c1_LinearScan.cpp revision 337:9ee9cf798b59
1/*
2 * Copyright 2005-2008 Sun Microsystems, Inc.  All Rights Reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20 * CA 95054 USA or visit www.sun.com if you need additional information or
21 * have any questions.
22 *
23 */
24
25#include "incls/_precompiled.incl"
26#include "incls/_c1_LinearScan.cpp.incl"
27
28
29#ifndef PRODUCT
30
31  static LinearScanStatistic _stat_before_alloc;
32  static LinearScanStatistic _stat_after_asign;
33  static LinearScanStatistic _stat_final;
34
35  static LinearScanTimers _total_timer;
36
37  // helper macro for short definition of timer
38  #define TIME_LINEAR_SCAN(timer_name)  TraceTime _block_timer("", _total_timer.timer(LinearScanTimers::timer_name), TimeLinearScan || TimeEachLinearScan, Verbose);
39
40  // helper macro for short definition of trace-output inside code
41  #define TRACE_LINEAR_SCAN(level, code)       \
42    if (TraceLinearScanLevel >= level) {       \
43      code;                                    \
44    }
45
46#else
47
48  #define TIME_LINEAR_SCAN(timer_name)
49  #define TRACE_LINEAR_SCAN(level, code)
50
51#endif
52
53// Map BasicType to spill size in 32-bit words, matching VMReg's notion of words
54#ifdef _LP64
55static int type2spill_size[T_CONFLICT+1]={ -1, 0, 0, 0, 1, 1, 1, 2, 1, 1, 1, 2, 2, 2, 0, 1, -1};
56#else
57static int type2spill_size[T_CONFLICT+1]={ -1, 0, 0, 0, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 0, 1, -1};
58#endif
59
60
61// Implementation of LinearScan
62
63LinearScan::LinearScan(IR* ir, LIRGenerator* gen, FrameMap* frame_map)
64 : _compilation(ir->compilation())
65 , _ir(ir)
66 , _gen(gen)
67 , _frame_map(frame_map)
68 , _num_virtual_regs(gen->max_virtual_register_number())
69 , _has_fpu_registers(false)
70 , _num_calls(-1)
71 , _max_spills(0)
72 , _unused_spill_slot(-1)
73 , _intervals(0)   // initialized later with correct length
74 , _new_intervals_from_allocation(new IntervalList())
75 , _sorted_intervals(NULL)
76 , _lir_ops(0)     // initialized later with correct length
77 , _block_of_op(0) // initialized later with correct length
78 , _has_info(0)
79 , _has_call(0)
80 , _scope_value_cache(0) // initialized later with correct length
81 , _interval_in_loop(0, 0) // initialized later with correct length
82 , _cached_blocks(*ir->linear_scan_order())
83#ifdef X86
84 , _fpu_stack_allocator(NULL)
85#endif
86{
87  // note: to use more than on instance of LinearScan at a time this function call has to
88  //       be moved somewhere outside of this constructor:
89  Interval::initialize();
90
91  assert(this->ir() != NULL,          "check if valid");
92  assert(this->compilation() != NULL, "check if valid");
93  assert(this->gen() != NULL,         "check if valid");
94  assert(this->frame_map() != NULL,   "check if valid");
95}
96
97
98// ********** functions for converting LIR-Operands to register numbers
99//
100// Emulate a flat register file comprising physical integer registers,
101// physical floating-point registers and virtual registers, in that order.
102// Virtual registers already have appropriate numbers, since V0 is
103// the number of physical registers.
104// Returns -1 for hi word if opr is a single word operand.
105//
106// Note: the inverse operation (calculating an operand for register numbers)
107//       is done in calc_operand_for_interval()
108
109int LinearScan::reg_num(LIR_Opr opr) {
110  assert(opr->is_register(), "should not call this otherwise");
111
112  if (opr->is_virtual_register()) {
113    assert(opr->vreg_number() >= nof_regs, "found a virtual register with a fixed-register number");
114    return opr->vreg_number();
115  } else if (opr->is_single_cpu()) {
116    return opr->cpu_regnr();
117  } else if (opr->is_double_cpu()) {
118    return opr->cpu_regnrLo();
119#ifdef X86
120  } else if (opr->is_single_xmm()) {
121    return opr->fpu_regnr() + pd_first_xmm_reg;
122  } else if (opr->is_double_xmm()) {
123    return opr->fpu_regnrLo() + pd_first_xmm_reg;
124#endif
125  } else if (opr->is_single_fpu()) {
126    return opr->fpu_regnr() + pd_first_fpu_reg;
127  } else if (opr->is_double_fpu()) {
128    return opr->fpu_regnrLo() + pd_first_fpu_reg;
129  } else {
130    ShouldNotReachHere();
131    return -1;
132  }
133}
134
135int LinearScan::reg_numHi(LIR_Opr opr) {
136  assert(opr->is_register(), "should not call this otherwise");
137
138  if (opr->is_virtual_register()) {
139    return -1;
140  } else if (opr->is_single_cpu()) {
141    return -1;
142  } else if (opr->is_double_cpu()) {
143    return opr->cpu_regnrHi();
144#ifdef X86
145  } else if (opr->is_single_xmm()) {
146    return -1;
147  } else if (opr->is_double_xmm()) {
148    return -1;
149#endif
150  } else if (opr->is_single_fpu()) {
151    return -1;
152  } else if (opr->is_double_fpu()) {
153    return opr->fpu_regnrHi() + pd_first_fpu_reg;
154  } else {
155    ShouldNotReachHere();
156    return -1;
157  }
158}
159
160
161// ********** functions for classification of intervals
162
163bool LinearScan::is_precolored_interval(const Interval* i) {
164  return i->reg_num() < LinearScan::nof_regs;
165}
166
167bool LinearScan::is_virtual_interval(const Interval* i) {
168  return i->reg_num() >= LIR_OprDesc::vreg_base;
169}
170
171bool LinearScan::is_precolored_cpu_interval(const Interval* i) {
172  return i->reg_num() < LinearScan::nof_cpu_regs;
173}
174
175bool LinearScan::is_virtual_cpu_interval(const Interval* i) {
176  return i->reg_num() >= LIR_OprDesc::vreg_base && (i->type() != T_FLOAT && i->type() != T_DOUBLE);
177}
178
179bool LinearScan::is_precolored_fpu_interval(const Interval* i) {
180  return i->reg_num() >= LinearScan::nof_cpu_regs && i->reg_num() < LinearScan::nof_regs;
181}
182
183bool LinearScan::is_virtual_fpu_interval(const Interval* i) {
184  return i->reg_num() >= LIR_OprDesc::vreg_base && (i->type() == T_FLOAT || i->type() == T_DOUBLE);
185}
186
187bool LinearScan::is_in_fpu_register(const Interval* i) {
188  // fixed intervals not needed for FPU stack allocation
189  return i->reg_num() >= nof_regs && pd_first_fpu_reg <= i->assigned_reg() && i->assigned_reg() <= pd_last_fpu_reg;
190}
191
192bool LinearScan::is_oop_interval(const Interval* i) {
193  // fixed intervals never contain oops
194  return i->reg_num() >= nof_regs && i->type() == T_OBJECT;
195}
196
197
198// ********** General helper functions
199
200// compute next unused stack index that can be used for spilling
201int LinearScan::allocate_spill_slot(bool double_word) {
202  int spill_slot;
203  if (double_word) {
204    if ((_max_spills & 1) == 1) {
205      // alignment of double-word values
206      // the hole because of the alignment is filled with the next single-word value
207      assert(_unused_spill_slot == -1, "wasting a spill slot");
208      _unused_spill_slot = _max_spills;
209      _max_spills++;
210    }
211    spill_slot = _max_spills;
212    _max_spills += 2;
213
214  } else if (_unused_spill_slot != -1) {
215    // re-use hole that was the result of a previous double-word alignment
216    spill_slot = _unused_spill_slot;
217    _unused_spill_slot = -1;
218
219  } else {
220    spill_slot = _max_spills;
221    _max_spills++;
222  }
223
224  int result = spill_slot + LinearScan::nof_regs + frame_map()->argcount();
225
226  // the class OopMapValue uses only 11 bits for storing the name of the
227  // oop location. So a stack slot bigger than 2^11 leads to an overflow
228  // that is not reported in product builds. Prevent this by checking the
229  // spill slot here (altough this value and the later used location name
230  // are slightly different)
231  if (result > 2000) {
232    bailout("too many stack slots used");
233  }
234
235  return result;
236}
237
238void LinearScan::assign_spill_slot(Interval* it) {
239  // assign the canonical spill slot of the parent (if a part of the interval
240  // is already spilled) or allocate a new spill slot
241  if (it->canonical_spill_slot() >= 0) {
242    it->assign_reg(it->canonical_spill_slot());
243  } else {
244    int spill = allocate_spill_slot(type2spill_size[it->type()] == 2);
245    it->set_canonical_spill_slot(spill);
246    it->assign_reg(spill);
247  }
248}
249
250void LinearScan::propagate_spill_slots() {
251  if (!frame_map()->finalize_frame(max_spills())) {
252    bailout("frame too large");
253  }
254}
255
256// create a new interval with a predefined reg_num
257// (only used for parent intervals that are created during the building phase)
258Interval* LinearScan::create_interval(int reg_num) {
259  assert(_intervals.at(reg_num) == NULL, "overwriting exisiting interval");
260
261  Interval* interval = new Interval(reg_num);
262  _intervals.at_put(reg_num, interval);
263
264  // assign register number for precolored intervals
265  if (reg_num < LIR_OprDesc::vreg_base) {
266    interval->assign_reg(reg_num);
267  }
268  return interval;
269}
270
271// assign a new reg_num to the interval and append it to the list of intervals
272// (only used for child intervals that are created during register allocation)
273void LinearScan::append_interval(Interval* it) {
274  it->set_reg_num(_intervals.length());
275  _intervals.append(it);
276  _new_intervals_from_allocation->append(it);
277}
278
279// copy the vreg-flags if an interval is split
280void LinearScan::copy_register_flags(Interval* from, Interval* to) {
281  if (gen()->is_vreg_flag_set(from->reg_num(), LIRGenerator::byte_reg)) {
282    gen()->set_vreg_flag(to->reg_num(), LIRGenerator::byte_reg);
283  }
284  if (gen()->is_vreg_flag_set(from->reg_num(), LIRGenerator::callee_saved)) {
285    gen()->set_vreg_flag(to->reg_num(), LIRGenerator::callee_saved);
286  }
287
288  // Note: do not copy the must_start_in_memory flag because it is not necessary for child
289  //       intervals (only the very beginning of the interval must be in memory)
290}
291
292
293// ********** spill move optimization
294// eliminate moves from register to stack if stack slot is known to be correct
295
296// called during building of intervals
297void LinearScan::change_spill_definition_pos(Interval* interval, int def_pos) {
298  assert(interval->is_split_parent(), "can only be called for split parents");
299
300  switch (interval->spill_state()) {
301    case noDefinitionFound:
302      assert(interval->spill_definition_pos() == -1, "must no be set before");
303      interval->set_spill_definition_pos(def_pos);
304      interval->set_spill_state(oneDefinitionFound);
305      break;
306
307    case oneDefinitionFound:
308      assert(def_pos <= interval->spill_definition_pos(), "positions are processed in reverse order when intervals are created");
309      if (def_pos < interval->spill_definition_pos() - 2) {
310        // second definition found, so no spill optimization possible for this interval
311        interval->set_spill_state(noOptimization);
312      } else {
313        // two consecutive definitions (because of two-operand LIR form)
314        assert(block_of_op_with_id(def_pos) == block_of_op_with_id(interval->spill_definition_pos()), "block must be equal");
315      }
316      break;
317
318    case noOptimization:
319      // nothing to do
320      break;
321
322    default:
323      assert(false, "other states not allowed at this time");
324  }
325}
326
327// called during register allocation
328void LinearScan::change_spill_state(Interval* interval, int spill_pos) {
329  switch (interval->spill_state()) {
330    case oneDefinitionFound: {
331      int def_loop_depth = block_of_op_with_id(interval->spill_definition_pos())->loop_depth();
332      int spill_loop_depth = block_of_op_with_id(spill_pos)->loop_depth();
333
334      if (def_loop_depth < spill_loop_depth) {
335        // the loop depth of the spilling position is higher then the loop depth
336        // at the definition of the interval -> move write to memory out of loop
337        // by storing at definitin of the interval
338        interval->set_spill_state(storeAtDefinition);
339      } else {
340        // the interval is currently spilled only once, so for now there is no
341        // reason to store the interval at the definition
342        interval->set_spill_state(oneMoveInserted);
343      }
344      break;
345    }
346
347    case oneMoveInserted: {
348      // the interval is spilled more then once, so it is better to store it to
349      // memory at the definition
350      interval->set_spill_state(storeAtDefinition);
351      break;
352    }
353
354    case storeAtDefinition:
355    case startInMemory:
356    case noOptimization:
357    case noDefinitionFound:
358      // nothing to do
359      break;
360
361    default:
362      assert(false, "other states not allowed at this time");
363  }
364}
365
366
367bool LinearScan::must_store_at_definition(const Interval* i) {
368  return i->is_split_parent() && i->spill_state() == storeAtDefinition;
369}
370
371// called once before asignment of register numbers
372void LinearScan::eliminate_spill_moves() {
373  TIME_LINEAR_SCAN(timer_eliminate_spill_moves);
374  TRACE_LINEAR_SCAN(3, tty->print_cr("***** Eliminating unnecessary spill moves"));
375
376  // collect all intervals that must be stored after their definion.
377  // the list is sorted by Interval::spill_definition_pos
378  Interval* interval;
379  Interval* temp_list;
380  create_unhandled_lists(&interval, &temp_list, must_store_at_definition, NULL);
381
382#ifdef ASSERT
383  Interval* prev = NULL;
384  Interval* temp = interval;
385  while (temp != Interval::end()) {
386    assert(temp->spill_definition_pos() > 0, "invalid spill definition pos");
387    if (prev != NULL) {
388      assert(temp->from() >= prev->from(), "intervals not sorted");
389      assert(temp->spill_definition_pos() >= prev->spill_definition_pos(), "when intervals are sorted by from, then they must also be sorted by spill_definition_pos");
390    }
391
392    assert(temp->canonical_spill_slot() >= LinearScan::nof_regs, "interval has no spill slot assigned");
393    assert(temp->spill_definition_pos() >= temp->from(), "invalid order");
394    assert(temp->spill_definition_pos() <= temp->from() + 2, "only intervals defined once at their start-pos can be optimized");
395
396    TRACE_LINEAR_SCAN(4, tty->print_cr("interval %d (from %d to %d) must be stored at %d", temp->reg_num(), temp->from(), temp->to(), temp->spill_definition_pos()));
397
398    temp = temp->next();
399  }
400#endif
401
402  LIR_InsertionBuffer insertion_buffer;
403  int num_blocks = block_count();
404  for (int i = 0; i < num_blocks; i++) {
405    BlockBegin* block = block_at(i);
406    LIR_OpList* instructions = block->lir()->instructions_list();
407    int         num_inst = instructions->length();
408    bool        has_new = false;
409
410    // iterate all instructions of the block. skip the first because it is always a label
411    for (int j = 1; j < num_inst; j++) {
412      LIR_Op* op = instructions->at(j);
413      int op_id = op->id();
414
415      if (op_id == -1) {
416        // remove move from register to stack if the stack slot is guaranteed to be correct.
417        // only moves that have been inserted by LinearScan can be removed.
418        assert(op->code() == lir_move, "only moves can have a op_id of -1");
419        assert(op->as_Op1() != NULL, "move must be LIR_Op1");
420        assert(op->as_Op1()->result_opr()->is_virtual(), "LinearScan inserts only moves to virtual registers");
421
422        LIR_Op1* op1 = (LIR_Op1*)op;
423        Interval* interval = interval_at(op1->result_opr()->vreg_number());
424
425        if (interval->assigned_reg() >= LinearScan::nof_regs && interval->always_in_memory()) {
426          // move target is a stack slot that is always correct, so eliminate instruction
427          TRACE_LINEAR_SCAN(4, tty->print_cr("eliminating move from interval %d to %d", op1->in_opr()->vreg_number(), op1->result_opr()->vreg_number()));
428          instructions->at_put(j, NULL); // NULL-instructions are deleted by assign_reg_num
429        }
430
431      } else {
432        // insert move from register to stack just after the beginning of the interval
433        assert(interval == Interval::end() || interval->spill_definition_pos() >= op_id, "invalid order");
434        assert(interval == Interval::end() || (interval->is_split_parent() && interval->spill_state() == storeAtDefinition), "invalid interval");
435
436        while (interval != Interval::end() && interval->spill_definition_pos() == op_id) {
437          if (!has_new) {
438            // prepare insertion buffer (appended when all instructions of the block are processed)
439            insertion_buffer.init(block->lir());
440            has_new = true;
441          }
442
443          LIR_Opr from_opr = operand_for_interval(interval);
444          LIR_Opr to_opr = canonical_spill_opr(interval);
445          assert(from_opr->is_fixed_cpu() || from_opr->is_fixed_fpu(), "from operand must be a register");
446          assert(to_opr->is_stack(), "to operand must be a stack slot");
447
448          insertion_buffer.move(j, from_opr, to_opr);
449          TRACE_LINEAR_SCAN(4, tty->print_cr("inserting move after definition of interval %d to stack slot %d at op_id %d", interval->reg_num(), interval->canonical_spill_slot() - LinearScan::nof_regs, op_id));
450
451          interval = interval->next();
452        }
453      }
454    } // end of instruction iteration
455
456    if (has_new) {
457      block->lir()->append(&insertion_buffer);
458    }
459  } // end of block iteration
460
461  assert(interval == Interval::end(), "missed an interval");
462}
463
464
465// ********** Phase 1: number all instructions in all blocks
466// Compute depth-first and linear scan block orders, and number LIR_Op nodes for linear scan.
467
468void LinearScan::number_instructions() {
469  {
470    // dummy-timer to measure the cost of the timer itself
471    // (this time is then subtracted from all other timers to get the real value)
472    TIME_LINEAR_SCAN(timer_do_nothing);
473  }
474  TIME_LINEAR_SCAN(timer_number_instructions);
475
476  // Assign IDs to LIR nodes and build a mapping, lir_ops, from ID to LIR_Op node.
477  int num_blocks = block_count();
478  int num_instructions = 0;
479  int i;
480  for (i = 0; i < num_blocks; i++) {
481    num_instructions += block_at(i)->lir()->instructions_list()->length();
482  }
483
484  // initialize with correct length
485  _lir_ops = LIR_OpArray(num_instructions);
486  _block_of_op = BlockBeginArray(num_instructions);
487
488  int op_id = 0;
489  int idx = 0;
490
491  for (i = 0; i < num_blocks; i++) {
492    BlockBegin* block = block_at(i);
493    block->set_first_lir_instruction_id(op_id);
494    LIR_OpList* instructions = block->lir()->instructions_list();
495
496    int num_inst = instructions->length();
497    for (int j = 0; j < num_inst; j++) {
498      LIR_Op* op = instructions->at(j);
499      op->set_id(op_id);
500
501      _lir_ops.at_put(idx, op);
502      _block_of_op.at_put(idx, block);
503      assert(lir_op_with_id(op_id) == op, "must match");
504
505      idx++;
506      op_id += 2; // numbering of lir_ops by two
507    }
508    block->set_last_lir_instruction_id(op_id - 2);
509  }
510  assert(idx == num_instructions, "must match");
511  assert(idx * 2 == op_id, "must match");
512
513  _has_call = BitMap(num_instructions); _has_call.clear();
514  _has_info = BitMap(num_instructions); _has_info.clear();
515}
516
517
518// ********** Phase 2: compute local live sets separately for each block
519// (sets live_gen and live_kill for each block)
520
521void LinearScan::set_live_gen_kill(Value value, LIR_Op* op, BitMap& live_gen, BitMap& live_kill) {
522  LIR_Opr opr = value->operand();
523  Constant* con = value->as_Constant();
524
525  // check some asumptions about debug information
526  assert(!value->type()->is_illegal(), "if this local is used by the interpreter it shouldn't be of indeterminate type");
527  assert(con == NULL || opr->is_virtual() || opr->is_constant() || opr->is_illegal(), "asumption: Constant instructions have only constant operands");
528  assert(con != NULL || opr->is_virtual(), "asumption: non-Constant instructions have only virtual operands");
529
530  if ((con == NULL || con->is_pinned()) && opr->is_register()) {
531    assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
532    int reg = opr->vreg_number();
533    if (!live_kill.at(reg)) {
534      live_gen.set_bit(reg);
535      TRACE_LINEAR_SCAN(4, tty->print_cr("  Setting live_gen for value %c%d, LIR op_id %d, register number %d", value->type()->tchar(), value->id(), op->id(), reg));
536    }
537  }
538}
539
540
541void LinearScan::compute_local_live_sets() {
542  TIME_LINEAR_SCAN(timer_compute_local_live_sets);
543
544  int  num_blocks = block_count();
545  int  live_size = live_set_size();
546  bool local_has_fpu_registers = false;
547  int  local_num_calls = 0;
548  LIR_OpVisitState visitor;
549
550  BitMap2D local_interval_in_loop = BitMap2D(_num_virtual_regs, num_loops());
551  local_interval_in_loop.clear();
552
553  // iterate all blocks
554  for (int i = 0; i < num_blocks; i++) {
555    BlockBegin* block = block_at(i);
556
557    BitMap live_gen(live_size);  live_gen.clear();
558    BitMap live_kill(live_size); live_kill.clear();
559
560    if (block->is_set(BlockBegin::exception_entry_flag)) {
561      // Phi functions at the begin of an exception handler are
562      // implicitly defined (= killed) at the beginning of the block.
563      for_each_phi_fun(block, phi,
564        live_kill.set_bit(phi->operand()->vreg_number())
565      );
566    }
567
568    LIR_OpList* instructions = block->lir()->instructions_list();
569    int num_inst = instructions->length();
570
571    // iterate all instructions of the block. skip the first because it is always a label
572    assert(visitor.no_operands(instructions->at(0)), "first operation must always be a label");
573    for (int j = 1; j < num_inst; j++) {
574      LIR_Op* op = instructions->at(j);
575
576      // visit operation to collect all operands
577      visitor.visit(op);
578
579      if (visitor.has_call()) {
580        _has_call.set_bit(op->id() >> 1);
581        local_num_calls++;
582      }
583      if (visitor.info_count() > 0) {
584        _has_info.set_bit(op->id() >> 1);
585      }
586
587      // iterate input operands of instruction
588      int k, n, reg;
589      n = visitor.opr_count(LIR_OpVisitState::inputMode);
590      for (k = 0; k < n; k++) {
591        LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::inputMode, k);
592        assert(opr->is_register(), "visitor should only return register operands");
593
594        if (opr->is_virtual_register()) {
595          assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
596          reg = opr->vreg_number();
597          if (!live_kill.at(reg)) {
598            live_gen.set_bit(reg);
599            TRACE_LINEAR_SCAN(4, tty->print_cr("  Setting live_gen for register %d at instruction %d", reg, op->id()));
600          }
601          if (block->loop_index() >= 0) {
602            local_interval_in_loop.set_bit(reg, block->loop_index());
603          }
604          local_has_fpu_registers = local_has_fpu_registers || opr->is_virtual_fpu();
605        }
606
607#ifdef ASSERT
608        // fixed intervals are never live at block boundaries, so
609        // they need not be processed in live sets.
610        // this is checked by these assertions to be sure about it.
611        // the entry block may have incoming values in registers, which is ok.
612        if (!opr->is_virtual_register() && block != ir()->start()) {
613          reg = reg_num(opr);
614          if (is_processed_reg_num(reg)) {
615            assert(live_kill.at(reg), "using fixed register that is not defined in this block");
616          }
617          reg = reg_numHi(opr);
618          if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
619            assert(live_kill.at(reg), "using fixed register that is not defined in this block");
620          }
621        }
622#endif
623      }
624
625      // Add uses of live locals from interpreter's point of view for proper debug information generation
626      n = visitor.info_count();
627      for (k = 0; k < n; k++) {
628        CodeEmitInfo* info = visitor.info_at(k);
629        ValueStack* stack = info->stack();
630        for_each_state_value(stack, value,
631          set_live_gen_kill(value, op, live_gen, live_kill)
632        );
633      }
634
635      // iterate temp operands of instruction
636      n = visitor.opr_count(LIR_OpVisitState::tempMode);
637      for (k = 0; k < n; k++) {
638        LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::tempMode, k);
639        assert(opr->is_register(), "visitor should only return register operands");
640
641        if (opr->is_virtual_register()) {
642          assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
643          reg = opr->vreg_number();
644          live_kill.set_bit(reg);
645          if (block->loop_index() >= 0) {
646            local_interval_in_loop.set_bit(reg, block->loop_index());
647          }
648          local_has_fpu_registers = local_has_fpu_registers || opr->is_virtual_fpu();
649        }
650
651#ifdef ASSERT
652        // fixed intervals are never live at block boundaries, so
653        // they need not be processed in live sets
654        // process them only in debug mode so that this can be checked
655        if (!opr->is_virtual_register()) {
656          reg = reg_num(opr);
657          if (is_processed_reg_num(reg)) {
658            live_kill.set_bit(reg_num(opr));
659          }
660          reg = reg_numHi(opr);
661          if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
662            live_kill.set_bit(reg);
663          }
664        }
665#endif
666      }
667
668      // iterate output operands of instruction
669      n = visitor.opr_count(LIR_OpVisitState::outputMode);
670      for (k = 0; k < n; k++) {
671        LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::outputMode, k);
672        assert(opr->is_register(), "visitor should only return register operands");
673
674        if (opr->is_virtual_register()) {
675          assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
676          reg = opr->vreg_number();
677          live_kill.set_bit(reg);
678          if (block->loop_index() >= 0) {
679            local_interval_in_loop.set_bit(reg, block->loop_index());
680          }
681          local_has_fpu_registers = local_has_fpu_registers || opr->is_virtual_fpu();
682        }
683
684#ifdef ASSERT
685        // fixed intervals are never live at block boundaries, so
686        // they need not be processed in live sets
687        // process them only in debug mode so that this can be checked
688        if (!opr->is_virtual_register()) {
689          reg = reg_num(opr);
690          if (is_processed_reg_num(reg)) {
691            live_kill.set_bit(reg_num(opr));
692          }
693          reg = reg_numHi(opr);
694          if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
695            live_kill.set_bit(reg);
696          }
697        }
698#endif
699      }
700    } // end of instruction iteration
701
702    block->set_live_gen (live_gen);
703    block->set_live_kill(live_kill);
704    block->set_live_in  (BitMap(live_size)); block->live_in().clear();
705    block->set_live_out (BitMap(live_size)); block->live_out().clear();
706
707    TRACE_LINEAR_SCAN(4, tty->print("live_gen  B%d ", block->block_id()); print_bitmap(block->live_gen()));
708    TRACE_LINEAR_SCAN(4, tty->print("live_kill B%d ", block->block_id()); print_bitmap(block->live_kill()));
709  } // end of block iteration
710
711  // propagate local calculated information into LinearScan object
712  _has_fpu_registers = local_has_fpu_registers;
713  compilation()->set_has_fpu_code(local_has_fpu_registers);
714
715  _num_calls = local_num_calls;
716  _interval_in_loop = local_interval_in_loop;
717}
718
719
720// ********** Phase 3: perform a backward dataflow analysis to compute global live sets
721// (sets live_in and live_out for each block)
722
723void LinearScan::compute_global_live_sets() {
724  TIME_LINEAR_SCAN(timer_compute_global_live_sets);
725
726  int  num_blocks = block_count();
727  bool change_occurred;
728  bool change_occurred_in_block;
729  int  iteration_count = 0;
730  BitMap live_out(live_set_size()); live_out.clear(); // scratch set for calculations
731
732  // Perform a backward dataflow analysis to compute live_out and live_in for each block.
733  // The loop is executed until a fixpoint is reached (no changes in an iteration)
734  // Exception handlers must be processed because not all live values are
735  // present in the state array, e.g. because of global value numbering
736  do {
737    change_occurred = false;
738
739    // iterate all blocks in reverse order
740    for (int i = num_blocks - 1; i >= 0; i--) {
741      BlockBegin* block = block_at(i);
742
743      change_occurred_in_block = false;
744
745      // live_out(block) is the union of live_in(sux), for successors sux of block
746      int n = block->number_of_sux();
747      int e = block->number_of_exception_handlers();
748      if (n + e > 0) {
749        // block has successors
750        if (n > 0) {
751          live_out.set_from(block->sux_at(0)->live_in());
752          for (int j = 1; j < n; j++) {
753            live_out.set_union(block->sux_at(j)->live_in());
754          }
755        } else {
756          live_out.clear();
757        }
758        for (int j = 0; j < e; j++) {
759          live_out.set_union(block->exception_handler_at(j)->live_in());
760        }
761
762        if (!block->live_out().is_same(live_out)) {
763          // A change occurred.  Swap the old and new live out sets to avoid copying.
764          BitMap temp = block->live_out();
765          block->set_live_out(live_out);
766          live_out = temp;
767
768          change_occurred = true;
769          change_occurred_in_block = true;
770        }
771      }
772
773      if (iteration_count == 0 || change_occurred_in_block) {
774        // live_in(block) is the union of live_gen(block) with (live_out(block) & !live_kill(block))
775        // note: live_in has to be computed only in first iteration or if live_out has changed!
776        BitMap live_in = block->live_in();
777        live_in.set_from(block->live_out());
778        live_in.set_difference(block->live_kill());
779        live_in.set_union(block->live_gen());
780      }
781
782#ifndef PRODUCT
783      if (TraceLinearScanLevel >= 4) {
784        char c = ' ';
785        if (iteration_count == 0 || change_occurred_in_block) {
786          c = '*';
787        }
788        tty->print("(%d) live_in%c  B%d ", iteration_count, c, block->block_id()); print_bitmap(block->live_in());
789        tty->print("(%d) live_out%c B%d ", iteration_count, c, block->block_id()); print_bitmap(block->live_out());
790      }
791#endif
792    }
793    iteration_count++;
794
795    if (change_occurred && iteration_count > 50) {
796      BAILOUT("too many iterations in compute_global_live_sets");
797    }
798  } while (change_occurred);
799
800
801#ifdef ASSERT
802  // check that fixed intervals are not live at block boundaries
803  // (live set must be empty at fixed intervals)
804  for (int i = 0; i < num_blocks; i++) {
805    BlockBegin* block = block_at(i);
806    for (int j = 0; j < LIR_OprDesc::vreg_base; j++) {
807      assert(block->live_in().at(j)  == false, "live_in  set of fixed register must be empty");
808      assert(block->live_out().at(j) == false, "live_out set of fixed register must be empty");
809      assert(block->live_gen().at(j) == false, "live_gen set of fixed register must be empty");
810    }
811  }
812#endif
813
814  // check that the live_in set of the first block is empty
815  BitMap live_in_args(ir()->start()->live_in().size());
816  live_in_args.clear();
817  if (!ir()->start()->live_in().is_same(live_in_args)) {
818#ifdef ASSERT
819    tty->print_cr("Error: live_in set of first block must be empty (when this fails, virtual registers are used before they are defined)");
820    tty->print_cr("affected registers:");
821    print_bitmap(ir()->start()->live_in());
822
823    // print some additional information to simplify debugging
824    for (unsigned int i = 0; i < ir()->start()->live_in().size(); i++) {
825      if (ir()->start()->live_in().at(i)) {
826        Instruction* instr = gen()->instruction_for_vreg(i);
827        tty->print_cr("* vreg %d (HIR instruction %c%d)", i, instr == NULL ? ' ' : instr->type()->tchar(), instr == NULL ? 0 : instr->id());
828
829        for (int j = 0; j < num_blocks; j++) {
830          BlockBegin* block = block_at(j);
831          if (block->live_gen().at(i)) {
832            tty->print_cr("  used in block B%d", block->block_id());
833          }
834          if (block->live_kill().at(i)) {
835            tty->print_cr("  defined in block B%d", block->block_id());
836          }
837        }
838      }
839    }
840
841#endif
842    // when this fails, virtual registers are used before they are defined.
843    assert(false, "live_in set of first block must be empty");
844    // bailout of if this occurs in product mode.
845    bailout("live_in set of first block not empty");
846  }
847}
848
849
850// ********** Phase 4: build intervals
851// (fills the list _intervals)
852
853void LinearScan::add_use(Value value, int from, int to, IntervalUseKind use_kind) {
854  assert(!value->type()->is_illegal(), "if this value is used by the interpreter it shouldn't be of indeterminate type");
855  LIR_Opr opr = value->operand();
856  Constant* con = value->as_Constant();
857
858  if ((con == NULL || con->is_pinned()) && opr->is_register()) {
859    assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
860    add_use(opr, from, to, use_kind);
861  }
862}
863
864
865void LinearScan::add_def(LIR_Opr opr, int def_pos, IntervalUseKind use_kind) {
866  TRACE_LINEAR_SCAN(2, tty->print(" def "); opr->print(tty); tty->print_cr(" def_pos %d (%d)", def_pos, use_kind));
867  assert(opr->is_register(), "should not be called otherwise");
868
869  if (opr->is_virtual_register()) {
870    assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
871    add_def(opr->vreg_number(), def_pos, use_kind, opr->type_register());
872
873  } else {
874    int reg = reg_num(opr);
875    if (is_processed_reg_num(reg)) {
876      add_def(reg, def_pos, use_kind, opr->type_register());
877    }
878    reg = reg_numHi(opr);
879    if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
880      add_def(reg, def_pos, use_kind, opr->type_register());
881    }
882  }
883}
884
885void LinearScan::add_use(LIR_Opr opr, int from, int to, IntervalUseKind use_kind) {
886  TRACE_LINEAR_SCAN(2, tty->print(" use "); opr->print(tty); tty->print_cr(" from %d to %d (%d)", from, to, use_kind));
887  assert(opr->is_register(), "should not be called otherwise");
888
889  if (opr->is_virtual_register()) {
890    assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
891    add_use(opr->vreg_number(), from, to, use_kind, opr->type_register());
892
893  } else {
894    int reg = reg_num(opr);
895    if (is_processed_reg_num(reg)) {
896      add_use(reg, from, to, use_kind, opr->type_register());
897    }
898    reg = reg_numHi(opr);
899    if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
900      add_use(reg, from, to, use_kind, opr->type_register());
901    }
902  }
903}
904
905void LinearScan::add_temp(LIR_Opr opr, int temp_pos, IntervalUseKind use_kind) {
906  TRACE_LINEAR_SCAN(2, tty->print(" temp "); opr->print(tty); tty->print_cr(" temp_pos %d (%d)", temp_pos, use_kind));
907  assert(opr->is_register(), "should not be called otherwise");
908
909  if (opr->is_virtual_register()) {
910    assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
911    add_temp(opr->vreg_number(), temp_pos, use_kind, opr->type_register());
912
913  } else {
914    int reg = reg_num(opr);
915    if (is_processed_reg_num(reg)) {
916      add_temp(reg, temp_pos, use_kind, opr->type_register());
917    }
918    reg = reg_numHi(opr);
919    if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
920      add_temp(reg, temp_pos, use_kind, opr->type_register());
921    }
922  }
923}
924
925
926void LinearScan::add_def(int reg_num, int def_pos, IntervalUseKind use_kind, BasicType type) {
927  Interval* interval = interval_at(reg_num);
928  if (interval != NULL) {
929    assert(interval->reg_num() == reg_num, "wrong interval");
930
931    if (type != T_ILLEGAL) {
932      interval->set_type(type);
933    }
934
935    Range* r = interval->first();
936    if (r->from() <= def_pos) {
937      // Update the starting point (when a range is first created for a use, its
938      // start is the beginning of the current block until a def is encountered.)
