branch");
6123  assert(instructions->at(0)->code() == lir_label, "first instruction must always be a label");
6124  assert(instructions->last()->as_OpBranch() != NULL, "last instrcution must always be a branch");
6125  assert(instructions->last()->as_OpBranch()->cond() == lir_cond_always, "branch must be unconditional");
6126  assert(instructions->last()->as_OpBranch()->block() == block->sux_at(0), "branch target must be the successor");
6127
6128  // block must have exactly one successor
6129
6130  if (instructions->length() == 2 && instructions->last()->info() == NULL) {
6131    return true;
6132  }
6133  return false;
6134}
6135
6136// substitute branch targets in all branch-instructions of this blocks
6137void ControlFlowOptimizer::substitute_branch_target(BlockBegin* block, BlockBegin* target_from, BlockBegin* target_to) {
6138  TRACE_LINEAR_SCAN(3, tty->print_cr("Deleting empty block: substituting from B%d to B%d inside B%d", target_from->block_id(), target_to->block_id(), block->block_id()));
6139
6140  LIR_OpList* instructions = block->lir()->instructions_list();
6141
6142  assert(instructions->at(0)->code() == lir_label, "first instruction must always be a label");
6143  for (int i = instructions->length() - 1; i >= 1; i--) {
6144    LIR_Op* op = instructions->at(i);
6145
6146    if (op->code() == lir_branch || op->code() == lir_cond_float_branch) {
6147      assert(op->as_OpBranch() != NULL, "branch must be of type LIR_OpBranch");
6148      LIR_OpBranch* branch = (LIR_OpBranch*)op;
6149
6150      if (branch->block() == target_from) {
6151        branch->change_block(target_to);
6152      }
6153      if (branch->ublock() == target_from) {
6154        branch->change_ublock(target_to);
6155      }
6156    }
6157  }
6158}
6159
6160void ControlFlowOptimizer::delete_empty_blocks(BlockList* code) {
6161  int old_pos = 0;
6162  int new_pos = 0;
6163  int num_blocks = code->length();
6164
6165  while (old_pos < num_blocks) {
6166    BlockBegin* block = code->at(old_pos);
6167
6168    if (can_delete_block(block)) {
6169      BlockBegin* new_target = block->sux_at(0);
6170
6171      // propagate backward branch target flag for correct code alignment
6172      if (block->is_set(BlockBegin::backward_branch_target_flag)) {
6173        new_target->set(BlockBegin::backward_branch_target_flag);
6174      }
6175
6176      // collect a list with all predecessors that contains each predecessor only once
6177      // the predecessors of cur are changed during the substitution, so a copy of the
6178      // predecessor list is necessary
6179      int j;
6180      _original_preds.clear();
6181      for (j = block->number_of_preds() - 1; j >= 0; j--) {
6182        BlockBegin* pred = block->pred_at(j);
6183        if (_original_preds.index_of(pred) == -1) {
6184          _original_preds.append(pred);
6185        }
6186      }
6187
6188      for (j = _original_preds.length() - 1; j >= 0; j--) {
6189        BlockBegin* pred = _original_preds.at(j);
6190        substitute_branch_target(pred, block, new_target);
6191        pred->substitute_sux(block, new_target);
6192      }
6193    } else {
6194      // adjust position of this block in the block list if blocks before
6195      // have been deleted
6196      if (new_pos != old_pos) {
6197        code->at_put(new_pos, code->at(old_pos));
6198      }
6199      new_pos++;
6200    }
6201    old_pos++;
6202  }
6203  code->truncate(new_pos);
6204
6205  DEBUG_ONLY(verify(code));
6206}
6207
6208void ControlFlowOptimizer::delete_unnecessary_jumps(BlockList* code) {
6209  // skip the last block because there a branch is always necessary
6210  for (int i = code->length() - 2; i >= 0; i--) {
6211    BlockBegin* block = code->at(i);
6212    LIR_OpList* instructions = block->lir()->instructions_list();
6213
6214    LIR_Op* last_op = instructions->last();
6215    if (last_op->code() == lir_branch) {
6216      assert(last_op->as_OpBranch() != NULL, "branch must be of type LIR_OpBranch");
6217      LIR_OpBranch* last_branch = (LIR_OpBranch*)last_op;
6218
6219      assert(last_branch->block() != NULL, "last branch must always have a block as target");
