1/*
2 * Copyright (c) 2005, 2017, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "c1/c1_CFGPrinter.hpp"
27#include "c1/c1_CodeStubs.hpp"
28#include "c1/c1_Compilation.hpp"
29#include "c1/c1_FrameMap.hpp"
30#include "c1/c1_IR.hpp"
31#include "c1/c1_LIRGenerator.hpp"
32#include "c1/c1_LinearScan.hpp"
33#include "c1/c1_ValueStack.hpp"
34#include "code/vmreg.inline.hpp"
35#include "runtime/timerTrace.hpp"
36#include "utilities/bitMap.inline.hpp"
37
38#ifndef PRODUCT
39
40  static LinearScanStatistic _stat_before_alloc;
41  static LinearScanStatistic _stat_after_asign;
42  static LinearScanStatistic _stat_final;
43
44  static LinearScanTimers _total_timer;
45
46  // helper macro for short definition of timer
47  #define TIME_LINEAR_SCAN(timer_name)  TraceTime _block_timer("", _total_timer.timer(LinearScanTimers::timer_name), TimeLinearScan || TimeEachLinearScan, Verbose);
48
49  // helper macro for short definition of trace-output inside code
50  #define TRACE_LINEAR_SCAN(level, code)       \
51    if (TraceLinearScanLevel >= level) {       \
52      code;                                    \
53    }
54
55#else
56
57  #define TIME_LINEAR_SCAN(timer_name)
58  #define TRACE_LINEAR_SCAN(level, code)
59
60#endif
61
62// Map BasicType to spill size in 32-bit words, matching VMReg's notion of words
63#ifdef _LP64
64static int type2spill_size[T_CONFLICT+1]={ -1, 0, 0, 0, 1, 1, 1, 2, 1, 1, 1, 2, 2, 2, 0, 2,  1, 2, 1, -1};
65#else
66static int type2spill_size[T_CONFLICT+1]={ -1, 0, 0, 0, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 0, 1, -1, 1, 1, -1};
67#endif
68
69
70// Implementation of LinearScan
71
72LinearScan::LinearScan(IR* ir, LIRGenerator* gen, FrameMap* frame_map)
73 : _compilation(ir->compilation())
74 , _ir(ir)
75 , _gen(gen)
76 , _frame_map(frame_map)
77 , _num_virtual_regs(gen->max_virtual_register_number())
78 , _has_fpu_registers(false)
79 , _num_calls(-1)
80 , _max_spills(0)
81 , _unused_spill_slot(-1)
82 , _intervals(0)   // initialized later with correct length
83 , _new_intervals_from_allocation(new IntervalList())
84 , _sorted_intervals(NULL)
85 , _needs_full_resort(false)
86 , _lir_ops(0)     // initialized later with correct length
87 , _block_of_op(0) // initialized later with correct length
88 , _has_info(0)
89 , _has_call(0)
90 , _scope_value_cache(0) // initialized later with correct length
91 , _interval_in_loop(0)  // initialized later with correct length
92 , _cached_blocks(*ir->linear_scan_order())
93#ifdef X86
94 , _fpu_stack_allocator(NULL)
95#endif
96{
97  assert(this->ir() != NULL,          "check if valid");
98  assert(this->compilation() != NULL, "check if valid");
99  assert(this->gen() != NULL,         "check if valid");
100  assert(this->frame_map() != NULL,   "check if valid");
101}
102
103
104// ********** functions for converting LIR-Operands to register numbers
105//
106// Emulate a flat register file comprising physical integer registers,
107// physical floating-point registers and virtual registers, in that order.
108// Virtual registers already have appropriate numbers, since V0 is
109// the number of physical registers.
110// Returns -1 for hi word if opr is a single word operand.
111//
112// Note: the inverse operation (calculating an operand for register numbers)
113//       is done in calc_operand_for_interval()
114
115int LinearScan::reg_num(LIR_Opr opr) {
116  assert(opr->is_register(), "should not call this otherwise");
117
118  if (opr->is_virtual_register()) {
119    assert(opr->vreg_number() >= nof_regs, "found a virtual register with a fixed-register number");
120    return opr->vreg_number();
121  } else if (opr->is_single_cpu()) {
122    return opr->cpu_regnr();
123  } else if (opr->is_double_cpu()) {
124    return opr->cpu_regnrLo();
125#ifdef X86
126  } else if (opr->is_single_xmm()) {
127    return opr->fpu_regnr() + pd_first_xmm_reg;
128  } else if (opr->is_double_xmm()) {
129    return opr->fpu_regnrLo() + pd_first_xmm_reg;
130#endif
131  } else if (opr->is_single_fpu()) {
132    return opr->fpu_regnr() + pd_first_fpu_reg;
133  } else if (opr->is_double_fpu()) {
134    return opr->fpu_regnrLo() + pd_first_fpu_reg;
135  } else {
136    ShouldNotReachHere();
137    return -1;
138  }
139}
140
141int LinearScan::reg_numHi(LIR_Opr opr) {
142  assert(opr->is_register(), "should not call this otherwise");
143
144  if (opr->is_virtual_register()) {
145    return -1;
146  } else if (opr->is_single_cpu()) {
147    return -1;
148  } else if (opr->is_double_cpu()) {
149    return opr->cpu_regnrHi();
150#ifdef X86
151  } else if (opr->is_single_xmm()) {
152    return -1;
153  } else if (opr->is_double_xmm()) {
154    return -1;
155#endif
156  } else if (opr->is_single_fpu()) {
157    return -1;
158  } else if (opr->is_double_fpu()) {
159    return opr->fpu_regnrHi() + pd_first_fpu_reg;
160  } else {
161    ShouldNotReachHere();
162    return -1;
163  }
164}
165
166
167// ********** functions for classification of intervals
168
169bool LinearScan::is_precolored_interval(const Interval* i) {
170  return i->reg_num() < LinearScan::nof_regs;
171}
172
173bool LinearScan::is_virtual_interval(const Interval* i) {
174  return i->reg_num() >= LIR_OprDesc::vreg_base;
175}
176
177bool LinearScan::is_precolored_cpu_interval(const Interval* i) {
178  return i->reg_num() < LinearScan::nof_cpu_regs;
179}
180
181bool LinearScan::is_virtual_cpu_interval(const Interval* i) {
182#if defined(__SOFTFP__) || defined(E500V2)
183  return i->reg_num() >= LIR_OprDesc::vreg_base;
184#else
185  return i->reg_num() >= LIR_OprDesc::vreg_base && (i->type() != T_FLOAT && i->type() != T_DOUBLE);
186#endif // __SOFTFP__ or E500V2
187}
188
189bool LinearScan::is_precolored_fpu_interval(const Interval* i) {
190  return i->reg_num() >= LinearScan::nof_cpu_regs && i->reg_num() < LinearScan::nof_regs;
191}
192
193bool LinearScan::is_virtual_fpu_interval(const Interval* i) {
194#if defined(__SOFTFP__) || defined(E500V2)
195  return false;
196#else
197  return i->reg_num() >= LIR_OprDesc::vreg_base && (i->type() == T_FLOAT || i->type() == T_DOUBLE);
198#endif // __SOFTFP__ or E500V2
199}
200
201bool LinearScan::is_in_fpu_register(const Interval* i) {
202  // fixed intervals not needed for FPU stack allocation
203  return i->reg_num() >= nof_regs && pd_first_fpu_reg <= i->assigned_reg() && i->assigned_reg() <= pd_last_fpu_reg;
204}
205
206bool LinearScan::is_oop_interval(const Interval* i) {
207  // fixed intervals never contain oops
208  return i->reg_num() >= nof_regs && i->type() == T_OBJECT;
209}
210
211
212// ********** General helper functions
213
214// compute next unused stack index that can be used for spilling
215int LinearScan::allocate_spill_slot(bool double_word) {
216  int spill_slot;
217  if (double_word) {
218    if ((_max_spills & 1) == 1) {
219      // alignment of double-word values
220      // the hole because of the alignment is filled with the next single-word value
221      assert(_unused_spill_slot == -1, "wasting a spill slot");
222      _unused_spill_slot = _max_spills;
223      _max_spills++;
224    }
225    spill_slot = _max_spills;
226    _max_spills += 2;
227
228  } else if (_unused_spill_slot != -1) {
229    // re-use hole that was the result of a previous double-word alignment
230    spill_slot = _unused_spill_slot;
231    _unused_spill_slot = -1;
232
233  } else {
234    spill_slot = _max_spills;
235    _max_spills++;
236  }
237
238  int result = spill_slot + LinearScan::nof_regs + frame_map()->argcount();
239
240  // the class OopMapValue uses only 11 bits for storing the name of the
241  // oop location. So a stack slot bigger than 2^11 leads to an overflow
242  // that is not reported in product builds. Prevent this by checking the
243  // spill slot here (altough this value and the later used location name
244  // are slightly different)
245  if (result > 2000) {
246    bailout("too many stack slots used");
247  }
248
249  return result;
250}
251
252void LinearScan::assign_spill_slot(Interval* it) {
253  // assign the canonical spill slot of the parent (if a part of the interval
254  // is already spilled) or allocate a new spill slot
255  if (it->canonical_spill_slot() >= 0) {
256    it->assign_reg(it->canonical_spill_slot());
257  } else {
258    int spill = allocate_spill_slot(type2spill_size[it->type()] == 2);
259    it->set_canonical_spill_slot(spill);
260    it->assign_reg(spill);
261  }
262}
263
264void LinearScan::propagate_spill_slots() {
265  if (!frame_map()->finalize_frame(max_spills())) {
266    bailout("frame too large");
267  }
268}
269
270// create a new interval with a predefined reg_num
271// (only used for parent intervals that are created during the building phase)
272Interval* LinearScan::create_interval(int reg_num) {
273  assert(_intervals.at(reg_num) == NULL, "overwriting exisiting interval");
274
275  Interval* interval = new Interval(reg_num);
276  _intervals.at_put(reg_num, interval);
277
278  // assign register number for precolored intervals
279  if (reg_num < LIR_OprDesc::vreg_base) {
280    interval->assign_reg(reg_num);
281  }
282  return interval;
283}
284
285// assign a new reg_num to the interval and append it to the list of intervals
286// (only used for child intervals that are created during register allocation)
287void LinearScan::append_interval(Interval* it) {
288  it->set_reg_num(_intervals.length());
289  _intervals.append(it);
290  _new_intervals_from_allocation->append(it);
291}
292
293// copy the vreg-flags if an interval is split
294void LinearScan::copy_register_flags(Interval* from, Interval* to) {
295  if (gen()->is_vreg_flag_set(from->reg_num(), LIRGenerator::byte_reg)) {
296    gen()->set_vreg_flag(to->reg_num(), LIRGenerator::byte_reg);
297  }
298  if (gen()->is_vreg_flag_set(from->reg_num(), LIRGenerator::callee_saved)) {
299    gen()->set_vreg_flag(to->reg_num(), LIRGenerator::callee_saved);
300  }
301
302  // Note: do not copy the must_start_in_memory flag because it is not necessary for child
303  //       intervals (only the very beginning of the interval must be in memory)
304}
305
306
307// ********** spill move optimization
308// eliminate moves from register to stack if stack slot is known to be correct
309
310// called during building of intervals
311void LinearScan::change_spill_definition_pos(Interval* interval, int def_pos) {
312  assert(interval->is_split_parent(), "can only be called for split parents");
313
314  switch (interval->spill_state()) {
315    case noDefinitionFound:
316      assert(interval->spill_definition_pos() == -1, "must no be set before");
317      interval->set_spill_definition_pos(def_pos);
318      interval->set_spill_state(oneDefinitionFound);
319      break;
320
321    case oneDefinitionFound:
322      assert(def_pos <= interval->spill_definition_pos(), "positions are processed in reverse order when intervals are created");
323      if (def_pos < interval->spill_definition_pos() - 2) {
324        // second definition found, so no spill optimization possible for this interval
325        interval->set_spill_state(noOptimization);
326      } else {
327        // two consecutive definitions (because of two-operand LIR form)
328        assert(block_of_op_with_id(def_pos) == block_of_op_with_id(interval->spill_definition_pos()), "block must be equal");
329      }
330      break;
331
332    case noOptimization:
333      // nothing to do
334      break;
335
336    default:
337      assert(false, "other states not allowed at this time");
338  }
339}
340
341// called during register allocation
342void LinearScan::change_spill_state(Interval* interval, int spill_pos) {
343  switch (interval->spill_state()) {
344    case oneDefinitionFound: {
345      int def_loop_depth = block_of_op_with_id(interval->spill_definition_pos())->loop_depth();
346      int spill_loop_depth = block_of_op_with_id(spill_pos)->loop_depth();
347
348      if (def_loop_depth < spill_loop_depth) {
349        // the loop depth of the spilling position is higher then the loop depth
350        // at the definition of the interval -> move write to memory out of loop
351        // by storing at definitin of the interval
352        interval->set_spill_state(storeAtDefinition);
353      } else {
354        // the interval is currently spilled only once, so for now there is no
355        // reason to store the interval at the definition
356        interval->set_spill_state(oneMoveInserted);
357      }
358      break;
359    }
360
361    case oneMoveInserted: {
362      // the interval is spilled more then once, so it is better to store it to
363      // memory at the definition
364      interval->set_spill_state(storeAtDefinition);
365      break;
366    }
367
368    case storeAtDefinition:
369    case startInMemory:
370    case noOptimization:
371    case noDefinitionFound:
372      // nothing to do
373      break;
374
375    default:
376      assert(false, "other states not allowed at this time");
377  }
378}
379
380
381bool LinearScan::must_store_at_definition(const Interval* i) {
382  return i->is_split_parent() && i->spill_state() == storeAtDefinition;
383}
384
385// called once before asignment of register numbers
386void LinearScan::eliminate_spill_moves() {
387  TIME_LINEAR_SCAN(timer_eliminate_spill_moves);
388  TRACE_LINEAR_SCAN(3, tty->print_cr("***** Eliminating unnecessary spill moves"));
389
390  // collect all intervals that must be stored after their definion.
391  // the list is sorted by Interval::spill_definition_pos
392  Interval* interval;
393  Interval* temp_list;
394  create_unhandled_lists(&interval, &temp_list, must_store_at_definition, NULL);
395
396#ifdef ASSERT
397  Interval* prev = NULL;
398  Interval* temp = interval;
399  while (temp != Interval::end()) {
400    assert(temp->spill_definition_pos() > 0, "invalid spill definition pos");
401    if (prev != NULL) {
402      assert(temp->from() >= prev->from(), "intervals not sorted");
403      assert(temp->spill_definition_pos() >= prev->spill_definition_pos(), "when intervals are sorted by from, then they must also be sorted by spill_definition_pos");
404    }
405
406    assert(temp->canonical_spill_slot() >= LinearScan::nof_regs, "interval has no spill slot assigned");
407    assert(temp->spill_definition_pos() >= temp->from(), "invalid order");
408    assert(temp->spill_definition_pos() <= temp->from() + 2, "only intervals defined once at their start-pos can be optimized");
409
410    TRACE_LINEAR_SCAN(4, tty->print_cr("interval %d (from %d to %d) must be stored at %d", temp->reg_num(), temp->from(), temp->to(), temp->spill_definition_pos()));
411
412    temp = temp->next();
413  }
414#endif
415
416  LIR_InsertionBuffer insertion_buffer;
417  int num_blocks = block_count();
418  for (int i = 0; i < num_blocks; i++) {
419    BlockBegin* block = block_at(i);
420    LIR_OpList* instructions = block->lir()->instructions_list();
421    int         num_inst = instructions->length();
422    bool        has_new = false;
423
424    // iterate all instructions of the block. skip the first because it is always a label
425    for (int j = 1; j < num_inst; j++) {
426      LIR_Op* op = instructions->at(j);
427      int op_id = op->id();
428
429      if (op_id == -1) {
430        // remove move from register to stack if the stack slot is guaranteed to be correct.
431        // only moves that have been inserted by LinearScan can be removed.
432        assert(op->code() == lir_move, "only moves can have a op_id of -1");
433        assert(op->as_Op1() != NULL, "move must be LIR_Op1");
434        assert(op->as_Op1()->result_opr()->is_virtual(), "LinearScan inserts only moves to virtual registers");
435
436        LIR_Op1* op1 = (LIR_Op1*)op;
437        Interval* interval = interval_at(op1->result_opr()->vreg_number());
438
439        if (interval->assigned_reg() >= LinearScan::nof_regs && interval->always_in_memory()) {
440          // move target is a stack slot that is always correct, so eliminate instruction
441          TRACE_LINEAR_SCAN(4, tty->print_cr("eliminating move from interval %d to %d", op1->in_opr()->vreg_number(), op1->result_opr()->vreg_number()));
442          instructions->at_put(j, NULL); // NULL-instructions are deleted by assign_reg_num
443        }
444
445      } else {
446        // insert move from register to stack just after the beginning of the interval
447        assert(interval == Interval::end() || interval->spill_definition_pos() >= op_id, "invalid order");
448        assert(interval == Interval::end() || (interval->is_split_parent() && interval->spill_state() == storeAtDefinition), "invalid interval");
449
450        while (interval != Interval::end() && interval->spill_definition_pos() == op_id) {
451          if (!has_new) {
452            // prepare insertion buffer (appended when all instructions of the block are processed)
453            insertion_buffer.init(block->lir());
454            has_new = true;
455          }
456
457          LIR_Opr from_opr = operand_for_interval(interval);
458          LIR_Opr to_opr = canonical_spill_opr(interval);
459          assert(from_opr->is_fixed_cpu() || from_opr->is_fixed_fpu(), "from operand must be a register");
460          assert(to_opr->is_stack(), "to operand must be a stack slot");
461
462          insertion_buffer.move(j, from_opr, to_opr);
463          TRACE_LINEAR_SCAN(4, tty->print_cr("inserting move after definition of interval %d to stack slot %d at op_id %d", interval->reg_num(), interval->canonical_spill_slot() - LinearScan::nof_regs, op_id));
464
465          interval = interval->next();
466        }
467      }
468    } // end of instruction iteration
469
470    if (has_new) {
471      block->lir()->append(&insertion_buffer);
472    }
473  } // end of block iteration
474
475  assert(interval == Interval::end(), "missed an interval");
476}
477
478
479// ********** Phase 1: number all instructions in all blocks
480// Compute depth-first and linear scan block orders, and number LIR_Op nodes for linear scan.
481
482void LinearScan::number_instructions() {
483  {
484    // dummy-timer to measure the cost of the timer itself
485    // (this time is then subtracted from all other timers to get the real value)
486    TIME_LINEAR_SCAN(timer_do_nothing);
487  }
488  TIME_LINEAR_SCAN(timer_number_instructions);
489
490  // Assign IDs to LIR nodes and build a mapping, lir_ops, from ID to LIR_Op node.
491  int num_blocks = block_count();
492  int num_instructions = 0;
493  int i;
494  for (i = 0; i < num_blocks; i++) {
495    num_instructions += block_at(i)->lir()->instructions_list()->length();
496  }
497
498  // initialize with correct length
499  _lir_ops = LIR_OpArray(num_instructions, num_instructions, NULL);
500  _block_of_op = BlockBeginArray(num_instructions, num_instructions, NULL);
501
502  int op_id = 0;
503  int idx = 0;
504
505  for (i = 0; i < num_blocks; i++) {
506    BlockBegin* block = block_at(i);
507    block->set_first_lir_instruction_id(op_id);
508    LIR_OpList* instructions = block->lir()->instructions_list();
509
510    int num_inst = instructions->length();
511    for (int j = 0; j < num_inst; j++) {
512      LIR_Op* op = instructions->at(j);
513      op->set_id(op_id);
514
515      _lir_ops.at_put(idx, op);
516      _block_of_op.at_put(idx, block);
517      assert(lir_op_with_id(op_id) == op, "must match");
518
519      idx++;
520      op_id += 2; // numbering of lir_ops by two
521    }
522    block->set_last_lir_instruction_id(op_id - 2);
523  }
524  assert(idx == num_instructions, "must match");
525  assert(idx * 2 == op_id, "must match");
526
527  _has_call.initialize(num_instructions);
528  _has_info.initialize(num_instructions);
529}
530
531
532// ********** Phase 2: compute local live sets separately for each block
533// (sets live_gen and live_kill for each block)
534
535void LinearScan::set_live_gen_kill(Value value, LIR_Op* op, BitMap& live_gen, BitMap& live_kill) {
536  LIR_Opr opr = value->operand();
537  Constant* con = value->as_Constant();
538
539  // check some asumptions about debug information
540  assert(!value->type()->is_illegal(), "if this local is used by the interpreter it shouldn't be of indeterminate type");
541  assert(con == NULL || opr->is_virtual() || opr->is_constant() || opr->is_illegal(), "asumption: Constant instructions have only constant operands");
542  assert(con != NULL || opr->is_virtual(), "asumption: non-Constant instructions have only virtual operands");
543
544  if ((con == NULL || con->is_pinned()) && opr->is_register()) {
545    assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
546    int reg = opr->vreg_number();
547    if (!live_kill.at(reg)) {
548      live_gen.set_bit(reg);
549      TRACE_LINEAR_SCAN(4, tty->print_cr("  Setting live_gen for value %c%d, LIR op_id %d, register number %d", value->type()->tchar(), value->id(), op->id(), reg));
550    }
551  }
552}
553
554
555void LinearScan::compute_local_live_sets() {
556  TIME_LINEAR_SCAN(timer_compute_local_live_sets);
557
558  int  num_blocks = block_count();
559  int  live_size = live_set_size();
560  bool local_has_fpu_registers = false;
561  int  local_num_calls = 0;
562  LIR_OpVisitState visitor;
563
564  BitMap2D local_interval_in_loop = BitMap2D(_num_virtual_regs, num_loops());
565
566  // iterate all blocks
567  for (int i = 0; i < num_blocks; i++) {
568    BlockBegin* block = block_at(i);
569
570    ResourceBitMap live_gen(live_size);
571    ResourceBitMap live_kill(live_size);
572
573    if (block->is_set(BlockBegin::exception_entry_flag)) {
574      // Phi functions at the begin of an exception handler are
575      // implicitly defined (= killed) at the beginning of the block.
576      for_each_phi_fun(block, phi,
577        live_kill.set_bit(phi->operand()->vreg_number())
578      );
579    }
580
581    LIR_OpList* instructions = block->lir()->instructions_list();
582    int num_inst = instructions->length();
583
584    // iterate all instructions of the block. skip the first because it is always a label
585    assert(visitor.no_operands(instructions->at(0)), "first operation must always be a label");
586    for (int j = 1; j < num_inst; j++) {
587      LIR_Op* op = instructions->at(j);
588
589      // visit operation to collect all operands
590      visitor.visit(op);
591
592      if (visitor.has_call()) {
593        _has_call.set_bit(op->id() >> 1);
594        local_num_calls++;
595      }
596      if (visitor.info_count() > 0) {
597        _has_info.set_bit(op->id() >> 1);
598      }
599
600      // iterate input operands of instruction
601      int k, n, reg;
602      n = visitor.opr_count(LIR_OpVisitState::inputMode);
603      for (k = 0; k < n; k++) {
604        LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::inputMode, k);
605        assert(opr->is_register(), "visitor should only return register operands");
606
607        if (opr->is_virtual_register()) {
608          assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
609          reg = opr->vreg_number();
610          if (!live_kill.at(reg)) {
611            live_gen.set_bit(reg);
612            TRACE_LINEAR_SCAN(4, tty->print_cr("  Setting live_gen for register %d at instruction %d", reg, op->id()));
613          }
614          if (block->loop_index() >= 0) {
615            local_interval_in_loop.set_bit(reg, block->loop_index());
616          }
617          local_has_fpu_registers = local_has_fpu_registers || opr->is_virtual_fpu();
618        }
619
620#ifdef ASSERT
621        // fixed intervals are never live at block boundaries, so
622        // they need not be processed in live sets.
623        // this is checked by these assertions to be sure about it.
624        // the entry block may have incoming values in registers, which is ok.
625        if (!opr->is_virtual_register() && block != ir()->start()) {
626          reg = reg_num(opr);
627          if (is_processed_reg_num(reg)) {
628            assert(live_kill.at(reg), "using fixed register that is not defined in this block");
629          }
630          reg = reg_numHi(opr);
631          if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
632            assert(live_kill.at(reg), "using fixed register that is not defined in this block");
633          }
634        }
635#endif
636      }
637
638      // Add uses of live locals from interpreter's point of view for proper debug information generation
639      n = visitor.info_count();
640      for (k = 0; k < n; k++) {
641        CodeEmitInfo* info = visitor.info_at(k);
642        ValueStack* stack = info->stack();
643        for_each_state_value(stack, value,
644          set_live_gen_kill(value, op, live_gen, live_kill)
645        );
646      }
647
648      // iterate temp operands of instruction
649      n = visitor.opr_count(LIR_OpVisitState::tempMode);
650      for (k = 0; k < n; k++) {
651        LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::tempMode, k);
652        assert(opr->is_register(), "visitor should only return register operands");
653
654        if (opr->is_virtual_register()) {
655          assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
656          reg = opr->vreg_number();
657          live_kill.set_bit(reg);
658          if (block->loop_index() >= 0) {
659            local_interval_in_loop.set_bit(reg, block->loop_index());
660          }
661          local_has_fpu_registers = local_has_fpu_registers || opr->is_virtual_fpu();
662        }
663
664#ifdef ASSERT
665        // fixed intervals are never live at block boundaries, so
666        // they need not be processed in live sets
667        // process them only in debug mode so that this can be checked
668        if (!opr->is_virtual_register()) {
669          reg = reg_num(opr);
670          if (is_processed_reg_num(reg)) {
671            live_kill.set_bit(reg_num(opr));
672          }
673          reg = reg_numHi(opr);
674          if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
675            live_kill.set_bit(reg);
676          }
677        }
678#endif
679      }
680
681      // iterate output operands of instruction
682      n = visitor.opr_count(LIR_OpVisitState::outputMode);
683      for (k = 0; k < n; k++) {
684        LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::outputMode, k);
685        assert(opr->is_register(), "visitor should only return register operands");
686
687        if (opr->is_virtual_register()) {
688          assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
689          reg = opr->vreg_number();
690          live_kill.set_bit(reg);
691          if (block->loop_index() >= 0) {
692            local_interval_in_loop.set_bit(reg, block->loop_index());
693          }
694          local_has_fpu_registers = local_has_fpu_registers || opr->is_virtual_fpu();
695        }
696
697#ifdef ASSERT
698        // fixed intervals are never live at block boundaries, so
699        // they need not be processed in live sets
700        // process them only in debug mode so that this can be checked
701        if (!opr->is_virtual_register()) {
702          reg = reg_num(opr);
703          if (is_processed_reg_num(reg)) {
704            live_kill.set_bit(reg_num(opr));
705          }
706          reg = reg_numHi(opr);
707          if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
708            live_kill.set_bit(reg);
709          }
710        }
711#endif
712      }
713    } // end of instruction iteration
714
715    block->set_live_gen (live_gen);
716    block->set_live_kill(live_kill);
717    block->set_live_in  (ResourceBitMap(live_size));
718    block->set_live_out (ResourceBitMap(live_size));
719
720    TRACE_LINEAR_SCAN(4, tty->print("live_gen  B%d ", block->block_id()); print_bitmap(block->live_gen()));
721    TRACE_LINEAR_SCAN(4, tty->print("live_kill B%d ", block->block_id()); print_bitmap(block->live_kill()));
722  } // end of block iteration
723
724  // propagate local calculated information into LinearScan object
725  _has_fpu_registers = local_has_fpu_registers;
726  compilation()->set_has_fpu_code(local_has_fpu_registers);
727
728  _num_calls = local_num_calls;
729  _interval_in_loop = local_interval_in_loop;
730}
731
732
733// ********** Phase 3: perform a backward dataflow analysis to compute global live sets
734// (sets live_in and live_out for each block)
735
736void LinearScan::compute_global_live_sets() {
737  TIME_LINEAR_SCAN(timer_compute_global_live_sets);
738
739  int  num_blocks = block_count();
740  bool change_occurred;
741  bool change_occurred_in_block;
742  int  iteration_count = 0;
743  ResourceBitMap live_out(live_set_size()); // scratch set for calculations
744
745  // Perform a backward dataflow analysis to compute live_out and live_in for each block.
746  // The loop is executed until a fixpoint is reached (no changes in an iteration)
747  // Exception handlers must be processed because not all live values are
748  // present in the state array, e.g. because of global value numbering
749  do {
750    change_occurred = false;
751
752    // iterate all blocks in reverse order
753    for (int i = num_blocks - 1; i >= 0; i--) {
754      BlockBegin* block = block_at(i);
755
756      change_occurred_in_block = false;
757
758      // live_out(block) is the union of live_in(sux), for successors sux of block
759      int n = block->number_of_sux();
760      int e = block->number_of_exception_handlers();
761      if (n + e > 0) {
762        // block has successors
763        if (n > 0) {
764          live_out.set_from(block->sux_at(0)->live_in());
765          for (int j = 1; j < n; j++) {
766            live_out.set_union(block->sux_at(j)->live_in());
767          }
768        } else {
769          live_out.clear();
770        }
771        for (int j = 0; j < e; j++) {
772          live_out.set_union(block->exception_handler_at(j)->live_in());
773        }
774
775        if (!block->live_out().is_same(live_out)) {
776          // A change occurred.  Swap the old and new live out sets to avoid copying.
777          ResourceBitMap temp = block->live_out();
778          block->set_live_out(live_out);
779          live_out = temp;
780
781          change_occurred = true;
782          change_occurred_in_block = true;
783        }
784      }
785
786      if (iteration_count == 0 || change_occurred_in_block) {
787        // live_in(block) is the union of live_gen(block) with (live_out(block) & !live_kill(block))
788        // note: live_in has to be computed only in first iteration or if live_out has changed!
789        ResourceBitMap live_in = block->live_in();
790        live_in.set_from(block->live_out());
791        live_in.set_difference(block->live_kill());
792        live_in.set_union(block->live_gen());
793      }
794
795#ifndef PRODUCT
796      if (TraceLinearScanLevel >= 4) {
797        char c = ' ';
798        if (iteration_count == 0 || change_occurred_in_block) {
799          c = '*';
800        }
801        tty->print("(%d) live_in%c  B%d ", iteration_count, c, block->block_id()); print_bitmap(block->live_in());
802        tty->print("(%d) live_out%c B%d ", iteration_count, c, block->block_id()); print_bitmap(block->live_out());
803      }
804#endif
805    }
806    iteration_count++;
807
808    if (change_occurred && iteration_count > 50) {
809      BAILOUT("too many iterations in compute_global_live_sets");
810    }
811  } while (change_occurred);
812
813
814#ifdef ASSERT
815  // check that fixed intervals are not live at block boundaries
816  // (live set must be empty at fixed intervals)
817  for (int i = 0; i < num_blocks; i++) {
818    BlockBegin* block = block_at(i);
819    for (int j = 0; j < LIR_OprDesc::vreg_base; j++) {
820      assert(block->live_in().at(j)  == false, "live_in  set of fixed register must be empty");
821      assert(block->live_out().at(j) == false, "live_out set of fixed register must be empty");
822      assert(block->live_gen().at(j) == false, "live_gen set of fixed register must be empty");
823    }
824  }
825#endif
826
827  // check that the live_in set of the first block is empty
828  ResourceBitMap live_in_args(ir()->start()->live_in().size());
829  if (!ir()->start()->live_in().is_same(live_in_args)) {
830#ifdef ASSERT
831    tty->print_cr("Error: live_in set of first block must be empty (when this fails, virtual registers are used before they are defined)");
832    tty->print_cr("affected registers:");
833    print_bitmap(ir()->start()->live_in());
834
835    // print some additional information to simplify debugging
836    for (unsigned int i = 0; i < ir()->start()->live_in().size(); i++) {
837      if (ir()->start()->live_in().at(i)) {
838        Instruction* instr = gen()->instruction_for_vreg(i);
839        tty->print_cr("* vreg %d (HIR instruction %c%d)", i, instr == NULL ? ' ' : instr->type()->tchar(), instr == NULL ? 0 : instr->id());
840
841        for (int j = 0; j < num_blocks; j++) {
842          BlockBegin* block = block_at(j);
843          if (block->live_gen().at(i)) {
844            tty->print_cr("  used in block B%d", block->block_id());
845          }
846          if (block->live_kill().at(i)) {
847            tty->print_cr("  defined in block B%d", block->block_id());
848          }
849        }
850      }
851    }
852
853#endif
854    // when this fails, virtual registers are used before they are defined.
855    assert(false, "live_in set of first block must be empty");
856    // bailout of if this occurs in product mode.
857    bailout("live_in set of first block not empty");
858  }
859}
860
861
862// ********** Phase 4: build intervals
863// (fills the list _intervals)
864
865void LinearScan::add_use(Value value, int from, int to, IntervalUseKind use_kind) {
866  assert(!value->type()->is_illegal(), "if this value is used by the interpreter it shouldn't be of indeterminate type");
867  LIR_Opr opr = value->operand();
868  Constant* con = value->as_Constant();
869
870  if ((con == NULL || con->is_pinned()) && opr->is_register()) {
871    assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
872    add_use(opr, from, to, use_kind);
873  }
874}
875
876
877void LinearScan::add_def(LIR_Opr opr, int def_pos, IntervalUseKind use_kind) {
878  TRACE_LINEAR_SCAN(2, tty->print(" def "); opr->print(tty); tty->print_cr(" def_pos %d (%d)", def_pos, use_kind));
879  assert(opr->is_register(), "should not be called otherwise");
880
881  if (opr->is_virtual_register()) {
882    assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
883    add_def(opr->vreg_number(), def_pos, use_kind, opr->type_register());
884
885  } else {
886    int reg = reg_num(opr);
887    if (is_processed_reg_num(reg)) {
888      add_def(reg, def_pos, use_kind, opr->type_register());
889    }
890    reg = reg_numHi(opr);
891    if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
892      add_def(reg, def_pos, use_kind, opr->type_register());
893    }
894  }
895}
896
897void LinearScan::add_use(LIR_Opr opr, int from, int to, IntervalUseKind use_kind) {
898  TRACE_LINEAR_SCAN(2, tty->print(" use "); opr->print(tty); tty->print_cr(" from %d to %d (%d)", from, to, use_kind));
899  assert(opr->is_register(), "should not be called otherwise");
900
901  if (opr->is_virtual_register()) {
902    assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
903    add_use(opr->vreg_number(), from, to, use_kind, opr->type_register());
904
905  } else {
906    int reg = reg_num(opr);
907    if (is_processed_reg_num(reg)) {
908      add_use(reg, from, to, use_kind, opr->type_register());
909    }
910    reg = reg_numHi(opr);
911    if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
912      add_use(reg, from, to, use_kind, opr->type_register());
913    }
914  }
915}
916
917void LinearScan::add_temp(LIR_Opr opr, int temp_pos, IntervalUseKind use_kind) {
918  TRACE_LINEAR_SCAN(2, tty->print(" temp "); opr->print(tty); tty->print_cr(" temp_pos %d (%d)", temp_pos, use_kind));
919  assert(opr->is_register(), "should not be called otherwise");
920
921  if (opr->is_virtual_register()) {
922    assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
923    add_temp(opr->vreg_number(), temp_pos, use_kind, opr->type_register());
924
925  } else {
926    int reg = reg_num(opr);
927    if (is_processed_reg_num(reg)) {
928      add_temp(reg, temp_pos, use_kind, opr->type_register());
929    }
930    reg = reg_numHi(opr);
931    if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
932      add_temp(reg, temp_pos, use_kind, opr->type_register());
933    }
934  }
935}
936
937
938void LinearScan::add_def(int reg_num, int def_pos, IntervalUseKind use_kind, BasicType type) {
939  Interval* interval = interval_at(reg_num);
940  if (interval != NULL) {
941    assert(interval->reg_num() == reg_num, "wrong interval");
942
943    if (type != T_ILLEGAL) {
944      interval->set_type(type);
945    }
946
947    Range* r = interval->first();
948    if (r->from() <= def_pos) {
949      // Update the starting point (when a range is first created for a use, its
950      // start is the beginning of the current block until a def is encountered.)