939      r->set_from(def_pos);
940      interval->add_use_pos(def_pos, use_kind);
941
942    } else {
943      // Dead value - make vacuous interval
944      // also add use_kind for dead intervals
945      interval->add_range(def_pos, def_pos + 1);
946      interval->add_use_pos(def_pos, use_kind);
947      TRACE_LINEAR_SCAN(2, tty->print_cr("Warning: def of reg %d at %d occurs without use", reg_num, def_pos));
948    }
949
950  } else {
951    // Dead value - make vacuous interval
952    // also add use_kind for dead intervals
953    interval = create_interval(reg_num);
954    if (type != T_ILLEGAL) {
955      interval->set_type(type);
956    }
957
958    interval->add_range(def_pos, def_pos + 1);
959    interval->add_use_pos(def_pos, use_kind);
960    TRACE_LINEAR_SCAN(2, tty->print_cr("Warning: dead value %d at %d in live intervals", reg_num, def_pos));
961  }
962
963  change_spill_definition_pos(interval, def_pos);
964  if (use_kind == noUse && interval->spill_state() <= startInMemory) {
965        // detection of method-parameters and roundfp-results
966        // TODO: move this directly to position where use-kind is computed
967    interval->set_spill_state(startInMemory);
968  }
969}
970
971void LinearScan::add_use(int reg_num, int from, int to, IntervalUseKind use_kind, BasicType type) {
972  Interval* interval = interval_at(reg_num);
973  if (interval == NULL) {
974    interval = create_interval(reg_num);
975  }
976  assert(interval->reg_num() == reg_num, "wrong interval");
977
978  if (type != T_ILLEGAL) {
979    interval->set_type(type);
980  }
981
982  interval->add_range(from, to);
983  interval->add_use_pos(to, use_kind);
984}
985
986void LinearScan::add_temp(int reg_num, int temp_pos, IntervalUseKind use_kind, BasicType type) {
987  Interval* interval = interval_at(reg_num);
988  if (interval == NULL) {
989    interval = create_interval(reg_num);
990  }
991  assert(interval->reg_num() == reg_num, "wrong interval");
992
993  if (type != T_ILLEGAL) {
994    interval->set_type(type);
995  }
996
997  interval->add_range(temp_pos, temp_pos + 1);
998  interval->add_use_pos(temp_pos, use_kind);
999}
1000
1001
1002// the results of this functions are used for optimizing spilling and reloading
1003// if the functions return shouldHaveRegister and the interval is spilled,
1004// it is not reloaded to a register.
1005IntervalUseKind LinearScan::use_kind_of_output_operand(LIR_Op* op, LIR_Opr opr) {
1006  if (op->code() == lir_move) {
1007    assert(op->as_Op1() != NULL, "lir_move must be LIR_Op1");
1008    LIR_Op1* move = (LIR_Op1*)op;
1009    LIR_Opr res = move->result_opr();
1010    bool result_in_memory = res->is_virtual() && gen()->is_vreg_flag_set(res->vreg_number(), LIRGenerator::must_start_in_memory);
1011
1012    if (result_in_memory) {
1013      // Begin of an interval with must_start_in_memory set.
1014      // This interval will always get a stack slot first, so return noUse.
1015      return noUse;
1016
1017    } else if (move->in_opr()->is_stack()) {
1018      // method argument (condition must be equal to handle_method_arguments)
1019      return noUse;
1020
1021    } else if (move->in_opr()->is_register() && move->result_opr()->is_register()) {
1022      // Move from register to register
1023      if (block_of_op_with_id(op->id())->is_set(BlockBegin::osr_entry_flag)) {
1024        // special handling of phi-function moves inside osr-entry blocks
1025        // input operand must have a register instead of output operand (leads to better register allocation)
1026        return shouldHaveRegister;
1027      }
1028    }
1029  }
1030
1031  if (opr->is_virtual() &&
1032      gen()->is_vreg_flag_set(opr->vreg_number(), LIRGenerator::must_start_in_memory)) {
1033    // result is a stack-slot, so prevent immediate reloading
1034    return noUse;
1035  }
1036
1037  // all other operands require a register
1038  return mustHaveRegister;
1039}
1040
1041IntervalUseKind LinearScan::use_kind_of_input_operand(LIR_Op* op, LIR_Opr opr) {
1042  if (op->code() == lir_move) {
1043    assert(op->as_Op1() != NULL, "lir_move must be LIR_Op1");
1044    LIR_Op1* move = (LIR_Op1*)op;
1045    LIR_Opr res = move->result_opr();
1046    bool result_in_memory = res->is_virtual() && gen()->is_vreg_flag_set(res->vreg_number(), LIRGenerator::must_start_in_memory);
1047
1048    if (result_in_memory) {
1049      // Move to an interval with must_start_in_memory set.
1050      // To avoid moves from stack to stack (not allowed) force the input operand to a register
1051      return mustHaveRegister;
1052
1053    } else if (move->in_opr()->is_register() && move->result_opr()->is_register()) {
1054      // Move from register to register
1055      if (block_of_op_with_id(op->id())->is_set(BlockBegin::osr_entry_flag)) {
1056        // special handling of phi-function moves inside osr-entry blocks
1057        // input operand must have a register instead of output operand (leads to better register allocation)
1058        return mustHaveRegister;
1059      }
1060
1061      // The input operand is not forced to a register (moves from stack to register are allowed),
1062      // but it is faster if the input operand is in a register
1063      return shouldHaveRegister;
1064    }
1065  }
1066
1067
1068#ifdef X86
1069  if (op->code() == lir_cmove) {
1070    // conditional moves can handle stack operands
1071    assert(op->result_opr()->is_register(), "result must always be in a register");
1072    return shouldHaveRegister;
1073  }
1074
1075  // optimizations for second input operand of arithmehtic operations on Intel
1076  // this operand is allowed to be on the stack in some cases
1077  BasicType opr_type = opr->type_register();
1078  if (opr_type == T_FLOAT || opr_type == T_DOUBLE) {
1079    if ((UseSSE == 1 && opr_type == T_FLOAT) || UseSSE >= 2) {
1080      // SSE float instruction (T_DOUBLE only supported with SSE2)
1081      switch (op->code()) {
1082        case lir_cmp:
1083        case lir_add:
1084        case lir_sub:
1085        case lir_mul:
1086        case lir_div:
1087        {
1088          assert(op->as_Op2() != NULL, "must be LIR_Op2");
1089          LIR_Op2* op2 = (LIR_Op2*)op;
1090          if (op2->in_opr1() != op2->in_opr2() && op2->in_opr2() == opr) {
1091            assert((op2->result_opr()->is_register() || op->code() == lir_cmp) && op2->in_opr1()->is_register(), "cannot mark second operand as stack if others are not in register");
1092            return shouldHaveRegister;
1093          }
1094        }
1095      }
1096    } else {
1097      // FPU stack float instruction
1098      switch (op->code()) {
1099        case lir_add:
1100        case lir_sub:
1101        case lir_mul:
1102        case lir_div:
1103        {
1104          assert(op->as_Op2() != NULL, "must be LIR_Op2");
1105          LIR_Op2* op2 = (LIR_Op2*)op;
1106          if (op2->in_opr1() != op2->in_opr2() && op2->in_opr2() == opr) {
1107            assert((op2->result_opr()->is_register() || op->code() == lir_cmp) && op2->in_opr1()->is_register(), "cannot mark second operand as stack if others are not in register");
1108            return shouldHaveRegister;
1109          }
1110        }
1111      }
1112    }
1113
1114  } else if (opr_type != T_LONG) {
1115    // integer instruction (note: long operands must always be in register)
1116    switch (op->code()) {
1117      case lir_cmp:
1118      case lir_add:
1119      case lir_sub:
1120      case lir_logic_and:
1121      case lir_logic_or:
1122      case lir_logic_xor:
1123      {
1124        assert(op->as_Op2() != NULL, "must be LIR_Op2");
1125        LIR_Op2* op2 = (LIR_Op2*)op;
1126        if (op2->in_opr1() != op2->in_opr2() && op2->in_opr2() == opr) {
1127          assert((op2->result_opr()->is_register() || op->code() == lir_cmp) && op2->in_opr1()->is_register(), "cannot mark second operand as stack if others are not in register");
1128          return shouldHaveRegister;
1129        }
1130      }
1131    }
1132  }
1133#endif // X86
1134
1135  // all other operands require a register
1136  return mustHaveRegister;
1137}
1138
1139
1140void LinearScan::handle_method_arguments(LIR_Op* op) {
1141  // special handling for method arguments (moves from stack to virtual register):
1142  // the interval gets no register assigned, but the stack slot.
1143  // it is split before the first use by the register allocator.
1144
1145  if (op->code() == lir_move) {
1146    assert(op->as_Op1() != NULL, "must be LIR_Op1");
1147    LIR_Op1* move = (LIR_Op1*)op;
1148
1149    if (move->in_opr()->is_stack()) {
1150#ifdef ASSERT
1151      int arg_size = compilation()->method()->arg_size();
1152      LIR_Opr o = move->in_opr();
1153      if (o->is_single_stack()) {
1154        assert(o->single_stack_ix() >= 0 && o->single_stack_ix() < arg_size, "out of range");
1155      } else if (o->is_double_stack()) {
1156        assert(o->double_stack_ix() >= 0 && o->double_stack_ix() < arg_size, "out of range");
1157      } else {
1158        ShouldNotReachHere();
1159      }
1160
1161      assert(move->id() > 0, "invalid id");
1162      assert(block_of_op_with_id(move->id())->number_of_preds() == 0, "move from stack must be in first block");
1163      assert(move->result_opr()->is_virtual(), "result of move must be a virtual register");
1164
1165      TRACE_LINEAR_SCAN(4, tty->print_cr("found move from stack slot %d to vreg %d", o->is_single_stack() ? o->single_stack_ix() : o->double_stack_ix(), reg_num(move->result_opr())));
1166#endif
1167
1168      Interval* interval = interval_at(reg_num(move->result_opr()));
1169
1170      int stack_slot = LinearScan::nof_regs + (move->in_opr()->is_single_stack() ? move->in_opr()->single_stack_ix() : move->in_opr()->double_stack_ix());
1171      interval->set_canonical_spill_slot(stack_slot);
1172      interval->assign_reg(stack_slot);
1173    }
1174  }
1175}
1176
1177void LinearScan::handle_doubleword_moves(LIR_Op* op) {
1178  // special handling for doubleword move from memory to register:
1179  // in this case the registers of the input address and the result
1180  // registers must not overlap -> add a temp range for the input registers
1181  if (op->code() == lir_move) {
1182    assert(op->as_Op1() != NULL, "must be LIR_Op1");
1183    LIR_Op1* move = (LIR_Op1*)op;
1184
1185    if (move->result_opr()->is_double_cpu() && move->in_opr()->is_pointer()) {
1186      LIR_Address* address = move->in_opr()->as_address_ptr();
1187      if (address != NULL) {
1188        if (address->base()->is_valid()) {
1189          add_temp(address->base(), op->id(), noUse);
1190        }
1191        if (address->index()->is_valid()) {
1192          add_temp(address->index(), op->id(), noUse);
1193        }
1194      }
1195    }
1196  }
1197}
1198
1199void LinearScan::add_register_hints(LIR_Op* op) {
1200  switch (op->code()) {
1201    case lir_move:      // fall through
1202    case lir_convert: {
1203      assert(op->as_Op1() != NULL, "lir_move, lir_convert must be LIR_Op1");
1204      LIR_Op1* move = (LIR_Op1*)op;
1205
1206      LIR_Opr move_from = move->in_opr();
1207      LIR_Opr move_to = move->result_opr();
1208
1209      if (move_to->is_register() && move_from->is_register()) {
1210        Interval* from = interval_at(reg_num(move_from));
1211        Interval* to = interval_at(reg_num(move_to));
1212        if (from != NULL && to != NULL) {
1213          to->set_register_hint(from);
1214          TRACE_LINEAR_SCAN(4, tty->print_cr("operation at op_id %d: added hint from interval %d to %d", move->id(), from->reg_num(), to->reg_num()));
1215        }
1216      }
1217      break;
1218    }
1219    case lir_cmove: {
1220      assert(op->as_Op2() != NULL, "lir_cmove must be LIR_Op2");
1221      LIR_Op2* cmove = (LIR_Op2*)op;
1222
1223      LIR_Opr move_from = cmove->in_opr1();
1224      LIR_Opr move_to = cmove->result_opr();
1225
1226      if (move_to->is_register() && move_from->is_register()) {
1227        Interval* from = interval_at(reg_num(move_from));
1228        Interval* to = interval_at(reg_num(move_to));
1229        if (from != NULL && to != NULL) {
1230          to->set_register_hint(from);
1231          TRACE_LINEAR_SCAN(4, tty->print_cr("operation at op_id %d: added hint from interval %d to %d", cmove->id(), from->reg_num(), to->reg_num()));
1232        }
1233      }
1234      break;
1235    }
1236  }
1237}
1238
1239
1240void LinearScan::build_intervals() {
1241  TIME_LINEAR_SCAN(timer_build_intervals);
1242
1243  // initialize interval list with expected number of intervals
1244  // (32 is added to have some space for split children without having to resize the list)
1245  _intervals = IntervalList(num_virtual_regs() + 32);
1246  // initialize all slots that are used by build_intervals
1247  _intervals.at_put_grow(num_virtual_regs() - 1, NULL, NULL);
1248
1249  // create a list with all caller-save registers (cpu, fpu, xmm)
1250  // when an instruction is a call, a temp range is created for all these registers
1251  int num_caller_save_registers = 0;
1252  int caller_save_registers[LinearScan::nof_regs];
1253
1254  int i;
1255  for (i = 0; i < FrameMap::nof_caller_save_cpu_regs; i++) {
1256    LIR_Opr opr = FrameMap::caller_save_cpu_reg_at(i);
1257    assert(opr->is_valid() && opr->is_register(), "FrameMap should not return invalid operands");
1258    assert(reg_numHi(opr) == -1, "missing addition of range for hi-register");
1259    caller_save_registers[num_caller_save_registers++] = reg_num(opr);
1260  }
1261
1262  // temp ranges for fpu registers are only created when the method has
1263  // virtual fpu operands. Otherwise no allocation for fpu registers is
1264  // perfomed and so the temp ranges would be useless
1265  if (has_fpu_registers()) {
1266#ifdef X86
1267    if (UseSSE < 2) {
1268#endif
1269      for (i = 0; i < FrameMap::nof_caller_save_fpu_regs; i++) {
1270        LIR_Opr opr = FrameMap::caller_save_fpu_reg_at(i);
1271        assert(opr->is_valid() && opr->is_register(), "FrameMap should not return invalid operands");
1272        assert(reg_numHi(opr) == -1, "missing addition of range for hi-register");
1273        caller_save_registers[num_caller_save_registers++] = reg_num(opr);
1274      }
1275#ifdef X86
1276    }
1277    if (UseSSE > 0) {
1278      for (i = 0; i < FrameMap::nof_caller_save_xmm_regs; i++) {
1279        LIR_Opr opr = FrameMap::caller_save_xmm_reg_at(i);
1280        assert(opr->is_valid() && opr->is_register(), "FrameMap should not return invalid operands");
1281        assert(reg_numHi(opr) == -1, "missing addition of range for hi-register");
1282        caller_save_registers[num_caller_save_registers++] = reg_num(opr);
1283      }
1284    }
1285#endif
1286  }
1287  assert(num_caller_save_registers <= LinearScan::nof_regs, "out of bounds");
1288
1289
1290  LIR_OpVisitState visitor;
1291
1292  // iterate all blocks in reverse order
1293  for (i = block_count() - 1; i >= 0; i--) {
1294    BlockBegin* block = block_at(i);
1295    LIR_OpList* instructions = block->lir()->instructions_list();
1296    int         block_from =   block->first_lir_instruction_id();
1297    int         block_to =     block->last_lir_instruction_id();
1298
1299    assert(block_from == instructions->at(0)->id(), "must be");
1300    assert(block_to   == instructions->at(instructions->length() - 1)->id(), "must be");
1301
1302    // Update intervals for registers live at the end of this block;
1303    BitMap live = block->live_out();
1304    int size = (int)live.size();
1305    for (int number = (int)live.get_next_one_offset(0, size); number < size; number = (int)live.get_next_one_offset(number + 1, size)) {
1306      assert(live.at(number), "should not stop here otherwise");
1307      assert(number >= LIR_OprDesc::vreg_base, "fixed intervals must not be live on block bounds");
1308      TRACE_LINEAR_SCAN(2, tty->print_cr("live in %d to %d", number, block_to + 2));
1309
1310      add_use(number, block_from, block_to + 2, noUse, T_ILLEGAL);
1311
1312      // add special use positions for loop-end blocks when the
1313      // interval is used anywhere inside this loop.  It's possible
1314      // that the block was part of a non-natural loop, so it might
1315      // have an invalid loop index.
1316      if (block->is_set(BlockBegin::linear_scan_loop_end_flag) &&
1317          block->loop_index() != -1 &&
1318          is_interval_in_loop(number, block->loop_index())) {
1319        interval_at(number)->add_use_pos(block_to + 1, loopEndMarker);
1320      }
1321    }
1322
1323    // iterate all instructions of the block in reverse order.
1324    // skip the first instruction because it is always a label
1325    // definitions of intervals are processed before uses
1326    assert(visitor.no_operands(instructions->at(0)), "first operation must always be a label");
1327    for (int j = instructions->length() - 1; j >= 1; j--) {
1328      LIR_Op* op = instructions->at(j);
1329      int op_id = op->id();
1330
1331      // visit operation to collect all operands
1332      visitor.visit(op);
1333
1334      // add a temp range for each register if operation destroys caller-save registers
1335      if (visitor.has_call()) {
1336        for (int k = 0; k < num_caller_save_registers; k++) {
1337          add_temp(caller_save_registers[k], op_id, noUse, T_ILLEGAL);
1338        }
1339        TRACE_LINEAR_SCAN(4, tty->print_cr("operation destroys all caller-save registers"));
1340      }
1341
1342      // Add any platform dependent temps
1343      pd_add_temps(op);
1344
1345      // visit definitions (output and temp operands)
1346      int k, n;
1347      n = visitor.opr_count(LIR_OpVisitState::outputMode);
1348      for (k = 0; k < n; k++) {
1349        LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::outputMode, k);
1350        assert(opr->is_register(), "visitor should only return register operands");
1351        add_def(opr, op_id, use_kind_of_output_operand(op, opr));
1352      }
1353
1354      n = visitor.opr_count(LIR_OpVisitState::tempMode);
1355      for (k = 0; k < n; k++) {
1356        LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::tempMode, k);
1357        assert(opr->is_register(), "visitor should only return register operands");
1358        add_temp(opr, op_id, mustHaveRegister);
1359      }
1360
1361      // visit uses (input operands)
1362      n = visitor.opr_count(LIR_OpVisitState::inputMode);
1363      for (k = 0; k < n; k++) {
1364        LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::inputMode, k);
1365        assert(opr->is_register(), "visitor should only return register operands");
1366        add_use(opr, block_from, op_id, use_kind_of_input_operand(op, opr));
1367      }
1368
1369      // Add uses of live locals from interpreter's point of view for proper
1370      // debug information generation
1371      // Treat these operands as temp values (if the life range is extended
1372      // to a call site, the value would be in a register at the call otherwise)
1373      n = visitor.info_count();
1374      for (k = 0; k < n; k++) {
1375        CodeEmitInfo* info = visitor.info_at(k);
1376        ValueStack* stack = info->stack();
1377        for_each_state_value(stack, value,
1378          add_use(value, block_from, op_id + 1, noUse);
1379        );
1380      }
1381
1382      // special steps for some instructions (especially moves)
1383      handle_method_arguments(op);
1384      handle_doubleword_moves(op);
1385      add_register_hints(op);
1386
1387    } // end of instruction iteration
1388  } // end of block iteration
1389
1390
1391  // add the range [0, 1[ to all fixed intervals
1392  // -> the register allocator need not handle unhandled fixed intervals
1393  for (int n = 0; n < LinearScan::nof_regs; n++) {
1394    Interval* interval = interval_at(n);
1395    if (interval != NULL) {
1396      interval->add_range(0, 1);
1397    }
1398  }
1399}
1400
1401
1402// ********** Phase 5: actual register allocation
1403
1404int LinearScan::interval_cmp(Interval** a, Interval** b) {
1405  if (*a != NULL) {
1406    if (*b != NULL) {
1407      return (*a)->from() - (*b)->from();
1408    } else {
1409      return -1;
1410    }
1411  } else {
1412    if (*b != NULL) {
1413      return 1;
1414    } else {
1415      return 0;
1416    }
1417  }
1418}
1419
1420#ifndef PRODUCT
1421bool LinearScan::is_sorted(IntervalArray* intervals) {
1422  int from = -1;
1423  int i, j;
1424  for (i = 0; i < intervals->length(); i ++) {
1425    Interval* it = intervals->at(i);
1426    if (it != NULL) {
1427      if (from > it->from()) {
1428        assert(false, "");
1429        return false;
1430      }
1431      from = it->from();
1432    }
1433  }
1434
1435  // check in both directions if sorted list and unsorted list contain same intervals
1436  for (i = 0; i < interval_count(); i++) {
1437    if (interval_at(i) != NULL) {
1438      int num_found = 0;
1439      for (j = 0; j < intervals->length(); j++) {
1440        if (interval_at(i) == intervals->at(j)) {
1441          num_found++;
1442        }
1443      }
1444      assert(num_found == 1, "lists do not contain same intervals");
1445    }
1446  }
1447  for (j = 0; j < intervals->length(); j++) {
1448    int num_found = 0;
1449    for (i = 0; i < interval_count(); i++) {
1450      if (interval_at(i) == intervals->at(j)) {
1451        num_found++;
1452      }
1453    }
1454    assert(num_found == 1, "lists do not contain same intervals");
1455  }
1456
1457  return true;
1458}
1459#endif
1460
1461void LinearScan::add_to_list(Interval** first, Interval** prev, Interval* interval) {
1462  if (*prev != NULL) {
1463    (*prev)->set_next(interval);
1464  } else {
1465    *first = interval;
1466  }
1467  *prev = interval;
1468}
1469
1470void LinearScan::create_unhandled_lists(Interval** list1, Interval** list2, bool (is_list1)(const Interval* i), bool (is_list2)(const Interval* i)) {
1471  assert(is_sorted(_sorted_intervals), "interval list is not sorted");
1472
1473  *list1 = *list2 = Interval::end();
1474
1475  Interval* list1_prev = NULL;
1476  Interval* list2_prev = NULL;
1477  Interval* v;
1478
1479  const int n = _sorted_intervals->length();
1480  for (int i = 0; i < n; i++) {
1481    v = _sorted_intervals->at(i);
1482    if (v == NULL) continue;
1483
1484    if (is_list1(v)) {
1485      add_to_list(list1, &list1_prev, v);
1486    } else if (is_list2 == NULL || is_list2(v)) {
1487      add_to_list(list2, &list2_prev, v);
1488    }
1489  }
1490
1491  if (list1_prev != NULL) list1_prev->set_next(Interval::end());
1492  if (list2_prev != NULL) list2_prev->set_next(Interval::end());
1493
1494  assert(list1_prev == NULL || list1_prev->next() == Interval::end(), "linear list ends not with sentinel");
1495  assert(list2_prev == NULL || list2_prev->next() == Interval::end(), "linear list ends not with sentinel");
1496}
1497
1498
1499void LinearScan::sort_intervals_before_allocation() {
1500  TIME_LINEAR_SCAN(timer_sort_intervals_before);
1501
1502  IntervalList* unsorted_list = &_intervals;
1503  int unsorted_len = unsorted_list->length();
1504  int sorted_len = 0;
1505  int unsorted_idx;
1506  int sorted_idx = 0;
1507  int sorted_from_max = -1;
1508
1509  // calc number of items for sorted list (sorted list must not contain NULL values)
1510  for (unsorted_idx = 0; unsorted_idx < unsorted_len; unsorted_idx++) {
1511    if (unsorted_list->at(unsorted_idx) != NULL) {
1512      sorted_len++;
1513    }
1514  }
1515  IntervalArray* sorted_list = new IntervalArray(sorted_len);
1516
1517  // special sorting algorithm: the original interval-list is almost sorted,
1518  // only some intervals are swapped. So this is much faster than a complete QuickSort
1519  for (unsorted_idx = 0; unsorted_idx < unsorted_len; unsorted_idx++) {
1520    Interval* cur_interval = unsorted_list->at(unsorted_idx);
1521
1522    if (cur_interval != NULL) {
1523      int cur_from = cur_interval->from();
1524
1525      if (sorted_from_max <= cur_from) {
1526        sorted_list->at_put(sorted_idx++, cur_interval);
1527        sorted_from_max = cur_interval->from();
1528      } else {
1529        // the asumption that the intervals are already sorted failed,
1530        // so this interval must be sorted in manually
1531        int j;
1532        for (j = sorted_idx - 1; j >= 0 && cur_from < sorted_list->at(j)->from(); j--) {
1533          sorted_list->at_put(j + 1, sorted_list->at(j));
1534        }
1535        sorted_list->at_put(j + 1, cur_interval);
1536        sorted_idx++;
1537      }
1538    }
1539  }
1540  _sorted_intervals = sorted_list;
1541}
1542
1543void LinearScan::sort_intervals_after_allocation() {
1544  TIME_LINEAR_SCAN(timer_sort_intervals_after);
1545
1546  IntervalArray* old_list      = _sorted_intervals;
1547  IntervalList*  new_list      = _new_intervals_from_allocation;
1548  int old_len = old_list->length();
1549  int new_len = new_list->length();
1550
1551  if (new_len == 0) {
1552    // no intervals have been added during allocation, so sorted list is already up to date
1553    return;
1554  }
1555
1556  // conventional sort-algorithm for new intervals
1557  new_list->sort(interval_cmp);
1558
1559  // merge old and new list (both already sorted) into one combined list
1560  IntervalArray* combined_list = new IntervalArray(old_len + new_len);
1561  int old_idx = 0;
1562  int new_idx = 0;
1563
1564  while (old_idx + new_idx < old_len + new_len) {
1565    if (new_idx >= new_len || (old_idx < old_len && old_list->at(old_idx)->from() <= new_list->at(new_idx)->from())) {
1566      combined_list->at_put(old_idx + new_idx, old_list->at(old_idx));
1567      old_idx++;
1568    } else {
1569      combined_list->at_put(old_idx + new_idx, new_list->at(new_idx));
1570      new_idx++;
1571    }
1572  }
1573
1574  _sorted_intervals = combined_list;
1575}
1576
1577
1578void LinearScan::allocate_registers() {
1579  TIME_LINEAR_SCAN(timer_allocate_registers);
1580
1581  Interval* precolored_cpu_intervals, *not_precolored_cpu_intervals;
1582  Interval* precolored_fpu_intervals, *not_precolored_fpu_intervals;
1583
1584  create_unhandled_lists(&precolored_cpu_intervals, &not_precolored_cpu_intervals, is_precolored_cpu_interval, is_virtual_cpu_interval);
1585  if (has_fpu_registers()) {
1586    create_unhandled_lists(&precolored_fpu_intervals, &not_precolored_fpu_intervals, is_precolored_fpu_interval, is_virtual_fpu_interval);
1587#ifdef ASSERT
1588  } else {
1589    // fpu register allocation is omitted because no virtual fpu registers are present
1590    // just check this again...
1591    create_unhandled_lists(&precolored_fpu_intervals, &not_precolored_fpu_intervals, is_precolored_fpu_interval, is_virtual_fpu_interval);
1592    assert(not_precolored_fpu_intervals == Interval::end(), "missed an uncolored fpu interval");
1593#endif
1594  }
1595
1596  // allocate cpu registers
1597  LinearScanWalker cpu_lsw(this, precolored_cpu_intervals, not_precolored_cpu_intervals);
1598  cpu_lsw.walk();
1599  cpu_lsw.finish_allocation();
1600
1601  if (has_fpu_registers()) {
1602    // allocate fpu registers
1603    LinearScanWalker fpu_lsw(this, precolored_fpu_intervals, not_precolored_fpu_intervals);
1604    fpu_lsw.walk();
1605    fpu_lsw.finish_allocation();
1606  }
1607}
1608
1609
1610// ********** Phase 6: resolve data flow
1611// (insert moves at edges between blocks if intervals have been split)
1612
1613// wrapper for Interval::split_child_at_op_id that performs a bailout in product mode
1614// instead of returning NULL
1615Interval* LinearScan::split_child_at_op_id(Interval* interval, int op_id, LIR_OpVisitState::OprMode mode) {
1616  Interval* result = interval->split_child_at_op_id(op_id, mode);
1617  if (result != NULL) {
1618    return result;
1619  }
1620
1621  assert(false, "must find an interval, but do a clean bailout in product mode");
1622  result = new Interval(LIR_OprDesc::vreg_base);
1623  result->assign_reg(0);
1624  result->set_type(T_INT);
1625  BAILOUT_("LinearScan: interval is NULL", result);
1626}
1627
1628
1629Interval* LinearScan::interval_at_block_begin(BlockBegin* block, int reg_num) {
1630  assert(LinearScan::nof_regs <= reg_num && reg_num < num_virtual_regs(), "register number out of bounds");
1631  assert(interval_at(reg_num) != NULL, "no interval found");
1632
1633  return split_child_at_op_id(interval_at(reg_num), block->first_lir_instruction_id(), LIR_OpVisitState::outputMode);
1634}
1635
1636Interval* LinearScan::interval_at_block_end(BlockBegin* block, int reg_num) {
1637  assert(LinearScan::nof_regs <= reg_num && reg_num < num_virtual_regs(), "register number out of bounds");
1638  assert(interval_at(reg_num) != NULL, "no interval found");
1639
1640  return split_child_at_op_id(interval_at(reg_num), block->last_lir_instruction_id() + 1, LIR_OpVisitState::outputMode);
1641}
1642
1643Interval* LinearScan::interval_at_op_id(int reg_num, int op_id) {
1644  assert(LinearScan::nof_regs <= reg_num && reg_num < num_virtual_regs(), "register number out of bounds");
1645  assert(interval_at(reg_num) != NULL, "no interval found");
1646
1647  return split_child_at_op_id(interval_at(reg_num), op_id, LIR_OpVisitState::inputMode);
1648}
1649
1650
1651void LinearScan::resolve_collect_mappings(BlockBegin* from_block, BlockBegin* to_block, MoveResolver &move_resolver) {
1652  DEBUG_ONLY(move_resolver.check_empty());
1653
1654  const int num_regs = num_virtual_regs();
1655  const int size = live_set_size();
1656  const BitMap live_at_edge = to_block->live_in();
1657
1658  // visit all registers where the live_at_edge bit is set
1659  for (int r = (int)live_at_edge.get_next_one_offset(0, size); r < size; r = (int)live_at_edge.get_next_one_offset(r + 1, size)) {
1660    assert(r < num_regs, "live information set for not exisiting interval");
1661    assert(from_block->live_out().at(r) && to_block->live_in().at(r), "interval not live at this edge");
1662
1663    Interval* from_interval = interval_at_block_end(from_block, r);
1664    Interval* to_interval = interval_at_block_begin(to_block, r);
1665
1666    if (from_interval != to_interval && (from_interval->assigned_reg() != to_interval->assigned_reg() || from_interval->assigned_regHi() != to_interval->assigned_regHi())) {
1667      // need to insert move instruction
1668      move_resolver.add_mapping(from_interval, to_interval);
1669    }
1670  }
1671}
1672
1673
1674void LinearScan::resolve_find_insert_pos(BlockBegin* from_block, BlockBegin* to_block, MoveResolver &move_resolver) {
1675  if (from_block->number_of_sux() <= 1) {
1676    TRACE_LINEAR_SCAN(4, tty->print_cr("inserting moves at end of from_block B%d", from_block->block_id()));
1677
1678    LIR_OpList* instructions = from_block->lir()->instructions_list();
1679    LIR_OpBranch* branch = instructions->last()->as_OpBranch();
1680    if (branch != NULL) {
1681      // insert moves before branch
1682      assert(branch->cond() == lir_cond_always, "block does not end with an unconditional jump");
1683      move_resolver.set_insert_position(from_block->lir(), instructions->length() - 2);
1684    } else {
1685      move_resolver.set_insert_position(from_block->lir(), instructions->length() - 1);
1686    }
1687
1688  } else {
1689    TRACE_LINEAR_SCAN(4, tty->print_cr("inserting moves at beginning of to_block B%d", to_block->block_id()));
1690#ifdef ASSERT
1691    assert(from_block->lir()->instructions_list()->at(0)->as_OpLabel() != NULL, "block does not start with a label");
1692
1693    // because the number of predecessor edges matches the number of
1694    // successor edges, blocks which are reached by switch statements
1695    // may have be more than one predecessor but it will be guaranteed
1696    // that all predecessors will be the same.
