c1_LinearScan.cpp revision 1601:126ea7725993
1/*
2 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "incls/_precompiled.incl"
26#include "incls/_c1_LinearScan.cpp.incl"
27
28
29#ifndef PRODUCT
30
31  static LinearScanStatistic _stat_before_alloc;
32  static LinearScanStatistic _stat_after_asign;
33  static LinearScanStatistic _stat_final;
34
35  static LinearScanTimers _total_timer;
36
37  // helper macro for short definition of timer
38  #define TIME_LINEAR_SCAN(timer_name)  TraceTime _block_timer("", _total_timer.timer(LinearScanTimers::timer_name), TimeLinearScan || TimeEachLinearScan, Verbose);
39
40  // helper macro for short definition of trace-output inside code
41  #define TRACE_LINEAR_SCAN(level, code)       \
42    if (TraceLinearScanLevel >= level) {       \
43      code;                                    \
44    }
45
46#else
47
48  #define TIME_LINEAR_SCAN(timer_name)
49  #define TRACE_LINEAR_SCAN(level, code)
50
51#endif
52
53// Map BasicType to spill size in 32-bit words, matching VMReg's notion of words
54#ifdef _LP64
55static int type2spill_size[T_CONFLICT+1]={ -1, 0, 0, 0, 1, 1, 1, 2, 1, 1, 1, 2, 2, 2, 0, 1, -1};
56#else
57static int type2spill_size[T_CONFLICT+1]={ -1, 0, 0, 0, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 0, 1, -1};
58#endif
59
60
61// Implementation of LinearScan
62
63LinearScan::LinearScan(IR* ir, LIRGenerator* gen, FrameMap* frame_map)
64 : _compilation(ir->compilation())
65 , _ir(ir)
66 , _gen(gen)
67 , _frame_map(frame_map)
68 , _num_virtual_regs(gen->max_virtual_register_number())
69 , _has_fpu_registers(false)
70 , _num_calls(-1)
71 , _max_spills(0)
72 , _unused_spill_slot(-1)
73 , _intervals(0)   // initialized later with correct length
74 , _new_intervals_from_allocation(new IntervalList())
75 , _sorted_intervals(NULL)
76 , _lir_ops(0)     // initialized later with correct length
77 , _block_of_op(0) // initialized later with correct length
78 , _has_info(0)
79 , _has_call(0)
80 , _scope_value_cache(0) // initialized later with correct length
81 , _interval_in_loop(0, 0) // initialized later with correct length
82 , _cached_blocks(*ir->linear_scan_order())
83#ifdef X86
84 , _fpu_stack_allocator(NULL)
85#endif
86{
87  assert(this->ir() != NULL,          "check if valid");
88  assert(this->compilation() != NULL, "check if valid");
89  assert(this->gen() != NULL,         "check if valid");
90  assert(this->frame_map() != NULL,   "check if valid");
91}
92
93
94// ********** functions for converting LIR-Operands to register numbers
95//
96// Emulate a flat register file comprising physical integer registers,
97// physical floating-point registers and virtual registers, in that order.
98// Virtual registers already have appropriate numbers, since V0 is
99// the number of physical registers.
100// Returns -1 for hi word if opr is a single word operand.
101//
102// Note: the inverse operation (calculating an operand for register numbers)
103//       is done in calc_operand_for_interval()
104
105int LinearScan::reg_num(LIR_Opr opr) {
106  assert(opr->is_register(), "should not call this otherwise");
107
108  if (opr->is_virtual_register()) {
109    assert(opr->vreg_number() >= nof_regs, "found a virtual register with a fixed-register number");
110    return opr->vreg_number();
111  } else if (opr->is_single_cpu()) {
112    return opr->cpu_regnr();
113  } else if (opr->is_double_cpu()) {
114    return opr->cpu_regnrLo();
115#ifdef X86
116  } else if (opr->is_single_xmm()) {
117    return opr->fpu_regnr() + pd_first_xmm_reg;
118  } else if (opr->is_double_xmm()) {
119    return opr->fpu_regnrLo() + pd_first_xmm_reg;
120#endif
121  } else if (opr->is_single_fpu()) {
122    return opr->fpu_regnr() + pd_first_fpu_reg;
123  } else if (opr->is_double_fpu()) {
124    return opr->fpu_regnrLo() + pd_first_fpu_reg;
125  } else {
126    ShouldNotReachHere();
127    return -1;
128  }
129}
130
131int LinearScan::reg_numHi(LIR_Opr opr) {
132  assert(opr->is_register(), "should not call this otherwise");
133
134  if (opr->is_virtual_register()) {
135    return -1;
136  } else if (opr->is_single_cpu()) {
137    return -1;
138  } else if (opr->is_double_cpu()) {
139    return opr->cpu_regnrHi();
140#ifdef X86
141  } else if (opr->is_single_xmm()) {
142    return -1;
143  } else if (opr->is_double_xmm()) {
144    return -1;
145#endif
146  } else if (opr->is_single_fpu()) {
147    return -1;
148  } else if (opr->is_double_fpu()) {
149    return opr->fpu_regnrHi() + pd_first_fpu_reg;
150  } else {
151    ShouldNotReachHere();
152    return -1;
153  }
154}
155
156
157// ********** functions for classification of intervals
158
159bool LinearScan::is_precolored_interval(const Interval* i) {
160  return i->reg_num() < LinearScan::nof_regs;
161}
162
163bool LinearScan::is_virtual_interval(const Interval* i) {
164  return i->reg_num() >= LIR_OprDesc::vreg_base;
165}
166
167bool LinearScan::is_precolored_cpu_interval(const Interval* i) {
168  return i->reg_num() < LinearScan::nof_cpu_regs;
169}
170
171bool LinearScan::is_virtual_cpu_interval(const Interval* i) {
172#if defined(__SOFTFP__) || defined(E500V2)
173  return i->reg_num() >= LIR_OprDesc::vreg_base;
174#else
175  return i->reg_num() >= LIR_OprDesc::vreg_base && (i->type() != T_FLOAT && i->type() != T_DOUBLE);
176#endif // __SOFTFP__ or E500V2
177}
178
179bool LinearScan::is_precolored_fpu_interval(const Interval* i) {
180  return i->reg_num() >= LinearScan::nof_cpu_regs && i->reg_num() < LinearScan::nof_regs;
181}
182
183bool LinearScan::is_virtual_fpu_interval(const Interval* i) {
184#if defined(__SOFTFP__) || defined(E500V2)
185  return false;
186#else
187  return i->reg_num() >= LIR_OprDesc::vreg_base && (i->type() == T_FLOAT || i->type() == T_DOUBLE);
188#endif // __SOFTFP__ or E500V2
189}
190
191bool LinearScan::is_in_fpu_register(const Interval* i) {
192  // fixed intervals not needed for FPU stack allocation
193  return i->reg_num() >= nof_regs && pd_first_fpu_reg <= i->assigned_reg() && i->assigned_reg() <= pd_last_fpu_reg;
194}
195
196bool LinearScan::is_oop_interval(const Interval* i) {
197  // fixed intervals never contain oops
198  return i->reg_num() >= nof_regs && i->type() == T_OBJECT;
199}
200
201
202// ********** General helper functions
203
204// compute next unused stack index that can be used for spilling
205int LinearScan::allocate_spill_slot(bool double_word) {
206  int spill_slot;
207  if (double_word) {
208    if ((_max_spills & 1) == 1) {
209      // alignment of double-word values
210      // the hole because of the alignment is filled with the next single-word value
211      assert(_unused_spill_slot == -1, "wasting a spill slot");
212      _unused_spill_slot = _max_spills;
213      _max_spills++;
214    }
215    spill_slot = _max_spills;
216    _max_spills += 2;
217
218  } else if (_unused_spill_slot != -1) {
219    // re-use hole that was the result of a previous double-word alignment
220    spill_slot = _unused_spill_slot;
221    _unused_spill_slot = -1;
222
223  } else {
224    spill_slot = _max_spills;
225    _max_spills++;
226  }
227
228  int result = spill_slot + LinearScan::nof_regs + frame_map()->argcount();
229
230  // the class OopMapValue uses only 11 bits for storing the name of the
231  // oop location. So a stack slot bigger than 2^11 leads to an overflow
232  // that is not reported in product builds. Prevent this by checking the
233  // spill slot here (altough this value and the later used location name
234  // are slightly different)
235  if (result > 2000) {
236    bailout("too many stack slots used");
237  }
238
239  return result;
240}
241
242void LinearScan::assign_spill_slot(Interval* it) {
243  // assign the canonical spill slot of the parent (if a part of the interval
244  // is already spilled) or allocate a new spill slot
245  if (it->canonical_spill_slot() >= 0) {
246    it->assign_reg(it->canonical_spill_slot());
247  } else {
248    int spill = allocate_spill_slot(type2spill_size[it->type()] == 2);
249    it->set_canonical_spill_slot(spill);
250    it->assign_reg(spill);
251  }
252}
253
254void LinearScan::propagate_spill_slots() {
255  if (!frame_map()->finalize_frame(max_spills())) {
256    bailout("frame too large");
257  }
258}
259
260// create a new interval with a predefined reg_num
261// (only used for parent intervals that are created during the building phase)
262Interval* LinearScan::create_interval(int reg_num) {
263  assert(_intervals.at(reg_num) == NULL, "overwriting exisiting interval");
264
265  Interval* interval = new Interval(reg_num);
266  _intervals.at_put(reg_num, interval);
267
268  // assign register number for precolored intervals
269  if (reg_num < LIR_OprDesc::vreg_base) {
270    interval->assign_reg(reg_num);
271  }
272  return interval;
273}
274
275// assign a new reg_num to the interval and append it to the list of intervals
276// (only used for child intervals that are created during register allocation)
277void LinearScan::append_interval(Interval* it) {
278  it->set_reg_num(_intervals.length());
279  _intervals.append(it);
280  _new_intervals_from_allocation->append(it);
281}
282
283// copy the vreg-flags if an interval is split
284void LinearScan::copy_register_flags(Interval* from, Interval* to) {
285  if (gen()->is_vreg_flag_set(from->reg_num(), LIRGenerator::byte_reg)) {
286    gen()->set_vreg_flag(to->reg_num(), LIRGenerator::byte_reg);
287  }
288  if (gen()->is_vreg_flag_set(from->reg_num(), LIRGenerator::callee_saved)) {
289    gen()->set_vreg_flag(to->reg_num(), LIRGenerator::callee_saved);
290  }
291
292  // Note: do not copy the must_start_in_memory flag because it is not necessary for child
293  //       intervals (only the very beginning of the interval must be in memory)
294}
295
296
297// ********** spill move optimization
298// eliminate moves from register to stack if stack slot is known to be correct
299
300// called during building of intervals
301void LinearScan::change_spill_definition_pos(Interval* interval, int def_pos) {
302  assert(interval->is_split_parent(), "can only be called for split parents");
303
304  switch (interval->spill_state()) {
305    case noDefinitionFound:
306      assert(interval->spill_definition_pos() == -1, "must no be set before");
307      interval->set_spill_definition_pos(def_pos);
308      interval->set_spill_state(oneDefinitionFound);
309      break;
310
311    case oneDefinitionFound:
312      assert(def_pos <= interval->spill_definition_pos(), "positions are processed in reverse order when intervals are created");
313      if (def_pos < interval->spill_definition_pos() - 2) {
314        // second definition found, so no spill optimization possible for this interval
315        interval->set_spill_state(noOptimization);
316      } else {
317        // two consecutive definitions (because of two-operand LIR form)
318        assert(block_of_op_with_id(def_pos) == block_of_op_with_id(interval->spill_definition_pos()), "block must be equal");
319      }
320      break;
321
322    case noOptimization:
323      // nothing to do
324      break;
325
326    default:
327      assert(false, "other states not allowed at this time");
328  }
329}
330
331// called during register allocation
332void LinearScan::change_spill_state(Interval* interval, int spill_pos) {
333  switch (interval->spill_state()) {
334    case oneDefinitionFound: {
335      int def_loop_depth = block_of_op_with_id(interval->spill_definition_pos())->loop_depth();
336      int spill_loop_depth = block_of_op_with_id(spill_pos)->loop_depth();
337
338      if (def_loop_depth < spill_loop_depth) {
339        // the loop depth of the spilling position is higher then the loop depth
340        // at the definition of the interval -> move write to memory out of loop
341        // by storing at definitin of the interval
342        interval->set_spill_state(storeAtDefinition);
343      } else {
344        // the interval is currently spilled only once, so for now there is no
345        // reason to store the interval at the definition
346        interval->set_spill_state(oneMoveInserted);
347      }
348      break;
349    }
350
351    case oneMoveInserted: {
352      // the interval is spilled more then once, so it is better to store it to
353      // memory at the definition
354      interval->set_spill_state(storeAtDefinition);
355      break;
356    }
357
358    case storeAtDefinition:
359    case startInMemory:
360    case noOptimization:
361    case noDefinitionFound:
362      // nothing to do
363      break;
364
365    default:
366      assert(false, "other states not allowed at this time");
367  }
368}
369
370
371bool LinearScan::must_store_at_definition(const Interval* i) {
372  return i->is_split_parent() && i->spill_state() == storeAtDefinition;
373}
374
375// called once before asignment of register numbers
376void LinearScan::eliminate_spill_moves() {
377  TIME_LINEAR_SCAN(timer_eliminate_spill_moves);
378  TRACE_LINEAR_SCAN(3, tty->print_cr("***** Eliminating unnecessary spill moves"));
379
380  // collect all intervals that must be stored after their definion.
381  // the list is sorted by Interval::spill_definition_pos
382  Interval* interval;
383  Interval* temp_list;
384  create_unhandled_lists(&interval, &temp_list, must_store_at_definition, NULL);
385
386#ifdef ASSERT
387  Interval* prev = NULL;
388  Interval* temp = interval;
389  while (temp != Interval::end()) {
390    assert(temp->spill_definition_pos() > 0, "invalid spill definition pos");
391    if (prev != NULL) {
392      assert(temp->from() >= prev->from(), "intervals not sorted");
393      assert(temp->spill_definition_pos() >= prev->spill_definition_pos(), "when intervals are sorted by from, then they must also be sorted by spill_definition_pos");
394    }
395
396    assert(temp->canonical_spill_slot() >= LinearScan::nof_regs, "interval has no spill slot assigned");
397    assert(temp->spill_definition_pos() >= temp->from(), "invalid order");
398    assert(temp->spill_definition_pos() <= temp->from() + 2, "only intervals defined once at their start-pos can be optimized");
399
400    TRACE_LINEAR_SCAN(4, tty->print_cr("interval %d (from %d to %d) must be stored at %d", temp->reg_num(), temp->from(), temp->to(), temp->spill_definition_pos()));
401
402    temp = temp->next();
403  }
404#endif
405
406  LIR_InsertionBuffer insertion_buffer;
407  int num_blocks = block_count();
408  for (int i = 0; i < num_blocks; i++) {
409    BlockBegin* block = block_at(i);
410    LIR_OpList* instructions = block->lir()->instructions_list();
411    int         num_inst = instructions->length();
412    bool        has_new = false;
413
414    // iterate all instructions of the block. skip the first because it is always a label
415    for (int j = 1; j < num_inst; j++) {
416      LIR_Op* op = instructions->at(j);
417      int op_id = op->id();
418
419      if (op_id == -1) {
420        // remove move from register to stack if the stack slot is guaranteed to be correct.
421        // only moves that have been inserted by LinearScan can be removed.
422        assert(op->code() == lir_move, "only moves can have a op_id of -1");
423        assert(op->as_Op1() != NULL, "move must be LIR_Op1");
424        assert(op->as_Op1()->result_opr()->is_virtual(), "LinearScan inserts only moves to virtual registers");
425
426        LIR_Op1* op1 = (LIR_Op1*)op;
427        Interval* interval = interval_at(op1->result_opr()->vreg_number());
428
429        if (interval->assigned_reg() >= LinearScan::nof_regs && interval->always_in_memory()) {
430          // move target is a stack slot that is always correct, so eliminate instruction
431          TRACE_LINEAR_SCAN(4, tty->print_cr("eliminating move from interval %d to %d", op1->in_opr()->vreg_number(), op1->result_opr()->vreg_number()));
432          instructions->at_put(j, NULL); // NULL-instructions are deleted by assign_reg_num
433        }
434
435      } else {
436        // insert move from register to stack just after the beginning of the interval
437        assert(interval == Interval::end() || interval->spill_definition_pos() >= op_id, "invalid order");
438        assert(interval == Interval::end() || (interval->is_split_parent() && interval->spill_state() == storeAtDefinition), "invalid interval");
439
440        while (interval != Interval::end() && interval->spill_definition_pos() == op_id) {
441          if (!has_new) {
442            // prepare insertion buffer (appended when all instructions of the block are processed)
443            insertion_buffer.init(block->lir());
444            has_new = true;
445          }
446
447          LIR_Opr from_opr = operand_for_interval(interval);
448          LIR_Opr to_opr = canonical_spill_opr(interval);
449          assert(from_opr->is_fixed_cpu() || from_opr->is_fixed_fpu(), "from operand must be a register");
450          assert(to_opr->is_stack(), "to operand must be a stack slot");
451
452          insertion_buffer.move(j, from_opr, to_opr);
453          TRACE_LINEAR_SCAN(4, tty->print_cr("inserting move after definition of interval %d to stack slot %d at op_id %d", interval->reg_num(), interval->canonical_spill_slot() - LinearScan::nof_regs, op_id));
454
455          interval = interval->next();
456        }
457      }
458    } // end of instruction iteration
459
460    if (has_new) {
461      block->lir()->append(&insertion_buffer);
462    }
463  } // end of block iteration
464
465  assert(interval == Interval::end(), "missed an interval");
466}
467
468
469// ********** Phase 1: number all instructions in all blocks
470// Compute depth-first and linear scan block orders, and number LIR_Op nodes for linear scan.
471
472void LinearScan::number_instructions() {
473  {
474    // dummy-timer to measure the cost of the timer itself
475    // (this time is then subtracted from all other timers to get the real value)
476    TIME_LINEAR_SCAN(timer_do_nothing);
477  }
478  TIME_LINEAR_SCAN(timer_number_instructions);
479
480  // Assign IDs to LIR nodes and build a mapping, lir_ops, from ID to LIR_Op node.