951      r->set_from(def_pos);
952      interval->add_use_pos(def_pos, use_kind);
953
954    } else {
955      // Dead value - make vacuous interval
956      // also add use_kind for dead intervals
957      interval->add_range(def_pos, def_pos + 1);
958      interval->add_use_pos(def_pos, use_kind);
959      TRACE_LINEAR_SCAN(2, tty->print_cr("Warning: def of reg %d at %d occurs without use", reg_num, def_pos));
960    }
961
962  } else {
963    // Dead value - make vacuous interval
964    // also add use_kind for dead intervals
965    interval = create_interval(reg_num);
966    if (type != T_ILLEGAL) {
967      interval->set_type(type);
968    }
969
970    interval->add_range(def_pos, def_pos + 1);
971    interval->add_use_pos(def_pos, use_kind);
972    TRACE_LINEAR_SCAN(2, tty->print_cr("Warning: dead value %d at %d in live intervals", reg_num, def_pos));
973  }
974
975  change_spill_definition_pos(interval, def_pos);
976  if (use_kind == noUse && interval->spill_state() <= startInMemory) {
977        // detection of method-parameters and roundfp-results
978        // TODO: move this directly to position where use-kind is computed
979    interval->set_spill_state(startInMemory);
980  }
981}
982
983void LinearScan::add_use(int reg_num, int from, int to, IntervalUseKind use_kind, BasicType type) {
984  Interval* interval = interval_at(reg_num);
985  if (interval == NULL) {
986    interval = create_interval(reg_num);
987  }
988  assert(interval->reg_num() == reg_num, "wrong interval");
989
990  if (type != T_ILLEGAL) {
991    interval->set_type(type);
992  }
993
994  interval->add_range(from, to);
995  interval->add_use_pos(to, use_kind);
996}
997
998void LinearScan::add_temp(int reg_num, int temp_pos, IntervalUseKind use_kind, BasicType type) {
999  Interval* interval = interval_at(reg_num);
1000  if (interval == NULL) {
1001    interval = create_interval(reg_num);
1002  }
1003  assert(interval->reg_num() == reg_num, "wrong interval");
1004
1005  if (type != T_ILLEGAL) {
1006    interval->set_type(type);
1007  }
1008
1009  interval->add_range(temp_pos, temp_pos + 1);
1010  interval->add_use_pos(temp_pos, use_kind);
1011}
1012
1013
1014// the results of this functions are used for optimizing spilling and reloading
1015// if the functions return shouldHaveRegister and the interval is spilled,
1016// it is not reloaded to a register.
1017IntervalUseKind LinearScan::use_kind_of_output_operand(LIR_Op* op, LIR_Opr opr) {
1018  if (op->code() == lir_move) {
1019    assert(op->as_Op1() != NULL, "lir_move must be LIR_Op1");
1020    LIR_Op1* move = (LIR_Op1*)op;
1021    LIR_Opr res = move->result_opr();
1022    bool result_in_memory = res->is_virtual() && gen()->is_vreg_flag_set(res->vreg_number(), LIRGenerator::must_start_in_memory);
1023
1024    if (result_in_memory) {
1025      // Begin of an interval with must_start_in_memory set.
1026      // This interval will always get a stack slot first, so return noUse.
1027      return noUse;
1028
1029    } else if (move->in_opr()->is_stack()) {
1030      // method argument (condition must be equal to handle_method_arguments)
1031      return noUse;
1032
1033    } else if (move->in_opr()->is_register() && move->result_opr()->is_register()) {
1034      // Move from register to register
1035      if (block_of_op_with_id(op->id())->is_set(BlockBegin::osr_entry_flag)) {
1036        // special handling of phi-function moves inside osr-entry blocks
1037        // input operand must have a register instead of output operand (leads to better register allocation)
1038        return shouldHaveRegister;
1039      }
1040    }
1041  }
1042
1043  if (opr->is_virtual() &&
1044      gen()->is_vreg_flag_set(opr->vreg_number(), LIRGenerator::must_start_in_memory)) {
1045    // result is a stack-slot, so prevent immediate reloading
1046    return noUse;
1047  }
1048
1049  // all other operands require a register
1050  return mustHaveRegister;
1051}
1052
1053IntervalUseKind LinearScan::use_kind_of_input_operand(LIR_Op* op, LIR_Opr opr) {
1054  if (op->code() == lir_move) {
1055    assert(op->as_Op1() != NULL, "lir_move must be LIR_Op1");
1056    LIR_Op1* move = (LIR_Op1*)op;
1057    LIR_Opr res = move->result_opr();
1058    bool result_in_memory = res->is_virtual() && gen()->is_vreg_flag_set(res->vreg_number(), LIRGenerator::must_start_in_memory);
1059
1060    if (result_in_memory) {
1061      // Move to an interval with must_start_in_memory set.
1062      // To avoid moves from stack to stack (not allowed) force the input operand to a register
1063      return mustHaveRegister;
1064
1065    } else if (move->in_opr()->is_register() && move->result_opr()->is_register()) {
1066      // Move from register to register
1067      if (block_of_op_with_id(op->id())->is_set(BlockBegin::osr_entry_flag)) {
1068        // special handling of phi-function moves inside osr-entry blocks
1069        // input operand must have a register instead of output operand (leads to better register allocation)
1070        return mustHaveRegister;
1071      }
1072
1073      // The input operand is not forced to a register (moves from stack to register are allowed),
1074      // but it is faster if the input operand is in a register
1075      return shouldHaveRegister;
1076    }
1077  }
1078
1079
1080#if defined(X86) || defined(S390)
1081  if (op->code() == lir_cmove) {
1082    // conditional moves can handle stack operands
1083    assert(op->result_opr()->is_register(), "result must always be in a register");
1084    return shouldHaveRegister;
1085  }
1086
1087  // optimizations for second input operand of arithmehtic operations on Intel
1088  // this operand is allowed to be on the stack in some cases
1089  BasicType opr_type = opr->type_register();
1090  if (opr_type == T_FLOAT || opr_type == T_DOUBLE) {
1091    if ((UseSSE == 1 && opr_type == T_FLOAT) || UseSSE >= 2 S390_ONLY(|| true)) {
1092      // SSE float instruction (T_DOUBLE only supported with SSE2)
1093      switch (op->code()) {
1094        case lir_cmp:
1095        case lir_add:
1096        case lir_sub:
1097        case lir_mul:
1098        case lir_div:
1099        {
1100          assert(op->as_Op2() != NULL, "must be LIR_Op2");
1101          LIR_Op2* op2 = (LIR_Op2*)op;
1102          if (op2->in_opr1() != op2->in_opr2() && op2->in_opr2() == opr) {
1103            assert((op2->result_opr()->is_register() || op->code() == lir_cmp) && op2->in_opr1()->is_register(), "cannot mark second operand as stack if others are not in register");
1104            return shouldHaveRegister;
1105          }
1106        }
1107        default:
1108          break;
1109      }
1110    } else {
1111      // FPU stack float instruction
1112      switch (op->code()) {
1113        case lir_add:
1114        case lir_sub:
1115        case lir_mul:
1116        case lir_div:
1117        {
1118          assert(op->as_Op2() != NULL, "must be LIR_Op2");
1119          LIR_Op2* op2 = (LIR_Op2*)op;
1120          if (op2->in_opr1() != op2->in_opr2() && op2->in_opr2() == opr) {
1121            assert((op2->result_opr()->is_register() || op->code() == lir_cmp) && op2->in_opr1()->is_register(), "cannot mark second operand as stack if others are not in register");
1122            return shouldHaveRegister;
1123          }
1124        }
1125        default:
1126          break;
1127      }
1128    }
1129    // We want to sometimes use logical operations on pointers, in particular in GC barriers.
1130    // Since 64bit logical operations do not current support operands on stack, we have to make sure
1131    // T_OBJECT doesn't get spilled along with T_LONG.
1132  } else if (opr_type != T_LONG LP64_ONLY(&& opr_type != T_OBJECT)) {
1133    // integer instruction (note: long operands must always be in register)
1134    switch (op->code()) {
1135      case lir_cmp:
1136      case lir_add:
1137      case lir_sub:
1138      case lir_logic_and:
1139      case lir_logic_or:
1140      case lir_logic_xor:
1141      {
1142        assert(op->as_Op2() != NULL, "must be LIR_Op2");
1143        LIR_Op2* op2 = (LIR_Op2*)op;
1144        if (op2->in_opr1() != op2->in_opr2() && op2->in_opr2() == opr) {
1145          assert((op2->result_opr()->is_register() || op->code() == lir_cmp) && op2->in_opr1()->is_register(), "cannot mark second operand as stack if others are not in register");
1146          return shouldHaveRegister;
1147        }
1148      }
1149      default:
1150        break;
1151    }
1152  }
1153#endif // X86 S390
1154
1155  // all other operands require a register
1156  return mustHaveRegister;
1157}
1158
1159
1160void LinearScan::handle_method_arguments(LIR_Op* op) {
1161  // special handling for method arguments (moves from stack to virtual register):
1162  // the interval gets no register assigned, but the stack slot.
1163  // it is split before the first use by the register allocator.
1164
1165  if (op->code() == lir_move) {
1166    assert(op->as_Op1() != NULL, "must be LIR_Op1");
1167    LIR_Op1* move = (LIR_Op1*)op;
1168
1169    if (move->in_opr()->is_stack()) {
1170#ifdef ASSERT
1171      int arg_size = compilation()->method()->arg_size();
1172      LIR_Opr o = move->in_opr();
1173      if (o->is_single_stack()) {
1174        assert(o->single_stack_ix() >= 0 && o->single_stack_ix() < arg_size, "out of range");
1175      } else if (o->is_double_stack()) {
1176        assert(o->double_stack_ix() >= 0 && o->double_stack_ix() < arg_size, "out of range");
1177      } else {
1178        ShouldNotReachHere();
1179      }
1180
1181      assert(move->id() > 0, "invalid id");
1182      assert(block_of_op_with_id(move->id())->number_of_preds() == 0, "move from stack must be in first block");
1183      assert(move->result_opr()->is_virtual(), "result of move must be a virtual register");
1184
1185      TRACE_LINEAR_SCAN(4, tty->print_cr("found move from stack slot %d to vreg %d", o->is_single_stack() ? o->single_stack_ix() : o->double_stack_ix(), reg_num(move->result_opr())));
1186#endif
1187
1188      Interval* interval = interval_at(reg_num(move->result_opr()));
1189
1190      int stack_slot = LinearScan::nof_regs + (move->in_opr()->is_single_stack() ? move->in_opr()->single_stack_ix() : move->in_opr()->double_stack_ix());
1191      interval->set_canonical_spill_slot(stack_slot);
1192      interval->assign_reg(stack_slot);
1193    }
1194  }
1195}
1196
1197void LinearScan::handle_doubleword_moves(LIR_Op* op) {
1198  // special handling for doubleword move from memory to register:
1199  // in this case the registers of the input address and the result
1200  // registers must not overlap -> add a temp range for the input registers
1201  if (op->code() == lir_move) {
1202    assert(op->as_Op1() != NULL, "must be LIR_Op1");
1203    LIR_Op1* move = (LIR_Op1*)op;
1204
1205    if (move->result_opr()->is_double_cpu() && move->in_opr()->is_pointer()) {
1206      LIR_Address* address = move->in_opr()->as_address_ptr();
1207      if (address != NULL) {
1208        if (address->base()->is_valid()) {
1209          add_temp(address->base(), op->id(), noUse);
1210        }
1211        if (address->index()->is_valid()) {
1212          add_temp(address->index(), op->id(), noUse);
1213        }
1214      }
1215    }
1216  }
1217}
1218
1219void LinearScan::add_register_hints(LIR_Op* op) {
1220  switch (op->code()) {
1221    case lir_move:      // fall through
1222    case lir_convert: {
1223      assert(op->as_Op1() != NULL, "lir_move, lir_convert must be LIR_Op1");
1224      LIR_Op1* move = (LIR_Op1*)op;
1225
1226      LIR_Opr move_from = move->in_opr();
1227      LIR_Opr move_to = move->result_opr();
1228
1229      if (move_to->is_register() && move_from->is_register()) {
1230        Interval* from = interval_at(reg_num(move_from));
1231        Interval* to = interval_at(reg_num(move_to));
1232        if (from != NULL && to != NULL) {
1233          to->set_register_hint(from);
1234          TRACE_LINEAR_SCAN(4, tty->print_cr("operation at op_id %d: added hint from interval %d to %d", move->id(), from->reg_num(), to->reg_num()));
1235        }
1236      }
1237      break;
1238    }
1239    case lir_cmove: {
1240      assert(op->as_Op2() != NULL, "lir_cmove must be LIR_Op2");
1241      LIR_Op2* cmove = (LIR_Op2*)op;
1242
1243      LIR_Opr move_from = cmove->in_opr1();
1244      LIR_Opr move_to = cmove->result_opr();
1245
1246      if (move_to->is_register() && move_from->is_register()) {
1247        Interval* from = interval_at(reg_num(move_from));
1248        Interval* to = interval_at(reg_num(move_to));
1249        if (from != NULL && to != NULL) {
1250          to->set_register_hint(from);
1251          TRACE_LINEAR_SCAN(4, tty->print_cr("operation at op_id %d: added hint from interval %d to %d", cmove->id(), from->reg_num(), to->reg_num()));
1252        }
1253      }
1254      break;
1255    }
1256    default:
1257      break;
1258  }
1259}
1260
1261
1262void LinearScan::build_intervals() {
1263  TIME_LINEAR_SCAN(timer_build_intervals);
1264
1265  // initialize interval list with expected number of intervals
1266  // (32 is added to have some space for split children without having to resize the list)
1267  _intervals = IntervalList(num_virtual_regs() + 32);
1268  // initialize all slots that are used by build_intervals
1269  _intervals.at_put_grow(num_virtual_regs() - 1, NULL, NULL);
1270
1271  // create a list with all caller-save registers (cpu, fpu, xmm)
1272  // when an instruction is a call, a temp range is created for all these registers
1273  int num_caller_save_registers = 0;
1274  int caller_save_registers[LinearScan::nof_regs];
1275
1276  int i;
1277  for (i = 0; i < FrameMap::nof_caller_save_cpu_regs(); i++) {
1278    LIR_Opr opr = FrameMap::caller_save_cpu_reg_at(i);
1279    assert(opr->is_valid() && opr->is_register(), "FrameMap should not return invalid operands");
1280    assert(reg_numHi(opr) == -1, "missing addition of range for hi-register");
1281    caller_save_registers[num_caller_save_registers++] = reg_num(opr);
1282  }
1283
1284  // temp ranges for fpu registers are only created when the method has
1285  // virtual fpu operands. Otherwise no allocation for fpu registers is
1286  // perfomed and so the temp ranges would be useless
1287  if (has_fpu_registers()) {
1288#ifdef X86
1289    if (UseSSE < 2) {
1290#endif
1291      for (i = 0; i < FrameMap::nof_caller_save_fpu_regs; i++) {
1292        LIR_Opr opr = FrameMap::caller_save_fpu_reg_at(i);
1293        assert(opr->is_valid() && opr->is_register(), "FrameMap should not return invalid operands");
1294        assert(reg_numHi(opr) == -1, "missing addition of range for hi-register");
1295        caller_save_registers[num_caller_save_registers++] = reg_num(opr);
1296      }
1297#ifdef X86
1298    }
1299    if (UseSSE > 0) {
1300      int num_caller_save_xmm_regs = FrameMap::get_num_caller_save_xmms();
1301      for (i = 0; i < num_caller_save_xmm_regs; i ++) {
1302        LIR_Opr opr = FrameMap::caller_save_xmm_reg_at(i);
1303        assert(opr->is_valid() && opr->is_register(), "FrameMap should not return invalid operands");
1304        assert(reg_numHi(opr) == -1, "missing addition of range for hi-register");
1305        caller_save_registers[num_caller_save_registers++] = reg_num(opr);
1306      }
1307    }
1308#endif
1309  }
1310  assert(num_caller_save_registers <= LinearScan::nof_regs, "out of bounds");
1311
1312
1313  LIR_OpVisitState visitor;
1314
1315  // iterate all blocks in reverse order
1316  for (i = block_count() - 1; i >= 0; i--) {
1317    BlockBegin* block = block_at(i);
1318    LIR_OpList* instructions = block->lir()->instructions_list();
1319    int         block_from =   block->first_lir_instruction_id();
1320    int         block_to =     block->last_lir_instruction_id();
1321
1322    assert(block_from == instructions->at(0)->id(), "must be");
1323    assert(block_to   == instructions->at(instructions->length() - 1)->id(), "must be");
1324
1325    // Update intervals for registers live at the end of this block;
1326    ResourceBitMap live = block->live_out();
1327    int size = (int)live.size();
1328    for (int number = (int)live.get_next_one_offset(0, size); number < size; number = (int)live.get_next_one_offset(number + 1, size)) {
1329      assert(live.at(number), "should not stop here otherwise");
1330      assert(number >= LIR_OprDesc::vreg_base, "fixed intervals must not be live on block bounds");
1331      TRACE_LINEAR_SCAN(2, tty->print_cr("live in %d to %d", number, block_to + 2));
1332
1333      add_use(number, block_from, block_to + 2, noUse, T_ILLEGAL);
1334
1335      // add special use positions for loop-end blocks when the
1336      // interval is used anywhere inside this loop.  It's possible
1337      // that the block was part of a non-natural loop, so it might
1338      // have an invalid loop index.
1339      if (block->is_set(BlockBegin::linear_scan_loop_end_flag) &&
1340          block->loop_index() != -1 &&
1341          is_interval_in_loop(number, block->loop_index())) {
1342        interval_at(number)->add_use_pos(block_to + 1, loopEndMarker);
1343      }
1344    }
1345
1346    // iterate all instructions of the block in reverse order.
1347    // skip the first instruction because it is always a label
1348    // definitions of intervals are processed before uses
1349    assert(visitor.no_operands(instructions->at(0)), "first operation must always be a label");
1350    for (int j = instructions->length() - 1; j >= 1; j--) {
1351      LIR_Op* op = instructions->at(j);
1352      int op_id = op->id();
1353
1354      // visit operation to collect all operands
1355      visitor.visit(op);
1356
1357      // add a temp range for each register if operation destroys caller-save registers
1358      if (visitor.has_call()) {
1359        for (int k = 0; k < num_caller_save_registers; k++) {
1360          add_temp(caller_save_registers[k], op_id, noUse, T_ILLEGAL);
1361        }
1362        TRACE_LINEAR_SCAN(4, tty->print_cr("operation destroys all caller-save registers"));
1363      }
1364
1365      // Add any platform dependent temps
1366      pd_add_temps(op);
1367
1368      // visit definitions (output and temp operands)
1369      int k, n;
1370      n = visitor.opr_count(LIR_OpVisitState::outputMode);
1371      for (k = 0; k < n; k++) {
1372        LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::outputMode, k);
1373        assert(opr->is_register(), "visitor should only return register operands");
1374        add_def(opr, op_id, use_kind_of_output_operand(op, opr));
1375      }
1376
1377      n = visitor.opr_count(LIR_OpVisitState::tempMode);
1378      for (k = 0; k < n; k++) {
1379        LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::tempMode, k);
1380        assert(opr->is_register(), "visitor should only return register operands");
1381        add_temp(opr, op_id, mustHaveRegister);
1382      }
1383
1384      // visit uses (input operands)
1385      n = visitor.opr_count(LIR_OpVisitState::inputMode);
1386      for (k = 0; k < n; k++) {
1387        LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::inputMode, k);
1388        assert(opr->is_register(), "visitor should only return register operands");
1389        add_use(opr, block_from, op_id, use_kind_of_input_operand(op, opr));
1390      }
1391
1392      // Add uses of live locals from interpreter's point of view for proper
1393      // debug information generation
1394      // Treat these operands as temp values (if the life range is extended
1395      // to a call site, the value would be in a register at the call otherwise)
1396      n = visitor.info_count();
1397      for (k = 0; k < n; k++) {
1398        CodeEmitInfo* info = visitor.info_at(k);
1399        ValueStack* stack = info->stack();
1400        for_each_state_value(stack, value,
1401          add_use(value, block_from, op_id + 1, noUse);
1402        );
1403      }
1404
1405      // special steps for some instructions (especially moves)
1406      handle_method_arguments(op);
1407      handle_doubleword_moves(op);
1408      add_register_hints(op);
1409
1410    } // end of instruction iteration
1411  } // end of block iteration
1412
1413
1414  // add the range [0, 1[ to all fixed intervals
1415  // -> the register allocator need not handle unhandled fixed intervals
1416  for (int n = 0; n < LinearScan::nof_regs; n++) {
1417    Interval* interval = interval_at(n);
1418    if (interval != NULL) {
1419      interval->add_range(0, 1);
1420    }
1421  }
1422}
1423
1424
1425// ********** Phase 5: actual register allocation
1426
1427int LinearScan::interval_cmp(Interval** a, Interval** b) {
1428  if (*a != NULL) {
1429    if (*b != NULL) {
1430      return (*a)->from() - (*b)->from();
1431    } else {
1432      return -1;
1433    }
1434  } else {
1435    if (*b != NULL) {
1436      return 1;
1437    } else {
1438      return 0;
1439    }
1440  }
1441}
1442
1443#ifndef PRODUCT
1444int interval_cmp(Interval* const& l, Interval* const& r) {
1445  return l->from() - r->from();
1446}
1447
1448bool find_interval(Interval* interval, IntervalArray* intervals) {
1449  bool found;
1450  int idx = intervals->find_sorted<Interval*, interval_cmp>(interval, found);
1451
1452  if (!found) {
1453    return false;
1454  }
1455
1456  int from = interval->from();
1457
1458  // The index we've found using binary search is pointing to an interval
1459  // that is defined in the same place as the interval we were looking for.
1460  // So now we have to look around that index and find exact interval.
1461  for (int i = idx; i >= 0; i--) {
1462    if (intervals->at(i) == interval) {
1463      return true;
1464    }
1465    if (intervals->at(i)->from() != from) {
1466      break;
1467    }
1468  }
1469
1470  for (int i = idx + 1; i < intervals->length(); i++) {
1471    if (intervals->at(i) == interval) {
1472      return true;
1473    }
1474    if (intervals->at(i)->from() != from) {
1475      break;
1476    }
1477  }
1478
1479  return false;
1480}
1481
1482bool LinearScan::is_sorted(IntervalArray* intervals) {
1483  int from = -1;
1484  int null_count = 0;
1485
1486  for (int i = 0; i < intervals->length(); i++) {
1487    Interval* it = intervals->at(i);
1488    if (it != NULL) {
1489      assert(from <= it->from(), "Intervals are unordered");
1490      from = it->from();
1491    } else {
1492      null_count++;
1493    }
1494  }
1495
1496  assert(null_count == 0, "Sorted intervals should not contain nulls");
1497
1498  null_count = 0;
1499
1500  for (int i = 0; i < interval_count(); i++) {
1501    Interval* interval = interval_at(i);
1502    if (interval != NULL) {
1503      assert(find_interval(interval, intervals), "Lists do not contain same intervals");
1504    } else {
1505      null_count++;
1506    }
1507  }
1508
1509  assert(interval_count() - null_count == intervals->length(),
1510      "Sorted list should contain the same amount of non-NULL intervals as unsorted list");
1511
1512  return true;
1513}
1514#endif
1515
1516void LinearScan::add_to_list(Interval** first, Interval** prev, Interval* interval) {
1517  if (*prev != NULL) {
1518    (*prev)->set_next(interval);
1519  } else {
1520    *first = interval;
1521  }
1522  *prev = interval;
1523}
1524
1525void LinearScan::create_unhandled_lists(Interval** list1, Interval** list2, bool (is_list1)(const Interval* i), bool (is_list2)(const Interval* i)) {
1526  assert(is_sorted(_sorted_intervals), "interval list is not sorted");
1527
1528  *list1 = *list2 = Interval::end();
1529
1530  Interval* list1_prev = NULL;
1531  Interval* list2_prev = NULL;
1532  Interval* v;
1533
1534  const int n = _sorted_intervals->length();
1535  for (int i = 0; i < n; i++) {
1536    v = _sorted_intervals->at(i);
1537    if (v == NULL) continue;
1538
1539    if (is_list1(v)) {
1540      add_to_list(list1, &list1_prev, v);
1541    } else if (is_list2 == NULL || is_list2(v)) {
1542      add_to_list(list2, &list2_prev, v);
1543    }
1544  }
1545
1546  if (list1_prev != NULL) list1_prev->set_next(Interval::end());
1547  if (list2_prev != NULL) list2_prev->set_next(Interval::end());
1548
1549  assert(list1_prev == NULL || list1_prev->next() == Interval::end(), "linear list ends not with sentinel");
1550  assert(list2_prev == NULL || list2_prev->next() == Interval::end(), "linear list ends not with sentinel");
1551}
1552
1553
1554void LinearScan::sort_intervals_before_allocation() {
1555  TIME_LINEAR_SCAN(timer_sort_intervals_before);
1556
1557  if (_needs_full_resort) {
1558    // There is no known reason why this should occur but just in case...
1559    assert(false, "should never occur");
1560    // Re-sort existing interval list because an Interval::from() has changed
1561    _sorted_intervals->sort(interval_cmp);
1562    _needs_full_resort = false;
1563  }
1564
1565  IntervalList* unsorted_list = &_intervals;
1566  int unsorted_len = unsorted_list->length();
1567  int sorted_len = 0;
1568  int unsorted_idx;
1569  int sorted_idx = 0;
1570  int sorted_from_max = -1;
1571
1572  // calc number of items for sorted list (sorted list must not contain NULL values)
1573  for (unsorted_idx = 0; unsorted_idx < unsorted_len; unsorted_idx++) {
1574    if (unsorted_list->at(unsorted_idx) != NULL) {
1575      sorted_len++;
1576    }
1577  }
1578  IntervalArray* sorted_list = new IntervalArray(sorted_len, sorted_len, NULL);
1579
1580  // special sorting algorithm: the original interval-list is almost sorted,
1581  // only some intervals are swapped. So this is much faster than a complete QuickSort
1582  for (unsorted_idx = 0; unsorted_idx < unsorted_len; unsorted_idx++) {
1583    Interval* cur_interval = unsorted_list->at(unsorted_idx);
1584
1585    if (cur_interval != NULL) {
1586      int cur_from = cur_interval->from();
1587
1588      if (sorted_from_max <= cur_from) {
1589        sorted_list->at_put(sorted_idx++, cur_interval);
1590        sorted_from_max = cur_interval->from();
1591      } else {
1592        // the asumption that the intervals are already sorted failed,
1593        // so this interval must be sorted in manually
1594        int j;
1595        for (j = sorted_idx - 1; j >= 0 && cur_from < sorted_list->at(j)->from(); j--) {
1596          sorted_list->at_put(j + 1, sorted_list->at(j));
1597        }
1598        sorted_list->at_put(j + 1, cur_interval);
1599        sorted_idx++;
1600      }
1601    }
1602  }
1603  _sorted_intervals = sorted_list;
1604  assert(is_sorted(_sorted_intervals), "intervals unsorted");
1605}
1606
1607void LinearScan::sort_intervals_after_allocation() {
1608  TIME_LINEAR_SCAN(timer_sort_intervals_after);
1609
1610  if (_needs_full_resort) {
1611    // Re-sort existing interval list because an Interval::from() has changed
1612    _sorted_intervals->sort(interval_cmp);
1613    _needs_full_resort = false;
1614  }
1615
1616  IntervalArray* old_list = _sorted_intervals;
1617  IntervalList* new_list = _new_intervals_from_allocation;
1618  int old_len = old_list->length();
1619  int new_len = new_list->length();
1620
1621  if (new_len == 0) {
1622    // no intervals have been added during allocation, so sorted list is already up to date
1623    assert(is_sorted(_sorted_intervals), "intervals unsorted");
1624    return;
1625  }
1626
1627  // conventional sort-algorithm for new intervals
1628  new_list->sort(interval_cmp);
1629
1630  // merge old and new list (both already sorted) into one combined list
1631  int combined_list_len = old_len + new_len;
1632  IntervalArray* combined_list = new IntervalArray(combined_list_len, combined_list_len, NULL);
1633  int old_idx = 0;
1634  int new_idx = 0;
1635
1636  while (old_idx + new_idx < old_len + new_len) {
1637    if (new_idx >= new_len || (old_idx < old_len && old_list->at(old_idx)->from() <= new_list->at(new_idx)->from())) {
1638      combined_list->at_put(old_idx + new_idx, old_list->at(old_idx));
1639      old_idx++;
1640    } else {
1641      combined_list->at_put(old_idx + new_idx, new_list->at(new_idx));
1642      new_idx++;
1643    }
1644  }
1645
1646  _sorted_intervals = combined_list;
1647  assert(is_sorted(_sorted_intervals), "intervals unsorted");
1648}
1649
1650
1651void LinearScan::allocate_registers() {
1652  TIME_LINEAR_SCAN(timer_allocate_registers);
1653
1654  Interval* precolored_cpu_intervals, *not_precolored_cpu_intervals;
1655  Interval* precolored_fpu_intervals, *not_precolored_fpu_intervals;
1656
1657  // allocate cpu registers
1658  create_unhandled_lists(&precolored_cpu_intervals, &not_precolored_cpu_intervals,
1659                         is_precolored_cpu_interval, is_virtual_cpu_interval);
1660
1661  // allocate fpu registers
1662  create_unhandled_lists(&precolored_fpu_intervals, &not_precolored_fpu_intervals,
1663                         is_precolored_fpu_interval, is_virtual_fpu_interval);
1664
1665  // the fpu interval allocation cannot be moved down below with the fpu section as
1666  // the cpu_lsw.walk() changes interval positions.
1667
1668  LinearScanWalker cpu_lsw(this, precolored_cpu_intervals, not_precolored_cpu_intervals);
1669  cpu_lsw.walk();
1670  cpu_lsw.finish_allocation();
1671
1672  if (has_fpu_registers()) {
1673    LinearScanWalker fpu_lsw(this, precolored_fpu_intervals, not_precolored_fpu_intervals);
1674    fpu_lsw.walk();
1675    fpu_lsw.finish_allocation();
1676  }
1677}
1678
1679
1680// ********** Phase 6: resolve data flow
1681// (insert moves at edges between blocks if intervals have been split)
1682
1683// wrapper for Interval::split_child_at_op_id that performs a bailout in product mode
1684// instead of returning NULL
1685Interval* LinearScan::split_child_at_op_id(Interval* interval, int op_id, LIR_OpVisitState::OprMode mode) {
1686  Interval* result = interval->split_child_at_op_id(op_id, mode);
1687  if (result != NULL) {
1688    return result;
1689  }
1690
1691  assert(false, "must find an interval, but do a clean bailout in product mode");
1692  result = new Interval(LIR_OprDesc::vreg_base);
1693  result->assign_reg(0);
1694  result->set_type(T_INT);
1695  BAILOUT_("LinearScan: interval is NULL", result);
1696}
1697
1698
1699Interval* LinearScan::interval_at_block_begin(BlockBegin* block, int reg_num) {
1700  assert(LinearScan::nof_regs <= reg_num && reg_num < num_virtual_regs(), "register number out of bounds");
1701  assert(interval_at(reg_num) != NULL, "no interval found");
1702
1703  return split_child_at_op_id(interval_at(reg_num), block->first_lir_instruction_id(), LIR_OpVisitState::outputMode);
1704}
1705
1706Interval* LinearScan::interval_at_block_end(BlockBegin* block, int reg_num) {
1707  assert(LinearScan::nof_regs <= reg_num && reg_num < num_virtual_regs(), "register number out of bounds");
1708  assert(interval_at(reg_num) != NULL, "no interval found");
1709
1710  return split_child_at_op_id(interval_at(reg_num), block->last_lir_instruction_id() + 1, LIR_OpVisitState::outputMode);
1711}
1712
1713Interval* LinearScan::interval_at_op_id(int reg_num, int op_id) {
1714  assert(LinearScan::nof_regs <= reg_num && reg_num < num_virtual_regs(), "register number out of bounds");
1715  assert(interval_at(reg_num) != NULL, "no interval found");
1716
1717  return split_child_at_op_id(interval_at(reg_num), op_id, LIR_OpVisitState::inputMode);
1718}
1719
1720
1721void LinearScan::resolve_collect_mappings(BlockBegin* from_block, BlockBegin* to_block, MoveResolver &move_resolver) {
1722  DEBUG_ONLY(move_resolver.check_empty());
1723
1724  const int num_regs = num_virtual_regs();
1725  const int size = live_set_size();
1726  const ResourceBitMap live_at_edge = to_block->live_in();
1727
1728  // visit all registers where the live_at_edge bit is set
1729  for (int r = (int)live_at_edge.get_next_one_offset(0, size); r < size; r = (int)live_at_edge.get_next_one_offset(r + 1, size)) {
1730    assert(r < num_regs, "live information set for not exisiting interval");
1731    assert(from_block->live_out().at(r) && to_block->live_in().at(r), "interval not live at this edge");
1732
1733    Interval* from_interval = interval_at_block_end(from_block, r);
1734    Interval* to_interval = interval_at_block_begin(to_block, r);
1735
1736    if (from_interval != to_interval && (from_interval->assigned_reg() != to_interval->assigned_reg() || from_interval->assigned_regHi() != to_interval->assigned_regHi())) {
1737      // need to insert move instruction
1738      move_resolver.add_mapping(from_interval, to_interval);
1739    }
1740  }
1741}
1742
1743
1744void LinearScan::resolve_find_insert_pos(BlockBegin* from_block, BlockBegin* to_block, MoveResolver &move_resolver) {
1745  if (from_block->number_of_sux() <= 1) {
1746    TRACE_LINEAR_SCAN(4, tty->print_cr("inserting moves at end of from_block B%d", from_block->block_id()));
1747
1748    LIR_OpList* instructions = from_block->lir()->instructions_list();
1749    LIR_OpBranch* branch = instructions->last()->as_OpBranch();
1750    if (branch != NULL) {
1751      // insert moves before branch
1752      assert(branch->cond() == lir_cond_always, "block does not end with an unconditional jump");
1753      move_resolver.set_insert_position(from_block->lir(), instructions->length() - 2);
1754    } else {
1755      move_resolver.set_insert_position(from_block->lir(), instructions->length() - 1);
1756    }
1757
1758  } else {
1759    TRACE_LINEAR_SCAN(4, tty->print_cr("inserting moves at beginning of to_block B%d", to_block->block_id()));
1760#ifdef ASSERT
1761    assert(from_block->lir()->instructions_list()->at(0)->as_OpLabel() != NULL, "block does not start with a label");
1762
1763    // because the number of predecessor edges matches the number of
1764    // successor edges, blocks which are reached by switch statements
1765    // may have be more than one predecessor but it will be guaranteed
1766    // that all predecessors will be the same.