6220      assert(last_branch->label() == last_branch->block()->label(), "must be equal");
6221
6222      if (last_branch->info() == NULL) {
6223        if (last_branch->block() == code->at(i + 1)) {
6224
6225          TRACE_LINEAR_SCAN(3, tty->print_cr("Deleting unconditional branch at end of block B%d", block->block_id()));
6226
6227          // delete last branch instruction
6228          instructions->truncate(instructions->length() - 1);
6229
6230        } else {
6231          LIR_Op* prev_op = instructions->at(instructions->length() - 2);
6232          if (prev_op->code() == lir_branch || prev_op->code() == lir_cond_float_branch) {
6233            assert(prev_op->as_OpBranch() != NULL, "branch must be of type LIR_OpBranch");
6234            LIR_OpBranch* prev_branch = (LIR_OpBranch*)prev_op;
6235
6236            if (prev_branch->stub() == NULL) {
6237
6238              LIR_Op2* prev_cmp = NULL;
6239
6240              for(int j = instructions->length() - 3; j >= 0 && prev_cmp == NULL; j--) {
6241                prev_op = instructions->at(j);
6242                if (prev_op->code() == lir_cmp) {
6243                  assert(prev_op->as_Op2() != NULL, "branch must be of type LIR_Op2");
6244                  prev_cmp = (LIR_Op2*)prev_op;
6245                  assert(prev_branch->cond() == prev_cmp->condition(), "should be the same");
6246                }
6247              }
6248              assert(prev_cmp != NULL, "should have found comp instruction for branch");
6249              if (prev_branch->block() == code->at(i + 1) && prev_branch->info() == NULL) {
6250
6251                TRACE_LINEAR_SCAN(3, tty->print_cr("Negating conditional branch and deleting unconditional branch at end of block B%d", block->block_id()));
6252
6253                // eliminate a conditional branch to the immediate successor
6254                prev_branch->change_block(last_branch->block());
6255                prev_branch->negate_cond();
6256                prev_cmp->set_condition(prev_branch->cond());
6257                instructions->truncate(instructions->length() - 1);
6258              }
6259            }
6260          }
6261        }
6262      }
6263    }
6264  }
6265
6266  DEBUG_ONLY(verify(code));
6267}
6268
6269void ControlFlowOptimizer::delete_jumps_to_return(BlockList* code) {
6270#ifdef ASSERT
6271  BitMap return_converted(BlockBegin::number_of_blocks());
6272  return_converted.clear();
6273#endif
6274
6275  for (int i = code->length() - 1; i >= 0; i--) {
6276    BlockBegin* block = code->at(i);
6277    LIR_OpList* cur_instructions = block->lir()->instructions_list();
6278    LIR_Op*     cur_last_op = cur_instructions->last();
6279
6280    assert(cur_instructions->at(0)->code() == lir_label, "first instruction must always be a label");
6281    if (cur_instructions->length() == 2 && cur_last_op->code() == lir_return) {
6282      // the block contains only a label and a return
6283      // if a predecessor ends with an unconditional jump to this block, then the jump
6284      // can be replaced with a return instruction
6285      //
6286      // Note: the original block with only a return statement cannot be deleted completely
6287      //       because the predecessors might have other (conditional) jumps to this block
6288      //       -> this may lead to unnecesary return instructions in the final code
6289
6290      assert(cur_last_op->info() == NULL, "return instructions do not have debug information");
6291      assert(block->number_of_sux() == 0 ||
6292             (return_converted.at(block->block_id()) && block->number_of_sux() == 1),
6293             "blocks that end with return must not have successors");
6294
6295      assert(cur_last_op->as_Op1() != NULL, "return must be LIR_Op1");
6296      LIR_Opr return_opr = ((LIR_Op1*)cur_last_op)->in_opr();
6297
6298      for (int j = block->number_of_preds() - 1; j >= 0; j--) {
6299        BlockBegin* pred = block->pred_at(j);
6300        LIR_OpList* pred_instructions = pred->lir()->instructions_list();
6301        LIR_Op*     pred_last_op = pred_instructions->last();
6302
6303        if (pred_last_op->code() == lir_branch) {
6304          assert(pred_last_op->as_OpBranch() != NULL, "branch must be LIR_OpBranch");