481  int num_blocks = block_count();
482  int num_instructions = 0;
483  int i;
484  for (i = 0; i < num_blocks; i++) {
485    num_instructions += block_at(i)->lir()->instructions_list()->length();
486  }
487
488  // initialize with correct length
489  _lir_ops = LIR_OpArray(num_instructions);
490  _block_of_op = BlockBeginArray(num_instructions);
491
492  int op_id = 0;
493  int idx = 0;
494
495  for (i = 0; i < num_blocks; i++) {
496    BlockBegin* block = block_at(i);
497    block->set_first_lir_instruction_id(op_id);
498    LIR_OpList* instructions = block->lir()->instructions_list();
499
500    int num_inst = instructions->length();
501    for (int j = 0; j < num_inst; j++) {
502      LIR_Op* op = instructions->at(j);
503      op->set_id(op_id);
504
505      _lir_ops.at_put(idx, op);
506      _block_of_op.at_put(idx, block);
507      assert(lir_op_with_id(op_id) == op, "must match");
508
509      idx++;
510      op_id += 2; // numbering of lir_ops by two
511    }
512    block->set_last_lir_instruction_id(op_id - 2);
513  }
514  assert(idx == num_instructions, "must match");
515  assert(idx * 2 == op_id, "must match");
516
517  _has_call = BitMap(num_instructions); _has_call.clear();
518  _has_info = BitMap(num_instructions); _has_info.clear();
519}
520
521
522// ********** Phase 2: compute local live sets separately for each block
523// (sets live_gen and live_kill for each block)
524
525void LinearScan::set_live_gen_kill(Value value, LIR_Op* op, BitMap& live_gen, BitMap& live_kill) {
526  LIR_Opr opr = value->operand();
527  Constant* con = value->as_Constant();
528
529  // check some asumptions about debug information
530  assert(!value->type()->is_illegal(), "if this local is used by the interpreter it shouldn't be of indeterminate type");
531  assert(con == NULL || opr->is_virtual() || opr->is_constant() || opr->is_illegal(), "asumption: Constant instructions have only constant operands");
532  assert(con != NULL || opr->is_virtual(), "asumption: non-Constant instructions have only virtual operands");
533
534  if ((con == NULL || con->is_pinned()) && opr->is_register()) {
535    assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
536    int reg = opr->vreg_number();
537    if (!live_kill.at(reg)) {
538      live_gen.set_bit(reg);
539      TRACE_LINEAR_SCAN(4, tty->print_cr("  Setting live_gen for value %c%d, LIR op_id %d, register number %d", value->type()->tchar(), value->id(), op->id(), reg));
540    }
541  }
542}
543
544
545void LinearScan::compute_local_live_sets() {
546  TIME_LINEAR_SCAN(timer_compute_local_live_sets);
547
548  int  num_blocks = block_count();
549  int  live_size = live_set_size();
550  bool local_has_fpu_registers = false;
551  int  local_num_calls = 0;
552  LIR_OpVisitState visitor;
553
554  BitMap2D local_interval_in_loop = BitMap2D(_num_virtual_regs, num_loops());
555  local_interval_in_loop.clear();
556
557  // iterate all blocks
558  for (int i = 0; i < num_blocks; i++) {
559    BlockBegin* block = block_at(i);
560
561    BitMap live_gen(live_size);  live_gen.clear();
562    BitMap live_kill(live_size); live_kill.clear();
563
564    if (block->is_set(BlockBegin::exception_entry_flag)) {
565      // Phi functions at the begin of an exception handler are
566      // implicitly defined (= killed) at the beginning of the block.
567      for_each_phi_fun(block, phi,
568        live_kill.set_bit(phi->operand()->vreg_number())
569      );
570    }
571
572    LIR_OpList* instructions = block->lir()->instructions_list();
573    int num_inst = instructions->length();
574
575    // iterate all instructions of the block. skip the first because it is always a label
576    assert(visitor.no_operands(instructions->at(0)), "first operation must always be a label");
577    for (int j = 1; j < num_inst; j++) {
578      LIR_Op* op = instructions->at(j);
579
580      // visit operation to collect all operands
581      visitor.visit(op);
582
583      if (visitor.has_call()) {
584        _has_call.set_bit(op->id() >> 1);
585        local_num_calls++;
586      }
587      if (visitor.info_count() > 0) {
588        _has_info.set_bit(op->id() >> 1);
589      }
590
591      // iterate input operands of instruction
592      int k, n, reg;
593      n = visitor.opr_count(LIR_OpVisitState::inputMode);
594      for (k = 0; k < n; k++) {
595        LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::inputMode, k);
596        assert(opr->is_register(), "visitor should only return register operands");
597
598        if (opr->is_virtual_register()) {
599          assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
600          reg = opr->vreg_number();
601          if (!live_kill.at(reg)) {
602            live_gen.set_bit(reg);
603            TRACE_LINEAR_SCAN(4, tty->print_cr("  Setting live_gen for register %d at instruction %d", reg, op->id()));
604          }
605          if (block->loop_index() >= 0) {
606            local_interval_in_loop.set_bit(reg, block->loop_index());
607          }
608          local_has_fpu_registers = local_has_fpu_registers || opr->is_virtual_fpu();
609        }
610
611#ifdef ASSERT
612        // fixed intervals are never live at block boundaries, so
613        // they need not be processed in live sets.
614        // this is checked by these assertions to be sure about it.
615        // the entry block may have incoming values in registers, which is ok.
616        if (!opr->is_virtual_register() && block != ir()->start()) {
617          reg = reg_num(opr);
618          if (is_processed_reg_num(reg)) {
619            assert(live_kill.at(reg), "using fixed register that is not defined in this block");
620          }
621          reg = reg_numHi(opr);
622          if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
623            assert(live_kill.at(reg), "using fixed register that is not defined in this block");
624          }
625        }
626#endif
627      }
628
629      // Add uses of live locals from interpreter's point of view for proper debug information generation
630      n = visitor.info_count();
631      for (k = 0; k < n; k++) {
632        CodeEmitInfo* info = visitor.info_at(k);
633        ValueStack* stack = info->stack();
634        for_each_state_value(stack, value,
635          set_live_gen_kill(value, op, live_gen, live_kill)
636        );
637      }
638
639      // iterate temp operands of instruction
640      n = visitor.opr_count(LIR_OpVisitState::tempMode);
641      for (k = 0; k < n; k++) {
642        LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::tempMode, k);
643        assert(opr->is_register(), "visitor should only return register operands");
644
645        if (opr->is_virtual_register()) {
646          assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
647          reg = opr->vreg_number();
648          live_kill.set_bit(reg);
649          if (block->loop_index() >= 0) {
650            local_interval_in_loop.set_bit(reg, block->loop_index());
651          }
652          local_has_fpu_registers = local_has_fpu_registers || opr->is_virtual_fpu();
653        }
654
655#ifdef ASSERT
656        // fixed intervals are never live at block boundaries, so
657        // they need not be processed in live sets
658        // process them only in debug mode so that this can be checked
659        if (!opr->is_virtual_register()) {
660          reg = reg_num(opr);
661          if (is_processed_reg_num(reg)) {
662            live_kill.set_bit(reg_num(opr));
663          }
664          reg = reg_numHi(opr);
665          if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
666            live_kill.set_bit(reg);
667          }
668        }
669#endif
670      }
671
672      // iterate output operands of instruction
673      n = visitor.opr_count(LIR_OpVisitState::outputMode);
674      for (k = 0; k < n; k++) {
675        LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::outputMode, k);
676        assert(opr->is_register(), "visitor should only return register operands");
677
678        if (opr->is_virtual_register()) {
679          assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
680          reg = opr->vreg_number();
681          live_kill.set_bit(reg);
682          if (block->loop_index() >= 0) {
683            local_interval_in_loop.set_bit(reg, block->loop_index());
684          }
685          local_has_fpu_registers = local_has_fpu_registers || opr->is_virtual_fpu();
686        }
687
688#ifdef ASSERT
689        // fixed intervals are never live at block boundaries, so
690        // they need not be processed in live sets
691        // process them only in debug mode so that this can be checked
692        if (!opr->is_virtual_register()) {
693          reg = reg_num(opr);
694          if (is_processed_reg_num(reg)) {
695            live_kill.set_bit(reg_num(opr));
696          }
697          reg = reg_numHi(opr);
698          if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
699            live_kill.set_bit(reg);
700          }
701        }
702#endif
703      }
704    } // end of instruction iteration
705
706    block->set_live_gen (live_gen);
707    block->set_live_kill(live_kill);
708    block->set_live_in  (BitMap(live_size)); block->live_in().clear();
709    block->set_live_out (BitMap(live_size)); block->live_out().clear();
710
711    TRACE_LINEAR_SCAN(4, tty->print("live_gen  B%d ", block->block_id()); print_bitmap(block->live_gen()));
712    TRACE_LINEAR_SCAN(4, tty->print("live_kill B%d ", block->block_id()); print_bitmap(block->live_kill()));
713  } // end of block iteration
714
715  // propagate local calculated information into LinearScan object
716  _has_fpu_registers = local_has_fpu_registers;
717  compilation()->set_has_fpu_code(local_has_fpu_registers);
718
719  _num_calls = local_num_calls;
720  _interval_in_loop = local_interval_in_loop;
721}
722
723
724// ********** Phase 3: perform a backward dataflow analysis to compute global live sets
725// (sets live_in and live_out for each block)
726
727void LinearScan::compute_global_live_sets() {
728  TIME_LINEAR_SCAN(timer_compute_global_live_sets);
729
730  int  num_blocks = block_count();
731  bool change_occurred;
732  bool change_occurred_in_block;
733  int  iteration_count = 0;
734  BitMap live_out(live_set_size()); live_out.clear(); // scratch set for calculations
735
736  // Perform a backward dataflow analysis to compute live_out and live_in for each block.
737  // The loop is executed until a fixpoint is reached (no changes in an iteration)
738  // Exception handlers must be processed because not all live values are
739  // present in the state array, e.g. because of global value numbering
740  do {
741    change_occurred = false;
742
743    // iterate all blocks in reverse order
744    for (int i = num_blocks - 1; i >= 0; i--) {
745      BlockBegin* block = block_at(i);
746
747      change_occurred_in_block = false;
748
749      // live_out(block) is the union of live_in(sux), for successors sux of block
750      int n = block->number_of_sux();
751      int e = block->number_of_exception_handlers();
752      if (n + e > 0) {
753        // block has successors
754        if (n > 0) {
755          live_out.set_from(block->sux_at(0)->live_in());
756          for (int j = 1; j < n; j++) {
757            live_out.set_union(block->sux_at(j)->live_in());
758          }
759        } else {
760          live_out.clear();
761        }
762        for (int j = 0; j < e; j++) {
763          live_out.set_union(block->exception_handler_at(j)->live_in());
764        }
765
766        if (!block->live_out().is_same(live_out)) {
767          // A change occurred.  Swap the old and new live out sets to avoid copying.
768          BitMap temp = block->live_out();
769          block->set_live_out(live_out);
770          live_out = temp;
771
772          change_occurred = true;
773          change_occurred_in_block = true;
774        }
775      }
776
777      if (iteration_count == 0 || change_occurred_in_block) {
778        // live_in(block) is the union of live_gen(block) with (live_out(block) & !live_kill(block))
779        // note: live_in has to be computed only in first iteration or if live_out has changed!
780        BitMap live_in = block->live_in();
781        live_in.set_from(block->live_out());
782        live_in.set_difference(block->live_kill());
783        live_in.set_union(block->live_gen());
784      }
785
786#ifndef PRODUCT
787      if (TraceLinearScanLevel >= 4) {
788        char c = ' ';
789        if (iteration_count == 0 || change_occurred_in_block) {
790          c = '*';
791        }
792        tty->print("(%d) live_in%c  B%d ", iteration_count, c, block->block_id()); print_bitmap(block->live_in());
793        tty->print("(%d) live_out%c B%d ", iteration_count, c, block->block_id()); print_bitmap(block->live_out());
794      }
795#endif
796    }
797    iteration_count++;
798
799    if (change_occurred && iteration_count > 50) {
800      BAILOUT("too many iterations in compute_global_live_sets");
801    }
802  } while (change_occurred);
803
804
805#ifdef ASSERT
806  // check that fixed intervals are not live at block boundaries
807  // (live set must be empty at fixed intervals)
808  for (int i = 0; i < num_blocks; i++) {
809    BlockBegin* block = block_at(i);
810    for (int j = 0; j < LIR_OprDesc::vreg_base; j++) {
811      assert(block->live_in().at(j)  == false, "live_in  set of fixed register must be empty");
812      assert(block->live_out().at(j) == false, "live_out set of fixed register must be empty");
813      assert(block->live_gen().at(j) == false, "live_gen set of fixed register must be empty");
814    }
815  }
816#endif
817
818  // check that the live_in set of the first block is empty
819  BitMap live_in_args(ir()->start()->live_in().size());
820  live_in_args.clear();
821  if (!ir()->start()->live_in().is_same(live_in_args)) {
822#ifdef ASSERT
823    tty->print_cr("Error: live_in set of first block must be empty (when this fails, virtual registers are used before they are defined)");
824    tty->print_cr("affected registers:");
825    print_bitmap(ir()->start()->live_in());
826
827    // print some additional information to simplify debugging
828    for (unsigned int i = 0; i < ir()->start()->live_in().size(); i++) {
829      if (ir()->start()->live_in().at(i)) {
830        Instruction* instr = gen()->instruction_for_vreg(i);
831        tty->print_cr("* vreg %d (HIR instruction %c%d)", i, instr == NULL ? ' ' : instr->type()->tchar(), instr == NULL ? 0 : instr->id());
832
833        for (int j = 0; j < num_blocks; j++) {
834          BlockBegin* block = block_at(j);
835          if (block->live_gen().at(i)) {
836            tty->print_cr("  used in block B%d", block->block_id());
837          }
838          if (block->live_kill().at(i)) {
839            tty->print_cr("  defined in block B%d", block->block_id());
840          }
841        }
842      }
843    }
844
845#endif
846    // when this fails, virtual registers are used before they are defined.
847    assert(false, "live_in set of first block must be empty");
848    // bailout of if this occurs in product mode.
849    bailout("live_in set of first block not empty");
850  }
851}
852
853
854// ********** Phase 4: build intervals
855// (fills the list _intervals)
856
857void LinearScan::add_use(Value value, int from, int to, IntervalUseKind use_kind) {
858  assert(!value->type()->is_illegal(), "if this value is used by the interpreter it shouldn't be of indeterminate type");
859  LIR_Opr opr = value->operand();
860  Constant* con = value->as_Constant();
861
862  if ((con == NULL || con->is_pinned()) && opr->is_register()) {
863    assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
864    add_use(opr, from, to, use_kind);
865  }
866}
867
868
869void LinearScan::add_def(LIR_Opr opr, int def_pos, IntervalUseKind use_kind) {
870  TRACE_LINEAR_SCAN(2, tty->print(" def "); opr->print(tty); tty->print_cr(" def_pos %d (%d)", def_pos, use_kind));
871  assert(opr->is_register(), "should not be called otherwise");
872
873  if (opr->is_virtual_register()) {
874    assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
875    add_def(opr->vreg_number(), def_pos, use_kind, opr->type_register());
876
877  } else {
878    int reg = reg_num(opr);
879    if (is_processed_reg_num(reg)) {
880      add_def(reg, def_pos, use_kind, opr->type_register());
881    }
882    reg = reg_numHi(opr);
883    if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
884      add_def(reg, def_pos, use_kind, opr->type_register());
885    }
886  }
887}
888
889void LinearScan::add_use(LIR_Opr opr, int from, int to, IntervalUseKind use_kind) {
890  TRACE_LINEAR_SCAN(2, tty->print(" use "); opr->print(tty); tty->print_cr(" from %d to %d (%d)", from, to, use_kind));
891  assert(opr->is_register(), "should not be called otherwise");
892
893  if (opr->is_virtual_register()) {
894    assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
895    add_use(opr->vreg_number(), from, to, use_kind, opr->type_register());
896
897  } else {
898    int reg = reg_num(opr);
899    if (is_processed_reg_num(reg)) {
900      add_use(reg, from, to, use_kind, opr->type_register());
901    }
902    reg = reg_numHi(opr);
903    if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
904      add_use(reg, from, to, use_kind, opr->type_register());
905    }
906  }
907}
908
909void LinearScan::add_temp(LIR_Opr opr, int temp_pos, IntervalUseKind use_kind) {
910  TRACE_LINEAR_SCAN(2, tty->print(" temp "); opr->print(tty); tty->print_cr(" temp_pos %d (%d)", temp_pos, use_kind));
911  assert(opr->is_register(), "should not be called otherwise");
912
913  if (opr->is_virtual_register()) {
914    assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
915    add_temp(opr->vreg_number(), temp_pos, use_kind, opr->type_register());
916
917  } else {
918    int reg = reg_num(opr);
919    if (is_processed_reg_num(reg)) {
920      add_temp(reg, temp_pos, use_kind, opr->type_register());
921    }
922    reg = reg_numHi(opr);
923    if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
924      add_temp(reg, temp_pos, use_kind, opr->type_register());
925    }
926  }
927}
928
929
930void LinearScan::add_def(int reg_num, int def_pos, IntervalUseKind use_kind, BasicType type) {
931  Interval* interval = interval_at(reg_num);
932  if (interval != NULL) {
933    assert(interval->reg_num() == reg_num, "wrong interval");
934
935    if (type != T_ILLEGAL) {
936      interval->set_type(type);
937    }
938
939    Range* r = interval->first();
940    if (r->from() <= def_pos) {
941      // Update the starting point (when a range is first created for a use, its
942      // start is the beginning of the current block until a def is encountered.)