1767    for (int i = 0; i < to_block->number_of_preds(); i++) {
1768      assert(from_block == to_block->pred_at(i), "all critical edges must be broken");
1769    }
1770#endif
1771
1772    move_resolver.set_insert_position(to_block->lir(), 0);
1773  }
1774}
1775
1776
1777// insert necessary moves (spilling or reloading) at edges between blocks if interval has been split
1778void LinearScan::resolve_data_flow() {
1779  TIME_LINEAR_SCAN(timer_resolve_data_flow);
1780
1781  int num_blocks = block_count();
1782  MoveResolver move_resolver(this);
1783  ResourceBitMap block_completed(num_blocks);
1784  ResourceBitMap already_resolved(num_blocks);
1785
1786  int i;
1787  for (i = 0; i < num_blocks; i++) {
1788    BlockBegin* block = block_at(i);
1789
1790    // check if block has only one predecessor and only one successor
1791    if (block->number_of_preds() == 1 && block->number_of_sux() == 1 && block->number_of_exception_handlers() == 0) {
1792      LIR_OpList* instructions = block->lir()->instructions_list();
1793      assert(instructions->at(0)->code() == lir_label, "block must start with label");
1794      assert(instructions->last()->code() == lir_branch, "block with successors must end with branch");
1795      assert(instructions->last()->as_OpBranch()->cond() == lir_cond_always, "block with successor must end with unconditional branch");
1796
1797      // check if block is empty (only label and branch)
1798      if (instructions->length() == 2) {
1799        BlockBegin* pred = block->pred_at(0);
1800        BlockBegin* sux = block->sux_at(0);
1801
1802        // prevent optimization of two consecutive blocks
1803        if (!block_completed.at(pred->linear_scan_number()) && !block_completed.at(sux->linear_scan_number())) {
1804          TRACE_LINEAR_SCAN(3, tty->print_cr("**** optimizing empty block B%d (pred: B%d, sux: B%d)", block->block_id(), pred->block_id(), sux->block_id()));
1805          block_completed.set_bit(block->linear_scan_number());
1806
1807          // directly resolve between pred and sux (without looking at the empty block between)
1808          resolve_collect_mappings(pred, sux, move_resolver);
1809          if (move_resolver.has_mappings()) {
1810            move_resolver.set_insert_position(block->lir(), 0);
1811            move_resolver.resolve_and_append_moves();
1812          }
1813        }
1814      }
1815    }
1816  }
1817
1818
1819  for (i = 0; i < num_blocks; i++) {
1820    if (!block_completed.at(i)) {
1821      BlockBegin* from_block = block_at(i);
1822      already_resolved.set_from(block_completed);
1823
1824      int num_sux = from_block->number_of_sux();
1825      for (int s = 0; s < num_sux; s++) {
1826        BlockBegin* to_block = from_block->sux_at(s);
1827
1828        // check for duplicate edges between the same blocks (can happen with switch blocks)
1829        if (!already_resolved.at(to_block->linear_scan_number())) {
1830          TRACE_LINEAR_SCAN(3, tty->print_cr("**** processing edge between B%d and B%d", from_block->block_id(), to_block->block_id()));
1831          already_resolved.set_bit(to_block->linear_scan_number());
1832
1833          // collect all intervals that have been split between from_block and to_block
1834          resolve_collect_mappings(from_block, to_block, move_resolver);
1835          if (move_resolver.has_mappings()) {
1836            resolve_find_insert_pos(from_block, to_block, move_resolver);
1837            move_resolver.resolve_and_append_moves();
1838          }
1839        }
1840      }
1841    }
1842  }
1843}
1844
1845
1846void LinearScan::resolve_exception_entry(BlockBegin* block, int reg_num, MoveResolver &move_resolver) {
1847  if (interval_at(reg_num) == NULL) {
1848    // if a phi function is never used, no interval is created -> ignore this
1849    return;
1850  }
1851
1852  Interval* interval = interval_at_block_begin(block, reg_num);
1853  int reg = interval->assigned_reg();
1854  int regHi = interval->assigned_regHi();
1855
1856  if ((reg < nof_regs && interval->always_in_memory()) ||
1857      (use_fpu_stack_allocation() && reg >= pd_first_fpu_reg && reg <= pd_last_fpu_reg)) {
1858    // the interval is split to get a short range that is located on the stack
1859    // in the following two cases:
1860    // * the interval started in memory (e.g. method parameter), but is currently in a register
1861    //   this is an optimization for exception handling that reduces the number of moves that
1862    //   are necessary for resolving the states when an exception uses this exception handler
1863    // * the interval would be on the fpu stack at the begin of the exception handler
1864    //   this is not allowed because of the complicated fpu stack handling on Intel
1865
1866    // range that will be spilled to memory
1867    int from_op_id = block->first_lir_instruction_id();
1868    int to_op_id = from_op_id + 1;  // short live range of length 1
1869    assert(interval->from() <= from_op_id && interval->to() >= to_op_id,
1870           "no split allowed between exception entry and first instruction");
1871
1872    if (interval->from() != from_op_id) {
1873      // the part before from_op_id is unchanged
1874      interval = interval->split(from_op_id);
1875      interval->assign_reg(reg, regHi);
1876      append_interval(interval);
1877    } else {
1878      _needs_full_resort = true;
1879    }
1880    assert(interval->from() == from_op_id, "must be true now");
1881
1882    Interval* spilled_part = interval;
1883    if (interval->to() != to_op_id) {
1884      // the part after to_op_id is unchanged
1885      spilled_part = interval->split_from_start(to_op_id);
1886      append_interval(spilled_part);
1887      move_resolver.add_mapping(spilled_part, interval);
1888    }
1889    assign_spill_slot(spilled_part);
1890
1891    assert(spilled_part->from() == from_op_id && spilled_part->to() == to_op_id, "just checking");
1892  }
1893}
1894
1895void LinearScan::resolve_exception_entry(BlockBegin* block, MoveResolver &move_resolver) {
1896  assert(block->is_set(BlockBegin::exception_entry_flag), "should not call otherwise");
1897  DEBUG_ONLY(move_resolver.check_empty());
1898
1899  // visit all registers where the live_in bit is set
1900  int size = live_set_size();
1901  for (int r = (int)block->live_in().get_next_one_offset(0, size); r < size; r = (int)block->live_in().get_next_one_offset(r + 1, size)) {
1902    resolve_exception_entry(block, r, move_resolver);
1903  }
1904
1905  // the live_in bits are not set for phi functions of the xhandler entry, so iterate them separately
1906  for_each_phi_fun(block, phi,
1907    resolve_exception_entry(block, phi->operand()->vreg_number(), move_resolver)
1908  );
1909
1910  if (move_resolver.has_mappings()) {
1911    // insert moves after first instruction
1912    move_resolver.set_insert_position(block->lir(), 0);
1913    move_resolver.resolve_and_append_moves();
1914  }
1915}
1916
1917
1918void LinearScan::resolve_exception_edge(XHandler* handler, int throwing_op_id, int reg_num, Phi* phi, MoveResolver &move_resolver) {
1919  if (interval_at(reg_num) == NULL) {
1920    // if a phi function is never used, no interval is created -> ignore this
1921    return;
1922  }
1923
1924  // the computation of to_interval is equal to resolve_collect_mappings,
1925  // but from_interval is more complicated because of phi functions
1926  BlockBegin* to_block = handler->entry_block();
1927  Interval* to_interval = interval_at_block_begin(to_block, reg_num);
1928
1929  if (phi != NULL) {
1930    // phi function of the exception entry block
1931    // no moves are created for this phi function in the LIR_Generator, so the
1932    // interval at the throwing instruction must be searched using the operands
1933    // of the phi function
1934    Value from_value = phi->operand_at(handler->phi_operand());
1935
1936    // with phi functions it can happen that the same from_value is used in
1937    // multiple mappings, so notify move-resolver that this is allowed
1938    move_resolver.set_multiple_reads_allowed();
1939
1940    Constant* con = from_value->as_Constant();
1941    if (con != NULL && !con->is_pinned()) {
1942      // unpinned constants may have no register, so add mapping from constant to interval
1943      move_resolver.add_mapping(LIR_OprFact::value_type(con->type()), to_interval);
1944    } else {
1945      // search split child at the throwing op_id
1946      Interval* from_interval = interval_at_op_id(from_value->operand()->vreg_number(), throwing_op_id);
1947      move_resolver.add_mapping(from_interval, to_interval);
1948    }
1949
1950  } else {
1951    // no phi function, so use reg_num also for from_interval
1952    // search split child at the throwing op_id
1953    Interval* from_interval = interval_at_op_id(reg_num, throwing_op_id);
1954    if (from_interval != to_interval) {
1955      // optimization to reduce number of moves: when to_interval is on stack and
1956      // the stack slot is known to be always correct, then no move is necessary
1957      if (!from_interval->always_in_memory() || from_interval->canonical_spill_slot() != to_interval->assigned_reg()) {
1958        move_resolver.add_mapping(from_interval, to_interval);
1959      }
1960    }
1961  }
1962}
1963
1964void LinearScan::resolve_exception_edge(XHandler* handler, int throwing_op_id, MoveResolver &move_resolver) {
1965  TRACE_LINEAR_SCAN(4, tty->print_cr("resolving exception handler B%d: throwing_op_id=%d", handler->entry_block()->block_id(), throwing_op_id));
1966
1967  DEBUG_ONLY(move_resolver.check_empty());
1968  assert(handler->lir_op_id() == -1, "already processed this xhandler");
1969  DEBUG_ONLY(handler->set_lir_op_id(throwing_op_id));
1970  assert(handler->entry_code() == NULL, "code already present");
1971
1972  // visit all registers where the live_in bit is set
1973  BlockBegin* block = handler->entry_block();
1974  int size = live_set_size();
1975  for (int r = (int)block->live_in().get_next_one_offset(0, size); r < size; r = (int)block->live_in().get_next_one_offset(r + 1, size)) {
1976    resolve_exception_edge(handler, throwing_op_id, r, NULL, move_resolver);
1977  }
1978
1979  // the live_in bits are not set for phi functions of the xhandler entry, so iterate them separately
1980  for_each_phi_fun(block, phi,
1981    resolve_exception_edge(handler, throwing_op_id, phi->operand()->vreg_number(), phi, move_resolver)
1982  );
1983
1984  if (move_resolver.has_mappings()) {
1985    LIR_List* entry_code = new LIR_List(compilation());
1986    move_resolver.set_insert_position(entry_code, 0);
1987    move_resolver.resolve_and_append_moves();
1988
1989    entry_code->jump(handler->entry_block());
1990    handler->set_entry_code(entry_code);
1991  }
1992}
1993
1994
1995void LinearScan::resolve_exception_handlers() {
1996  MoveResolver move_resolver(this);
1997  LIR_OpVisitState visitor;
1998  int num_blocks = block_count();
1999
2000  int i;
2001  for (i = 0; i < num_blocks; i++) {
2002    BlockBegin* block = block_at(i);
2003    if (block->is_set(BlockBegin::exception_entry_flag)) {
2004      resolve_exception_entry(block, move_resolver);
2005    }
2006  }
2007
2008  for (i = 0; i < num_blocks; i++) {
2009    BlockBegin* block = block_at(i);
2010    LIR_List* ops = block->lir();
2011    int num_ops = ops->length();
2012
2013    // iterate all instructions of the block. skip the first because it is always a label
2014    assert(visitor.no_operands(ops->at(0)), "first operation must always be a label");
2015    for (int j = 1; j < num_ops; j++) {
2016      LIR_Op* op = ops->at(j);
2017      int op_id = op->id();
2018
2019      if (op_id != -1 && has_info(op_id)) {
2020        // visit operation to collect all operands
2021        visitor.visit(op);
2022        assert(visitor.info_count() > 0, "should not visit otherwise");
2023
2024        XHandlers* xhandlers = visitor.all_xhandler();
2025        int n = xhandlers->length();
2026        for (int k = 0; k < n; k++) {
2027          resolve_exception_edge(xhandlers->handler_at(k), op_id, move_resolver);
2028        }
2029
2030#ifdef ASSERT
2031      } else {
2032        visitor.visit(op);
2033        assert(visitor.all_xhandler()->length() == 0, "missed exception handler");
2034#endif
2035      }
2036    }
2037  }
2038}
2039
2040
2041// ********** Phase 7: assign register numbers back to LIR
2042// (includes computation of debug information and oop maps)
2043
2044VMReg LinearScan::vm_reg_for_interval(Interval* interval) {
2045  VMReg reg = interval->cached_vm_reg();
2046  if (!reg->is_valid() ) {
2047    reg = vm_reg_for_operand(operand_for_interval(interval));
2048    interval->set_cached_vm_reg(reg);
2049  }
2050  assert(reg == vm_reg_for_operand(operand_for_interval(interval)), "wrong cached value");
2051  return reg;
2052}
2053
2054VMReg LinearScan::vm_reg_for_operand(LIR_Opr opr) {
2055  assert(opr->is_oop(), "currently only implemented for oop operands");
2056  return frame_map()->regname(opr);
2057}
2058
2059
2060LIR_Opr LinearScan::operand_for_interval(Interval* interval) {
2061  LIR_Opr opr = interval->cached_opr();
2062  if (opr->is_illegal()) {
2063    opr = calc_operand_for_interval(interval);
2064    interval->set_cached_opr(opr);
2065  }
2066
2067  assert(opr == calc_operand_for_interval(interval), "wrong cached value");
2068  return opr;
2069}
2070
2071LIR_Opr LinearScan::calc_operand_for_interval(const Interval* interval) {
2072  int assigned_reg = interval->assigned_reg();
2073  BasicType type = interval->type();
2074
2075  if (assigned_reg >= nof_regs) {
2076    // stack slot
2077    assert(interval->assigned_regHi() == any_reg, "must not have hi register");
2078    return LIR_OprFact::stack(assigned_reg - nof_regs, type);
2079
2080  } else {
2081    // register
2082    switch (type) {
2083      case T_OBJECT: {
2084        assert(assigned_reg >= pd_first_cpu_reg && assigned_reg <= pd_last_cpu_reg, "no cpu register");
2085        assert(interval->assigned_regHi() == any_reg, "must not have hi register");
2086        return LIR_OprFact::single_cpu_oop(assigned_reg);
2087      }
2088
2089      case T_ADDRESS: {
2090        assert(assigned_reg >= pd_first_cpu_reg && assigned_reg <= pd_last_cpu_reg, "no cpu register");
2091        assert(interval->assigned_regHi() == any_reg, "must not have hi register");
2092        return LIR_OprFact::single_cpu_address(assigned_reg);
2093      }
2094
2095      case T_METADATA: {
2096        assert(assigned_reg >= pd_first_cpu_reg && assigned_reg <= pd_last_cpu_reg, "no cpu register");
2097        assert(interval->assigned_regHi() == any_reg, "must not have hi register");
2098        return LIR_OprFact::single_cpu_metadata(assigned_reg);
2099      }
2100
2101#ifdef __SOFTFP__
2102      case T_FLOAT:  // fall through
2103#endif // __SOFTFP__
2104      case T_INT: {
2105        assert(assigned_reg >= pd_first_cpu_reg && assigned_reg <= pd_last_cpu_reg, "no cpu register");
2106        assert(interval->assigned_regHi() == any_reg, "must not have hi register");
2107        return LIR_OprFact::single_cpu(assigned_reg);
2108      }
2109
2110#ifdef __SOFTFP__
2111      case T_DOUBLE:  // fall through
2112#endif // __SOFTFP__
2113      case T_LONG: {
2114        int assigned_regHi = interval->assigned_regHi();
2115        assert(assigned_reg >= pd_first_cpu_reg && assigned_reg <= pd_last_cpu_reg, "no cpu register");
2116        assert(num_physical_regs(T_LONG) == 1 ||
2117               (assigned_regHi >= pd_first_cpu_reg && assigned_regHi <= pd_last_cpu_reg), "no cpu register");
2118
2119        assert(assigned_reg != assigned_regHi, "invalid allocation");
2120        assert(num_physical_regs(T_LONG) == 1 || assigned_reg < assigned_regHi,
2121               "register numbers must be sorted (ensure that e.g. a move from eax,ebx to ebx,eax can not occur)");
2122        assert((assigned_regHi != any_reg) ^ (num_physical_regs(T_LONG) == 1), "must be match");
2123        if (requires_adjacent_regs(T_LONG)) {
2124          assert(assigned_reg % 2 == 0 && assigned_reg + 1 == assigned_regHi, "must be sequential and even");
2125        }
2126
2127#ifdef _LP64
2128        return LIR_OprFact::double_cpu(assigned_reg, assigned_reg);
2129#else
2130#if defined(SPARC) || defined(PPC32)
2131        return LIR_OprFact::double_cpu(assigned_regHi, assigned_reg);
2132#else
2133        return LIR_OprFact::double_cpu(assigned_reg, assigned_regHi);
2134#endif // SPARC
2135#endif // LP64
2136      }
2137
2138#ifndef __SOFTFP__
2139      case T_FLOAT: {
2140#ifdef X86
2141        if (UseSSE >= 1) {
2142          int last_xmm_reg = pd_last_xmm_reg;
2143#ifdef _LP64
2144          if (UseAVX < 3) {
2145            last_xmm_reg = pd_first_xmm_reg + (pd_nof_xmm_regs_frame_map / 2) - 1;
2146          }
2147#endif
2148          assert(assigned_reg >= pd_first_xmm_reg && assigned_reg <= last_xmm_reg, "no xmm register");
2149          assert(interval->assigned_regHi() == any_reg, "must not have hi register");
2150          return LIR_OprFact::single_xmm(assigned_reg - pd_first_xmm_reg);
2151        }
2152#endif
2153
2154        assert(assigned_reg >= pd_first_fpu_reg && assigned_reg <= pd_last_fpu_reg, "no fpu register");
2155        assert(interval->assigned_regHi() == any_reg, "must not have hi register");
2156        return LIR_OprFact::single_fpu(assigned_reg - pd_first_fpu_reg);
2157      }
2158
2159      case T_DOUBLE: {
2160#ifdef X86
2161        if (UseSSE >= 2) {
2162          int last_xmm_reg = pd_last_xmm_reg;
2163#ifdef _LP64
2164          if (UseAVX < 3) {
2165            last_xmm_reg = pd_first_xmm_reg + (pd_nof_xmm_regs_frame_map / 2) - 1;
2166          }
2167#endif
2168          assert(assigned_reg >= pd_first_xmm_reg && assigned_reg <= last_xmm_reg, "no xmm register");
2169          assert(interval->assigned_regHi() == any_reg, "must not have hi register (double xmm values are stored in one register)");
2170          return LIR_OprFact::double_xmm(assigned_reg - pd_first_xmm_reg);
2171        }
2172#endif
2173
2174#ifdef SPARC
2175        assert(assigned_reg >= pd_first_fpu_reg && assigned_reg <= pd_last_fpu_reg, "no fpu register");
2176        assert(interval->assigned_regHi() >= pd_first_fpu_reg && interval->assigned_regHi() <= pd_last_fpu_reg, "no fpu register");
2177        assert(assigned_reg % 2 == 0 && assigned_reg + 1 == interval->assigned_regHi(), "must be sequential and even");
2178        LIR_Opr result = LIR_OprFact::double_fpu(interval->assigned_regHi() - pd_first_fpu_reg, assigned_reg - pd_first_fpu_reg);
2179#elif defined(ARM32)
2180        assert(assigned_reg >= pd_first_fpu_reg && assigned_reg <= pd_last_fpu_reg, "no fpu register");
2181        assert(interval->assigned_regHi() >= pd_first_fpu_reg && interval->assigned_regHi() <= pd_last_fpu_reg, "no fpu register");
2182        assert(assigned_reg % 2 == 0 && assigned_reg + 1 == interval->assigned_regHi(), "must be sequential and even");
2183        LIR_Opr result = LIR_OprFact::double_fpu(assigned_reg - pd_first_fpu_reg, interval->assigned_regHi() - pd_first_fpu_reg);
2184#else
2185        assert(assigned_reg >= pd_first_fpu_reg && assigned_reg <= pd_last_fpu_reg, "no fpu register");
2186        assert(interval->assigned_regHi() == any_reg, "must not have hi register (double fpu values are stored in one register on Intel)");
2187        LIR_Opr result = LIR_OprFact::double_fpu(assigned_reg - pd_first_fpu_reg);
2188#endif
2189        return result;
2190      }
2191#endif // __SOFTFP__
2192
2193      default: {
2194        ShouldNotReachHere();
2195        return LIR_OprFact::illegalOpr;
2196      }
2197    }
2198  }
2199}
2200
2201LIR_Opr LinearScan::canonical_spill_opr(Interval* interval) {
2202  assert(interval->canonical_spill_slot() >= nof_regs, "canonical spill slot not set");
2203  return LIR_OprFact::stack(interval->canonical_spill_slot() - nof_regs, interval->type());
2204}
2205
2206LIR_Opr LinearScan::color_lir_opr(LIR_Opr opr, int op_id, LIR_OpVisitState::OprMode mode) {
2207  assert(opr->is_virtual(), "should not call this otherwise");
2208
2209  Interval* interval = interval_at(opr->vreg_number());
2210  assert(interval != NULL, "interval must exist");
2211
2212  if (op_id != -1) {
2213#ifdef ASSERT
2214    BlockBegin* block = block_of_op_with_id(op_id);
2215    if (block->number_of_sux() <= 1 && op_id == block->last_lir_instruction_id()) {
2216      // check if spill moves could have been appended at the end of this block, but
2217      // before the branch instruction. So the split child information for this branch would
2218      // be incorrect.
2219      LIR_OpBranch* branch = block->lir()->instructions_list()->last()->as_OpBranch();
2220      if (branch != NULL) {
2221        if (block->live_out().at(opr->vreg_number())) {
2222          assert(branch->cond() == lir_cond_always, "block does not end with an unconditional jump");
2223          assert(false, "can't get split child for the last branch of a block because the information would be incorrect (moves are inserted before the branch in resolve_data_flow)");
2224        }
2225      }
2226    }
2227#endif
2228
2229    // operands are not changed when an interval is split during allocation,
2230    // so search the right interval here
2231    interval = split_child_at_op_id(interval, op_id, mode);
2232  }
2233
2234  LIR_Opr res = operand_for_interval(interval);
2235
2236#ifdef X86
2237  // new semantic for is_last_use: not only set on definite end of interval,
2238  // but also before hole
2239  // This may still miss some cases (e.g. for dead values), but it is not necessary that the
2240  // last use information is completely correct
2241  // information is only needed for fpu stack allocation
2242  if (res->is_fpu_register()) {
2243    if (opr->is_last_use() || op_id == interval->to() || (op_id != -1 && interval->has_hole_between(op_id, op_id + 1))) {
2244      assert(op_id == -1 || !is_block_begin(op_id), "holes at begin of block may also result from control flow");
2245      res = res->make_last_use();
2246    }
2247  }
2248#endif
2249
2250  assert(!gen()->is_vreg_flag_set(opr->vreg_number(), LIRGenerator::callee_saved) || !FrameMap::is_caller_save_register(res), "bad allocation");
2251
2252  return res;
2253}
2254
2255
2256#ifdef ASSERT
2257// some methods used to check correctness of debug information
2258
2259void assert_no_register_values(GrowableArray<ScopeValue*>* values) {
2260  if (values == NULL) {
2261    return;
2262  }
2263
2264  for (int i = 0; i < values->length(); i++) {
2265    ScopeValue* value = values->at(i);
2266
2267    if (value->is_location()) {
2268      Location location = ((LocationValue*)value)->location();
2269      assert(location.where() == Location::on_stack, "value is in register");
2270    }
2271  }
2272}
2273
2274void assert_no_register_values(GrowableArray<MonitorValue*>* values) {
2275  if (values == NULL) {
2276    return;
2277  }
2278
2279  for (int i = 0; i < values->length(); i++) {
2280    MonitorValue* value = values->at(i);
2281
2282    if (value->owner()->is_location()) {
2283      Location location = ((LocationValue*)value->owner())->location();
2284      assert(location.where() == Location::on_stack, "owner is in register");
2285    }
2286    assert(value->basic_lock().where() == Location::on_stack, "basic_lock is in register");
2287  }
2288}
2289
2290void assert_equal(Location l1, Location l2) {
2291  assert(l1.where() == l2.where() && l1.type() == l2.type() && l1.offset() == l2.offset(), "");
2292}
2293
2294void assert_equal(ScopeValue* v1, ScopeValue* v2) {
2295  if (v1->is_location()) {
2296    assert(v2->is_location(), "");
2297    assert_equal(((LocationValue*)v1)->location(), ((LocationValue*)v2)->location());
2298  } else if (v1->is_constant_int()) {
2299    assert(v2->is_constant_int(), "");
2300    assert(((ConstantIntValue*)v1)->value() == ((ConstantIntValue*)v2)->value(), "");
2301  } else if (v1->is_constant_double()) {
2302    assert(v2->is_constant_double(), "");
2303    assert(((ConstantDoubleValue*)v1)->value() == ((ConstantDoubleValue*)v2)->value(), "");
2304  } else if (v1->is_constant_long()) {
2305    assert(v2->is_constant_long(), "");
2306    assert(((ConstantLongValue*)v1)->value() == ((ConstantLongValue*)v2)->value(), "");
2307  } else if (v1->is_constant_oop()) {
2308    assert(v2->is_constant_oop(), "");
2309    assert(((ConstantOopWriteValue*)v1)->value() == ((ConstantOopWriteValue*)v2)->value(), "");
2310  } else {
2311    ShouldNotReachHere();
2312  }
2313}
2314
2315void assert_equal(MonitorValue* m1, MonitorValue* m2) {
2316  assert_equal(m1->owner(), m2->owner());
2317  assert_equal(m1->basic_lock(), m2->basic_lock());
2318}
2319
2320void assert_equal(IRScopeDebugInfo* d1, IRScopeDebugInfo* d2) {
2321  assert(d1->scope() == d2->scope(), "not equal");
2322  assert(d1->bci() == d2->bci(), "not equal");
2323
2324  if (d1->locals() != NULL) {
2325    assert(d1->locals() != NULL && d2->locals() != NULL, "not equal");
2326    assert(d1->locals()->length() == d2->locals()->length(), "not equal");
2327    for (int i = 0; i < d1->locals()->length(); i++) {
2328      assert_equal(d1->locals()->at(i), d2->locals()->at(i));
2329    }
2330  } else {
2331    assert(d1->locals() == NULL && d2->locals() == NULL, "not equal");
2332  }
2333
2334  if (d1->expressions() != NULL) {
2335    assert(d1->expressions() != NULL && d2->expressions() != NULL, "not equal");
2336    assert(d1->expressions()->length() == d2->expressions()->length(), "not equal");
2337    for (int i = 0; i < d1->expressions()->length(); i++) {
2338      assert_equal(d1->expressions()->at(i), d2->expressions()->at(i));
2339    }
2340  } else {
2341    assert(d1->expressions() == NULL && d2->expressions() == NULL, "not equal");
2342  }
2343
2344  if (d1->monitors() != NULL) {
2345    assert(d1->monitors() != NULL && d2->monitors() != NULL, "not equal");
2346    assert(d1->monitors()->length() == d2->monitors()->length(), "not equal");
2347    for (int i = 0; i < d1->monitors()->length(); i++) {
2348      assert_equal(d1->monitors()->at(i), d2->monitors()->at(i));
2349    }
2350  } else {
2351    assert(d1->monitors() == NULL && d2->monitors() == NULL, "not equal");
2352  }
2353
2354  if (d1->caller() != NULL) {
2355    assert(d1->caller() != NULL && d2->caller() != NULL, "not equal");
2356    assert_equal(d1->caller(), d2->caller());
2357  } else {
2358    assert(d1->caller() == NULL && d2->caller() == NULL, "not equal");
2359  }
2360}
2361
2362void check_stack_depth(CodeEmitInfo* info, int stack_end) {
2363  if (info->stack()->bci() != SynchronizationEntryBCI && !info->scope()->method()->is_native()) {
2364    Bytecodes::Code code = info->scope()->method()->java_code_at_bci(info->stack()->bci());
2365    switch (code) {
2366      case Bytecodes::_ifnull    : // fall through
2367      case Bytecodes::_ifnonnull : // fall through
2368      case Bytecodes::_ifeq      : // fall through
2369      case Bytecodes::_ifne      : // fall through
2370      case Bytecodes::_iflt      : // fall through
2371      case Bytecodes::_ifge      : // fall through
2372      case Bytecodes::_ifgt      : // fall through
2373      case Bytecodes::_ifle      : // fall through
2374      case Bytecodes::_if_icmpeq : // fall through
2375      case Bytecodes::_if_icmpne : // fall through
2376      case Bytecodes::_if_icmplt : // fall through
2377      case Bytecodes::_if_icmpge : // fall through
2378      case Bytecodes::_if_icmpgt : // fall through
2379      case Bytecodes::_if_icmple : // fall through
2380      case Bytecodes::_if_acmpeq : // fall through
2381      case Bytecodes::_if_acmpne :
2382        assert(stack_end >= -Bytecodes::depth(code), "must have non-empty expression stack at if bytecode");
2383        break;
2384      default:
2385        break;
2386    }
2387  }
2388}
2389
2390#endif // ASSERT
2391
2392
2393IntervalWalker* LinearScan::init_compute_oop_maps() {
2394  // setup lists of potential oops for walking
2395  Interval* oop_intervals;
2396  Interval* non_oop_intervals;
2397
2398  create_unhandled_lists(&oop_intervals, &non_oop_intervals, is_oop_interval, NULL);
2399
2400  // intervals that have no oops inside need not to be processed
2401  // to ensure a walking until the last instruction id, add a dummy interval
2402  // with a high operation id
2403  non_oop_intervals = new Interval(any_reg);
2404  non_oop_intervals->add_range(max_jint - 2, max_jint - 1);
2405
2406  return new IntervalWalker(this, oop_intervals, non_oop_intervals);
2407}
2408
2409
2410OopMap* LinearScan::compute_oop_map(IntervalWalker* iw, LIR_Op* op, CodeEmitInfo* info, bool is_call_site) {
2411  TRACE_LINEAR_SCAN(3, tty->print_cr("creating oop map at op_id %d", op->id()));
2412
2413  // walk before the current operation -> intervals that start at
2414  // the operation (= output operands of the operation) are not
2415  // included in the oop map
2416  iw->walk_before(op->id());
2417
2418  int frame_size = frame_map()->framesize();
2419  int arg_count = frame_map()->oop_map_arg_count();
2420  OopMap* map = new OopMap(frame_size, arg_count);
2421
2422  // Iterate through active intervals
2423  for (Interval* interval = iw->active_first(fixedKind); interval != Interval::end(); interval = interval->next()) {
2424    int assigned_reg = interval->assigned_reg();
2425
2426    assert(interval->current_from() <= op->id() && op->id() <= interval->current_to(), "interval should not be active otherwise");
2427    assert(interval->assigned_regHi() == any_reg, "oop must be single word");
2428    assert(interval->reg_num() >= LIR_OprDesc::vreg_base, "fixed interval found");
2429
2430    // Check if this range covers the instruction. Intervals that
2431    // start or end at the current operation are not included in the
2432    // oop map, except in the case of patching moves.  For patching
2433    // moves, any intervals which end at this instruction are included
2434    // in the oop map since we may safepoint while doing the patch
2435    // before we've consumed the inputs.
2436    if (op->is_patching() || op->id() < interval->current_to()) {
2437
2438      // caller-save registers must not be included into oop-maps at calls
2439      assert(!is_call_site || assigned_reg >= nof_regs || !is_caller_save(assigned_reg), "interval is in a caller-save register at a call -> register will be overwritten");
2440
2441      VMReg name = vm_reg_for_interval(interval);
2442      set_oop(map, name);
2443
2444      // Spill optimization: when the stack value is guaranteed to be always correct,
2445      // then it must be added to the oop map even if the interval is currently in a register
2446      if (interval->always_in_memory() &&
2447          op->id() > interval->spill_definition_pos() &&
2448          interval->assigned_reg() != interval->canonical_spill_slot()) {
2449        assert(interval->spill_definition_pos() > 0, "position not set correctly");
2450        assert(interval->canonical_spill_slot() >= LinearScan::nof_regs, "no spill slot assigned");
2451        assert(interval->assigned_reg() < LinearScan::nof_regs, "interval is on stack, so stack slot is registered twice");
2452
2453        set_oop(map, frame_map()->slot_regname(interval->canonical_spill_slot() - LinearScan::nof_regs));
2454      }
2455    }
2456  }
2457
2458  // add oops from lock stack
2459  assert(info->stack() != NULL, "CodeEmitInfo must always have a stack");
2460  int locks_count = info->stack()->total_locks_size();
2461  for (int i = 0; i < locks_count; i++) {
2462    set_oop(map, frame_map()->monitor_object_regname(i));
2463  }
2464
2465  return map;
2466}
2467
2468
2469void LinearScan::compute_oop_map(IntervalWalker* iw, const LIR_OpVisitState &visitor, LIR_Op* op) {
2470  assert(visitor.info_count() > 0, "no oop map needed");
2471
2472  // compute oop_map only for first CodeEmitInfo
2473  // because it is (in most cases) equal for all other infos of the same operation
2474  CodeEmitInfo* first_info = visitor.info_at(0);
2475  OopMap* first_oop_map = compute_oop_map(iw, op, first_info, visitor.has_call());
2476
2477  for (int i = 0; i < visitor.info_count(); i++) {
2478    CodeEmitInfo* info = visitor.info_at(i);
2479    OopMap* oop_map = first_oop_map;
2480
2481    // compute worst case interpreter size in case of a deoptimization
2482    _compilation->update_interpreter_frame_size(info->interpreter_frame_size());
2483
2484    if (info->stack()->locks_size() != first_info->stack()->locks_size()) {
2485      // this info has a different number of locks then the precomputed oop map
2486      // (possible for lock and unlock instructions) -> compute oop map with
2487      // correct lock information
2488      oop_map = compute_oop_map(iw, op, info, visitor.has_call());
2489    }
2490
2491    if (info->_oop_map == NULL) {
2492      info->_oop_map = oop_map;
2493    } else {
2494      // a CodeEmitInfo can not be shared between different LIR-instructions
2495      // because interval splitting can occur anywhere between two instructions
2496      // and so the oop maps must be different
2497      // -> check if the already set oop_map is exactly the one calculated for this operation
2498      assert(info->_oop_map == oop_map, "same CodeEmitInfo used for multiple LIR instructions");
2499    }
2500  }
2501}
2502
2503
2504// frequently used constants
2505// Allocate them with new so they are never destroyed (otherwise, a
2506// forced exit could destroy these objects while they are still in
2507// use).