1697    for (int i = 0; i < to_block->number_of_preds(); i++) {
1698      assert(from_block == to_block->pred_at(i), "all critical edges must be broken");
1699    }
1700#endif
1701
1702    move_resolver.set_insert_position(to_block->lir(), 0);
1703  }
1704}
1705
1706
1707// insert necessary moves (spilling or reloading) at edges between blocks if interval has been split
1708void LinearScan::resolve_data_flow() {
1709  TIME_LINEAR_SCAN(timer_resolve_data_flow);
1710
1711  int num_blocks = block_count();
1712  MoveResolver move_resolver(this);
1713  BitMap block_completed(num_blocks);  block_completed.clear();
1714  BitMap already_resolved(num_blocks); already_resolved.clear();
1715
1716  int i;
1717  for (i = 0; i < num_blocks; i++) {
1718    BlockBegin* block = block_at(i);
1719
1720    // check if block has only one predecessor and only one successor
1721    if (block->number_of_preds() == 1 && block->number_of_sux() == 1 && block->number_of_exception_handlers() == 0) {
1722      LIR_OpList* instructions = block->lir()->instructions_list();
1723      assert(instructions->at(0)->code() == lir_label, "block must start with label");
1724      assert(instructions->last()->code() == lir_branch, "block with successors must end with branch");
1725      assert(instructions->last()->as_OpBranch()->cond() == lir_cond_always, "block with successor must end with unconditional branch");
1726
1727      // check if block is empty (only label and branch)
1728      if (instructions->length() == 2) {
1729        BlockBegin* pred = block->pred_at(0);
1730        BlockBegin* sux = block->sux_at(0);
1731
1732        // prevent optimization of two consecutive blocks
1733        if (!block_completed.at(pred->linear_scan_number()) && !block_completed.at(sux->linear_scan_number())) {
1734          TRACE_LINEAR_SCAN(3, tty->print_cr("**** optimizing empty block B%d (pred: B%d, sux: B%d)", block->block_id(), pred->block_id(), sux->block_id()));
1735          block_completed.set_bit(block->linear_scan_number());
1736
1737          // directly resolve between pred and sux (without looking at the empty block between)
1738          resolve_collect_mappings(pred, sux, move_resolver);
1739          if (move_resolver.has_mappings()) {
1740            move_resolver.set_insert_position(block->lir(), 0);
1741            move_resolver.resolve_and_append_moves();
1742          }
1743        }
1744      }
1745    }
1746  }
1747
1748
1749  for (i = 0; i < num_blocks; i++) {
1750    if (!block_completed.at(i)) {
1751      BlockBegin* from_block = block_at(i);
1752      already_resolved.set_from(block_completed);
1753
1754      int num_sux = from_block->number_of_sux();
1755      for (int s = 0; s < num_sux; s++) {
1756        BlockBegin* to_block = from_block->sux_at(s);
1757
1758        // check for duplicate edges between the same blocks (can happen with switch blocks)
1759        if (!already_resolved.at(to_block->linear_scan_number())) {
1760          TRACE_LINEAR_SCAN(3, tty->print_cr("**** processing edge between B%d and B%d", from_block->block_id(), to_block->block_id()));
1761          already_resolved.set_bit(to_block->linear_scan_number());
1762
1763          // collect all intervals that have been split between from_block and to_block
1764          resolve_collect_mappings(from_block, to_block, move_resolver);
1765          if (move_resolver.has_mappings()) {
1766            resolve_find_insert_pos(from_block, to_block, move_resolver);
1767            move_resolver.resolve_and_append_moves();
1768          }
1769        }
1770      }
1771    }
1772  }
1773}
1774
1775
1776void LinearScan::resolve_exception_entry(BlockBegin* block, int reg_num, MoveResolver &move_resolver) {
1777  if (interval_at(reg_num) == NULL) {
1778    // if a phi function is never used, no interval is created -> ignore this
1779    return;
1780  }
1781
1782  Interval* interval = interval_at_block_begin(block, reg_num);
1783  int reg = interval->assigned_reg();
1784  int regHi = interval->assigned_regHi();
1785
1786  if ((reg < nof_regs && interval->always_in_memory()) ||
1787      (use_fpu_stack_allocation() && reg >= pd_first_fpu_reg && reg <= pd_last_fpu_reg)) {
1788    // the interval is split to get a short range that is located on the stack
1789    // in the following two cases:
1790    // * the interval started in memory (e.g. method parameter), but is currently in a register
1791    //   this is an optimization for exception handling that reduces the number of moves that
1792    //   are necessary for resolving the states when an exception uses this exception handler
1793    // * the interval would be on the fpu stack at the begin of the exception handler
1794    //   this is not allowed because of the complicated fpu stack handling on Intel
1795
1796    // range that will be spilled to memory
1797    int from_op_id = block->first_lir_instruction_id();
1798    int to_op_id = from_op_id + 1;  // short live range of length 1
1799    assert(interval->from() <= from_op_id && interval->to() >= to_op_id,
1800           "no split allowed between exception entry and first instruction");
1801
1802    if (interval->from() != from_op_id) {
1803      // the part before from_op_id is unchanged
1804      interval = interval->split(from_op_id);
1805      interval->assign_reg(reg, regHi);
1806      append_interval(interval);
1807    }
1808    assert(interval->from() == from_op_id, "must be true now");
1809
1810    Interval* spilled_part = interval;
1811    if (interval->to() != to_op_id) {
1812      // the part after to_op_id is unchanged
1813      spilled_part = interval->split_from_start(to_op_id);
1814      append_interval(spilled_part);
1815      move_resolver.add_mapping(spilled_part, interval);
1816    }
1817    assign_spill_slot(spilled_part);
1818
1819    assert(spilled_part->from() == from_op_id && spilled_part->to() == to_op_id, "just checking");
1820  }
1821}
1822
1823void LinearScan::resolve_exception_entry(BlockBegin* block, MoveResolver &move_resolver) {
1824  assert(block->is_set(BlockBegin::exception_entry_flag), "should not call otherwise");
1825  DEBUG_ONLY(move_resolver.check_empty());
1826
1827  // visit all registers where the live_in bit is set
1828  int size = live_set_size();
1829  for (int r = (int)block->live_in().get_next_one_offset(0, size); r < size; r = (int)block->live_in().get_next_one_offset(r + 1, size)) {
1830    resolve_exception_entry(block, r, move_resolver);
1831  }
1832
1833  // the live_in bits are not set for phi functions of the xhandler entry, so iterate them separately
1834  for_each_phi_fun(block, phi,
1835    resolve_exception_entry(block, phi->operand()->vreg_number(), move_resolver)
1836  );
1837
1838  if (move_resolver.has_mappings()) {
1839    // insert moves after first instruction
1840    move_resolver.set_insert_position(block->lir(), 1);
1841    move_resolver.resolve_and_append_moves();
1842  }
1843}
1844
1845
1846void LinearScan::resolve_exception_edge(XHandler* handler, int throwing_op_id, int reg_num, Phi* phi, MoveResolver &move_resolver) {
1847  if (interval_at(reg_num) == NULL) {
1848    // if a phi function is never used, no interval is created -> ignore this
1849    return;
1850  }
1851
1852  // the computation of to_interval is equal to resolve_collect_mappings,
1853  // but from_interval is more complicated because of phi functions
1854  BlockBegin* to_block = handler->entry_block();
1855  Interval* to_interval = interval_at_block_begin(to_block, reg_num);
1856
1857  if (phi != NULL) {
1858    // phi function of the exception entry block
1859    // no moves are created for this phi function in the LIR_Generator, so the
1860    // interval at the throwing instruction must be searched using the operands
1861    // of the phi function
1862    Value from_value = phi->operand_at(handler->phi_operand());
1863
1864    // with phi functions it can happen that the same from_value is used in
1865    // multiple mappings, so notify move-resolver that this is allowed
1866    move_resolver.set_multiple_reads_allowed();
1867
1868    Constant* con = from_value->as_Constant();
1869    if (con != NULL && !con->is_pinned()) {
1870      // unpinned constants may have no register, so add mapping from constant to interval
1871      move_resolver.add_mapping(LIR_OprFact::value_type(con->type()), to_interval);
1872    } else {
1873      // search split child at the throwing op_id
1874      Interval* from_interval = interval_at_op_id(from_value->operand()->vreg_number(), throwing_op_id);
1875      move_resolver.add_mapping(from_interval, to_interval);
1876    }
1877
1878  } else {
1879    // no phi function, so use reg_num also for from_interval
1880    // search split child at the throwing op_id
1881    Interval* from_interval = interval_at_op_id(reg_num, throwing_op_id);
1882    if (from_interval != to_interval) {
1883      // optimization to reduce number of moves: when to_interval is on stack and
1884      // the stack slot is known to be always correct, then no move is necessary
1885      if (!from_interval->always_in_memory() || from_interval->canonical_spill_slot() != to_interval->assigned_reg()) {
1886        move_resolver.add_mapping(from_interval, to_interval);
1887      }
1888    }
1889  }
1890}
1891
1892void LinearScan::resolve_exception_edge(XHandler* handler, int throwing_op_id, MoveResolver &move_resolver) {
1893  TRACE_LINEAR_SCAN(4, tty->print_cr("resolving exception handler B%d: throwing_op_id=%d", handler->entry_block()->block_id(), throwing_op_id));
1894
1895  DEBUG_ONLY(move_resolver.check_empty());
1896  assert(handler->lir_op_id() == -1, "already processed this xhandler");
1897  DEBUG_ONLY(handler->set_lir_op_id(throwing_op_id));
1898  assert(handler->entry_code() == NULL, "code already present");
1899
1900  // visit all registers where the live_in bit is set
1901  BlockBegin* block = handler->entry_block();
1902  int size = live_set_size();
1903  for (int r = (int)block->live_in().get_next_one_offset(0, size); r < size; r = (int)block->live_in().get_next_one_offset(r + 1, size)) {
1904    resolve_exception_edge(handler, throwing_op_id, r, NULL, move_resolver);
1905  }
1906
1907  // the live_in bits are not set for phi functions of the xhandler entry, so iterate them separately
1908  for_each_phi_fun(block, phi,
1909    resolve_exception_edge(handler, throwing_op_id, phi->operand()->vreg_number(), phi, move_resolver)
1910  );
1911
1912  if (move_resolver.has_mappings()) {
1913    LIR_List* entry_code = new LIR_List(compilation());
1914    move_resolver.set_insert_position(entry_code, 0);
1915    move_resolver.resolve_and_append_moves();
1916
1917    entry_code->jump(handler->entry_block());
1918    handler->set_entry_code(entry_code);
1919  }
1920}
1921
1922
1923void LinearScan::resolve_exception_handlers() {
1924  MoveResolver move_resolver(this);
1925  LIR_OpVisitState visitor;
1926  int num_blocks = block_count();
1927
1928  int i;
1929  for (i = 0; i < num_blocks; i++) {
1930    BlockBegin* block = block_at(i);
1931    if (block->is_set(BlockBegin::exception_entry_flag)) {
1932      resolve_exception_entry(block, move_resolver);
1933    }
1934  }
1935
1936  for (i = 0; i < num_blocks; i++) {
1937    BlockBegin* block = block_at(i);
1938    LIR_List* ops = block->lir();
1939    int num_ops = ops->length();
1940
1941    // iterate all instructions of the block. skip the first because it is always a label
1942    assert(visitor.no_operands(ops->at(0)), "first operation must always be a label");
1943    for (int j = 1; j < num_ops; j++) {
1944      LIR_Op* op = ops->at(j);
1945      int op_id = op->id();
1946
1947      if (op_id != -1 && has_info(op_id)) {
1948        // visit operation to collect all operands
1949        visitor.visit(op);
1950        assert(visitor.info_count() > 0, "should not visit otherwise");
1951
1952        XHandlers* xhandlers = visitor.all_xhandler();
1953        int n = xhandlers->length();
1954        for (int k = 0; k < n; k++) {
1955          resolve_exception_edge(xhandlers->handler_at(k), op_id, move_resolver);
1956        }
1957
1958#ifdef ASSERT
1959      } else {
1960        visitor.visit(op);
1961        assert(visitor.all_xhandler()->length() == 0, "missed exception handler");
1962#endif
1963      }
1964    }
1965  }
1966}
1967
1968
1969// ********** Phase 7: assign register numbers back to LIR
1970// (includes computation of debug information and oop maps)
1971
1972VMReg LinearScan::vm_reg_for_interval(Interval* interval) {
1973  VMReg reg = interval->cached_vm_reg();
1974  if (!reg->is_valid() ) {
1975    reg = vm_reg_for_operand(operand_for_interval(interval));
1976    interval->set_cached_vm_reg(reg);
1977  }
1978  assert(reg == vm_reg_for_operand(operand_for_interval(interval)), "wrong cached value");
1979  return reg;
1980}
1981
1982VMReg LinearScan::vm_reg_for_operand(LIR_Opr opr) {
1983  assert(opr->is_oop(), "currently only implemented for oop operands");
1984  return frame_map()->regname(opr);
1985}
1986
1987
1988LIR_Opr LinearScan::operand_for_interval(Interval* interval) {
1989  LIR_Opr opr = interval->cached_opr();
1990  if (opr->is_illegal()) {
1991    opr = calc_operand_for_interval(interval);
1992    interval->set_cached_opr(opr);
1993  }
1994
1995  assert(opr == calc_operand_for_interval(interval), "wrong cached value");
1996  return opr;
1997}
1998
1999LIR_Opr LinearScan::calc_operand_for_interval(const Interval* interval) {
2000  int assigned_reg = interval->assigned_reg();
2001  BasicType type = interval->type();
2002
2003  if (assigned_reg >= nof_regs) {
2004    // stack slot
2005    assert(interval->assigned_regHi() == any_reg, "must not have hi register");
2006    return LIR_OprFact::stack(assigned_reg - nof_regs, type);
2007
2008  } else {
2009    // register
2010    switch (type) {
2011      case T_OBJECT: {
2012        assert(assigned_reg >= pd_first_cpu_reg && assigned_reg <= pd_last_cpu_reg, "no cpu register");
2013        assert(interval->assigned_regHi() == any_reg, "must not have hi register");
2014        return LIR_OprFact::single_cpu_oop(assigned_reg);
2015      }
2016
2017      case T_INT: {
2018        assert(assigned_reg >= pd_first_cpu_reg && assigned_reg <= pd_last_cpu_reg, "no cpu register");
2019        assert(interval->assigned_regHi() == any_reg, "must not have hi register");
2020        return LIR_OprFact::single_cpu(assigned_reg);
2021      }
2022
2023      case T_LONG: {
2024        int assigned_regHi = interval->assigned_regHi();
2025        assert(assigned_reg >= pd_first_cpu_reg && assigned_reg <= pd_last_cpu_reg, "no cpu register");
2026        assert(num_physical_regs(T_LONG) == 1 ||
2027               (assigned_regHi >= pd_first_cpu_reg && assigned_regHi <= pd_last_cpu_reg), "no cpu register");
2028
2029        assert(assigned_reg != assigned_regHi, "invalid allocation");
2030        assert(num_physical_regs(T_LONG) == 1 || assigned_reg < assigned_regHi,
2031               "register numbers must be sorted (ensure that e.g. a move from eax,ebx to ebx,eax can not occur)");
2032        assert((assigned_regHi != any_reg) ^ (num_physical_regs(T_LONG) == 1), "must be match");
2033        if (requires_adjacent_regs(T_LONG)) {
2034          assert(assigned_reg % 2 == 0 && assigned_reg + 1 == assigned_regHi, "must be sequential and even");
2035        }
2036
2037#ifdef _LP64
2038        return LIR_OprFact::double_cpu(assigned_reg, assigned_reg);
2039#else
2040#ifdef SPARC
2041        return LIR_OprFact::double_cpu(assigned_regHi, assigned_reg);
2042#else
2043        return LIR_OprFact::double_cpu(assigned_reg, assigned_regHi);
2044#endif // SPARC
2045#endif // LP64
2046      }
2047
2048      case T_FLOAT: {
2049#ifdef X86
2050        if (UseSSE >= 1) {
2051          assert(assigned_reg >= pd_first_xmm_reg && assigned_reg <= pd_last_xmm_reg, "no xmm register");
2052          assert(interval->assigned_regHi() == any_reg, "must not have hi register");
2053          return LIR_OprFact::single_xmm(assigned_reg - pd_first_xmm_reg);
2054        }
2055#endif
2056
2057        assert(assigned_reg >= pd_first_fpu_reg && assigned_reg <= pd_last_fpu_reg, "no fpu register");
2058        assert(interval->assigned_regHi() == any_reg, "must not have hi register");
2059        return LIR_OprFact::single_fpu(assigned_reg - pd_first_fpu_reg);
2060      }
2061
2062      case T_DOUBLE: {
2063#ifdef X86
2064        if (UseSSE >= 2) {
2065          assert(assigned_reg >= pd_first_xmm_reg && assigned_reg <= pd_last_xmm_reg, "no xmm register");
2066          assert(interval->assigned_regHi() == any_reg, "must not have hi register (double xmm values are stored in one register)");
2067          return LIR_OprFact::double_xmm(assigned_reg - pd_first_xmm_reg);
2068        }
2069#endif
2070
2071#ifdef SPARC
2072        assert(assigned_reg >= pd_first_fpu_reg && assigned_reg <= pd_last_fpu_reg, "no fpu register");
2073        assert(interval->assigned_regHi() >= pd_first_fpu_reg && interval->assigned_regHi() <= pd_last_fpu_reg, "no fpu register");
2074        assert(assigned_reg % 2 == 0 && assigned_reg + 1 == interval->assigned_regHi(), "must be sequential and even");
2075        LIR_Opr result = LIR_OprFact::double_fpu(interval->assigned_regHi() - pd_first_fpu_reg, assigned_reg - pd_first_fpu_reg);
2076#else
2077        assert(assigned_reg >= pd_first_fpu_reg && assigned_reg <= pd_last_fpu_reg, "no fpu register");
2078        assert(interval->assigned_regHi() == any_reg, "must not have hi register (double fpu values are stored in one register on Intel)");
2079        LIR_Opr result = LIR_OprFact::double_fpu(assigned_reg - pd_first_fpu_reg);
2080#endif
2081        return result;
2082      }
2083
2084      default: {
2085        ShouldNotReachHere();
2086        return LIR_OprFact::illegalOpr;
2087      }
2088    }
2089  }
2090}
2091
2092LIR_Opr LinearScan::canonical_spill_opr(Interval* interval) {
2093  assert(interval->canonical_spill_slot() >= nof_regs, "canonical spill slot not set");
2094  return LIR_OprFact::stack(interval->canonical_spill_slot() - nof_regs, interval->type());
2095}
2096
2097LIR_Opr LinearScan::color_lir_opr(LIR_Opr opr, int op_id, LIR_OpVisitState::OprMode mode) {
2098  assert(opr->is_virtual(), "should not call this otherwise");
2099
2100  Interval* interval = interval_at(opr->vreg_number());
2101  assert(interval != NULL, "interval must exist");
2102
2103  if (op_id != -1) {
2104#ifdef ASSERT
2105    BlockBegin* block = block_of_op_with_id(op_id);
2106    if (block->number_of_sux() <= 1 && op_id == block->last_lir_instruction_id()) {
2107      // check if spill moves could have been appended at the end of this block, but
2108      // before the branch instruction. So the split child information for this branch would
2109      // be incorrect.
2110      LIR_OpBranch* branch = block->lir()->instructions_list()->last()->as_OpBranch();
2111      if (branch != NULL) {
2112        if (block->live_out().at(opr->vreg_number())) {
2113          assert(branch->cond() == lir_cond_always, "block does not end with an unconditional jump");
2114          assert(false, "can't get split child for the last branch of a block because the information would be incorrect (moves are inserted before the branch in resolve_data_flow)");
2115        }
2116      }
2117    }
2118#endif
2119
2120    // operands are not changed when an interval is split during allocation,
2121    // so search the right interval here
2122    interval = split_child_at_op_id(interval, op_id, mode);
2123  }
2124
2125  LIR_Opr res = operand_for_interval(interval);
2126
2127#ifdef X86
2128  // new semantic for is_last_use: not only set on definite end of interval,
2129  // but also before hole
2130  // This may still miss some cases (e.g. for dead values), but it is not necessary that the
2131  // last use information is completely correct
2132  // information is only needed for fpu stack allocation
2133  if (res->is_fpu_register()) {
2134    if (opr->is_last_use() || op_id == interval->to() || (op_id != -1 && interval->has_hole_between(op_id, op_id + 1))) {
2135      assert(op_id == -1 || !is_block_begin(op_id), "holes at begin of block may also result from control flow");
2136      res = res->make_last_use();
2137    }
2138  }
2139#endif
2140
2141  assert(!gen()->is_vreg_flag_set(opr->vreg_number(), LIRGenerator::callee_saved) || !FrameMap::is_caller_save_register(res), "bad allocation");
2142
2143  return res;
2144}
2145
2146
2147#ifdef ASSERT
2148// some methods used to check correctness of debug information
2149
2150void assert_no_register_values(GrowableArray<ScopeValue*>* values) {
2151  if (values == NULL) {
2152    return;
2153  }
2154
2155  for (int i = 0; i < values->length(); i++) {
2156    ScopeValue* value = values->at(i);
2157
2158    if (value->is_location()) {
2159      Location location = ((LocationValue*)value)->location();
2160      assert(location.where() == Location::on_stack, "value is in register");
2161    }
2162  }
2163}
2164
2165void assert_no_register_values(GrowableArray<MonitorValue*>* values) {
2166  if (values == NULL) {
2167    return;
2168  }
2169
2170  for (int i = 0; i < values->length(); i++) {
2171    MonitorValue* value = values->at(i);
2172
2173    if (value->owner()->is_location()) {
2174      Location location = ((LocationValue*)value->owner())->location();
2175      assert(location.where() == Location::on_stack, "owner is in register");
2176    }
2177    assert(value->basic_lock().where() == Location::on_stack, "basic_lock is in register");
2178  }
2179}
2180
2181void assert_equal(Location l1, Location l2) {
2182  assert(l1.where() == l2.where() && l1.type() == l2.type() && l1.offset() == l2.offset(), "");
2183}
2184
2185void assert_equal(ScopeValue* v1, ScopeValue* v2) {
2186  if (v1->is_location()) {
2187    assert(v2->is_location(), "");
2188    assert_equal(((LocationValue*)v1)->location(), ((LocationValue*)v2)->location());
2189  } else if (v1->is_constant_int()) {
2190    assert(v2->is_constant_int(), "");
2191    assert(((ConstantIntValue*)v1)->value() == ((ConstantIntValue*)v2)->value(), "");
2192  } else if (v1->is_constant_double()) {
2193    assert(v2->is_constant_double(), "");
2194    assert(((ConstantDoubleValue*)v1)->value() == ((ConstantDoubleValue*)v2)->value(), "");
2195  } else if (v1->is_constant_long()) {
2196    assert(v2->is_constant_long(), "");
2197    assert(((ConstantLongValue*)v1)->value() == ((ConstantLongValue*)v2)->value(), "");
2198  } else if (v1->is_constant_oop()) {
2199    assert(v2->is_constant_oop(), "");
2200    assert(((ConstantOopWriteValue*)v1)->value() == ((ConstantOopWriteValue*)v2)->value(), "");
2201  } else {
2202    ShouldNotReachHere();
2203  }
2204}
2205
2206void assert_equal(MonitorValue* m1, MonitorValue* m2) {
2207  assert_equal(m1->owner(), m2->owner());
2208  assert_equal(m1->basic_lock(), m2->basic_lock());
2209}
2210
2211void assert_equal(IRScopeDebugInfo* d1, IRScopeDebugInfo* d2) {
2212  assert(d1->scope() == d2->scope(), "not equal");
2213  assert(d1->bci() == d2->bci(), "not equal");
2214
2215  if (d1->locals() != NULL) {
2216    assert(d1->locals() != NULL && d2->locals() != NULL, "not equal");
2217    assert(d1->locals()->length() == d2->locals()->length(), "not equal");
2218    for (int i = 0; i < d1->locals()->length(); i++) {
2219      assert_equal(d1->locals()->at(i), d2->locals()->at(i));
2220    }
2221  } else {
2222    assert(d1->locals() == NULL && d2->locals() == NULL, "not equal");
2223  }
2224
2225  if (d1->expressions() != NULL) {
2226    assert(d1->expressions() != NULL && d2->expressions() != NULL, "not equal");
2227    assert(d1->expressions()->length() == d2->expressions()->length(), "not equal");
2228    for (int i = 0; i < d1->expressions()->length(); i++) {
2229      assert_equal(d1->expressions()->at(i), d2->expressions()->at(i));
2230    }
2231  } else {
2232    assert(d1->expressions() == NULL && d2->expressions() == NULL, "not equal");
2233  }
2234
2235  if (d1->monitors() != NULL) {
2236    assert(d1->monitors() != NULL && d2->monitors() != NULL, "not equal");
2237    assert(d1->monitors()->length() == d2->monitors()->length(), "not equal");
2238    for (int i = 0; i < d1->monitors()->length(); i++) {
2239      assert_equal(d1->monitors()->at(i), d2->monitors()->at(i));
2240    }
2241  } else {
2242    assert(d1->monitors() == NULL && d2->monitors() == NULL, "not equal");
2243  }
2244
2245  if (d1->caller() != NULL) {
2246    assert(d1->caller() != NULL && d2->caller() != NULL, "not equal");
2247    assert_equal(d1->caller(), d2->caller());
2248  } else {
2249    assert(d1->caller() == NULL && d2->caller() == NULL, "not equal");
2250  }
2251}
2252
2253void check_stack_depth(CodeEmitInfo* info, int stack_end) {
2254  if (info->bci() != SynchronizationEntryBCI && !info->scope()->method()->is_native()) {
2255    Bytecodes::Code code = info->scope()->method()->java_code_at_bci(info->bci());
2256    switch (code) {
2257      case Bytecodes::_ifnull    : // fall through
2258      case Bytecodes::_ifnonnull : // fall through
2259      case Bytecodes::_ifeq      : // fall through
2260      case Bytecodes::_ifne      : // fall through
2261      case Bytecodes::_iflt      : // fall through
2262      case Bytecodes::_ifge      : // fall through
2263      case Bytecodes::_ifgt      : // fall through
2264      case Bytecodes::_ifle      : // fall through
2265      case Bytecodes::_if_icmpeq : // fall through
2266      case Bytecodes::_if_icmpne : // fall through
2267      case Bytecodes::_if_icmplt : // fall through
2268      case Bytecodes::_if_icmpge : // fall through
2269      case Bytecodes::_if_icmpgt : // fall through
2270      case Bytecodes::_if_icmple : // fall through
2271      case Bytecodes::_if_acmpeq : // fall through
2272      case Bytecodes::_if_acmpne :
2273        assert(stack_end >= -Bytecodes::depth(code), "must have non-empty expression stack at if bytecode");
2274        break;
2275    }
2276  }
2277}
2278
2279#endif // ASSERT
2280
2281
2282IntervalWalker* LinearScan::init_compute_oop_maps() {
2283  // setup lists of potential oops for walking
2284  Interval* oop_intervals;
2285  Interval* non_oop_intervals;
2286
2287  create_unhandled_lists(&oop_intervals, &non_oop_intervals, is_oop_interval, NULL);
2288
2289  // intervals that have no oops inside need not to be processed
2290  // to ensure a walking until the last instruction id, add a dummy interval
2291  // with a high operation id
2292  non_oop_intervals = new Interval(any_reg);
2293  non_oop_intervals->add_range(max_jint - 2, max_jint - 1);
2294
2295  return new IntervalWalker(this, oop_intervals, non_oop_intervals);
2296}
2297
2298
2299OopMap* LinearScan::compute_oop_map(IntervalWalker* iw, LIR_Op* op, CodeEmitInfo* info, bool is_call_site) {
2300  TRACE_LINEAR_SCAN(3, tty->print_cr("creating oop map at op_id %d", op->id()));
2301
2302  // walk before the current operation -> intervals that start at
2303  // the operation (= output operands of the operation) are not
2304  // included in the oop map
2305  iw->walk_before(op->id());
2306
2307  int frame_size = frame_map()->framesize();
2308  int arg_count = frame_map()->oop_map_arg_count();
2309  OopMap* map = new OopMap(frame_size, arg_count);
2310
2311  // Check if this is a patch site.
2312  bool is_patch_info = false;
2313  if (op->code() == lir_move) {
2314    assert(!is_call_site, "move must not be a call site");
2315    assert(op->as_Op1() != NULL, "move must be LIR_Op1");
2316    LIR_Op1* move = (LIR_Op1*)op;
2317
2318    is_patch_info = move->patch_code() != lir_patch_none;
2319  }
2320
2321  // Iterate through active intervals
2322  for (Interval* interval = iw->active_first(fixedKind); interval != Interval::end(); interval = interval->next()) {
2323    int assigned_reg = interval->assigned_reg();
2324
2325    assert(interval->current_from() <= op->id() && op->id() <= interval->current_to(), "interval should not be active otherwise");
2326    assert(interval->assigned_regHi() == any_reg, "oop must be single word");
2327    assert(interval->reg_num() >= LIR_OprDesc::vreg_base, "fixed interval found");
2328
2329    // Check if this range covers the instruction. Intervals that
2330    // start or end at the current operation are not included in the
2331    // oop map, except in the case of patching moves.  For patching
2332    // moves, any intervals which end at this instruction are included
2333    // in the oop map since we may safepoint while doing the patch
2334    // before we've consumed the inputs.
2335    if (is_patch_info || op->id() < interval->current_to()) {
2336
2337      // caller-save registers must not be included into oop-maps at calls
2338      assert(!is_call_site || assigned_reg >= nof_regs || !is_caller_save(assigned_reg), "interval is in a caller-save register at a call -> register will be overwritten");
2339
2340      VMReg name = vm_reg_for_interval(interval);
2341      map->set_oop(name);
2342
2343      // Spill optimization: when the stack value is guaranteed to be always correct,
2344      // then it must be added to the oop map even if the interval is currently in a register
2345      if (interval->always_in_memory() &&
2346          op->id() > interval->spill_definition_pos() &&
2347          interval->assigned_reg() != interval->canonical_spill_slot()) {
2348        assert(interval->spill_definition_pos() > 0, "position not set correctly");
2349        assert(interval->canonical_spill_slot() >= LinearScan::nof_regs, "no spill slot assigned");
2350        assert(interval->assigned_reg() < LinearScan::nof_regs, "interval is on stack, so stack slot is registered twice");
2351
2352        map->set_oop(frame_map()->slot_regname(interval->canonical_spill_slot() - LinearScan::nof_regs));
2353      }
2354    }
2355  }
2356
2357  // add oops from lock stack
2358  assert(info->stack() != NULL, "CodeEmitInfo must always have a stack");
2359  int locks_count = info->stack()->locks_size();
2360  for (int i = 0; i < locks_count; i++) {
2361    map->set_oop(frame_map()->monitor_object_regname(i));
2362  }
2363
2364  return map;
2365}
2366
2367
2368void LinearScan::compute_oop_map(IntervalWalker* iw, const LIR_OpVisitState &visitor, LIR_Op* op) {
2369  assert(visitor.info_count() > 0, "no oop map needed");
2370
2371  // compute oop_map only for first CodeEmitInfo
2372  // because it is (in most cases) equal for all other infos of the same operation
2373  CodeEmitInfo* first_info = visitor.info_at(0);
2374  OopMap* first_oop_map = compute_oop_map(iw, op, first_info, visitor.has_call());
2375
2376  for (int i = 0; i < visitor.info_count(); i++) {
2377    CodeEmitInfo* info = visitor.info_at(i);
2378    OopMap* oop_map = first_oop_map;
2379
2380    if (info->stack()->locks_size() != first_info->stack()->locks_size()) {
2381      // this info has a different number of locks then the precomputed oop map
2382      // (possible for lock and unlock instructions) -> compute oop map with
2383      // correct lock information
2384      oop_map = compute_oop_map(iw, op, info, visitor.has_call());
2385    }
2386
2387    if (info->_oop_map == NULL) {
2388      info->_oop_map = oop_map;
2389    } else {
2390      // a CodeEmitInfo can not be shared between different LIR-instructions
2391      // because interval splitting can occur anywhere between two instructions
2392      // and so the oop maps must be different
2393      // -> check if the already set oop_map is exactly the one calculated for this operation
2394      assert(info->_oop_map == oop_map, "same CodeEmitInfo used for multiple LIR instructions");
2395    }
2396  }
2397}
2398
2399
2400// frequently used constants
2401ConstantOopWriteValue LinearScan::_oop_null_scope_value = ConstantOopWriteValue(NULL);
2402ConstantIntValue      LinearScan::_int_m1_scope_value = ConstantIntValue(-1);
2403ConstantIntValue      LinearScan::_int_0_scope_value =  ConstantIntValue(0);
2404ConstantIntValue      LinearScan::_int_1_scope_value =  ConstantIntValue(1);
2405ConstantIntValue      LinearScan::_int_2_scope_value =  ConstantIntValue(2);
2406LocationValue         _illegal_value = LocationValue(Location());
2407
2408void LinearScan::init_compute_debug_info() {
2409  // cache for frequently used scope values
2410  // (cpu registers and stack slots)
2411  _scope_value_cache = ScopeValueArray((LinearScan::nof_cpu_regs + frame_map()->argcount() + max_spills()) * 2, NULL);
2412}
2413
2414MonitorValue* LinearScan::location_for_monitor_index(int monitor_index) {
2415  Location loc;
2416  if (!frame_map()->location_for_monitor_object(monitor_index, &loc)) {
2417    bailout("too large frame");
2418  }
2419  ScopeValue* object_scope_value = new LocationValue(loc);
2420
2421  if (!frame_map()->location_for_monitor_lock(monitor_index, &loc)) {
2422    bailout("too large frame");
2423  }
2424  return new MonitorValue(object_scope_value, loc);
2425}
2426
2427LocationValue* LinearScan::location_for_name(int name, Location::Type loc_type) {
2428  Location loc;
2429  if (!frame_map()->locations_for_slot(name, loc_type, &loc)) {
2430    bailout("too large frame");
2431  }
2432  return new LocationValue(loc);
2433}
2434
2435
2436int LinearScan::append_scope_value_for_constant(LIR_Opr opr, GrowableArray<ScopeValue*>* scope_values) {
2437  assert(opr->is_constant(), "should not be called otherwise");
2438
2439  LIR_Const* c = opr->as_constant_ptr();
2440  BasicType t = c->type();
2441  switch (t) {
2442    case T_OBJECT: {
2443      jobject value = c->as_jobject();
2444      if (value == NULL) {
2445        scope_values->append(&_oop_null_scope_value);
2446      } else {
2447        scope_values->append(new ConstantOopWriteValue(c->as_jobject()));
2448      }
2449      return 1;
2450    }
2451
2452    case T_INT: // fall through
2453    case T_FLOAT: {
2454      int value = c->as_jint_bits();
2455      switch (value) {
2456        case -1: scope_values->append(&_int_m1_scope_value); break;
2457        case 0:  scope_values->append(&_int_0_scope_value); break;
2458        case 1:  scope_values->append(&_int_1_scope_value); break;
2459        case 2:  scope_values->append(&_int_2_scope_value); break;
2460        default: scope_values->append(new ConstantIntValue(c->as_jint_bits())); break;
2461      }
2462      return 1;
2463    }
2464
2465    case T_LONG: // fall through
2466    case T_DOUBLE: {
2467      if (hi_word_offset_in_bytes > lo_word_offset_in_bytes) {
2468        scope_values->append(new ConstantIntValue(c->as_jint_hi_bits()));
2469        scope_values->append(new ConstantIntValue(c->as_jint_lo_bits()));
2470      } else {
2471        scope_values->append(new ConstantIntValue(c->as_jint_lo_bits()));
2472        scope_values->append(new ConstantIntValue(c->as_jint_hi_bits()));
2473      }
2474
2475      return 2;
2476    }
2477
2478    default:
2479      ShouldNotReachHere();
2480      return -1;
2481  }
2482}
2483
2484int LinearScan::append_scope_value_for_operand(LIR_Opr opr, GrowableArray<ScopeValue*>* scope_values) {
2485  if (opr->is_single_stack()) {
2486    int stack_idx = opr->single_stack_ix();
2487    bool is_oop = opr->is_oop_register();
2488    int cache_idx = (stack_idx + LinearScan::nof_cpu_regs) * 2 + (is_oop ? 1 : 0);
2489
2490    ScopeValue* sv = _scope_value_cache.at(cache_idx);
2491    if (sv == NULL) {
2492      Location::Type loc_type = is_oop ? Location::oop : Location::normal;
2493      sv = location_for_name(stack_idx, loc_type);
2494      _scope_value_cache.at_put(cache_idx, sv);
2495    }
2496
2497    // check if cached value is correct
2498    DEBUG_ONLY(assert_equal(sv, location_for_name(stack_idx, is_oop ? Location::oop : Location::normal)));
2499
2500    scope_values->append(sv);
2501    return 1;
2502
2503  } else if (opr->is_single_cpu()) {
2504    bool is_oop = opr->is_oop_register();
2505    int cache_idx = opr->cpu_regnr() * 2 + (is_oop ? 1 : 0);
2506
2507    ScopeValue* sv = _scope_value_cache.at(cache_idx);
2508    if (sv == NULL) {
2509      Location::Type loc_type = is_oop ? Location::oop : Location::normal;
2510      VMReg rname = frame_map()->regname(opr);
2511      sv = new LocationValue(Location::new_reg_loc(loc_type, rname));
2512      _scope_value_cache.at_put(cache_idx, sv);
2513    }
2514
2515    // check if cached value is correct
2516    DEBUG_ONLY(assert_equal(sv, new LocationValue(Location::new_reg_loc(is_oop ? Location::oop : Location::normal, frame_map()->regname(opr)))));
2517
2518    scope_values->append(sv);
2519    return 1;
2520
2521#ifdef X86
2522  } else if (opr->is_single_xmm()) {
2523    VMReg rname = opr->as_xmm_float_reg()->as_VMReg();
2524    LocationValue* sv = new LocationValue(Location::new_reg_loc(Location::normal, rname));
2525
2526    scope_values->append(sv);
2527    return 1;
2528#endif
2529
2530  } else if (opr->is_single_fpu()) {
2531#ifdef X86
2532    // the exact location of fpu stack values is only known
2533    // during fpu stack allocation, so the stack allocator object
2534    // must be present
2535    assert(use_fpu_stack_allocation(), "should not have float stack values without fpu stack allocation (all floats must be SSE2)");
2536    assert(_fpu_stack_allocator != NULL, "must be present");
2537    opr = _fpu_stack_allocator->to_fpu_stack(opr);
2538#endif
2539
2540    Location::Type loc_type = float_saved_as_double ? Location::float_in_dbl : Location::normal;
2541    VMReg rname = frame_map()->fpu_regname(opr->fpu_regnr());
2542    LocationValue* sv = new LocationValue(Location::new_reg_loc(loc_type, rname));
2543
2544    scope_values->append(sv);
2545    return 1;
2546
2547  } else {
2548    // double-size operands
2549
2550    ScopeValue* first;
2551    ScopeValue* second;
2552
2553    if (opr->is_double_stack()) {
2554#ifdef _LP64
2555      Location loc1;
2556      Location::Type loc_type = opr->type() == T_LONG ? Location::lng : Location::dbl;
2557      if (!frame_map()->locations_for_slot(opr->double_stack_ix(), loc_type, &loc1, NULL)) {
2558        bailout("too large frame");
2559      }
2560      // Does this reverse on x86 vs. sparc?