943      r->set_from(def_pos);
944      interval->add_use_pos(def_pos, use_kind);
945
946    } else {
947      // Dead value - make vacuous interval
948      // also add use_kind for dead intervals
949      interval->add_range(def_pos, def_pos + 1);
950      interval->add_use_pos(def_pos, use_kind);
951      TRACE_LINEAR_SCAN(2, tty->print_cr("Warning: def of reg %d at %d occurs without use", reg_num, def_pos));
952    }
953
954  } else {
955    // Dead value - make vacuous interval
956    // also add use_kind for dead intervals
957    interval = create_interval(reg_num);
958    if (type != T_ILLEGAL) {
959      interval->set_type(type);
960    }
961
962    interval->add_range(def_pos, def_pos + 1);
963    interval->add_use_pos(def_pos, use_kind);
964    TRACE_LINEAR_SCAN(2, tty->print_cr("Warning: dead value %d at %d in live intervals", reg_num, def_pos));
965  }
966
967  change_spill_definition_pos(interval, def_pos);
968  if (use_kind == noUse && interval->spill_state() <= startInMemory) {
969        // detection of method-parameters and roundfp-results
970        // TODO: move this directly to position where use-kind is computed
971    interval->set_spill_state(startInMemory);
972  }
973}
974
975void LinearScan::add_use(int reg_num, int from, int to, IntervalUseKind use_kind, BasicType type) {
976  Interval* interval = interval_at(reg_num);
977  if (interval == NULL) {
978    interval = create_interval(reg_num);
979  }
980  assert(interval->reg_num() == reg_num, "wrong interval");
981
982  if (type != T_ILLEGAL) {
983    interval->set_type(type);
984  }
985
986  interval->add_range(from, to);
987  interval->add_use_pos(to, use_kind);
988}
989
990void LinearScan::add_temp(int reg_num, int temp_pos, IntervalUseKind use_kind, BasicType type) {
991  Interval* interval = interval_at(reg_num);
992  if (interval == NULL) {
993    interval = create_interval(reg_num);
994  }
995  assert(interval->reg_num() == reg_num, "wrong interval");
996
997  if (type != T_ILLEGAL) {
998    interval->set_type(type);
999  }
1000
1001  interval->add_range(temp_pos, temp_pos + 1);
1002  interval->add_use_pos(temp_pos, use_kind);
1003}
1004
1005
1006// the results of this functions are used for optimizing spilling and reloading
1007// if the functions return shouldHaveRegister and the interval is spilled,
1008// it is not reloaded to a register.
1009IntervalUseKind LinearScan::use_kind_of_output_operand(LIR_Op* op, LIR_Opr opr) {
1010  if (op->code() == lir_move) {
1011    assert(op->as_Op1() != NULL, "lir_move must be LIR_Op1");
1012    LIR_Op1* move = (LIR_Op1*)op;
1013    LIR_Opr res = move->result_opr();
1014    bool result_in_memory = res->is_virtual() && gen()->is_vreg_flag_set(res->vreg_number(), LIRGenerator::must_start_in_memory);
1015
1016    if (result_in_memory) {
1017      // Begin of an interval with must_start_in_memory set.
1018      // This interval will always get a stack slot first, so return noUse.
1019      return noUse;
1020
1021    } else if (move->in_opr()->is_stack()) {
1022      // method argument (condition must be equal to handle_method_arguments)
1023      return noUse;
1024
1025    } else if (move->in_opr()->is_register() && move->result_opr()->is_register()) {
1026      // Move from register to register
1027      if (block_of_op_with_id(op->id())->is_set(BlockBegin::osr_entry_flag)) {
1028        // special handling of phi-function moves inside osr-entry blocks
1029        // input operand must have a register instead of output operand (leads to better register allocation)
1030        return shouldHaveRegister;
1031      }
1032    }
1033  }
1034
1035  if (opr->is_virtual() &&
1036      gen()->is_vreg_flag_set(opr->vreg_number(), LIRGenerator::must_start_in_memory)) {
1037    // result is a stack-slot, so prevent immediate reloading
1038    return noUse;
1039  }
1040
1041  // all other operands require a register
1042  return mustHaveRegister;
1043}
1044
1045IntervalUseKind LinearScan::use_kind_of_input_operand(LIR_Op* op, LIR_Opr opr) {
1046  if (op->code() == lir_move) {
1047    assert(op->as_Op1() != NULL, "lir_move must be LIR_Op1");
1048    LIR_Op1* move = (LIR_Op1*)op;
1049    LIR_Opr res = move->result_opr();
1050    bool result_in_memory = res->is_virtual() && gen()->is_vreg_flag_set(res->vreg_number(), LIRGenerator::must_start_in_memory);
1051
1052    if (result_in_memory) {
1053      // Move to an interval with must_start_in_memory set.
1054      // To avoid moves from stack to stack (not allowed) force the input operand to a register
1055      return mustHaveRegister;
1056
1057    } else if (move->in_opr()->is_register() && move->result_opr()->is_register()) {
1058      // Move from register to register
1059      if (block_of_op_with_id(op->id())->is_set(BlockBegin::osr_entry_flag)) {
1060        // special handling of phi-function moves inside osr-entry blocks
1061        // input operand must have a register instead of output operand (leads to better register allocation)
1062        return mustHaveRegister;
1063      }
1064
1065      // The input operand is not forced to a register (moves from stack to register are allowed),
1066      // but it is faster if the input operand is in a register
1067      return shouldHaveRegister;
1068    }
1069  }
1070
1071
1072#ifdef X86
1073  if (op->code() == lir_cmove) {
1074    // conditional moves can handle stack operands
1075    assert(op->result_opr()->is_register(), "result must always be in a register");
1076    return shouldHaveRegister;
1077  }
1078
1079  // optimizations for second input operand of arithmehtic operations on Intel
1080  // this operand is allowed to be on the stack in some cases
1081  BasicType opr_type = opr->type_register();
1082  if (opr_type == T_FLOAT || opr_type == T_DOUBLE) {
1083    if ((UseSSE == 1 && opr_type == T_FLOAT) || UseSSE >= 2) {
1084      // SSE float instruction (T_DOUBLE only supported with SSE2)
1085      switch (op->code()) {
1086        case lir_cmp:
1087        case lir_add:
1088        case lir_sub:
1089        case lir_mul:
1090        case lir_div:
1091        {
1092          assert(op->as_Op2() != NULL, "must be LIR_Op2");
1093          LIR_Op2* op2 = (LIR_Op2*)op;
1094          if (op2->in_opr1() != op2->in_opr2() && op2->in_opr2() == opr) {
1095            assert((op2->result_opr()->is_register() || op->code() == lir_cmp) && op2->in_opr1()->is_register(), "cannot mark second operand as stack if others are not in register");
1096            return shouldHaveRegister;
1097          }
1098        }
1099      }
1100    } else {
1101      // FPU stack float instruction
1102      switch (op->code()) {
1103        case lir_add:
1104        case lir_sub:
1105        case lir_mul:
1106        case lir_div:
1107        {
1108          assert(op->as_Op2() != NULL, "must be LIR_Op2");
1109          LIR_Op2* op2 = (LIR_Op2*)op;
1110          if (op2->in_opr1() != op2->in_opr2() && op2->in_opr2() == opr) {
1111            assert((op2->result_opr()->is_register() || op->code() == lir_cmp) && op2->in_opr1()->is_register(), "cannot mark second operand as stack if others are not in register");
1112            return shouldHaveRegister;
1113          }
1114        }
1115      }
1116    }
1117
1118  } else if (opr_type != T_LONG) {
1119    // integer instruction (note: long operands must always be in register)
1120    switch (op->code()) {
1121      case lir_cmp:
1122      case lir_add:
1123      case lir_sub:
1124      case lir_logic_and:
1125      case lir_logic_or:
1126      case lir_logic_xor:
1127      {
1128        assert(op->as_Op2() != NULL, "must be LIR_Op2");
1129        LIR_Op2* op2 = (LIR_Op2*)op;
1130        if (op2->in_opr1() != op2->in_opr2() && op2->in_opr2() == opr) {
1131          assert((op2->result_opr()->is_register() || op->code() == lir_cmp) && op2->in_opr1()->is_register(), "cannot mark second operand as stack if others are not in register");
1132          return shouldHaveRegister;
1133        }
1134      }
1135    }
1136  }
1137#endif // X86
1138
1139  // all other operands require a register
1140  return mustHaveRegister;
1141}
1142
1143
1144void LinearScan::handle_method_arguments(LIR_Op* op) {
1145  // special handling for method arguments (moves from stack to virtual register):
1146  // the interval gets no register assigned, but the stack slot.
1147  // it is split before the first use by the register allocator.
1148
1149  if (op->code() == lir_move) {
1150    assert(op->as_Op1() != NULL, "must be LIR_Op1");
1151    LIR_Op1* move = (LIR_Op1*)op;
1152
1153    if (move->in_opr()->is_stack()) {
1154#ifdef ASSERT
1155      int arg_size = compilation()->method()->arg_size();
1156      LIR_Opr o = move->in_opr();
1157      if (o->is_single_stack()) {
1158        assert(o->single_stack_ix() >= 0 && o->single_stack_ix() < arg_size, "out of range");
1159      } else if (o->is_double_stack()) {
1160        assert(o->double_stack_ix() >= 0 && o->double_stack_ix() < arg_size, "out of range");
1161      } else {
1162        ShouldNotReachHere();
1163      }
1164
1165      assert(move->id() > 0, "invalid id");
1166      assert(block_of_op_with_id(move->id())->number_of_preds() == 0, "move from stack must be in first block");
1167      assert(move->result_opr()->is_virtual(), "result of move must be a virtual register");
1168
1169      TRACE_LINEAR_SCAN(4, tty->print_cr("found move from stack slot %d to vreg %d", o->is_single_stack() ? o->single_stack_ix() : o->double_stack_ix(), reg_num(move->result_opr())));
1170#endif
1171
1172      Interval* interval = interval_at(reg_num(move->result_opr()));
1173
1174      int stack_slot = LinearScan::nof_regs + (move->in_opr()->is_single_stack() ? move->in_opr()->single_stack_ix() : move->in_opr()->double_stack_ix());
1175      interval->set_canonical_spill_slot(stack_slot);
1176      interval->assign_reg(stack_slot);
1177    }
1178  }
1179}
1180
1181void LinearScan::handle_doubleword_moves(LIR_Op* op) {
1182  // special handling for doubleword move from memory to register:
1183  // in this case the registers of the input address and the result
1184  // registers must not overlap -> add a temp range for the input registers
1185  if (op->code() == lir_move) {
1186    assert(op->as_Op1() != NULL, "must be LIR_Op1");
1187    LIR_Op1* move = (LIR_Op1*)op;
1188
1189    if (move->result_opr()->is_double_cpu() && move->in_opr()->is_pointer()) {
1190      LIR_Address* address = move->in_opr()->as_address_ptr();
1191      if (address != NULL) {
1192        if (address->base()->is_valid()) {
1193          add_temp(address->base(), op->id(), noUse);
1194        }
1195        if (address->index()->is_valid()) {
1196          add_temp(address->index(), op->id(), noUse);
1197        }
1198      }
1199    }
1200  }
1201}
1202
1203void LinearScan::add_register_hints(LIR_Op* op) {
1204  switch (op->code()) {
1205    case lir_move:      // fall through
1206    case lir_convert: {
1207      assert(op->as_Op1() != NULL, "lir_move, lir_convert must be LIR_Op1");
1208      LIR_Op1* move = (LIR_Op1*)op;
1209
1210      LIR_Opr move_from = move->in_opr();
1211      LIR_Opr move_to = move->result_opr();
1212
1213      if (move_to->is_register() && move_from->is_register()) {
1214        Interval* from = interval_at(reg_num(move_from));
1215        Interval* to = interval_at(reg_num(move_to));
1216        if (from != NULL && to != NULL) {
1217          to->set_register_hint(from);
1218          TRACE_LINEAR_SCAN(4, tty->print_cr("operation at op_id %d: added hint from interval %d to %d", move->id(), from->reg_num(), to->reg_num()));
1219        }
1220      }
1221      break;
1222    }
1223    case lir_cmove: {
1224      assert(op->as_Op2() != NULL, "lir_cmove must be LIR_Op2");
1225      LIR_Op2* cmove = (LIR_Op2*)op;
1226
1227      LIR_Opr move_from = cmove->in_opr1();
1228      LIR_Opr move_to = cmove->result_opr();
1229
1230      if (move_to->is_register() && move_from->is_register()) {
1231        Interval* from = interval_at(reg_num(move_from));
1232        Interval* to = interval_at(reg_num(move_to));
1233        if (from != NULL && to != NULL) {
1234          to->set_register_hint(from);
1235          TRACE_LINEAR_SCAN(4, tty->print_cr("operation at op_id %d: added hint from interval %d to %d", cmove->id(), from->reg_num(), to->reg_num()));
1236        }
1237      }
1238      break;
1239    }
1240  }
1241}
1242
1243
1244void LinearScan::build_intervals() {
1245  TIME_LINEAR_SCAN(timer_build_intervals);
1246
1247  // initialize interval list with expected number of intervals
1248  // (32 is added to have some space for split children without having to resize the list)
1249  _intervals = IntervalList(num_virtual_regs() + 32);
1250  // initialize all slots that are used by build_intervals
1251  _intervals.at_put_grow(num_virtual_regs() - 1, NULL, NULL);
1252
1253  // create a list with all caller-save registers (cpu, fpu, xmm)
1254  // when an instruction is a call, a temp range is created for all these registers
1255  int num_caller_save_registers = 0;
1256  int caller_save_registers[LinearScan::nof_regs];
1257
1258  int i;
1259  for (i = 0; i < FrameMap::nof_caller_save_cpu_regs; i++) {
1260    LIR_Opr opr = FrameMap::caller_save_cpu_reg_at(i);
1261    assert(opr->is_valid() && opr->is_register(), "FrameMap should not return invalid operands");
1262    assert(reg_numHi(opr) == -1, "missing addition of range for hi-register");
1263    caller_save_registers[num_caller_save_registers++] = reg_num(opr);
1264  }
1265
1266  // temp ranges for fpu registers are only created when the method has
1267  // virtual fpu operands. Otherwise no allocation for fpu registers is
1268  // perfomed and so the temp ranges would be useless
1269  if (has_fpu_registers()) {
1270#ifdef X86
1271    if (UseSSE < 2) {
1272#endif
1273      for (i = 0; i < FrameMap::nof_caller_save_fpu_regs; i++) {
1274        LIR_Opr opr = FrameMap::caller_save_fpu_reg_at(i);
1275        assert(opr->is_valid() && opr->is_register(), "FrameMap should not return invalid operands");
1276        assert(reg_numHi(opr) == -1, "missing addition of range for hi-register");
1277        caller_save_registers[num_caller_save_registers++] = reg_num(opr);
1278      }
1279#ifdef X86
1280    }
1281    if (UseSSE > 0) {
1282      for (i = 0; i < FrameMap::nof_caller_save_xmm_regs; i++) {
1283        LIR_Opr opr = FrameMap::caller_save_xmm_reg_at(i);
1284        assert(opr->is_valid() && opr->is_register(), "FrameMap should not return invalid operands");
1285        assert(reg_numHi(opr) == -1, "missing addition of range for hi-register");
1286        caller_save_registers[num_caller_save_registers++] = reg_num(opr);
1287      }
1288    }
1289#endif
1290  }
1291  assert(num_caller_save_registers <= LinearScan::nof_regs, "out of bounds");
1292
1293
1294  LIR_OpVisitState visitor;
1295
1296  // iterate all blocks in reverse order
1297  for (i = block_count() - 1; i >= 0; i--) {
1298    BlockBegin* block = block_at(i);
1299    LIR_OpList* instructions = block->lir()->instructions_list();
1300    int         block_from =   block->first_lir_instruction_id();
1301    int         block_to =     block->last_lir_instruction_id();
1302
1303    assert(block_from == instructions->at(0)->id(), "must be");
1304    assert(block_to   == instructions->at(instructions->length() - 1)->id(), "must be");
1305
1306    // Update intervals for registers live at the end of this block;
1307    BitMap live = block->live_out();
1308    int size = (int)live.size();
1309    for (int number = (int)live.get_next_one_offset(0, size); number < size; number = (int)live.get_next_one_offset(number + 1, size)) {
1310      assert(live.at(number), "should not stop here otherwise");
1311      assert(number >= LIR_OprDesc::vreg_base, "fixed intervals must not be live on block bounds");
1312      TRACE_LINEAR_SCAN(2, tty->print_cr("live in %d to %d", number, block_to + 2));
1313
1314      add_use(number, block_from, block_to + 2, noUse, T_ILLEGAL);
1315
1316      // add special use positions for loop-end blocks when the
1317      // interval is used anywhere inside this loop.  It's possible
1318      // that the block was part of a non-natural loop, so it might
1319      // have an invalid loop index.
1320      if (block->is_set(BlockBegin::linear_scan_loop_end_flag) &&
1321          block->loop_index() != -1 &&
1322          is_interval_in_loop(number, block->loop_index())) {
1323        interval_at(number)->add_use_pos(block_to + 1, loopEndMarker);
1324      }
1325    }
1326
1327    // iterate all instructions of the block in reverse order.