2508ConstantOopWriteValue* LinearScan::_oop_null_scope_value = new (ResourceObj::C_HEAP, mtCompiler) ConstantOopWriteValue(NULL);
2509ConstantIntValue*      LinearScan::_int_m1_scope_value = new (ResourceObj::C_HEAP, mtCompiler) ConstantIntValue(-1);
2510ConstantIntValue*      LinearScan::_int_0_scope_value =  new (ResourceObj::C_HEAP, mtCompiler) ConstantIntValue(0);
2511ConstantIntValue*      LinearScan::_int_1_scope_value =  new (ResourceObj::C_HEAP, mtCompiler) ConstantIntValue(1);
2512ConstantIntValue*      LinearScan::_int_2_scope_value =  new (ResourceObj::C_HEAP, mtCompiler) ConstantIntValue(2);
2513LocationValue*         _illegal_value = new (ResourceObj::C_HEAP, mtCompiler) LocationValue(Location());
2514
2515void LinearScan::init_compute_debug_info() {
2516  // cache for frequently used scope values
2517  // (cpu registers and stack slots)
2518  int cache_size = (LinearScan::nof_cpu_regs + frame_map()->argcount() + max_spills()) * 2;
2519  _scope_value_cache = ScopeValueArray(cache_size, cache_size, NULL);
2520}
2521
2522MonitorValue* LinearScan::location_for_monitor_index(int monitor_index) {
2523  Location loc;
2524  if (!frame_map()->location_for_monitor_object(monitor_index, &loc)) {
2525    bailout("too large frame");
2526  }
2527  ScopeValue* object_scope_value = new LocationValue(loc);
2528
2529  if (!frame_map()->location_for_monitor_lock(monitor_index, &loc)) {
2530    bailout("too large frame");
2531  }
2532  return new MonitorValue(object_scope_value, loc);
2533}
2534
2535LocationValue* LinearScan::location_for_name(int name, Location::Type loc_type) {
2536  Location loc;
2537  if (!frame_map()->locations_for_slot(name, loc_type, &loc)) {
2538    bailout("too large frame");
2539  }
2540  return new LocationValue(loc);
2541}
2542
2543
2544int LinearScan::append_scope_value_for_constant(LIR_Opr opr, GrowableArray<ScopeValue*>* scope_values) {
2545  assert(opr->is_constant(), "should not be called otherwise");
2546
2547  LIR_Const* c = opr->as_constant_ptr();
2548  BasicType t = c->type();
2549  switch (t) {
2550    case T_OBJECT: {
2551      jobject value = c->as_jobject();
2552      if (value == NULL) {
2553        scope_values->append(_oop_null_scope_value);
2554      } else {
2555        scope_values->append(new ConstantOopWriteValue(c->as_jobject()));
2556      }
2557      return 1;
2558    }
2559
2560    case T_INT: // fall through
2561    case T_FLOAT: {
2562      int value = c->as_jint_bits();
2563      switch (value) {
2564        case -1: scope_values->append(_int_m1_scope_value); break;
2565        case 0:  scope_values->append(_int_0_scope_value); break;
2566        case 1:  scope_values->append(_int_1_scope_value); break;
2567        case 2:  scope_values->append(_int_2_scope_value); break;
2568        default: scope_values->append(new ConstantIntValue(c->as_jint_bits())); break;
2569      }
2570      return 1;
2571    }
2572
2573    case T_LONG: // fall through
2574    case T_DOUBLE: {
2575#ifdef _LP64
2576      scope_values->append(_int_0_scope_value);
2577      scope_values->append(new ConstantLongValue(c->as_jlong_bits()));
2578#else
2579      if (hi_word_offset_in_bytes > lo_word_offset_in_bytes) {
2580        scope_values->append(new ConstantIntValue(c->as_jint_hi_bits()));
2581        scope_values->append(new ConstantIntValue(c->as_jint_lo_bits()));
2582      } else {
2583        scope_values->append(new ConstantIntValue(c->as_jint_lo_bits()));
2584        scope_values->append(new ConstantIntValue(c->as_jint_hi_bits()));
2585      }
2586#endif
2587      return 2;
2588    }
2589
2590    case T_ADDRESS: {
2591#ifdef _LP64
2592      scope_values->append(new ConstantLongValue(c->as_jint()));
2593#else
2594      scope_values->append(new ConstantIntValue(c->as_jint()));
2595#endif
2596      return 1;
2597    }
2598
2599    default:
2600      ShouldNotReachHere();
2601      return -1;
2602  }
2603}
2604
2605int LinearScan::append_scope_value_for_operand(LIR_Opr opr, GrowableArray<ScopeValue*>* scope_values) {
2606  if (opr->is_single_stack()) {
2607    int stack_idx = opr->single_stack_ix();
2608    bool is_oop = opr->is_oop_register();
2609    int cache_idx = (stack_idx + LinearScan::nof_cpu_regs) * 2 + (is_oop ? 1 : 0);
2610
2611    ScopeValue* sv = _scope_value_cache.at(cache_idx);
2612    if (sv == NULL) {
2613      Location::Type loc_type = is_oop ? Location::oop : Location::normal;
2614      sv = location_for_name(stack_idx, loc_type);
2615      _scope_value_cache.at_put(cache_idx, sv);
2616    }
2617
2618    // check if cached value is correct
2619    DEBUG_ONLY(assert_equal(sv, location_for_name(stack_idx, is_oop ? Location::oop : Location::normal)));
2620
2621    scope_values->append(sv);
2622    return 1;
2623
2624  } else if (opr->is_single_cpu()) {
2625    bool is_oop = opr->is_oop_register();
2626    int cache_idx = opr->cpu_regnr() * 2 + (is_oop ? 1 : 0);
2627    Location::Type int_loc_type = NOT_LP64(Location::normal) LP64_ONLY(Location::int_in_long);
2628
2629    ScopeValue* sv = _scope_value_cache.at(cache_idx);
2630    if (sv == NULL) {
2631      Location::Type loc_type = is_oop ? Location::oop : int_loc_type;
2632      VMReg rname = frame_map()->regname(opr);
2633      sv = new LocationValue(Location::new_reg_loc(loc_type, rname));
2634      _scope_value_cache.at_put(cache_idx, sv);
2635    }
2636
2637    // check if cached value is correct
2638    DEBUG_ONLY(assert_equal(sv, new LocationValue(Location::new_reg_loc(is_oop ? Location::oop : int_loc_type, frame_map()->regname(opr)))));
2639
2640    scope_values->append(sv);
2641    return 1;
2642
2643#ifdef X86
2644  } else if (opr->is_single_xmm()) {
2645    VMReg rname = opr->as_xmm_float_reg()->as_VMReg();
2646    LocationValue* sv = new LocationValue(Location::new_reg_loc(Location::normal, rname));
2647
2648    scope_values->append(sv);
2649    return 1;
2650#endif
2651
2652  } else if (opr->is_single_fpu()) {
2653#ifdef X86
2654    // the exact location of fpu stack values is only known
2655    // during fpu stack allocation, so the stack allocator object
2656    // must be present
2657    assert(use_fpu_stack_allocation(), "should not have float stack values without fpu stack allocation (all floats must be SSE2)");
2658    assert(_fpu_stack_allocator != NULL, "must be present");
2659    opr = _fpu_stack_allocator->to_fpu_stack(opr);
2660#endif
2661
2662    Location::Type loc_type = float_saved_as_double ? Location::float_in_dbl : Location::normal;
2663    VMReg rname = frame_map()->fpu_regname(opr->fpu_regnr());
2664#ifndef __SOFTFP__
2665#ifndef VM_LITTLE_ENDIAN
2666    // On S390 a (single precision) float value occupies only the high
2667    // word of the full double register. So when the double register is
2668    // stored to memory (e.g. by the RegisterSaver), then the float value
2669    // is found at offset 0. I.e. the code below is not needed on S390.
2670#ifndef S390
2671    if (! float_saved_as_double) {
2672      // On big endian system, we may have an issue if float registers use only
2673      // the low half of the (same) double registers.
2674      // Both the float and the double could have the same regnr but would correspond
2675      // to two different addresses once saved.
2676
2677      // get next safely (no assertion checks)
2678      VMReg next = VMRegImpl::as_VMReg(1+rname->value());
2679      if (next->is_reg() &&
2680          (next->as_FloatRegister() == rname->as_FloatRegister())) {
2681        // the back-end does use the same numbering for the double and the float
2682        rname = next; // VMReg for the low bits, e.g. the real VMReg for the float
2683      }
2684    }
2685#endif // !S390
2686#endif
2687#endif
2688    LocationValue* sv = new LocationValue(Location::new_reg_loc(loc_type, rname));
2689
2690    scope_values->append(sv);
2691    return 1;
2692
2693  } else {
2694    // double-size operands
2695
2696    ScopeValue* first;
2697    ScopeValue* second;
2698
2699    if (opr->is_double_stack()) {
2700#ifdef _LP64
2701      Location loc1;
2702      Location::Type loc_type = opr->type() == T_LONG ? Location::lng : Location::dbl;
2703      if (!frame_map()->locations_for_slot(opr->double_stack_ix(), loc_type, &loc1, NULL)) {
2704        bailout("too large frame");
2705      }
2706      // Does this reverse on x86 vs. sparc?
2707      first =  new LocationValue(loc1);
2708      second = _int_0_scope_value;
2709#else
2710      Location loc1, loc2;
2711      if (!frame_map()->locations_for_slot(opr->double_stack_ix(), Location::normal, &loc1, &loc2)) {
2712        bailout("too large frame");
2713      }
2714      first =  new LocationValue(loc1);
2715      second = new LocationValue(loc2);
2716#endif // _LP64
2717
2718    } else if (opr->is_double_cpu()) {
2719#ifdef _LP64
2720      VMReg rname_first = opr->as_register_lo()->as_VMReg();
2721      first = new LocationValue(Location::new_reg_loc(Location::lng, rname_first));
2722      second = _int_0_scope_value;
2723#else
2724      VMReg rname_first = opr->as_register_lo()->as_VMReg();
2725      VMReg rname_second = opr->as_register_hi()->as_VMReg();
2726
2727      if (hi_word_offset_in_bytes < lo_word_offset_in_bytes) {
2728        // lo/hi and swapped relative to first and second, so swap them
2729        VMReg tmp = rname_first;
2730        rname_first = rname_second;
2731        rname_second = tmp;
2732      }
2733
2734      first = new LocationValue(Location::new_reg_loc(Location::normal, rname_first));
2735      second = new LocationValue(Location::new_reg_loc(Location::normal, rname_second));
2736#endif //_LP64
2737
2738
2739#ifdef X86
2740    } else if (opr->is_double_xmm()) {
2741      assert(opr->fpu_regnrLo() == opr->fpu_regnrHi(), "assumed in calculation");
2742      VMReg rname_first  = opr->as_xmm_double_reg()->as_VMReg();
2743#  ifdef _LP64
2744      first = new LocationValue(Location::new_reg_loc(Location::dbl, rname_first));
2745      second = _int_0_scope_value;
2746#  else
2747      first = new LocationValue(Location::new_reg_loc(Location::normal, rname_first));
2748      // %%% This is probably a waste but we'll keep things as they were for now
2749      if (true) {
2750        VMReg rname_second = rname_first->next();
2751        second = new LocationValue(Location::new_reg_loc(Location::normal, rname_second));
2752      }
2753#  endif
2754#endif
2755
2756    } else if (opr->is_double_fpu()) {
2757      // On SPARC, fpu_regnrLo/fpu_regnrHi represents the two halves of
2758      // the double as float registers in the native ordering. On X86,
2759      // fpu_regnrLo is a FPU stack slot whose VMReg represents
2760      // the low-order word of the double and fpu_regnrLo + 1 is the
2761      // name for the other half.  *first and *second must represent the
2762      // least and most significant words, respectively.
2763
2764#ifdef X86
2765      // the exact location of fpu stack values is only known
2766      // during fpu stack allocation, so the stack allocator object
2767      // must be present
2768      assert(use_fpu_stack_allocation(), "should not have float stack values without fpu stack allocation (all floats must be SSE2)");
2769      assert(_fpu_stack_allocator != NULL, "must be present");
2770      opr = _fpu_stack_allocator->to_fpu_stack(opr);
2771
2772      assert(opr->fpu_regnrLo() == opr->fpu_regnrHi(), "assumed in calculation (only fpu_regnrLo is used)");
2773#endif
2774#ifdef SPARC
2775      assert(opr->fpu_regnrLo() == opr->fpu_regnrHi() + 1, "assumed in calculation (only fpu_regnrHi is used)");
2776#endif
2777#ifdef ARM32
2778      assert(opr->fpu_regnrHi() == opr->fpu_regnrLo() + 1, "assumed in calculation (only fpu_regnrLo is used)");
2779#endif
2780#ifdef PPC32
2781      assert(opr->fpu_regnrLo() == opr->fpu_regnrHi(), "assumed in calculation (only fpu_regnrHi is used)");
2782#endif
2783
2784#ifdef VM_LITTLE_ENDIAN
2785      VMReg rname_first = frame_map()->fpu_regname(opr->fpu_regnrLo());
2786#else
2787      VMReg rname_first = frame_map()->fpu_regname(opr->fpu_regnrHi());
2788#endif
2789
2790#ifdef _LP64
2791      first = new LocationValue(Location::new_reg_loc(Location::dbl, rname_first));
2792      second = _int_0_scope_value;
2793#else
2794      first = new LocationValue(Location::new_reg_loc(Location::normal, rname_first));
2795      // %%% This is probably a waste but we'll keep things as they were for now
2796      if (true) {
2797        VMReg rname_second = rname_first->next();
2798        second = new LocationValue(Location::new_reg_loc(Location::normal, rname_second));
2799      }
2800#endif
2801
2802    } else {
2803      ShouldNotReachHere();
2804      first = NULL;
2805      second = NULL;
2806    }
2807
2808    assert(first != NULL && second != NULL, "must be set");
2809    // The convention the interpreter uses is that the second local
2810    // holds the first raw word of the native double representation.
2811    // This is actually reasonable, since locals and stack arrays
2812    // grow downwards in all implementations.
2813    // (If, on some machine, the interpreter's Java locals or stack
2814    // were to grow upwards, the embedded doubles would be word-swapped.)
2815    scope_values->append(second);
2816    scope_values->append(first);
2817    return 2;
2818  }
2819}
2820
2821
2822int LinearScan::append_scope_value(int op_id, Value value, GrowableArray<ScopeValue*>* scope_values) {
2823  if (value != NULL) {
2824    LIR_Opr opr = value->operand();
2825    Constant* con = value->as_Constant();
2826
2827    assert(con == NULL || opr->is_virtual() || opr->is_constant() || opr->is_illegal(), "asumption: Constant instructions have only constant operands (or illegal if constant is optimized away)");
2828    assert(con != NULL || opr->is_virtual(), "asumption: non-Constant instructions have only virtual operands");
2829
2830    if (con != NULL && !con->is_pinned() && !opr->is_constant()) {
2831      // Unpinned constants may have a virtual operand for a part of the lifetime
2832      // or may be illegal when it was optimized away,
2833      // so always use a constant operand
2834      opr = LIR_OprFact::value_type(con->type());
2835    }
2836    assert(opr->is_virtual() || opr->is_constant(), "other cases not allowed here");
2837
2838    if (opr->is_virtual()) {
2839      LIR_OpVisitState::OprMode mode = LIR_OpVisitState::inputMode;
2840
2841      BlockBegin* block = block_of_op_with_id(op_id);
2842      if (block->number_of_sux() == 1 && op_id == block->last_lir_instruction_id()) {
2843        // generating debug information for the last instruction of a block.
2844        // if this instruction is a branch, spill moves are inserted before this branch
2845        // and so the wrong operand would be returned (spill moves at block boundaries are not
2846        // considered in the live ranges of intervals)
2847        // Solution: use the first op_id of the branch target block instead.
2848        if (block->lir()->instructions_list()->last()->as_OpBranch() != NULL) {
2849          if (block->live_out().at(opr->vreg_number())) {
2850            op_id = block->sux_at(0)->first_lir_instruction_id();
2851            mode = LIR_OpVisitState::outputMode;
2852          }
2853        }
2854      }
2855
2856      // Get current location of operand
2857      // The operand must be live because debug information is considered when building the intervals
2858      // if the interval is not live, color_lir_opr will cause an assertion failure
2859      opr = color_lir_opr(opr, op_id, mode);
2860      assert(!has_call(op_id) || opr->is_stack() || !is_caller_save(reg_num(opr)), "can not have caller-save register operands at calls");
2861
2862      // Append to ScopeValue array
2863      return append_scope_value_for_operand(opr, scope_values);
2864
2865    } else {
2866      assert(value->as_Constant() != NULL, "all other instructions have only virtual operands");
2867      assert(opr->is_constant(), "operand must be constant");
2868
2869      return append_scope_value_for_constant(opr, scope_values);
2870    }
2871  } else {
2872    // append a dummy value because real value not needed
2873    scope_values->append(_illegal_value);
2874    return 1;
2875  }
2876}
2877
2878
2879IRScopeDebugInfo* LinearScan::compute_debug_info_for_scope(int op_id, IRScope* cur_scope, ValueStack* cur_state, ValueStack* innermost_state) {
2880  IRScopeDebugInfo* caller_debug_info = NULL;
2881
2882  ValueStack* caller_state = cur_state->caller_state();
2883  if (caller_state != NULL) {
2884    // process recursively to compute outermost scope first
2885    caller_debug_info = compute_debug_info_for_scope(op_id, cur_scope->caller(), caller_state, innermost_state);
2886  }
2887
2888  // initialize these to null.
2889  // If we don't need deopt info or there are no locals, expressions or monitors,
2890  // then these get recorded as no information and avoids the allocation of 0 length arrays.
2891  GrowableArray<ScopeValue*>*   locals      = NULL;
2892  GrowableArray<ScopeValue*>*   expressions = NULL;
2893  GrowableArray<MonitorValue*>* monitors    = NULL;
2894
2895  // describe local variable values
2896  int nof_locals = cur_state->locals_size();
2897  if (nof_locals > 0) {
2898    locals = new GrowableArray<ScopeValue*>(nof_locals);
2899
2900    int pos = 0;
2901    while (pos < nof_locals) {
2902      assert(pos < cur_state->locals_size(), "why not?");
2903
2904      Value local = cur_state->local_at(pos);
2905      pos += append_scope_value(op_id, local, locals);
2906
2907      assert(locals->length() == pos, "must match");
2908    }
2909    assert(locals->length() == cur_scope->method()->max_locals(), "wrong number of locals");
2910    assert(locals->length() == cur_state->locals_size(), "wrong number of locals");
2911  } else if (cur_scope->method()->max_locals() > 0) {
2912    assert(cur_state->kind() == ValueStack::EmptyExceptionState, "should be");
2913    nof_locals = cur_scope->method()->max_locals();
2914    locals = new GrowableArray<ScopeValue*>(nof_locals);
2915    for(int i = 0; i < nof_locals; i++) {
2916      locals->append(_illegal_value);
2917    }
2918  }
2919
2920  // describe expression stack
2921  int nof_stack = cur_state->stack_size();
2922  if (nof_stack > 0) {
2923    expressions = new GrowableArray<ScopeValue*>(nof_stack);
2924
2925    int pos = 0;
2926    while (pos < nof_stack) {
2927      Value expression = cur_state->stack_at_inc(pos);
2928      append_scope_value(op_id, expression, expressions);
2929
2930      assert(expressions->length() == pos, "must match");
2931    }
2932    assert(expressions->length() == cur_state->stack_size(), "wrong number of stack entries");
2933  }
2934
2935  // describe monitors
2936  int nof_locks = cur_state->locks_size();
2937  if (nof_locks > 0) {
2938    int lock_offset = cur_state->caller_state() != NULL ? cur_state->caller_state()->total_locks_size() : 0;
2939    monitors = new GrowableArray<MonitorValue*>(nof_locks);
2940    for (int i = 0; i < nof_locks; i++) {
2941      monitors->append(location_for_monitor_index(lock_offset + i));
2942    }
2943  }
2944
2945  return new IRScopeDebugInfo(cur_scope, cur_state->bci(), locals, expressions, monitors, caller_debug_info);
2946}
2947
2948
2949void LinearScan::compute_debug_info(CodeEmitInfo* info, int op_id) {
2950  TRACE_LINEAR_SCAN(3, tty->print_cr("creating debug information at op_id %d", op_id));
2951
2952  IRScope* innermost_scope = info->scope();
2953  ValueStack* innermost_state = info->stack();
2954
2955  assert(innermost_scope != NULL && innermost_state != NULL, "why is it missing?");
2956
2957  DEBUG_ONLY(check_stack_depth(info, innermost_state->stack_size()));
2958
2959  if (info->_scope_debug_info == NULL) {
2960    // compute debug information
2961    info->_scope_debug_info = compute_debug_info_for_scope(op_id, innermost_scope, innermost_state, innermost_state);
2962  } else {
2963    // debug information already set. Check that it is correct from the current point of view
2964    DEBUG_ONLY(assert_equal(info->_scope_debug_info, compute_debug_info_for_scope(op_id, innermost_scope, innermost_state, innermost_state)));
2965  }
2966}
2967
2968
2969void LinearScan::assign_reg_num(LIR_OpList* instructions, IntervalWalker* iw) {
2970  LIR_OpVisitState visitor;
2971  int num_inst = instructions->length();
2972  bool has_dead = false;
2973
2974  for (int j = 0; j < num_inst; j++) {
2975    LIR_Op* op = instructions->at(j);
2976    if (op == NULL) {  // this can happen when spill-moves are removed in eliminate_spill_moves
2977      has_dead = true;
2978      continue;
2979    }
2980    int op_id = op->id();
2981
2982    // visit instruction to get list of operands
2983    visitor.visit(op);
2984
2985    // iterate all modes of the visitor and process all virtual operands
2986    for_each_visitor_mode(mode) {
2987      int n = visitor.opr_count(mode);
2988      for (int k = 0; k < n; k++) {
2989        LIR_Opr opr = visitor.opr_at(mode, k);
2990        if (opr->is_virtual_register()) {
2991          visitor.set_opr_at(mode, k, color_lir_opr(opr, op_id, mode));
2992        }
2993      }
2994    }
2995
2996    if (visitor.info_count() > 0) {
2997      // exception handling
2998      if (compilation()->has_exception_handlers()) {
2999        XHandlers* xhandlers = visitor.all_xhandler();
3000        int n = xhandlers->length();
3001        for (int k = 0; k < n; k++) {
3002          XHandler* handler = xhandlers->handler_at(k);
3003          if (handler->entry_code() != NULL) {
3004            assign_reg_num(handler->entry_code()->instructions_list(), NULL);
3005          }
3006        }
3007      } else {
3008        assert(visitor.all_xhandler()->length() == 0, "missed exception handler");
3009      }
3010
3011      // compute oop map
3012      assert(iw != NULL, "needed for compute_oop_map");
3013      compute_oop_map(iw, visitor, op);
3014
3015      // compute debug information
3016      if (!use_fpu_stack_allocation()) {
3017        // compute debug information if fpu stack allocation is not needed.
3018        // when fpu stack allocation is needed, the debug information can not
3019        // be computed here because the exact location of fpu operands is not known
3020        // -> debug information is created inside the fpu stack allocator
3021        int n = visitor.info_count();
3022        for (int k = 0; k < n; k++) {
3023          compute_debug_info(visitor.info_at(k), op_id);
3024        }
3025      }
3026    }
3027
3028#ifdef ASSERT
3029    // make sure we haven't made the op invalid.
3030    op->verify();
3031#endif
3032
3033    // remove useless moves
3034    if (op->code() == lir_move) {
3035      assert(op->as_Op1() != NULL, "move must be LIR_Op1");
3036      LIR_Op1* move = (LIR_Op1*)op;
3037      LIR_Opr src = move->in_opr();
3038      LIR_Opr dst = move->result_opr();
3039      if (dst == src ||
3040          (!dst->is_pointer() && !src->is_pointer() &&
3041           src->is_same_register(dst))) {
3042        instructions->at_put(j, NULL);
3043        has_dead = true;
3044      }
3045    }
3046  }
3047
3048  if (has_dead) {
3049    // iterate all instructions of the block and remove all null-values.
3050    int insert_point = 0;
3051    for (int j = 0; j < num_inst; j++) {
3052      LIR_Op* op = instructions->at(j);
3053      if (op != NULL) {
3054        if (insert_point != j) {
3055          instructions->at_put(insert_point, op);
3056        }
3057        insert_point++;
3058      }
3059    }
3060    instructions->trunc_to(insert_point);
3061  }
3062}
3063
3064void LinearScan::assign_reg_num() {
3065  TIME_LINEAR_SCAN(timer_assign_reg_num);
3066
3067  init_compute_debug_info();
3068  IntervalWalker* iw = init_compute_oop_maps();
3069
3070  int num_blocks = block_count();
3071  for (int i = 0; i < num_blocks; i++) {
3072    BlockBegin* block = block_at(i);
3073    assign_reg_num(block->lir()->instructions_list(), iw);
3074  }
3075}
3076
3077
3078void LinearScan::do_linear_scan() {
3079  NOT_PRODUCT(_total_timer.begin_method());
3080
3081  number_instructions();
3082
3083  NOT_PRODUCT(print_lir(1, "Before Register Allocation"));
3084
3085  compute_local_live_sets();
3086  compute_global_live_sets();
3087  CHECK_BAILOUT();
3088
3089  build_intervals();
3090  CHECK_BAILOUT();
3091  sort_intervals_before_allocation();
3092
3093  NOT_PRODUCT(print_intervals("Before Register Allocation"));
3094  NOT_PRODUCT(LinearScanStatistic::compute(this, _stat_before_alloc));
3095
3096  allocate_registers();
3097  CHECK_BAILOUT();
3098
3099  resolve_data_flow();
3100  if (compilation()->has_exception_handlers()) {
3101    resolve_exception_handlers();
3102  }
3103  // fill in number of spill slots into frame_map
3104  propagate_spill_slots();
3105  CHECK_BAILOUT();
3106
3107  NOT_PRODUCT(print_intervals("After Register Allocation"));
3108  NOT_PRODUCT(print_lir(2, "LIR after register allocation:"));
3109
3110  sort_intervals_after_allocation();
3111
3112  DEBUG_ONLY(verify());
3113
3114  eliminate_spill_moves();
3115  assign_reg_num();
3116  CHECK_BAILOUT();
3117
3118  NOT_PRODUCT(print_lir(2, "LIR after assignment of register numbers:"));
3119  NOT_PRODUCT(LinearScanStatistic::compute(this, _stat_after_asign));
3120
3121  { TIME_LINEAR_SCAN(timer_allocate_fpu_stack);
3122
3123    if (use_fpu_stack_allocation()) {
3124      allocate_fpu_stack(); // Only has effect on Intel
3125      NOT_PRODUCT(print_lir(2, "LIR after FPU stack allocation:"));
3126    }
3127  }
3128
3129  { TIME_LINEAR_SCAN(timer_optimize_lir);
3130
3131    EdgeMoveOptimizer::optimize(ir()->code());
3132    ControlFlowOptimizer::optimize(ir()->code());
3133    // check that cfg is still correct after optimizations
3134    ir()->verify();
3135  }
3136
3137  NOT_PRODUCT(print_lir(1, "Before Code Generation", false));
3138  NOT_PRODUCT(LinearScanStatistic::compute(this, _stat_final));
3139  NOT_PRODUCT(_total_timer.end_method(this));
3140}
3141
3142
3143// ********** Printing functions
3144
3145#ifndef PRODUCT
3146
3147void LinearScan::print_timers(double total) {
3148  _total_timer.print(total);
3149}
3150
3151void LinearScan::print_statistics() {
3152  _stat_before_alloc.print("before allocation");
3153  _stat_after_asign.print("after assignment of register");
3154  _stat_final.print("after optimization");
3155}
3156
3157void LinearScan::print_bitmap(BitMap& b) {
3158  for (unsigned int i = 0; i < b.size(); i++) {
3159    if (b.at(i)) tty->print("%d ", i);
3160  }
3161  tty->cr();
3162}
3163
3164void LinearScan::print_intervals(const char* label) {
3165  if (TraceLinearScanLevel >= 1) {
3166    int i;
3167    tty->cr();
3168    tty->print_cr("%s", label);
3169
3170    for (i = 0; i < interval_count(); i++) {
3171      Interval* interval = interval_at(i);
3172      if (interval != NULL) {
3173        interval->print();
3174      }
3175    }
3176
3177    tty->cr();
3178    tty->print_cr("--- Basic Blocks ---");
3179    for (i = 0; i < block_count(); i++) {
3180      BlockBegin* block = block_at(i);
3181      tty->print("B%d [%d, %d, %d, %d] ", block->block_id(), block->first_lir_instruction_id(), block->last_lir_instruction_id(), block->loop_index(), block->loop_depth());
3182    }
3183    tty->cr();
3184    tty->cr();
3185  }
3186
3187  if (PrintCFGToFile) {
3188    CFGPrinter::print_intervals(&_intervals, label);
3189  }
3190}
3191
3192void LinearScan::print_lir(int level, const char* label, bool hir_valid) {
3193  if (TraceLinearScanLevel >= level) {
3194    tty->cr();
3195    tty->print_cr("%s", label);
3196    print_LIR(ir()->linear_scan_order());
3197    tty->cr();
3198  }
3199
3200  if (level == 1 && PrintCFGToFile) {
3201    CFGPrinter::print_cfg(ir()->linear_scan_order(), label, hir_valid, true);
3202  }
3203}
3204
3205#endif //PRODUCT
3206
3207
3208// ********** verification functions for allocation
3209// (check that all intervals have a correct register and that no registers are overwritten)
3210#ifdef ASSERT
3211
3212void LinearScan::verify() {
3213  TRACE_LINEAR_SCAN(2, tty->print_cr("********* verifying intervals ******************************************"));
3214  verify_intervals();
3215
3216  TRACE_LINEAR_SCAN(2, tty->print_cr("********* verifying that no oops are in fixed intervals ****************"));
3217  verify_no_oops_in_fixed_intervals();
3218
3219  TRACE_LINEAR_SCAN(2, tty->print_cr("********* verifying that unpinned constants are not alive across block boundaries"));
3220  verify_constants();
3221
3222  TRACE_LINEAR_SCAN(2, tty->print_cr("********* verifying register allocation ********************************"));
3223  verify_registers();
3224
3225  TRACE_LINEAR_SCAN(2, tty->print_cr("********* no errors found **********************************************"));
3226}
3227
3228void LinearScan::verify_intervals() {
3229  int len = interval_count();
3230  bool has_error = false;
3231
3232  for (int i = 0; i < len; i++) {
3233    Interval* i1 = interval_at(i);
3234    if (i1 == NULL) continue;
3235
3236    i1->check_split_children();
3237
3238    if (i1->reg_num() != i) {
3239      tty->print_cr("Interval %d is on position %d in list", i1->reg_num(), i); i1->print(); tty->cr();
3240      has_error = true;
3241    }
3242
3243    if (i1->reg_num() >= LIR_OprDesc::vreg_base && i1->type() == T_ILLEGAL) {
3244      tty->print_cr("Interval %d has no type assigned", i1->reg_num()); i1->print(); tty->cr();
3245      has_error = true;
3246    }
3247
3248    if (i1->assigned_reg() == any_reg) {
3249      tty->print_cr("Interval %d has no register assigned", i1->reg_num()); i1->print(); tty->cr();
3250      has_error = true;
3251    }
3252
3253    if (i1->assigned_reg() == i1->assigned_regHi()) {
3254      tty->print_cr("Interval %d: low and high register equal", i1->reg_num()); i1->print(); tty->cr();
3255      has_error = true;
3256    }
3257
3258    if (!is_processed_reg_num(i1->assigned_reg())) {
3259      tty->print_cr("Can not have an Interval for an ignored register"); i1->print(); tty->cr();
3260      has_error = true;
3261    }
3262
3263    // special intervals that are created in MoveResolver
3264    // -> ignore them because the range information has no meaning there
3265    if (i1->from() == 1 && i1->to() == 2) continue;
3266
3267    if (i1->first() == Range::end()) {
3268      tty->print_cr("Interval %d has no Range", i1->reg_num()); i1->print(); tty->cr();
3269      has_error = true;
3270    }
3271
3272    for (Range* r = i1->first(); r != Range::end(); r = r->next()) {
3273      if (r->from() >= r->to()) {
3274        tty->print_cr("Interval %d has zero length range", i1->reg_num()); i1->print(); tty->cr();
3275        has_error = true;
3276      }
3277    }
3278
3279    for (int j = i + 1; j < len; j++) {
3280      Interval* i2 = interval_at(j);
3281      if (i2 == NULL || (i2->from() == 1 && i2->to() == 2)) continue;
3282
3283      int r1 = i1->assigned_reg();
3284      int r1Hi = i1->assigned_regHi();
3285      int r2 = i2->assigned_reg();
3286      int r2Hi = i2->assigned_regHi();
3287      if ((r1 == r2 || r1 == r2Hi || (r1Hi != any_reg && (r1Hi == r2 || r1Hi == r2Hi))) && i1->intersects(i2)) {
3288        tty->print_cr("Intervals %d and %d overlap and have the same register assigned", i1->reg_num(), i2->reg_num());
3289        i1->print(); tty->cr();
3290        i2->print(); tty->cr();
3291        has_error = true;
3292      }
3293    }
3294  }
3295
3296  assert(has_error == false, "register allocation invalid");
3297}
3298
3299
3300void LinearScan::verify_no_oops_in_fixed_intervals() {
3301  Interval* fixed_intervals;
3302  Interval* other_intervals;
3303  create_unhandled_lists(&fixed_intervals, &other_intervals, is_precolored_cpu_interval, NULL);
3304
3305  // to ensure a walking until the last instruction id, add a dummy interval
3306  // with a high operation id
3307  other_intervals = new Interval(any_reg);
3308  other_intervals->add_range(max_jint - 2, max_jint - 1);
3309  IntervalWalker* iw = new IntervalWalker(this, fixed_intervals, other_intervals);
3310
3311  LIR_OpVisitState visitor;
3312  for (int i = 0; i < block_count(); i++) {
3313    BlockBegin* block = block_at(i);
3314
3315    LIR_OpList* instructions = block->lir()->instructions_list();
3316
3317    for (int j = 0; j < instructions->length(); j++) {
3318      LIR_Op* op = instructions->at(j);
3319      int op_id = op->id();
3320
3321      visitor.visit(op);
3322
3323      if (visitor.info_count() > 0) {
3324        iw->walk_before(op->id());
3325        bool check_live = true;
3326        if (op->code() == lir_move) {
3327          LIR_Op1* move = (LIR_Op1*)op;
3328          check_live = (move->patch_code() == lir_patch_none);
3329        }
3330        LIR_OpBranch* branch = op->as_OpBranch();
3331        if (branch != NULL && branch->stub() != NULL && branch->stub()->is_exception_throw_stub()) {
3332          // Don't bother checking the stub in this case since the
3333          // exception stub will never return to normal control flow.
3334          check_live = false;
3335        }
3336
3337        // Make sure none of the fixed registers is live across an
3338        // oopmap since we can't handle that correctly.
3339        if (check_live) {
3340          for (Interval* interval = iw->active_first(fixedKind);
3341               interval != Interval::end();
3342               interval = interval->next()) {
3343            if (interval->current_to() > op->id() + 1) {
3344              // This interval is live out of this op so make sure
3345              // that this interval represents some value that's
3346              // referenced by this op either as an input or output.