2561      first =  new LocationValue(loc1);
2562      second = &_int_0_scope_value;
2563#else
2564      Location loc1, loc2;
2565      if (!frame_map()->locations_for_slot(opr->double_stack_ix(), Location::normal, &loc1, &loc2)) {
2566        bailout("too large frame");
2567      }
2568      first =  new LocationValue(loc1);
2569      second = new LocationValue(loc2);
2570#endif // _LP64
2571
2572    } else if (opr->is_double_cpu()) {
2573#ifdef _LP64
2574      VMReg rname_first = opr->as_register_lo()->as_VMReg();
2575      first = new LocationValue(Location::new_reg_loc(Location::lng, rname_first));
2576      second = &_int_0_scope_value;
2577#else
2578      VMReg rname_first = opr->as_register_lo()->as_VMReg();
2579      VMReg rname_second = opr->as_register_hi()->as_VMReg();
2580
2581      if (hi_word_offset_in_bytes < lo_word_offset_in_bytes) {
2582        // lo/hi and swapped relative to first and second, so swap them
2583        VMReg tmp = rname_first;
2584        rname_first = rname_second;
2585        rname_second = tmp;
2586      }
2587
2588      first = new LocationValue(Location::new_reg_loc(Location::normal, rname_first));
2589      second = new LocationValue(Location::new_reg_loc(Location::normal, rname_second));
2590#endif //_LP64
2591
2592
2593#ifdef X86
2594    } else if (opr->is_double_xmm()) {
2595      assert(opr->fpu_regnrLo() == opr->fpu_regnrHi(), "assumed in calculation");
2596      VMReg rname_first  = opr->as_xmm_double_reg()->as_VMReg();
2597      first = new LocationValue(Location::new_reg_loc(Location::normal, rname_first));
2598      // %%% This is probably a waste but we'll keep things as they were for now
2599      if (true) {
2600        VMReg rname_second = rname_first->next();
2601        second = new LocationValue(Location::new_reg_loc(Location::normal, rname_second));
2602      }
2603#endif
2604
2605    } else if (opr->is_double_fpu()) {
2606      // On SPARC, fpu_regnrLo/fpu_regnrHi represents the two halves of
2607      // the double as float registers in the native ordering. On X86,
2608      // fpu_regnrLo is a FPU stack slot whose VMReg represents
2609      // the low-order word of the double and fpu_regnrLo + 1 is the
2610      // name for the other half.  *first and *second must represent the
2611      // least and most significant words, respectively.
2612
2613#ifdef X86
2614      // the exact location of fpu stack values is only known
2615      // during fpu stack allocation, so the stack allocator object
2616      // must be present
2617      assert(use_fpu_stack_allocation(), "should not have float stack values without fpu stack allocation (all floats must be SSE2)");
2618      assert(_fpu_stack_allocator != NULL, "must be present");
2619      opr = _fpu_stack_allocator->to_fpu_stack(opr);
2620
2621      assert(opr->fpu_regnrLo() == opr->fpu_regnrHi(), "assumed in calculation (only fpu_regnrHi is used)");
2622#endif
2623#ifdef SPARC
2624      assert(opr->fpu_regnrLo() == opr->fpu_regnrHi() + 1, "assumed in calculation (only fpu_regnrHi is used)");
2625#endif
2626
2627      VMReg rname_first = frame_map()->fpu_regname(opr->fpu_regnrHi());
2628
2629      first = new LocationValue(Location::new_reg_loc(Location::normal, rname_first));
2630      // %%% This is probably a waste but we'll keep things as they were for now
2631      if (true) {
2632        VMReg rname_second = rname_first->next();
2633        second = new LocationValue(Location::new_reg_loc(Location::normal, rname_second));
2634      }
2635
2636    } else {
2637      ShouldNotReachHere();
2638      first = NULL;
2639      second = NULL;
2640    }
2641
2642    assert(first != NULL && second != NULL, "must be set");
2643    // The convention the interpreter uses is that the second local
2644    // holds the first raw word of the native double representation.
2645    // This is actually reasonable, since locals and stack arrays
2646    // grow downwards in all implementations.
2647    // (If, on some machine, the interpreter's Java locals or stack
2648    // were to grow upwards, the embedded doubles would be word-swapped.)
2649    scope_values->append(second);
2650    scope_values->append(first);
2651    return 2;
2652  }
2653}
2654
2655
2656int LinearScan::append_scope_value(int op_id, Value value, GrowableArray<ScopeValue*>* scope_values) {
2657  if (value != NULL) {
2658    LIR_Opr opr = value->operand();
2659    Constant* con = value->as_Constant();
2660
2661    assert(con == NULL || opr->is_virtual() || opr->is_constant() || opr->is_illegal(), "asumption: Constant instructions have only constant operands (or illegal if constant is optimized away)");
2662    assert(con != NULL || opr->is_virtual(), "asumption: non-Constant instructions have only virtual operands");
2663
2664    if (con != NULL && !con->is_pinned() && !opr->is_constant()) {
2665      // Unpinned constants may have a virtual operand for a part of the lifetime
2666      // or may be illegal when it was optimized away,
2667      // so always use a constant operand
2668      opr = LIR_OprFact::value_type(con->type());
2669    }
2670    assert(opr->is_virtual() || opr->is_constant(), "other cases not allowed here");
2671
2672    if (opr->is_virtual()) {
2673      LIR_OpVisitState::OprMode mode = LIR_OpVisitState::inputMode;
2674
2675      BlockBegin* block = block_of_op_with_id(op_id);
2676      if (block->number_of_sux() == 1 && op_id == block->last_lir_instruction_id()) {
2677        // generating debug information for the last instruction of a block.
2678        // if this instruction is a branch, spill moves are inserted before this branch
2679        // and so the wrong operand would be returned (spill moves at block boundaries are not
2680        // considered in the live ranges of intervals)
2681        // Solution: use the first op_id of the branch target block instead.
2682        if (block->lir()->instructions_list()->last()->as_OpBranch() != NULL) {
2683          if (block->live_out().at(opr->vreg_number())) {
2684            op_id = block->sux_at(0)->first_lir_instruction_id();
2685            mode = LIR_OpVisitState::outputMode;
2686          }
2687        }
2688      }
2689
2690      // Get current location of operand
2691      // The operand must be live because debug information is considered when building the intervals
2692      // if the interval is not live, color_lir_opr will cause an assertion failure
2693      opr = color_lir_opr(opr, op_id, mode);
2694      assert(!has_call(op_id) || opr->is_stack() || !is_caller_save(reg_num(opr)), "can not have caller-save register operands at calls");
2695
2696      // Append to ScopeValue array
2697      return append_scope_value_for_operand(opr, scope_values);
2698
2699    } else {
2700      assert(value->as_Constant() != NULL, "all other instructions have only virtual operands");
2701      assert(opr->is_constant(), "operand must be constant");
2702
2703      return append_scope_value_for_constant(opr, scope_values);
2704    }
2705  } else {
2706    // append a dummy value because real value not needed
2707    scope_values->append(&_illegal_value);
2708    return 1;
2709  }
2710}
2711
2712
2713IRScopeDebugInfo* LinearScan::compute_debug_info_for_scope(int op_id, IRScope* cur_scope, ValueStack* cur_state, ValueStack* innermost_state, int cur_bci, int stack_end, int locks_end) {
2714  IRScopeDebugInfo* caller_debug_info = NULL;
2715  int stack_begin, locks_begin;
2716
2717  ValueStack* caller_state = cur_scope->caller_state();
2718  if (caller_state != NULL) {
2719    // process recursively to compute outermost scope first
2720    stack_begin = caller_state->stack_size();
2721    locks_begin = caller_state->locks_size();
2722    caller_debug_info = compute_debug_info_for_scope(op_id, cur_scope->caller(), caller_state, innermost_state, cur_scope->caller_bci(), stack_begin, locks_begin);
2723  } else {
2724    stack_begin = 0;
2725    locks_begin = 0;
2726  }
2727
2728  // initialize these to null.
2729  // If we don't need deopt info or there are no locals, expressions or monitors,
2730  // then these get recorded as no information and avoids the allocation of 0 length arrays.
2731  GrowableArray<ScopeValue*>*   locals      = NULL;
2732  GrowableArray<ScopeValue*>*   expressions = NULL;
2733  GrowableArray<MonitorValue*>* monitors    = NULL;
2734
2735  // describe local variable values
2736  int nof_locals = cur_scope->method()->max_locals();
2737  if (nof_locals > 0) {
2738    locals = new GrowableArray<ScopeValue*>(nof_locals);
2739
2740    int pos = 0;
2741    while (pos < nof_locals) {
2742      assert(pos < cur_state->locals_size(), "why not?");
2743
2744      Value local = cur_state->local_at(pos);
2745      pos += append_scope_value(op_id, local, locals);
2746
2747      assert(locals->length() == pos, "must match");
2748    }
2749    assert(locals->length() == cur_scope->method()->max_locals(), "wrong number of locals");
2750    assert(locals->length() == cur_state->locals_size(), "wrong number of locals");
2751  }
2752
2753
2754  // describe expression stack
2755  //
2756  // When we inline methods containing exception handlers, the
2757  // "lock_stacks" are changed to preserve expression stack values
2758  // in caller scopes when exception handlers are present. This
2759  // can cause callee stacks to be smaller than caller stacks.
2760  if (stack_end > innermost_state->stack_size()) {
2761    stack_end = innermost_state->stack_size();
2762  }
2763
2764
2765
2766  int nof_stack = stack_end - stack_begin;
2767  if (nof_stack > 0) {
2768    expressions = new GrowableArray<ScopeValue*>(nof_stack);
2769
2770    int pos = stack_begin;
2771    while (pos < stack_end) {
2772      Value expression = innermost_state->stack_at_inc(pos);
2773      append_scope_value(op_id, expression, expressions);
2774
2775      assert(expressions->length() + stack_begin == pos, "must match");
2776    }
2777  }
2778
2779  // describe monitors
2780  assert(locks_begin <= locks_end, "error in scope iteration");
2781  int nof_locks = locks_end - locks_begin;
2782  if (nof_locks > 0) {
2783    monitors = new GrowableArray<MonitorValue*>(nof_locks);
2784    for (int i = locks_begin; i < locks_end; i++) {
2785      monitors->append(location_for_monitor_index(i));
2786    }
2787  }
2788
2789  return new IRScopeDebugInfo(cur_scope, cur_bci, locals, expressions, monitors, caller_debug_info);
2790}
2791
2792
2793void LinearScan::compute_debug_info(CodeEmitInfo* info, int op_id) {
2794  if (!compilation()->needs_debug_information()) {
2795    return;
2796  }
2797  TRACE_LINEAR_SCAN(3, tty->print_cr("creating debug information at op_id %d", op_id));
2798
2799  IRScope* innermost_scope = info->scope();
2800  ValueStack* innermost_state = info->stack();
2801
2802  assert(innermost_scope != NULL && innermost_state != NULL, "why is it missing?");
2803
2804  int stack_end = innermost_state->stack_size();
2805  int locks_end = innermost_state->locks_size();
2806
2807  DEBUG_ONLY(check_stack_depth(info, stack_end));
2808
2809  if (info->_scope_debug_info == NULL) {
2810    // compute debug information
2811    info->_scope_debug_info = compute_debug_info_for_scope(op_id, innermost_scope, innermost_state, innermost_state, info->bci(), stack_end, locks_end);
2812  } else {
2813    // debug information already set. Check that it is correct from the current point of view
2814    DEBUG_ONLY(assert_equal(info->_scope_debug_info, compute_debug_info_for_scope(op_id, innermost_scope, innermost_state, innermost_state, info->bci(), stack_end, locks_end)));
2815  }
2816}
2817
2818
2819void LinearScan::assign_reg_num(LIR_OpList* instructions, IntervalWalker* iw) {
2820  LIR_OpVisitState visitor;
2821  int num_inst = instructions->length();
2822  bool has_dead = false;
2823
2824  for (int j = 0; j < num_inst; j++) {
2825    LIR_Op* op = instructions->at(j);
2826    if (op == NULL) {  // this can happen when spill-moves are removed in eliminate_spill_moves
2827      has_dead = true;
2828      continue;
2829    }
2830    int op_id = op->id();
2831
2832    // visit instruction to get list of operands
2833    visitor.visit(op);
2834
2835    // iterate all modes of the visitor and process all virtual operands
2836    for_each_visitor_mode(mode) {
2837      int n = visitor.opr_count(mode);
2838      for (int k = 0; k < n; k++) {
2839        LIR_Opr opr = visitor.opr_at(mode, k);
2840        if (opr->is_virtual_register()) {
2841          visitor.set_opr_at(mode, k, color_lir_opr(opr, op_id, mode));
2842        }
2843      }
2844    }
2845
2846    if (visitor.info_count() > 0) {
2847      // exception handling
2848      if (compilation()->has_exception_handlers()) {
2849        XHandlers* xhandlers = visitor.all_xhandler();
2850        int n = xhandlers->length();
2851        for (int k = 0; k < n; k++) {
2852          XHandler* handler = xhandlers->handler_at(k);
2853          if (handler->entry_code() != NULL) {
2854            assign_reg_num(handler->entry_code()->instructions_list(), NULL);
2855          }
2856        }
2857      } else {
2858        assert(visitor.all_xhandler()->length() == 0, "missed exception handler");
2859      }
2860
2861      // compute oop map
2862      assert(iw != NULL, "needed for compute_oop_map");
2863      compute_oop_map(iw, visitor, op);
2864
2865      // compute debug information
2866      if (!use_fpu_stack_allocation()) {
2867        // compute debug information if fpu stack allocation is not needed.
2868        // when fpu stack allocation is needed, the debug information can not
2869        // be computed here because the exact location of fpu operands is not known
2870        // -> debug information is created inside the fpu stack allocator
2871        int n = visitor.info_count();
2872        for (int k = 0; k < n; k++) {
2873          compute_debug_info(visitor.info_at(k), op_id);
2874        }
2875      }
2876    }
2877
2878#ifdef ASSERT
2879    // make sure we haven't made the op invalid.
2880    op->verify();
2881#endif
2882
2883    // remove useless moves
2884    if (op->code() == lir_move) {
2885      assert(op->as_Op1() != NULL, "move must be LIR_Op1");
2886      LIR_Op1* move = (LIR_Op1*)op;
2887      LIR_Opr src = move->in_opr();
2888      LIR_Opr dst = move->result_opr();
2889      if (dst == src ||
2890          !dst->is_pointer() && !src->is_pointer() &&
2891          src->is_same_register(dst)) {
2892        instructions->at_put(j, NULL);
2893        has_dead = true;
2894      }
2895    }
2896  }
2897
2898  if (has_dead) {
2899    // iterate all instructions of the block and remove all null-values.
2900    int insert_point = 0;
2901    for (int j = 0; j < num_inst; j++) {
2902      LIR_Op* op = instructions->at(j);
2903      if (op != NULL) {
2904        if (insert_point != j) {
2905          instructions->at_put(insert_point, op);
2906        }
2907        insert_point++;
2908      }
2909    }
2910    instructions->truncate(insert_point);
2911  }
2912}
2913
2914void LinearScan::assign_reg_num() {
2915  TIME_LINEAR_SCAN(timer_assign_reg_num);
2916
2917  init_compute_debug_info();
2918  IntervalWalker* iw = init_compute_oop_maps();
2919
2920  int num_blocks = block_count();
2921  for (int i = 0; i < num_blocks; i++) {
2922    BlockBegin* block = block_at(i);
2923    assign_reg_num(block->lir()->instructions_list(), iw);
2924  }
2925}
2926
2927
2928void LinearScan::do_linear_scan() {
2929  NOT_PRODUCT(_total_timer.begin_method());
2930
2931  number_instructions();
2932
2933  NOT_PRODUCT(print_lir(1, "Before Register Allocation"));
2934
2935  compute_local_live_sets();
2936  compute_global_live_sets();
2937  CHECK_BAILOUT();
2938
2939  build_intervals();
2940  CHECK_BAILOUT();
2941  sort_intervals_before_allocation();
2942
2943  NOT_PRODUCT(print_intervals("Before Register Allocation"));
2944  NOT_PRODUCT(LinearScanStatistic::compute(this, _stat_before_alloc));
2945
2946  allocate_registers();
2947  CHECK_BAILOUT();
2948
2949  resolve_data_flow();
2950  if (compilation()->has_exception_handlers()) {
2951    resolve_exception_handlers();
2952  }
2953  // fill in number of spill slots into frame_map
2954  propagate_spill_slots();
2955  CHECK_BAILOUT();
2956
2957  NOT_PRODUCT(print_intervals("After Register Allocation"));
2958  NOT_PRODUCT(print_lir(2, "LIR after register allocation:"));
2959  DEBUG_ONLY(verify());
2960
2961  sort_intervals_after_allocation();
2962  eliminate_spill_moves();
2963  assign_reg_num();
2964  CHECK_BAILOUT();
2965
2966  NOT_PRODUCT(print_lir(2, "LIR after assignment of register numbers:"));
2967  NOT_PRODUCT(LinearScanStatistic::compute(this, _stat_after_asign));
2968
2969  { TIME_LINEAR_SCAN(timer_allocate_fpu_stack);
2970
2971    if (use_fpu_stack_allocation()) {
2972      allocate_fpu_stack(); // Only has effect on Intel
2973      NOT_PRODUCT(print_lir(2, "LIR after FPU stack allocation:"));
2974    }
2975  }
2976
2977  { TIME_LINEAR_SCAN(timer_optimize_lir);
2978
2979    EdgeMoveOptimizer::optimize(ir()->code());
2980    ControlFlowOptimizer::optimize(ir()->code());
2981    // check that cfg is still correct after optimizations
2982    ir()->verify();
2983  }
2984
2985  NOT_PRODUCT(print_lir(1, "Before Code Generation", false));
2986  NOT_PRODUCT(LinearScanStatistic::compute(this, _stat_final));
2987  NOT_PRODUCT(_total_timer.end_method(this));
2988}
2989
2990
2991// ********** Printing functions
2992
2993#ifndef PRODUCT
2994
2995void LinearScan::print_timers(double total) {
2996  _total_timer.print(total);
2997}
2998
2999void LinearScan::print_statistics() {
3000  _stat_before_alloc.print("before allocation");
3001  _stat_after_asign.print("after assignment of register");
3002  _stat_final.print("after optimization");
3003}
3004
3005void LinearScan::print_bitmap(BitMap& b) {
3006  for (unsigned int i = 0; i < b.size(); i++) {
3007    if (b.at(i)) tty->print("%d ", i);
3008  }
3009  tty->cr();
3010}
3011
3012void LinearScan::print_intervals(const char* label) {
3013  if (TraceLinearScanLevel >= 1) {
3014    int i;
3015    tty->cr();
3016    tty->print_cr("%s", label);
3017
3018    for (i = 0; i < interval_count(); i++) {
3019      Interval* interval = interval_at(i);
3020      if (interval != NULL) {
3021        interval->print();
3022      }
3023    }
3024
3025    tty->cr();
3026    tty->print_cr("--- Basic Blocks ---");
3027    for (i = 0; i < block_count(); i++) {
3028      BlockBegin* block = block_at(i);
3029      tty->print("B%d [%d, %d, %d, %d] ", block->block_id(), block->first_lir_instruction_id(), block->last_lir_instruction_id(), block->loop_index(), block->loop_depth());
3030    }
3031    tty->cr();
3032    tty->cr();
3033  }
3034
3035  if (PrintCFGToFile) {
3036    CFGPrinter::print_intervals(&_intervals, label);
3037  }
3038}
3039
3040void LinearScan::print_lir(int level, const char* label, bool hir_valid) {
3041  if (TraceLinearScanLevel >= level) {
3042    tty->cr();
3043    tty->print_cr("%s", label);
3044    print_LIR(ir()->linear_scan_order());
3045    tty->cr();
3046  }
3047
3048  if (level == 1 && PrintCFGToFile) {
3049    CFGPrinter::print_cfg(ir()->linear_scan_order(), label, hir_valid, true);
3050  }
3051}
3052
3053#endif //PRODUCT
3054
3055
3056// ********** verification functions for allocation
3057// (check that all intervals have a correct register and that no registers are overwritten)
3058#ifdef ASSERT
3059
3060void LinearScan::verify() {
3061  TRACE_LINEAR_SCAN(2, tty->print_cr("********* verifying intervals ******************************************"));
3062  verify_intervals();
3063
3064  TRACE_LINEAR_SCAN(2, tty->print_cr("********* verifying that no oops are in fixed intervals ****************"));
3065  verify_no_oops_in_fixed_intervals();
3066
3067  TRACE_LINEAR_SCAN(2, tty->print_cr("********* verifying that unpinned constants are not alive across block boundaries"));
3068  verify_constants();
3069
3070  TRACE_LINEAR_SCAN(2, tty->print_cr("********* verifying register allocation ********************************"));
3071  verify_registers();
3072
3073  TRACE_LINEAR_SCAN(2, tty->print_cr("********* no errors found **********************************************"));
3074}
3075
3076void LinearScan::verify_intervals() {
3077  int len = interval_count();
3078  bool has_error = false;
3079
3080  for (int i = 0; i < len; i++) {
3081    Interval* i1 = interval_at(i);
3082    if (i1 == NULL) continue;
3083
3084    i1->check_split_children();
3085
3086    if (i1->reg_num() != i) {
3087      tty->print_cr("Interval %d is on position %d in list", i1->reg_num(), i); i1->print(); tty->cr();
3088      has_error = true;
3089    }
3090
3091    if (i1->reg_num() >= LIR_OprDesc::vreg_base && i1->type() == T_ILLEGAL) {
3092      tty->print_cr("Interval %d has no type assigned", i1->reg_num()); i1->print(); tty->cr();
3093      has_error = true;
3094    }
3095
3096    if (i1->assigned_reg() == any_reg) {
3097      tty->print_cr("Interval %d has no register assigned", i1->reg_num()); i1->print(); tty->cr();
3098      has_error = true;
3099    }
3100
3101    if (i1->assigned_reg() == i1->assigned_regHi()) {
3102      tty->print_cr("Interval %d: low and high register equal", i1->reg_num()); i1->print(); tty->cr();
3103      has_error = true;
3104    }
3105
3106    if (!is_processed_reg_num(i1->assigned_reg())) {
3107      tty->print_cr("Can not have an Interval for an ignored register"); i1->print(); tty->cr();
3108      has_error = true;
3109    }
3110
3111    if (i1->first() == Range::end()) {
3112      tty->print_cr("Interval %d has no Range", i1->reg_num()); i1->print(); tty->cr();
3113      has_error = true;
3114    }
3115
3116    for (Range* r = i1->first(); r != Range::end(); r = r->next()) {
3117      if (r->from() >= r->to()) {
3118        tty->print_cr("Interval %d has zero length range", i1->reg_num()); i1->print(); tty->cr();
3119        has_error = true;
3120      }
3121    }
3122
3123    for (int j = i + 1; j < len; j++) {
3124      Interval* i2 = interval_at(j);
3125      if (i2 == NULL) continue;
3126
3127      // special intervals that are created in MoveResolver
3128      // -> ignore them because the range information has no meaning there
3129      if (i1->from() == 1 && i1->to() == 2) continue;
3130      if (i2->from() == 1 && i2->to() == 2) continue;
3131
3132      int r1 = i1->assigned_reg();
3133      int r1Hi = i1->assigned_regHi();
3134      int r2 = i2->assigned_reg();
3135      int r2Hi = i2->assigned_regHi();
3136      if (i1->intersects(i2) && (r1 == r2 || r1 == r2Hi || (r1Hi != any_reg && (r1Hi == r2 || r1Hi == r2Hi)))) {
3137        tty->print_cr("Intervals %d and %d overlap and have the same register assigned", i1->reg_num(), i2->reg_num());
3138        i1->print(); tty->cr();
3139        i2->print(); tty->cr();
3140        has_error = true;
3141      }
3142    }
3143  }
3144
3145  assert(has_error == false, "register allocation invalid");
3146}
3147
3148
3149void LinearScan::verify_no_oops_in_fixed_intervals() {
3150  LIR_OpVisitState visitor;
3151  for (int i = 0; i < block_count(); i++) {
3152    BlockBegin* block = block_at(i);
3153
3154    LIR_OpList* instructions = block->lir()->instructions_list();
3155
3156    for (int j = 0; j < instructions->length(); j++) {
3157      LIR_Op* op = instructions->at(j);
3158      int op_id = op->id();
3159
3160      visitor.visit(op);
3161
3162      // oop-maps at calls do not contain registers, so check is not needed
3163      if (!visitor.has_call()) {
3164
3165        for_each_visitor_mode(mode) {
3166          int n = visitor.opr_count(mode);
3167          for (int k = 0; k < n; k++) {
3168            LIR_Opr opr = visitor.opr_at(mode, k);
3169
3170            if (opr->is_fixed_cpu() && opr->is_oop()) {
3171              // operand is a non-virtual cpu register and contains an oop
3172              TRACE_LINEAR_SCAN(4, op->print_on(tty); tty->print("checking operand "); opr->print(); tty->cr());
3173
3174              Interval* interval = interval_at(reg_num(opr));
3175              assert(interval != NULL, "no interval");
3176
3177              if (mode == LIR_OpVisitState::inputMode) {
3178                if (interval->to() >= op_id + 1) {
3179                  assert(interval->to() < op_id + 2 ||
3180                         interval->has_hole_between(op_id, op_id + 2),
3181                         "oop input operand live after instruction");
3182                }
3183              } else if (mode == LIR_OpVisitState::outputMode) {
3184                if (interval->from() <= op_id - 1) {
3185                  assert(interval->has_hole_between(op_id - 1, op_id),
3186                         "oop input operand live after instruction");
3187                }
3188              }
3189            }
3190          }
3191        }
3192      }
3193    }
3194  }
3195}
3196
3197
3198void LinearScan::verify_constants() {
3199  int num_regs = num_virtual_regs();
3200  int size = live_set_size();
3201  int num_blocks = block_count();
3202
3203  for (int i = 0; i < num_blocks; i++) {
3204    BlockBegin* block = block_at(i);
3205    BitMap live_at_edge = block->live_in();
3206
3207    // visit all registers where the live_at_edge bit is set
3208    for (int r = (int)live_at_edge.get_next_one_offset(0, size); r < size; r = (int)live_at_edge.get_next_one_offset(r + 1, size)) {
3209      TRACE_LINEAR_SCAN(4, tty->print("checking interval %d of block B%d", r, block->block_id()));
3210
3211      Value value = gen()->instruction_for_vreg(r);
3212
3213      assert(value != NULL, "all intervals live across block boundaries must have Value");
3214      assert(value->operand()->is_register() && value->operand()->is_virtual(), "value must have virtual operand");
3215      assert(value->operand()->vreg_number() == r, "register number must match");
3216      // TKR assert(value->as_Constant() == NULL || value->is_pinned(), "only pinned constants can be alive accross block boundaries");
3217    }
3218  }
3219}
3220
3221
3222class RegisterVerifier: public StackObj {
3223 private:
3224  LinearScan*   _allocator;
3225  BlockList     _work_list;      // all blocks that must be processed
3226  IntervalsList _saved_states;   // saved information of previous check
3227
3228  // simplified access to methods of LinearScan
3229  Compilation*  compilation() const              { return _allocator->compilation(); }
3230  Interval*     interval_at(int reg_num) const   { return _allocator->interval_at(reg_num); }
3231  int           reg_num(LIR_Opr opr) const       { return _allocator->reg_num(opr); }
3232
3233  // currently, only registers are processed
3234  int           state_size()                     { return LinearScan::nof_regs; }
3235
3236  // accessors
3237  IntervalList* state_for_block(BlockBegin* block) { return _saved_states.at(block->block_id()); }
3238  void          set_state_for_block(BlockBegin* block, IntervalList* saved_state) { _saved_states.at_put(block->block_id(), saved_state); }
3239  void          add_to_work_list(BlockBegin* block) { if (!_work_list.contains(block)) _work_list.append(block); }
3240
3241  // helper functions
3242  IntervalList* copy(IntervalList* input_state);
3243  void          state_put(IntervalList* input_state, int reg, Interval* interval);
3244  bool          check_state(IntervalList* input_state, int reg, Interval* interval);
3245
3246  void process_block(BlockBegin* block);
3247  void process_xhandler(XHandler* xhandler, IntervalList* input_state);
3248  void process_successor(BlockBegin* block, IntervalList* input_state);
3249  void process_operations(LIR_List* ops, IntervalList* input_state);
3250
3251 public:
3252  RegisterVerifier(LinearScan* allocator)
3253    : _allocator(allocator)
3254    , _work_list(16)
3255    , _saved_states(BlockBegin::number_of_blocks(), NULL)
3256  { }
3257
3258  void verify(BlockBegin* start);
3259};
3260
3261
3262// entry function from LinearScan that starts the verification
3263void LinearScan::verify_registers() {
3264  RegisterVerifier verifier(this);
3265  verifier.verify(block_at(0));
3266}
3267
3268
3269void RegisterVerifier::verify(BlockBegin* start) {
3270  // setup input registers (method arguments) for first block
3271  IntervalList* input_state = new IntervalList(state_size(), NULL);
3272  CallingConvention* args = compilation()->frame_map()->incoming_arguments();
3273  for (int n = 0; n < args->length(); n++) {
3274    LIR_Opr opr = args->at(n);
3275    if (opr->is_register()) {
3276      Interval* interval = interval_at(reg_num(opr));
3277
3278      if (interval->assigned_reg() < state_size()) {
3279        input_state->at_put(interval->assigned_reg(), interval);
3280      }
3281      if (interval->assigned_regHi() != LinearScan::any_reg && interval->assigned_regHi() < state_size()) {
3282        input_state->at_put(interval->assigned_regHi(), interval);
3283      }
3284    }
3285  }
3286
3287  set_state_for_block(start, input_state);
3288  add_to_work_list(start);
3289
3290  // main loop for verification
3291  do {
3292    BlockBegin* block = _work_list.at(0);
3293    _work_list.remove_at(0);
3294
3295    process_block(block);
3296  } while (!_work_list.is_empty());
3297}
3298
3299void RegisterVerifier::process_block(BlockBegin* block) {
3300  TRACE_LINEAR_SCAN(2, tty->cr(); tty->print_cr("process_block B%d", block->block_id()));
3301
3302  // must copy state because it is modified
3303  IntervalList* input_state = copy(state_for_block(block));
3304
3305  if (TraceLinearScanLevel >= 4) {
3306    tty->print_cr("Input-State of intervals:");
3307    tty->print("    ");
3308    for (int i = 0; i < state_size(); i++) {
3309      if (input_state->at(i) != NULL) {
3310        tty->print(" %4d", input_state->at(i)->reg_num());
3311      } else {
3312        tty->print("   __");
3313      }
3314    }
3315    tty->cr();
3316    tty->cr();
3317  }
3318
3319  // process all operations of the block
3320  process_operations(block->lir(), input_state);
3321
3322  // iterate all successors
3323  for (int i = 0; i < block->number_of_sux(); i++) {
3324    process_successor(block->sux_at(i), input_state);
3325  }
3326}
3327
3328void RegisterVerifier::process_xhandler(XHandler* xhandler, IntervalList* input_state) {
3329  TRACE_LINEAR_SCAN(2, tty->print_cr("process_xhandler B%d", xhandler->entry_block()->block_id()));
3330
3331  // must copy state because it is modified
3332  input_state = copy(input_state);
3333
3334  if (xhandler->entry_code() != NULL) {
3335    process_operations(xhandler->entry_code(), input_state);
3336  }
3337  process_successor(xhandler->entry_block(), input_state);
3338}
3339
3340void RegisterVerifier::process_successor(BlockBegin* block, IntervalList* input_state) {
3341  IntervalList* saved_state = state_for_block(block);
3342
3343  if (saved_state != NULL) {
3344    // this block was already processed before.