1328    // skip the first instruction because it is always a label
1329    // definitions of intervals are processed before uses
1330    assert(visitor.no_operands(instructions->at(0)), "first operation must always be a label");
1331    for (int j = instructions->length() - 1; j >= 1; j--) {
1332      LIR_Op* op = instructions->at(j);
1333      int op_id = op->id();
1334
1335      // visit operation to collect all operands
1336      visitor.visit(op);
1337
1338      // add a temp range for each register if operation destroys caller-save registers
1339      if (visitor.has_call()) {
1340        for (int k = 0; k < num_caller_save_registers; k++) {
1341          add_temp(caller_save_registers[k], op_id, noUse, T_ILLEGAL);
1342        }
1343        TRACE_LINEAR_SCAN(4, tty->print_cr("operation destroys all caller-save registers"));
1344      }
1345
1346      // Add any platform dependent temps
1347      pd_add_temps(op);
1348
1349      // visit definitions (output and temp operands)
1350      int k, n;
1351      n = visitor.opr_count(LIR_OpVisitState::outputMode);
1352      for (k = 0; k < n; k++) {
1353        LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::outputMode, k);
1354        assert(opr->is_register(), "visitor should only return register operands");
1355        add_def(opr, op_id, use_kind_of_output_operand(op, opr));
1356      }
1357
1358      n = visitor.opr_count(LIR_OpVisitState::tempMode);
1359      for (k = 0; k < n; k++) {
1360        LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::tempMode, k);
1361        assert(opr->is_register(), "visitor should only return register operands");
1362        add_temp(opr, op_id, mustHaveRegister);
1363      }
1364
1365      // visit uses (input operands)
1366      n = visitor.opr_count(LIR_OpVisitState::inputMode);
1367      for (k = 0; k < n; k++) {
1368        LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::inputMode, k);
1369        assert(opr->is_register(), "visitor should only return register operands");
1370        add_use(opr, block_from, op_id, use_kind_of_input_operand(op, opr));
1371      }
1372
1373      // Add uses of live locals from interpreter's point of view for proper
1374      // debug information generation
1375      // Treat these operands as temp values (if the life range is extended
1376      // to a call site, the value would be in a register at the call otherwise)
1377      n = visitor.info_count();
1378      for (k = 0; k < n; k++) {
1379        CodeEmitInfo* info = visitor.info_at(k);
1380        ValueStack* stack = info->stack();
1381        for_each_state_value(stack, value,
1382          add_use(value, block_from, op_id + 1, noUse);
1383        );
1384      }
1385
1386      // special steps for some instructions (especially moves)
1387      handle_method_arguments(op);
1388      handle_doubleword_moves(op);
1389      add_register_hints(op);
1390
1391    } // end of instruction iteration
1392  } // end of block iteration
1393
1394
1395  // add the range [0, 1[ to all fixed intervals
1396  // -> the register allocator need not handle unhandled fixed intervals
1397  for (int n = 0; n < LinearScan::nof_regs; n++) {
1398    Interval* interval = interval_at(n);
1399    if (interval != NULL) {
1400      interval->add_range(0, 1);
1401    }
1402  }
1403}
1404
1405
1406// ********** Phase 5: actual register allocation
1407
1408int LinearScan::interval_cmp(Interval** a, Interval** b) {
1409  if (*a != NULL) {
1410    if (*b != NULL) {
1411      return (*a)->from() - (*b)->from();
1412    } else {
1413      return -1;
1414    }
1415  } else {
1416    if (*b != NULL) {
1417      return 1;
1418    } else {
1419      return 0;
1420    }
1421  }
1422}
1423
1424#ifndef PRODUCT
1425bool LinearScan::is_sorted(IntervalArray* intervals) {
1426  int from = -1;
1427  int i, j;
1428  for (i = 0; i < intervals->length(); i ++) {
1429    Interval* it = intervals->at(i);
1430    if (it != NULL) {
1431      if (from > it->from()) {
1432        assert(false, "");
1433        return false;
1434      }
1435      from = it->from();
1436    }
1437  }
1438
1439  // check in both directions if sorted list and unsorted list contain same intervals
1440  for (i = 0; i < interval_count(); i++) {
1441    if (interval_at(i) != NULL) {
1442      int num_found = 0;
1443      for (j = 0; j < intervals->length(); j++) {
1444        if (interval_at(i) == intervals->at(j)) {
1445          num_found++;
1446        }
1447      }
1448      assert(num_found == 1, "lists do not contain same intervals");
1449    }
1450  }
1451  for (j = 0; j < intervals->length(); j++) {
1452    int num_found = 0;
1453    for (i = 0; i < interval_count(); i++) {
1454      if (interval_at(i) == intervals->at(j)) {
1455        num_found++;
1456      }
1457    }
1458    assert(num_found == 1, "lists do not contain same intervals");
1459  }
1460
1461  return true;
1462}
1463#endif
1464
1465void LinearScan::add_to_list(Interval** first, Interval** prev, Interval* interval) {
1466  if (*prev != NULL) {
1467    (*prev)->set_next(interval);
1468  } else {
1469    *first = interval;
1470  }
1471  *prev = interval;
1472}
1473
1474void LinearScan::create_unhandled_lists(Interval** list1, Interval** list2, bool (is_list1)(const Interval* i), bool (is_list2)(const Interval* i)) {
1475  assert(is_sorted(_sorted_intervals), "interval list is not sorted");
1476
1477  *list1 = *list2 = Interval::end();
1478
1479  Interval* list1_prev = NULL;
1480  Interval* list2_prev = NULL;
1481  Interval* v;
1482
1483  const int n = _sorted_intervals->length();
1484  for (int i = 0; i < n; i++) {
1485    v = _sorted_intervals->at(i);
1486    if (v == NULL) continue;
1487
1488    if (is_list1(v)) {
1489      add_to_list(list1, &list1_prev, v);
1490    } else if (is_list2 == NULL || is_list2(v)) {
1491      add_to_list(list2, &list2_prev, v);
1492    }
1493  }
1494
1495  if (list1_prev != NULL) list1_prev->set_next(Interval::end());
1496  if (list2_prev != NULL) list2_prev->set_next(Interval::end());
1497
1498  assert(list1_prev == NULL || list1_prev->next() == Interval::end(), "linear list ends not with sentinel");
1499  assert(list2_prev == NULL || list2_prev->next() == Interval::end(), "linear list ends not with sentinel");
1500}
1501
1502
1503void LinearScan::sort_intervals_before_allocation() {
1504  TIME_LINEAR_SCAN(timer_sort_intervals_before);
1505
1506  IntervalList* unsorted_list = &_intervals;
1507  int unsorted_len = unsorted_list->length();
1508  int sorted_len = 0;
1509  int unsorted_idx;
1510  int sorted_idx = 0;
1511  int sorted_from_max = -1;
1512
1513  // calc number of items for sorted list (sorted list must not contain NULL values)
1514  for (unsorted_idx = 0; unsorted_idx < unsorted_len; unsorted_idx++) {
1515    if (unsorted_list->at(unsorted_idx) != NULL) {
1516      sorted_len++;
1517    }
1518  }
1519  IntervalArray* sorted_list = new IntervalArray(sorted_len);
1520
1521  // special sorting algorithm: the original interval-list is almost sorted,
1522  // only some intervals are swapped. So this is much faster than a complete QuickSort
1523  for (unsorted_idx = 0; unsorted_idx < unsorted_len; unsorted_idx++) {
1524    Interval* cur_interval = unsorted_list->at(unsorted_idx);
1525
1526    if (cur_interval != NULL) {
1527      int cur_from = cur_interval->from();
1528
1529      if (sorted_from_max <= cur_from) {
1530        sorted_list->at_put(sorted_idx++, cur_interval);
1531        sorted_from_max = cur_interval->from();
1532      } else {
1533        // the asumption that the intervals are already sorted failed,
1534        // so this interval must be sorted in manually
1535        int j;
1536        for (j = sorted_idx - 1; j >= 0 && cur_from < sorted_list->at(j)->from(); j--) {
1537          sorted_list->at_put(j + 1, sorted_list->at(j));
1538        }
1539        sorted_list->at_put(j + 1, cur_interval);
1540        sorted_idx++;
1541      }
1542    }
1543  }
1544  _sorted_intervals = sorted_list;
1545}
1546
1547void LinearScan::sort_intervals_after_allocation() {
1548  TIME_LINEAR_SCAN(timer_sort_intervals_after);
1549
1550  IntervalArray* old_list      = _sorted_intervals;
1551  IntervalList*  new_list      = _new_intervals_from_allocation;
1552  int old_len = old_list->length();
1553  int new_len = new_list->length();
1554
1555  if (new_len == 0) {
1556    // no intervals have been added during allocation, so sorted list is already up to date
1557    return;
1558  }
1559
1560  // conventional sort-algorithm for new intervals
1561  new_list->sort(interval_cmp);
1562
1563  // merge old and new list (both already sorted) into one combined list
1564  IntervalArray* combined_list = new IntervalArray(old_len + new_len);
1565  int old_idx = 0;
1566  int new_idx = 0;
1567
1568  while (old_idx + new_idx < old_len + new_len) {
1569    if (new_idx >= new_len || (old_idx < old_len && old_list->at(old_idx)->from() <= new_list->at(new_idx)->from())) {
1570      combined_list->at_put(old_idx + new_idx, old_list->at(old_idx));
1571      old_idx++;
1572    } else {
1573      combined_list->at_put(old_idx + new_idx, new_list->at(new_idx));
1574      new_idx++;
1575    }
1576  }
1577
1578  _sorted_intervals = combined_list;
1579}
1580
1581
1582void LinearScan::allocate_registers() {
1583  TIME_LINEAR_SCAN(timer_allocate_registers);
1584
1585  Interval* precolored_cpu_intervals, *not_precolored_cpu_intervals;
1586  Interval* precolored_fpu_intervals, *not_precolored_fpu_intervals;
1587
1588  create_unhandled_lists(&precolored_cpu_intervals, &not_precolored_cpu_intervals, is_precolored_cpu_interval, is_virtual_cpu_interval);
1589  if (has_fpu_registers()) {
1590    create_unhandled_lists(&precolored_fpu_intervals, &not_precolored_fpu_intervals, is_precolored_fpu_interval, is_virtual_fpu_interval);
1591#ifdef ASSERT
1592  } else {
1593    // fpu register allocation is omitted because no virtual fpu registers are present
1594    // just check this again...
1595    create_unhandled_lists(&precolored_fpu_intervals, &not_precolored_fpu_intervals, is_precolored_fpu_interval, is_virtual_fpu_interval);
1596    assert(not_precolored_fpu_intervals == Interval::end(), "missed an uncolored fpu interval");
1597#endif
1598  }
1599
1600  // allocate cpu registers
1601  LinearScanWalker cpu_lsw(this, precolored_cpu_intervals, not_precolored_cpu_intervals);
1602  cpu_lsw.walk();
1603  cpu_lsw.finish_allocation();
1604
1605  if (has_fpu_registers()) {
1606    // allocate fpu registers
1607    LinearScanWalker fpu_lsw(this, precolored_fpu_intervals, not_precolored_fpu_intervals);
1608    fpu_lsw.walk();
1609    fpu_lsw.finish_allocation();
1610  }
1611}
1612
1613
1614// ********** Phase 6: resolve data flow
1615// (insert moves at edges between blocks if intervals have been split)
1616
1617// wrapper for Interval::split_child_at_op_id that performs a bailout in product mode
1618// instead of returning NULL
1619Interval* LinearScan::split_child_at_op_id(Interval* interval, int op_id, LIR_OpVisitState::OprMode mode) {
1620  Interval* result = interval->split_child_at_op_id(op_id, mode);
1621  if (result != NULL) {
1622    return result;
1623  }
1624
1625  assert(false, "must find an interval, but do a clean bailout in product mode");
1626  result = new Interval(LIR_OprDesc::vreg_base);
1627  result->assign_reg(0);
1628  result->set_type(T_INT);
1629  BAILOUT_("LinearScan: interval is NULL", result);
1630}
1631
1632
1633Interval* LinearScan::interval_at_block_begin(BlockBegin* block, int reg_num) {
1634  assert(LinearScan::nof_regs <= reg_num && reg_num < num_virtual_regs(), "register number out of bounds");
1635  assert(interval_at(reg_num) != NULL, "no interval found");
1636
1637  return split_child_at_op_id(interval_at(reg_num), block->first_lir_instruction_id(), LIR_OpVisitState::outputMode);
1638}
1639
1640Interval* LinearScan::interval_at_block_end(BlockBegin* block, int reg_num) {
1641  assert(LinearScan::nof_regs <= reg_num && reg_num < num_virtual_regs(), "register number out of bounds");
1642  assert(interval_at(reg_num) != NULL, "no interval found");
1643
1644  return split_child_at_op_id(interval_at(reg_num), block->last_lir_instruction_id() + 1, LIR_OpVisitState::outputMode);
1645}
1646
1647Interval* LinearScan::interval_at_op_id(int reg_num, int op_id) {
1648  assert(LinearScan::nof_regs <= reg_num && reg_num < num_virtual_regs(), "register number out of bounds");
1649  assert(interval_at(reg_num) != NULL, "no interval found");
1650
1651  return split_child_at_op_id(interval_at(reg_num), op_id, LIR_OpVisitState::inputMode);
1652}
1653
1654
1655void LinearScan::resolve_collect_mappings(BlockBegin* from_block, BlockBegin* to_block, MoveResolver &move_resolver) {
1656  DEBUG_ONLY(move_resolver.check_empty());
1657
1658  const int num_regs = num_virtual_regs();
1659  const int size = live_set_size();
1660  const BitMap live_at_edge = to_block->live_in();
1661
1662  // visit all registers where the live_at_edge bit is set
1663  for (int r = (int)live_at_edge.get_next_one_offset(0, size); r < size; r = (int)live_at_edge.get_next_one_offset(r + 1, size)) {
1664    assert(r < num_regs, "live information set for not exisiting interval");
1665    assert(from_block->live_out().at(r) && to_block->live_in().at(r), "interval not live at this edge");
1666
1667    Interval* from_interval = interval_at_block_end(from_block, r);
1668    Interval* to_interval = interval_at_block_begin(to_block, r);
1669
1670    if (from_interval != to_interval && (from_interval->assigned_reg() != to_interval->assigned_reg() || from_interval->assigned_regHi() != to_interval->assigned_regHi())) {
1671      // need to insert move instruction
1672      move_resolver.add_mapping(from_interval, to_interval);
1673    }
1674  }
1675}
1676
1677
1678void LinearScan::resolve_find_insert_pos(BlockBegin* from_block, BlockBegin* to_block, MoveResolver &move_resolver) {
1679  if (from_block->number_of_sux() <= 1) {
1680    TRACE_LINEAR_SCAN(4, tty->print_cr("inserting moves at end of from_block B%d", from_block->block_id()));
1681
1682    LIR_OpList* instructions = from_block->lir()->instructions_list();
1683    LIR_OpBranch* branch = instructions->last()->as_OpBranch();
1684    if (branch != NULL) {
1685      // insert moves before branch
1686      assert(branch->cond() == lir_cond_always, "block does not end with an unconditional jump");
1687      move_resolver.set_insert_position(from_block->lir(), instructions->length() - 2);
1688    } else {
1689      move_resolver.set_insert_position(from_block->lir(), instructions->length() - 1);
1690    }
1691
1692  } else {
1693    TRACE_LINEAR_SCAN(4, tty->print_cr("inserting moves at beginning of to_block B%d", to_block->block_id()));
1694#ifdef ASSERT
1695    assert(from_block->lir()->instructions_list()->at(0)->as_OpLabel() != NULL, "block does not start with a label");
1696
1697    // because the number of predecessor edges matches the number of
1698    // successor edges, blocks which are reached by switch statements
1699    // may have be more than one predecessor but it will be guaranteed
1700    // that all predecessors will be the same.