3347              bool ok = false;
3348              for_each_visitor_mode(mode) {
3349                int n = visitor.opr_count(mode);
3350                for (int k = 0; k < n; k++) {
3351                  LIR_Opr opr = visitor.opr_at(mode, k);
3352                  if (opr->is_fixed_cpu()) {
3353                    if (interval_at(reg_num(opr)) == interval) {
3354                      ok = true;
3355                      break;
3356                    }
3357                    int hi = reg_numHi(opr);
3358                    if (hi != -1 && interval_at(hi) == interval) {
3359                      ok = true;
3360                      break;
3361                    }
3362                  }
3363                }
3364              }
3365              assert(ok, "fixed intervals should never be live across an oopmap point");
3366            }
3367          }
3368        }
3369      }
3370
3371      // oop-maps at calls do not contain registers, so check is not needed
3372      if (!visitor.has_call()) {
3373
3374        for_each_visitor_mode(mode) {
3375          int n = visitor.opr_count(mode);
3376          for (int k = 0; k < n; k++) {
3377            LIR_Opr opr = visitor.opr_at(mode, k);
3378
3379            if (opr->is_fixed_cpu() && opr->is_oop()) {
3380              // operand is a non-virtual cpu register and contains an oop
3381              TRACE_LINEAR_SCAN(4, op->print_on(tty); tty->print("checking operand "); opr->print(); tty->cr());
3382
3383              Interval* interval = interval_at(reg_num(opr));
3384              assert(interval != NULL, "no interval");
3385
3386              if (mode == LIR_OpVisitState::inputMode) {
3387                if (interval->to() >= op_id + 1) {
3388                  assert(interval->to() < op_id + 2 ||
3389                         interval->has_hole_between(op_id, op_id + 2),
3390                         "oop input operand live after instruction");
3391                }
3392              } else if (mode == LIR_OpVisitState::outputMode) {
3393                if (interval->from() <= op_id - 1) {
3394                  assert(interval->has_hole_between(op_id - 1, op_id),
3395                         "oop input operand live after instruction");
3396                }
3397              }
3398            }
3399          }
3400        }
3401      }
3402    }
3403  }
3404}
3405
3406
3407void LinearScan::verify_constants() {
3408  int num_regs = num_virtual_regs();
3409  int size = live_set_size();
3410  int num_blocks = block_count();
3411
3412  for (int i = 0; i < num_blocks; i++) {
3413    BlockBegin* block = block_at(i);
3414    ResourceBitMap live_at_edge = block->live_in();
3415
3416    // visit all registers where the live_at_edge bit is set
3417    for (int r = (int)live_at_edge.get_next_one_offset(0, size); r < size; r = (int)live_at_edge.get_next_one_offset(r + 1, size)) {
3418      TRACE_LINEAR_SCAN(4, tty->print("checking interval %d of block B%d", r, block->block_id()));
3419
3420      Value value = gen()->instruction_for_vreg(r);
3421
3422      assert(value != NULL, "all intervals live across block boundaries must have Value");
3423      assert(value->operand()->is_register() && value->operand()->is_virtual(), "value must have virtual operand");
3424      assert(value->operand()->vreg_number() == r, "register number must match");
3425      // TKR assert(value->as_Constant() == NULL || value->is_pinned(), "only pinned constants can be alive accross block boundaries");
3426    }
3427  }
3428}
3429
3430
3431class RegisterVerifier: public StackObj {
3432 private:
3433  LinearScan*   _allocator;
3434  BlockList     _work_list;      // all blocks that must be processed
3435  IntervalsList _saved_states;   // saved information of previous check
3436
3437  // simplified access to methods of LinearScan
3438  Compilation*  compilation() const              { return _allocator->compilation(); }
3439  Interval*     interval_at(int reg_num) const   { return _allocator->interval_at(reg_num); }
3440  int           reg_num(LIR_Opr opr) const       { return _allocator->reg_num(opr); }
3441
3442  // currently, only registers are processed
3443  int           state_size()                     { return LinearScan::nof_regs; }
3444
3445  // accessors
3446  IntervalList* state_for_block(BlockBegin* block) { return _saved_states.at(block->block_id()); }
3447  void          set_state_for_block(BlockBegin* block, IntervalList* saved_state) { _saved_states.at_put(block->block_id(), saved_state); }
3448  void          add_to_work_list(BlockBegin* block) { if (!_work_list.contains(block)) _work_list.append(block); }
3449
3450  // helper functions
3451  IntervalList* copy(IntervalList* input_state);
3452  void          state_put(IntervalList* input_state, int reg, Interval* interval);
3453  bool          check_state(IntervalList* input_state, int reg, Interval* interval);
3454
3455  void process_block(BlockBegin* block);
3456  void process_xhandler(XHandler* xhandler, IntervalList* input_state);
3457  void process_successor(BlockBegin* block, IntervalList* input_state);
3458  void process_operations(LIR_List* ops, IntervalList* input_state);
3459
3460 public:
3461  RegisterVerifier(LinearScan* allocator)
3462    : _allocator(allocator)
3463    , _work_list(16)
3464    , _saved_states(BlockBegin::number_of_blocks(), BlockBegin::number_of_blocks(), NULL)
3465  { }
3466
3467  void verify(BlockBegin* start);
3468};
3469
3470
3471// entry function from LinearScan that starts the verification
3472void LinearScan::verify_registers() {
3473  RegisterVerifier verifier(this);
3474  verifier.verify(block_at(0));
3475}
3476
3477
3478void RegisterVerifier::verify(BlockBegin* start) {
3479  // setup input registers (method arguments) for first block
3480  int input_state_len = state_size();
3481  IntervalList* input_state = new IntervalList(input_state_len, input_state_len, NULL);
3482  CallingConvention* args = compilation()->frame_map()->incoming_arguments();
3483  for (int n = 0; n < args->length(); n++) {
3484    LIR_Opr opr = args->at(n);
3485    if (opr->is_register()) {
3486      Interval* interval = interval_at(reg_num(opr));
3487
3488      if (interval->assigned_reg() < state_size()) {
3489        input_state->at_put(interval->assigned_reg(), interval);
3490      }
3491      if (interval->assigned_regHi() != LinearScan::any_reg && interval->assigned_regHi() < state_size()) {
3492        input_state->at_put(interval->assigned_regHi(), interval);
3493      }
3494    }
3495  }
3496
3497  set_state_for_block(start, input_state);
3498  add_to_work_list(start);
3499
3500  // main loop for verification
3501  do {
3502    BlockBegin* block = _work_list.at(0);
3503    _work_list.remove_at(0);
3504
3505    process_block(block);
3506  } while (!_work_list.is_empty());
3507}
3508
3509void RegisterVerifier::process_block(BlockBegin* block) {
3510  TRACE_LINEAR_SCAN(2, tty->cr(); tty->print_cr("process_block B%d", block->block_id()));
3511
3512  // must copy state because it is modified
3513  IntervalList* input_state = copy(state_for_block(block));
3514
3515  if (TraceLinearScanLevel >= 4) {
3516    tty->print_cr("Input-State of intervals:");
3517    tty->print("    ");
3518    for (int i = 0; i < state_size(); i++) {
3519      if (input_state->at(i) != NULL) {
3520        tty->print(" %4d", input_state->at(i)->reg_num());
3521      } else {
3522        tty->print("   __");
3523      }
3524    }
3525    tty->cr();
3526    tty->cr();
3527  }
3528
3529  // process all operations of the block
3530  process_operations(block->lir(), input_state);
3531
3532  // iterate all successors
3533  for (int i = 0; i < block->number_of_sux(); i++) {
3534    process_successor(block->sux_at(i), input_state);
3535  }
3536}
3537
3538void RegisterVerifier::process_xhandler(XHandler* xhandler, IntervalList* input_state) {
3539  TRACE_LINEAR_SCAN(2, tty->print_cr("process_xhandler B%d", xhandler->entry_block()->block_id()));
3540
3541  // must copy state because it is modified
3542  input_state = copy(input_state);
3543
3544  if (xhandler->entry_code() != NULL) {
3545    process_operations(xhandler->entry_code(), input_state);
3546  }
3547  process_successor(xhandler->entry_block(), input_state);
3548}
3549
3550void RegisterVerifier::process_successor(BlockBegin* block, IntervalList* input_state) {
3551  IntervalList* saved_state = state_for_block(block);
3552
3553  if (saved_state != NULL) {
3554    // this block was already processed before.
3555    // check if new input_state is consistent with saved_state
3556
3557    bool saved_state_correct = true;
3558    for (int i = 0; i < state_size(); i++) {
3559      if (input_state->at(i) != saved_state->at(i)) {
3560        // current input_state and previous saved_state assume a different
3561        // interval in this register -> assume that this register is invalid
3562        if (saved_state->at(i) != NULL) {
3563          // invalidate old calculation only if it assumed that
3564          // register was valid. when the register was already invalid,
3565          // then the old calculation was correct.
3566          saved_state_correct = false;
3567          saved_state->at_put(i, NULL);
3568
3569          TRACE_LINEAR_SCAN(4, tty->print_cr("process_successor B%d: invalidating slot %d", block->block_id(), i));
3570        }
3571      }
3572    }
3573
3574    if (saved_state_correct) {
3575      // already processed block with correct input_state
3576      TRACE_LINEAR_SCAN(2, tty->print_cr("process_successor B%d: previous visit already correct", block->block_id()));
3577    } else {
3578      // must re-visit this block
3579      TRACE_LINEAR_SCAN(2, tty->print_cr("process_successor B%d: must re-visit because input state changed", block->block_id()));
3580      add_to_work_list(block);
3581    }
3582
3583  } else {
3584    // block was not processed before, so set initial input_state
3585    TRACE_LINEAR_SCAN(2, tty->print_cr("process_successor B%d: initial visit", block->block_id()));
3586
3587    set_state_for_block(block, copy(input_state));
3588    add_to_work_list(block);
3589  }
3590}
3591
3592
3593IntervalList* RegisterVerifier::copy(IntervalList* input_state) {
3594  IntervalList* copy_state = new IntervalList(input_state->length());
3595  copy_state->appendAll(input_state);
3596  return copy_state;
3597}
3598
3599void RegisterVerifier::state_put(IntervalList* input_state, int reg, Interval* interval) {
3600  if (reg != LinearScan::any_reg && reg < state_size()) {
3601    if (interval != NULL) {
3602      TRACE_LINEAR_SCAN(4, tty->print_cr("        reg[%d] = %d", reg, interval->reg_num()));
3603    } else if (input_state->at(reg) != NULL) {
3604      TRACE_LINEAR_SCAN(4, tty->print_cr("        reg[%d] = NULL", reg));
3605    }
3606
3607    input_state->at_put(reg, interval);
3608  }
3609}
3610
3611bool RegisterVerifier::check_state(IntervalList* input_state, int reg, Interval* interval) {
3612  if (reg != LinearScan::any_reg && reg < state_size()) {
3613    if (input_state->at(reg) != interval) {
3614      tty->print_cr("!! Error in register allocation: register %d does not contain interval %d", reg, interval->reg_num());
3615      return true;
3616    }
3617  }
3618  return false;
3619}
3620
3621void RegisterVerifier::process_operations(LIR_List* ops, IntervalList* input_state) {
3622  // visit all instructions of the block
3623  LIR_OpVisitState visitor;
3624  bool has_error = false;
3625
3626  for (int i = 0; i < ops->length(); i++) {
3627    LIR_Op* op = ops->at(i);
3628    visitor.visit(op);
3629
3630    TRACE_LINEAR_SCAN(4, op->print_on(tty));
3631
3632    // check if input operands are correct
3633    int j;
3634    int n = visitor.opr_count(LIR_OpVisitState::inputMode);
3635    for (j = 0; j < n; j++) {
3636      LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::inputMode, j);
3637      if (opr->is_register() && LinearScan::is_processed_reg_num(reg_num(opr))) {
3638        Interval* interval = interval_at(reg_num(opr));
3639        if (op->id() != -1) {
3640          interval = interval->split_child_at_op_id(op->id(), LIR_OpVisitState::inputMode);
3641        }
3642
3643        has_error |= check_state(input_state, interval->assigned_reg(),   interval->split_parent());
3644        has_error |= check_state(input_state, interval->assigned_regHi(), interval->split_parent());
3645
3646        // When an operand is marked with is_last_use, then the fpu stack allocator
3647        // removes the register from the fpu stack -> the register contains no value
3648        if (opr->is_last_use()) {
3649          state_put(input_state, interval->assigned_reg(),   NULL);
3650          state_put(input_state, interval->assigned_regHi(), NULL);
3651        }
3652      }
3653    }
3654
3655    // invalidate all caller save registers at calls
3656    if (visitor.has_call()) {
3657      for (j = 0; j < FrameMap::nof_caller_save_cpu_regs(); j++) {
3658        state_put(input_state, reg_num(FrameMap::caller_save_cpu_reg_at(j)), NULL);
3659      }
3660      for (j = 0; j < FrameMap::nof_caller_save_fpu_regs; j++) {
3661        state_put(input_state, reg_num(FrameMap::caller_save_fpu_reg_at(j)), NULL);
3662      }
3663
3664#ifdef X86
3665      int num_caller_save_xmm_regs = FrameMap::get_num_caller_save_xmms();
3666      for (j = 0; j < num_caller_save_xmm_regs; j++) {
3667        state_put(input_state, reg_num(FrameMap::caller_save_xmm_reg_at(j)), NULL);
3668      }
3669#endif
3670    }
3671
3672    // process xhandler before output and temp operands
3673    XHandlers* xhandlers = visitor.all_xhandler();
3674    n = xhandlers->length();
3675    for (int k = 0; k < n; k++) {
3676      process_xhandler(xhandlers->handler_at(k), input_state);
3677    }
3678
3679    // set temp operands (some operations use temp operands also as output operands, so can't set them NULL)
3680    n = visitor.opr_count(LIR_OpVisitState::tempMode);
3681    for (j = 0; j < n; j++) {
3682      LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::tempMode, j);
3683      if (opr->is_register() && LinearScan::is_processed_reg_num(reg_num(opr))) {
3684        Interval* interval = interval_at(reg_num(opr));
3685        if (op->id() != -1) {
3686          interval = interval->split_child_at_op_id(op->id(), LIR_OpVisitState::tempMode);
3687        }
3688
3689        state_put(input_state, interval->assigned_reg(),   interval->split_parent());
3690        state_put(input_state, interval->assigned_regHi(), interval->split_parent());
3691      }
3692    }
3693
3694    // set output operands
3695    n = visitor.opr_count(LIR_OpVisitState::outputMode);
3696    for (j = 0; j < n; j++) {
3697      LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::outputMode, j);
3698      if (opr->is_register() && LinearScan::is_processed_reg_num(reg_num(opr))) {
3699        Interval* interval = interval_at(reg_num(opr));
3700        if (op->id() != -1) {
3701          interval = interval->split_child_at_op_id(op->id(), LIR_OpVisitState::outputMode);
3702        }
3703
3704        state_put(input_state, interval->assigned_reg(),   interval->split_parent());
3705        state_put(input_state, interval->assigned_regHi(), interval->split_parent());
3706      }
3707    }
3708  }
3709  assert(has_error == false, "Error in register allocation");
3710}
3711
3712#endif // ASSERT
3713
3714
3715
3716// **** Implementation of MoveResolver ******************************
3717
3718MoveResolver::MoveResolver(LinearScan* allocator) :
3719  _allocator(allocator),
3720  _multiple_reads_allowed(false),
3721  _mapping_from(8),
3722  _mapping_from_opr(8),
3723  _mapping_to(8),
3724  _insert_list(NULL),
3725  _insert_idx(-1),
3726  _insertion_buffer()
3727{
3728  for (int i = 0; i < LinearScan::nof_regs; i++) {
3729    _register_blocked[i] = 0;
3730  }
3731  DEBUG_ONLY(check_empty());
3732}
3733
3734
3735#ifdef ASSERT
3736
3737void MoveResolver::check_empty() {
3738  assert(_mapping_from.length() == 0 && _mapping_from_opr.length() == 0 && _mapping_to.length() == 0, "list must be empty before and after processing");
3739  for (int i = 0; i < LinearScan::nof_regs; i++) {
3740    assert(register_blocked(i) == 0, "register map must be empty before and after processing");
3741  }
3742  assert(_multiple_reads_allowed == false, "must have default value");
3743}
3744
3745void MoveResolver::verify_before_resolve() {
3746  assert(_mapping_from.length() == _mapping_from_opr.length(), "length must be equal");
3747  assert(_mapping_from.length() == _mapping_to.length(), "length must be equal");
3748  assert(_insert_list != NULL && _insert_idx != -1, "insert position not set");
3749
3750  int i, j;
3751  if (!_multiple_reads_allowed) {
3752    for (i = 0; i < _mapping_from.length(); i++) {
3753      for (j = i + 1; j < _mapping_from.length(); j++) {
3754        assert(_mapping_from.at(i) == NULL || _mapping_from.at(i) != _mapping_from.at(j), "cannot read from same interval twice");
3755      }
3756    }
3757  }
3758
3759  for (i = 0; i < _mapping_to.length(); i++) {
3760    for (j = i + 1; j < _mapping_to.length(); j++) {
3761      assert(_mapping_to.at(i) != _mapping_to.at(j), "cannot write to same interval twice");
3762    }
3763  }
3764
3765
3766  ResourceBitMap used_regs(LinearScan::nof_regs + allocator()->frame_map()->argcount() + allocator()->max_spills());
3767  if (!_multiple_reads_allowed) {
3768    for (i = 0; i < _mapping_from.length(); i++) {
3769      Interval* it = _mapping_from.at(i);
3770      if (it != NULL) {
3771        assert(!used_regs.at(it->assigned_reg()), "cannot read from same register twice");
3772        used_regs.set_bit(it->assigned_reg());
3773
3774        if (it->assigned_regHi() != LinearScan::any_reg) {
3775          assert(!used_regs.at(it->assigned_regHi()), "cannot read from same register twice");
3776          used_regs.set_bit(it->assigned_regHi());
3777        }
3778      }
3779    }
3780  }
3781
3782  used_regs.clear();
3783  for (i = 0; i < _mapping_to.length(); i++) {
3784    Interval* it = _mapping_to.at(i);
3785    assert(!used_regs.at(it->assigned_reg()), "cannot write to same register twice");
3786    used_regs.set_bit(it->assigned_reg());
3787
3788    if (it->assigned_regHi() != LinearScan::any_reg) {
3789      assert(!used_regs.at(it->assigned_regHi()), "cannot write to same register twice");
3790      used_regs.set_bit(it->assigned_regHi());
3791    }
3792  }
3793
3794  used_regs.clear();
3795  for (i = 0; i < _mapping_from.length(); i++) {
3796    Interval* it = _mapping_from.at(i);
3797    if (it != NULL && it->assigned_reg() >= LinearScan::nof_regs) {
3798      used_regs.set_bit(it->assigned_reg());
3799    }
3800  }
3801  for (i = 0; i < _mapping_to.length(); i++) {
3802    Interval* it = _mapping_to.at(i);
3803    assert(!used_regs.at(it->assigned_reg()) || it->assigned_reg() == _mapping_from.at(i)->assigned_reg(), "stack slots used in _mapping_from must be disjoint to _mapping_to");
3804  }
3805}
3806
3807#endif // ASSERT
3808
3809
3810// mark assigned_reg and assigned_regHi of the interval as blocked
3811void MoveResolver::block_registers(Interval* it) {
3812  int reg = it->assigned_reg();
3813  if (reg < LinearScan::nof_regs) {
3814    assert(_multiple_reads_allowed || register_blocked(reg) == 0, "register already marked as used");
3815    set_register_blocked(reg, 1);
3816  }
3817  reg = it->assigned_regHi();
3818  if (reg != LinearScan::any_reg && reg < LinearScan::nof_regs) {
3819    assert(_multiple_reads_allowed || register_blocked(reg) == 0, "register already marked as used");
3820    set_register_blocked(reg, 1);
3821  }
3822}
3823
3824// mark assigned_reg and assigned_regHi of the interval as unblocked
3825void MoveResolver::unblock_registers(Interval* it) {
3826  int reg = it->assigned_reg();
3827  if (reg < LinearScan::nof_regs) {
3828    assert(register_blocked(reg) > 0, "register already marked as unused");
3829    set_register_blocked(reg, -1);
3830  }
3831  reg = it->assigned_regHi();
3832  if (reg != LinearScan::any_reg && reg < LinearScan::nof_regs) {
3833    assert(register_blocked(reg) > 0, "register already marked as unused");
3834    set_register_blocked(reg, -1);
3835  }
3836}
3837
3838// check if assigned_reg and assigned_regHi of the to-interval are not blocked (or only blocked by from)
3839bool MoveResolver::save_to_process_move(Interval* from, Interval* to) {
3840  int from_reg = -1;
3841  int from_regHi = -1;
3842  if (from != NULL) {
3843    from_reg = from->assigned_reg();
3844    from_regHi = from->assigned_regHi();
3845  }
3846
3847  int reg = to->assigned_reg();
3848  if (reg < LinearScan::nof_regs) {
3849    if (register_blocked(reg) > 1 || (register_blocked(reg) == 1 && reg != from_reg && reg != from_regHi)) {
3850      return false;
3851    }
3852  }
3853  reg = to->assigned_regHi();
3854  if (reg != LinearScan::any_reg && reg < LinearScan::nof_regs) {
3855    if (register_blocked(reg) > 1 || (register_blocked(reg) == 1 && reg != from_reg && reg != from_regHi)) {
3856      return false;
3857    }
3858  }
3859
3860  return true;
3861}
3862
3863
3864void MoveResolver::create_insertion_buffer(LIR_List* list) {
3865  assert(!_insertion_buffer.initialized(), "overwriting existing buffer");
3866  _insertion_buffer.init(list);
3867}
3868
3869void MoveResolver::append_insertion_buffer() {
3870  if (_insertion_buffer.initialized()) {
3871    _insertion_buffer.lir_list()->append(&_insertion_buffer);
3872  }
3873  assert(!_insertion_buffer.initialized(), "must be uninitialized now");
3874
3875  _insert_list = NULL;
3876  _insert_idx = -1;
3877}
3878
3879void MoveResolver::insert_move(Interval* from_interval, Interval* to_interval) {
3880  assert(from_interval->reg_num() != to_interval->reg_num(), "from and to interval equal");
3881  assert(from_interval->type() == to_interval->type(), "move between different types");
3882  assert(_insert_list != NULL && _insert_idx != -1, "must setup insert position first");
3883  assert(_insertion_buffer.lir_list() == _insert_list, "wrong insertion buffer");
3884
3885  LIR_Opr from_opr = LIR_OprFact::virtual_register(from_interval->reg_num(), from_interval->type());
3886  LIR_Opr to_opr = LIR_OprFact::virtual_register(to_interval->reg_num(), to_interval->type());
3887
3888  if (!_multiple_reads_allowed) {
3889    // the last_use flag is an optimization for FPU stack allocation. When the same
3890    // input interval is used in more than one move, then it is too difficult to determine
3891    // if this move is really the last use.
3892    from_opr = from_opr->make_last_use();
3893  }
3894  _insertion_buffer.move(_insert_idx, from_opr, to_opr);
3895
3896  TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: inserted move from register %d (%d, %d) to %d (%d, %d)", from_interval->reg_num(), from_interval->assigned_reg(), from_interval->assigned_regHi(), to_interval->reg_num(), to_interval->assigned_reg(), to_interval->assigned_regHi()));
3897}
3898
3899void MoveResolver::insert_move(LIR_Opr from_opr, Interval* to_interval) {
3900  assert(from_opr->type() == to_interval->type(), "move between different types");
3901  assert(_insert_list != NULL && _insert_idx != -1, "must setup insert position first");
3902  assert(_insertion_buffer.lir_list() == _insert_list, "wrong insertion buffer");
3903
3904  LIR_Opr to_opr = LIR_OprFact::virtual_register(to_interval->reg_num(), to_interval->type());
3905  _insertion_buffer.move(_insert_idx, from_opr, to_opr);
3906
3907  TRACE_LINEAR_SCAN(4, tty->print("MoveResolver: inserted move from constant "); from_opr->print(); tty->print_cr("  to %d (%d, %d)", to_interval->reg_num(), to_interval->assigned_reg(), to_interval->assigned_regHi()));
3908}
3909
3910
3911void MoveResolver::resolve_mappings() {
3912  TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: resolving mappings for Block B%d, index %d", _insert_list->block() != NULL ? _insert_list->block()->block_id() : -1, _insert_idx));
3913  DEBUG_ONLY(verify_before_resolve());
3914
3915  // Block all registers that are used as input operands of a move.
3916  // When a register is blocked, no move to this register is emitted.
3917  // This is necessary for detecting cycles in moves.
3918  int i;
3919  for (i = _mapping_from.length() - 1; i >= 0; i--) {
3920    Interval* from_interval = _mapping_from.at(i);
3921    if (from_interval != NULL) {
3922      block_registers(from_interval);
3923    }
3924  }
3925
3926  int spill_candidate = -1;
3927  while (_mapping_from.length() > 0) {
3928    bool processed_interval = false;
3929
3930    for (i = _mapping_from.length() - 1; i >= 0; i--) {
3931      Interval* from_interval = _mapping_from.at(i);
3932      Interval* to_interval = _mapping_to.at(i);
3933
3934      if (save_to_process_move(from_interval, to_interval)) {
3935        // this inverval can be processed because target is free
3936        if (from_interval != NULL) {
3937          insert_move(from_interval, to_interval);
3938          unblock_registers(from_interval);
3939        } else {
3940          insert_move(_mapping_from_opr.at(i), to_interval);
3941        }
3942        _mapping_from.remove_at(i);
3943        _mapping_from_opr.remove_at(i);
3944        _mapping_to.remove_at(i);
3945
3946        processed_interval = true;
3947      } else if (from_interval != NULL && from_interval->assigned_reg() < LinearScan::nof_regs) {
3948        // this interval cannot be processed now because target is not free
3949        // it starts in a register, so it is a possible candidate for spilling
3950        spill_candidate = i;
3951      }
3952    }
3953
3954    if (!processed_interval) {
3955      // no move could be processed because there is a cycle in the move list
3956      // (e.g. r1 -> r2, r2 -> r1), so one interval must be spilled to memory
3957      assert(spill_candidate != -1, "no interval in register for spilling found");
3958
3959      // create a new spill interval and assign a stack slot to it
3960      Interval* from_interval = _mapping_from.at(spill_candidate);
3961      Interval* spill_interval = new Interval(-1);
3962      spill_interval->set_type(from_interval->type());
3963
3964      // add a dummy range because real position is difficult to calculate
3965      // Note: this range is a special case when the integrity of the allocation is checked
3966      spill_interval->add_range(1, 2);
3967
3968      //       do not allocate a new spill slot for temporary interval, but
3969      //       use spill slot assigned to from_interval. Otherwise moves from
3970      //       one stack slot to another can happen (not allowed by LIR_Assembler
3971      int spill_slot = from_interval->canonical_spill_slot();
3972      if (spill_slot < 0) {
3973        spill_slot = allocator()->allocate_spill_slot(type2spill_size[spill_interval->type()] == 2);
3974        from_interval->set_canonical_spill_slot(spill_slot);
3975      }
3976      spill_interval->assign_reg(spill_slot);
3977      allocator()->append_interval(spill_interval);
3978
3979      TRACE_LINEAR_SCAN(4, tty->print_cr("created new Interval %d for spilling", spill_interval->reg_num()));
3980
3981      // insert a move from register to stack and update the mapping
3982      insert_move(from_interval, spill_interval);
3983      _mapping_from.at_put(spill_candidate, spill_interval);
3984      unblock_registers(from_interval);
3985    }
3986  }
3987
3988  // reset to default value
3989  _multiple_reads_allowed = false;
3990
3991  // check that all intervals have been processed
3992  DEBUG_ONLY(check_empty());
3993}
3994
3995
3996void MoveResolver::set_insert_position(LIR_List* insert_list, int insert_idx) {
3997  TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: setting insert position to Block B%d, index %d", insert_list->block() != NULL ? insert_list->block()->block_id() : -1, insert_idx));
3998  assert(_insert_list == NULL && _insert_idx == -1, "use move_insert_position instead of set_insert_position when data already set");
3999
4000  create_insertion_buffer(insert_list);
4001  _insert_list = insert_list;
4002  _insert_idx = insert_idx;
4003}
4004
4005void MoveResolver::move_insert_position(LIR_List* insert_list, int insert_idx) {
4006  TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: moving insert position to Block B%d, index %d", insert_list->block() != NULL ? insert_list->block()->block_id() : -1, insert_idx));
4007
4008  if (_insert_list != NULL && (insert_list != _insert_list || insert_idx != _insert_idx)) {
4009    // insert position changed -> resolve current mappings
4010    resolve_mappings();
4011  }
4012
4013  if (insert_list != _insert_list) {
4014    // block changed -> append insertion_buffer because it is
4015    // bound to a specific block and create a new insertion_buffer
4016    append_insertion_buffer();
4017    create_insertion_buffer(insert_list);
4018  }
4019
4020  _insert_list = insert_list;
4021  _insert_idx = insert_idx;
4022}
4023
4024void MoveResolver::add_mapping(Interval* from_interval, Interval* to_interval) {
4025  TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: adding mapping from %d (%d, %d) to %d (%d, %d)", from_interval->reg_num(), from_interval->assigned_reg(), from_interval->assigned_regHi(), to_interval->reg_num(), to_interval->assigned_reg(), to_interval->assigned_regHi()));
4026
4027  _mapping_from.append(from_interval);
4028  _mapping_from_opr.append(LIR_OprFact::illegalOpr);
4029  _mapping_to.append(to_interval);
4030}
4031
4032
4033void MoveResolver::add_mapping(LIR_Opr from_opr, Interval* to_interval) {
4034  TRACE_LINEAR_SCAN(4, tty->print("MoveResolver: adding mapping from "); from_opr->print(); tty->print_cr(" to %d (%d, %d)", to_interval->reg_num(), to_interval->assigned_reg(), to_interval->assigned_regHi()));
4035  assert(from_opr->is_constant(), "only for constants");
4036
4037  _mapping_from.append(NULL);
4038  _mapping_from_opr.append(from_opr);
4039  _mapping_to.append(to_interval);
4040}
4041
4042void MoveResolver::resolve_and_append_moves() {
4043  if (has_mappings()) {
4044    resolve_mappings();
4045  }
4046  append_insertion_buffer();
4047}
4048
4049
4050
4051// **** Implementation of Range *************************************
4052
4053Range::Range(int from, int to, Range* next) :
4054  _from(from),
4055  _to(to),
4056  _next(next)
4057{
4058}
4059
4060// initialize sentinel
4061Range* Range::_end = NULL;
4062void Range::initialize(Arena* arena) {
4063  _end = new (arena) Range(max_jint, max_jint, NULL);
4064}
4065
4066int Range::intersects_at(Range* r2) const {
4067  const Range* r1 = this;
4068
4069  assert(r1 != NULL && r2 != NULL, "null ranges not allowed");
4070  assert(r1 != _end && r2 != _end, "empty ranges not allowed");
4071
4072  do {
4073    if (r1->from() < r2->from()) {
4074      if (r1->to() <= r2->from()) {
4075        r1 = r1->next(); if (r1 == _end) return -1;
4076      } else {
4077        return r2->from();
4078      }
4079    } else if (r2->from() < r1->from()) {
4080      if (r2->to() <= r1->from()) {
4081        r2 = r2->next(); if (r2 == _end) return -1;
4082      } else {
4083        return r1->from();
4084      }
4085    } else { // r1->from() == r2->from()
4086      if (r1->from() == r1->to()) {
4087        r1 = r1->next(); if (r1 == _end) return -1;
4088      } else if (r2->from() == r2->to()) {
4089        r2 = r2->next(); if (r2 == _end) return -1;
4090      } else {
4091        return r1->from();
4092      }
4093    }
4094  } while (true);
4095}
4096
4097#ifndef PRODUCT
4098void Range::print(outputStream* out) const {
4099  out->print("[%d, %d[ ", _from, _to);
4100}
4101#endif
4102
4103
4104
4105// **** Implementation of Interval **********************************
4106
4107// initialize sentinel
4108Interval* Interval::_end = NULL;
4109void Interval::initialize(Arena* arena) {
4110  Range::initialize(arena);
4111  _end = new (arena) Interval(-1);
4112}
4113
4114Interval::Interval(int reg_num) :
4115  _reg_num(reg_num),
4116  _type(T_ILLEGAL),
4117  _first(Range::end()),
4118  _use_pos_and_kinds(12),
4119  _current(Range::end()),
4120  _next(_end),
4121  _state(invalidState),
4122  _assigned_reg(LinearScan::any_reg),
4123  _assigned_regHi(LinearScan::any_reg),
4124  _cached_to(-1),
4125  _cached_opr(LIR_OprFact::illegalOpr),
4126  _cached_vm_reg(VMRegImpl::Bad()),
4127  _split_children(0),
4128  _canonical_spill_slot(-1),
4129  _insert_move_when_activated(false),
4130  _register_hint(NULL),
4131  _spill_state(noDefinitionFound),
4132  _spill_definition_pos(-1)
4133{
4134  _split_parent = this;
4135  _current_split_child = this;
4136}
4137
4138int Interval::calc_to() {
4139  assert(_first != Range::end(), "interval has no range");
4140
4141  Range* r = _first;
4142  while (r->next() != Range::end()) {
4143    r = r->next();
4144  }
4145  return r->to();
4146}
4147
4148
4149#ifdef ASSERT
4150// consistency check of split-children
4151void Interval::check_split_children() {
4152  if (_split_children.length() > 0) {
4153    assert(is_split_parent(), "only split parents can have children");
4154
4155    for (int i = 0; i < _split_children.length(); i++) {
4156      Interval* i1 = _split_children.at(i);
4157
4158      assert(i1->split_parent() == this, "not a split child of this interval");
4159      assert(i1->type() == type(), "must be equal for all split children");
4160      assert(i1->canonical_spill_slot() == canonical_spill_slot(), "must be equal for all split children");
4161
4162      for (int j = i + 1; j < _split_children.length(); j++) {
4163        Interval* i2 = _split_children.at(j);
4164
4165        assert(i1->reg_num() != i2->reg_num(), "same register number");
4166
4167        if (i1->from() < i2->from()) {
4168          assert(i1->to() <= i2->from() && i1->to() < i2->to(), "intervals overlapping");
4169        } else {
4170          assert(i2->from() < i1->from(), "intervals start at same op_id");
4171          assert(i2->to() <= i1->from() && i2->to() < i1->to(), "intervals overlapping");
4172        }
4173      }
4174    }
4175  }
4176}
4177#endif // ASSERT
4178
4179Interval* Interval::register_hint(bool search_split_child) const {
4180  if (!search_split_child) {
4181    return _register_hint;
4182  }
4183
4184  if (_register_hint != NULL) {
4185    assert(_register_hint->is_split_parent(), "ony split parents are valid hint registers");
4186
4187    if (_register_hint->assigned_reg() >= 0 && _register_hint->assigned_reg() < LinearScan::nof_regs) {
4188      return _register_hint;
4189
4190    } else if (_register_hint->_split_children.length() > 0) {
4191      // search the first split child that has a register assigned
4192      int len = _register_hint->_split_children.length();
4193      for (int i = 0; i < len; i++) {
4194        Interval* cur = _register_hint->_split_children.at(i);
4195
4196        if (cur->assigned_reg() >= 0 && cur->assigned_reg() < LinearScan::nof_regs) {
4197          return cur;
4198        }
4199      }
4200    }
4201  }
4202
4203  // no hint interval found that has a register assigned
4204  return NULL;
4205}
4206
4207
4208Interval* Interval::split_child_at_op_id(int op_id, LIR_OpVisitState::OprMode mode) {
4209  assert(is_split_parent(), "can only be called for split parents");
4210  assert(op_id >= 0, "invalid op_id (method can not be called for spill moves)");
4211
4212  Interval* result;
4213  if (_split_children.length() == 0) {
4214    result = this;
4215  } else {
4216    result = NULL;
4217    int len = _split_children.length();
4218
4219    // in outputMode, the end of the interval (op_id == cur->to()) is not valid
4220    int to_offset = (mode == LIR_OpVisitState::outputMode ? 0 : 1);
4221
4222    int i;
4223    for (i = 0; i < len; i++) {
4224      Interval* cur = _split_children.at(i);
4225      if (cur->from() <= op_id && op_id < cur->to() + to_offset) {
4226        if (i > 0) {
4227          // exchange current split child to start of list (faster access for next call)
4228          _split_children.at_put(i, _split_children.at(0));
4229          _split_children.at_put(0, cur);
4230        }
4231
4232        // interval found
4233        result = cur;
4234        break;
4235      }
4236    }
4237
4238#ifdef ASSERT
4239    for (i = 0; i < len; i++) {
4240      Interval* tmp = _split_children.at(i);
4241      if (tmp != result && tmp->from() <= op_id && op_id < tmp->to() + to_offset) {
4242        tty->print_cr("two valid result intervals found for op_id %d: %d and %d", op_id, result->reg_num(), tmp->reg_num());
4243        result->print();
4244        tmp->print();
4245        assert(false, "two valid result intervals found");
4246      }
4247    }
4248#endif
4249  }
4250
4251  assert(result != NULL, "no matching interval found");
4252  assert(result->covers(op_id, mode), "op_id not covered by interval");
4253
4254  return result;
4255}
4256
4257
4258// returns the last split child that ends before the given op_id
4259Interval* Interval::split_child_before_op_id(int op_id) {
4260  assert(op_id >= 0, "invalid op_id");
4261
4262  Interval* parent = split_parent();
4263  Interval* result = NULL;
4264
4265  int len = parent->_split_children.length();
4266  assert(len > 0, "no split children available");
4267
4268  for (int i = len - 1; i >= 0; i--) {
4269    Interval* cur = parent->_split_children.at(i);
4270    if (cur->to() <= op_id && (result == NULL || result->to() < cur->to())) {
4271      result = cur;
4272    }
4273  }
4274
4275  assert(result != NULL, "no split child found");
4276  return result;
4277}
4278
4279
4280// checks if op_id is covered by any split child
4281bool Interval::split_child_covers(int op_id, LIR_OpVisitState::OprMode mode) {
4282  assert(is_split_parent(), "can only be called for split parents");
4283  assert(op_id >= 0, "invalid op_id (method can not be called for spill moves)");
4284
4285  if (_split_children.length() == 0) {
4286    // simple case if interval was not split
4287    return covers(op_id, mode);
4288
4289  } else {
4290    // extended case: check all split children
4291    int len = _split_children.length();
4292    for (int i = 0; i < len; i++) {
4293      Interval* cur = _split_children.at(i);
4294      if (cur->covers(op_id, mode)) {
4295        return true;
4296      }
4297    }
4298    return false;
4299  }
4300}
4301
4302
4303// Note: use positions are sorted descending -> first use has highest index
4304int Interval::first_usage(IntervalUseKind min_use_kind) const {
4305  assert(LinearScan::is_virtual_interval(this), "cannot access use positions for fixed intervals");
4306
4307  for (int i = _use_pos_and_kinds.length() - 2; i >= 0; i -= 2) {
4308    if (_use_pos_and_kinds.at(i + 1) >= min_use_kind) {
4309      return _use_pos_and_kinds.at(i);
4310    }
4311  }
4312  return max_jint;
4313}
4314
4315int Interval::next_usage(IntervalUseKind min_use_kind, int from) const {
4316  assert(LinearScan::is_virtual_interval(this), "cannot access use positions for fixed intervals");
4317
4318  for (int i = _use_pos_and_kinds.length() - 2; i >= 0; i -= 2) {
4319    if (_use_pos_and_kinds.at(i) >= from && _use_pos_and_kinds.at(i + 1) >= min_use_kind) {
4320      return _use_pos_and_kinds.at(i);
4321    }
4322  }
4323  return max_jint;
4324}
4325
4326int Interval::next_usage_exact(IntervalUseKind exact_use_kind, int from) const {
4327  assert(LinearScan::is_virtual_interval(this), "cannot access use positions for fixed intervals");
4328
4329  for (int i = _use_pos_and_kinds.length() - 2; i >= 0; i -= 2) {
4330    if (_use_pos_and_kinds.at(i) >= from && _use_pos_and_kinds.at(i + 1) == exact_use_kind) {
4331      return _use_pos_and_kinds.at(i);
4332    }
4333  }
4334  return max_jint;
4335}
4336
4337int Interval::previous_usage(IntervalUseKind min_use_kind, int from) const {
4338  assert(LinearScan::is_virtual_interval(this), "cannot access use positions for fixed intervals");
4339
4340  int prev = 0;
4341  for (int i = _use_pos_and_kinds.length() - 2; i >= 0; i -= 2) {
4342    if (_use_pos_and_kinds.at(i) > from) {
4343      return prev;
4344    }
4345    if (_use_pos_and_kinds.at(i + 1) >= min_use_kind) {
4346      prev = _use_pos_and_kinds.at(i);
4347    }
4348  }
4349  return prev;
4350}
4351
4352void Interval::add_use_pos(int pos, IntervalUseKind use_kind) {
4353  assert(covers(pos, LIR_OpVisitState::inputMode), "use position not covered by live range");
4354
4355  // do not add use positions for precolored intervals because
4356  // they are never used
4357  if (use_kind != noUse && reg_num() >= LIR_OprDesc::vreg_base) {
4358#ifdef ASSERT
4359    assert(_use_pos_and_kinds.length() % 2 == 0, "must be");
4360    for (int i = 0; i < _use_pos_and_kinds.length(); i += 2) {
4361      assert(pos <= _use_pos_and_kinds.at(i), "already added a use-position with lower position");
4362      assert(_use_pos_and_kinds.at(i + 1) >= firstValidKind && _use_pos_and_kinds.at(i + 1) <= lastValidKind, "invalid use kind");
4363      if (i > 0) {
4364        assert(_use_pos_and_kinds.at(i) < _use_pos_and_kinds.at(i - 2), "not sorted descending");
4365      }
4366    }
4367#endif
4368
4369    // Note: add_use is called in descending order, so list gets sorted
4370    //       automatically by just appending new use positions
4371    int len = _use_pos_and_kinds.length();
4372    if (len == 0 || _use_pos_and_kinds.at(len - 2) > pos) {
4373      _use_pos_and_kinds.append(pos);
4374      _use_pos_and_kinds.append(use_kind);
4375    } else if (_use_pos_and_kinds.at(len - 1) < use_kind) {
4376      assert(_use_pos_and_kinds.at(len - 2) == pos, "list not sorted correctly");
4377      _use_pos_and_kinds.at_put(len - 1, use_kind);
4378    }
4379  }
4380}
4381
4382void Interval::add_range(int from, int to) {
4383  assert(from < to, "invalid range");
4384  assert(first() == Range::end() || to < first()->next()->from(), "not inserting at begin of interval");
4385  assert(from <= first()->to(), "not inserting at begin of interval");
4386
4387  if (first()->from() <= to) {
4388    // join intersecting ranges
4389    first()->set_from(MIN2(from, first()->from()));
4390    first()->set_to  (MAX2(to,   first()->to()));
4391  } else {
4392    // insert new range
4393    _first = new Range(from, to, first());
4394  }
4395}
4396
4397Interval* Interval::new_split_child() {
4398  // allocate new interval
4399  Interval* result = new Interval(-1);
4400  result->set_type(type());
4401
4402  Interval* parent = split_parent();
4403  result->_split_parent = parent;
4404  result->set_register_hint(parent);
4405
4406  // insert new interval in children-list of parent
4407  if (parent->_split_children.length() == 0) {
4408    assert(is_split_parent(), "list must be initialized at first split");
4409
4410    parent->_split_children = IntervalList(4);
4411    parent->_split_children.append(this);
4412  }
4413  parent->_split_children.append(result);
4414
4415  return result;
4416}
4417
4418// split this interval at the specified position and return
4419// the remainder as a new interval.