6305          LIR_OpBranch* pred_last_branch = (LIR_OpBranch*)pred_last_op;
6306
6307          if (pred_last_branch->block() == block && pred_last_branch->cond() == lir_cond_always && pred_last_branch->info() == NULL) {
6308            // replace the jump to a return with a direct return
6309            // Note: currently the edge between the blocks is not deleted
6310            pred_instructions->at_put(pred_instructions->length() - 1, new LIR_Op1(lir_return, return_opr));
6311#ifdef ASSERT
6312            return_converted.set_bit(pred->block_id());
6313#endif
6314          }
6315        }
6316      }
6317    }
6318  }
6319}
6320
6321
6322#ifdef ASSERT
6323void ControlFlowOptimizer::verify(BlockList* code) {
6324  for (int i = 0; i < code->length(); i++) {
6325    BlockBegin* block = code->at(i);
6326    LIR_OpList* instructions = block->lir()->instructions_list();
6327
6328    int j;
6329    for (j = 0; j < instructions->length(); j++) {
6330      LIR_OpBranch* op_branch = instructions->at(j)->as_OpBranch();
6331
6332      if (op_branch != NULL) {
6333        assert(op_branch->block() == NULL || code->index_of(op_branch->block()) != -1, "branch target not valid");
6334        assert(op_branch->ublock() == NULL || code->index_of(op_branch->ublock()) != -1, "branch target not valid");
6335      }
6336    }
6337
6338    for (j = 0; j < block->number_of_sux() - 1; j++) {
6339      BlockBegin* sux = block->sux_at(j);
6340      assert(code->index_of(sux) != -1, "successor not valid");
6341    }
6342
6343    for (j = 0; j < block->number_of_preds() - 1; j++) {
6344      BlockBegin* pred = block->pred_at(j);
6345      assert(code->index_of(pred) != -1, "successor not valid");
6346    }
6347  }
6348}
6349#endif
6350
6351
6352#ifndef PRODUCT
6353
6354// Implementation of LinearStatistic
6355
6356const char* LinearScanStatistic::counter_name(int counter_idx) {
6357  switch (counter_idx) {
6358    case counter_method:          return "compiled methods";
6359    case counter_fpu_method:      return "methods using fpu";
6360    case counter_loop_method:     return "methods with loops";
6361    case counter_exception_method:return "methods with xhandler";
6362
6363    case counter_loop:            return "loops";
6364    case counter_block:           return "blocks";
6365    case counter_loop_block:      return "blocks inside loop";
6366    case counter_exception_block: return "exception handler entries";
6367    case counter_interval:        return "intervals";
6368    case counter_fixed_interval:  return "fixed intervals";
6369    case counter_range:           return "ranges";
6370    case counter_fixed_range:     return "fixed ranges";
6371    case counter_use_pos:         return "use positions";
6372    case counter_fixed_use_pos:   return "fixed use positions";
6373    case counter_spill_slots:     return "spill slots";
6374
6375    // counter for classes of lir instructions
6376    case counter_instruction:     return "total instructions";
6377    case counter_label:           return "labels";
6378    case counter_entry:           return "method entries";
6379    case counter_return:          return "method returns";
6380    case counter_call:            return "method calls";
6381    case counter_move:            return "moves";
6382    case counter_cmp:             return "compare";
6383    case counter_cond_branch:     return "conditional branches";
6384    case counter_uncond_branch:   return "unconditional branches";
6385    case counter_stub_branch:     return "branches to stub";
6386    case counter_alu:             return "artithmetic + logic";
6387    case counter_alloc:           return "allocations";
6388    case counter_sync:            return "synchronisation";
6389    case counter_throw:           return "throw";
6390    case counter_unwind:          return "unwind";
6391    case counter_typecheck:       return "type+null-checks";
6392    case counter_fpu_stack:       return "fpu-stack";
6393    case counter_misc_inst:       return "other instructions";
6394    case counter_other_inst:      return "misc. instructions";
6395
6396    // counter for different types of moves