1701    for (int i = 0; i < to_block->number_of_preds(); i++) {
1702      assert(from_block == to_block->pred_at(i), "all critical edges must be broken");
1703    }
1704#endif
1705
1706    move_resolver.set_insert_position(to_block->lir(), 0);
1707  }
1708}
1709
1710
1711// insert necessary moves (spilling or reloading) at edges between blocks if interval has been split
1712void LinearScan::resolve_data_flow() {
1713  TIME_LINEAR_SCAN(timer_resolve_data_flow);
1714
1715  int num_blocks = block_count();
1716  MoveResolver move_resolver(this);
1717  BitMap block_completed(num_blocks);  block_completed.clear();
1718  BitMap already_resolved(num_blocks); already_resolved.clear();
1719
1720  int i;
1721  for (i = 0; i < num_blocks; i++) {
1722    BlockBegin* block = block_at(i);
1723
1724    // check if block has only one predecessor and only one successor
1725    if (block->number_of_preds() == 1 && block->number_of_sux() == 1 && block->number_of_exception_handlers() == 0) {
1726      LIR_OpList* instructions = block->lir()->instructions_list();
1727      assert(instructions->at(0)->code() == lir_label, "block must start with label");
1728      assert(instructions->last()->code() == lir_branch, "block with successors must end with branch");
1729      assert(instructions->last()->as_OpBranch()->cond() == lir_cond_always, "block with successor must end with unconditional branch");
1730
1731      // check if block is empty (only label and branch)
1732      if (instructions->length() == 2) {
1733        BlockBegin* pred = block->pred_at(0);
1734        BlockBegin* sux = block->sux_at(0);
1735
1736        // prevent optimization of two consecutive blocks
1737        if (!block_completed.at(pred->linear_scan_number()) && !block_completed.at(sux->linear_scan_number())) {
1738          TRACE_LINEAR_SCAN(3, tty->print_cr("**** optimizing empty block B%d (pred: B%d, sux: B%d)", block->block_id(), pred->block_id(), sux->block_id()));
1739          block_completed.set_bit(block->linear_scan_number());
1740
1741          // directly resolve between pred and sux (without looking at the empty block between)
1742          resolve_collect_mappings(pred, sux, move_resolver);
1743          if (move_resolver.has_mappings()) {
1744            move_resolver.set_insert_position(block->lir(), 0);
1745            move_resolver.resolve_and_append_moves();
1746          }
1747        }
1748      }
1749    }
1750  }
1751
1752
1753  for (i = 0; i < num_blocks; i++) {
1754    if (!block_completed.at(i)) {
1755      BlockBegin* from_block = block_at(i);
1756      already_resolved.set_from(block_completed);
1757
1758      int num_sux = from_block->number_of_sux();
1759      for (int s = 0; s < num_sux; s++) {
1760        BlockBegin* to_block = from_block->sux_at(s);
1761
1762        // check for duplicate edges between the same blocks (can happen with switch blocks)
1763        if (!already_resolved.at(to_block->linear_scan_number())) {
1764          TRACE_LINEAR_SCAN(3, tty->print_cr("**** processing edge between B%d and B%d", from_block->block_id(), to_block->block_id()));
1765          already_resolved.set_bit(to_block->linear_scan_number());
1766
1767          // collect all intervals that have been split between from_block and to_block
1768          resolve_collect_mappings(from_block, to_block, move_resolver);
1769          if (move_resolver.has_mappings()) {
1770            resolve_find_insert_pos(from_block, to_block, move_resolver);
1771            move_resolver.resolve_and_append_moves();
1772          }
1773        }
1774      }
1775    }
1776  }
1777}
1778
1779
1780void LinearScan::resolve_exception_entry(BlockBegin* block, int reg_num, MoveResolver &move_resolver) {
1781  if (interval_at(reg_num) == NULL) {
1782    // if a phi function is never used, no interval is created -> ignore this
1783    return;
1784  }
1785
1786  Interval* interval = interval_at_block_begin(block, reg_num);
1787  int reg = interval->assigned_reg();
1788  int regHi = interval->assigned_regHi();
1789
1790  if ((reg < nof_regs && interval->always_in_memory()) ||
1791      (use_fpu_stack_allocation() && reg >= pd_first_fpu_reg && reg <= pd_last_fpu_reg)) {
1792    // the interval is split to get a short range that is located on the stack
1793    // in the following two cases:
1794    // * the interval started in memory (e.g. method parameter), but is currently in a register
1795    //   this is an optimization for exception handling that reduces the number of moves that
1796    //   are necessary for resolving the states when an exception uses this exception handler
1797    // * the interval would be on the fpu stack at the begin of the exception handler
1798    //   this is not allowed because of the complicated fpu stack handling on Intel
1799
1800    // range that will be spilled to memory
1801    int from_op_id = block->first_lir_instruction_id();
1802    int to_op_id = from_op_id + 1;  // short live range of length 1
1803    assert(interval->from() <= from_op_id && interval->to() >= to_op_id,
1804           "no split allowed between exception entry and first instruction");
1805
1806    if (interval->from() != from_op_id) {
1807      // the part before from_op_id is unchanged
1808      interval = interval->split(from_op_id);
1809      interval->assign_reg(reg, regHi);
1810      append_interval(interval);
1811    }
1812    assert(interval->from() == from_op_id, "must be true now");
1813
1814    Interval* spilled_part = interval;
1815    if (interval->to() != to_op_id) {
1816      // the part after to_op_id is unchanged
1817      spilled_part = interval->split_from_start(to_op_id);
1818      append_interval(spilled_part);
1819      move_resolver.add_mapping(spilled_part, interval);
1820    }
1821    assign_spill_slot(spilled_part);
1822
1823    assert(spilled_part->from() == from_op_id && spilled_part->to() == to_op_id, "just checking");
1824  }
1825}
1826
1827void LinearScan::resolve_exception_entry(BlockBegin* block, MoveResolver &move_resolver) {
1828  assert(block->is_set(BlockBegin::exception_entry_flag), "should not call otherwise");
1829  DEBUG_ONLY(move_resolver.check_empty());
1830
1831  // visit all registers where the live_in bit is set
1832  int size = live_set_size();
1833  for (int r = (int)block->live_in().get_next_one_offset(0, size); r < size; r = (int)block->live_in().get_next_one_offset(r + 1, size)) {
1834    resolve_exception_entry(block, r, move_resolver);
1835  }
1836
1837  // the live_in bits are not set for phi functions of the xhandler entry, so iterate them separately
1838  for_each_phi_fun(block, phi,
1839    resolve_exception_entry(block, phi->operand()->vreg_number(), move_resolver)
1840  );
1841
1842  if (move_resolver.has_mappings()) {
1843    // insert moves after first instruction
1844    move_resolver.set_insert_position(block->lir(), 1);
1845    move_resolver.resolve_and_append_moves();
1846  }
1847}
1848
1849
1850void LinearScan::resolve_exception_edge(XHandler* handler, int throwing_op_id, int reg_num, Phi* phi, MoveResolver &move_resolver) {
1851  if (interval_at(reg_num) == NULL) {
1852    // if a phi function is never used, no interval is created -> ignore this
1853    return;
1854  }
1855
1856  // the computation of to_interval is equal to resolve_collect_mappings,
1857  // but from_interval is more complicated because of phi functions
1858  BlockBegin* to_block = handler->entry_block();
1859  Interval* to_interval = interval_at_block_begin(to_block, reg_num);
1860
1861  if (phi != NULL) {
1862    // phi function of the exception entry block
1863    // no moves are created for this phi function in the LIR_Generator, so the
1864    // interval at the throwing instruction must be searched using the operands
1865    // of the phi function
1866    Value from_value = phi->operand_at(handler->phi_operand());
1867
1868    // with phi functions it can happen that the same from_value is used in
1869    // multiple mappings, so notify move-resolver that this is allowed
1870    move_resolver.set_multiple_reads_allowed();
1871
1872    Constant* con = from_value->as_Constant();
1873    if (con != NULL && !con->is_pinned()) {
1874      // unpinned constants may have no register, so add mapping from constant to interval
1875      move_resolver.add_mapping(LIR_OprFact::value_type(con->type()), to_interval);
1876    } else {
1877      // search split child at the throwing op_id
1878      Interval* from_interval = interval_at_op_id(from_value->operand()->vreg_number(), throwing_op_id);
1879      move_resolver.add_mapping(from_interval, to_interval);
1880    }
1881
1882  } else {
1883    // no phi function, so use reg_num also for from_interval
1884    // search split child at the throwing op_id
1885    Interval* from_interval = interval_at_op_id(reg_num, throwing_op_id);
1886    if (from_interval != to_interval) {
1887      // optimization to reduce number of moves: when to_interval is on stack and
1888      // the stack slot is known to be always correct, then no move is necessary
1889      if (!from_interval->always_in_memory() || from_interval->canonical_spill_slot() != to_interval->assigned_reg()) {
1890        move_resolver.add_mapping(from_interval, to_interval);
1891      }
1892    }
1893  }
1894}
1895
1896void LinearScan::resolve_exception_edge(XHandler* handler, int throwing_op_id, MoveResolver &move_resolver) {
1897  TRACE_LINEAR_SCAN(4, tty->print_cr("resolving exception handler B%d: throwing_op_id=%d", handler->entry_block()->block_id(), throwing_op_id));
1898
1899  DEBUG_ONLY(move_resolver.check_empty());
1900  assert(handler->lir_op_id() == -1, "already processed this xhandler");
1901  DEBUG_ONLY(handler->set_lir_op_id(throwing_op_id));
1902  assert(handler->entry_code() == NULL, "code already present");
1903
1904  // visit all registers where the live_in bit is set
1905  BlockBegin* block = handler->entry_block();
1906  int size = live_set_size();
1907  for (int r = (int)block->live_in().get_next_one_offset(0, size); r < size; r = (int)block->live_in().get_next_one_offset(r + 1, size)) {
1908    resolve_exception_edge(handler, throwing_op_id, r, NULL, move_resolver);
1909  }
1910
1911  // the live_in bits are not set for phi functions of the xhandler entry, so iterate them separately
1912  for_each_phi_fun(block, phi,
1913    resolve_exception_edge(handler, throwing_op_id, phi->operand()->vreg_number(), phi, move_resolver)
1914  );
1915
1916  if (move_resolver.has_mappings()) {
1917    LIR_List* entry_code = new LIR_List(compilation());
1918    move_resolver.set_insert_position(entry_code, 0);
1919    move_resolver.resolve_and_append_moves();
1920
1921    entry_code->jump(handler->entry_block());
1922    handler->set_entry_code(entry_code);
1923  }
1924}
1925
1926
1927void LinearScan::resolve_exception_handlers() {
1928  MoveResolver move_resolver(this);
1929  LIR_OpVisitState visitor;
1930  int num_blocks = block_count();
1931
1932  int i;
1933  for (i = 0; i < num_blocks; i++) {
1934    BlockBegin* block = block_at(i);
1935    if (block->is_set(BlockBegin::exception_entry_flag)) {
1936      resolve_exception_entry(block, move_resolver);
1937    }
1938  }
1939
1940  for (i = 0; i < num_blocks; i++) {
1941    BlockBegin* block = block_at(i);
1942    LIR_List* ops = block->lir();
1943    int num_ops = ops->length();
1944
1945    // iterate all instructions of the block. skip the first because it is always a label
1946    assert(visitor.no_operands(ops->at(0)), "first operation must always be a label");
1947    for (int j = 1; j < num_ops; j++) {
1948      LIR_Op* op = ops->at(j);
1949      int op_id = op->id();
1950
1951      if (op_id != -1 && has_info(op_id)) {
1952        // visit operation to collect all operands
1953        visitor.visit(op);
1954        assert(visitor.info_count() > 0, "should not visit otherwise");
1955
1956        XHandlers* xhandlers = visitor.all_xhandler();
1957        int n = xhandlers->length();
1958        for (int k = 0; k < n; k++) {
1959          resolve_exception_edge(xhandlers->handler_at(k), op_id, move_resolver);
1960        }
1961
1962#ifdef ASSERT
1963      } else {
1964        visitor.visit(op);
1965        assert(visitor.all_xhandler()->length() == 0, "missed exception handler");
1966#endif
1967      }
1968    }
1969  }
1970}
1971
1972
1973// ********** Phase 7: assign register numbers back to LIR
1974// (includes computation of debug information and oop maps)
1975
1976VMReg LinearScan::vm_reg_for_interval(Interval* interval) {
1977  VMReg reg = interval->cached_vm_reg();
1978  if (!reg->is_valid() ) {
1979    reg = vm_reg_for_operand(operand_for_interval(interval));
1980    interval->set_cached_vm_reg(reg);
1981  }
1982  assert(reg == vm_reg_for_operand(operand_for_interval(interval)), "wrong cached value");
1983  return reg;
1984}
1985
1986VMReg LinearScan::vm_reg_for_operand(LIR_Opr opr) {
1987  assert(opr->is_oop(), "currently only implemented for oop operands");
1988  return frame_map()->regname(opr);
1989}
1990
1991
1992LIR_Opr LinearScan::operand_for_interval(Interval* interval) {
1993  LIR_Opr opr = interval->cached_opr();
1994  if (opr->is_illegal()) {
1995    opr = calc_operand_for_interval(interval);
1996    interval->set_cached_opr(opr);
1997  }
1998
1999  assert(opr == calc_operand_for_interval(interval), "wrong cached value");
2000  return opr;
2001}
2002
2003LIR_Opr LinearScan::calc_operand_for_interval(const Interval* interval) {
2004  int assigned_reg = interval->assigned_reg();
2005  BasicType type = interval->type();
2006
2007  if (assigned_reg >= nof_regs) {
2008    // stack slot
2009    assert(interval->assigned_regHi() == any_reg, "must not have hi register");
2010    return LIR_OprFact::stack(assigned_reg - nof_regs, type);
2011
2012  } else {
2013    // register
2014    switch (type) {
2015      case T_OBJECT: {
2016        assert(assigned_reg >= pd_first_cpu_reg && assigned_reg <= pd_last_cpu_reg, "no cpu register");
2017        assert(interval->assigned_regHi() == any_reg, "must not have hi register");
2018        return LIR_OprFact::single_cpu_oop(assigned_reg);
2019      }
2020
2021#ifdef __SOFTFP__
2022      case T_FLOAT:  // fall through
2023#endif // __SOFTFP__
2024      case T_INT: {
2025        assert(assigned_reg >= pd_first_cpu_reg && assigned_reg <= pd_last_cpu_reg, "no cpu register");
2026        assert(interval->assigned_regHi() == any_reg, "must not have hi register");
2027        return LIR_OprFact::single_cpu(assigned_reg);
2028      }
2029
2030#ifdef __SOFTFP__
2031      case T_DOUBLE:  // fall through
2032#endif // __SOFTFP__
2033      case T_LONG: {
2034        int assigned_regHi = interval->assigned_regHi();
2035        assert(assigned_reg >= pd_first_cpu_reg && assigned_reg <= pd_last_cpu_reg, "no cpu register");
2036        assert(num_physical_regs(T_LONG) == 1 ||
2037               (assigned_regHi >= pd_first_cpu_reg && assigned_regHi <= pd_last_cpu_reg), "no cpu register");
2038
2039        assert(assigned_reg != assigned_regHi, "invalid allocation");
2040        assert(num_physical_regs(T_LONG) == 1 || assigned_reg < assigned_regHi,
2041               "register numbers must be sorted (ensure that e.g. a move from eax,ebx to ebx,eax can not occur)");
2042        assert((assigned_regHi != any_reg) ^ (num_physical_regs(T_LONG) == 1), "must be match");
2043        if (requires_adjacent_regs(T_LONG)) {
2044          assert(assigned_reg % 2 == 0 && assigned_reg + 1 == assigned_regHi, "must be sequential and even");
2045        }
2046
2047#ifdef _LP64
2048        return LIR_OprFact::double_cpu(assigned_reg, assigned_reg);
2049#else
2050#if defined(SPARC) || defined(PPC)
2051        return LIR_OprFact::double_cpu(assigned_regHi, assigned_reg);
2052#else
2053        return LIR_OprFact::double_cpu(assigned_reg, assigned_regHi);
2054#endif // SPARC
2055#endif // LP64
2056      }
2057
2058#ifndef __SOFTFP__
2059      case T_FLOAT: {
2060#ifdef X86
2061        if (UseSSE >= 1) {
2062          assert(assigned_reg >= pd_first_xmm_reg && assigned_reg <= pd_last_xmm_reg, "no xmm register");
2063          assert(interval->assigned_regHi() == any_reg, "must not have hi register");
2064          return LIR_OprFact::single_xmm(assigned_reg - pd_first_xmm_reg);
2065        }
2066#endif
2067
2068        assert(assigned_reg >= pd_first_fpu_reg && assigned_reg <= pd_last_fpu_reg, "no fpu register");
2069        assert(interval->assigned_regHi() == any_reg, "must not have hi register");
2070        return LIR_OprFact::single_fpu(assigned_reg - pd_first_fpu_reg);
2071      }
2072
2073      case T_DOUBLE: {
2074#ifdef X86
2075        if (UseSSE >= 2) {
2076          assert(assigned_reg >= pd_first_xmm_reg && assigned_reg <= pd_last_xmm_reg, "no xmm register");
2077          assert(interval->assigned_regHi() == any_reg, "must not have hi register (double xmm values are stored in one register)");
2078          return LIR_OprFact::double_xmm(assigned_reg - pd_first_xmm_reg);
2079        }
2080#endif
2081
2082#ifdef SPARC
2083        assert(assigned_reg >= pd_first_fpu_reg && assigned_reg <= pd_last_fpu_reg, "no fpu register");
2084        assert(interval->assigned_regHi() >= pd_first_fpu_reg && interval->assigned_regHi() <= pd_last_fpu_reg, "no fpu register");
2085        assert(assigned_reg % 2 == 0 && assigned_reg + 1 == interval->assigned_regHi(), "must be sequential and even");
2086        LIR_Opr result = LIR_OprFact::double_fpu(interval->assigned_regHi() - pd_first_fpu_reg, assigned_reg - pd_first_fpu_reg);
2087#elif defined(ARM)
2088        assert(assigned_reg >= pd_first_fpu_reg && assigned_reg <= pd_last_fpu_reg, "no fpu register");
2089        assert(interval->assigned_regHi() >= pd_first_fpu_reg && interval->assigned_regHi() <= pd_last_fpu_reg, "no fpu register");
2090        assert(assigned_reg % 2 == 0 && assigned_reg + 1 == interval->assigned_regHi(), "must be sequential and even");
2091        LIR_Opr result = LIR_OprFact::double_fpu(assigned_reg - pd_first_fpu_reg, interval->assigned_regHi() - pd_first_fpu_reg);
2092#else
2093        assert(assigned_reg >= pd_first_fpu_reg && assigned_reg <= pd_last_fpu_reg, "no fpu register");
2094        assert(interval->assigned_regHi() == any_reg, "must not have hi register (double fpu values are stored in one register on Intel)");
2095        LIR_Opr result = LIR_OprFact::double_fpu(assigned_reg - pd_first_fpu_reg);
2096#endif
2097        return result;
2098      }
2099#endif // __SOFTFP__
2100
2101      default: {
2102        ShouldNotReachHere();
2103        return LIR_OprFact::illegalOpr;
2104      }
2105    }
2106  }
2107}
2108
2109LIR_Opr LinearScan::canonical_spill_opr(Interval* interval) {
2110  assert(interval->canonical_spill_slot() >= nof_regs, "canonical spill slot not set");
2111  return LIR_OprFact::stack(interval->canonical_spill_slot() - nof_regs, interval->type());
2112}
2113
2114LIR_Opr LinearScan::color_lir_opr(LIR_Opr opr, int op_id, LIR_OpVisitState::OprMode mode) {
2115  assert(opr->is_virtual(), "should not call this otherwise");
2116
2117  Interval* interval = interval_at(opr->vreg_number());
2118  assert(interval != NULL, "interval must exist");
2119
2120  if (op_id != -1) {
2121#ifdef ASSERT
2122    BlockBegin* block = block_of_op_with_id(op_id);
2123    if (block->number_of_sux() <= 1 && op_id == block->last_lir_instruction_id()) {
2124      // check if spill moves could have been appended at the end of this block, but
2125      // before the branch instruction. So the split child information for this branch would
2126      // be incorrect.