4420//
4421// when an interval is split, a bi-directional link is established between the original interval
4422// (the split parent) and the intervals that are split off this interval (the split children)
4423// When a split child is split again, the new created interval is also a direct child
4424// of the original parent (there is no tree of split children stored, but a flat list)
4425// All split children are spilled to the same stack slot (stored in _canonical_spill_slot)
4426//
4427// Note: The new interval has no valid reg_num
4428Interval* Interval::split(int split_pos) {
4429  assert(LinearScan::is_virtual_interval(this), "cannot split fixed intervals");
4430
4431  // allocate new interval
4432  Interval* result = new_split_child();
4433
4434  // split the ranges
4435  Range* prev = NULL;
4436  Range* cur = _first;
4437  while (cur != Range::end() && cur->to() <= split_pos) {
4438    prev = cur;
4439    cur = cur->next();
4440  }
4441  assert(cur != Range::end(), "split interval after end of last range");
4442
4443  if (cur->from() < split_pos) {
4444    result->_first = new Range(split_pos, cur->to(), cur->next());
4445    cur->set_to(split_pos);
4446    cur->set_next(Range::end());
4447
4448  } else {
4449    assert(prev != NULL, "split before start of first range");
4450    result->_first = cur;
4451    prev->set_next(Range::end());
4452  }
4453  result->_current = result->_first;
4454  _cached_to = -1; // clear cached value
4455
4456  // split list of use positions
4457  int total_len = _use_pos_and_kinds.length();
4458  int start_idx = total_len - 2;
4459  while (start_idx >= 0 && _use_pos_and_kinds.at(start_idx) < split_pos) {
4460    start_idx -= 2;
4461  }
4462
4463  intStack new_use_pos_and_kinds(total_len - start_idx);
4464  int i;
4465  for (i = start_idx + 2; i < total_len; i++) {
4466    new_use_pos_and_kinds.append(_use_pos_and_kinds.at(i));
4467  }
4468
4469  _use_pos_and_kinds.trunc_to(start_idx + 2);
4470  result->_use_pos_and_kinds = _use_pos_and_kinds;
4471  _use_pos_and_kinds = new_use_pos_and_kinds;
4472
4473#ifdef ASSERT
4474  assert(_use_pos_and_kinds.length() % 2 == 0, "must have use kind for each use pos");
4475  assert(result->_use_pos_and_kinds.length() % 2 == 0, "must have use kind for each use pos");
4476  assert(_use_pos_and_kinds.length() + result->_use_pos_and_kinds.length() == total_len, "missed some entries");
4477
4478  for (i = 0; i < _use_pos_and_kinds.length(); i += 2) {
4479    assert(_use_pos_and_kinds.at(i) < split_pos, "must be");
4480    assert(_use_pos_and_kinds.at(i + 1) >= firstValidKind && _use_pos_and_kinds.at(i + 1) <= lastValidKind, "invalid use kind");
4481  }
4482  for (i = 0; i < result->_use_pos_and_kinds.length(); i += 2) {
4483    assert(result->_use_pos_and_kinds.at(i) >= split_pos, "must be");
4484    assert(result->_use_pos_and_kinds.at(i + 1) >= firstValidKind && result->_use_pos_and_kinds.at(i + 1) <= lastValidKind, "invalid use kind");
4485  }
4486#endif
4487
4488  return result;
4489}
4490
4491// split this interval at the specified position and return
4492// the head as a new interval (the original interval is the tail)
4493//
4494// Currently, only the first range can be split, and the new interval
4495// must not have split positions
4496Interval* Interval::split_from_start(int split_pos) {
4497  assert(LinearScan::is_virtual_interval(this), "cannot split fixed intervals");
4498  assert(split_pos > from() && split_pos < to(), "can only split inside interval");
4499  assert(split_pos > _first->from() && split_pos <= _first->to(), "can only split inside first range");
4500  assert(first_usage(noUse) > split_pos, "can not split when use positions are present");
4501
4502  // allocate new interval
4503  Interval* result = new_split_child();
4504
4505  // the new created interval has only one range (checked by assertion above),
4506  // so the splitting of the ranges is very simple
4507  result->add_range(_first->from(), split_pos);
4508
4509  if (split_pos == _first->to()) {
4510    assert(_first->next() != Range::end(), "must not be at end");
4511    _first = _first->next();
4512  } else {
4513    _first->set_from(split_pos);
4514  }
4515
4516  return result;
4517}
4518
4519
4520// returns true if the op_id is inside the interval
4521bool Interval::covers(int op_id, LIR_OpVisitState::OprMode mode) const {
4522  Range* cur  = _first;
4523
4524  while (cur != Range::end() && cur->to() < op_id) {
4525    cur = cur->next();
4526  }
4527  if (cur != Range::end()) {
4528    assert(cur->to() != cur->next()->from(), "ranges not separated");
4529
4530    if (mode == LIR_OpVisitState::outputMode) {
4531      return cur->from() <= op_id && op_id < cur->to();
4532    } else {
4533      return cur->from() <= op_id && op_id <= cur->to();
4534    }
4535  }
4536  return false;
4537}
4538
4539// returns true if the interval has any hole between hole_from and hole_to
4540// (even if the hole has only the length 1)
4541bool Interval::has_hole_between(int hole_from, int hole_to) {
4542  assert(hole_from < hole_to, "check");
4543  assert(from() <= hole_from && hole_to <= to(), "index out of interval");
4544
4545  Range* cur  = _first;
4546  while (cur != Range::end()) {
4547    assert(cur->to() < cur->next()->from(), "no space between ranges");
4548
4549    // hole-range starts before this range -> hole
4550    if (hole_from < cur->from()) {
4551      return true;
4552
4553    // hole-range completely inside this range -> no hole
4554    } else if (hole_to <= cur->to()) {
4555      return false;
4556
4557    // overlapping of hole-range with this range -> hole
4558    } else if (hole_from <= cur->to()) {
4559      return true;
4560    }
4561
4562    cur = cur->next();
4563  }
4564
4565  return false;
4566}
4567
4568
4569#ifndef PRODUCT
4570void Interval::print(outputStream* out) const {
4571  const char* SpillState2Name[] = { "no definition", "no spill store", "one spill store", "store at definition", "start in memory", "no optimization" };
4572  const char* UseKind2Name[] = { "N", "L", "S", "M" };
4573
4574  const char* type_name;
4575  LIR_Opr opr = LIR_OprFact::illegal();
4576  if (reg_num() < LIR_OprDesc::vreg_base) {
4577    type_name = "fixed";
4578    // need a temporary operand for fixed intervals because type() cannot be called
4579#ifdef X86
4580    int last_xmm_reg = pd_last_xmm_reg;
4581#ifdef _LP64
4582    if (UseAVX < 3) {
4583      last_xmm_reg = pd_first_xmm_reg + (pd_nof_xmm_regs_frame_map / 2) - 1;
4584    }
4585#endif
4586#endif
4587    if (assigned_reg() >= pd_first_cpu_reg && assigned_reg() <= pd_last_cpu_reg) {
4588      opr = LIR_OprFact::single_cpu(assigned_reg());
4589    } else if (assigned_reg() >= pd_first_fpu_reg && assigned_reg() <= pd_last_fpu_reg) {
4590      opr = LIR_OprFact::single_fpu(assigned_reg() - pd_first_fpu_reg);
4591#ifdef X86
4592    } else if (assigned_reg() >= pd_first_xmm_reg && assigned_reg() <= last_xmm_reg) {
4593      opr = LIR_OprFact::single_xmm(assigned_reg() - pd_first_xmm_reg);
4594#endif
4595    } else {
4596      ShouldNotReachHere();
4597    }
4598  } else {
4599    type_name = type2name(type());
4600    if (assigned_reg() != -1 &&
4601        (LinearScan::num_physical_regs(type()) == 1 || assigned_regHi() != -1)) {
4602      opr = LinearScan::calc_operand_for_interval(this);
4603    }
4604  }
4605
4606  out->print("%d %s ", reg_num(), type_name);
4607  if (opr->is_valid()) {
4608    out->print("\"");
4609    opr->print(out);
4610    out->print("\" ");
4611  }
4612  out->print("%d %d ", split_parent()->reg_num(), (register_hint(false) != NULL ? register_hint(false)->reg_num() : -1));
4613
4614  // print ranges
4615  Range* cur = _first;
4616  while (cur != Range::end()) {
4617    cur->print(out);
4618    cur = cur->next();
4619    assert(cur != NULL, "range list not closed with range sentinel");
4620  }
4621
4622  // print use positions
4623  int prev = 0;
4624  assert(_use_pos_and_kinds.length() % 2 == 0, "must be");
4625  for (int i =_use_pos_and_kinds.length() - 2; i >= 0; i -= 2) {
4626    assert(_use_pos_and_kinds.at(i + 1) >= firstValidKind && _use_pos_and_kinds.at(i + 1) <= lastValidKind, "invalid use kind");
4627    assert(prev < _use_pos_and_kinds.at(i), "use positions not sorted");
4628
4629    out->print("%d %s ", _use_pos_and_kinds.at(i), UseKind2Name[_use_pos_and_kinds.at(i + 1)]);
4630    prev = _use_pos_and_kinds.at(i);
4631  }
4632
4633  out->print(" \"%s\"", SpillState2Name[spill_state()]);
4634  out->cr();
4635}
4636#endif
4637
4638
4639
4640// **** Implementation of IntervalWalker ****************************
4641
4642IntervalWalker::IntervalWalker(LinearScan* allocator, Interval* unhandled_fixed_first, Interval* unhandled_any_first)
4643 : _compilation(allocator->compilation())
4644 , _allocator(allocator)
4645{
4646  _unhandled_first[fixedKind] = unhandled_fixed_first;
4647  _unhandled_first[anyKind]   = unhandled_any_first;
4648  _active_first[fixedKind]    = Interval::end();
4649  _inactive_first[fixedKind]  = Interval::end();
4650  _active_first[anyKind]      = Interval::end();
4651  _inactive_first[anyKind]    = Interval::end();
4652  _current_position = -1;
4653  _current = NULL;
4654  next_interval();
4655}
4656
4657
4658// append interval at top of list
4659void IntervalWalker::append_unsorted(Interval** list, Interval* interval) {
4660  interval->set_next(*list); *list = interval;
4661}
4662
4663
4664// append interval in order of current range from()
4665void IntervalWalker::append_sorted(Interval** list, Interval* interval) {
4666  Interval* prev = NULL;
4667  Interval* cur  = *list;
4668  while (cur->current_from() < interval->current_from()) {
4669    prev = cur; cur = cur->next();
4670  }
4671  if (prev == NULL) {
4672    *list = interval;
4673  } else {
4674    prev->set_next(interval);
4675  }
4676  interval->set_next(cur);
4677}
4678
4679void IntervalWalker::append_to_unhandled(Interval** list, Interval* interval) {
4680  assert(interval->from() >= current()->current_from(), "cannot append new interval before current walk position");
4681
4682  Interval* prev = NULL;
4683  Interval* cur  = *list;
4684  while (cur->from() < interval->from() || (cur->from() == interval->from() && cur->first_usage(noUse) < interval->first_usage(noUse))) {
4685    prev = cur; cur = cur->next();
4686  }
4687  if (prev == NULL) {
4688    *list = interval;
4689  } else {
4690    prev->set_next(interval);
4691  }
4692  interval->set_next(cur);
4693}
4694
4695
4696inline bool IntervalWalker::remove_from_list(Interval** list, Interval* i) {
4697  while (*list != Interval::end() && *list != i) {
4698    list = (*list)->next_addr();
4699  }
4700  if (*list != Interval::end()) {
4701    assert(*list == i, "check");
4702    *list = (*list)->next();
4703    return true;
4704  } else {
4705    return false;
4706  }
4707}
4708
4709void IntervalWalker::remove_from_list(Interval* i) {
4710  bool deleted;
4711
4712  if (i->state() == activeState) {
4713    deleted = remove_from_list(active_first_addr(anyKind), i);
4714  } else {
4715    assert(i->state() == inactiveState, "invalid state");
4716    deleted = remove_from_list(inactive_first_addr(anyKind), i);
4717  }
4718
4719  assert(deleted, "interval has not been found in list");
4720}
4721
4722
4723void IntervalWalker::walk_to(IntervalState state, int from) {
4724  assert (state == activeState || state == inactiveState, "wrong state");
4725  for_each_interval_kind(kind) {
4726    Interval** prev = state == activeState ? active_first_addr(kind) : inactive_first_addr(kind);
4727    Interval* next   = *prev;
4728    while (next->current_from() <= from) {
4729      Interval* cur = next;
4730      next = cur->next();
4731
4732      bool range_has_changed = false;
4733      while (cur->current_to() <= from) {
4734        cur->next_range();
4735        range_has_changed = true;
4736      }
4737
4738      // also handle move from inactive list to active list
4739      range_has_changed = range_has_changed || (state == inactiveState && cur->current_from() <= from);
4740
4741      if (range_has_changed) {
4742        // remove cur from list
4743        *prev = next;
4744        if (cur->current_at_end()) {
4745          // move to handled state (not maintained as a list)
4746          cur->set_state(handledState);
4747          interval_moved(cur, kind, state, handledState);
4748        } else if (cur->current_from() <= from){
4749          // sort into active list
4750          append_sorted(active_first_addr(kind), cur);
4751          cur->set_state(activeState);
4752          if (*prev == cur) {
4753            assert(state == activeState, "check");
4754            prev = cur->next_addr();
4755          }
4756          interval_moved(cur, kind, state, activeState);
4757        } else {
4758          // sort into inactive list
4759          append_sorted(inactive_first_addr(kind), cur);
4760          cur->set_state(inactiveState);
4761          if (*prev == cur) {
4762            assert(state == inactiveState, "check");
4763            prev = cur->next_addr();
4764          }
4765          interval_moved(cur, kind, state, inactiveState);
4766        }
4767      } else {
4768        prev = cur->next_addr();
4769        continue;
4770      }
4771    }
4772  }
4773}
4774
4775
4776void IntervalWalker::next_interval() {
4777  IntervalKind kind;
4778  Interval* any   = _unhandled_first[anyKind];
4779  Interval* fixed = _unhandled_first[fixedKind];
4780
4781  if (any != Interval::end()) {
4782    // intervals may start at same position -> prefer fixed interval
4783    kind = fixed != Interval::end() && fixed->from() <= any->from() ? fixedKind : anyKind;
4784
4785    assert (kind == fixedKind && fixed->from() <= any->from() ||
4786            kind == anyKind   && any->from() <= fixed->from(), "wrong interval!!!");
4787    assert(any == Interval::end() || fixed == Interval::end() || any->from() != fixed->from() || kind == fixedKind, "if fixed and any-Interval start at same position, fixed must be processed first");
4788
4789  } else if (fixed != Interval::end()) {
4790    kind = fixedKind;
4791  } else {
4792    _current = NULL; return;
4793  }
4794  _current_kind = kind;
4795  _current = _unhandled_first[kind];
4796  _unhandled_first[kind] = _current->next();
4797  _current->set_next(Interval::end());
4798  _current->rewind_range();
4799}
4800
4801
4802void IntervalWalker::walk_to(int lir_op_id) {
4803  assert(_current_position <= lir_op_id, "can not walk backwards");
4804  while (current() != NULL) {
4805    bool is_active = current()->from() <= lir_op_id;
4806    int id = is_active ? current()->from() : lir_op_id;
4807
4808    TRACE_LINEAR_SCAN(2, if (_current_position < id) { tty->cr(); tty->print_cr("walk_to(%d) **************************************************************", id); })
4809
4810    // set _current_position prior to call of walk_to
4811    _current_position = id;
4812
4813    // call walk_to even if _current_position == id
4814    walk_to(activeState, id);
4815    walk_to(inactiveState, id);
4816
4817    if (is_active) {
4818      current()->set_state(activeState);
4819      if (activate_current()) {
4820        append_sorted(active_first_addr(current_kind()), current());
4821        interval_moved(current(), current_kind(), unhandledState, activeState);
4822      }
4823
4824      next_interval();
4825    } else {
4826      return;
4827    }
4828  }
4829}
4830
4831void IntervalWalker::interval_moved(Interval* interval, IntervalKind kind, IntervalState from, IntervalState to) {
4832#ifndef PRODUCT
4833  if (TraceLinearScanLevel >= 4) {
4834    #define print_state(state) \
4835    switch(state) {\
4836      case unhandledState: tty->print("unhandled"); break;\
4837      case activeState: tty->print("active"); break;\
4838      case inactiveState: tty->print("inactive"); break;\
4839      case handledState: tty->print("handled"); break;\
4840      default: ShouldNotReachHere(); \
4841    }
4842
4843    print_state(from); tty->print(" to "); print_state(to);
4844    tty->fill_to(23);
4845    interval->print();
4846
4847    #undef print_state
4848  }
4849#endif
4850}
4851
4852
4853
4854// **** Implementation of LinearScanWalker **************************
4855
4856LinearScanWalker::LinearScanWalker(LinearScan* allocator, Interval* unhandled_fixed_first, Interval* unhandled_any_first)
4857  : IntervalWalker(allocator, unhandled_fixed_first, unhandled_any_first)
4858  , _move_resolver(allocator)
4859{
4860  for (int i = 0; i < LinearScan::nof_regs; i++) {
4861    _spill_intervals[i] = new IntervalList(2);
4862  }
4863}
4864
4865
4866inline void LinearScanWalker::init_use_lists(bool only_process_use_pos) {
4867  for (int i = _first_reg; i <= _last_reg; i++) {
4868    _use_pos[i] = max_jint;
4869
4870    if (!only_process_use_pos) {
4871      _block_pos[i] = max_jint;
4872      _spill_intervals[i]->clear();
4873    }
4874  }
4875}
4876
4877inline void LinearScanWalker::exclude_from_use(int reg) {
4878  assert(reg < LinearScan::nof_regs, "interval must have a register assigned (stack slots not allowed)");
4879  if (reg >= _first_reg && reg <= _last_reg) {
4880    _use_pos[reg] = 0;
4881  }
4882}
4883inline void LinearScanWalker::exclude_from_use(Interval* i) {
4884  assert(i->assigned_reg() != any_reg, "interval has no register assigned");
4885
4886  exclude_from_use(i->assigned_reg());
4887  exclude_from_use(i->assigned_regHi());
4888}
4889
4890inline void LinearScanWalker::set_use_pos(int reg, Interval* i, int use_pos, bool only_process_use_pos) {
4891  assert(use_pos != 0, "must use exclude_from_use to set use_pos to 0");
4892
4893  if (reg >= _first_reg && reg <= _last_reg) {
4894    if (_use_pos[reg] > use_pos) {
4895      _use_pos[reg] = use_pos;
4896    }
4897    if (!only_process_use_pos) {
4898      _spill_intervals[reg]->append(i);
4899    }
4900  }
4901}
4902inline void LinearScanWalker::set_use_pos(Interval* i, int use_pos, bool only_process_use_pos) {
4903  assert(i->assigned_reg() != any_reg, "interval has no register assigned");
4904  if (use_pos != -1) {
4905    set_use_pos(i->assigned_reg(), i, use_pos, only_process_use_pos);
4906    set_use_pos(i->assigned_regHi(), i, use_pos, only_process_use_pos);
4907  }
4908}
4909
4910inline void LinearScanWalker::set_block_pos(int reg, Interval* i, int block_pos) {
4911  if (reg >= _first_reg && reg <= _last_reg) {
4912    if (_block_pos[reg] > block_pos) {
4913      _block_pos[reg] = block_pos;
4914    }
4915    if (_use_pos[reg] > block_pos) {
4916      _use_pos[reg] = block_pos;
4917    }
4918  }
4919}
4920inline void LinearScanWalker::set_block_pos(Interval* i, int block_pos) {
4921  assert(i->assigned_reg() != any_reg, "interval has no register assigned");
4922  if (block_pos != -1) {
4923    set_block_pos(i->assigned_reg(), i, block_pos);
4924    set_block_pos(i->assigned_regHi(), i, block_pos);
4925  }
4926}
4927
4928
4929void LinearScanWalker::free_exclude_active_fixed() {
4930  Interval* list = active_first(fixedKind);
4931  while (list != Interval::end()) {
4932    assert(list->assigned_reg() < LinearScan::nof_regs, "active interval must have a register assigned");
4933    exclude_from_use(list);
4934    list = list->next();
4935  }
4936}
4937
4938void LinearScanWalker::free_exclude_active_any() {
4939  Interval* list = active_first(anyKind);
4940  while (list != Interval::end()) {
4941    exclude_from_use(list);
4942    list = list->next();
4943  }
4944}
4945
4946void LinearScanWalker::free_collect_inactive_fixed(Interval* cur) {
4947  Interval* list = inactive_first(fixedKind);
4948  while (list != Interval::end()) {
4949    if (cur->to() <= list->current_from()) {
4950      assert(list->current_intersects_at(cur) == -1, "must not intersect");
4951      set_use_pos(list, list->current_from(), true);
4952    } else {
4953      set_use_pos(list, list->current_intersects_at(cur), true);
4954    }
4955    list = list->next();
4956  }
4957}
4958
4959void LinearScanWalker::free_collect_inactive_any(Interval* cur) {
4960  Interval* list = inactive_first(anyKind);
4961  while (list != Interval::end()) {
4962    set_use_pos(list, list->current_intersects_at(cur), true);
4963    list = list->next();
4964  }
4965}
4966
4967void LinearScanWalker::free_collect_unhandled(IntervalKind kind, Interval* cur) {
4968  Interval* list = unhandled_first(kind);
4969  while (list != Interval::end()) {
4970    set_use_pos(list, list->intersects_at(cur), true);
4971    if (kind == fixedKind && cur->to() <= list->from()) {
4972      set_use_pos(list, list->from(), true);
4973    }
4974    list = list->next();
4975  }
4976}
4977
4978void LinearScanWalker::spill_exclude_active_fixed() {
4979  Interval* list = active_first(fixedKind);
4980  while (list != Interval::end()) {
4981    exclude_from_use(list);
4982    list = list->next();
4983  }
4984}
4985
4986void LinearScanWalker::spill_block_unhandled_fixed(Interval* cur) {
4987  Interval* list = unhandled_first(fixedKind);
4988  while (list != Interval::end()) {
4989    set_block_pos(list, list->intersects_at(cur));
4990    list = list->next();
4991  }
4992}
4993
4994void LinearScanWalker::spill_block_inactive_fixed(Interval* cur) {
4995  Interval* list = inactive_first(fixedKind);
4996  while (list != Interval::end()) {
4997    if (cur->to() > list->current_from()) {
4998      set_block_pos(list, list->current_intersects_at(cur));
4999    } else {
5000      assert(list->current_intersects_at(cur) == -1, "invalid optimization: intervals intersect");
5001    }
5002
5003    list = list->next();
5004  }
5005}
5006
5007void LinearScanWalker::spill_collect_active_any() {
5008  Interval* list = active_first(anyKind);
5009  while (list != Interval::end()) {
5010    set_use_pos(list, MIN2(list->next_usage(loopEndMarker, _current_position), list->to()), false);
5011    list = list->next();
5012  }
5013}
5014
5015void LinearScanWalker::spill_collect_inactive_any(Interval* cur) {
5016  Interval* list = inactive_first(anyKind);
5017  while (list != Interval::end()) {
5018    if (list->current_intersects(cur)) {
5019      set_use_pos(list, MIN2(list->next_usage(loopEndMarker, _current_position), list->to()), false);
5020    }
5021    list = list->next();
5022  }
5023}
5024
5025
5026void LinearScanWalker::insert_move(int op_id, Interval* src_it, Interval* dst_it) {
5027  // output all moves here. When source and target are equal, the move is
5028  // optimized away later in assign_reg_nums
5029
5030  op_id = (op_id + 1) & ~1;
5031  BlockBegin* op_block = allocator()->block_of_op_with_id(op_id);
5032  assert(op_id > 0 && allocator()->block_of_op_with_id(op_id - 2) == op_block, "cannot insert move at block boundary");
5033
5034  // calculate index of instruction inside instruction list of current block
5035  // the minimal index (for a block with no spill moves) can be calculated because the
5036  // numbering of instructions is known.
5037  // When the block already contains spill moves, the index must be increased until the
5038  // correct index is reached.
5039  LIR_OpList* list = op_block->lir()->instructions_list();
5040  int index = (op_id - list->at(0)->id()) / 2;
5041  assert(list->at(index)->id() <= op_id, "error in calculation");
5042
5043  while (list->at(index)->id() != op_id) {
5044    index++;
5045    assert(0 <= index && index < list->length(), "index out of bounds");
5046  }
5047  assert(1 <= index && index < list->length(), "index out of bounds");
5048  assert(list->at(index)->id() == op_id, "error in calculation");
5049
5050  // insert new instruction before instruction at position index
5051  _move_resolver.move_insert_position(op_block->lir(), index - 1);
5052  _move_resolver.add_mapping(src_it, dst_it);
5053}
5054
5055
5056int LinearScanWalker::find_optimal_split_pos(BlockBegin* min_block, BlockBegin* max_block, int max_split_pos) {
5057  int from_block_nr = min_block->linear_scan_number();
5058  int to_block_nr = max_block->linear_scan_number();
5059
5060  assert(0 <= from_block_nr && from_block_nr < block_count(), "out of range");
5061  assert(0 <= to_block_nr && to_block_nr < block_count(), "out of range");
5062  assert(from_block_nr < to_block_nr, "must cross block boundary");
5063
5064  // Try to split at end of max_block. If this would be after
5065  // max_split_pos, then use the begin of max_block
5066  int optimal_split_pos = max_block->last_lir_instruction_id() + 2;
5067  if (optimal_split_pos > max_split_pos) {
5068    optimal_split_pos = max_block->first_lir_instruction_id();
5069  }
5070
5071  int min_loop_depth = max_block->loop_depth();
5072  for (int i = to_block_nr - 1; i >= from_block_nr; i--) {
5073    BlockBegin* cur = block_at(i);
5074
5075    if (cur->loop_depth() < min_loop_depth) {
5076      // block with lower loop-depth found -> split at the end of this block
5077      min_loop_depth = cur->loop_depth();
5078      optimal_split_pos = cur->last_lir_instruction_id() + 2;
5079    }
5080  }
5081  assert(optimal_split_pos > allocator()->max_lir_op_id() || allocator()->is_block_begin(optimal_split_pos), "algorithm must move split pos to block boundary");
5082
5083  return optimal_split_pos;
5084}
5085
5086
5087int LinearScanWalker::find_optimal_split_pos(Interval* it, int min_split_pos, int max_split_pos, bool do_loop_optimization) {
5088  int optimal_split_pos = -1;
5089  if (min_split_pos == max_split_pos) {
5090    // trivial case, no optimization of split position possible
5091    TRACE_LINEAR_SCAN(4, tty->print_cr("      min-pos and max-pos are equal, no optimization possible"));
5092    optimal_split_pos = min_split_pos;
5093
5094  } else {
5095    assert(min_split_pos < max_split_pos, "must be true then");
5096    assert(min_split_pos > 0, "cannot access min_split_pos - 1 otherwise");
5097
5098    // reason for using min_split_pos - 1: when the minimal split pos is exactly at the
5099    // beginning of a block, then min_split_pos is also a possible split position.
5100    // Use the block before as min_block, because then min_block->last_lir_instruction_id() + 2 == min_split_pos
5101    BlockBegin* min_block = allocator()->block_of_op_with_id(min_split_pos - 1);
5102
5103    // reason for using max_split_pos - 1: otherwise there would be an assertion failure
5104    // when an interval ends at the end of the last block of the method
5105    // (in this case, max_split_pos == allocator()->max_lir_op_id() + 2, and there is no
5106    // block at this op_id)
5107    BlockBegin* max_block = allocator()->block_of_op_with_id(max_split_pos - 1);
5108
5109    assert(min_block->linear_scan_number() <= max_block->linear_scan_number(), "invalid order");
5110    if (min_block == max_block) {
5111      // split position cannot be moved to block boundary, so split as late as possible
5112      TRACE_LINEAR_SCAN(4, tty->print_cr("      cannot move split pos to block boundary because min_pos and max_pos are in same block"));
5113      optimal_split_pos = max_split_pos;
5114
5115    } else if (it->has_hole_between(max_split_pos - 1, max_split_pos) && !allocator()->is_block_begin(max_split_pos)) {
5116      // Do not move split position if the interval has a hole before max_split_pos.
5117      // Intervals resulting from Phi-Functions have more than one definition (marked
5118      // as mustHaveRegister) with a hole before each definition. When the register is needed
5119      // for the second definition, an earlier reloading is unnecessary.
5120      TRACE_LINEAR_SCAN(4, tty->print_cr("      interval has hole just before max_split_pos, so splitting at max_split_pos"));
5121      optimal_split_pos = max_split_pos;
5122
5123    } else {
5124      // seach optimal block boundary between min_split_pos and max_split_pos
5125      TRACE_LINEAR_SCAN(4, tty->print_cr("      moving split pos to optimal block boundary between block B%d and B%d", min_block->block_id(), max_block->block_id()));
5126
5127      if (do_loop_optimization) {
5128        // Loop optimization: if a loop-end marker is found between min- and max-position,
5129        // then split before this loop
5130        int loop_end_pos = it->next_usage_exact(loopEndMarker, min_block->last_lir_instruction_id() + 2);
5131        TRACE_LINEAR_SCAN(4, tty->print_cr("      loop optimization: loop end found at pos %d", loop_end_pos));
5132
5133        assert(loop_end_pos > min_split_pos, "invalid order");
5134        if (loop_end_pos < max_split_pos) {
5135          // loop-end marker found between min- and max-position
5136          // if it is not the end marker for the same loop as the min-position, then move
5137          // the max-position to this loop block.