3345    // check if new input_state is consistent with saved_state
3346
3347    bool saved_state_correct = true;
3348    for (int i = 0; i < state_size(); i++) {
3349      if (input_state->at(i) != saved_state->at(i)) {
3350        // current input_state and previous saved_state assume a different
3351        // interval in this register -> assume that this register is invalid
3352        if (saved_state->at(i) != NULL) {
3353          // invalidate old calculation only if it assumed that
3354          // register was valid. when the register was already invalid,
3355          // then the old calculation was correct.
3356          saved_state_correct = false;
3357          saved_state->at_put(i, NULL);
3358
3359          TRACE_LINEAR_SCAN(4, tty->print_cr("process_successor B%d: invalidating slot %d", block->block_id(), i));
3360        }
3361      }
3362    }
3363
3364    if (saved_state_correct) {
3365      // already processed block with correct input_state
3366      TRACE_LINEAR_SCAN(2, tty->print_cr("process_successor B%d: previous visit already correct", block->block_id()));
3367    } else {
3368      // must re-visit this block
3369      TRACE_LINEAR_SCAN(2, tty->print_cr("process_successor B%d: must re-visit because input state changed", block->block_id()));
3370      add_to_work_list(block);
3371    }
3372
3373  } else {
3374    // block was not processed before, so set initial input_state
3375    TRACE_LINEAR_SCAN(2, tty->print_cr("process_successor B%d: initial visit", block->block_id()));
3376
3377    set_state_for_block(block, copy(input_state));
3378    add_to_work_list(block);
3379  }
3380}
3381
3382
3383IntervalList* RegisterVerifier::copy(IntervalList* input_state) {
3384  IntervalList* copy_state = new IntervalList(input_state->length());
3385  copy_state->push_all(input_state);
3386  return copy_state;
3387}
3388
3389void RegisterVerifier::state_put(IntervalList* input_state, int reg, Interval* interval) {
3390  if (reg != LinearScan::any_reg && reg < state_size()) {
3391    if (interval != NULL) {
3392      TRACE_LINEAR_SCAN(4, tty->print_cr("        reg[%d] = %d", reg, interval->reg_num()));
3393    } else if (input_state->at(reg) != NULL) {
3394      TRACE_LINEAR_SCAN(4, tty->print_cr("        reg[%d] = NULL", reg));
3395    }
3396
3397    input_state->at_put(reg, interval);
3398  }
3399}
3400
3401bool RegisterVerifier::check_state(IntervalList* input_state, int reg, Interval* interval) {
3402  if (reg != LinearScan::any_reg && reg < state_size()) {
3403    if (input_state->at(reg) != interval) {
3404      tty->print_cr("!! Error in register allocation: register %d does not contain interval %d", reg, interval->reg_num());
3405      return true;
3406    }
3407  }
3408  return false;
3409}
3410
3411void RegisterVerifier::process_operations(LIR_List* ops, IntervalList* input_state) {
3412  // visit all instructions of the block
3413  LIR_OpVisitState visitor;
3414  bool has_error = false;
3415
3416  for (int i = 0; i < ops->length(); i++) {
3417    LIR_Op* op = ops->at(i);
3418    visitor.visit(op);
3419
3420    TRACE_LINEAR_SCAN(4, op->print_on(tty));
3421
3422    // check if input operands are correct
3423    int j;
3424    int n = visitor.opr_count(LIR_OpVisitState::inputMode);
3425    for (j = 0; j < n; j++) {
3426      LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::inputMode, j);
3427      if (opr->is_register() && LinearScan::is_processed_reg_num(reg_num(opr))) {
3428        Interval* interval = interval_at(reg_num(opr));
3429        if (op->id() != -1) {
3430          interval = interval->split_child_at_op_id(op->id(), LIR_OpVisitState::inputMode);
3431        }
3432
3433        has_error |= check_state(input_state, interval->assigned_reg(),   interval->split_parent());
3434        has_error |= check_state(input_state, interval->assigned_regHi(), interval->split_parent());
3435
3436        // When an operand is marked with is_last_use, then the fpu stack allocator
3437        // removes the register from the fpu stack -> the register contains no value
3438        if (opr->is_last_use()) {
3439          state_put(input_state, interval->assigned_reg(),   NULL);
3440          state_put(input_state, interval->assigned_regHi(), NULL);
3441        }
3442      }
3443    }
3444
3445    // invalidate all caller save registers at calls
3446    if (visitor.has_call()) {
3447      for (j = 0; j < FrameMap::nof_caller_save_cpu_regs; j++) {
3448        state_put(input_state, reg_num(FrameMap::caller_save_cpu_reg_at(j)), NULL);
3449      }
3450      for (j = 0; j < FrameMap::nof_caller_save_fpu_regs; j++) {
3451        state_put(input_state, reg_num(FrameMap::caller_save_fpu_reg_at(j)), NULL);
3452      }
3453
3454#ifdef X86
3455      for (j = 0; j < FrameMap::nof_caller_save_xmm_regs; j++) {
3456        state_put(input_state, reg_num(FrameMap::caller_save_xmm_reg_at(j)), NULL);
3457      }
3458#endif
3459    }
3460
3461    // process xhandler before output and temp operands
3462    XHandlers* xhandlers = visitor.all_xhandler();
3463    n = xhandlers->length();
3464    for (int k = 0; k < n; k++) {
3465      process_xhandler(xhandlers->handler_at(k), input_state);
3466    }
3467
3468    // set temp operands (some operations use temp operands also as output operands, so can't set them NULL)
3469    n = visitor.opr_count(LIR_OpVisitState::tempMode);
3470    for (j = 0; j < n; j++) {
3471      LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::tempMode, j);
3472      if (opr->is_register() && LinearScan::is_processed_reg_num(reg_num(opr))) {
3473        Interval* interval = interval_at(reg_num(opr));
3474        if (op->id() != -1) {
3475          interval = interval->split_child_at_op_id(op->id(), LIR_OpVisitState::tempMode);
3476        }
3477
3478        state_put(input_state, interval->assigned_reg(),   interval->split_parent());
3479        state_put(input_state, interval->assigned_regHi(), interval->split_parent());
3480      }
3481    }
3482
3483    // set output operands
3484    n = visitor.opr_count(LIR_OpVisitState::outputMode);
3485    for (j = 0; j < n; j++) {
3486      LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::outputMode, j);
3487      if (opr->is_register() && LinearScan::is_processed_reg_num(reg_num(opr))) {
3488        Interval* interval = interval_at(reg_num(opr));
3489        if (op->id() != -1) {
3490          interval = interval->split_child_at_op_id(op->id(), LIR_OpVisitState::outputMode);
3491        }
3492
3493        state_put(input_state, interval->assigned_reg(),   interval->split_parent());
3494        state_put(input_state, interval->assigned_regHi(), interval->split_parent());
3495      }
3496    }
3497  }
3498  assert(has_error == false, "Error in register allocation");
3499}
3500
3501#endif // ASSERT
3502
3503
3504
3505// **** Implementation of MoveResolver ******************************
3506
3507MoveResolver::MoveResolver(LinearScan* allocator) :
3508  _allocator(allocator),
3509  _multiple_reads_allowed(false),
3510  _mapping_from(8),
3511  _mapping_from_opr(8),
3512  _mapping_to(8),
3513  _insert_list(NULL),
3514  _insert_idx(-1),
3515  _insertion_buffer()
3516{
3517  for (int i = 0; i < LinearScan::nof_regs; i++) {
3518    _register_blocked[i] = 0;
3519  }
3520  DEBUG_ONLY(check_empty());
3521}
3522
3523
3524#ifdef ASSERT
3525
3526void MoveResolver::check_empty() {
3527  assert(_mapping_from.length() == 0 && _mapping_from_opr.length() == 0 && _mapping_to.length() == 0, "list must be empty before and after processing");
3528  for (int i = 0; i < LinearScan::nof_regs; i++) {
3529    assert(register_blocked(i) == 0, "register map must be empty before and after processing");
3530  }
3531  assert(_multiple_reads_allowed == false, "must have default value");
3532}
3533
3534void MoveResolver::verify_before_resolve() {
3535  assert(_mapping_from.length() == _mapping_from_opr.length(), "length must be equal");
3536  assert(_mapping_from.length() == _mapping_to.length(), "length must be equal");
3537  assert(_insert_list != NULL && _insert_idx != -1, "insert position not set");
3538
3539  int i, j;
3540  if (!_multiple_reads_allowed) {
3541    for (i = 0; i < _mapping_from.length(); i++) {
3542      for (j = i + 1; j < _mapping_from.length(); j++) {
3543        assert(_mapping_from.at(i) == NULL || _mapping_from.at(i) != _mapping_from.at(j), "cannot read from same interval twice");
3544      }
3545    }
3546  }
3547
3548  for (i = 0; i < _mapping_to.length(); i++) {
3549    for (j = i + 1; j < _mapping_to.length(); j++) {
3550      assert(_mapping_to.at(i) != _mapping_to.at(j), "cannot write to same interval twice");
3551    }
3552  }
3553
3554
3555  BitMap used_regs(LinearScan::nof_regs + allocator()->frame_map()->argcount() + allocator()->max_spills());
3556  used_regs.clear();
3557  if (!_multiple_reads_allowed) {
3558    for (i = 0; i < _mapping_from.length(); i++) {
3559      Interval* it = _mapping_from.at(i);
3560      if (it != NULL) {
3561        assert(!used_regs.at(it->assigned_reg()), "cannot read from same register twice");
3562        used_regs.set_bit(it->assigned_reg());
3563
3564        if (it->assigned_regHi() != LinearScan::any_reg) {
3565          assert(!used_regs.at(it->assigned_regHi()), "cannot read from same register twice");
3566          used_regs.set_bit(it->assigned_regHi());
3567        }
3568      }
3569    }
3570  }
3571
3572  used_regs.clear();
3573  for (i = 0; i < _mapping_to.length(); i++) {
3574    Interval* it = _mapping_to.at(i);
3575    assert(!used_regs.at(it->assigned_reg()), "cannot write to same register twice");
3576    used_regs.set_bit(it->assigned_reg());
3577
3578    if (it->assigned_regHi() != LinearScan::any_reg) {
3579      assert(!used_regs.at(it->assigned_regHi()), "cannot write to same register twice");
3580      used_regs.set_bit(it->assigned_regHi());
3581    }
3582  }
3583
3584  used_regs.clear();
3585  for (i = 0; i < _mapping_from.length(); i++) {
3586    Interval* it = _mapping_from.at(i);
3587    if (it != NULL && it->assigned_reg() >= LinearScan::nof_regs) {
3588      used_regs.set_bit(it->assigned_reg());
3589    }
3590  }
3591  for (i = 0; i < _mapping_to.length(); i++) {
3592    Interval* it = _mapping_to.at(i);
3593    assert(!used_regs.at(it->assigned_reg()) || it->assigned_reg() == _mapping_from.at(i)->assigned_reg(), "stack slots used in _mapping_from must be disjoint to _mapping_to");
3594  }
3595}
3596
3597#endif // ASSERT
3598
3599
3600// mark assigned_reg and assigned_regHi of the interval as blocked
3601void MoveResolver::block_registers(Interval* it) {
3602  int reg = it->assigned_reg();
3603  if (reg < LinearScan::nof_regs) {
3604    assert(_multiple_reads_allowed || register_blocked(reg) == 0, "register already marked as used");
3605    set_register_blocked(reg, 1);
3606  }
3607  reg = it->assigned_regHi();
3608  if (reg != LinearScan::any_reg && reg < LinearScan::nof_regs) {
3609    assert(_multiple_reads_allowed || register_blocked(reg) == 0, "register already marked as used");
3610    set_register_blocked(reg, 1);
3611  }
3612}
3613
3614// mark assigned_reg and assigned_regHi of the interval as unblocked
3615void MoveResolver::unblock_registers(Interval* it) {
3616  int reg = it->assigned_reg();
3617  if (reg < LinearScan::nof_regs) {
3618    assert(register_blocked(reg) > 0, "register already marked as unused");
3619    set_register_blocked(reg, -1);
3620  }
3621  reg = it->assigned_regHi();
3622  if (reg != LinearScan::any_reg && reg < LinearScan::nof_regs) {
3623    assert(register_blocked(reg) > 0, "register already marked as unused");
3624    set_register_blocked(reg, -1);
3625  }
3626}
3627
3628// check if assigned_reg and assigned_regHi of the to-interval are not blocked (or only blocked by from)
3629bool MoveResolver::save_to_process_move(Interval* from, Interval* to) {
3630  int from_reg = -1;
3631  int from_regHi = -1;
3632  if (from != NULL) {
3633    from_reg = from->assigned_reg();
3634    from_regHi = from->assigned_regHi();
3635  }
3636
3637  int reg = to->assigned_reg();
3638  if (reg < LinearScan::nof_regs) {
3639    if (register_blocked(reg) > 1 || (register_blocked(reg) == 1 && reg != from_reg && reg != from_regHi)) {
3640      return false;
3641    }
3642  }
3643  reg = to->assigned_regHi();
3644  if (reg != LinearScan::any_reg && reg < LinearScan::nof_regs) {
3645    if (register_blocked(reg) > 1 || (register_blocked(reg) == 1 && reg != from_reg && reg != from_regHi)) {
3646      return false;
3647    }
3648  }
3649
3650  return true;
3651}
3652
3653
3654void MoveResolver::create_insertion_buffer(LIR_List* list) {
3655  assert(!_insertion_buffer.initialized(), "overwriting existing buffer");
3656  _insertion_buffer.init(list);
3657}
3658
3659void MoveResolver::append_insertion_buffer() {
3660  if (_insertion_buffer.initialized()) {
3661    _insertion_buffer.lir_list()->append(&_insertion_buffer);
3662  }
3663  assert(!_insertion_buffer.initialized(), "must be uninitialized now");
3664
3665  _insert_list = NULL;
3666  _insert_idx = -1;
3667}
3668
3669void MoveResolver::insert_move(Interval* from_interval, Interval* to_interval) {
3670  assert(from_interval->reg_num() != to_interval->reg_num(), "from and to interval equal");
3671  assert(from_interval->type() == to_interval->type(), "move between different types");
3672  assert(_insert_list != NULL && _insert_idx != -1, "must setup insert position first");
3673  assert(_insertion_buffer.lir_list() == _insert_list, "wrong insertion buffer");
3674
3675  LIR_Opr from_opr = LIR_OprFact::virtual_register(from_interval->reg_num(), from_interval->type());
3676  LIR_Opr to_opr = LIR_OprFact::virtual_register(to_interval->reg_num(), to_interval->type());
3677
3678  if (!_multiple_reads_allowed) {
3679    // the last_use flag is an optimization for FPU stack allocation. When the same
3680    // input interval is used in more than one move, then it is too difficult to determine
3681    // if this move is really the last use.
3682    from_opr = from_opr->make_last_use();
3683  }
3684  _insertion_buffer.move(_insert_idx, from_opr, to_opr);
3685
3686  TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: inserted move from register %d (%d, %d) to %d (%d, %d)", from_interval->reg_num(), from_interval->assigned_reg(), from_interval->assigned_regHi(), to_interval->reg_num(), to_interval->assigned_reg(), to_interval->assigned_regHi()));
3687}
3688
3689void MoveResolver::insert_move(LIR_Opr from_opr, Interval* to_interval) {
3690  assert(from_opr->type() == to_interval->type(), "move between different types");
3691  assert(_insert_list != NULL && _insert_idx != -1, "must setup insert position first");
3692  assert(_insertion_buffer.lir_list() == _insert_list, "wrong insertion buffer");
3693
3694  LIR_Opr to_opr = LIR_OprFact::virtual_register(to_interval->reg_num(), to_interval->type());
3695  _insertion_buffer.move(_insert_idx, from_opr, to_opr);
3696
3697  TRACE_LINEAR_SCAN(4, tty->print("MoveResolver: inserted move from constant "); from_opr->print(); tty->print_cr("  to %d (%d, %d)", to_interval->reg_num(), to_interval->assigned_reg(), to_interval->assigned_regHi()));
3698}
3699
3700
3701void MoveResolver::resolve_mappings() {
3702  TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: resolving mappings for Block B%d, index %d", _insert_list->block() != NULL ? _insert_list->block()->block_id() : -1, _insert_idx));
3703  DEBUG_ONLY(verify_before_resolve());
3704
3705  // Block all registers that are used as input operands of a move.
3706  // When a register is blocked, no move to this register is emitted.
3707  // This is necessary for detecting cycles in moves.
3708  int i;
3709  for (i = _mapping_from.length() - 1; i >= 0; i--) {
3710    Interval* from_interval = _mapping_from.at(i);
3711    if (from_interval != NULL) {
3712      block_registers(from_interval);
3713    }
3714  }
3715
3716  int spill_candidate = -1;
3717  while (_mapping_from.length() > 0) {
3718    bool processed_interval = false;
3719
3720    for (i = _mapping_from.length() - 1; i >= 0; i--) {
3721      Interval* from_interval = _mapping_from.at(i);
3722      Interval* to_interval = _mapping_to.at(i);
3723
3724      if (save_to_process_move(from_interval, to_interval)) {
3725        // this inverval can be processed because target is free
3726        if (from_interval != NULL) {
3727          insert_move(from_interval, to_interval);
3728          unblock_registers(from_interval);
3729        } else {
3730          insert_move(_mapping_from_opr.at(i), to_interval);
3731        }
3732        _mapping_from.remove_at(i);
3733        _mapping_from_opr.remove_at(i);
3734        _mapping_to.remove_at(i);
3735
3736        processed_interval = true;
3737      } else if (from_interval != NULL && from_interval->assigned_reg() < LinearScan::nof_regs) {
3738        // this interval cannot be processed now because target is not free
3739        // it starts in a register, so it is a possible candidate for spilling
3740        spill_candidate = i;
3741      }
3742    }
3743
3744    if (!processed_interval) {
3745      // no move could be processed because there is a cycle in the move list
3746      // (e.g. r1 -> r2, r2 -> r1), so one interval must be spilled to memory
3747      assert(spill_candidate != -1, "no interval in register for spilling found");
3748
3749      // create a new spill interval and assign a stack slot to it
3750      Interval* from_interval = _mapping_from.at(spill_candidate);
3751      Interval* spill_interval = new Interval(-1);
3752      spill_interval->set_type(from_interval->type());
3753
3754      // add a dummy range because real position is difficult to calculate
3755      // Note: this range is a special case when the integrity of the allocation is checked
3756      spill_interval->add_range(1, 2);
3757
3758      //       do not allocate a new spill slot for temporary interval, but
3759      //       use spill slot assigned to from_interval. Otherwise moves from
3760      //       one stack slot to another can happen (not allowed by LIR_Assembler
3761      int spill_slot = from_interval->canonical_spill_slot();
3762      if (spill_slot < 0) {
3763        spill_slot = allocator()->allocate_spill_slot(type2spill_size[spill_interval->type()] == 2);
3764        from_interval->set_canonical_spill_slot(spill_slot);
3765      }
3766      spill_interval->assign_reg(spill_slot);
3767      allocator()->append_interval(spill_interval);
3768
3769      TRACE_LINEAR_SCAN(4, tty->print_cr("created new Interval %d for spilling", spill_interval->reg_num()));
3770
3771      // insert a move from register to stack and update the mapping
3772      insert_move(from_interval, spill_interval);
3773      _mapping_from.at_put(spill_candidate, spill_interval);
3774      unblock_registers(from_interval);
3775    }
3776  }
3777
3778  // reset to default value
3779  _multiple_reads_allowed = false;
3780
3781  // check that all intervals have been processed
3782  DEBUG_ONLY(check_empty());
3783}
3784
3785
3786void MoveResolver::set_insert_position(LIR_List* insert_list, int insert_idx) {
3787  TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: setting insert position to Block B%d, index %d", insert_list->block() != NULL ? insert_list->block()->block_id() : -1, insert_idx));
3788  assert(_insert_list == NULL && _insert_idx == -1, "use move_insert_position instead of set_insert_position when data already set");
3789
3790  create_insertion_buffer(insert_list);
3791  _insert_list = insert_list;
3792  _insert_idx = insert_idx;
3793}
3794
3795void MoveResolver::move_insert_position(LIR_List* insert_list, int insert_idx) {
3796  TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: moving insert position to Block B%d, index %d", insert_list->block() != NULL ? insert_list->block()->block_id() : -1, insert_idx));
3797
3798  if (_insert_list != NULL && (insert_list != _insert_list || insert_idx != _insert_idx)) {
3799    // insert position changed -> resolve current mappings
3800    resolve_mappings();
3801  }
3802
3803  if (insert_list != _insert_list) {
3804    // block changed -> append insertion_buffer because it is
3805    // bound to a specific block and create a new insertion_buffer
3806    append_insertion_buffer();
3807    create_insertion_buffer(insert_list);
3808  }
3809
3810  _insert_list = insert_list;
3811  _insert_idx = insert_idx;
3812}
3813
3814void MoveResolver::add_mapping(Interval* from_interval, Interval* to_interval) {
3815  TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: adding mapping from %d (%d, %d) to %d (%d, %d)", from_interval->reg_num(), from_interval->assigned_reg(), from_interval->assigned_regHi(), to_interval->reg_num(), to_interval->assigned_reg(), to_interval->assigned_regHi()));
3816
3817  _mapping_from.append(from_interval);
3818  _mapping_from_opr.append(LIR_OprFact::illegalOpr);
3819  _mapping_to.append(to_interval);
3820}
3821
3822
3823void MoveResolver::add_mapping(LIR_Opr from_opr, Interval* to_interval) {
3824  TRACE_LINEAR_SCAN(4, tty->print("MoveResolver: adding mapping from "); from_opr->print(); tty->print_cr(" to %d (%d, %d)", to_interval->reg_num(), to_interval->assigned_reg(), to_interval->assigned_regHi()));
3825  assert(from_opr->is_constant(), "only for constants");
3826
3827  _mapping_from.append(NULL);
3828  _mapping_from_opr.append(from_opr);
3829  _mapping_to.append(to_interval);
3830}
3831
3832void MoveResolver::resolve_and_append_moves() {
3833  if (has_mappings()) {
3834    resolve_mappings();
3835  }
3836  append_insertion_buffer();
3837}
3838
3839
3840
3841// **** Implementation of Range *************************************
3842
3843Range::Range(int from, int to, Range* next) :
3844  _from(from),
3845  _to(to),
3846  _next(next)
3847{
3848}
3849
3850// initialize sentinel
3851Range* Range::_end = NULL;
3852void Range::initialize() {
3853  _end = new Range(max_jint, max_jint, NULL);
3854}
3855
3856int Range::intersects_at(Range* r2) const {
3857  const Range* r1 = this;
3858
3859  assert(r1 != NULL && r2 != NULL, "null ranges not allowed");
3860  assert(r1 != _end && r2 != _end, "empty ranges not allowed");
3861
3862  do {
3863    if (r1->from() < r2->from()) {
3864      if (r1->to() <= r2->from()) {
3865        r1 = r1->next(); if (r1 == _end) return -1;
3866      } else {
3867        return r2->from();
3868      }
3869    } else if (r2->from() < r1->from()) {
3870      if (r2->to() <= r1->from()) {
3871        r2 = r2->next(); if (r2 == _end) return -1;
3872      } else {
3873        return r1->from();
3874      }
3875    } else { // r1->from() == r2->from()
3876      if (r1->from() == r1->to()) {
3877        r1 = r1->next(); if (r1 == _end) return -1;
3878      } else if (r2->from() == r2->to()) {
3879        r2 = r2->next(); if (r2 == _end) return -1;
3880      } else {
3881        return r1->from();
3882      }
3883    }
3884  } while (true);
3885}
3886
3887#ifndef PRODUCT
3888void Range::print(outputStream* out) const {
3889  out->print("[%d, %d[ ", _from, _to);
3890}
3891#endif
3892
3893
3894
3895// **** Implementation of Interval **********************************
3896
3897// initialize sentinel
3898Interval* Interval::_end = NULL;
3899void Interval::initialize() {
3900  Range::initialize();
3901  _end = new Interval(-1);
3902}
3903
3904Interval::Interval(int reg_num) :
3905  _reg_num(reg_num),
3906  _type(T_ILLEGAL),
3907  _first(Range::end()),
3908  _use_pos_and_kinds(12),
3909  _current(Range::end()),
3910  _next(_end),
3911  _state(invalidState),
3912  _assigned_reg(LinearScan::any_reg),
3913  _assigned_regHi(LinearScan::any_reg),
3914  _cached_to(-1),
3915  _cached_opr(LIR_OprFact::illegalOpr),
3916  _cached_vm_reg(VMRegImpl::Bad()),
3917  _split_children(0),
3918  _canonical_spill_slot(-1),
3919  _insert_move_when_activated(false),
3920  _register_hint(NULL),
3921  _spill_state(noDefinitionFound),
3922  _spill_definition_pos(-1)
3923{
3924  _split_parent = this;
3925  _current_split_child = this;
3926}
3927
3928int Interval::calc_to() {
3929  assert(_first != Range::end(), "interval has no range");
3930
3931  Range* r = _first;
3932  while (r->next() != Range::end()) {
3933    r = r->next();
3934  }
3935  return r->to();
3936}
3937
3938
3939#ifdef ASSERT
3940// consistency check of split-children
3941void Interval::check_split_children() {
3942  if (_split_children.length() > 0) {
3943    assert(is_split_parent(), "only split parents can have children");
3944
3945    for (int i = 0; i < _split_children.length(); i++) {
3946      Interval* i1 = _split_children.at(i);
3947
3948      assert(i1->split_parent() == this, "not a split child of this interval");
3949      assert(i1->type() == type(), "must be equal for all split children");
3950      assert(i1->canonical_spill_slot() == canonical_spill_slot(), "must be equal for all split children");
3951
3952      for (int j = i + 1; j < _split_children.length(); j++) {
3953        Interval* i2 = _split_children.at(j);
3954
3955        assert(i1->reg_num() != i2->reg_num(), "same register number");
3956
3957        if (i1->from() < i2->from()) {
3958          assert(i1->to() <= i2->from() && i1->to() < i2->to(), "intervals overlapping");
3959        } else {
3960          assert(i2->from() < i1->from(), "intervals start at same op_id");
3961          assert(i2->to() <= i1->from() && i2->to() < i1->to(), "intervals overlapping");
3962        }
3963      }
3964    }
3965  }
3966}
3967#endif // ASSERT
3968
3969Interval* Interval::register_hint(bool search_split_child) const {
3970  if (!search_split_child) {
3971    return _register_hint;
3972  }
3973
3974  if (_register_hint != NULL) {
3975    assert(_register_hint->is_split_parent(), "ony split parents are valid hint registers");
3976
3977    if (_register_hint->assigned_reg() >= 0 && _register_hint->assigned_reg() < LinearScan::nof_regs) {
3978      return _register_hint;
3979
3980    } else if (_register_hint->_split_children.length() > 0) {
3981      // search the first split child that has a register assigned
3982      int len = _register_hint->_split_children.length();
3983      for (int i = 0; i < len; i++) {
3984        Interval* cur = _register_hint->_split_children.at(i);
3985
3986        if (cur->assigned_reg() >= 0 && cur->assigned_reg() < LinearScan::nof_regs) {
3987          return cur;
3988        }
3989      }
3990    }
3991  }
3992
3993  // no hint interval found that has a register assigned
3994  return NULL;
3995}
3996
3997
3998Interval* Interval::split_child_at_op_id(int op_id, LIR_OpVisitState::OprMode mode) {
3999  assert(is_split_parent(), "can only be called for split parents");
4000  assert(op_id >= 0, "invalid op_id (method can not be called for spill moves)");
4001
4002  Interval* result;
4003  if (_split_children.length() == 0) {
4004    result = this;
4005  } else {
4006    result = NULL;
4007    int len = _split_children.length();
4008
4009    // in outputMode, the end of the interval (op_id == cur->to()) is not valid
4010    int to_offset = (mode == LIR_OpVisitState::outputMode ? 0 : 1);
4011
4012    int i;
4013    for (i = 0; i < len; i++) {
4014      Interval* cur = _split_children.at(i);
4015      if (cur->from() <= op_id && op_id < cur->to() + to_offset) {
4016        if (i > 0) {
4017          // exchange current split child to start of list (faster access for next call)
4018          _split_children.at_put(i, _split_children.at(0));
4019          _split_children.at_put(0, cur);
4020        }
4021
4022        // interval found
4023        result = cur;
4024        break;
4025      }
4026    }
4027
4028#ifdef ASSERT
4029    for (i = 0; i < len; i++) {
4030      Interval* tmp = _split_children.at(i);
4031      if (tmp != result && tmp->from() <= op_id && op_id < tmp->to() + to_offset) {
4032        tty->print_cr("two valid result intervals found for op_id %d: %d and %d", op_id, result->reg_num(), tmp->reg_num());
4033        result->print();
4034        tmp->print();
4035        assert(false, "two valid result intervals found");
4036      }
4037    }
4038#endif
4039  }
4040
4041  assert(result != NULL, "no matching interval found");
4042  assert(result->covers(op_id, mode), "op_id not covered by interval");
4043
4044  return result;
4045}
4046
4047
4048// returns the last split child that ends before the given op_id
4049Interval* Interval::split_child_before_op_id(int op_id) {
4050  assert(op_id >= 0, "invalid op_id");
4051
4052  Interval* parent = split_parent();
4053  Interval* result = NULL;
4054
4055  int len = parent->_split_children.length();
4056  assert(len > 0, "no split children available");
4057
4058  for (int i = len - 1; i >= 0; i--) {
4059    Interval* cur = parent->_split_children.at(i);
4060    if (cur->to() <= op_id && (result == NULL || result->to() < cur->to())) {
4061      result = cur;
4062    }
4063  }
4064
4065  assert(result != NULL, "no split child found");
4066  return result;
4067}
4068
4069
4070// checks if op_id is covered by any split child
4071bool Interval::split_child_covers(int op_id, LIR_OpVisitState::OprMode mode) {
4072  assert(is_split_parent(), "can only be called for split parents");
4073  assert(op_id >= 0, "invalid op_id (method can not be called for spill moves)");
4074
4075  if (_split_children.length() == 0) {
4076    // simple case if interval was not split
4077    return covers(op_id, mode);
4078
4079  } else {
4080    // extended case: check all split children
4081    int len = _split_children.length();
4082    for (int i = 0; i < len; i++) {
4083      Interval* cur = _split_children.at(i);
4084      if (cur->covers(op_id, mode)) {
4085        return true;
4086      }
4087    }
4088    return false;
4089  }
4090}
4091
4092
4093// Note: use positions are sorted descending -> first use has highest index
4094int Interval::first_usage(IntervalUseKind min_use_kind) const {
4095  assert(LinearScan::is_virtual_interval(this), "cannot access use positions for fixed intervals");
4096
4097  for (int i = _use_pos_and_kinds.length() - 2; i >= 0; i -= 2) {
4098    if (_use_pos_and_kinds.at(i + 1) >= min_use_kind) {
4099      return _use_pos_and_kinds.at(i);
4100    }
4101  }
4102  return max_jint;
4103}
4104
4105int Interval::next_usage(IntervalUseKind min_use_kind, int from) const {
4106  assert(LinearScan::is_virtual_interval(this), "cannot access use positions for fixed intervals");
4107
4108  for (int i = _use_pos_and_kinds.length() - 2; i >= 0; i -= 2) {
4109    if (_use_pos_and_kinds.at(i) >= from && _use_pos_and_kinds.at(i + 1) >= min_use_kind) {
4110      return _use_pos_and_kinds.at(i);
4111    }
4112  }
4113  return max_jint;
4114}
4115
4116int Interval::next_usage_exact(IntervalUseKind exact_use_kind, int from) const {
4117  assert(LinearScan::is_virtual_interval(this), "cannot access use positions for fixed intervals");
4118
4119  for (int i = _use_pos_and_kinds.length() - 2; i >= 0; i -= 2) {
4120    if (_use_pos_and_kinds.at(i) >= from && _use_pos_and_kinds.at(i + 1) == exact_use_kind) {
4121      return _use_pos_and_kinds.at(i);
4122    }
4123  }
4124  return max_jint;
4125}
4126
4127int Interval::previous_usage(IntervalUseKind min_use_kind, int from) const {
4128  assert(LinearScan::is_virtual_interval(this), "cannot access use positions for fixed intervals");
4129
4130  int prev = 0;
4131  for (int i = _use_pos_and_kinds.length() - 2; i >= 0; i -= 2) {
4132    if (_use_pos_and_kinds.at(i) > from) {
4133      return prev;
4134    }
4135    if (_use_pos_and_kinds.at(i + 1) >= min_use_kind) {
4136      prev = _use_pos_and_kinds.at(i);
4137    }
4138  }
4139  return prev;
4140}
4141
4142void Interval::add_use_pos(int pos, IntervalUseKind use_kind) {
4143  assert(covers(pos, LIR_OpVisitState::inputMode), "use position not covered by live range");
4144
4145  // do not add use positions for precolored intervals because
4146  // they are never used
4147  if (use_kind != noUse && reg_num() >= LIR_OprDesc::vreg_base) {
4148#ifdef ASSERT
4149    assert(_use_pos_and_kinds.length() % 2 == 0, "must be");
4150    for (int i = 0; i < _use_pos_and_kinds.length(); i += 2) {
4151      assert(pos <= _use_pos_and_kinds.at(i), "already added a use-position with lower position");
4152      assert(_use_pos_and_kinds.at(i + 1) >= firstValidKind && _use_pos_and_kinds.at(i + 1) <= lastValidKind, "invalid use kind");
4153      if (i > 0) {
4154        assert(_use_pos_and_kinds.at(i) < _use_pos_and_kinds.at(i - 2), "not sorted descending");
4155      }
4156    }
4157#endif
4158
4159    // Note: add_use is called in descending order, so list gets sorted
4160    //       automatically by just appending new use positions
4161    int len = _use_pos_and_kinds.length();
4162    if (len == 0 || _use_pos_and_kinds.at(len - 2) > pos) {
4163      _use_pos_and_kinds.append(pos);
4164      _use_pos_and_kinds.append(use_kind);
4165    } else if (_use_pos_and_kinds.at(len - 1) < use_kind) {
4166      assert(_use_pos_and_kinds.at(len - 2) == pos, "list not sorted correctly");
4167      _use_pos_and_kinds.at_put(len - 1, use_kind);
4168    }
4169  }
4170}
4171
4172void Interval::add_range(int from, int to) {
4173  assert(from < to, "invalid range");
4174  assert(first() == Range::end() || to < first()->next()->from(), "not inserting at begin of interval");
4175  assert(from <= first()->to(), "not inserting at begin of interval");
4176
4177  if (first()->from() <= to) {
4178    // join intersecting ranges
4179    first()->set_from(MIN2(from, first()->from()));
4180    first()->set_to  (MAX2(to,   first()->to()));
4181  } else {
4182    // insert new range
4183    _first = new Range(from, to, first());
4184  }
4185}
4186
4187Interval* Interval::new_split_child() {
4188  // allocate new interval
4189  Interval* result = new Interval(-1);
4190  result->set_type(type());
4191
4192  Interval* parent = split_parent();
4193  result->_split_parent = parent;
4194  result->set_register_hint(parent);
4195
4196  // insert new interval in children-list of parent
4197  if (parent->_split_children.length() == 0) {
4198    assert(is_split_parent(), "list must be initialized at first split");
4199
4200    parent->_split_children = IntervalList(4);
4201    parent->_split_children.append(this);
4202  }
4203  parent->_split_children.append(result);
4204
4205  return result;
4206}
4207
4208// split this interval at the specified position and return
4209// the remainder as a new interval.