6397    case counter_move_total:      return "total moves";
6398    case counter_move_reg_reg:    return "register->register";
6399    case counter_move_reg_stack:  return "register->stack";
6400    case counter_move_stack_reg:  return "stack->register";
6401    case counter_move_stack_stack:return "stack->stack";
6402    case counter_move_reg_mem:    return "register->memory";
6403    case counter_move_mem_reg:    return "memory->register";
6404    case counter_move_const_any:  return "constant->any";
6405
6406    case blank_line_1:            return "";
6407    case blank_line_2:            return "";
6408
6409    default: ShouldNotReachHere(); return "";
6410  }
6411}
6412
6413LinearScanStatistic::Counter LinearScanStatistic::base_counter(int counter_idx) {
6414  if (counter_idx == counter_fpu_method || counter_idx == counter_loop_method || counter_idx == counter_exception_method) {
6415    return counter_method;
6416  } else if (counter_idx == counter_loop_block || counter_idx == counter_exception_block) {
6417    return counter_block;
6418  } else if (counter_idx >= counter_instruction && counter_idx <= counter_other_inst) {
6419    return counter_instruction;
6420  } else if (counter_idx >= counter_move_total && counter_idx <= counter_move_const_any) {
6421    return counter_move_total;
6422  }
6423  return invalid_counter;
6424}
6425
6426LinearScanStatistic::LinearScanStatistic() {
6427  for (int i = 0; i < number_of_counters; i++) {
6428    _counters_sum[i] = 0;
6429    _counters_max[i] = -1;
6430  }
6431
6432}
6433
6434// add the method-local numbers to the total sum
6435void LinearScanStatistic::sum_up(LinearScanStatistic &method_statistic) {
6436  for (int i = 0; i < number_of_counters; i++) {
6437    _counters_sum[i] += method_statistic._counters_sum[i];
6438    _counters_max[i] = MAX2(_counters_max[i], method_statistic._counters_sum[i]);
6439  }
6440}
6441
6442void LinearScanStatistic::print(const char* title) {
6443  if (CountLinearScan || TraceLinearScanLevel > 0) {
6444    tty->cr();
6445    tty->print_cr("***** LinearScan statistic - %s *****", title);
6446
6447    for (int i = 0; i < number_of_counters; i++) {
6448      if (_counters_sum[i] > 0 || _counters_max[i] >= 0) {
6449        tty->print("%25s: %8d", counter_name(i), _counters_sum[i]);
6450
6451        if (base_counter(i) != invalid_counter) {
6452          tty->print("  (%5.1f%%) ", _counters_sum[i] * 100.0 / _counters_sum[base_counter(i)]);
6453        } else {
6454          tty->print("           ");
6455        }
6456
6457        if (_counters_max[i] >= 0) {
6458          tty->print("%8d", _counters_max[i]);
6459        }
6460      }
6461      tty->cr();
6462    }
6463  }
6464}
6465
6466void LinearScanStatistic::collect(LinearScan* allocator) {
6467  inc_counter(counter_method);
6468  if (allocator->has_fpu_registers()) {
6469    inc_counter(counter_fpu_method);
6470  }
6471  if (allocator->num_loops() > 0) {
6472    inc_counter(counter_loop_method);
6473  }
6474  inc_counter(counter_loop, allocator->num_loops());
6475  inc_counter(counter_spill_slots, allocator->max_spills());
6476
6477  int i;
6478  for (i = 0; i < allocator->interval_count(); i++) {
6479    Interval* cur = allocator->interval_at(i);
6480
6481    if (cur != NULL) {
6482      inc_counter(counter_interval);
6483      inc_counter(counter_use_pos, cur->num_use_positions());
6484      if (LinearScan::is_precolored_interval(cur)) {
6485        inc_counter(counter_fixed_interval);
6486        inc_counter(counter_fixed_use_pos, cur->num_use_positions());
6487      }
6488
6489      Range* range = cur->first();
6490      while (range != Range::end()) {
6491        inc_counter(counter_range);
6492        if (LinearScan::is_precolored_interval(cur)) {
6493          inc_counter(counter_fixed_range);
6494        }
6495        range = range->next();
6496      }
6497    }
6498  }
6499
6500  bool has_xhandlers = false;
6501  // Note: only count blocks that are in code-emit order
6502  for (i = 0; i < allocator->ir()->code()->length(); i++) {
6503    BlockBegin* cur = allocator->ir()->code()->at(i);
6504
6505    inc_counter(counter_block);
6506    if (cur->loop_depth() > 0) {