2127      LIR_OpBranch* branch = block->lir()->instructions_list()->last()->as_OpBranch();
2128      if (branch != NULL) {
2129        if (block->live_out().at(opr->vreg_number())) {
2130          assert(branch->cond() == lir_cond_always, "block does not end with an unconditional jump");
2131          assert(false, "can't get split child for the last branch of a block because the information would be incorrect (moves are inserted before the branch in resolve_data_flow)");
2132        }
2133      }
2134    }
2135#endif
2136
2137    // operands are not changed when an interval is split during allocation,
2138    // so search the right interval here
2139    interval = split_child_at_op_id(interval, op_id, mode);
2140  }
2141
2142  LIR_Opr res = operand_for_interval(interval);
2143
2144#ifdef X86
2145  // new semantic for is_last_use: not only set on definite end of interval,
2146  // but also before hole
2147  // This may still miss some cases (e.g. for dead values), but it is not necessary that the
2148  // last use information is completely correct
2149  // information is only needed for fpu stack allocation
2150  if (res->is_fpu_register()) {
2151    if (opr->is_last_use() || op_id == interval->to() || (op_id != -1 && interval->has_hole_between(op_id, op_id + 1))) {
2152      assert(op_id == -1 || !is_block_begin(op_id), "holes at begin of block may also result from control flow");
2153      res = res->make_last_use();
2154    }
2155  }
2156#endif
2157
2158  assert(!gen()->is_vreg_flag_set(opr->vreg_number(), LIRGenerator::callee_saved) || !FrameMap::is_caller_save_register(res), "bad allocation");
2159
2160  return res;
2161}
2162
2163
2164#ifdef ASSERT
2165// some methods used to check correctness of debug information
2166
2167void assert_no_register_values(GrowableArray<ScopeValue*>* values) {
2168  if (values == NULL) {
2169    return;
2170  }
2171
2172  for (int i = 0; i < values->length(); i++) {
2173    ScopeValue* value = values->at(i);
2174
2175    if (value->is_location()) {
2176      Location location = ((LocationValue*)value)->location();
2177      assert(location.where() == Location::on_stack, "value is in register");
2178    }
2179  }
2180}
2181
2182void assert_no_register_values(GrowableArray<MonitorValue*>* values) {
2183  if (values == NULL) {
2184    return;
2185  }
2186
2187  for (int i = 0; i < values->length(); i++) {
2188    MonitorValue* value = values->at(i);
2189
2190    if (value->owner()->is_location()) {
2191      Location location = ((LocationValue*)value->owner())->location();
2192      assert(location.where() == Location::on_stack, "owner is in register");
2193    }
2194    assert(value->basic_lock().where() == Location::on_stack, "basic_lock is in register");
2195  }
2196}
2197
2198void assert_equal(Location l1, Location l2) {
2199  assert(l1.where() == l2.where() && l1.type() == l2.type() && l1.offset() == l2.offset(), "");
2200}
2201
2202void assert_equal(ScopeValue* v1, ScopeValue* v2) {
2203  if (v1->is_location()) {
2204    assert(v2->is_location(), "");
2205    assert_equal(((LocationValue*)v1)->location(), ((LocationValue*)v2)->location());
2206  } else if (v1->is_constant_int()) {
2207    assert(v2->is_constant_int(), "");
2208    assert(((ConstantIntValue*)v1)->value() == ((ConstantIntValue*)v2)->value(), "");
2209  } else if (v1->is_constant_double()) {
2210    assert(v2->is_constant_double(), "");
2211    assert(((ConstantDoubleValue*)v1)->value() == ((ConstantDoubleValue*)v2)->value(), "");
2212  } else if (v1->is_constant_long()) {
2213    assert(v2->is_constant_long(), "");
2214    assert(((ConstantLongValue*)v1)->value() == ((ConstantLongValue*)v2)->value(), "");
2215  } else if (v1->is_constant_oop()) {
2216    assert(v2->is_constant_oop(), "");
2217    assert(((ConstantOopWriteValue*)v1)->value() == ((ConstantOopWriteValue*)v2)->value(), "");
2218  } else {
2219    ShouldNotReachHere();
2220  }
2221}
2222
2223void assert_equal(MonitorValue* m1, MonitorValue* m2) {
2224  assert_equal(m1->owner(), m2->owner());
2225  assert_equal(m1->basic_lock(), m2->basic_lock());
2226}
2227
2228void assert_equal(IRScopeDebugInfo* d1, IRScopeDebugInfo* d2) {
2229  assert(d1->scope() == d2->scope(), "not equal");
2230  assert(d1->bci() == d2->bci(), "not equal");
2231
2232  if (d1->locals() != NULL) {
2233    assert(d1->locals() != NULL && d2->locals() != NULL, "not equal");
2234    assert(d1->locals()->length() == d2->locals()->length(), "not equal");
2235    for (int i = 0; i < d1->locals()->length(); i++) {
2236      assert_equal(d1->locals()->at(i), d2->locals()->at(i));
2237    }
2238  } else {
2239    assert(d1->locals() == NULL && d2->locals() == NULL, "not equal");
2240  }
2241
2242  if (d1->expressions() != NULL) {
2243    assert(d1->expressions() != NULL && d2->expressions() != NULL, "not equal");
2244    assert(d1->expressions()->length() == d2->expressions()->length(), "not equal");
2245    for (int i = 0; i < d1->expressions()->length(); i++) {
2246      assert_equal(d1->expressions()->at(i), d2->expressions()->at(i));
2247    }
2248  } else {
2249    assert(d1->expressions() == NULL && d2->expressions() == NULL, "not equal");
2250  }
2251
2252  if (d1->monitors() != NULL) {
2253    assert(d1->monitors() != NULL && d2->monitors() != NULL, "not equal");
2254    assert(d1->monitors()->length() == d2->monitors()->length(), "not equal");
2255    for (int i = 0; i < d1->monitors()->length(); i++) {
2256      assert_equal(d1->monitors()->at(i), d2->monitors()->at(i));
2257    }
2258  } else {
2259    assert(d1->monitors() == NULL && d2->monitors() == NULL, "not equal");
2260  }
2261
2262  if (d1->caller() != NULL) {
2263    assert(d1->caller() != NULL && d2->caller() != NULL, "not equal");
2264    assert_equal(d1->caller(), d2->caller());
2265  } else {
2266    assert(d1->caller() == NULL && d2->caller() == NULL, "not equal");
2267  }
2268}
2269
2270void check_stack_depth(CodeEmitInfo* info, int stack_end) {
2271  if (info->bci() != SynchronizationEntryBCI && !info->scope()->method()->is_native()) {
2272    Bytecodes::Code code = info->scope()->method()->java_code_at_bci(info->bci());
2273    switch (code) {
2274      case Bytecodes::_ifnull    : // fall through
2275      case Bytecodes::_ifnonnull : // fall through
2276      case Bytecodes::_ifeq      : // fall through
2277      case Bytecodes::_ifne      : // fall through
2278      case Bytecodes::_iflt      : // fall through
2279      case Bytecodes::_ifge      : // fall through
2280      case Bytecodes::_ifgt      : // fall through
2281      case Bytecodes::_ifle      : // fall through
2282      case Bytecodes::_if_icmpeq : // fall through
2283      case Bytecodes::_if_icmpne : // fall through
2284      case Bytecodes::_if_icmplt : // fall through
2285      case Bytecodes::_if_icmpge : // fall through
2286      case Bytecodes::_if_icmpgt : // fall through
2287      case Bytecodes::_if_icmple : // fall through
2288      case Bytecodes::_if_acmpeq : // fall through
2289      case Bytecodes::_if_acmpne :
2290        assert(stack_end >= -Bytecodes::depth(code), "must have non-empty expression stack at if bytecode");
2291        break;
2292    }
2293  }
2294}
2295
2296#endif // ASSERT
2297
2298
2299IntervalWalker* LinearScan::init_compute_oop_maps() {
2300  // setup lists of potential oops for walking
2301  Interval* oop_intervals;
2302  Interval* non_oop_intervals;
2303
2304  create_unhandled_lists(&oop_intervals, &non_oop_intervals, is_oop_interval, NULL);
2305
2306  // intervals that have no oops inside need not to be processed
2307  // to ensure a walking until the last instruction id, add a dummy interval
2308  // with a high operation id
2309  non_oop_intervals = new Interval(any_reg);
2310  non_oop_intervals->add_range(max_jint - 2, max_jint - 1);
2311
2312  return new IntervalWalker(this, oop_intervals, non_oop_intervals);
2313}
2314
2315
2316OopMap* LinearScan::compute_oop_map(IntervalWalker* iw, LIR_Op* op, CodeEmitInfo* info, bool is_call_site) {
2317  TRACE_LINEAR_SCAN(3, tty->print_cr("creating oop map at op_id %d", op->id()));
2318
2319  // walk before the current operation -> intervals that start at
2320  // the operation (= output operands of the operation) are not
2321  // included in the oop map
2322  iw->walk_before(op->id());
2323
2324  int frame_size = frame_map()->framesize();
2325  int arg_count = frame_map()->oop_map_arg_count();
2326  OopMap* map = new OopMap(frame_size, arg_count);
2327
2328  // Check if this is a patch site.
2329  bool is_patch_info = false;
2330  if (op->code() == lir_move) {
2331    assert(!is_call_site, "move must not be a call site");
2332    assert(op->as_Op1() != NULL, "move must be LIR_Op1");
2333    LIR_Op1* move = (LIR_Op1*)op;
2334
2335    is_patch_info = move->patch_code() != lir_patch_none;
2336  }
2337
2338  // Iterate through active intervals
2339  for (Interval* interval = iw->active_first(fixedKind); interval != Interval::end(); interval = interval->next()) {
2340    int assigned_reg = interval->assigned_reg();
2341
2342    assert(interval->current_from() <= op->id() && op->id() <= interval->current_to(), "interval should not be active otherwise");
2343    assert(interval->assigned_regHi() == any_reg, "oop must be single word");
2344    assert(interval->reg_num() >= LIR_OprDesc::vreg_base, "fixed interval found");
2345
2346    // Check if this range covers the instruction. Intervals that
2347    // start or end at the current operation are not included in the
2348    // oop map, except in the case of patching moves.  For patching
2349    // moves, any intervals which end at this instruction are included
2350    // in the oop map since we may safepoint while doing the patch
2351    // before we've consumed the inputs.
2352    if (is_patch_info || op->id() < interval->current_to()) {
2353
2354      // caller-save registers must not be included into oop-maps at calls
2355      assert(!is_call_site || assigned_reg >= nof_regs || !is_caller_save(assigned_reg), "interval is in a caller-save register at a call -> register will be overwritten");
2356
2357      VMReg name = vm_reg_for_interval(interval);
2358      map->set_oop(name);
2359
2360      // Spill optimization: when the stack value is guaranteed to be always correct,
2361      // then it must be added to the oop map even if the interval is currently in a register
2362      if (interval->always_in_memory() &&
2363          op->id() > interval->spill_definition_pos() &&
2364          interval->assigned_reg() != interval->canonical_spill_slot()) {
2365        assert(interval->spill_definition_pos() > 0, "position not set correctly");
2366        assert(interval->canonical_spill_slot() >= LinearScan::nof_regs, "no spill slot assigned");
2367        assert(interval->assigned_reg() < LinearScan::nof_regs, "interval is on stack, so stack slot is registered twice");
2368
2369        map->set_oop(frame_map()->slot_regname(interval->canonical_spill_slot() - LinearScan::nof_regs));
2370      }
2371    }
2372  }
2373
2374  // add oops from lock stack
2375  assert(info->stack() != NULL, "CodeEmitInfo must always have a stack");
2376  int locks_count = info->stack()->locks_size();
2377  for (int i = 0; i < locks_count; i++) {
2378    map->set_oop(frame_map()->monitor_object_regname(i));
2379  }
2380
2381  return map;
2382}
2383
2384
2385void LinearScan::compute_oop_map(IntervalWalker* iw, const LIR_OpVisitState &visitor, LIR_Op* op) {
2386  assert(visitor.info_count() > 0, "no oop map needed");
2387
2388  // compute oop_map only for first CodeEmitInfo
2389  // because it is (in most cases) equal for all other infos of the same operation
2390  CodeEmitInfo* first_info = visitor.info_at(0);
2391  OopMap* first_oop_map = compute_oop_map(iw, op, first_info, visitor.has_call());
2392
2393  for (int i = 0; i < visitor.info_count(); i++) {
2394    CodeEmitInfo* info = visitor.info_at(i);
2395    OopMap* oop_map = first_oop_map;
2396
2397    if (info->stack()->locks_size() != first_info->stack()->locks_size()) {
2398      // this info has a different number of locks then the precomputed oop map
2399      // (possible for lock and unlock instructions) -> compute oop map with
2400      // correct lock information
2401      oop_map = compute_oop_map(iw, op, info, visitor.has_call());
2402    }
2403
2404    if (info->_oop_map == NULL) {
2405      info->_oop_map = oop_map;
2406    } else {
2407      // a CodeEmitInfo can not be shared between different LIR-instructions
2408      // because interval splitting can occur anywhere between two instructions
2409      // and so the oop maps must be different
2410      // -> check if the already set oop_map is exactly the one calculated for this operation
2411      assert(info->_oop_map == oop_map, "same CodeEmitInfo used for multiple LIR instructions");
2412    }
2413  }
2414}
2415
2416
2417// frequently used constants
2418ConstantOopWriteValue LinearScan::_oop_null_scope_value = ConstantOopWriteValue(NULL);
2419ConstantIntValue      LinearScan::_int_m1_scope_value = ConstantIntValue(-1);
2420ConstantIntValue      LinearScan::_int_0_scope_value =  ConstantIntValue(0);
2421ConstantIntValue      LinearScan::_int_1_scope_value =  ConstantIntValue(1);
2422ConstantIntValue      LinearScan::_int_2_scope_value =  ConstantIntValue(2);
2423LocationValue         _illegal_value = LocationValue(Location());
2424
2425void LinearScan::init_compute_debug_info() {
2426  // cache for frequently used scope values
2427  // (cpu registers and stack slots)
2428  _scope_value_cache = ScopeValueArray((LinearScan::nof_cpu_regs + frame_map()->argcount() + max_spills()) * 2, NULL);
2429}
2430
2431MonitorValue* LinearScan::location_for_monitor_index(int monitor_index) {
2432  Location loc;
2433  if (!frame_map()->location_for_monitor_object(monitor_index, &loc)) {
2434    bailout("too large frame");
2435  }
2436  ScopeValue* object_scope_value = new LocationValue(loc);
2437
2438  if (!frame_map()->location_for_monitor_lock(monitor_index, &loc)) {
2439    bailout("too large frame");
2440  }
2441  return new MonitorValue(object_scope_value, loc);
2442}
2443
2444LocationValue* LinearScan::location_for_name(int name, Location::Type loc_type) {
2445  Location loc;
2446  if (!frame_map()->locations_for_slot(name, loc_type, &loc)) {
2447    bailout("too large frame");
2448  }
2449  return new LocationValue(loc);
2450}
2451
2452
2453int LinearScan::append_scope_value_for_constant(LIR_Opr opr, GrowableArray<ScopeValue*>* scope_values) {
2454  assert(opr->is_constant(), "should not be called otherwise");
2455
2456  LIR_Const* c = opr->as_constant_ptr();
2457  BasicType t = c->type();
2458  switch (t) {
2459    case T_OBJECT: {
2460      jobject value = c->as_jobject();
2461      if (value == NULL) {
2462        scope_values->append(&_oop_null_scope_value);
2463      } else {
2464        scope_values->append(new ConstantOopWriteValue(c->as_jobject()));
2465      }
2466      return 1;
2467    }
2468
2469    case T_INT: // fall through
2470    case T_FLOAT: {
2471      int value = c->as_jint_bits();
2472      switch (value) {
2473        case -1: scope_values->append(&_int_m1_scope_value); break;
2474        case 0:  scope_values->append(&_int_0_scope_value); break;
2475        case 1:  scope_values->append(&_int_1_scope_value); break;
2476        case 2:  scope_values->append(&_int_2_scope_value); break;
2477        default: scope_values->append(new ConstantIntValue(c->as_jint_bits())); break;
2478      }
2479      return 1;
2480    }
2481
2482    case T_LONG: // fall through
2483    case T_DOUBLE: {
2484#ifdef _LP64
2485      scope_values->append(&_int_0_scope_value);
2486      scope_values->append(new ConstantLongValue(c->as_jlong_bits()));
2487#else
2488      if (hi_word_offset_in_bytes > lo_word_offset_in_bytes) {
2489        scope_values->append(new ConstantIntValue(c->as_jint_hi_bits()));
2490        scope_values->append(new ConstantIntValue(c->as_jint_lo_bits()));
2491      } else {
2492        scope_values->append(new ConstantIntValue(c->as_jint_lo_bits()));
2493        scope_values->append(new ConstantIntValue(c->as_jint_hi_bits()));
2494      }
2495#endif
2496      return 2;
2497    }
2498
2499    case T_ADDRESS: {
2500#ifdef _LP64
2501      scope_values->append(new ConstantLongValue(c->as_jint()));
2502#else
2503      scope_values->append(new ConstantIntValue(c->as_jint()));
2504#endif
2505      return 1;
2506    }
2507
2508    default:
2509      ShouldNotReachHere();
2510      return -1;
2511  }
2512}
2513
2514int LinearScan::append_scope_value_for_operand(LIR_Opr opr, GrowableArray<ScopeValue*>* scope_values) {
2515  if (opr->is_single_stack()) {
2516    int stack_idx = opr->single_stack_ix();
2517    bool is_oop = opr->is_oop_register();
2518    int cache_idx = (stack_idx + LinearScan::nof_cpu_regs) * 2 + (is_oop ? 1 : 0);
2519
2520    ScopeValue* sv = _scope_value_cache.at(cache_idx);
2521    if (sv == NULL) {
2522      Location::Type loc_type = is_oop ? Location::oop : Location::normal;
2523      sv = location_for_name(stack_idx, loc_type);
2524      _scope_value_cache.at_put(cache_idx, sv);
2525    }
2526
2527    // check if cached value is correct
2528    DEBUG_ONLY(assert_equal(sv, location_for_name(stack_idx, is_oop ? Location::oop : Location::normal)));
2529
2530    scope_values->append(sv);
2531    return 1;
2532
2533  } else if (opr->is_single_cpu()) {
2534    bool is_oop = opr->is_oop_register();
2535    int cache_idx = opr->cpu_regnr() * 2 + (is_oop ? 1 : 0);
2536    Location::Type int_loc_type = NOT_LP64(Location::normal) LP64_ONLY(Location::int_in_long);
2537
2538    ScopeValue* sv = _scope_value_cache.at(cache_idx);
2539    if (sv == NULL) {
2540      Location::Type loc_type = is_oop ? Location::oop : int_loc_type;
2541      VMReg rname = frame_map()->regname(opr);
2542      sv = new LocationValue(Location::new_reg_loc(loc_type, rname));
2543      _scope_value_cache.at_put(cache_idx, sv);
2544    }
2545
2546    // check if cached value is correct
2547    DEBUG_ONLY(assert_equal(sv, new LocationValue(Location::new_reg_loc(is_oop ? Location::oop : int_loc_type, frame_map()->regname(opr)))));
2548
2549    scope_values->append(sv);
2550    return 1;
2551
2552#ifdef X86
2553  } else if (opr->is_single_xmm()) {
2554    VMReg rname = opr->as_xmm_float_reg()->as_VMReg();
2555    LocationValue* sv = new LocationValue(Location::new_reg_loc(Location::normal, rname));
2556
2557    scope_values->append(sv);
2558    return 1;
2559#endif
2560
2561  } else if (opr->is_single_fpu()) {
2562#ifdef X86
2563    // the exact location of fpu stack values is only known
2564    // during fpu stack allocation, so the stack allocator object
2565    // must be present
2566    assert(use_fpu_stack_allocation(), "should not have float stack values without fpu stack allocation (all floats must be SSE2)");
2567    assert(_fpu_stack_allocator != NULL, "must be present");
2568    opr = _fpu_stack_allocator->to_fpu_stack(opr);
2569#endif
2570
2571    Location::Type loc_type = float_saved_as_double ? Location::float_in_dbl : Location::normal;
2572    VMReg rname = frame_map()->fpu_regname(opr->fpu_regnr());
2573    LocationValue* sv = new LocationValue(Location::new_reg_loc(loc_type, rname));
2574
2575    scope_values->append(sv);
2576    return 1;
2577
2578  } else {
2579    // double-size operands
2580
2581    ScopeValue* first;
2582    ScopeValue* second;
2583
2584    if (opr->is_double_stack()) {
2585#ifdef _LP64
2586      Location loc1;
2587      Location::Type loc_type = opr->type() == T_LONG ? Location::lng : Location::dbl;
2588      if (!frame_map()->locations_for_slot(opr->double_stack_ix(), loc_type, &loc1, NULL)) {
2589        bailout("too large frame");
2590      }
2591      // Does this reverse on x86 vs. sparc?