4210//
4211// when an interval is split, a bi-directional link is established between the original interval
4212// (the split parent) and the intervals that are split off this interval (the split children)
4213// When a split child is split again, the new created interval is also a direct child
4214// of the original parent (there is no tree of split children stored, but a flat list)
4215// All split children are spilled to the same stack slot (stored in _canonical_spill_slot)
4216//
4217// Note: The new interval has no valid reg_num
4218Interval* Interval::split(int split_pos) {
4219  assert(LinearScan::is_virtual_interval(this), "cannot split fixed intervals");
4220
4221  // allocate new interval
4222  Interval* result = new_split_child();
4223
4224  // split the ranges
4225  Range* prev = NULL;
4226  Range* cur = _first;
4227  while (cur != Range::end() && cur->to() <= split_pos) {
4228    prev = cur;
4229    cur = cur->next();
4230  }
4231  assert(cur != Range::end(), "split interval after end of last range");
4232
4233  if (cur->from() < split_pos) {
4234    result->_first = new Range(split_pos, cur->to(), cur->next());
4235    cur->set_to(split_pos);
4236    cur->set_next(Range::end());
4237
4238  } else {
4239    assert(prev != NULL, "split before start of first range");
4240    result->_first = cur;
4241    prev->set_next(Range::end());
4242  }
4243  result->_current = result->_first;
4244  _cached_to = -1; // clear cached value
4245
4246  // split list of use positions
4247  int total_len = _use_pos_and_kinds.length();
4248  int start_idx = total_len - 2;
4249  while (start_idx >= 0 && _use_pos_and_kinds.at(start_idx) < split_pos) {
4250    start_idx -= 2;
4251  }
4252
4253  intStack new_use_pos_and_kinds(total_len - start_idx);
4254  int i;
4255  for (i = start_idx + 2; i < total_len; i++) {
4256    new_use_pos_and_kinds.append(_use_pos_and_kinds.at(i));
4257  }
4258
4259  _use_pos_and_kinds.truncate(start_idx + 2);
4260  result->_use_pos_and_kinds = _use_pos_and_kinds;
4261  _use_pos_and_kinds = new_use_pos_and_kinds;
4262
4263#ifdef ASSERT
4264  assert(_use_pos_and_kinds.length() % 2 == 0, "must have use kind for each use pos");
4265  assert(result->_use_pos_and_kinds.length() % 2 == 0, "must have use kind for each use pos");
4266  assert(_use_pos_and_kinds.length() + result->_use_pos_and_kinds.length() == total_len, "missed some entries");
4267
4268  for (i = 0; i < _use_pos_and_kinds.length(); i += 2) {
4269    assert(_use_pos_and_kinds.at(i) < split_pos, "must be");
4270    assert(_use_pos_and_kinds.at(i + 1) >= firstValidKind && _use_pos_and_kinds.at(i + 1) <= lastValidKind, "invalid use kind");
4271  }
4272  for (i = 0; i < result->_use_pos_and_kinds.length(); i += 2) {
4273    assert(result->_use_pos_and_kinds.at(i) >= split_pos, "must be");
4274    assert(result->_use_pos_and_kinds.at(i + 1) >= firstValidKind && result->_use_pos_and_kinds.at(i + 1) <= lastValidKind, "invalid use kind");
4275  }
4276#endif
4277
4278  return result;
4279}
4280
4281// split this interval at the specified position and return
4282// the head as a new interval (the original interval is the tail)
4283//
4284// Currently, only the first range can be split, and the new interval
4285// must not have split positions
4286Interval* Interval::split_from_start(int split_pos) {
4287  assert(LinearScan::is_virtual_interval(this), "cannot split fixed intervals");
4288  assert(split_pos > from() && split_pos < to(), "can only split inside interval");
4289  assert(split_pos > _first->from() && split_pos <= _first->to(), "can only split inside first range");
4290  assert(first_usage(noUse) > split_pos, "can not split when use positions are present");
4291
4292  // allocate new interval
4293  Interval* result = new_split_child();
4294
4295  // the new created interval has only one range (checked by assertion above),
4296  // so the splitting of the ranges is very simple
4297  result->add_range(_first->from(), split_pos);
4298
4299  if (split_pos == _first->to()) {
4300    assert(_first->next() != Range::end(), "must not be at end");
4301    _first = _first->next();
4302  } else {
4303    _first->set_from(split_pos);
4304  }
4305
4306  return result;
4307}
4308
4309
4310// returns true if the op_id is inside the interval
4311bool Interval::covers(int op_id, LIR_OpVisitState::OprMode mode) const {
4312  Range* cur  = _first;
4313
4314  while (cur != Range::end() && cur->to() < op_id) {
4315    cur = cur->next();
4316  }
4317  if (cur != Range::end()) {
4318    assert(cur->to() != cur->next()->from(), "ranges not separated");
4319
4320    if (mode == LIR_OpVisitState::outputMode) {
4321      return cur->from() <= op_id && op_id < cur->to();
4322    } else {
4323      return cur->from() <= op_id && op_id <= cur->to();
4324    }
4325  }
4326  return false;
4327}
4328
4329// returns true if the interval has any hole between hole_from and hole_to
4330// (even if the hole has only the length 1)
4331bool Interval::has_hole_between(int hole_from, int hole_to) {
4332  assert(hole_from < hole_to, "check");
4333  assert(from() <= hole_from && hole_to <= to(), "index out of interval");
4334
4335  Range* cur  = _first;
4336  while (cur != Range::end()) {
4337    assert(cur->to() < cur->next()->from(), "no space between ranges");
4338
4339    // hole-range starts before this range -> hole
4340    if (hole_from < cur->from()) {
4341      return true;
4342
4343    // hole-range completely inside this range -> no hole
4344    } else if (hole_to <= cur->to()) {
4345      return false;
4346
4347    // overlapping of hole-range with this range -> hole
4348    } else if (hole_from <= cur->to()) {
4349      return true;
4350    }
4351
4352    cur = cur->next();
4353  }
4354
4355  return false;
4356}
4357
4358
4359#ifndef PRODUCT
4360void Interval::print(outputStream* out) const {
4361  const char* SpillState2Name[] = { "no definition", "no spill store", "one spill store", "store at definition", "start in memory", "no optimization" };
4362  const char* UseKind2Name[] = { "N", "L", "S", "M" };
4363
4364  const char* type_name;
4365  LIR_Opr opr = LIR_OprFact::illegal();
4366  if (reg_num() < LIR_OprDesc::vreg_base) {
4367    type_name = "fixed";
4368    // need a temporary operand for fixed intervals because type() cannot be called
4369    if (assigned_reg() >= pd_first_cpu_reg && assigned_reg() <= pd_last_cpu_reg) {
4370      opr = LIR_OprFact::single_cpu(assigned_reg());
4371    } else if (assigned_reg() >= pd_first_fpu_reg && assigned_reg() <= pd_last_fpu_reg) {
4372      opr = LIR_OprFact::single_fpu(assigned_reg() - pd_first_fpu_reg);
4373#ifdef X86
4374    } else if (assigned_reg() >= pd_first_xmm_reg && assigned_reg() <= pd_last_xmm_reg) {
4375      opr = LIR_OprFact::single_xmm(assigned_reg() - pd_first_xmm_reg);
4376#endif
4377    } else {
4378      ShouldNotReachHere();
4379    }
4380  } else {
4381    type_name = type2name(type());
4382    if (assigned_reg() != -1) {
4383      opr = LinearScan::calc_operand_for_interval(this);
4384    }
4385  }
4386
4387  out->print("%d %s ", reg_num(), type_name);
4388  if (opr->is_valid()) {
4389    out->print("\"");
4390    opr->print(out);
4391    out->print("\" ");
4392  }
4393  out->print("%d %d ", split_parent()->reg_num(), (register_hint(false) != NULL ? register_hint(false)->reg_num() : -1));
4394
4395  // print ranges
4396  Range* cur = _first;
4397  while (cur != Range::end()) {
4398    cur->print(out);
4399    cur = cur->next();
4400    assert(cur != NULL, "range list not closed with range sentinel");
4401  }
4402
4403  // print use positions
4404  int prev = 0;
4405  assert(_use_pos_and_kinds.length() % 2 == 0, "must be");
4406  for (int i =_use_pos_and_kinds.length() - 2; i >= 0; i -= 2) {
4407    assert(_use_pos_and_kinds.at(i + 1) >= firstValidKind && _use_pos_and_kinds.at(i + 1) <= lastValidKind, "invalid use kind");
4408    assert(prev < _use_pos_and_kinds.at(i), "use positions not sorted");
4409
4410    out->print("%d %s ", _use_pos_and_kinds.at(i), UseKind2Name[_use_pos_and_kinds.at(i + 1)]);
4411    prev = _use_pos_and_kinds.at(i);
4412  }
4413
4414  out->print(" \"%s\"", SpillState2Name[spill_state()]);
4415  out->cr();
4416}
4417#endif
4418
4419
4420
4421// **** Implementation of IntervalWalker ****************************
4422
4423IntervalWalker::IntervalWalker(LinearScan* allocator, Interval* unhandled_fixed_first, Interval* unhandled_any_first)
4424 : _compilation(allocator->compilation())
4425 , _allocator(allocator)
4426{
4427  _unhandled_first[fixedKind] = unhandled_fixed_first;
4428  _unhandled_first[anyKind]   = unhandled_any_first;
4429  _active_first[fixedKind]    = Interval::end();
4430  _inactive_first[fixedKind]  = Interval::end();
4431  _active_first[anyKind]      = Interval::end();
4432  _inactive_first[anyKind]    = Interval::end();
4433  _current_position = -1;
4434  _current = NULL;
4435  next_interval();
4436}
4437
4438
4439// append interval at top of list
4440void IntervalWalker::append_unsorted(Interval** list, Interval* interval) {
4441  interval->set_next(*list); *list = interval;
4442}
4443
4444
4445// append interval in order of current range from()
4446void IntervalWalker::append_sorted(Interval** list, Interval* interval) {
4447  Interval* prev = NULL;
4448  Interval* cur  = *list;
4449  while (cur->current_from() < interval->current_from()) {
4450    prev = cur; cur = cur->next();
4451  }
4452  if (prev == NULL) {
4453    *list = interval;
4454  } else {
4455    prev->set_next(interval);
4456  }
4457  interval->set_next(cur);
4458}
4459
4460void IntervalWalker::append_to_unhandled(Interval** list, Interval* interval) {
4461  assert(interval->from() >= current()->current_from(), "cannot append new interval before current walk position");
4462
4463  Interval* prev = NULL;
4464  Interval* cur  = *list;
4465  while (cur->from() < interval->from() || (cur->from() == interval->from() && cur->first_usage(noUse) < interval->first_usage(noUse))) {
4466    prev = cur; cur = cur->next();
4467  }
4468  if (prev == NULL) {
4469    *list = interval;
4470  } else {
4471    prev->set_next(interval);
4472  }
4473  interval->set_next(cur);
4474}
4475
4476
4477inline bool IntervalWalker::remove_from_list(Interval** list, Interval* i) {
4478  while (*list != Interval::end() && *list != i) {
4479    list = (*list)->next_addr();
4480  }
4481  if (*list != Interval::end()) {
4482    assert(*list == i, "check");
4483    *list = (*list)->next();
4484    return true;
4485  } else {
4486    return false;
4487  }
4488}
4489
4490void IntervalWalker::remove_from_list(Interval* i) {
4491  bool deleted;
4492
4493  if (i->state() == activeState) {
4494    deleted = remove_from_list(active_first_addr(anyKind), i);
4495  } else {
4496    assert(i->state() == inactiveState, "invalid state");
4497    deleted = remove_from_list(inactive_first_addr(anyKind), i);
4498  }
4499
4500  assert(deleted, "interval has not been found in list");
4501}
4502
4503
4504void IntervalWalker::walk_to(IntervalState state, int from) {
4505  assert (state == activeState || state == inactiveState, "wrong state");
4506  for_each_interval_kind(kind) {
4507    Interval** prev = state == activeState ? active_first_addr(kind) : inactive_first_addr(kind);
4508    Interval* next   = *prev;
4509    while (next->current_from() <= from) {
4510      Interval* cur = next;
4511      next = cur->next();
4512
4513      bool range_has_changed = false;
4514      while (cur->current_to() <= from) {
4515        cur->next_range();
4516        range_has_changed = true;
4517      }
4518
4519      // also handle move from inactive list to active list
4520      range_has_changed = range_has_changed || (state == inactiveState && cur->current_from() <= from);
4521
4522      if (range_has_changed) {
4523        // remove cur from list
4524        *prev = next;
4525        if (cur->current_at_end()) {
4526          // move to handled state (not maintained as a list)
4527          cur->set_state(handledState);
4528          interval_moved(cur, kind, state, handledState);
4529        } else if (cur->current_from() <= from){
4530          // sort into active list
4531          append_sorted(active_first_addr(kind), cur);
4532          cur->set_state(activeState);
4533          if (*prev == cur) {
4534            assert(state == activeState, "check");
4535            prev = cur->next_addr();
4536          }
4537          interval_moved(cur, kind, state, activeState);
4538        } else {
4539          // sort into inactive list
4540          append_sorted(inactive_first_addr(kind), cur);
4541          cur->set_state(inactiveState);
4542          if (*prev == cur) {
4543            assert(state == inactiveState, "check");
4544            prev = cur->next_addr();
4545          }
4546          interval_moved(cur, kind, state, inactiveState);
4547        }
4548      } else {
4549        prev = cur->next_addr();
4550        continue;
4551      }
4552    }
4553  }
4554}
4555
4556
4557void IntervalWalker::next_interval() {
4558  IntervalKind kind;
4559  Interval* any   = _unhandled_first[anyKind];
4560  Interval* fixed = _unhandled_first[fixedKind];
4561
4562  if (any != Interval::end()) {
4563    // intervals may start at same position -> prefer fixed interval
4564    kind = fixed != Interval::end() && fixed->from() <= any->from() ? fixedKind : anyKind;
4565
4566    assert (kind == fixedKind && fixed->from() <= any->from() ||
4567            kind == anyKind   && any->from() <= fixed->from(), "wrong interval!!!");
4568    assert(any == Interval::end() || fixed == Interval::end() || any->from() != fixed->from() || kind == fixedKind, "if fixed and any-Interval start at same position, fixed must be processed first");
4569
4570  } else if (fixed != Interval::end()) {
4571    kind = fixedKind;
4572  } else {
4573    _current = NULL; return;
4574  }
4575  _current_kind = kind;
4576  _current = _unhandled_first[kind];
4577  _unhandled_first[kind] = _current->next();
4578  _current->set_next(Interval::end());
4579  _current->rewind_range();
4580}
4581
4582
4583void IntervalWalker::walk_to(int lir_op_id) {
4584  assert(_current_position <= lir_op_id, "can not walk backwards");
4585  while (current() != NULL) {
4586    bool is_active = current()->from() <= lir_op_id;
4587    int id = is_active ? current()->from() : lir_op_id;
4588
4589    TRACE_LINEAR_SCAN(2, if (_current_position < id) { tty->cr(); tty->print_cr("walk_to(%d) **************************************************************", id); })
4590
4591    // set _current_position prior to call of walk_to
4592    _current_position = id;
4593
4594    // call walk_to even if _current_position == id
4595    walk_to(activeState, id);
4596    walk_to(inactiveState, id);
4597
4598    if (is_active) {
4599      current()->set_state(activeState);
4600      if (activate_current()) {
4601        append_sorted(active_first_addr(current_kind()), current());
4602        interval_moved(current(), current_kind(), unhandledState, activeState);
4603      }
4604
4605      next_interval();
4606    } else {
4607      return;
4608    }
4609  }
4610}
4611
4612void IntervalWalker::interval_moved(Interval* interval, IntervalKind kind, IntervalState from, IntervalState to) {
4613#ifndef PRODUCT
4614  if (TraceLinearScanLevel >= 4) {
4615    #define print_state(state) \
4616    switch(state) {\
4617      case unhandledState: tty->print("unhandled"); break;\
4618      case activeState: tty->print("active"); break;\
4619      case inactiveState: tty->print("inactive"); break;\
4620      case handledState: tty->print("handled"); break;\
4621      default: ShouldNotReachHere(); \
4622    }
4623
4624    print_state(from); tty->print(" to "); print_state(to);
4625    tty->fill_to(23);
4626    interval->print();
4627
4628    #undef print_state
4629  }
4630#endif
4631}
4632
4633
4634
4635// **** Implementation of LinearScanWalker **************************
4636
4637LinearScanWalker::LinearScanWalker(LinearScan* allocator, Interval* unhandled_fixed_first, Interval* unhandled_any_first)
4638  : IntervalWalker(allocator, unhandled_fixed_first, unhandled_any_first)
4639  , _move_resolver(allocator)
4640{
4641  for (int i = 0; i < LinearScan::nof_regs; i++) {
4642    _spill_intervals[i] = new IntervalList(2);
4643  }
4644}
4645
4646
4647inline void LinearScanWalker::init_use_lists(bool only_process_use_pos) {
4648  for (int i = _first_reg; i <= _last_reg; i++) {
4649    _use_pos[i] = max_jint;
4650
4651    if (!only_process_use_pos) {
4652      _block_pos[i] = max_jint;
4653      _spill_intervals[i]->clear();
4654    }
4655  }
4656}
4657
4658inline void LinearScanWalker::exclude_from_use(int reg) {
4659  assert(reg < LinearScan::nof_regs, "interval must have a register assigned (stack slots not allowed)");
4660  if (reg >= _first_reg && reg <= _last_reg) {
4661    _use_pos[reg] = 0;
4662  }
4663}
4664inline void LinearScanWalker::exclude_from_use(Interval* i) {
4665  assert(i->assigned_reg() != any_reg, "interval has no register assigned");
4666
4667  exclude_from_use(i->assigned_reg());
4668  exclude_from_use(i->assigned_regHi());
4669}
4670
4671inline void LinearScanWalker::set_use_pos(int reg, Interval* i, int use_pos, bool only_process_use_pos) {
4672  assert(use_pos != 0, "must use exclude_from_use to set use_pos to 0");
4673
4674  if (reg >= _first_reg && reg <= _last_reg) {
4675    if (_use_pos[reg] > use_pos) {
4676      _use_pos[reg] = use_pos;
4677    }
4678    if (!only_process_use_pos) {
4679      _spill_intervals[reg]->append(i);
4680    }
4681  }
4682}
4683inline void LinearScanWalker::set_use_pos(Interval* i, int use_pos, bool only_process_use_pos) {
4684  assert(i->assigned_reg() != any_reg, "interval has no register assigned");
4685  if (use_pos != -1) {
4686    set_use_pos(i->assigned_reg(), i, use_pos, only_process_use_pos);
4687    set_use_pos(i->assigned_regHi(), i, use_pos, only_process_use_pos);
4688  }
4689}
4690
4691inline void LinearScanWalker::set_block_pos(int reg, Interval* i, int block_pos) {
4692  if (reg >= _first_reg && reg <= _last_reg) {
4693    if (_block_pos[reg] > block_pos) {
4694      _block_pos[reg] = block_pos;
4695    }
4696    if (_use_pos[reg] > block_pos) {
4697      _use_pos[reg] = block_pos;
4698    }
4699  }
4700}
4701inline void LinearScanWalker::set_block_pos(Interval* i, int block_pos) {
4702  assert(i->assigned_reg() != any_reg, "interval has no register assigned");
4703  if (block_pos != -1) {
4704    set_block_pos(i->assigned_reg(), i, block_pos);
4705    set_block_pos(i->assigned_regHi(), i, block_pos);
4706  }
4707}
4708
4709
4710void LinearScanWalker::free_exclude_active_fixed() {
4711  Interval* list = active_first(fixedKind);
4712  while (list != Interval::end()) {
4713    assert(list->assigned_reg() < LinearScan::nof_regs, "active interval must have a register assigned");
4714    exclude_from_use(list);
4715    list = list->next();
4716  }
4717}
4718
4719void LinearScanWalker::free_exclude_active_any() {
4720  Interval* list = active_first(anyKind);
4721  while (list != Interval::end()) {
4722    exclude_from_use(list);
4723    list = list->next();
4724  }
4725}
4726
4727void LinearScanWalker::free_collect_inactive_fixed(Interval* cur) {
4728  Interval* list = inactive_first(fixedKind);
4729  while (list != Interval::end()) {
4730    if (cur->to() <= list->current_from()) {
4731      assert(list->current_intersects_at(cur) == -1, "must not intersect");
4732      set_use_pos(list, list->current_from(), true);
4733    } else {
4734      set_use_pos(list, list->current_intersects_at(cur), true);
4735    }
4736    list = list->next();
4737  }
4738}
4739
4740void LinearScanWalker::free_collect_inactive_any(Interval* cur) {
4741  Interval* list = inactive_first(anyKind);
4742  while (list != Interval::end()) {
4743    set_use_pos(list, list->current_intersects_at(cur), true);
4744    list = list->next();
4745  }
4746}
4747
4748void LinearScanWalker::free_collect_unhandled(IntervalKind kind, Interval* cur) {
4749  Interval* list = unhandled_first(kind);
4750  while (list != Interval::end()) {
4751    set_use_pos(list, list->intersects_at(cur), true);
4752    if (kind == fixedKind && cur->to() <= list->from()) {
4753      set_use_pos(list, list->from(), true);
4754    }
4755    list = list->next();
4756  }
4757}
4758
4759void LinearScanWalker::spill_exclude_active_fixed() {
4760  Interval* list = active_first(fixedKind);
4761  while (list != Interval::end()) {
4762    exclude_from_use(list);
4763    list = list->next();
4764  }
4765}
4766
4767void LinearScanWalker::spill_block_unhandled_fixed(Interval* cur) {
4768  Interval* list = unhandled_first(fixedKind);
4769  while (list != Interval::end()) {
4770    set_block_pos(list, list->intersects_at(cur));
4771    list = list->next();
4772  }
4773}
4774
4775void LinearScanWalker::spill_block_inactive_fixed(Interval* cur) {
4776  Interval* list = inactive_first(fixedKind);
4777  while (list != Interval::end()) {
4778    if (cur->to() > list->current_from()) {
4779      set_block_pos(list, list->current_intersects_at(cur));
4780    } else {
4781      assert(list->current_intersects_at(cur) == -1, "invalid optimization: intervals intersect");
4782    }
4783
4784    list = list->next();
4785  }
4786}
4787
4788void LinearScanWalker::spill_collect_active_any() {
4789  Interval* list = active_first(anyKind);
4790  while (list != Interval::end()) {
4791    set_use_pos(list, MIN2(list->next_usage(loopEndMarker, _current_position), list->to()), false);
4792    list = list->next();
4793  }
4794}
4795
4796void LinearScanWalker::spill_collect_inactive_any(Interval* cur) {
4797  Interval* list = inactive_first(anyKind);
4798  while (list != Interval::end()) {
4799    if (list->current_intersects(cur)) {
4800      set_use_pos(list, MIN2(list->next_usage(loopEndMarker, _current_position), list->to()), false);
4801    }
4802    list = list->next();
4803  }
4804}
4805
4806
4807void LinearScanWalker::insert_move(int op_id, Interval* src_it, Interval* dst_it) {
4808  // output all moves here. When source and target are equal, the move is
4809  // optimized away later in assign_reg_nums
4810
4811  op_id = (op_id + 1) & ~1;
4812  BlockBegin* op_block = allocator()->block_of_op_with_id(op_id);
4813  assert(op_id > 0 && allocator()->block_of_op_with_id(op_id - 2) == op_block, "cannot insert move at block boundary");
4814
4815  // calculate index of instruction inside instruction list of current block
4816  // the minimal index (for a block with no spill moves) can be calculated because the
4817  // numbering of instructions is known.
4818  // When the block already contains spill moves, the index must be increased until the
4819  // correct index is reached.
4820  LIR_OpList* list = op_block->lir()->instructions_list();
4821  int index = (op_id - list->at(0)->id()) / 2;
4822  assert(list->at(index)->id() <= op_id, "error in calculation");
4823
4824  while (list->at(index)->id() != op_id) {
4825    index++;
4826    assert(0 <= index && index < list->length(), "index out of bounds");
4827  }
4828  assert(1 <= index && index < list->length(), "index out of bounds");
4829  assert(list->at(index)->id() == op_id, "error in calculation");
4830
4831  // insert new instruction before instruction at position index
4832  _move_resolver.move_insert_position(op_block->lir(), index - 1);
4833  _move_resolver.add_mapping(src_it, dst_it);
4834}
4835
4836
4837int LinearScanWalker::find_optimal_split_pos(BlockBegin* min_block, BlockBegin* max_block, int max_split_pos) {
4838  int from_block_nr = min_block->linear_scan_number();
4839  int to_block_nr = max_block->linear_scan_number();
4840
4841  assert(0 <= from_block_nr && from_block_nr < block_count(), "out of range");
4842  assert(0 <= to_block_nr && to_block_nr < block_count(), "out of range");
4843  assert(from_block_nr < to_block_nr, "must cross block boundary");
4844
4845  // Try to split at end of max_block. If this would be after
4846  // max_split_pos, then use the begin of max_block
4847  int optimal_split_pos = max_block->last_lir_instruction_id() + 2;
4848  if (optimal_split_pos > max_split_pos) {
4849    optimal_split_pos = max_block->first_lir_instruction_id();
4850  }
4851
4852  int min_loop_depth = max_block->loop_depth();
4853  for (int i = to_block_nr - 1; i >= from_block_nr; i--) {
4854    BlockBegin* cur = block_at(i);
4855
4856    if (cur->loop_depth() < min_loop_depth) {
4857      // block with lower loop-depth found -> split at the end of this block
4858      min_loop_depth = cur->loop_depth();
4859      optimal_split_pos = cur->last_lir_instruction_id() + 2;
4860    }
4861  }
4862  assert(optimal_split_pos > allocator()->max_lir_op_id() || allocator()->is_block_begin(optimal_split_pos), "algorithm must move split pos to block boundary");
4863
4864  return optimal_split_pos;
4865}
4866
4867
4868int LinearScanWalker::find_optimal_split_pos(Interval* it, int min_split_pos, int max_split_pos, bool do_loop_optimization) {
4869  int optimal_split_pos = -1;
4870  if (min_split_pos == max_split_pos) {
4871    // trivial case, no optimization of split position possible
4872    TRACE_LINEAR_SCAN(4, tty->print_cr("      min-pos and max-pos are equal, no optimization possible"));
4873    optimal_split_pos = min_split_pos;
4874
4875  } else {
4876    assert(min_split_pos < max_split_pos, "must be true then");
4877    assert(min_split_pos > 0, "cannot access min_split_pos - 1 otherwise");
4878
4879    // reason for using min_split_pos - 1: when the minimal split pos is exactly at the
4880    // beginning of a block, then min_split_pos is also a possible split position.
4881    // Use the block before as min_block, because then min_block->last_lir_instruction_id() + 2 == min_split_pos
4882    BlockBegin* min_block = allocator()->block_of_op_with_id(min_split_pos - 1);
4883
4884    // reason for using max_split_pos - 1: otherwise there would be an assertion failure
4885    // when an interval ends at the end of the last block of the method
4886    // (in this case, max_split_pos == allocator()->max_lir_op_id() + 2, and there is no
4887    // block at this op_id)
4888    BlockBegin* max_block = allocator()->block_of_op_with_id(max_split_pos - 1);
4889
4890    assert(min_block->linear_scan_number() <= max_block->linear_scan_number(), "invalid order");
4891    if (min_block == max_block) {
4892      // split position cannot be moved to block boundary, so split as late as possible
4893      TRACE_LINEAR_SCAN(4, tty->print_cr("      cannot move split pos to block boundary because min_pos and max_pos are in same block"));
4894      optimal_split_pos = max_split_pos;
4895
4896    } else if (it->has_hole_between(max_split_pos - 1, max_split_pos) && !allocator()->is_block_begin(max_split_pos)) {
4897      // Do not move split position if the interval has a hole before max_split_pos.
4898      // Intervals resulting from Phi-Functions have more than one definition (marked
4899      // as mustHaveRegister) with a hole before each definition. When the register is needed
4900      // for the second definition, an earlier reloading is unnecessary.
4901      TRACE_LINEAR_SCAN(4, tty->print_cr("      interval has hole just before max_split_pos, so splitting at max_split_pos"));
4902      optimal_split_pos = max_split_pos;
4903
4904    } else {
4905      // seach optimal block boundary between min_split_pos and max_split_pos
4906      TRACE_LINEAR_SCAN(4, tty->print_cr("      moving split pos to optimal block boundary between block B%d and B%d", min_block->block_id(), max_block->block_id()));
4907
4908      if (do_loop_optimization) {
4909        // Loop optimization: if a loop-end marker is found between min- and max-position,
4910        // then split before this loop
4911        int loop_end_pos = it->next_usage_exact(loopEndMarker, min_block->last_lir_instruction_id() + 2);
4912        TRACE_LINEAR_SCAN(4, tty->print_cr("      loop optimization: loop end found at pos %d", loop_end_pos));
4913
4914        assert(loop_end_pos > min_split_pos, "invalid order");
4915        if (loop_end_pos < max_split_pos) {
4916          // loop-end marker found between min- and max-position
4917          // if it is not the end marker for the same loop as the min-position, then move
4918          // the max-position to this loop block.