6507      inc_counter(counter_loop_block);
6508    }
6509    if (cur->is_set(BlockBegin::exception_entry_flag)) {
6510      inc_counter(counter_exception_block);
6511      has_xhandlers = true;
6512    }
6513
6514    LIR_OpList* instructions = cur->lir()->instructions_list();
6515    for (int j = 0; j < instructions->length(); j++) {
6516      LIR_Op* op = instructions->at(j);
6517
6518      inc_counter(counter_instruction);
6519
6520      switch (op->code()) {
6521        case lir_label:           inc_counter(counter_label); break;
6522        case lir_std_entry:
6523        case lir_osr_entry:       inc_counter(counter_entry); break;
6524        case lir_return:          inc_counter(counter_return); break;
6525
6526        case lir_rtcall:
6527        case lir_static_call:
6528        case lir_optvirtual_call:
6529        case lir_virtual_call:    inc_counter(counter_call); break;
6530
6531        case lir_move: {
6532          inc_counter(counter_move);
6533          inc_counter(counter_move_total);
6534
6535          LIR_Opr in = op->as_Op1()->in_opr();
6536          LIR_Opr res = op->as_Op1()->result_opr();
6537          if (in->is_register()) {
6538            if (res->is_register()) {
6539              inc_counter(counter_move_reg_reg);
6540            } else if (res->is_stack()) {
6541              inc_counter(counter_move_reg_stack);
6542            } else if (res->is_address()) {
6543              inc_counter(counter_move_reg_mem);
6544            } else {
6545              ShouldNotReachHere();
6546            }
6547          } else if (in->is_stack()) {
6548            if (res->is_register()) {
6549              inc_counter(counter_move_stack_reg);
6550            } else {
6551              inc_counter(counter_move_stack_stack);
6552            }
6553          } else if (in->is_address()) {
6554            assert(res->is_register(), "must be");
6555            inc_counter(counter_move_mem_reg);
6556          } else if (in->is_constant()) {
6557            inc_counter(counter_move_const_any);
6558          } else {
6559            ShouldNotReachHere();
6560          }
6561          break;
6562        }
6563
6564        case lir_cmp:             inc_counter(counter_cmp); break;
6565
6566        case lir_branch:
6567        case lir_cond_float_branch: {
6568          LIR_OpBranch* branch = op->as_OpBranch();
6569          if (branch->block() == NULL) {
6570            inc_counter(counter_stub_branch);
6571          } else if (branch->cond() == lir_cond_always) {
6572            inc_counter(counter_uncond_branch);
6573          } else {
6574            inc_counter(counter_cond_branch);
6575          }
6576          break;
6577        }
6578
6579        case lir_neg:
6580        case lir_add:
6581        case lir_sub:
6582        case lir_mul:
6583        case lir_mul_strictfp:
6584        case lir_div:
6585        case lir_div_strictfp:
6586        case lir_rem:
6587        case lir_sqrt:
6588        case lir_sin:
6589        case lir_cos:
6590        case lir_abs:
6591        case lir_log10:
6592        case lir_log:
6593        case lir_pow:
6594        case lir_exp:
6595        case lir_logic_and:
6596        case lir_logic_or:
6597        case lir_logic_xor:
6598        case lir_shl:
6599        case lir_shr:
6600        case lir_ushr:            inc_counter(counter_alu); break;
6601
6602        case lir_alloc_object:
6603        case lir_alloc_array:     inc_counter(counter_alloc); break;
6604
6605        case lir_monaddr:
6606        case lir_lock:
6607        case lir_unlock:          inc_counter(counter_sync); break;
6608
6609        case lir_throw:           inc_counter(counter_throw); break;
6610
6611        case lir_unwind:          inc_counter(counter_unwind); break;
6612
6613        case lir_null_check:
6614        case lir_leal:
6615        case lir_instanceof:
6616        case lir_checkcast:
6617        case lir_store_check:     inc_counter(counter_typecheck); break;
6618
6619        case lir_fpop_raw:
6620        case lir_fxch:
6621        case lir_fld:             inc_counter(counter_fpu_stack); break;
6622
6623        case lir_nop:
6624        case lir_push:
6625        case lir_pop:
6626        case lir_convert:
6627        case lir_roundfp:
6628        case lir_cmove:           inc_counter(counter_misc_inst); break;
6629
6630        default:                  inc_counter(counter_other_inst); break;
6631      }
6632    }
6633  }
6634
6635  if (has_xhandlers) {
6636    inc_counter(counter_exception_method);
6637  }
6638}
6639
6640void LinearScanStatistic::compute(LinearScan* allocator, LinearScanStatistic &global_statistic) {
6641  if (CountLinearScan || TraceLinearScanLevel > 0) {
6642
6643    LinearScanStatistic local_statistic = LinearScanStatistic();
6644
6645    local_statistic.collect(allocator);
6646    global_statistic.sum_up(local_statistic);
6647
6648    if (TraceLinearScanLevel > 2) {
6649      local_statistic.print("current local statistic");
6650    }
6651  }
6652}
6653
6654
6655// Implementation of LinearTimers
6656
6657LinearScanTimers::LinearScanTimers() {
6658  for (int i = 0; i < number_of_timers; i++) {
6659    timer(i)->reset();
6660  }
6661}
6662
6663const char* LinearScanTimers::timer_name(int idx) {
6664  switch (idx) {
6665    case timer_do_nothing:               return "Nothing (Time Check)";
6666    case timer_number_instructions:      return "Number Instructions";
6667    case timer_compute_local_live_sets:  return "Local Live Sets";
6668    case timer_compute_global_live_sets: return "Global Live Sets";
6669    case timer_build_intervals:          return "Build Intervals";
6670    case timer_sort_intervals_before:    return "Sort Intervals Before";
6671    case timer_allocate_registers:       return "Allocate Registers";
6672    case timer_resolve_data_flow:        return "Resolve Data Flow";
6673    case timer_sort_intervals_after:     return "Sort Intervals After";
6674    case timer_eliminate_spill_moves:    return "Spill optimization";
6675    case timer_assign_reg_num:           return "Assign Reg Num";
6676    case timer_allocate_fpu_stack:       return "Allocate FPU Stack";
6677    case timer_optimize_lir:             return "Optimize LIR";
6678    default: ShouldNotReachHere();       return "";
6679  }
6680}
6681
6682void LinearScanTimers::begin_method() {
6683  if (TimeEachLinearScan) {
6684    // reset all timers to measure only current method
6685    for (int i = 0; i < number_of_timers; i++) {
6686      timer(i)->reset();
6687    }
6688  }
6689}
6690
6691void LinearScanTimers::end_method(LinearScan* allocator) {
6692  if (TimeEachLinearScan) {
6693
6694    double c = timer(timer_do_nothing)->seconds();
6695    double total = 0;
6696    for (int i = 1; i < number_of_timers; i++) {
6697      total += timer(i)->seconds() - c;
6698    }
6699
6700    if (total >= 0.0005) {
6701      // print all information in one line for automatic processing
6702      tty->print("@"); allocator->compilation()->method()->print_name();
6703
6704      tty->print("@ %d ", allocator->compilation()->method()->code_size());
6705      tty->print("@ %d ", allocator->block_at(allocator->block_count() - 1)->last_lir_instruction_id() / 2);
6706      tty->print("@ %d ", allocator->block_count());
6707      tty->print("@ %d ", allocator->num_virtual_regs());
6708      tty->print("@ %d ", allocator->interval_count());
6709      tty->print("@ %d ", allocator->_num_calls);
6710      tty->print("@ %d ", allocator->num_loops());
6711
6712      tty->print("@ %6.6f ", total);
6713      for (int i = 1; i < number_of_timers; i++) {
6714        tty->print("@ %4.1f ", ((timer(i)->seconds() - c) / total) * 100);
6715      }
6716      tty->cr();
6717    }
6718  }
6719}
6720
6721void LinearScanTimers::print(double total_time) {
6722  if (TimeLinearScan) {
6723    // correction value: sum of dummy-timer that only measures the time that
6724    // is necesary to start and stop itself
6725    double c = timer(timer_do_nothing)->seconds();
6726
6727    for (int i = 0; i < number_of_timers; i++) {
6728      double t = timer(i)->seconds();
6729      tty->print_cr("    %25s: %6.3f s (%4.1f%%)  corrected: %6.3f s (%4.1f%%)", timer_name(i), t, (t / total_time) * 100.0, t - c, (t - c) / (total_time - 2 * number_of_timers * c) * 100);
6730    }
6731  }
6732}
6733
6734#endif // #ifndef PRODUCT
6735