2592      first =  new LocationValue(loc1);
2593      second = &_int_0_scope_value;
2594#else
2595      Location loc1, loc2;
2596      if (!frame_map()->locations_for_slot(opr->double_stack_ix(), Location::normal, &loc1, &loc2)) {
2597        bailout("too large frame");
2598      }
2599      first =  new LocationValue(loc1);
2600      second = new LocationValue(loc2);
2601#endif // _LP64
2602
2603    } else if (opr->is_double_cpu()) {
2604#ifdef _LP64
2605      VMReg rname_first = opr->as_register_lo()->as_VMReg();
2606      first = new LocationValue(Location::new_reg_loc(Location::lng, rname_first));
2607      second = &_int_0_scope_value;
2608#else
2609      VMReg rname_first = opr->as_register_lo()->as_VMReg();
2610      VMReg rname_second = opr->as_register_hi()->as_VMReg();
2611
2612      if (hi_word_offset_in_bytes < lo_word_offset_in_bytes) {
2613        // lo/hi and swapped relative to first and second, so swap them
2614        VMReg tmp = rname_first;
2615        rname_first = rname_second;
2616        rname_second = tmp;
2617      }
2618
2619      first = new LocationValue(Location::new_reg_loc(Location::normal, rname_first));
2620      second = new LocationValue(Location::new_reg_loc(Location::normal, rname_second));
2621#endif //_LP64
2622
2623
2624#ifdef X86
2625    } else if (opr->is_double_xmm()) {
2626      assert(opr->fpu_regnrLo() == opr->fpu_regnrHi(), "assumed in calculation");
2627      VMReg rname_first  = opr->as_xmm_double_reg()->as_VMReg();
2628#  ifdef _LP64
2629      first = new LocationValue(Location::new_reg_loc(Location::dbl, rname_first));
2630      second = &_int_0_scope_value;
2631#  else
2632      first = new LocationValue(Location::new_reg_loc(Location::normal, rname_first));
2633      // %%% This is probably a waste but we'll keep things as they were for now
2634      if (true) {
2635        VMReg rname_second = rname_first->next();
2636        second = new LocationValue(Location::new_reg_loc(Location::normal, rname_second));
2637      }
2638#  endif
2639#endif
2640
2641    } else if (opr->is_double_fpu()) {
2642      // On SPARC, fpu_regnrLo/fpu_regnrHi represents the two halves of
2643      // the double as float registers in the native ordering. On X86,
2644      // fpu_regnrLo is a FPU stack slot whose VMReg represents
2645      // the low-order word of the double and fpu_regnrLo + 1 is the
2646      // name for the other half.  *first and *second must represent the
2647      // least and most significant words, respectively.
2648
2649#ifdef X86
2650      // the exact location of fpu stack values is only known
2651      // during fpu stack allocation, so the stack allocator object
2652      // must be present
2653      assert(use_fpu_stack_allocation(), "should not have float stack values without fpu stack allocation (all floats must be SSE2)");
2654      assert(_fpu_stack_allocator != NULL, "must be present");
2655      opr = _fpu_stack_allocator->to_fpu_stack(opr);
2656
2657      assert(opr->fpu_regnrLo() == opr->fpu_regnrHi(), "assumed in calculation (only fpu_regnrHi is used)");
2658#endif
2659#ifdef SPARC
2660      assert(opr->fpu_regnrLo() == opr->fpu_regnrHi() + 1, "assumed in calculation (only fpu_regnrHi is used)");
2661#endif
2662#ifdef ARM
2663      assert(opr->fpu_regnrHi() == opr->fpu_regnrLo() + 1, "assumed in calculation (only fpu_regnrLo is used)");
2664#endif
2665#ifdef PPC
2666      assert(opr->fpu_regnrLo() == opr->fpu_regnrHi(), "assumed in calculation (only fpu_regnrHi is used)");
2667#endif
2668
2669      VMReg rname_first = frame_map()->fpu_regname(opr->fpu_regnrHi());
2670#ifdef _LP64
2671      first = new LocationValue(Location::new_reg_loc(Location::dbl, rname_first));
2672      second = &_int_0_scope_value;
2673#else
2674      first = new LocationValue(Location::new_reg_loc(Location::normal, rname_first));
2675      // %%% This is probably a waste but we'll keep things as they were for now
2676      if (true) {
2677        VMReg rname_second = rname_first->next();
2678        second = new LocationValue(Location::new_reg_loc(Location::normal, rname_second));
2679      }
2680#endif
2681
2682    } else {
2683      ShouldNotReachHere();
2684      first = NULL;
2685      second = NULL;
2686    }
2687
2688    assert(first != NULL && second != NULL, "must be set");
2689    // The convention the interpreter uses is that the second local
2690    // holds the first raw word of the native double representation.
2691    // This is actually reasonable, since locals and stack arrays
2692    // grow downwards in all implementations.
2693    // (If, on some machine, the interpreter's Java locals or stack
2694    // were to grow upwards, the embedded doubles would be word-swapped.)
2695    scope_values->append(second);
2696    scope_values->append(first);
2697    return 2;
2698  }
2699}
2700
2701
2702int LinearScan::append_scope_value(int op_id, Value value, GrowableArray<ScopeValue*>* scope_values) {
2703  if (value != NULL) {
2704    LIR_Opr opr = value->operand();
2705    Constant* con = value->as_Constant();
2706
2707    assert(con == NULL || opr->is_virtual() || opr->is_constant() || opr->is_illegal(), "asumption: Constant instructions have only constant operands (or illegal if constant is optimized away)");
2708    assert(con != NULL || opr->is_virtual(), "asumption: non-Constant instructions have only virtual operands");
2709
2710    if (con != NULL && !con->is_pinned() && !opr->is_constant()) {
2711      // Unpinned constants may have a virtual operand for a part of the lifetime
2712      // or may be illegal when it was optimized away,
2713      // so always use a constant operand
2714      opr = LIR_OprFact::value_type(con->type());
2715    }
2716    assert(opr->is_virtual() || opr->is_constant(), "other cases not allowed here");
2717
2718    if (opr->is_virtual()) {
2719      LIR_OpVisitState::OprMode mode = LIR_OpVisitState::inputMode;
2720
2721      BlockBegin* block = block_of_op_with_id(op_id);
2722      if (block->number_of_sux() == 1 && op_id == block->last_lir_instruction_id()) {
2723        // generating debug information for the last instruction of a block.
2724        // if this instruction is a branch, spill moves are inserted before this branch
2725        // and so the wrong operand would be returned (spill moves at block boundaries are not
2726        // considered in the live ranges of intervals)
2727        // Solution: use the first op_id of the branch target block instead.
2728        if (block->lir()->instructions_list()->last()->as_OpBranch() != NULL) {
2729          if (block->live_out().at(opr->vreg_number())) {
2730            op_id = block->sux_at(0)->first_lir_instruction_id();
2731            mode = LIR_OpVisitState::outputMode;
2732          }
2733        }
2734      }
2735
2736      // Get current location of operand
2737      // The operand must be live because debug information is considered when building the intervals
2738      // if the interval is not live, color_lir_opr will cause an assertion failure
2739      opr = color_lir_opr(opr, op_id, mode);
2740      assert(!has_call(op_id) || opr->is_stack() || !is_caller_save(reg_num(opr)), "can not have caller-save register operands at calls");
2741
2742      // Append to ScopeValue array
2743      return append_scope_value_for_operand(opr, scope_values);
2744
2745    } else {
2746      assert(value->as_Constant() != NULL, "all other instructions have only virtual operands");
2747      assert(opr->is_constant(), "operand must be constant");
2748
2749      return append_scope_value_for_constant(opr, scope_values);
2750    }
2751  } else {
2752    // append a dummy value because real value not needed
2753    scope_values->append(&_illegal_value);
2754    return 1;
2755  }
2756}
2757
2758
2759IRScopeDebugInfo* LinearScan::compute_debug_info_for_scope(int op_id, IRScope* cur_scope, ValueStack* cur_state, ValueStack* innermost_state, int cur_bci, int stack_end, int locks_end) {
2760  IRScopeDebugInfo* caller_debug_info = NULL;
2761  int stack_begin, locks_begin;
2762
2763  ValueStack* caller_state = cur_scope->caller_state();
2764  if (caller_state != NULL) {
2765    // process recursively to compute outermost scope first
2766    stack_begin = caller_state->stack_size();
2767    locks_begin = caller_state->locks_size();
2768    caller_debug_info = compute_debug_info_for_scope(op_id, cur_scope->caller(), caller_state, innermost_state, cur_scope->caller_bci(), stack_begin, locks_begin);
2769  } else {
2770    stack_begin = 0;
2771    locks_begin = 0;
2772  }
2773
2774  // initialize these to null.
2775  // If we don't need deopt info or there are no locals, expressions or monitors,
2776  // then these get recorded as no information and avoids the allocation of 0 length arrays.
2777  GrowableArray<ScopeValue*>*   locals      = NULL;
2778  GrowableArray<ScopeValue*>*   expressions = NULL;
2779  GrowableArray<MonitorValue*>* monitors    = NULL;
2780
2781  // describe local variable values
2782  int nof_locals = cur_scope->method()->max_locals();
2783  if (nof_locals > 0) {
2784    locals = new GrowableArray<ScopeValue*>(nof_locals);
2785
2786    int pos = 0;
2787    while (pos < nof_locals) {
2788      assert(pos < cur_state->locals_size(), "why not?");
2789
2790      Value local = cur_state->local_at(pos);
2791      pos += append_scope_value(op_id, local, locals);
2792
2793      assert(locals->length() == pos, "must match");
2794    }
2795    assert(locals->length() == cur_scope->method()->max_locals(), "wrong number of locals");
2796    assert(locals->length() == cur_state->locals_size(), "wrong number of locals");
2797  }
2798
2799
2800  // describe expression stack
2801  //
2802  // When we inline methods containing exception handlers, the
2803  // "lock_stacks" are changed to preserve expression stack values
2804  // in caller scopes when exception handlers are present. This
2805  // can cause callee stacks to be smaller than caller stacks.
2806  if (stack_end > innermost_state->stack_size()) {
2807    stack_end = innermost_state->stack_size();
2808  }
2809
2810
2811
2812  int nof_stack = stack_end - stack_begin;
2813  if (nof_stack > 0) {
2814    expressions = new GrowableArray<ScopeValue*>(nof_stack);
2815
2816    int pos = stack_begin;
2817    while (pos < stack_end) {
2818      Value expression = innermost_state->stack_at_inc(pos);
2819      append_scope_value(op_id, expression, expressions);
2820
2821      assert(expressions->length() + stack_begin == pos, "must match");
2822    }
2823  }
2824
2825  // describe monitors
2826  assert(locks_begin <= locks_end, "error in scope iteration");
2827  int nof_locks = locks_end - locks_begin;
2828  if (nof_locks > 0) {
2829    monitors = new GrowableArray<MonitorValue*>(nof_locks);
2830    for (int i = locks_begin; i < locks_end; i++) {
2831      monitors->append(location_for_monitor_index(i));
2832    }
2833  }
2834
2835  return new IRScopeDebugInfo(cur_scope, cur_bci, locals, expressions, monitors, caller_debug_info);
2836}
2837
2838
2839void LinearScan::compute_debug_info(CodeEmitInfo* info, int op_id) {
2840  TRACE_LINEAR_SCAN(3, tty->print_cr("creating debug information at op_id %d", op_id));
2841
2842  IRScope* innermost_scope = info->scope();
2843  ValueStack* innermost_state = info->stack();
2844
2845  assert(innermost_scope != NULL && innermost_state != NULL, "why is it missing?");
2846
2847  int stack_end = innermost_state->stack_size();
2848  int locks_end = innermost_state->locks_size();
2849
2850  DEBUG_ONLY(check_stack_depth(info, stack_end));
2851
2852  if (info->_scope_debug_info == NULL) {
2853    // compute debug information
2854    info->_scope_debug_info = compute_debug_info_for_scope(op_id, innermost_scope, innermost_state, innermost_state, info->bci(), stack_end, locks_end);
2855  } else {
2856    // debug information already set. Check that it is correct from the current point of view
2857    DEBUG_ONLY(assert_equal(info->_scope_debug_info, compute_debug_info_for_scope(op_id, innermost_scope, innermost_state, innermost_state, info->bci(), stack_end, locks_end)));
2858  }
2859}
2860
2861
2862void LinearScan::assign_reg_num(LIR_OpList* instructions, IntervalWalker* iw) {
2863  LIR_OpVisitState visitor;
2864  int num_inst = instructions->length();
2865  bool has_dead = false;
2866
2867  for (int j = 0; j < num_inst; j++) {
2868    LIR_Op* op = instructions->at(j);
2869    if (op == NULL) {  // this can happen when spill-moves are removed in eliminate_spill_moves
2870      has_dead = true;
2871      continue;
2872    }
2873    int op_id = op->id();
2874
2875    // visit instruction to get list of operands
2876    visitor.visit(op);
2877
2878    // iterate all modes of the visitor and process all virtual operands
2879    for_each_visitor_mode(mode) {
2880      int n = visitor.opr_count(mode);
2881      for (int k = 0; k < n; k++) {
2882        LIR_Opr opr = visitor.opr_at(mode, k);
2883        if (opr->is_virtual_register()) {
2884          visitor.set_opr_at(mode, k, color_lir_opr(opr, op_id, mode));
2885        }
2886      }
2887    }
2888
2889    if (visitor.info_count() > 0) {
2890      // exception handling
2891      if (compilation()->has_exception_handlers()) {
2892        XHandlers* xhandlers = visitor.all_xhandler();
2893        int n = xhandlers->length();
2894        for (int k = 0; k < n; k++) {
2895          XHandler* handler = xhandlers->handler_at(k);
2896          if (handler->entry_code() != NULL) {
2897            assign_reg_num(handler->entry_code()->instructions_list(), NULL);
2898          }
2899        }
2900      } else {
2901        assert(visitor.all_xhandler()->length() == 0, "missed exception handler");
2902      }
2903
2904      // compute oop map
2905      assert(iw != NULL, "needed for compute_oop_map");
2906      compute_oop_map(iw, visitor, op);
2907
2908      // compute debug information
2909      if (!use_fpu_stack_allocation()) {
2910        // compute debug information if fpu stack allocation is not needed.
2911        // when fpu stack allocation is needed, the debug information can not
2912        // be computed here because the exact location of fpu operands is not known
2913        // -> debug information is created inside the fpu stack allocator
2914        int n = visitor.info_count();
2915        for (int k = 0; k < n; k++) {
2916          compute_debug_info(visitor.info_at(k), op_id);
2917        }
2918      }
2919    }
2920
2921#ifdef ASSERT
2922    // make sure we haven't made the op invalid.
2923    op->verify();
2924#endif
2925
2926    // remove useless moves
2927    if (op->code() == lir_move) {
2928      assert(op->as_Op1() != NULL, "move must be LIR_Op1");
2929      LIR_Op1* move = (LIR_Op1*)op;
2930      LIR_Opr src = move->in_opr();
2931      LIR_Opr dst = move->result_opr();
2932      if (dst == src ||
2933          !dst->is_pointer() && !src->is_pointer() &&
2934          src->is_same_register(dst)) {
2935        instructions->at_put(j, NULL);
2936        has_dead = true;
2937      }
2938    }
2939  }
2940
2941  if (has_dead) {
2942    // iterate all instructions of the block and remove all null-values.