5138          // Desired result: uses tagged as shouldHaveRegister inside a loop cause a reloading
5139          // of the interval (normally, only mustHaveRegister causes a reloading)
5140          BlockBegin* loop_block = allocator()->block_of_op_with_id(loop_end_pos);
5141
5142          TRACE_LINEAR_SCAN(4, tty->print_cr("      interval is used in loop that ends in block B%d, so trying to move max_block back from B%d to B%d", loop_block->block_id(), max_block->block_id(), loop_block->block_id()));
5143          assert(loop_block != min_block, "loop_block and min_block must be different because block boundary is needed between");
5144
5145          optimal_split_pos = find_optimal_split_pos(min_block, loop_block, loop_block->last_lir_instruction_id() + 2);
5146          if (optimal_split_pos == loop_block->last_lir_instruction_id() + 2) {
5147            optimal_split_pos = -1;
5148            TRACE_LINEAR_SCAN(4, tty->print_cr("      loop optimization not necessary"));
5149          } else {
5150            TRACE_LINEAR_SCAN(4, tty->print_cr("      loop optimization successful"));
5151          }
5152        }
5153      }
5154
5155      if (optimal_split_pos == -1) {
5156        // not calculated by loop optimization
5157        optimal_split_pos = find_optimal_split_pos(min_block, max_block, max_split_pos);
5158      }
5159    }
5160  }
5161  TRACE_LINEAR_SCAN(4, tty->print_cr("      optimal split position: %d", optimal_split_pos));
5162
5163  return optimal_split_pos;
5164}
5165
5166
5167/*
5168  split an interval at the optimal position between min_split_pos and
5169  max_split_pos in two parts:
5170  1) the left part has already a location assigned
5171  2) the right part is sorted into to the unhandled-list
5172*/
5173void LinearScanWalker::split_before_usage(Interval* it, int min_split_pos, int max_split_pos) {
5174  TRACE_LINEAR_SCAN(2, tty->print   ("----- splitting interval: "); it->print());
5175  TRACE_LINEAR_SCAN(2, tty->print_cr("      between %d and %d", min_split_pos, max_split_pos));
5176
5177  assert(it->from() < min_split_pos,         "cannot split at start of interval");
5178  assert(current_position() < min_split_pos, "cannot split before current position");
5179  assert(min_split_pos <= max_split_pos,     "invalid order");
5180  assert(max_split_pos <= it->to(),          "cannot split after end of interval");
5181
5182  int optimal_split_pos = find_optimal_split_pos(it, min_split_pos, max_split_pos, true);
5183
5184  assert(min_split_pos <= optimal_split_pos && optimal_split_pos <= max_split_pos, "out of range");
5185  assert(optimal_split_pos <= it->to(),  "cannot split after end of interval");
5186  assert(optimal_split_pos > it->from(), "cannot split at start of interval");
5187
5188  if (optimal_split_pos == it->to() && it->next_usage(mustHaveRegister, min_split_pos) == max_jint) {
5189    // the split position would be just before the end of the interval
5190    // -> no split at all necessary
5191    TRACE_LINEAR_SCAN(4, tty->print_cr("      no split necessary because optimal split position is at end of interval"));
5192    return;
5193  }
5194
5195  // must calculate this before the actual split is performed and before split position is moved to odd op_id
5196  bool move_necessary = !allocator()->is_block_begin(optimal_split_pos) && !it->has_hole_between(optimal_split_pos - 1, optimal_split_pos);
5197
5198  if (!allocator()->is_block_begin(optimal_split_pos)) {
5199    // move position before actual instruction (odd op_id)
5200    optimal_split_pos = (optimal_split_pos - 1) | 1;
5201  }
5202
5203  TRACE_LINEAR_SCAN(4, tty->print_cr("      splitting at position %d", optimal_split_pos));
5204  assert(allocator()->is_block_begin(optimal_split_pos) || (optimal_split_pos % 2 == 1), "split pos must be odd when not on block boundary");
5205  assert(!allocator()->is_block_begin(optimal_split_pos) || (optimal_split_pos % 2 == 0), "split pos must be even on block boundary");
5206
5207  Interval* split_part = it->split(optimal_split_pos);
5208
5209  allocator()->append_interval(split_part);
5210  allocator()->copy_register_flags(it, split_part);
5211  split_part->set_insert_move_when_activated(move_necessary);
5212  append_to_unhandled(unhandled_first_addr(anyKind), split_part);
5213
5214  TRACE_LINEAR_SCAN(2, tty->print_cr("      split interval in two parts (insert_move_when_activated: %d)", move_necessary));
5215  TRACE_LINEAR_SCAN(2, tty->print   ("      "); it->print());
5216  TRACE_LINEAR_SCAN(2, tty->print   ("      "); split_part->print());
5217}
5218
5219/*
5220  split an interval at the optimal position between min_split_pos and
5221  max_split_pos in two parts:
5222  1) the left part has already a location assigned
5223  2) the right part is always on the stack and therefore ignored in further processing
5224*/
5225void LinearScanWalker::split_for_spilling(Interval* it) {
5226  // calculate allowed range of splitting position
5227  int max_split_pos = current_position();
5228  int min_split_pos = MAX2(it->previous_usage(shouldHaveRegister, max_split_pos) + 1, it->from());
5229
5230  TRACE_LINEAR_SCAN(2, tty->print   ("----- splitting and spilling interval: "); it->print());
5231  TRACE_LINEAR_SCAN(2, tty->print_cr("      between %d and %d", min_split_pos, max_split_pos));
5232
5233  assert(it->state() == activeState,     "why spill interval that is not active?");
5234  assert(it->from() <= min_split_pos,    "cannot split before start of interval");
5235  assert(min_split_pos <= max_split_pos, "invalid order");
5236  assert(max_split_pos < it->to(),       "cannot split at end end of interval");
5237  assert(current_position() < it->to(),  "interval must not end before current position");
5238
5239  if (min_split_pos == it->from()) {
5240    // the whole interval is never used, so spill it entirely to memory
5241    TRACE_LINEAR_SCAN(2, tty->print_cr("      spilling entire interval because split pos is at beginning of interval"));
5242    assert(it->first_usage(shouldHaveRegister) > current_position(), "interval must not have use position before current_position");
5243
5244    allocator()->assign_spill_slot(it);
5245    allocator()->change_spill_state(it, min_split_pos);
5246
5247    // Also kick parent intervals out of register to memory when they have no use
5248    // position. This avoids short interval in register surrounded by intervals in
5249    // memory -> avoid useless moves from memory to register and back
5250    Interval* parent = it;
5251    while (parent != NULL && parent->is_split_child()) {
5252      parent = parent->split_child_before_op_id(parent->from());
5253
5254      if (parent->assigned_reg() < LinearScan::nof_regs) {
5255        if (parent->first_usage(shouldHaveRegister) == max_jint) {
5256          // parent is never used, so kick it out of its assigned register
5257          TRACE_LINEAR_SCAN(4, tty->print_cr("      kicking out interval %d out of its register because it is never used", parent->reg_num()));
5258          allocator()->assign_spill_slot(parent);
5259        } else {
5260          // do not go further back because the register is actually used by the interval
5261          parent = NULL;
5262        }
5263      }
5264    }
5265
5266  } else {
5267    // search optimal split pos, split interval and spill only the right hand part
5268    int optimal_split_pos = find_optimal_split_pos(it, min_split_pos, max_split_pos, false);
5269
5270    assert(min_split_pos <= optimal_split_pos && optimal_split_pos <= max_split_pos, "out of range");
5271    assert(optimal_split_pos < it->to(), "cannot split at end of interval");
5272    assert(optimal_split_pos >= it->from(), "cannot split before start of interval");
5273
5274    if (!allocator()->is_block_begin(optimal_split_pos)) {
5275      // move position before actual instruction (odd op_id)
5276      optimal_split_pos = (optimal_split_pos - 1) | 1;
5277    }
5278
5279    TRACE_LINEAR_SCAN(4, tty->print_cr("      splitting at position %d", optimal_split_pos));
5280    assert(allocator()->is_block_begin(optimal_split_pos)  || (optimal_split_pos % 2 == 1), "split pos must be odd when not on block boundary");
5281    assert(!allocator()->is_block_begin(optimal_split_pos) || (optimal_split_pos % 2 == 0), "split pos must be even on block boundary");
5282
5283    Interval* spilled_part = it->split(optimal_split_pos);
5284    allocator()->append_interval(spilled_part);
5285    allocator()->assign_spill_slot(spilled_part);
5286    allocator()->change_spill_state(spilled_part, optimal_split_pos);
5287
5288    if (!allocator()->is_block_begin(optimal_split_pos)) {
5289      TRACE_LINEAR_SCAN(4, tty->print_cr("      inserting move from interval %d to %d", it->reg_num(), spilled_part->reg_num()));
5290      insert_move(optimal_split_pos, it, spilled_part);
5291    }
5292
5293    // the current_split_child is needed later when moves are inserted for reloading
5294    assert(spilled_part->current_split_child() == it, "overwriting wrong current_split_child");
5295    spilled_part->make_current_split_child();
5296
5297    TRACE_LINEAR_SCAN(2, tty->print_cr("      split interval in two parts"));
5298    TRACE_LINEAR_SCAN(2, tty->print   ("      "); it->print());
5299    TRACE_LINEAR_SCAN(2, tty->print   ("      "); spilled_part->print());
5300  }
5301}
5302
5303
5304void LinearScanWalker::split_stack_interval(Interval* it) {
5305  int min_split_pos = current_position() + 1;
5306  int max_split_pos = MIN2(it->first_usage(shouldHaveRegister), it->to());
5307
5308  split_before_usage(it, min_split_pos, max_split_pos);
5309}
5310
5311void LinearScanWalker::split_when_partial_register_available(Interval* it, int register_available_until) {
5312  int min_split_pos = MAX2(it->previous_usage(shouldHaveRegister, register_available_until), it->from() + 1);
5313  int max_split_pos = register_available_until;
5314
5315  split_before_usage(it, min_split_pos, max_split_pos);
5316}
5317
5318void LinearScanWalker::split_and_spill_interval(Interval* it) {
5319  assert(it->state() == activeState || it->state() == inactiveState, "other states not allowed");
5320
5321  int current_pos = current_position();
5322  if (it->state() == inactiveState) {
5323    // the interval is currently inactive, so no spill slot is needed for now.
5324    // when the split part is activated, the interval has a new chance to get a register,
5325    // so in the best case no stack slot is necessary
5326    assert(it->has_hole_between(current_pos - 1, current_pos + 1), "interval can not be inactive otherwise");
5327    split_before_usage(it, current_pos + 1, current_pos + 1);
5328
5329  } else {
5330    // search the position where the interval must have a register and split
5331    // at the optimal position before.
5332    // The new created part is added to the unhandled list and will get a register
5333    // when it is activated
5334    int min_split_pos = current_pos + 1;
5335    int max_split_pos = MIN2(it->next_usage(mustHaveRegister, min_split_pos), it->to());
5336
5337    split_before_usage(it, min_split_pos, max_split_pos);
5338
5339    assert(it->next_usage(mustHaveRegister, current_pos) == max_jint, "the remaining part is spilled to stack and therefore has no register");
5340    split_for_spilling(it);
5341  }
5342}
5343
5344
5345int LinearScanWalker::find_free_reg(int reg_needed_until, int interval_to, int hint_reg, int ignore_reg, bool* need_split) {
5346  int min_full_reg = any_reg;
5347  int max_partial_reg = any_reg;
5348
5349  for (int i = _first_reg; i <= _last_reg; i++) {
5350    if (i == ignore_reg) {
5351      // this register must be ignored
5352
5353    } else if (_use_pos[i] >= interval_to) {
5354      // this register is free for the full interval
5355      if (min_full_reg == any_reg || i == hint_reg || (_use_pos[i] < _use_pos[min_full_reg] && min_full_reg != hint_reg)) {
5356        min_full_reg = i;
5357      }
5358    } else if (_use_pos[i] > reg_needed_until) {
5359      // this register is at least free until reg_needed_until
5360      if (max_partial_reg == any_reg || i == hint_reg || (_use_pos[i] > _use_pos[max_partial_reg] && max_partial_reg != hint_reg)) {
5361        max_partial_reg = i;
5362      }
5363    }
5364  }
5365
5366  if (min_full_reg != any_reg) {
5367    return min_full_reg;
5368  } else if (max_partial_reg != any_reg) {
5369    *need_split = true;
5370    return max_partial_reg;
5371  } else {
5372    return any_reg;
5373  }
5374}
5375
5376int LinearScanWalker::find_free_double_reg(int reg_needed_until, int interval_to, int hint_reg, bool* need_split) {
5377  assert((_last_reg - _first_reg + 1) % 2 == 0, "adjust algorithm");
5378
5379  int min_full_reg = any_reg;
5380  int max_partial_reg = any_reg;
5381
5382  for (int i = _first_reg; i < _last_reg; i+=2) {
5383    if (_use_pos[i] >= interval_to && _use_pos[i + 1] >= interval_to) {
5384      // this register is free for the full interval
5385      if (min_full_reg == any_reg || i == hint_reg || (_use_pos[i] < _use_pos[min_full_reg] && min_full_reg != hint_reg)) {
5386        min_full_reg = i;
5387      }
5388    } else if (_use_pos[i] > reg_needed_until && _use_pos[i + 1] > reg_needed_until) {
5389      // this register is at least free until reg_needed_until
5390      if (max_partial_reg == any_reg || i == hint_reg || (_use_pos[i] > _use_pos[max_partial_reg] && max_partial_reg != hint_reg)) {
5391        max_partial_reg = i;
5392      }
5393    }
5394  }
5395
5396  if (min_full_reg != any_reg) {
5397    return min_full_reg;
5398  } else if (max_partial_reg != any_reg) {
5399    *need_split = true;
5400    return max_partial_reg;
5401  } else {
5402    return any_reg;
5403  }
5404}
5405
5406
5407bool LinearScanWalker::alloc_free_reg(Interval* cur) {
5408  TRACE_LINEAR_SCAN(2, tty->print("trying to find free register for "); cur->print());
5409
5410  init_use_lists(true);
5411  free_exclude_active_fixed();
5412  free_exclude_active_any();
5413  free_collect_inactive_fixed(cur);
5414  free_collect_inactive_any(cur);
5415//  free_collect_unhandled(fixedKind, cur);
5416  assert(unhandled_first(fixedKind) == Interval::end(), "must not have unhandled fixed intervals because all fixed intervals have a use at position 0");
5417
5418  // _use_pos contains the start of the next interval that has this register assigned
5419  // (either as a fixed register or a normal allocated register in the past)
5420  // only intervals overlapping with cur are processed, non-overlapping invervals can be ignored safely
5421  TRACE_LINEAR_SCAN(4, tty->print_cr("      state of registers:"));
5422  TRACE_LINEAR_SCAN(4, for (int i = _first_reg; i <= _last_reg; i++) tty->print_cr("      reg %d: use_pos: %d", i, _use_pos[i]));
5423
5424  int hint_reg, hint_regHi;
5425  Interval* register_hint = cur->register_hint();
5426  if (register_hint != NULL) {
5427    hint_reg = register_hint->assigned_reg();
5428    hint_regHi = register_hint->assigned_regHi();
5429
5430    if (allocator()->is_precolored_cpu_interval(register_hint)) {
5431      assert(hint_reg != any_reg && hint_regHi == any_reg, "must be for fixed intervals");
5432      hint_regHi = hint_reg + 1;  // connect e.g. eax-edx
5433    }
5434    TRACE_LINEAR_SCAN(4, tty->print("      hint registers %d, %d from interval ", hint_reg, hint_regHi); register_hint->print());
5435
5436  } else {
5437    hint_reg = any_reg;
5438    hint_regHi = any_reg;
5439  }
5440  assert(hint_reg == any_reg || hint_reg != hint_regHi, "hint reg and regHi equal");
5441  assert(cur->assigned_reg() == any_reg && cur->assigned_regHi() == any_reg, "register already assigned to interval");
5442
5443  // the register must be free at least until this position
5444  int reg_needed_until = cur->from() + 1;
5445  int interval_to = cur->to();
5446
5447  bool need_split = false;
5448  int split_pos = -1;
5449  int reg = any_reg;
5450  int regHi = any_reg;
5451
5452  if (_adjacent_regs) {
5453    reg = find_free_double_reg(reg_needed_until, interval_to, hint_reg, &need_split);
5454    regHi = reg + 1;
5455    if (reg == any_reg) {
5456      return false;
5457    }
5458    split_pos = MIN2(_use_pos[reg], _use_pos[regHi]);
5459
5460  } else {
5461    reg = find_free_reg(reg_needed_until, interval_to, hint_reg, any_reg, &need_split);
5462    if (reg == any_reg) {
5463      return false;
5464    }
5465    split_pos = _use_pos[reg];
5466
5467    if (_num_phys_regs == 2) {
5468      regHi = find_free_reg(reg_needed_until, interval_to, hint_regHi, reg, &need_split);
5469
5470      if (_use_pos[reg] < interval_to && regHi == any_reg) {
5471        // do not split interval if only one register can be assigned until the split pos
5472        // (when one register is found for the whole interval, split&spill is only
5473        // performed for the hi register)
5474        return false;
5475
5476      } else if (regHi != any_reg) {
5477        split_pos = MIN2(split_pos, _use_pos[regHi]);
5478
5479        // sort register numbers to prevent e.g. a move from eax,ebx to ebx,eax
5480        if (reg > regHi) {
5481          int temp = reg;
5482          reg = regHi;
5483          regHi = temp;
5484        }
5485      }
5486    }
5487  }
5488
5489  cur->assign_reg(reg, regHi);
5490  TRACE_LINEAR_SCAN(2, tty->print_cr("selected register %d, %d", reg, regHi));
5491
5492  assert(split_pos > 0, "invalid split_pos");
5493  if (need_split) {
5494    // register not available for full interval, so split it
5495    split_when_partial_register_available(cur, split_pos);
5496  }
5497
5498  // only return true if interval is completely assigned
5499  return _num_phys_regs == 1 || regHi != any_reg;
5500}
5501
5502
5503int LinearScanWalker::find_locked_reg(int reg_needed_until, int interval_to, int hint_reg, int ignore_reg, bool* need_split) {
5504  int max_reg = any_reg;
5505
5506  for (int i = _first_reg; i <= _last_reg; i++) {
5507    if (i == ignore_reg) {
5508      // this register must be ignored
5509
5510    } else if (_use_pos[i] > reg_needed_until) {
5511      if (max_reg == any_reg || i == hint_reg || (_use_pos[i] > _use_pos[max_reg] && max_reg != hint_reg)) {
5512        max_reg = i;
5513      }
5514    }
5515  }
5516
5517  if (max_reg != any_reg && _block_pos[max_reg] <= interval_to) {
5518    *need_split = true;
5519  }
5520
5521  return max_reg;
5522}
5523
5524int LinearScanWalker::find_locked_double_reg(int reg_needed_until, int interval_to, int hint_reg, bool* need_split) {
5525  assert((_last_reg - _first_reg + 1) % 2 == 0, "adjust algorithm");
5526
5527  int max_reg = any_reg;
5528
5529  for (int i = _first_reg; i < _last_reg; i+=2) {
5530    if (_use_pos[i] > reg_needed_until && _use_pos[i + 1] > reg_needed_until) {
5531      if (max_reg == any_reg || _use_pos[i] > _use_pos[max_reg]) {
5532        max_reg = i;
5533      }
5534    }
5535  }
5536
5537  if (max_reg != any_reg &&
5538      (_block_pos[max_reg] <= interval_to || _block_pos[max_reg + 1] <= interval_to)) {
5539    *need_split = true;
5540  }
5541
5542  return max_reg;
5543}
5544
5545void LinearScanWalker::split_and_spill_intersecting_intervals(int reg, int regHi) {
5546  assert(reg != any_reg, "no register assigned");
5547
5548  for (int i = 0; i < _spill_intervals[reg]->length(); i++) {
5549    Interval* it = _spill_intervals[reg]->at(i);
5550    remove_from_list(it);
5551    split_and_spill_interval(it);
5552  }
5553
5554  if (regHi != any_reg) {
5555    IntervalList* processed = _spill_intervals[reg];
5556    for (int i = 0; i < _spill_intervals[regHi]->length(); i++) {
5557      Interval* it = _spill_intervals[regHi]->at(i);
5558      if (processed->find(it) == -1) {
5559        remove_from_list(it);
5560        split_and_spill_interval(it);
5561      }
5562    }
5563  }
5564}
5565
5566
5567// Split an Interval and spill it to memory so that cur can be placed in a register
5568void LinearScanWalker::alloc_locked_reg(Interval* cur) {
5569  TRACE_LINEAR_SCAN(2, tty->print("need to split and spill to get register for "); cur->print());
5570
5571  // collect current usage of registers
5572  init_use_lists(false);
5573  spill_exclude_active_fixed();
5574//  spill_block_unhandled_fixed(cur);
5575  assert(unhandled_first(fixedKind) == Interval::end(), "must not have unhandled fixed intervals because all fixed intervals have a use at position 0");
5576  spill_block_inactive_fixed(cur);
5577  spill_collect_active_any();
5578  spill_collect_inactive_any(cur);
5579
5580#ifndef PRODUCT
5581  if (TraceLinearScanLevel >= 4) {
5582    tty->print_cr("      state of registers:");
5583    for (int i = _first_reg; i <= _last_reg; i++) {
5584      tty->print("      reg %d: use_pos: %d, block_pos: %d, intervals: ", i, _use_pos[i], _block_pos[i]);
5585      for (int j = 0; j < _spill_intervals[i]->length(); j++) {
5586        tty->print("%d ", _spill_intervals[i]->at(j)->reg_num());
5587      }
5588      tty->cr();
5589    }
5590  }
5591#endif
5592
5593  // the register must be free at least until this position
5594  int reg_needed_until = MIN2(cur->first_usage(mustHaveRegister), cur->from() + 1);
5595  int interval_to = cur->to();
5596  assert (reg_needed_until > 0 && reg_needed_until < max_jint, "interval has no use");
5597
5598  int split_pos = 0;
5599  int use_pos = 0;
5600  bool need_split = false;
5601  int reg, regHi;
5602
5603  if (_adjacent_regs) {
5604    reg = find_locked_double_reg(reg_needed_until, interval_to, any_reg, &need_split);
5605    regHi = reg + 1;
5606
5607    if (reg != any_reg) {
5608      use_pos = MIN2(_use_pos[reg], _use_pos[regHi]);
5609      split_pos = MIN2(_block_pos[reg], _block_pos[regHi]);
5610    }
5611  } else {
5612    reg = find_locked_reg(reg_needed_until, interval_to, any_reg, cur->assigned_reg(), &need_split);
5613    regHi = any_reg;
5614
5615    if (reg != any_reg) {
5616      use_pos = _use_pos[reg];
5617      split_pos = _block_pos[reg];
5618
5619      if (_num_phys_regs == 2) {
5620        if (cur->assigned_reg() != any_reg) {
5621          regHi = reg;
5622          reg = cur->assigned_reg();
5623        } else {
5624          regHi = find_locked_reg(reg_needed_until, interval_to, any_reg, reg, &need_split);
5625          if (regHi != any_reg) {
5626            use_pos = MIN2(use_pos, _use_pos[regHi]);
5627            split_pos = MIN2(split_pos, _block_pos[regHi]);
5628          }
5629        }
5630
5631        if (regHi != any_reg && reg > regHi) {
5632          // sort register numbers to prevent e.g. a move from eax,ebx to ebx,eax
5633          int temp = reg;
5634          reg = regHi;
5635          regHi = temp;
5636        }
5637      }
5638    }
5639  }
5640
5641  if (reg == any_reg || (_num_phys_regs == 2 && regHi == any_reg) || use_pos <= cur->first_usage(mustHaveRegister)) {
5642    // the first use of cur is later than the spilling position -> spill cur
5643    TRACE_LINEAR_SCAN(4, tty->print_cr("able to spill current interval. first_usage(register): %d, use_pos: %d", cur->first_usage(mustHaveRegister), use_pos));
5644
5645    if (cur->first_usage(mustHaveRegister) <= cur->from() + 1) {
5646      assert(false, "cannot spill interval that is used in first instruction (possible reason: no register found)");
5647      // assign a reasonable register and do a bailout in product mode to avoid errors
5648      allocator()->assign_spill_slot(cur);
5649      BAILOUT("LinearScan: no register found");
5650    }
5651
5652    split_and_spill_interval(cur);
5653  } else {
5654    TRACE_LINEAR_SCAN(4, tty->print_cr("decided to use register %d, %d", reg, regHi));
5655    assert(reg != any_reg && (_num_phys_regs == 1 || regHi != any_reg), "no register found");
5656    assert(split_pos > 0, "invalid split_pos");
5657    assert(need_split == false || split_pos > cur->from(), "splitting interval at from");
5658
5659    cur->assign_reg(reg, regHi);
5660    if (need_split) {
5661      // register not available for full interval, so split it
5662      split_when_partial_register_available(cur, split_pos);
5663    }
5664
5665    // perform splitting and spilling for all affected intervalls
5666    split_and_spill_intersecting_intervals(reg, regHi);
5667  }
5668}
5669
5670bool LinearScanWalker::no_allocation_possible(Interval* cur) {
5671#ifdef X86
5672  // fast calculation of intervals that can never get a register because the
5673  // the next instruction is a call that blocks all registers
5674  // Note: this does not work if callee-saved registers are available (e.g. on Sparc)
5675
5676  // check if this interval is the result of a split operation
5677  // (an interval got a register until this position)
5678  int pos = cur->from();
5679  if ((pos & 1) == 1) {
5680    // the current instruction is a call that blocks all registers
5681    if (pos < allocator()->max_lir_op_id() && allocator()->has_call(pos + 1)) {
5682      TRACE_LINEAR_SCAN(4, tty->print_cr("      free register cannot be available because all registers blocked by following call"));
5683
5684      // safety check that there is really no register available
5685      assert(alloc_free_reg(cur) == false, "found a register for this interval");
5686      return true;
5687    }
5688
5689  }
5690#endif
5691  return false;
5692}
5693
5694void LinearScanWalker::init_vars_for_alloc(Interval* cur) {
5695  BasicType type = cur->type();
5696  _num_phys_regs = LinearScan::num_physical_regs(type);
5697  _adjacent_regs = LinearScan::requires_adjacent_regs(type);
5698
5699  if (pd_init_regs_for_alloc(cur)) {
5700    // the appropriate register range was selected.
5701  } else if (type == T_FLOAT || type == T_DOUBLE) {
5702    _first_reg = pd_first_fpu_reg;
5703    _last_reg = pd_last_fpu_reg;
5704  } else {
5705    _first_reg = pd_first_cpu_reg;
5706    _last_reg = FrameMap::last_cpu_reg();
5707  }
5708
5709  assert(0 <= _first_reg && _first_reg < LinearScan::nof_regs, "out of range");
5710  assert(0 <= _last_reg && _last_reg < LinearScan::nof_regs, "out of range");
5711}
5712
5713
5714bool LinearScanWalker::is_move(LIR_Op* op, Interval* from, Interval* to) {
5715  if (op->code() != lir_move) {
5716    return false;
5717  }
5718  assert(op->as_Op1() != NULL, "move must be LIR_Op1");
5719
5720  LIR_Opr in = ((LIR_Op1*)op)->in_opr();
5721  LIR_Opr res = ((LIR_Op1*)op)->result_opr();
5722  return in->is_virtual() && res->is_virtual() && in->vreg_number() == from->reg_num() && res->vreg_number() == to->reg_num();
5723}
5724
5725// optimization (especially for phi functions of nested loops):
5726// assign same spill slot to non-intersecting intervals
5727void LinearScanWalker::combine_spilled_intervals(Interval* cur) {
5728  if (cur->is_split_child()) {
5729    // optimization is only suitable for split parents
5730    return;
5731  }
5732
5733  Interval* register_hint = cur->register_hint(false);
5734  if (register_hint == NULL) {
5735    // cur is not the target of a move, otherwise register_hint would be set
5736    return;
5737  }
5738  assert(register_hint->is_split_parent(), "register hint must be split parent");
5739
5740  if (cur->spill_state() != noOptimization || register_hint->spill_state() != noOptimization) {
5741    // combining the stack slots for intervals where spill move optimization is applied
5742    // is not benefitial and would cause problems
5743    return;
5744  }
5745
5746  int begin_pos = cur->from();
5747  int end_pos = cur->to();
5748  if (end_pos > allocator()->max_lir_op_id() || (begin_pos & 1) != 0 || (end_pos & 1) != 0) {
5749    // safety check that lir_op_with_id is allowed
5750    return;
5751  }
5752
5753  if (!is_move(allocator()->lir_op_with_id(begin_pos), register_hint, cur) || !is_move(allocator()->lir_op_with_id(end_pos), cur, register_hint)) {
5754    // cur and register_hint are not connected with two moves
5755    return;
5756  }
5757
5758  Interval* begin_hint = register_hint->split_child_at_op_id(begin_pos, LIR_OpVisitState::inputMode);
5759  Interval* end_hint = register_hint->split_child_at_op_id(end_pos, LIR_OpVisitState::outputMode);
5760  if (begin_hint == end_hint || begin_hint->to() != begin_pos || end_hint->from() != end_pos) {
5761    // register_hint must be split, otherwise the re-writing of use positions does not work
5762    return;
5763  }
5764
5765  assert(begin_hint->assigned_reg() != any_reg, "must have register assigned");
5766  assert(end_hint->assigned_reg() == any_reg, "must not have register assigned");
5767  assert(cur->first_usage(mustHaveRegister) == begin_pos, "must have use position at begin of interval because of move");
5768  assert(end_hint->first_usage(mustHaveRegister) == end_pos, "must have use position at begin of interval because of move");
5769
5770  if (begin_hint->assigned_reg() < LinearScan::nof_regs) {
5771    // register_hint is not spilled at begin_pos, so it would not be benefitial to immediately spill cur
5772    return;
5773  }
5774  assert(register_hint->canonical_spill_slot() != -1, "must be set when part of interval was spilled");
5775
5776  // modify intervals such that cur gets the same stack slot as register_hint
5777  // delete use positions to prevent the intervals to get a register at beginning
5778  cur->set_canonical_spill_slot(register_hint->canonical_spill_slot());
5779  cur->remove_first_use_pos();
5780  end_hint->remove_first_use_pos();
5781}
5782
5783
5784// allocate a physical register or memory location to an interval
5785bool LinearScanWalker::activate_current() {
5786  Interval* cur = current();
5787  bool result = true;
5788
5789  TRACE_LINEAR_SCAN(2, tty->print   ("+++++ activating interval "); cur->print());
5790  TRACE_LINEAR_SCAN(4, tty->print_cr("      split_parent: %d, insert_move_when_activated: %d", cur->split_parent()->reg_num(), cur->insert_move_when_activated()));
5791
5792  if (cur->assigned_reg() >= LinearScan::nof_regs) {
5793    // activating an interval that has a stack slot assigned -> split it at first use position
5794    // used for method parameters
5795    TRACE_LINEAR_SCAN(4, tty->print_cr("      interval has spill slot assigned (method parameter) -> split it before first use"));
5796
5797    split_stack_interval(cur);
5798    result = false;
5799
5800  } else if (allocator()->gen()->is_vreg_flag_set(cur->reg_num(), LIRGenerator::must_start_in_memory)) {
5801    // activating an interval that must start in a stack slot, but may get a register later
5802    // used for lir_roundfp: rounding is done by store to stack and reload later
5803    TRACE_LINEAR_SCAN(4, tty->print_cr("      interval must start in stack slot -> split it before first use"));
5804    assert(cur->assigned_reg() == any_reg && cur->assigned_regHi() == any_reg, "register already assigned");
5805
5806    allocator()->assign_spill_slot(cur);
5807    split_stack_interval(cur);
5808    result = false;
5809
5810  } else if (cur->assigned_reg() == any_reg) {
5811    // interval has not assigned register -> normal allocation
5812    // (this is the normal case for most intervals)
5813    TRACE_LINEAR_SCAN(4, tty->print_cr("      normal allocation of register"));
5814
5815    // assign same spill slot to non-intersecting intervals
5816    combine_spilled_intervals(cur);
5817
5818    init_vars_for_alloc(cur);
5819    if (no_allocation_possible(cur) || !alloc_free_reg(cur)) {
5820      // no empty register available.
5821      // split and spill another interval so that this interval gets a register
5822      alloc_locked_reg(cur);
5823    }
5824
5825    // spilled intervals need not be move to active-list
5826    if (cur->assigned_reg() >= LinearScan::nof_regs) {
5827      result = false;
5828    }
5829  }
5830
5831  // load spilled values that become active from stack slot to register
5832  if (cur->insert_move_when_activated()) {
5833    assert(cur->is_split_child(), "must be");
5834    assert(cur->current_split_child() != NULL, "must be");
5835    assert(cur->current_split_child()->reg_num() != cur->reg_num(), "cannot insert move between same interval");
5836    TRACE_LINEAR_SCAN(4, tty->print_cr("Inserting move from interval %d to %d because insert_move_when_activated is set", cur->current_split_child()->reg_num(), cur->reg_num()));
5837
5838    insert_move(cur->from(), cur->current_split_child(), cur);
5839  }
5840  cur->make_current_split_child();
5841
5842  return result; // true = interval is moved to active list
5843}
5844
5845
5846// Implementation of EdgeMoveOptimizer
5847
5848EdgeMoveOptimizer::EdgeMoveOptimizer() :
5849  _edge_instructions(4),
5850  _edge_instructions_idx(4)
5851{
5852}
5853
5854void EdgeMoveOptimizer::optimize(BlockList* code) {
5855  EdgeMoveOptimizer optimizer = EdgeMoveOptimizer();
5856
5857  // ignore the first block in the list (index 0 is not processed)
5858  for (int i = code->length() - 1; i >= 1; i--) {
5859    BlockBegin* block = code->at(i);
5860
5861    if (block->number_of_preds() > 1 && !block->is_set(BlockBegin::exception_entry_flag)) {
5862      optimizer.optimize_moves_at_block_end(block);
5863    }
5864    if (block->number_of_sux() == 2) {
5865      optimizer.optimize_moves_at_block_begin(block);
5866    }
5867  }
5868}
5869
5870
5871// clear all internal data structures
5872void EdgeMoveOptimizer::init_instructions() {
5873  _edge_instructions.clear();
5874  _edge_instructions_idx.clear();
5875}
5876
5877// append a lir-instruction-list and the index of the current operation in to the list
5878void EdgeMoveOptimizer::append_instructions(LIR_OpList* instructions, int instructions_idx) {
5879  _edge_instructions.append(instructions);
5880  _edge_instructions_idx.append(instructions_idx);
5881}
5882
5883// return the current operation of the given edge (predecessor or successor)
5884LIR_Op* EdgeMoveOptimizer::instruction_at(int edge) {
5885  LIR_OpList* instructions = _edge_instructions.at(edge);
5886  int idx = _edge_instructions_idx.at(edge);
5887
5888  if (idx < instructions->length()) {
5889    return instructions->at(idx);
5890  } else {
5891    return NULL;
5892  }
5893}
5894
5895// removes the current operation of the given edge (predecessor or successor)
5896void EdgeMoveOptimizer::remove_cur_instruction(int edge, bool decrement_index) {
5897  LIR_OpList* instructions = _edge_instructions.at(edge);
5898  int idx = _edge_instructions_idx.at(edge);
5899  instructions->remove_at(idx);
5900
5901  if (decrement_index) {
5902    _edge_instructions_idx.at_put(edge, idx - 1);
5903  }
5904}
5905
5906
5907bool EdgeMoveOptimizer::operations_different(LIR_Op* op1, LIR_Op* op2) {
5908  if (op1 == NULL || op2 == NULL) {
5909    // at least one block is already empty -> no optimization possible
5910    return true;
5911  }
5912
5913  if (op1->code() == lir_move && op2->code() == lir_move) {
5914    assert(op1->as_Op1() != NULL, "move must be LIR_Op1");
5915    assert(op2->as_Op1() != NULL, "move must be LIR_Op1");
5916    LIR_Op1* move1 = (LIR_Op1*)op1;
5917    LIR_Op1* move2 = (LIR_Op1*)op2;
5918    if (move1->info() == move2->info() && move1->in_opr() == move2->in_opr() && move1->result_opr() == move2->result_opr()) {
5919      // these moves are exactly equal and can be optimized
5920      return false;
5921    }
5922
5923  } else if (op1->code() == lir_fxch && op2->code() == lir_fxch) {
5924    assert(op1->as_Op1() != NULL, "fxch must be LIR_Op1");
5925    assert(op2->as_Op1() != NULL, "fxch must be LIR_Op1");
5926    LIR_Op1* fxch1 = (LIR_Op1*)op1;
5927    LIR_Op1* fxch2 = (LIR_Op1*)op2;
5928    if (fxch1->in_opr()->as_jint() == fxch2->in_opr()->as_jint()) {
5929      // equal FPU stack operations can be optimized
5930      return false;
5931    }
5932
5933  } else if (op1->code() == lir_fpop_raw && op2->code() == lir_fpop_raw) {
5934    // equal FPU stack operations can be optimized
5935    return false;
5936  }
5937
5938  // no optimization possible
5939  return true;
5940}
5941
5942void EdgeMoveOptimizer::optimize_moves_at_block_end(BlockBegin* block) {
5943  TRACE_LINEAR_SCAN(4, tty->print_cr("optimizing moves at end of block B%d", block->block_id()));
5944
5945  if (block->is_predecessor(block)) {
5946    // currently we can't handle this correctly.