4919          // Desired result: uses tagged as shouldHaveRegister inside a loop cause a reloading
4920          // of the interval (normally, only mustHaveRegister causes a reloading)
4921          BlockBegin* loop_block = allocator()->block_of_op_with_id(loop_end_pos);
4922
4923          TRACE_LINEAR_SCAN(4, tty->print_cr("      interval is used in loop that ends in block B%d, so trying to move max_block back from B%d to B%d", loop_block->block_id(), max_block->block_id(), loop_block->block_id()));
4924          assert(loop_block != min_block, "loop_block and min_block must be different because block boundary is needed between");
4925
4926          optimal_split_pos = find_optimal_split_pos(min_block, loop_block, loop_block->last_lir_instruction_id() + 2);
4927          if (optimal_split_pos == loop_block->last_lir_instruction_id() + 2) {
4928            optimal_split_pos = -1;
4929            TRACE_LINEAR_SCAN(4, tty->print_cr("      loop optimization not necessary"));
4930          } else {
4931            TRACE_LINEAR_SCAN(4, tty->print_cr("      loop optimization successful"));
4932          }
4933        }
4934      }
4935
4936      if (optimal_split_pos == -1) {
4937        // not calculated by loop optimization
4938        optimal_split_pos = find_optimal_split_pos(min_block, max_block, max_split_pos);
4939      }
4940    }
4941  }
4942  TRACE_LINEAR_SCAN(4, tty->print_cr("      optimal split position: %d", optimal_split_pos));
4943
4944  return optimal_split_pos;
4945}
4946
4947
4948/*
4949  split an interval at the optimal position between min_split_pos and
4950  max_split_pos in two parts:
4951  1) the left part has already a location assigned
4952  2) the right part is sorted into to the unhandled-list
4953*/
4954void LinearScanWalker::split_before_usage(Interval* it, int min_split_pos, int max_split_pos) {
4955  TRACE_LINEAR_SCAN(2, tty->print   ("----- splitting interval: "); it->print());
4956  TRACE_LINEAR_SCAN(2, tty->print_cr("      between %d and %d", min_split_pos, max_split_pos));
4957
4958  assert(it->from() < min_split_pos,         "cannot split at start of interval");
4959  assert(current_position() < min_split_pos, "cannot split before current position");
4960  assert(min_split_pos <= max_split_pos,     "invalid order");
4961  assert(max_split_pos <= it->to(),          "cannot split after end of interval");
4962
4963  int optimal_split_pos = find_optimal_split_pos(it, min_split_pos, max_split_pos, true);
4964
4965  assert(min_split_pos <= optimal_split_pos && optimal_split_pos <= max_split_pos, "out of range");
4966  assert(optimal_split_pos <= it->to(),  "cannot split after end of interval");
4967  assert(optimal_split_pos > it->from(), "cannot split at start of interval");
4968
4969  if (optimal_split_pos == it->to() && it->next_usage(mustHaveRegister, min_split_pos) == max_jint) {
4970    // the split position would be just before the end of the interval
4971    // -> no split at all necessary
4972    TRACE_LINEAR_SCAN(4, tty->print_cr("      no split necessary because optimal split position is at end of interval"));
4973    return;
4974  }
4975
4976  // must calculate this before the actual split is performed and before split position is moved to odd op_id
4977  bool move_necessary = !allocator()->is_block_begin(optimal_split_pos) && !it->has_hole_between(optimal_split_pos - 1, optimal_split_pos);
4978
4979  if (!allocator()->is_block_begin(optimal_split_pos)) {
4980    // move position before actual instruction (odd op_id)
4981    optimal_split_pos = (optimal_split_pos - 1) | 1;
4982  }
4983
4984  TRACE_LINEAR_SCAN(4, tty->print_cr("      splitting at position %d", optimal_split_pos));
4985  assert(allocator()->is_block_begin(optimal_split_pos) || (optimal_split_pos % 2 == 1), "split pos must be odd when not on block boundary");
4986  assert(!allocator()->is_block_begin(optimal_split_pos) || (optimal_split_pos % 2 == 0), "split pos must be even on block boundary");
4987
4988  Interval* split_part = it->split(optimal_split_pos);
4989
4990  allocator()->append_interval(split_part);
4991  allocator()->copy_register_flags(it, split_part);
4992  split_part->set_insert_move_when_activated(move_necessary);
4993  append_to_unhandled(unhandled_first_addr(anyKind), split_part);
4994
4995  TRACE_LINEAR_SCAN(2, tty->print_cr("      split interval in two parts (insert_move_when_activated: %d)", move_necessary));
4996  TRACE_LINEAR_SCAN(2, tty->print   ("      "); it->print());
4997  TRACE_LINEAR_SCAN(2, tty->print   ("      "); split_part->print());
4998}
4999
5000/*
5001  split an interval at the optimal position between min_split_pos and
5002  max_split_pos in two parts:
5003  1) the left part has already a location assigned
5004  2) the right part is always on the stack and therefore ignored in further processing
5005*/
5006void LinearScanWalker::split_for_spilling(Interval* it) {
5007  // calculate allowed range of splitting position
5008  int max_split_pos = current_position();
5009  int min_split_pos = MAX2(it->previous_usage(shouldHaveRegister, max_split_pos) + 1, it->from());
5010
5011  TRACE_LINEAR_SCAN(2, tty->print   ("----- splitting and spilling interval: "); it->print());
5012  TRACE_LINEAR_SCAN(2, tty->print_cr("      between %d and %d", min_split_pos, max_split_pos));
5013
5014  assert(it->state() == activeState,     "why spill interval that is not active?");
5015  assert(it->from() <= min_split_pos,    "cannot split before start of interval");
5016  assert(min_split_pos <= max_split_pos, "invalid order");
5017  assert(max_split_pos < it->to(),       "cannot split at end end of interval");
5018  assert(current_position() < it->to(),  "interval must not end before current position");
5019
5020  if (min_split_pos == it->from()) {
5021    // the whole interval is never used, so spill it entirely to memory
5022    TRACE_LINEAR_SCAN(2, tty->print_cr("      spilling entire interval because split pos is at beginning of interval"));
5023    assert(it->first_usage(shouldHaveRegister) > current_position(), "interval must not have use position before current_position");
5024
5025    allocator()->assign_spill_slot(it);
5026    allocator()->change_spill_state(it, min_split_pos);
5027
5028    // Also kick parent intervals out of register to memory when they have no use
5029    // position. This avoids short interval in register surrounded by intervals in
5030    // memory -> avoid useless moves from memory to register and back
5031    Interval* parent = it;
5032    while (parent != NULL && parent->is_split_child()) {
5033      parent = parent->split_child_before_op_id(parent->from());
5034
5035      if (parent->assigned_reg() < LinearScan::nof_regs) {
5036        if (parent->first_usage(shouldHaveRegister) == max_jint) {
5037          // parent is never used, so kick it out of its assigned register
5038          TRACE_LINEAR_SCAN(4, tty->print_cr("      kicking out interval %d out of its register because it is never used", parent->reg_num()));
5039          allocator()->assign_spill_slot(parent);
5040        } else {
5041          // do not go further back because the register is actually used by the interval
5042          parent = NULL;
5043        }
5044      }
5045    }
5046
5047  } else {
5048    // search optimal split pos, split interval and spill only the right hand part
5049    int optimal_split_pos = find_optimal_split_pos(it, min_split_pos, max_split_pos, false);
5050
5051    assert(min_split_pos <= optimal_split_pos && optimal_split_pos <= max_split_pos, "out of range");
5052    assert(optimal_split_pos < it->to(), "cannot split at end of interval");
5053    assert(optimal_split_pos >= it->from(), "cannot split before start of interval");
5054
5055    if (!allocator()->is_block_begin(optimal_split_pos)) {
5056      // move position before actual instruction (odd op_id)
5057      optimal_split_pos = (optimal_split_pos - 1) | 1;
5058    }
5059
5060    TRACE_LINEAR_SCAN(4, tty->print_cr("      splitting at position %d", optimal_split_pos));
5061    assert(allocator()->is_block_begin(optimal_split_pos)  || (optimal_split_pos % 2 == 1), "split pos must be odd when not on block boundary");
5062    assert(!allocator()->is_block_begin(optimal_split_pos) || (optimal_split_pos % 2 == 0), "split pos must be even on block boundary");
5063
5064    Interval* spilled_part = it->split(optimal_split_pos);
5065    allocator()->append_interval(spilled_part);
5066    allocator()->assign_spill_slot(spilled_part);
5067    allocator()->change_spill_state(spilled_part, optimal_split_pos);
5068
5069    if (!allocator()->is_block_begin(optimal_split_pos)) {
5070      TRACE_LINEAR_SCAN(4, tty->print_cr("      inserting move from interval %d to %d", it->reg_num(), spilled_part->reg_num()));
5071      insert_move(optimal_split_pos, it, spilled_part);
5072    }
5073
5074    // the current_split_child is needed later when moves are inserted for reloading
5075    assert(spilled_part->current_split_child() == it, "overwriting wrong current_split_child");
5076    spilled_part->make_current_split_child();
5077
5078    TRACE_LINEAR_SCAN(2, tty->print_cr("      split interval in two parts"));
5079    TRACE_LINEAR_SCAN(2, tty->print   ("      "); it->print());
5080    TRACE_LINEAR_SCAN(2, tty->print   ("      "); spilled_part->print());
5081  }
5082}
5083
5084
5085void LinearScanWalker::split_stack_interval(Interval* it) {
5086  int min_split_pos = current_position() + 1;
5087  int max_split_pos = MIN2(it->first_usage(shouldHaveRegister), it->to());
5088
5089  split_before_usage(it, min_split_pos, max_split_pos);
5090}
5091
5092void LinearScanWalker::split_when_partial_register_available(Interval* it, int register_available_until) {
5093  int min_split_pos = MAX2(it->previous_usage(shouldHaveRegister, register_available_until), it->from() + 1);
5094  int max_split_pos = register_available_until;
5095
5096  split_before_usage(it, min_split_pos, max_split_pos);
5097}
5098
5099void LinearScanWalker::split_and_spill_interval(Interval* it) {
5100  assert(it->state() == activeState || it->state() == inactiveState, "other states not allowed");
5101
5102  int current_pos = current_position();
5103  if (it->state() == inactiveState) {
5104    // the interval is currently inactive, so no spill slot is needed for now.
5105    // when the split part is activated, the interval has a new chance to get a register,
5106    // so in the best case no stack slot is necessary
5107    assert(it->has_hole_between(current_pos - 1, current_pos + 1), "interval can not be inactive otherwise");
5108    split_before_usage(it, current_pos + 1, current_pos + 1);
5109
5110  } else {
5111    // search the position where the interval must have a register and split
5112    // at the optimal position before.
5113    // The new created part is added to the unhandled list and will get a register
5114    // when it is activated
5115    int min_split_pos = current_pos + 1;
5116    int max_split_pos = MIN2(it->next_usage(mustHaveRegister, min_split_pos), it->to());
5117
5118    split_before_usage(it, min_split_pos, max_split_pos);
5119
5120    assert(it->next_usage(mustHaveRegister, current_pos) == max_jint, "the remaining part is spilled to stack and therefore has no register");
5121    split_for_spilling(it);
5122  }
5123}
5124
5125
5126int LinearScanWalker::find_free_reg(int reg_needed_until, int interval_to, int hint_reg, int ignore_reg, bool* need_split) {
5127  int min_full_reg = any_reg;
5128  int max_partial_reg = any_reg;
5129
5130  for (int i = _first_reg; i <= _last_reg; i++) {
5131    if (i == ignore_reg) {
5132      // this register must be ignored
5133
5134    } else if (_use_pos[i] >= interval_to) {
5135      // this register is free for the full interval
5136      if (min_full_reg == any_reg || i == hint_reg || (_use_pos[i] < _use_pos[min_full_reg] && min_full_reg != hint_reg)) {
5137        min_full_reg = i;
5138      }
5139    } else if (_use_pos[i] > reg_needed_until) {
5140      // this register is at least free until reg_needed_until
5141      if (max_partial_reg == any_reg || i == hint_reg || (_use_pos[i] > _use_pos[max_partial_reg] && max_partial_reg != hint_reg)) {
5142        max_partial_reg = i;
5143      }
5144    }
5145  }
5146
5147  if (min_full_reg != any_reg) {
5148    return min_full_reg;
5149  } else if (max_partial_reg != any_reg) {
5150    *need_split = true;
5151    return max_partial_reg;
5152  } else {
5153    return any_reg;
5154  }
5155}
5156
5157int LinearScanWalker::find_free_double_reg(int reg_needed_until, int interval_to, int hint_reg, bool* need_split) {
5158  assert((_last_reg - _first_reg + 1) % 2 == 0, "adjust algorithm");
5159
5160  int min_full_reg = any_reg;
5161  int max_partial_reg = any_reg;
5162
5163  for (int i = _first_reg; i < _last_reg; i+=2) {
5164    if (_use_pos[i] >= interval_to && _use_pos[i + 1] >= interval_to) {
5165      // this register is free for the full interval
5166      if (min_full_reg == any_reg || i == hint_reg || (_use_pos[i] < _use_pos[min_full_reg] && min_full_reg != hint_reg)) {
5167        min_full_reg = i;
5168      }
5169    } else if (_use_pos[i] > reg_needed_until && _use_pos[i + 1] > reg_needed_until) {
5170      // this register is at least free until reg_needed_until
5171      if (max_partial_reg == any_reg || i == hint_reg || (_use_pos[i] > _use_pos[max_partial_reg] && max_partial_reg != hint_reg)) {
5172        max_partial_reg = i;
5173      }
5174    }
5175  }
5176
5177  if (min_full_reg != any_reg) {
5178    return min_full_reg;
5179  } else if (max_partial_reg != any_reg) {
5180    *need_split = true;
5181    return max_partial_reg;
5182  } else {
5183    return any_reg;
5184  }
5185}
5186
5187
5188bool LinearScanWalker::alloc_free_reg(Interval* cur) {
5189  TRACE_LINEAR_SCAN(2, tty->print("trying to find free register for "); cur->print());
5190
5191  init_use_lists(true);
5192  free_exclude_active_fixed();
5193  free_exclude_active_any();
5194  free_collect_inactive_fixed(cur);
5195  free_collect_inactive_any(cur);
5196//  free_collect_unhandled(fixedKind, cur);
5197  assert(unhandled_first(fixedKind) == Interval::end(), "must not have unhandled fixed intervals because all fixed intervals have a use at position 0");
5198
5199  // _use_pos contains the start of the next interval that has this register assigned
5200  // (either as a fixed register or a normal allocated register in the past)
5201  // only intervals overlapping with cur are processed, non-overlapping invervals can be ignored safely
5202  TRACE_LINEAR_SCAN(4, tty->print_cr("      state of registers:"));
5203  TRACE_LINEAR_SCAN(4, for (int i = _first_reg; i <= _last_reg; i++) tty->print_cr("      reg %d: use_pos: %d", i, _use_pos[i]));
5204
5205  int hint_reg, hint_regHi;
5206  Interval* register_hint = cur->register_hint();
5207  if (register_hint != NULL) {
5208    hint_reg = register_hint->assigned_reg();
5209    hint_regHi = register_hint->assigned_regHi();
5210
5211    if (allocator()->is_precolored_cpu_interval(register_hint)) {
5212      assert(hint_reg != any_reg && hint_regHi == any_reg, "must be for fixed intervals");
5213      hint_regHi = hint_reg + 1;  // connect e.g. eax-edx
5214    }
5215    TRACE_LINEAR_SCAN(4, tty->print("      hint registers %d, %d from interval ", hint_reg, hint_regHi); register_hint->print());
5216
5217  } else {
5218    hint_reg = any_reg;
5219    hint_regHi = any_reg;
5220  }
5221  assert(hint_reg == any_reg || hint_reg != hint_regHi, "hint reg and regHi equal");
5222  assert(cur->assigned_reg() == any_reg && cur->assigned_regHi() == any_reg, "register already assigned to interval");
5223
5224  // the register must be free at least until this position
5225  int reg_needed_until = cur->from() + 1;
5226  int interval_to = cur->to();
5227
5228  bool need_split = false;
5229  int split_pos = -1;
5230  int reg = any_reg;
5231  int regHi = any_reg;
5232
5233  if (_adjacent_regs) {
5234    reg = find_free_double_reg(reg_needed_until, interval_to, hint_reg, &need_split);
5235    regHi = reg + 1;
5236    if (reg == any_reg) {
5237      return false;
5238    }
5239    split_pos = MIN2(_use_pos[reg], _use_pos[regHi]);
5240
5241  } else {
5242    reg = find_free_reg(reg_needed_until, interval_to, hint_reg, any_reg, &need_split);
5243    if (reg == any_reg) {
5244      return false;
5245    }
5246    split_pos = _use_pos[reg];
5247
5248    if (_num_phys_regs == 2) {
5249      regHi = find_free_reg(reg_needed_until, interval_to, hint_regHi, reg, &need_split);
5250
5251      if (_use_pos[reg] < interval_to && regHi == any_reg) {
5252        // do not split interval if only one register can be assigned until the split pos
5253        // (when one register is found for the whole interval, split&spill is only
5254        // performed for the hi register)
5255        return false;
5256
5257      } else if (regHi != any_reg) {
5258        split_pos = MIN2(split_pos, _use_pos[regHi]);
5259
5260        // sort register numbers to prevent e.g. a move from eax,ebx to ebx,eax
5261        if (reg > regHi) {
5262          int temp = reg;
5263          reg = regHi;
5264          regHi = temp;
5265        }
5266      }
5267    }
5268  }
5269
5270  cur->assign_reg(reg, regHi);
5271  TRACE_LINEAR_SCAN(2, tty->print_cr("selected register %d, %d", reg, regHi));
5272
5273  assert(split_pos > 0, "invalid split_pos");
5274  if (need_split) {
5275    // register not available for full interval, so split it
5276    split_when_partial_register_available(cur, split_pos);
5277  }
5278
5279  // only return true if interval is completely assigned
5280  return _num_phys_regs == 1 || regHi != any_reg;
5281}
5282
5283
5284int LinearScanWalker::find_locked_reg(int reg_needed_until, int interval_to, int hint_reg, int ignore_reg, bool* need_split) {
5285  int max_reg = any_reg;
5286
5287  for (int i = _first_reg; i <= _last_reg; i++) {
5288    if (i == ignore_reg) {
5289      // this register must be ignored
5290
5291    } else if (_use_pos[i] > reg_needed_until) {
5292      if (max_reg == any_reg || i == hint_reg || (_use_pos[i] > _use_pos[max_reg] && max_reg != hint_reg)) {
5293        max_reg = i;
5294      }
5295    }
5296  }
5297
5298  if (max_reg != any_reg && _block_pos[max_reg] <= interval_to) {
5299    *need_split = true;
5300  }
5301
5302  return max_reg;
5303}
5304
5305int LinearScanWalker::find_locked_double_reg(int reg_needed_until, int interval_to, int hint_reg, bool* need_split) {
5306  assert((_last_reg - _first_reg + 1) % 2 == 0, "adjust algorithm");
5307
5308  int max_reg = any_reg;
5309
5310  for (int i = _first_reg; i < _last_reg; i+=2) {
5311    if (_use_pos[i] > reg_needed_until && _use_pos[i + 1] > reg_needed_until) {
5312      if (max_reg == any_reg || _use_pos[i] > _use_pos[max_reg]) {
5313        max_reg = i;
5314      }
5315    }
5316  }
5317
5318  if (_block_pos[max_reg] <= interval_to || _block_pos[max_reg + 1] <= interval_to) {
5319    *need_split = true;
5320  }
5321
5322  return max_reg;
5323}
5324
5325void LinearScanWalker::split_and_spill_intersecting_intervals(int reg, int regHi) {
5326  assert(reg != any_reg, "no register assigned");
5327
5328  for (int i = 0; i < _spill_intervals[reg]->length(); i++) {
5329    Interval* it = _spill_intervals[reg]->at(i);
5330    remove_from_list(it);
5331    split_and_spill_interval(it);
5332  }
5333
5334  if (regHi != any_reg) {
5335    IntervalList* processed = _spill_intervals[reg];
5336    for (int i = 0; i < _spill_intervals[regHi]->length(); i++) {
5337      Interval* it = _spill_intervals[regHi]->at(i);
5338      if (processed->index_of(it) == -1) {
5339        remove_from_list(it);
5340        split_and_spill_interval(it);
5341      }
5342    }
5343  }
5344}
5345
5346
5347// Split an Interval and spill it to memory so that cur can be placed in a register
5348void LinearScanWalker::alloc_locked_reg(Interval* cur) {
5349  TRACE_LINEAR_SCAN(2, tty->print("need to split and spill to get register for "); cur->print());
5350
5351  // collect current usage of registers
5352  init_use_lists(false);
5353  spill_exclude_active_fixed();
5354//  spill_block_unhandled_fixed(cur);
5355  assert(unhandled_first(fixedKind) == Interval::end(), "must not have unhandled fixed intervals because all fixed intervals have a use at position 0");
5356  spill_block_inactive_fixed(cur);
5357  spill_collect_active_any();
5358  spill_collect_inactive_any(cur);
5359
5360#ifndef PRODUCT
5361  if (TraceLinearScanLevel >= 4) {
5362    tty->print_cr("      state of registers:");
5363    for (int i = _first_reg; i <= _last_reg; i++) {
5364      tty->print("      reg %d: use_pos: %d, block_pos: %d, intervals: ", i, _use_pos[i], _block_pos[i]);
5365      for (int j = 0; j < _spill_intervals[i]->length(); j++) {
5366        tty->print("%d ", _spill_intervals[i]->at(j)->reg_num());
5367      }
5368      tty->cr();
5369    }
5370  }
5371#endif
5372
5373  // the register must be free at least until this position
5374  int reg_needed_until = MIN2(cur->first_usage(mustHaveRegister), cur->from() + 1);
5375  int interval_to = cur->to();
5376  assert (reg_needed_until > 0 && reg_needed_until < max_jint, "interval has no use");
5377
5378  int split_pos = 0;
5379  int use_pos = 0;
5380  bool need_split = false;
5381  int reg, regHi;
5382
5383  if (_adjacent_regs) {
5384    reg = find_locked_double_reg(reg_needed_until, interval_to, any_reg, &need_split);
5385    regHi = reg + 1;
5386
5387    if (reg != any_reg) {
5388      use_pos = MIN2(_use_pos[reg], _use_pos[regHi]);
5389      split_pos = MIN2(_block_pos[reg], _block_pos[regHi]);
5390    }
5391  } else {
5392    reg = find_locked_reg(reg_needed_until, interval_to, any_reg, cur->assigned_reg(), &need_split);
5393    regHi = any_reg;
5394
5395    if (reg != any_reg) {
5396      use_pos = _use_pos[reg];
5397      split_pos = _block_pos[reg];
5398
5399      if (_num_phys_regs == 2) {
5400        if (cur->assigned_reg() != any_reg) {
5401          regHi = reg;
5402          reg = cur->assigned_reg();
5403        } else {
5404          regHi = find_locked_reg(reg_needed_until, interval_to, any_reg, reg, &need_split);
5405          if (regHi != any_reg) {
5406            use_pos = MIN2(use_pos, _use_pos[regHi]);
5407            split_pos = MIN2(split_pos, _block_pos[regHi]);
5408          }
5409        }
5410
5411        if (regHi != any_reg && reg > regHi) {
5412          // sort register numbers to prevent e.g. a move from eax,ebx to ebx,eax
5413          int temp = reg;
5414          reg = regHi;
5415          regHi = temp;
5416        }
5417      }
5418    }
5419  }
5420
5421  if (reg == any_reg || (_num_phys_regs == 2 && regHi == any_reg) || use_pos <= cur->first_usage(mustHaveRegister)) {
5422    // the first use of cur is later than the spilling position -> spill cur
5423    TRACE_LINEAR_SCAN(4, tty->print_cr("able to spill current interval. first_usage(register): %d, use_pos: %d", cur->first_usage(mustHaveRegister), use_pos));
5424
5425    if (cur->first_usage(mustHaveRegister) <= cur->from() + 1) {
5426      assert(false, "cannot spill interval that is used in first instruction (possible reason: no register found)");
5427      // assign a reasonable register and do a bailout in product mode to avoid errors
5428      allocator()->assign_spill_slot(cur);
5429      BAILOUT("LinearScan: no register found");
5430    }
5431
5432    split_and_spill_interval(cur);
5433  } else {
5434    TRACE_LINEAR_SCAN(4, tty->print_cr("decided to use register %d, %d", reg, regHi));
5435    assert(reg != any_reg && (_num_phys_regs == 1 || regHi != any_reg), "no register found");
5436    assert(split_pos > 0, "invalid split_pos");
5437    assert(need_split == false || split_pos > cur->from(), "splitting interval at from");
5438
5439    cur->assign_reg(reg, regHi);
5440    if (need_split) {
5441      // register not available for full interval, so split it
5442      split_when_partial_register_available(cur, split_pos);
5443    }
5444
5445    // perform splitting and spilling for all affected intervalls
5446    split_and_spill_intersecting_intervals(reg, regHi);
5447  }
5448}
5449
5450bool LinearScanWalker::no_allocation_possible(Interval* cur) {
5451#ifdef X86
5452  // fast calculation of intervals that can never get a register because the
5453  // the next instruction is a call that blocks all registers
5454  // Note: this does not work if callee-saved registers are available (e.g. on Sparc)
5455
5456  // check if this interval is the result of a split operation
5457  // (an interval got a register until this position)
5458  int pos = cur->from();
5459  if ((pos & 1) == 1) {
5460    // the current instruction is a call that blocks all registers
5461    if (pos < allocator()->max_lir_op_id() && allocator()->has_call(pos + 1)) {
5462      TRACE_LINEAR_SCAN(4, tty->print_cr("      free register cannot be available because all registers blocked by following call"));
5463
5464      // safety check that there is really no register available
5465      assert(alloc_free_reg(cur) == false, "found a register for this interval");
5466      return true;
5467    }
5468
5469  }
5470#endif
5471  return false;
5472}
5473
5474void LinearScanWalker::init_vars_for_alloc(Interval* cur) {
5475  BasicType type = cur->type();
5476  _num_phys_regs = LinearScan::num_physical_regs(type);
5477  _adjacent_regs = LinearScan::requires_adjacent_regs(type);
5478
5479  if (pd_init_regs_for_alloc(cur)) {
5480    // the appropriate register range was selected.
5481  } else if (type == T_FLOAT || type == T_DOUBLE) {
5482    _first_reg = pd_first_fpu_reg;
5483    _last_reg = pd_last_fpu_reg;
5484  } else {
5485    _first_reg = pd_first_cpu_reg;
5486    _last_reg = pd_last_cpu_reg;
5487  }
5488
5489  assert(0 <= _first_reg && _first_reg < LinearScan::nof_regs, "out of range");
5490  assert(0 <= _last_reg && _last_reg < LinearScan::nof_regs, "out of range");
5491}
5492
5493
5494bool LinearScanWalker::is_move(LIR_Op* op, Interval* from, Interval* to) {
5495  if (op->code() != lir_move) {
5496    return false;
5497  }
5498  assert(op->as_Op1() != NULL, "move must be LIR_Op1");
5499
5500  LIR_Opr in = ((LIR_Op1*)op)->in_opr();
5501  LIR_Opr res = ((LIR_Op1*)op)->result_opr();
5502  return in->is_virtual() && res->is_virtual() && in->vreg_number() == from->reg_num() && res->vreg_number() == to->reg_num();
5503}
5504
5505// optimization (especially for phi functions of nested loops):
5506// assign same spill slot to non-intersecting intervals
5507void LinearScanWalker::combine_spilled_intervals(Interval* cur) {
5508  if (cur->is_split_child()) {
5509    // optimization is only suitable for split parents
5510    return;
5511  }
5512
5513  Interval* register_hint = cur->register_hint(false);
5514  if (register_hint == NULL) {
5515    // cur is not the target of a move, otherwise register_hint would be set
5516    return;
5517  }
5518  assert(register_hint->is_split_parent(), "register hint must be split parent");
5519
5520  if (cur->spill_state() != noOptimization || register_hint->spill_state() != noOptimization) {
5521    // combining the stack slots for intervals where spill move optimization is applied
5522    // is not benefitial and would cause problems
5523    return;
5524  }
5525
5526  int begin_pos = cur->from();
5527  int end_pos = cur->to();
5528  if (end_pos > allocator()->max_lir_op_id() || (begin_pos & 1) != 0 || (end_pos & 1) != 0) {
5529    // safety check that lir_op_with_id is allowed
5530    return;
5531  }
5532
5533  if (!is_move(allocator()->lir_op_with_id(begin_pos), register_hint, cur) || !is_move(allocator()->lir_op_with_id(end_pos), cur, register_hint)) {
5534    // cur and register_hint are not connected with two moves
5535    return;
5536  }
5537
5538  Interval* begin_hint = register_hint->split_child_at_op_id(begin_pos, LIR_OpVisitState::inputMode);
5539  Interval* end_hint = register_hint->split_child_at_op_id(end_pos, LIR_OpVisitState::outputMode);
5540  if (begin_hint == end_hint || begin_hint->to() != begin_pos || end_hint->from() != end_pos) {
5541    // register_hint must be split, otherwise the re-writing of use positions does not work
5542    return;
5543  }
5544
5545  assert(begin_hint->assigned_reg() != any_reg, "must have register assigned");
5546  assert(end_hint->assigned_reg() == any_reg, "must not have register assigned");
5547  assert(cur->first_usage(mustHaveRegister) == begin_pos, "must have use position at begin of interval because of move");
5548  assert(end_hint->first_usage(mustHaveRegister) == end_pos, "must have use position at begin of interval because of move");
5549
5550  if (begin_hint->assigned_reg() < LinearScan::nof_regs) {
5551    // register_hint is not spilled at begin_pos, so it would not be benefitial to immediately spill cur
5552    return;
5553  }
5554  assert(register_hint->canonical_spill_slot() != -1, "must be set when part of interval was spilled");
5555
5556  // modify intervals such that cur gets the same stack slot as register_hint
5557  // delete use positions to prevent the intervals to get a register at beginning
5558  cur->set_canonical_spill_slot(register_hint->canonical_spill_slot());
5559  cur->remove_first_use_pos();
5560  end_hint->remove_first_use_pos();
5561}
5562
5563
5564// allocate a physical register or memory location to an interval
5565bool LinearScanWalker::activate_current() {
5566  Interval* cur = current();
5567  bool result = true;
5568
5569  TRACE_LINEAR_SCAN(2, tty->print   ("+++++ activating interval "); cur->print());
5570  TRACE_LINEAR_SCAN(4, tty->print_cr("      split_parent: %d, insert_move_when_activated: %d", cur->split_parent()->reg_num(), cur->insert_move_when_activated()));
5571
5572  if (cur->assigned_reg() >= LinearScan::nof_regs) {
5573    // activating an interval that has a stack slot assigned -> split it at first use position
5574    // used for method parameters
5575    TRACE_LINEAR_SCAN(4, tty->print_cr("      interval has spill slot assigned (method parameter) -> split it before first use"));
5576
5577    split_stack_interval(cur);
5578    result = false;
5579
5580  } else if (allocator()->gen()->is_vreg_flag_set(cur->reg_num(), LIRGenerator::must_start_in_memory)) {
5581    // activating an interval that must start in a stack slot, but may get a register later
5582    // used for lir_roundfp: rounding is done by store to stack and reload later
5583    TRACE_LINEAR_SCAN(4, tty->print_cr("      interval must start in stack slot -> split it before first use"));
5584    assert(cur->assigned_reg() == any_reg && cur->assigned_regHi() == any_reg, "register already assigned");
5585
5586    allocator()->assign_spill_slot(cur);
5587    split_stack_interval(cur);
5588    result = false;
5589
5590  } else if (cur->assigned_reg() == any_reg) {
5591    // interval has not assigned register -> normal allocation
5592    // (this is the normal case for most intervals)
5593    TRACE_LINEAR_SCAN(4, tty->print_cr("      normal allocation of register"));
5594
5595    // assign same spill slot to non-intersecting intervals
5596    combine_spilled_intervals(cur);
5597
5598    init_vars_for_alloc(cur);
5599    if (no_allocation_possible(cur) || !alloc_free_reg(cur)) {
5600      // no empty register available.
5601      // split and spill another interval so that this interval gets a register
5602      alloc_locked_reg(cur);
5603    }
5604
5605    // spilled intervals need not be move to active-list
5606    if (cur->assigned_reg() >= LinearScan::nof_regs) {
5607      result = false;
5608    }
5609  }
5610
5611  // load spilled values that become active from stack slot to register
5612  if (cur->insert_move_when_activated()) {
5613    assert(cur->is_split_child(), "must be");
5614    assert(cur->current_split_child() != NULL, "must be");
5615    assert(cur->current_split_child()->reg_num() != cur->reg_num(), "cannot insert move between same interval");
5616    TRACE_LINEAR_SCAN(4, tty->print_cr("Inserting move from interval %d to %d because insert_move_when_activated is set", cur->current_split_child()->reg_num(), cur->reg_num()));
5617
5618    insert_move(cur->from(), cur->current_split_child(), cur);
5619  }
5620  cur->make_current_split_child();
5621
5622  return result; // true = interval is moved to active list
5623}
5624
5625
5626// Implementation of EdgeMoveOptimizer
5627
5628EdgeMoveOptimizer::EdgeMoveOptimizer() :
5629  _edge_instructions(4),
5630  _edge_instructions_idx(4)
5631{
5632}
5633
5634void EdgeMoveOptimizer::optimize(BlockList* code) {
5635  EdgeMoveOptimizer optimizer = EdgeMoveOptimizer();
5636
5637  // ignore the first block in the list (index 0 is not processed)
5638  for (int i = code->length() - 1; i >= 1; i--) {
5639    BlockBegin* block = code->at(i);
5640
5641    if (block->number_of_preds() > 1 && !block->is_set(BlockBegin::exception_entry_flag)) {
5642      optimizer.optimize_moves_at_block_end(block);
5643    }
5644    if (block->number_of_sux() == 2) {
5645      optimizer.optimize_moves_at_block_begin(block);
5646    }
5647  }
5648}
5649
5650
5651// clear all internal data structures
5652void EdgeMoveOptimizer::init_instructions() {
5653  _edge_instructions.clear();
5654  _edge_instructions_idx.clear();
5655}
5656
5657// append a lir-instruction-list and the index of the current operation in to the list
5658void EdgeMoveOptimizer::append_instructions(LIR_OpList* instructions, int instructions_idx) {
5659  _edge_instructions.append(instructions);
5660  _edge_instructions_idx.append(instructions_idx);
5661}
5662
5663// return the current operation of the given edge (predecessor or successor)
5664LIR_Op* EdgeMoveOptimizer::instruction_at(int edge) {
5665  LIR_OpList* instructions = _edge_instructions.at(edge);
5666  int idx = _edge_instructions_idx.at(edge);
5667
5668  if (idx < instructions->length()) {
5669    return instructions->at(idx);
5670  } else {
5671    return NULL;
5672  }
5673}
5674
5675// removes the current operation of the given edge (predecessor or successor)
5676void EdgeMoveOptimizer::remove_cur_instruction(int edge, bool decrement_index) {
5677  LIR_OpList* instructions = _edge_instructions.at(edge);
5678  int idx = _edge_instructions_idx.at(edge);
5679  instructions->remove_at(idx);
5680
5681  if (decrement_index) {
5682    _edge_instructions_idx.at_put(edge, idx - 1);
5683  }
5684}
5685
5686
5687bool EdgeMoveOptimizer::operations_different(LIR_Op* op1, LIR_Op* op2) {
5688  if (op1 == NULL || op2 == NULL) {
5689    // at least one block is already empty -> no optimization possible
5690    return true;
5691  }
5692
5693  if (op1->code() == lir_move && op2->code() == lir_move) {
5694    assert(op1->as_Op1() != NULL, "move must be LIR_Op1");
5695    assert(op2->as_Op1() != NULL, "move must be LIR_Op1");
5696    LIR_Op1* move1 = (LIR_Op1*)op1;
5697    LIR_Op1* move2 = (LIR_Op1*)op2;
5698    if (move1->info() == move2->info() && move1->in_opr() == move2->in_opr() && move1->result_opr() == move2->result_opr()) {
5699      // these moves are exactly equal and can be optimized
5700      return false;
5701    }
5702
5703  } else if (op1->code() == lir_fxch && op2->code() == lir_fxch) {
5704    assert(op1->as_Op1() != NULL, "fxch must be LIR_Op1");
5705    assert(op2->as_Op1() != NULL, "fxch must be LIR_Op1");
5706    LIR_Op1* fxch1 = (LIR_Op1*)op1;
5707    LIR_Op1* fxch2 = (LIR_Op1*)op2;
5708    if (fxch1->in_opr()->as_jint() == fxch2->in_opr()->as_jint()) {
5709      // equal FPU stack operations can be optimized
5710      return false;
5711    }
5712
5713  } else if (op1->code() == lir_fpop_raw && op2->code() == lir_fpop_raw) {
5714    // equal FPU stack operations can be optimized
5715    return false;
5716  }
5717
5718  // no optimization possible
5719  return true;
5720}
5721
5722void EdgeMoveOptimizer::optimize_moves_at_block_end(BlockBegin* block) {
5723  TRACE_LINEAR_SCAN(4, tty->print_cr("optimizing moves at end of block B%d", block->block_id()));
5724
5725  if (block->is_predecessor(block)) {
5726    // currently we can't handle this correctly.