5947    return;
5948  }
5949
5950  init_instructions();
5951  int num_preds = block->number_of_preds();
5952  assert(num_preds > 1, "do not call otherwise");
5953  assert(!block->is_set(BlockBegin::exception_entry_flag), "exception handlers not allowed");
5954
5955  // setup a list with the lir-instructions of all predecessors
5956  int i;
5957  for (i = 0; i < num_preds; i++) {
5958    BlockBegin* pred = block->pred_at(i);
5959    LIR_OpList* pred_instructions = pred->lir()->instructions_list();
5960
5961    if (pred->number_of_sux() != 1) {
5962      // this can happen with switch-statements where multiple edges are between
5963      // the same blocks.
5964      return;
5965    }
5966
5967    assert(pred->number_of_sux() == 1, "can handle only one successor");
5968    assert(pred->sux_at(0) == block, "invalid control flow");
5969    assert(pred_instructions->last()->code() == lir_branch, "block with successor must end with branch");
5970    assert(pred_instructions->last()->as_OpBranch() != NULL, "branch must be LIR_OpBranch");
5971    assert(pred_instructions->last()->as_OpBranch()->cond() == lir_cond_always, "block must end with unconditional branch");
5972
5973    if (pred_instructions->last()->info() != NULL) {
5974      // can not optimize instructions when debug info is needed
5975      return;
5976    }
5977
5978    // ignore the unconditional branch at the end of the block
5979    append_instructions(pred_instructions, pred_instructions->length() - 2);
5980  }
5981
5982
5983  // process lir-instructions while all predecessors end with the same instruction
5984  while (true) {
5985    LIR_Op* op = instruction_at(0);
5986    for (i = 1; i < num_preds; i++) {
5987      if (operations_different(op, instruction_at(i))) {
5988        // these instructions are different and cannot be optimized ->
5989        // no further optimization possible
5990        return;
5991      }
5992    }
5993
5994    TRACE_LINEAR_SCAN(4, tty->print("found instruction that is equal in all %d predecessors: ", num_preds); op->print());
5995
5996    // insert the instruction at the beginning of the current block
5997    block->lir()->insert_before(1, op);
5998
5999    // delete the instruction at the end of all predecessors
6000    for (i = 0; i < num_preds; i++) {
6001      remove_cur_instruction(i, true);
6002    }
6003  }
6004}
6005
6006
6007void EdgeMoveOptimizer::optimize_moves_at_block_begin(BlockBegin* block) {
6008  TRACE_LINEAR_SCAN(4, tty->print_cr("optimization moves at begin of block B%d", block->block_id()));
6009
6010  init_instructions();
6011  int num_sux = block->number_of_sux();
6012
6013  LIR_OpList* cur_instructions = block->lir()->instructions_list();
6014
6015  assert(num_sux == 2, "method should not be called otherwise");
6016  assert(cur_instructions->last()->code() == lir_branch, "block with successor must end with branch");
6017  assert(cur_instructions->last()->as_OpBranch() != NULL, "branch must be LIR_OpBranch");
6018  assert(cur_instructions->last()->as_OpBranch()->cond() == lir_cond_always, "block must end with unconditional branch");
6019
6020  if (cur_instructions->last()->info() != NULL) {
6021    // can no optimize instructions when debug info is needed
6022    return;
6023  }
6024
6025  LIR_Op* branch = cur_instructions->at(cur_instructions->length() - 2);
6026  if (branch->info() != NULL || (branch->code() != lir_branch && branch->code() != lir_cond_float_branch)) {
6027    // not a valid case for optimization
6028    // currently, only blocks that end with two branches (conditional branch followed
6029    // by unconditional branch) are optimized
6030    return;
6031  }
6032
6033  // now it is guaranteed that the block ends with two branch instructions.
6034  // the instructions are inserted at the end of the block before these two branches
6035  int insert_idx = cur_instructions->length() - 2;
6036
6037  int i;
6038#ifdef ASSERT
6039  for (i = insert_idx - 1; i >= 0; i--) {
6040    LIR_Op* op = cur_instructions->at(i);
6041    if ((op->code() == lir_branch || op->code() == lir_cond_float_branch) && ((LIR_OpBranch*)op)->block() != NULL) {
6042      assert(false, "block with two successors can have only two branch instructions");
6043    }
6044  }
6045#endif
6046
6047  // setup a list with the lir-instructions of all successors
6048  for (i = 0; i < num_sux; i++) {
6049    BlockBegin* sux = block->sux_at(i);
6050    LIR_OpList* sux_instructions = sux->lir()->instructions_list();
6051
6052    assert(sux_instructions->at(0)->code() == lir_label, "block must start with label");
6053
6054    if (sux->number_of_preds() != 1) {
6055      // this can happen with switch-statements where multiple edges are between
6056      // the same blocks.
6057      return;
6058    }
6059    assert(sux->pred_at(0) == block, "invalid control flow");
6060    assert(!sux->is_set(BlockBegin::exception_entry_flag), "exception handlers not allowed");
6061
6062    // ignore the label at the beginning of the block
6063    append_instructions(sux_instructions, 1);
6064  }
6065
6066  // process lir-instructions while all successors begin with the same instruction
6067  while (true) {
6068    LIR_Op* op = instruction_at(0);
6069    for (i = 1; i < num_sux; i++) {
6070      if (operations_different(op, instruction_at(i))) {
6071        // these instructions are different and cannot be optimized ->
6072        // no further optimization possible
6073        return;
6074      }
6075    }
6076
6077    TRACE_LINEAR_SCAN(4, tty->print("----- found instruction that is equal in all %d successors: ", num_sux); op->print());
6078
6079    // insert instruction at end of current block
6080    block->lir()->insert_before(insert_idx, op);
6081    insert_idx++;
6082
6083    // delete the instructions at the beginning of all successors
6084    for (i = 0; i < num_sux; i++) {
6085      remove_cur_instruction(i, false);
6086    }
6087  }
6088}
6089
6090
6091// Implementation of ControlFlowOptimizer
6092
6093ControlFlowOptimizer::ControlFlowOptimizer() :
6094  _original_preds(4)
6095{
6096}
6097
6098void ControlFlowOptimizer::optimize(BlockList* code) {
6099  ControlFlowOptimizer optimizer = ControlFlowOptimizer();
6100
6101  // push the OSR entry block to the end so that we're not jumping over it.
6102  BlockBegin* osr_entry = code->at(0)->end()->as_Base()->osr_entry();
6103  if (osr_entry) {
6104    int index = osr_entry->linear_scan_number();
6105    assert(code->at(index) == osr_entry, "wrong index");
6106    code->remove_at(index);
6107    code->append(osr_entry);
6108  }
6109
6110  optimizer.reorder_short_loops(code);
6111  optimizer.delete_empty_blocks(code);
6112  optimizer.delete_unnecessary_jumps(code);
6113  optimizer.delete_jumps_to_return(code);
6114}
6115
6116void ControlFlowOptimizer::reorder_short_loop(BlockList* code, BlockBegin* header_block, int header_idx) {
6117  int i = header_idx + 1;
6118  int max_end = MIN2(header_idx + ShortLoopSize, code->length());
6119  while (i < max_end && code->at(i)->loop_depth() >= header_block->loop_depth()) {
6120    i++;
6121  }
6122
6123  if (i == code->length() || code->at(i)->loop_depth() < header_block->loop_depth()) {
6124    int end_idx = i - 1;
6125    BlockBegin* end_block = code->at(end_idx);
6126
6127    if (end_block->number_of_sux() == 1 && end_block->sux_at(0) == header_block) {
6128      // short loop from header_idx to end_idx found -> reorder blocks such that
6129      // the header_block is the last block instead of the first block of the loop
6130      TRACE_LINEAR_SCAN(1, tty->print_cr("Reordering short loop: length %d, header B%d, end B%d",
6131                                         end_idx - header_idx + 1,
6132                                         header_block->block_id(), end_block->block_id()));
6133
6134      for (int j = header_idx; j < end_idx; j++) {
6135        code->at_put(j, code->at(j + 1));
6136      }
6137      code->at_put(end_idx, header_block);
6138
6139      // correct the flags so that any loop alignment occurs in the right place.
6140      assert(code->at(end_idx)->is_set(BlockBegin::backward_branch_target_flag), "must be backward branch target");
6141      code->at(end_idx)->clear(BlockBegin::backward_branch_target_flag);
6142      code->at(header_idx)->set(BlockBegin::backward_branch_target_flag);
6143    }
6144  }
6145}
6146
6147void ControlFlowOptimizer::reorder_short_loops(BlockList* code) {
6148  for (int i = code->length() - 1; i >= 0; i--) {
6149    BlockBegin* block = code->at(i);
6150
6151    if (block->is_set(BlockBegin::linear_scan_loop_header_flag)) {
6152      reorder_short_loop(code, block, i);
6153    }
6154  }
6155
6156  DEBUG_ONLY(verify(code));
6157}
6158
6159// only blocks with exactly one successor can be deleted. Such blocks
6160// must always end with an unconditional branch to this successor
6161bool ControlFlowOptimizer::can_delete_block(BlockBegin* block) {
6162  if (block->number_of_sux() != 1 || block->number_of_exception_handlers() != 0 || block->is_entry_block()) {
6163    return false;
6164  }
6165
6166  LIR_OpList* instructions = block->lir()->instructions_list();
6167
6168  assert(instructions->length() >= 2, "block must have label and branch");
6169  assert(instructions->at(0)->code() == lir_label, "first instruction must always be a label");
6170  assert(instructions->last()->as_OpBranch() != NULL, "last instrcution must always be a branch");
6171  assert(instructions->last()->as_OpBranch()->cond() == lir_cond_always, "branch must be unconditional");
6172  assert(instructions->last()->as_OpBranch()->block() == block->sux_at(0), "branch target must be the successor");
6173
6174  // block must have exactly one successor
6175
6176  if (instructions->length() == 2 && instructions->last()->info() == NULL) {
6177    return true;
6178  }
6179  return false;
6180}
6181
6182// substitute branch targets in all branch-instructions of this blocks
6183void ControlFlowOptimizer::substitute_branch_target(BlockBegin* block, BlockBegin* target_from, BlockBegin* target_to) {
6184  TRACE_LINEAR_SCAN(3, tty->print_cr("Deleting empty block: substituting from B%d to B%d inside B%d", target_from->block_id(), target_to->block_id(), block->block_id()));
6185
6186  LIR_OpList* instructions = block->lir()->instructions_list();
6187
6188  assert(instructions->at(0)->code() == lir_label, "first instruction must always be a label");
6189  for (int i = instructions->length() - 1; i >= 1; i--) {
6190    LIR_Op* op = instructions->at(i);
6191
6192    if (op->code() == lir_branch || op->code() == lir_cond_float_branch) {
6193      assert(op->as_OpBranch() != NULL, "branch must be of type LIR_OpBranch");
6194      LIR_OpBranch* branch = (LIR_OpBranch*)op;
6195
6196      if (branch->block() == target_from) {
6197        branch->change_block(target_to);
6198      }
6199      if (branch->ublock() == target_from) {
6200        branch->change_ublock(target_to);
6201      }
6202    }
6203  }
6204}
6205
6206void ControlFlowOptimizer::delete_empty_blocks(BlockList* code) {
6207  int old_pos = 0;
6208  int new_pos = 0;
6209  int num_blocks = code->length();
6210
6211  while (old_pos < num_blocks) {
6212    BlockBegin* block = code->at(old_pos);
6213
6214    if (can_delete_block(block)) {
6215      BlockBegin* new_target = block->sux_at(0);
6216
6217      // propagate backward branch target flag for correct code alignment
6218      if (block->is_set(BlockBegin::backward_branch_target_flag)) {
6219        new_target->set(BlockBegin::backward_branch_target_flag);
6220      }
6221
6222      // collect a list with all predecessors that contains each predecessor only once
6223      // the predecessors of cur are changed during the substitution, so a copy of the
6224      // predecessor list is necessary
6225      int j;
6226      _original_preds.clear();
6227      for (j = block->number_of_preds() - 1; j >= 0; j--) {
6228        BlockBegin* pred = block->pred_at(j);
6229        if (_original_preds.find(pred) == -1) {
6230          _original_preds.append(pred);
6231        }
6232      }
6233
6234      for (j = _original_preds.length() - 1; j >= 0; j--) {
6235        BlockBegin* pred = _original_preds.at(j);
6236        substitute_branch_target(pred, block, new_target);
6237        pred->substitute_sux(block, new_target);
6238      }
6239    } else {
6240      // adjust position of this block in the block list if blocks before
6241      // have been deleted
6242      if (new_pos != old_pos) {
6243        code->at_put(new_pos, code->at(old_pos));
6244      }
6245      new_pos++;
6246    }
6247    old_pos++;
6248  }
6249  code->trunc_to(new_pos);
6250
6251  DEBUG_ONLY(verify(code));
6252}
6253
6254void ControlFlowOptimizer::delete_unnecessary_jumps(BlockList* code) {
6255  // skip the last block because there a branch is always necessary
6256  for (int i = code->length() - 2; i >= 0; i--) {
6257    BlockBegin* block = code->at(i);
6258    LIR_OpList* instructions = block->lir()->instructions_list();
6259
6260    LIR_Op* last_op = instructions->last();
6261    if (last_op->code() == lir_branch) {
6262      assert(last_op->as_OpBranch() != NULL, "branch must be of type LIR_OpBranch");
6263      LIR_OpBranch* last_branch = (LIR_OpBranch*)last_op;
6264
6265      assert(last_branch->block() != NULL, "last branch must always have a block as target");
6266      assert(last_branch->label() == last_branch->block()->label(), "must be equal");
6267
6268      if (last_branch->info() == NULL) {
6269        if (last_branch->block() == code->at(i + 1)) {
6270
6271          TRACE_LINEAR_SCAN(3, tty->print_cr("Deleting unconditional branch at end of block B%d", block->block_id()));
6272
6273          // delete last branch instruction
6274          instructions->trunc_to(instructions->length() - 1);
6275
6276        } else {
6277          LIR_Op* prev_op = instructions->at(instructions->length() - 2);
6278          if (prev_op->code() == lir_branch || prev_op->code() == lir_cond_float_branch) {
6279            assert(prev_op->as_OpBranch() != NULL, "branch must be of type LIR_OpBranch");
6280            LIR_OpBranch* prev_branch = (LIR_OpBranch*)prev_op;
6281
6282            if (prev_branch->stub() == NULL) {
6283
6284              LIR_Op2* prev_cmp = NULL;
6285              // There might be a cmove inserted for profiling which depends on the same
6286              // compare. If we change the condition of the respective compare, we have
6287              // to take care of this cmove as well.
6288              LIR_Op2* prev_cmove = NULL;
6289
6290              for(int j = instructions->length() - 3; j >= 0 && prev_cmp == NULL; j--) {
6291                prev_op = instructions->at(j);
6292                // check for the cmove
6293                if (prev_op->code() == lir_cmove) {
6294                  assert(prev_op->as_Op2() != NULL, "cmove must be of type LIR_Op2");
6295                  prev_cmove = (LIR_Op2*)prev_op;
6296                  assert(prev_branch->cond() == prev_cmove->condition(), "should be the same");
6297                }
6298                if (prev_op->code() == lir_cmp) {
6299                  assert(prev_op->as_Op2() != NULL, "branch must be of type LIR_Op2");
6300                  prev_cmp = (LIR_Op2*)prev_op;
6301                  assert(prev_branch->cond() == prev_cmp->condition(), "should be the same");
6302                }
6303              }
6304              assert(prev_cmp != NULL, "should have found comp instruction for branch");
6305              if (prev_branch->block() == code->at(i + 1) && prev_branch->info() == NULL) {
6306
6307                TRACE_LINEAR_SCAN(3, tty->print_cr("Negating conditional branch and deleting unconditional branch at end of block B%d", block->block_id()));
6308
6309                // eliminate a conditional branch to the immediate successor
6310                prev_branch->change_block(last_branch->block());
6311                prev_branch->negate_cond();
6312                prev_cmp->set_condition(prev_branch->cond());
6313                instructions->trunc_to(instructions->length() - 1);
6314                // if we do change the condition, we have to change the cmove as well
6315                if (prev_cmove != NULL) {
6316                  prev_cmove->set_condition(prev_branch->cond());
6317                  LIR_Opr t = prev_cmove->in_opr1();
6318                  prev_cmove->set_in_opr1(prev_cmove->in_opr2());
6319                  prev_cmove->set_in_opr2(t);
6320                }
6321              }
6322            }
6323          }
6324        }
6325      }
6326    }
6327  }
6328
6329  DEBUG_ONLY(verify(code));
6330}
6331
6332void ControlFlowOptimizer::delete_jumps_to_return(BlockList* code) {
6333#ifdef ASSERT
6334  ResourceBitMap return_converted(BlockBegin::number_of_blocks());
6335#endif
6336
6337  for (int i = code->length() - 1; i >= 0; i--) {
6338    BlockBegin* block = code->at(i);
6339    LIR_OpList* cur_instructions = block->lir()->instructions_list();
6340    LIR_Op*     cur_last_op = cur_instructions->last();
6341
6342    assert(cur_instructions->at(0)->code() == lir_label, "first instruction must always be a label");
6343    if (cur_instructions->length() == 2 && cur_last_op->code() == lir_return) {
6344      // the block contains only a label and a return
6345      // if a predecessor ends with an unconditional jump to this block, then the jump
6346      // can be replaced with a return instruction
6347      //
6348      // Note: the original block with only a return statement cannot be deleted completely
6349      //       because the predecessors might have other (conditional) jumps to this block
6350      //       -> this may lead to unnecesary return instructions in the final code
6351
6352      assert(cur_last_op->info() == NULL, "return instructions do not have debug information");
6353      assert(block->number_of_sux() == 0 ||
6354             (return_converted.at(block->block_id()) && block->number_of_sux() == 1),
6355             "blocks that end with return must not have successors");
6356
6357      assert(cur_last_op->as_Op1() != NULL, "return must be LIR_Op1");
6358      LIR_Opr return_opr = ((LIR_Op1*)cur_last_op)->in_opr();
6359
6360      for (int j = block->number_of_preds() - 1; j >= 0; j--) {
6361        BlockBegin* pred = block->pred_at(j);
6362        LIR_OpList* pred_instructions = pred->lir()->instructions_list();
6363        LIR_Op*     pred_last_op = pred_instructions->last();
6364
6365        if (pred_last_op->code() == lir_branch) {
6366          assert(pred_last_op->as_OpBranch() != NULL, "branch must be LIR_OpBranch");
6367          LIR_OpBranch* pred_last_branch = (LIR_OpBranch*)pred_last_op;
6368
6369          if (pred_last_branch->block() == block && pred_last_branch->cond() == lir_cond_always && pred_last_branch->info() == NULL) {
6370            // replace the jump to a return with a direct return
6371            // Note: currently the edge between the blocks is not deleted
6372            pred_instructions->at_put(pred_instructions->length() - 1, new LIR_Op1(lir_return, return_opr));
6373#ifdef ASSERT
6374            return_converted.set_bit(pred->block_id());
6375#endif
6376          }
6377        }
6378      }
6379    }
6380  }
6381}
6382
6383
6384#ifdef ASSERT
6385void ControlFlowOptimizer::verify(BlockList* code) {
6386  for (int i = 0; i < code->length(); i++) {
6387    BlockBegin* block = code->at(i);
6388    LIR_OpList* instructions = block->lir()->instructions_list();
6389
6390    int j;
6391    for (j = 0; j < instructions->length(); j++) {
6392      LIR_OpBranch* op_branch = instructions->at(j)->as_OpBranch();
6393
6394      if (op_branch != NULL) {
6395        assert(op_branch->block() == NULL || code->find(op_branch->block()) != -1, "branch target not valid");
6396        assert(op_branch->ublock() == NULL || code->find(op_branch->ublock()) != -1, "branch target not valid");
6397      }
6398    }
6399
6400    for (j = 0; j < block->number_of_sux() - 1; j++) {
6401      BlockBegin* sux = block->sux_at(j);
6402      assert(code->find(sux) != -1, "successor not valid");
6403    }
6404
6405    for (j = 0; j < block->number_of_preds() - 1; j++) {
6406      BlockBegin* pred = block->pred_at(j);
6407      assert(code->find(pred) != -1, "successor not valid");
6408    }
6409  }
6410}
6411#endif
6412
6413
6414#ifndef PRODUCT
6415
6416// Implementation of LinearStatistic
6417
6418const char* LinearScanStatistic::counter_name(int counter_idx) {
6419  switch (counter_idx) {
6420    case counter_method:          return "compiled methods";
6421    case counter_fpu_method:      return "methods using fpu";
6422    case counter_loop_method:     return "methods with loops";
6423    case counter_exception_method:return "methods with xhandler";
6424
6425    case counter_loop:            return "loops";
6426    case counter_block:           return "blocks";
6427    case counter_loop_block:      return "blocks inside loop";
6428    case counter_exception_block: return "exception handler entries";
6429    case counter_interval:        return "intervals";
6430    case counter_fixed_interval:  return "fixed intervals";
6431    case counter_range:           return "ranges";
6432    case counter_fixed_range:     return "fixed ranges";
6433    case counter_use_pos:         return "use positions";
6434    case counter_fixed_use_pos:   return "fixed use positions";
6435    case counter_spill_slots:     return "spill slots";
6436
6437    // counter for classes of lir instructions
6438    case counter_instruction:     return "total instructions";
6439    case counter_label:           return "labels";
6440    case counter_entry:           return "method entries";
6441    case counter_return:          return "method returns";
6442    case counter_call:            return "method calls";
6443    case counter_move:            return "moves";
6444    case counter_cmp:             return "compare";
6445    case counter_cond_branch:     return "conditional branches";
6446    case counter_uncond_branch:   return "unconditional branches";
6447    case counter_stub_branch:     return "branches to stub";
6448    case counter_alu:             return "artithmetic + logic";
6449    case counter_alloc:           return "allocations";
6450    case counter_sync:            return "synchronisation";
6451    case counter_throw:           return "throw";
6452    case counter_unwind:          return "unwind";
6453    case counter_typecheck:       return "type+null-checks";
6454    case counter_fpu_stack:       return "fpu-stack";
6455    case counter_misc_inst:       return "other instructions";
6456    case counter_other_inst:      return "misc. instructions";
6457
6458    // counter for different types of moves
6459    case counter_move_total:      return "total moves";
6460    case counter_move_reg_reg:    return "register->register";
6461    case counter_move_reg_stack:  return "register->stack";
6462    case counter_move_stack_reg:  return "stack->register";
6463    case counter_move_stack_stack:return "stack->stack";
6464    case counter_move_reg_mem:    return "register->memory";
6465    case counter_move_mem_reg:    return "memory->register";
6466    case counter_move_const_any:  return "constant->any";
6467
6468    case blank_line_1:            return "";
6469    case blank_line_2:            return "";
6470
6471    default: ShouldNotReachHere(); return "";
6472  }
6473}
6474
6475LinearScanStatistic::Counter LinearScanStatistic::base_counter(int counter_idx) {
6476  if (counter_idx == counter_fpu_method || counter_idx == counter_loop_method || counter_idx == counter_exception_method) {
6477    return counter_method;
6478  } else if (counter_idx == counter_loop_block || counter_idx == counter_exception_block) {
6479    return counter_block;
6480  } else if (counter_idx >= counter_instruction && counter_idx <= counter_other_inst) {
6481    return counter_instruction;
6482  } else if (counter_idx >= counter_move_total && counter_idx <= counter_move_const_any) {
6483    return counter_move_total;
6484  }
6485  return invalid_counter;
6486}
6487
6488LinearScanStatistic::LinearScanStatistic() {
6489  for (int i = 0; i < number_of_counters; i++) {
6490    _counters_sum[i] = 0;
6491    _counters_max[i] = -1;
6492  }
6493
6494}
6495
6496// add the method-local numbers to the total sum
6497void LinearScanStatistic::sum_up(LinearScanStatistic &method_statistic) {
6498  for (int i = 0; i < number_of_counters; i++) {
6499    _counters_sum[i] += method_statistic._counters_sum[i];
6500    _counters_max[i] = MAX2(_counters_max[i], method_statistic._counters_sum[i]);
6501  }
6502}
6503
6504void LinearScanStatistic::print(const char* title) {
6505  if (CountLinearScan || TraceLinearScanLevel > 0) {
6506    tty->cr();
6507    tty->print_cr("***** LinearScan statistic - %s *****", title);
6508
6509    for (int i = 0; i < number_of_counters; i++) {
6510      if (_counters_sum[i] > 0 || _counters_max[i] >= 0) {
6511        tty->print("%25s: %8d", counter_name(i), _counters_sum[i]);
6512
6513        LinearScanStatistic::Counter cntr = base_counter(i);
6514        if (cntr != invalid_counter) {
6515          tty->print("  (%5.1f%%) ", _counters_sum[i] * 100.0 / _counters_sum[cntr]);
6516        } else {
6517          tty->print("           ");
6518        }
6519
6520        if (_counters_max[i] >= 0) {
6521          tty->print("%8d", _counters_max[i]);
6522        }
6523      }
6524      tty->cr();
6525    }
6526  }
6527}
6528
6529void LinearScanStatistic::collect(LinearScan* allocator) {
6530  inc_counter(counter_method);
6531  if (allocator->has_fpu_registers()) {
6532    inc_counter(counter_fpu_method);
6533  }
6534  if (allocator->num_loops() > 0) {
6535    inc_counter(counter_loop_method);
6536  }
6537  inc_counter(counter_loop, allocator->num_loops());
6538  inc_counter(counter_spill_slots, allocator->max_spills());
6539
6540  int i;
6541  for (i = 0; i < allocator->interval_count(); i++) {
6542    Interval* cur = allocator->interval_at(i);
6543
6544    if (cur != NULL) {
6545      inc_counter(counter_interval);
6546      inc_counter(counter_use_pos, cur->num_use_positions());
6547      if (LinearScan::is_precolored_interval(cur)) {
6548        inc_counter(counter_fixed_interval);
6549        inc_counter(counter_fixed_use_pos, cur->num_use_positions());
6550      }
6551
6552      Range* range = cur->first();
6553      while (range != Range::end()) {
6554        inc_counter(counter_range);
6555        if (LinearScan::is_precolored_interval(cur)) {
6556          inc_counter(counter_fixed_range);
6557        }
6558        range = range->next();
6559      }
6560    }
6561  }
6562
6563  bool has_xhandlers = false;
6564  // Note: only count blocks that are in code-emit order
6565  for (i = 0; i < allocator->ir()->code()->length(); i++) {
6566    BlockBegin* cur = allocator->ir()->code()->at(i);
6567
6568    inc_counter(counter_block);
6569    if (cur->loop_depth() > 0) {
6570      inc_counter(counter_loop_block);
6571    }
6572    if (cur->is_set(BlockBegin::exception_entry_flag)) {
6573      inc_counter(counter_exception_block);
6574      has_xhandlers = true;
6575    }
6576
6577    LIR_OpList* instructions = cur->lir()->instructions_list();
6578    for (int j = 0; j < instructions->length(); j++) {
6579      LIR_Op* op = instructions->at(j);
6580
6581      inc_counter(counter_instruction);
6582
6583      switch (op->code()) {
6584        case lir_label:           inc_counter(counter_label); break;
6585        case lir_std_entry:
6586        case lir_osr_entry:       inc_counter(counter_entry); break;
6587        case lir_return:          inc_counter(counter_return); break;
6588
6589        case lir_rtcall:
6590        case lir_static_call:
6591        case lir_optvirtual_call:
6592        case lir_virtual_call:    inc_counter(counter_call); break;
6593
6594        case lir_move: {
6595          inc_counter(counter_move);
6596          inc_counter(counter_move_total);
6597
6598          LIR_Opr in = op->as_Op1()->in_opr();
6599          LIR_Opr res = op->as_Op1()->result_opr();
6600          if (in->is_register()) {
6601            if (res->is_register()) {
6602              inc_counter(counter_move_reg_reg);
6603            } else if (res->is_stack()) {
6604              inc_counter(counter_move_reg_stack);
6605            } else if (res->is_address()) {
6606              inc_counter(counter_move_reg_mem);
6607            } else {
6608              ShouldNotReachHere();
6609            }
6610          } else if (in->is_stack()) {
6611            if (res->is_register()) {
6612              inc_counter(counter_move_stack_reg);
6613            } else {
6614              inc_counter(counter_move_stack_stack);
6615            }
6616          } else if (in->is_address()) {
6617            assert(res->is_register(), "must be");
6618            inc_counter(counter_move_mem_reg);
6619          } else if (in->is_constant()) {
6620            inc_counter(counter_move_const_any);
6621          } else {
6622            ShouldNotReachHere();
6623          }
6624          break;
6625        }
6626
6627        case lir_cmp:             inc_counter(counter_cmp); break;
6628
6629        case lir_branch:
6630        case lir_cond_float_branch: {
6631          LIR_OpBranch* branch = op->as_OpBranch();
6632          if (branch->block() == NULL) {
6633            inc_counter(counter_stub_branch);
6634          } else if (branch->cond() == lir_cond_always) {
6635            inc_counter(counter_uncond_branch);
6636          } else {
6637            inc_counter(counter_cond_branch);
6638          }
6639          break;
6640        }
6641
6642        case lir_neg:
6643        case lir_add:
6644        case lir_sub:
6645        case lir_mul:
6646        case lir_mul_strictfp:
6647        case lir_div:
6648        case lir_div_strictfp:
6649        case lir_rem:
6650        case lir_sqrt:
6651        case lir_abs:
6652        case lir_log10:
6653        case lir_logic_and:
6654        case lir_logic_or:
6655        case lir_logic_xor:
6656        case lir_shl:
6657        case lir_shr:
6658        case lir_ushr:            inc_counter(counter_alu); break;
6659
6660        case lir_alloc_object:
6661        case lir_alloc_array:     inc_counter(counter_alloc); break;
6662
6663        case lir_monaddr:
6664        case lir_lock:
6665        case lir_unlock:          inc_counter(counter_sync); break;
6666
6667        case lir_throw:           inc_counter(counter_throw); break;
6668
6669        case lir_unwind:          inc_counter(counter_unwind); break;
6670
6671        case lir_null_check:
6672        case lir_leal:
6673        case lir_instanceof:
6674        case lir_checkcast:
6675        case lir_store_check:     inc_counter(counter_typecheck); break;
6676
6677        case lir_fpop_raw:
6678        case lir_fxch:
6679        case lir_fld:             inc_counter(counter_fpu_stack); break;
6680
6681        case lir_nop:
6682        case lir_push:
6683        case lir_pop:
6684        case lir_convert:
6685        case lir_roundfp:
6686        case lir_cmove:           inc_counter(counter_misc_inst); break;
6687
6688        default:                  inc_counter(counter_other_inst); break;
6689      }
6690    }
6691  }
6692
6693  if (has_xhandlers) {
6694    inc_counter(counter_exception_method);
6695  }
6696}
6697
6698void LinearScanStatistic::compute(LinearScan* allocator, LinearScanStatistic &global_statistic) {
6699  if (CountLinearScan || TraceLinearScanLevel > 0) {
6700
6701    LinearScanStatistic local_statistic = LinearScanStatistic();
6702
6703    local_statistic.collect(allocator);
6704    global_statistic.sum_up(local_statistic);
6705
6706    if (TraceLinearScanLevel > 2) {
6707      local_statistic.print("current local statistic");
6708    }
6709  }
6710}
6711
6712
6713// Implementation of LinearTimers
6714
6715LinearScanTimers::LinearScanTimers() {
6716  for (int i = 0; i < number_of_timers; i++) {
6717    timer(i)->reset();
6718  }
6719}
6720
6721const char* LinearScanTimers::timer_name(int idx) {
6722  switch (idx) {
6723    case timer_do_nothing:               return "Nothing (Time Check)";
6724    case timer_number_instructions:      return "Number Instructions";
6725    case timer_compute_local_live_sets:  return "Local Live Sets";
6726    case timer_compute_global_live_sets: return "Global Live Sets";
6727    case timer_build_intervals:          return "Build Intervals";
6728    case timer_sort_intervals_before:    return "Sort Intervals Before";
6729    case timer_allocate_registers:       return "Allocate Registers";
6730    case timer_resolve_data_flow:        return "Resolve Data Flow";
6731    case timer_sort_intervals_after:     return "Sort Intervals After";
6732    case timer_eliminate_spill_moves:    return "Spill optimization";
6733    case timer_assign_reg_num:           return "Assign Reg Num";
6734    case timer_allocate_fpu_stack:       return "Allocate FPU Stack";
6735    case timer_optimize_lir:             return "Optimize LIR";
6736    default: ShouldNotReachHere();       return "";
6737  }
6738}
6739
6740void LinearScanTimers::begin_method() {
6741  if (TimeEachLinearScan) {
6742    // reset all timers to measure only current method
6743    for (int i = 0; i < number_of_timers; i++) {
6744      timer(i)->reset();
6745    }
6746  }
6747}
6748
6749void LinearScanTimers::end_method(LinearScan* allocator) {
6750  if (TimeEachLinearScan) {
6751
6752    double c = timer(timer_do_nothing)->seconds();
6753    double total = 0;
6754    for (int i = 1; i < number_of_timers; i++) {
6755      total += timer(i)->seconds() - c;
6756    }
6757
6758    if (total >= 0.0005) {
6759      // print all information in one line for automatic processing
6760      tty->print("@"); allocator->compilation()->method()->print_name();
6761
6762      tty->print("@ %d ", allocator->compilation()->method()->code_size());
6763      tty->print("@ %d ", allocator->block_at(allocator->block_count() - 1)->last_lir_instruction_id() / 2);
6764      tty->print("@ %d ", allocator->block_count());
6765      tty->print("@ %d ", allocator->num_virtual_regs());
6766      tty->print("@ %d ", allocator->interval_count());
6767      tty->print("@ %d ", allocator->_num_calls);
6768      tty->print("@ %d ", allocator->num_loops());
6769
6770      tty->print("@ %6.6f ", total);
6771      for (int i = 1; i < number_of_timers; i++) {
6772        tty->print("@ %4.1f ", ((timer(i)->seconds() - c) / total) * 100);
6773      }
6774      tty->cr();
6775    }
6776  }
6777}
6778
6779void LinearScanTimers::print(double total_time) {
6780  if (TimeLinearScan) {
6781    // correction value: sum of dummy-timer that only measures the time that
6782    // is necesary to start and stop itself
6783    double c = timer(timer_do_nothing)->seconds();
6784
6785    for (int i = 0; i < number_of_timers; i++) {
6786      double t = timer(i)->seconds();
6787      tty->print_cr("    %25s: %6.3f s (%4.1f%%)  corrected: %6.3f s (%4.1f%%)", timer_name(i), t, (t / total_time) * 100.0, t - c, (t - c) / (total_time - 2 * number_of_timers * c) * 100);
6788    }
6789  }
6790}
6791
6792#endif // #ifndef PRODUCT
6793