5727    return;
5728  }
5729
5730  init_instructions();
5731  int num_preds = block->number_of_preds();
5732  assert(num_preds > 1, "do not call otherwise");
5733  assert(!block->is_set(BlockBegin::exception_entry_flag), "exception handlers not allowed");
5734
5735  // setup a list with the lir-instructions of all predecessors
5736  int i;
5737  for (i = 0; i < num_preds; i++) {
5738    BlockBegin* pred = block->pred_at(i);
5739    LIR_OpList* pred_instructions = pred->lir()->instructions_list();
5740
5741    if (pred->number_of_sux() != 1) {
5742      // this can happen with switch-statements where multiple edges are between
5743      // the same blocks.
5744      return;
5745    }
5746
5747    assert(pred->number_of_sux() == 1, "can handle only one successor");
5748    assert(pred->sux_at(0) == block, "invalid control flow");
5749    assert(pred_instructions->last()->code() == lir_branch, "block with successor must end with branch");
5750    assert(pred_instructions->last()->as_OpBranch() != NULL, "branch must be LIR_OpBranch");
5751    assert(pred_instructions->last()->as_OpBranch()->cond() == lir_cond_always, "block must end with unconditional branch");
5752
5753    if (pred_instructions->last()->info() != NULL) {
5754      // can not optimize instructions when debug info is needed
5755      return;
5756    }
5757
5758    // ignore the unconditional branch at the end of the block
5759    append_instructions(pred_instructions, pred_instructions->length() - 2);
5760  }
5761
5762
5763  // process lir-instructions while all predecessors end with the same instruction
5764  while (true) {
5765    LIR_Op* op = instruction_at(0);
5766    for (i = 1; i < num_preds; i++) {
5767      if (operations_different(op, instruction_at(i))) {
5768        // these instructions are different and cannot be optimized ->
5769        // no further optimization possible
5770        return;
5771      }
5772    }
5773
5774    TRACE_LINEAR_SCAN(4, tty->print("found instruction that is equal in all %d predecessors: ", num_preds); op->print());
5775
5776    // insert the instruction at the beginning of the current block
5777    block->lir()->insert_before(1, op);
5778
5779    // delete the instruction at the end of all predecessors
5780    for (i = 0; i < num_preds; i++) {
5781      remove_cur_instruction(i, true);
5782    }
5783  }
5784}
5785
5786
5787void EdgeMoveOptimizer::optimize_moves_at_block_begin(BlockBegin* block) {
5788  TRACE_LINEAR_SCAN(4, tty->print_cr("optimization moves at begin of block B%d", block->block_id()));
5789
5790  init_instructions();
5791  int num_sux = block->number_of_sux();
5792
5793  LIR_OpList* cur_instructions = block->lir()->instructions_list();
5794
5795  assert(num_sux == 2, "method should not be called otherwise");
5796  assert(cur_instructions->last()->code() == lir_branch, "block with successor must end with branch");
5797  assert(cur_instructions->last()->as_OpBranch() != NULL, "branch must be LIR_OpBranch");
5798  assert(cur_instructions->last()->as_OpBranch()->cond() == lir_cond_always, "block must end with unconditional branch");
5799
5800  if (cur_instructions->last()->info() != NULL) {
5801    // can no optimize instructions when debug info is needed
5802    return;
5803  }
5804
5805  LIR_Op* branch = cur_instructions->at(cur_instructions->length() - 2);
5806  if (branch->info() != NULL || (branch->code() != lir_branch && branch->code() != lir_cond_float_branch)) {
5807    // not a valid case for optimization
5808    // currently, only blocks that end with two branches (conditional branch followed
5809    // by unconditional branch) are optimized
5810    return;
5811  }
5812
5813  // now it is guaranteed that the block ends with two branch instructions.
5814  // the instructions are inserted at the end of the block before these two branches
5815  int insert_idx = cur_instructions->length() - 2;
5816
5817  int i;
5818#ifdef ASSERT
5819  for (i = insert_idx - 1; i >= 0; i--) {
5820    LIR_Op* op = cur_instructions->at(i);
5821    if ((op->code() == lir_branch || op->code() == lir_cond_float_branch) && ((LIR_OpBranch*)op)->block() != NULL) {
5822      assert(false, "block with two successors can have only two branch instructions");
5823    }
5824  }
5825#endif
5826
5827  // setup a list with the lir-instructions of all successors
5828  for (i = 0; i < num_sux; i++) {
5829    BlockBegin* sux = block->sux_at(i);
5830    LIR_OpList* sux_instructions = sux->lir()->instructions_list();
5831
5832    assert(sux_instructions->at(0)->code() == lir_label, "block must start with label");
5833
5834    if (sux->number_of_preds() != 1) {
5835      // this can happen with switch-statements where multiple edges are between
5836      // the same blocks.
5837      return;
5838    }
5839    assert(sux->pred_at(0) == block, "invalid control flow");
5840    assert(!sux->is_set(BlockBegin::exception_entry_flag), "exception handlers not allowed");
5841
5842    // ignore the label at the beginning of the block
5843    append_instructions(sux_instructions, 1);
5844  }
5845
5846  // process lir-instructions while all successors begin with the same instruction
5847  while (true) {
5848    LIR_Op* op = instruction_at(0);
5849    for (i = 1; i < num_sux; i++) {
5850      if (operations_different(op, instruction_at(i))) {
5851        // these instructions are different and cannot be optimized ->
5852        // no further optimization possible
5853        return;
5854      }
5855    }
5856
5857    TRACE_LINEAR_SCAN(4, tty->print("----- found instruction that is equal in all %d successors: ", num_sux); op->print());
5858
5859    // insert instruction at end of current block
5860    block->lir()->insert_before(insert_idx, op);
5861    insert_idx++;
5862
5863    // delete the instructions at the beginning of all successors
5864    for (i = 0; i < num_sux; i++) {
5865      remove_cur_instruction(i, false);
5866    }
5867  }
5868}
5869
5870
5871// Implementation of ControlFlowOptimizer
5872
5873ControlFlowOptimizer::ControlFlowOptimizer() :
5874  _original_preds(4)
5875{
5876}
5877
5878void ControlFlowOptimizer::optimize(BlockList* code) {
5879  ControlFlowOptimizer optimizer = ControlFlowOptimizer();
5880
5881  // push the OSR entry block to the end so that we're not jumping over it.
5882  BlockBegin* osr_entry = code->at(0)->end()->as_Base()->osr_entry();
5883  if (osr_entry) {
5884    int index = osr_entry->linear_scan_number();
5885    assert(code->at(index) == osr_entry, "wrong index");
5886    code->remove_at(index);
5887    code->append(osr_entry);
5888  }
5889
5890  optimizer.reorder_short_loops(code);
5891  optimizer.delete_empty_blocks(code);
5892  optimizer.delete_unnecessary_jumps(code);
5893  optimizer.delete_jumps_to_return(code);
5894}
5895
5896void ControlFlowOptimizer::reorder_short_loop(BlockList* code, BlockBegin* header_block, int header_idx) {
5897  int i = header_idx + 1;
5898  int max_end = MIN2(header_idx + ShortLoopSize, code->length());
5899  while (i < max_end && code->at(i)->loop_depth() >= header_block->loop_depth()) {
5900    i++;
5901  }
5902
5903  if (i == code->length() || code->at(i)->loop_depth() < header_block->loop_depth()) {
5904    int end_idx = i - 1;
5905    BlockBegin* end_block = code->at(end_idx);
5906
5907    if (end_block->number_of_sux() == 1 && end_block->sux_at(0) == header_block) {
5908      // short loop from header_idx to end_idx found -> reorder blocks such that
5909      // the header_block is the last block instead of the first block of the loop
5910      TRACE_LINEAR_SCAN(1, tty->print_cr("Reordering short loop: length %d, header B%d, end B%d",
5911                                         end_idx - header_idx + 1,
5912                                         header_block->block_id(), end_block->block_id()));
5913
5914      for (int j = header_idx; j < end_idx; j++) {
5915        code->at_put(j, code->at(j + 1));
5916      }
5917      code->at_put(end_idx, header_block);
5918
5919      // correct the flags so that any loop alignment occurs in the right place.
5920      assert(code->at(end_idx)->is_set(BlockBegin::backward_branch_target_flag), "must be backward branch target");
5921      code->at(end_idx)->clear(BlockBegin::backward_branch_target_flag);
5922      code->at(header_idx)->set(BlockBegin::backward_branch_target_flag);
5923    }
5924  }
5925}
5926
5927void ControlFlowOptimizer::reorder_short_loops(BlockList* code) {
5928  for (int i = code->length() - 1; i >= 0; i--) {
5929    BlockBegin* block = code->at(i);
5930
5931    if (block->is_set(BlockBegin::linear_scan_loop_header_flag)) {
5932      reorder_short_loop(code, block, i);
5933    }
5934  }
5935
5936  DEBUG_ONLY(verify(code));
5937}
5938
5939// only blocks with exactly one successor can be deleted. Such blocks
5940// must always end with an unconditional branch to this successor
5941bool ControlFlowOptimizer::can_delete_block(BlockBegin* block) {
5942  if (block->number_of_sux() != 1 || block->number_of_exception_handlers() != 0 || block->is_entry_block()) {
5943    return false;
5944  }
5945
5946  LIR_OpList* instructions = block->lir()->instructions_list();
5947
5948  assert(instructions->length() >= 2, "block must have label and branch");
5949  assert(instructions->at(0)->code() == lir_label, "first instruction must always be a label");
5950  assert(instructions->last()->as_OpBranch() != NULL, "last instrcution must always be a branch");
5951  assert(instructions->last()->as_OpBranch()->cond() == lir_cond_always, "branch must be unconditional");
5952  assert(instructions->last()->as_OpBranch()->block() == block->sux_at(0), "branch target must be the successor");
5953
5954  // block must have exactly one successor
5955
5956  if (instructions->length() == 2 && instructions->last()->info() == NULL) {
5957    return true;
5958  }
5959  return false;
5960}
5961
5962// substitute branch targets in all branch-instructions of this blocks
5963void ControlFlowOptimizer::substitute_branch_target(BlockBegin* block, BlockBegin* target_from, BlockBegin* target_to) {
5964  TRACE_LINEAR_SCAN(3, tty->print_cr("Deleting empty block: substituting from B%d to B%d inside B%d", target_from->block_id(), target_to->block_id(), block->block_id()));
5965
5966  LIR_OpList* instructions = block->lir()->instructions_list();
5967
5968  assert(instructions->at(0)->code() == lir_label, "first instruction must always be a label");
5969  for (int i = instructions->length() - 1; i >= 1; i--) {
5970    LIR_Op* op = instructions->at(i);
5971
5972    if (op->code() == lir_branch || op->code() == lir_cond_float_branch) {
5973      assert(op->as_OpBranch() != NULL, "branch must be of type LIR_OpBranch");
5974      LIR_OpBranch* branch = (LIR_OpBranch*)op;
5975
5976      if (branch->block() == target_from) {
5977        branch->change_block(target_to);
5978      }
5979      if (branch->ublock() == target_from) {
5980        branch->change_ublock(target_to);
5981      }
5982    }
5983  }
5984}
5985
5986void ControlFlowOptimizer::delete_empty_blocks(BlockList* code) {
5987  int old_pos = 0;
5988  int new_pos = 0;
5989  int num_blocks = code->length();
5990
5991  while (old_pos < num_blocks) {
5992    BlockBegin* block = code->at(old_pos);
5993
5994    if (can_delete_block(block)) {
5995      BlockBegin* new_target = block->sux_at(0);
5996
5997      // propagate backward branch target flag for correct code alignment
5998      if (block->is_set(BlockBegin::backward_branch_target_flag)) {
5999        new_target->set(BlockBegin::backward_branch_target_flag);
6000      }
6001
6002      // collect a list with all predecessors that contains each predecessor only once
6003      // the predecessors of cur are changed during the substitution, so a copy of the
6004      // predecessor list is necessary
6005      int j;
6006      _original_preds.clear();
6007      for (j = block->number_of_preds() - 1; j >= 0; j--) {
6008        BlockBegin* pred = block->pred_at(j);
6009        if (_original_preds.index_of(pred) == -1) {
6010          _original_preds.append(pred);
6011        }
6012      }
6013
6014      for (j = _original_preds.length() - 1; j >= 0; j--) {
6015        BlockBegin* pred = _original_preds.at(j);
6016        substitute_branch_target(pred, block, new_target);
6017        pred->substitute_sux(block, new_target);
6018      }
6019    } else {
6020      // adjust position of this block in the block list if blocks before
6021      // have been deleted
6022      if (new_pos != old_pos) {
6023        code->at_put(new_pos, code->at(old_pos));
6024      }
6025      new_pos++;
6026    }
6027    old_pos++;
6028  }
6029  code->truncate(new_pos);
6030
6031  DEBUG_ONLY(verify(code));
6032}
6033
6034void ControlFlowOptimizer::delete_unnecessary_jumps(BlockList* code) {
6035  // skip the last block because there a branch is always necessary
6036  for (int i = code->length() - 2; i >= 0; i--) {
6037    BlockBegin* block = code->at(i);
6038    LIR_OpList* instructions = block->lir()->instructions_list();
6039
6040    LIR_Op* last_op = instructions->last();
6041    if (last_op->code() == lir_branch) {
6042      assert(last_op->as_OpBranch() != NULL, "branch must be of type LIR_OpBranch");
6043      LIR_OpBranch* last_branch = (LIR_OpBranch*)last_op;
6044
6045      assert(last_branch->block() != NULL, "last branch must always have a block as target");
6046      assert(last_branch->label() == last_branch->block()->label(), "must be equal");
6047
6048      if (last_branch->info() == NULL) {
6049        if (last_branch->block() == code->at(i + 1)) {
6050
6051          TRACE_LINEAR_SCAN(3, tty->print_cr("Deleting unconditional branch at end of block B%d", block->block_id()));
6052
6053          // delete last branch instruction
6054          instructions->truncate(instructions->length() - 1);
6055
6056        } else {
6057          LIR_Op* prev_op = instructions->at(instructions->length() - 2);
6058          if (prev_op->code() == lir_branch || prev_op->code() == lir_cond_float_branch) {
6059            assert(prev_op->as_OpBranch() != NULL, "branch must be of type LIR_OpBranch");
6060            LIR_OpBranch* prev_branch = (LIR_OpBranch*)prev_op;
6061
6062            if (prev_branch->block() == code->at(i + 1) && prev_branch->info() == NULL) {
6063
6064              TRACE_LINEAR_SCAN(3, tty->print_cr("Negating conditional branch and deleting unconditional branch at end of block B%d", block->block_id()));
6065
6066              // eliminate a conditional branch to the immediate successor
6067              prev_branch->change_block(last_branch->block());
6068              prev_branch->negate_cond();
6069              instructions->truncate(instructions->length() - 1);
6070            }
6071          }
6072        }
6073      }
6074    }
6075  }
6076
6077  DEBUG_ONLY(verify(code));
6078}
6079
6080void ControlFlowOptimizer::delete_jumps_to_return(BlockList* code) {
6081#ifdef ASSERT
6082  BitMap return_converted(BlockBegin::number_of_blocks());
6083  return_converted.clear();
6084#endif
6085
6086  for (int i = code->length() - 1; i >= 0; i--) {
6087    BlockBegin* block = code->at(i);
6088    LIR_OpList* cur_instructions = block->lir()->instructions_list();
6089    LIR_Op*     cur_last_op = cur_instructions->last();
6090
6091    assert(cur_instructions->at(0)->code() == lir_label, "first instruction must always be a label");
6092    if (cur_instructions->length() == 2 && cur_last_op->code() == lir_return) {
6093      // the block contains only a label and a return
6094      // if a predecessor ends with an unconditional jump to this block, then the jump
6095      // can be replaced with a return instruction
6096      //
6097      // Note: the original block with only a return statement cannot be deleted completely
6098      //       because the predecessors might have other (conditional) jumps to this block
6099      //       -> this may lead to unnecesary return instructions in the final code
6100
6101      assert(cur_last_op->info() == NULL, "return instructions do not have debug information");
6102      assert(block->number_of_sux() == 0 ||
6103             (return_converted.at(block->block_id()) && block->number_of_sux() == 1),
6104             "blocks that end with return must not have successors");
6105
6106      assert(cur_last_op->as_Op1() != NULL, "return must be LIR_Op1");
6107      LIR_Opr return_opr = ((LIR_Op1*)cur_last_op)->in_opr();
6108
6109      for (int j = block->number_of_preds() - 1; j >= 0; j--) {
6110        BlockBegin* pred = block->pred_at(j);
6111        LIR_OpList* pred_instructions = pred->lir()->instructions_list();
6112        LIR_Op*     pred_last_op = pred_instructions->last();
6113
6114        if (pred_last_op->code() == lir_branch) {
6115          assert(pred_last_op->as_OpBranch() != NULL, "branch must be LIR_OpBranch");
6116          LIR_OpBranch* pred_last_branch = (LIR_OpBranch*)pred_last_op;
6117
6118          if (pred_last_branch->block() == block && pred_last_branch->cond() == lir_cond_always && pred_last_branch->info() == NULL) {
6119            // replace the jump to a return with a direct return
6120            // Note: currently the edge between the blocks is not deleted
6121            pred_instructions->at_put(pred_instructions->length() - 1, new LIR_Op1(lir_return, return_opr));
6122#ifdef ASSERT
6123            return_converted.set_bit(pred->block_id());
6124#endif
6125          }
6126        }
6127      }
6128    }
6129  }
6130}
6131
6132
6133#ifdef ASSERT
6134void ControlFlowOptimizer::verify(BlockList* code) {
6135  for (int i = 0; i < code->length(); i++) {
6136    BlockBegin* block = code->at(i);
6137    LIR_OpList* instructions = block->lir()->instructions_list();
6138
6139    int j;
6140    for (j = 0; j < instructions->length(); j++) {
6141      LIR_OpBranch* op_branch = instructions->at(j)->as_OpBranch();
6142
6143      if (op_branch != NULL) {
6144        assert(op_branch->block() == NULL || code->index_of(op_branch->block()) != -1, "branch target not valid");
6145        assert(op_branch->ublock() == NULL || code->index_of(op_branch->ublock()) != -1, "branch target not valid");
6146      }
6147    }
6148
6149    for (j = 0; j < block->number_of_sux() - 1; j++) {
6150      BlockBegin* sux = block->sux_at(j);
6151      assert(code->index_of(sux) != -1, "successor not valid");
6152    }
6153
6154    for (j = 0; j < block->number_of_preds() - 1; j++) {
6155      BlockBegin* pred = block->pred_at(j);
6156      assert(code->index_of(pred) != -1, "successor not valid");
6157    }
6158  }
6159}
6160#endif
6161
6162
6163#ifndef PRODUCT
6164
6165// Implementation of LinearStatistic
6166
6167const char* LinearScanStatistic::counter_name(int counter_idx) {
6168  switch (counter_idx) {
6169    case counter_method:          return "compiled methods";
6170    case counter_fpu_method:      return "methods using fpu";
6171    case counter_loop_method:     return "methods with loops";
6172    case counter_exception_method:return "methods with xhandler";
6173
6174    case counter_loop:            return "loops";
6175    case counter_block:           return "blocks";
6176    case counter_loop_block:      return "blocks inside loop";
6177    case counter_exception_block: return "exception handler entries";
6178    case counter_interval:        return "intervals";
6179    case counter_fixed_interval:  return "fixed intervals";
6180    case counter_range:           return "ranges";
6181    case counter_fixed_range:     return "fixed ranges";
6182    case counter_use_pos:         return "use positions";
6183    case counter_fixed_use_pos:   return "fixed use positions";
6184    case counter_spill_slots:     return "spill slots";
6185
6186    // counter for classes of lir instructions
6187    case counter_instruction:     return "total instructions";
6188    case counter_label:           return "labels";
6189    case counter_entry:           return "method entries";
6190    case counter_return:          return "method returns";
6191    case counter_call:            return "method calls";
6192    case counter_move:            return "moves";
6193    case counter_cmp:             return "compare";
6194    case counter_cond_branch:     return "conditional branches";
6195    case counter_uncond_branch:   return "unconditional branches";
6196    case counter_stub_branch:     return "branches to stub";
6197    case counter_alu:             return "artithmetic + logic";
6198    case counter_alloc:           return "allocations";
6199    case counter_sync:            return "synchronisation";
6200    case counter_throw:           return "throw";
6201    case counter_unwind:          return "unwind";
6202    case counter_typecheck:       return "type+null-checks";
6203    case counter_fpu_stack:       return "fpu-stack";
6204    case counter_misc_inst:       return "other instructions";
6205    case counter_other_inst:      return "misc. instructions";
6206
6207    // counter for different types of moves
6208    case counter_move_total:      return "total moves";
6209    case counter_move_reg_reg:    return "register->register";
6210    case counter_move_reg_stack:  return "register->stack";
6211    case counter_move_stack_reg:  return "stack->register";
6212    case counter_move_stack_stack:return "stack->stack";
6213    case counter_move_reg_mem:    return "register->memory";
6214    case counter_move_mem_reg:    return "memory->register";
6215    case counter_move_const_any:  return "constant->any";
6216
6217    case blank_line_1:            return "";
6218    case blank_line_2:            return "";
6219
6220    default: ShouldNotReachHere(); return "";
6221  }
6222}
6223
6224LinearScanStatistic::Counter LinearScanStatistic::base_counter(int counter_idx) {
6225  if (counter_idx == counter_fpu_method || counter_idx == counter_loop_method || counter_idx == counter_exception_method) {
6226    return counter_method;
6227  } else if (counter_idx == counter_loop_block || counter_idx == counter_exception_block) {
6228    return counter_block;
6229  } else if (counter_idx >= counter_instruction && counter_idx <= counter_other_inst) {
6230    return counter_instruction;
6231  } else if (counter_idx >= counter_move_total && counter_idx <= counter_move_const_any) {
6232    return counter_move_total;
6233  }
6234  return invalid_counter;
6235}
6236
6237LinearScanStatistic::LinearScanStatistic() {
6238  for (int i = 0; i < number_of_counters; i++) {
6239    _counters_sum[i] = 0;
6240    _counters_max[i] = -1;
6241  }
6242
6243}
6244
6245// add the method-local numbers to the total sum
6246void LinearScanStatistic::sum_up(LinearScanStatistic &method_statistic) {
6247  for (int i = 0; i < number_of_counters; i++) {
6248    _counters_sum[i] += method_statistic._counters_sum[i];
6249    _counters_max[i] = MAX2(_counters_max[i], method_statistic._counters_sum[i]);
6250  }
6251}
6252
6253void LinearScanStatistic::print(const char* title) {
6254  if (CountLinearScan || TraceLinearScanLevel > 0) {
6255    tty->cr();
6256    tty->print_cr("***** LinearScan statistic - %s *****", title);
6257
6258    for (int i = 0; i < number_of_counters; i++) {
6259      if (_counters_sum[i] > 0 || _counters_max[i] >= 0) {
6260        tty->print("%25s: %8d", counter_name(i), _counters_sum[i]);
6261
6262        if (base_counter(i) != invalid_counter) {
6263          tty->print("  (%5.1f%%) ", _counters_sum[i] * 100.0 / _counters_sum[base_counter(i)]);
6264        } else {
6265          tty->print("           ");
6266        }
6267
6268        if (_counters_max[i] >= 0) {
6269          tty->print("%8d", _counters_max[i]);
6270        }
6271      }
6272      tty->cr();
6273    }
6274  }
6275}
6276
6277void LinearScanStatistic::collect(LinearScan* allocator) {
6278  inc_counter(counter_method);
6279  if (allocator->has_fpu_registers()) {
6280    inc_counter(counter_fpu_method);
6281  }
6282  if (allocator->num_loops() > 0) {
6283    inc_counter(counter_loop_method);
6284  }
6285  inc_counter(counter_loop, allocator->num_loops());
6286  inc_counter(counter_spill_slots, allocator->max_spills());
6287
6288  int i;
6289  for (i = 0; i < allocator->interval_count(); i++) {
6290    Interval* cur = allocator->interval_at(i);
6291
6292    if (cur != NULL) {
6293      inc_counter(counter_interval);
6294      inc_counter(counter_use_pos, cur->num_use_positions());
6295      if (LinearScan::is_precolored_interval(cur)) {
6296        inc_counter(counter_fixed_interval);
6297        inc_counter(counter_fixed_use_pos, cur->num_use_positions());
6298      }
6299
6300      Range* range = cur->first();
6301      while (range != Range::end()) {
6302        inc_counter(counter_range);
6303        if (LinearScan::is_precolored_interval(cur)) {
6304          inc_counter(counter_fixed_range);
6305        }
6306        range = range->next();
6307      }
6308    }
6309  }
6310
6311  bool has_xhandlers = false;
6312  // Note: only count blocks that are in code-emit order
6313  for (i = 0; i < allocator->ir()->code()->length(); i++) {
6314    BlockBegin* cur = allocator->ir()->code()->at(i);
6315
6316    inc_counter(counter_block);
6317    if (cur->loop_depth() > 0) {
6318      inc_counter(counter_loop_block);
6319    }
6320    if (cur->is_set(BlockBegin::exception_entry_flag)) {
6321      inc_counter(counter_exception_block);
6322      has_xhandlers = true;
6323    }
6324
6325    LIR_OpList* instructions = cur->lir()->instructions_list();
6326    for (int j = 0; j < instructions->length(); j++) {
6327      LIR_Op* op = instructions->at(j);
6328
6329      inc_counter(counter_instruction);
6330
6331      switch (op->code()) {
6332        case lir_label:           inc_counter(counter_label); break;
6333        case lir_std_entry:
6334        case lir_osr_entry:       inc_counter(counter_entry); break;
6335        case lir_return:          inc_counter(counter_return); break;
6336
6337        case lir_rtcall:
6338        case lir_static_call:
6339        case lir_optvirtual_call:
6340        case lir_virtual_call:    inc_counter(counter_call); break;
6341
6342        case lir_move: {
6343          inc_counter(counter_move);
6344          inc_counter(counter_move_total);
6345
6346          LIR_Opr in = op->as_Op1()->in_opr();
6347          LIR_Opr res = op->as_Op1()->result_opr();
6348          if (in->is_register()) {
6349            if (res->is_register()) {
6350              inc_counter(counter_move_reg_reg);
6351            } else if (res->is_stack()) {
6352              inc_counter(counter_move_reg_stack);
6353            } else if (res->is_address()) {
6354              inc_counter(counter_move_reg_mem);
6355            } else {
6356              ShouldNotReachHere();
6357            }
6358          } else if (in->is_stack()) {
6359            if (res->is_register()) {
6360              inc_counter(counter_move_stack_reg);
6361            } else {
6362              inc_counter(counter_move_stack_stack);
6363            }
6364          } else if (in->is_address()) {
6365            assert(res->is_register(), "must be");
6366            inc_counter(counter_move_mem_reg);
6367          } else if (in->is_constant()) {
6368            inc_counter(counter_move_const_any);
6369          } else {
6370            ShouldNotReachHere();
6371          }
6372          break;
6373        }
6374
6375        case lir_cmp:             inc_counter(counter_cmp); break;
6376
6377        case lir_branch:
6378        case lir_cond_float_branch: {
6379          LIR_OpBranch* branch = op->as_OpBranch();
6380          if (branch->block() == NULL) {
6381            inc_counter(counter_stub_branch);
6382          } else if (branch->cond() == lir_cond_always) {
6383            inc_counter(counter_uncond_branch);
6384          } else {
6385            inc_counter(counter_cond_branch);
6386          }
6387          break;
6388        }
6389
6390        case lir_neg:
6391        case lir_add:
6392        case lir_sub:
6393        case lir_mul:
6394        case lir_mul_strictfp:
6395        case lir_div:
6396        case lir_div_strictfp:
6397        case lir_rem:
6398        case lir_sqrt:
6399        case lir_sin:
6400        case lir_cos:
6401        case lir_abs:
6402        case lir_log10:
6403        case lir_log:
6404        case lir_logic_and:
6405        case lir_logic_or:
6406        case lir_logic_xor:
6407        case lir_shl:
6408        case lir_shr:
6409        case lir_ushr:            inc_counter(counter_alu); break;
6410
6411        case lir_alloc_object:
6412        case lir_alloc_array:     inc_counter(counter_alloc); break;
6413
6414        case lir_monaddr:
6415        case lir_lock:
6416        case lir_unlock:          inc_counter(counter_sync); break;
6417
6418        case lir_throw:           inc_counter(counter_throw); break;
6419
6420        case lir_unwind:          inc_counter(counter_unwind); break;
6421
6422        case lir_null_check:
6423        case lir_leal:
6424        case lir_instanceof:
6425        case lir_checkcast:
6426        case lir_store_check:     inc_counter(counter_typecheck); break;
6427
6428        case lir_fpop_raw:
6429        case lir_fxch:
6430        case lir_fld:             inc_counter(counter_fpu_stack); break;
6431
6432        case lir_nop:
6433        case lir_push:
6434        case lir_pop:
6435        case lir_convert:
6436        case lir_roundfp:
6437        case lir_cmove:           inc_counter(counter_misc_inst); break;
6438
6439        default:                  inc_counter(counter_other_inst); break;
6440      }
6441    }
6442  }
6443
6444  if (has_xhandlers) {
6445    inc_counter(counter_exception_method);
6446  }
6447}
6448
6449void LinearScanStatistic::compute(LinearScan* allocator, LinearScanStatistic &global_statistic) {
6450  if (CountLinearScan || TraceLinearScanLevel > 0) {
6451
6452    LinearScanStatistic local_statistic = LinearScanStatistic();
6453
6454    local_statistic.collect(allocator);
6455    global_statistic.sum_up(local_statistic);
6456
6457    if (TraceLinearScanLevel > 2) {
6458      local_statistic.print("current local statistic");
6459    }
6460  }
6461}
6462
6463
6464// Implementation of LinearTimers
6465
6466LinearScanTimers::LinearScanTimers() {
6467  for (int i = 0; i < number_of_timers; i++) {
6468    timer(i)->reset();
6469  }
6470}
6471
6472const char* LinearScanTimers::timer_name(int idx) {
6473  switch (idx) {
6474    case timer_do_nothing:               return "Nothing (Time Check)";
6475    case timer_number_instructions:      return "Number Instructions";
6476    case timer_compute_local_live_sets:  return "Local Live Sets";
6477    case timer_compute_global_live_sets: return "Global Live Sets";
6478    case timer_build_intervals:          return "Build Intervals";
6479    case timer_sort_intervals_before:    return "Sort Intervals Before";
6480    case timer_allocate_registers:       return "Allocate Registers";
6481    case timer_resolve_data_flow:        return "Resolve Data Flow";
6482    case timer_sort_intervals_after:     return "Sort Intervals After";
6483    case timer_eliminate_spill_moves:    return "Spill optimization";
6484    case timer_assign_reg_num:           return "Assign Reg Num";
6485    case timer_allocate_fpu_stack:       return "Allocate FPU Stack";
6486    case timer_optimize_lir:             return "Optimize LIR";
6487    default: ShouldNotReachHere();       return "";
6488  }
6489}
6490
6491void LinearScanTimers::begin_method() {
6492  if (TimeEachLinearScan) {
6493    // reset all timers to measure only current method
6494    for (int i = 0; i < number_of_timers; i++) {
6495      timer(i)->reset();
6496    }
6497  }
6498}
6499
6500void LinearScanTimers::end_method(LinearScan* allocator) {
6501  if (TimeEachLinearScan) {
6502
6503    double c = timer(timer_do_nothing)->seconds();
6504    double total = 0;
6505    for (int i = 1; i < number_of_timers; i++) {
6506      total += timer(i)->seconds() - c;
6507    }
6508
6509    if (total >= 0.0005) {
6510      // print all information in one line for automatic processing
6511      tty->print("@"); allocator->compilation()->method()->print_name();
6512
6513      tty->print("@ %d ", allocator->compilation()->method()->code_size());
6514      tty->print("@ %d ", allocator->block_at(allocator->block_count() - 1)->last_lir_instruction_id() / 2);
6515      tty->print("@ %d ", allocator->block_count());
6516      tty->print("@ %d ", allocator->num_virtual_regs());
6517      tty->print("@ %d ", allocator->interval_count());
6518      tty->print("@ %d ", allocator->_num_calls);
6519      tty->print("@ %d ", allocator->num_loops());
6520
6521      tty->print("@ %6.6f ", total);
6522      for (int i = 1; i < number_of_timers; i++) {
6523        tty->print("@ %4.1f ", ((timer(i)->seconds() - c) / total) * 100);
6524      }
6525      tty->cr();
6526    }
6527  }
6528}
6529
6530void LinearScanTimers::print(double total_time) {
6531  if (TimeLinearScan) {
6532    // correction value: sum of dummy-timer that only measures the time that
6533    // is necesary to start and stop itself
6534    double c = timer(timer_do_nothing)->seconds();
6535
6536    for (int i = 0; i < number_of_timers; i++) {
6537      double t = timer(i)->seconds();
6538      tty->print_cr("    %25s: %6.3f s (%4.1f%%)  corrected: %6.3f s (%4.1f%%)", timer_name(i), t, (t / total_time) * 100.0, t - c, (t - c) / (total_time - 2 * number_of_timers * c) * 100);
6539    }
6540  }
6541}
6542
6543#endif // #ifndef PRODUCT
6544