2943    int insert_point = 0;
2944    for (int j = 0; j < num_inst; j++) {
2945      LIR_Op* op = instructions->at(j);
2946      if (op != NULL) {
2947        if (insert_point != j) {
2948          instructions->at_put(insert_point, op);
2949        }
2950        insert_point++;
2951      }
2952    }
2953    instructions->truncate(insert_point);
2954  }
2955}
2956
2957void LinearScan::assign_reg_num() {
2958  TIME_LINEAR_SCAN(timer_assign_reg_num);
2959
2960  init_compute_debug_info();
2961  IntervalWalker* iw = init_compute_oop_maps();
2962
2963  int num_blocks = block_count();
2964  for (int i = 0; i < num_blocks; i++) {
2965    BlockBegin* block = block_at(i);
2966    assign_reg_num(block->lir()->instructions_list(), iw);
2967  }
2968}
2969
2970
2971void LinearScan::do_linear_scan() {
2972  NOT_PRODUCT(_total_timer.begin_method());
2973
2974  number_instructions();
2975
2976  NOT_PRODUCT(print_lir(1, "Before Register Allocation"));
2977
2978  compute_local_live_sets();
2979  compute_global_live_sets();
2980  CHECK_BAILOUT();
2981
2982  build_intervals();
2983  CHECK_BAILOUT();
2984  sort_intervals_before_allocation();
2985
2986  NOT_PRODUCT(print_intervals("Before Register Allocation"));
2987  NOT_PRODUCT(LinearScanStatistic::compute(this, _stat_before_alloc));
2988
2989  allocate_registers();
2990  CHECK_BAILOUT();
2991
2992  resolve_data_flow();
2993  if (compilation()->has_exception_handlers()) {
2994    resolve_exception_handlers();
2995  }
2996  // fill in number of spill slots into frame_map
2997  propagate_spill_slots();
2998  CHECK_BAILOUT();
2999
3000  NOT_PRODUCT(print_intervals("After Register Allocation"));
3001  NOT_PRODUCT(print_lir(2, "LIR after register allocation:"));
3002
3003  sort_intervals_after_allocation();
3004
3005  DEBUG_ONLY(verify());
3006
3007  eliminate_spill_moves();
3008  assign_reg_num();
3009  CHECK_BAILOUT();
3010
3011  NOT_PRODUCT(print_lir(2, "LIR after assignment of register numbers:"));
3012  NOT_PRODUCT(LinearScanStatistic::compute(this, _stat_after_asign));
3013
3014  { TIME_LINEAR_SCAN(timer_allocate_fpu_stack);
3015
3016    if (use_fpu_stack_allocation()) {
3017      allocate_fpu_stack(); // Only has effect on Intel
3018      NOT_PRODUCT(print_lir(2, "LIR after FPU stack allocation:"));
3019    }
3020  }
3021
3022  { TIME_LINEAR_SCAN(timer_optimize_lir);
3023
3024    EdgeMoveOptimizer::optimize(ir()->code());
3025    ControlFlowOptimizer::optimize(ir()->code());
3026    // check that cfg is still correct after optimizations
3027    ir()->verify();
3028  }
3029
3030  NOT_PRODUCT(print_lir(1, "Before Code Generation", false));
3031  NOT_PRODUCT(LinearScanStatistic::compute(this, _stat_final));
3032  NOT_PRODUCT(_total_timer.end_method(this));
3033}
3034
3035
3036// ********** Printing functions
3037
3038#ifndef PRODUCT
3039
3040void LinearScan::print_timers(double total) {
3041  _total_timer.print(total);
3042}
3043
3044void LinearScan::print_statistics() {
3045  _stat_before_alloc.print("before allocation");
3046  _stat_after_asign.print("after assignment of register");
3047  _stat_final.print("after optimization");
3048}
3049
3050void LinearScan::print_bitmap(BitMap& b) {
3051  for (unsigned int i = 0; i < b.size(); i++) {
3052    if (b.at(i)) tty->print("%d ", i);
3053  }
3054  tty->cr();
3055}
3056
3057void LinearScan::print_intervals(const char* label) {
3058  if (TraceLinearScanLevel >= 1) {
3059    int i;
3060    tty->cr();
3061    tty->print_cr("%s", label);
3062
3063    for (i = 0; i < interval_count(); i++) {
3064      Interval* interval = interval_at(i);
3065      if (interval != NULL) {
3066        interval->print();
3067      }
3068    }
3069
3070    tty->cr();
3071    tty->print_cr("--- Basic Blocks ---");
3072    for (i = 0; i < block_count(); i++) {
3073      BlockBegin* block = block_at(i);
3074      tty->print("B%d [%d, %d, %d, %d] ", block->block_id(), block->first_lir_instruction_id(), block->last_lir_instruction_id(), block->loop_index(), block->loop_depth());
3075    }
3076    tty->cr();
3077    tty->cr();
3078  }
3079
3080  if (PrintCFGToFile) {
3081    CFGPrinter::print_intervals(&_intervals, label);
3082  }
3083}
3084
3085void LinearScan::print_lir(int level, const char* label, bool hir_valid) {
3086  if (TraceLinearScanLevel >= level) {
3087    tty->cr();
3088    tty->print_cr("%s", label);
3089    print_LIR(ir()->linear_scan_order());
3090    tty->cr();
3091  }
3092
3093  if (level == 1 && PrintCFGToFile) {
3094    CFGPrinter::print_cfg(ir()->linear_scan_order(), label, hir_valid, true);
3095  }
3096}
3097
3098#endif //PRODUCT
3099
3100
3101// ********** verification functions for allocation
3102// (check that all intervals have a correct register and that no registers are overwritten)
3103#ifdef ASSERT
3104
3105void LinearScan::verify() {
3106  TRACE_LINEAR_SCAN(2, tty->print_cr("********* verifying intervals ******************************************"));
3107  verify_intervals();
3108
3109  TRACE_LINEAR_SCAN(2, tty->print_cr("********* verifying that no oops are in fixed intervals ****************"));
3110  verify_no_oops_in_fixed_intervals();
3111
3112  TRACE_LINEAR_SCAN(2, tty->print_cr("********* verifying that unpinned constants are not alive across block boundaries"));
3113  verify_constants();
3114
3115  TRACE_LINEAR_SCAN(2, tty->print_cr("********* verifying register allocation ********************************"));
3116  verify_registers();
3117
3118  TRACE_LINEAR_SCAN(2, tty->print_cr("********* no errors found **********************************************"));
3119}
3120
3121void LinearScan::verify_intervals() {
3122  int len = interval_count();
3123  bool has_error = false;
3124
3125  for (int i = 0; i < len; i++) {
3126    Interval* i1 = interval_at(i);
3127    if (i1 == NULL) continue;
3128
3129    i1->check_split_children();
3130
3131    if (i1->reg_num() != i) {
3132      tty->print_cr("Interval %d is on position %d in list", i1->reg_num(), i); i1->print(); tty->cr();
3133      has_error = true;
3134    }
3135
3136    if (i1->reg_num() >= LIR_OprDesc::vreg_base && i1->type() == T_ILLEGAL) {
3137      tty->print_cr("Interval %d has no type assigned", i1->reg_num()); i1->print(); tty->cr();
3138      has_error = true;
3139    }
3140
3141    if (i1->assigned_reg() == any_reg) {
3142      tty->print_cr("Interval %d has no register assigned", i1->reg_num()); i1->print(); tty->cr();
3143      has_error = true;
3144    }
3145
3146    if (i1->assigned_reg() == i1->assigned_regHi()) {
3147      tty->print_cr("Interval %d: low and high register equal", i1->reg_num()); i1->print(); tty->cr();
3148      has_error = true;
3149    }
3150
3151    if (!is_processed_reg_num(i1->assigned_reg())) {
3152      tty->print_cr("Can not have an Interval for an ignored register"); i1->print(); tty->cr();
3153      has_error = true;
3154    }
3155
3156    if (i1->first() == Range::end()) {
3157      tty->print_cr("Interval %d has no Range", i1->reg_num()); i1->print(); tty->cr();
3158      has_error = true;
3159    }
3160
3161    for (Range* r = i1->first(); r != Range::end(); r = r->next()) {
3162      if (r->from() >= r->to()) {
3163        tty->print_cr("Interval %d has zero length range", i1->reg_num()); i1->print(); tty->cr();
3164        has_error = true;
3165      }
3166    }
3167
3168    for (int j = i + 1; j < len; j++) {
3169      Interval* i2 = interval_at(j);
3170      if (i2 == NULL) continue;
3171
3172      // special intervals that are created in MoveResolver
3173      // -> ignore them because the range information has no meaning there
3174      if (i1->from() == 1 && i1->to() == 2) continue;
3175      if (i2->from() == 1 && i2->to() == 2) continue;
3176
3177      int r1 = i1->assigned_reg();
3178      int r1Hi = i1->assigned_regHi();
3179      int r2 = i2->assigned_reg();
3180      int r2Hi = i2->assigned_regHi();
3181      if (i1->intersects(i2) && (r1 == r2 || r1 == r2Hi || (r1Hi != any_reg && (r1Hi == r2 || r1Hi == r2Hi)))) {
3182        tty->print_cr("Intervals %d and %d overlap and have the same register assigned", i1->reg_num(), i2->reg_num());
3183        i1->print(); tty->cr();
3184        i2->print(); tty->cr();
3185        has_error = true;
3186      }
3187    }
3188  }
3189
3190  assert(has_error == false, "register allocation invalid");
3191}
3192
3193
3194void LinearScan::verify_no_oops_in_fixed_intervals() {
3195  Interval* fixed_intervals;
3196  Interval* other_intervals;
3197  create_unhandled_lists(&fixed_intervals, &other_intervals, is_precolored_cpu_interval, NULL);
3198
3199  // to ensure a walking until the last instruction id, add a dummy interval
3200  // with a high operation id
3201  other_intervals = new Interval(any_reg);
3202  other_intervals->add_range(max_jint - 2, max_jint - 1);
3203  IntervalWalker* iw = new IntervalWalker(this, fixed_intervals, other_intervals);
3204
3205  LIR_OpVisitState visitor;
3206  for (int i = 0; i < block_count(); i++) {
3207    BlockBegin* block = block_at(i);
3208
3209    LIR_OpList* instructions = block->lir()->instructions_list();
3210
3211    for (int j = 0; j < instructions->length(); j++) {
3212      LIR_Op* op = instructions->at(j);
3213      int op_id = op->id();
3214
3215      visitor.visit(op);
3216
3217      if (visitor.info_count() > 0) {
3218        iw->walk_before(op->id());
3219        bool check_live = true;
3220        if (op->code() == lir_move) {
3221          LIR_Op1* move = (LIR_Op1*)op;
3222          check_live = (move->patch_code() == lir_patch_none);
3223        }
3224        LIR_OpBranch* branch = op->as_OpBranch();
3225        if (branch != NULL && branch->stub() != NULL && branch->stub()->is_exception_throw_stub()) {
3226          // Don't bother checking the stub in this case since the
3227          // exception stub will never return to normal control flow.
3228          check_live = false;
3229        }
3230
3231        // Make sure none of the fixed registers is live across an
3232        // oopmap since we can't handle that correctly.
3233        if (check_live) {
3234          for (Interval* interval = iw->active_first(fixedKind);
3235               interval != Interval::end();
3236               interval = interval->next()) {
3237            if (interval->current_to() > op->id() + 1) {
3238              // This interval is live out of this op so make sure
3239              // that this interval represents some value that's
3240              // referenced by this op either as an input or output.
3241              bool ok = false;
3242              for_each_visitor_mode(mode) {
3243                int n = visitor.opr_count(mode);
3244                for (int k = 0; k < n; k++) {
3245                  LIR_Opr opr = visitor.opr_at(mode, k);
3246                  if (opr->is_fixed_cpu()) {
3247                    if (interval_at(reg_num(opr)) == interval) {
3248                      ok = true;
3249                      break;
3250                    }
3251                    int hi = reg_numHi(opr);
3252                    if (hi != -1 && interval_at(hi) == interval) {
3253                      ok = true;
3254                      break;
3255                    }
3256                  }
3257                }
3258              }
3259              assert(ok, "fixed intervals should never be live across an oopmap point");
3260            }
3261          }
3262        }
3263      }
3264
3265      // oop-maps at calls do not contain registers, so check is not needed
3266      if (!visitor.has_call()) {
3267
3268        for_each_visitor_mode(mode) {
3269          int n = visitor.opr_count(mode);
3270          for (int k = 0; k < n; k++) {
3271            LIR_Opr opr = visitor.opr_at(mode, k);
3272
3273            if (opr->is_fixed_cpu() && opr->is_oop()) {
3274              // operand is a non-virtual cpu register and contains an oop
3275              TRACE_LINEAR_SCAN(4, op->print_on(tty); tty->print("checking operand "); opr->print(); tty->cr());
3276
3277              Interval* interval = interval_at(reg_num(opr));
3278              assert(interval != NULL, "no interval");
3279
3280              if (mode == LIR_OpVisitState::inputMode) {
3281                if (interval->to() >= op_id + 1) {
3282                  assert(interval->to() < op_id + 2 ||
3283                         interval->has_hole_between(op_id, op_id + 2),
3284                         "oop input operand live after instruction");
3285                }
3286              } else if (mode == LIR_OpVisitState::outputMode) {
3287                if (interval->from() <= op_id - 1) {
3288                  assert(interval->has_hole_between(op_id - 1, op_id),
3289                         "oop input operand live after instruction");
3290                }
3291              }
3292            }
3293          }
3294        }
3295      }
3296    }
3297  }
3298}
3299
3300
3301void LinearScan::verify_constants() {
3302  int num_regs = num_virtual_regs();
3303  int size = live_set_size();
3304  int num_blocks = block_count();
3305
3306  for (int i = 0; i < num_blocks; i++) {
3307    BlockBegin* block = block_at(i);
3308    BitMap live_at_edge = block->live_in();
3309
3310    // visit all registers where the live_at_edge bit is set
3311    for (int r = (int)live_at_edge.get_next_one_offset(0, size); r < size; r = (int)live_at_edge.get_next_one_offset(r + 1, size)) {
3312      TRACE_LINEAR_SCAN(4, tty->print("checking interval %d of block B%d", r, block->block_id()));
3313
3314      Value value = gen()->instruction_for_vreg(r);
3315
3316      assert(value != NULL, "all intervals live across block boundaries must have Value");
3317      assert(value->operand()->is_register() && value->operand()->is_virtual(), "value must have virtual operand");
3318      assert(value->operand()->vreg_number() == r, "register number must match");
3319      // TKR assert(value->as_Constant() == NULL || value->is_pinned(), "only pinned constants can be alive accross block boundaries");
3320    }
3321  }
3322}
3323
3324
3325class RegisterVerifier: public StackObj {
3326 private:
3327  LinearScan*   _allocator;
3328  BlockList     _work_list;      // all blocks that must be processed
3329  IntervalsList _saved_states;   // saved information of previous check
3330
3331  // simplified access to methods of LinearScan
3332  Compilation*  compilation() const              { return _allocator->compilation(); }
3333  Interval*     interval_at(int reg_num) const   { return _allocator->interval_at(reg_num); }
3334  int           reg_num(LIR_Opr opr) const       { return _allocator->reg_num(opr); }
3335
3336  // currently, only registers are processed
3337  int           state_size()                     { return LinearScan::nof_regs; }
3338
3339  // accessors
3340  IntervalList* state_for_block(BlockBegin* block) { return _saved_states.at(block->block_id()); }
3341  void          set_state_for_block(BlockBegin* block, IntervalList* saved_state) { _saved_states.at_put(block->block_id(), saved_state); }
3342  void          add_to_work_list(BlockBegin* block) { if (!_work_list.contains(block)) _work_list.append(block); }
3343
3344  // helper functions
3345  IntervalList* copy(IntervalList* input_state);
3346  void          state_put(IntervalList* input_state, int reg, Interval* interval);
3347  bool          check_state(IntervalList* input_state, int reg, Interval* interval);
3348
3349  void process_block(BlockBegin* block);
3350  void process_xhandler(XHandler* xhandler, IntervalList* input_state);
3351  void process_successor(BlockBegin* block, IntervalList* input_state);
3352  void process_operations(LIR_List* ops, IntervalList* input_state);
3353
3354 public:
3355  RegisterVerifier(LinearScan* allocator)
3356    : _allocator(allocator)
3357    , _work_list(16)
3358    , _saved_states(BlockBegin::number_of_blocks(), NULL)
3359  { }
3360
3361  void verify(BlockBegin* start);
3362};
3363
3364
3365// entry function from LinearScan that starts the verification
3366void LinearScan::verify_registers() {
3367  RegisterVerifier verifier(this);
3368  verifier.verify(block_at(0));
3369}
3370
3371
3372void RegisterVerifier::verify(BlockBegin* start) {
3373  // setup input registers (method arguments) for first block
3374  IntervalList* input_state = new IntervalList(state_size(), NULL);
3375  CallingConvention* args = compilation()->frame_map()->incoming_arguments();
3376  for (int n = 0; n < args->length(); n++) {
3377    LIR_Opr opr = args->at(n);
3378    if (opr->is_register()) {
3379      Interval* interval = interval_at(reg_num(opr));
3380
3381      if (interval->assigned_reg() < state_size()) {
3382        input_state->at_put(interval->assigned_reg(), interval);
3383      }
3384      if (interval->assigned_regHi() != LinearScan::any_reg && interval->assigned_regHi() < state_size()) {
3385        input_state->at_put(interval->assigned_regHi(), interval);
3386      }
3387    }
3388  }
3389
3390  set_state_for_block(start, input_state);
3391  add_to_work_list(start);
3392
3393  // main loop for verification
3394  do {
3395    BlockBegin* block = _work_list.at(0);
3396    _work_list.remove_at(0);
3397
3398    process_block(block);
3399  } while (!_work_list.is_empty());
3400}
3401
3402void RegisterVerifier::process_block(BlockBegin* block) {
3403  TRACE_LINEAR_SCAN(2, tty->cr(); tty->print_cr("process_block B%d", block->block_id()));
3404
3405  // must copy state because it is modified
3406  IntervalList* input_state = copy(state_for_block(block));
3407
3408  if (TraceLinearScanLevel >= 4) {
3409    tty->print_cr("Input-State of intervals:");
3410    tty->print("    ");
3411    for (int i = 0; i < state_size(); i++) {
3412      if (input_state->at(i) != NULL) {
3413        tty->print(" %4d", input_state->at(i)->reg_num());
3414      } else {
3415        tty->print("   __");
3416      }
3417    }
3418    tty->cr();
3419    tty->cr();
3420  }
3421
3422  // process all operations of the block
3423  process_operations(block->lir(), input_state);
3424
3425  // iterate all successors
3426  for (int i = 0; i < block->number_of_sux(); i++) {
3427    process_successor(block->sux_at(i), input_state);
3428  }
3429}
3430
3431void RegisterVerifier::process_xhandler(XHandler* xhandler, IntervalList* input_state) {
3432  TRACE_LINEAR_SCAN(2, tty->print_cr("process_xhandler B%d", xhandler->entry_block()->block_id()));
3433
3434  // must copy state because it is modified
3435  input_state = copy(input_state);
3436
3437  if (xhandler->entry_code() != NULL) {
3438    process_operations(xhandler->entry_code(), input_state);
3439  }
3440  process_successor(xhandler->entry_block(), input_state);
3441}
3442
3443void RegisterVerifier::process_successor(BlockBegin* block, IntervalList* input_state) {
3444  IntervalList* saved_state = state_for_block(block);
3445
3446  if (saved_state != NULL) {
3447    // this block was already processed before.
3448    // check if new input_state is consistent with saved_state
3449
3450    bool saved_state_correct = true;
3451    for (int i = 0; i < state_size(); i++) {
3452      if (input_state->at(i) != saved_state->at(i)) {
3453        // current input_state and previous saved_state assume a different
3454        // interval in this register -> assume that this register is invalid
3455        if (saved_state->at(i) != NULL) {
3456          // invalidate old calculation only if it assumed that
3457          // register was valid. when the register was already invalid,
3458          // then the old calculation was correct.
3459          saved_state_correct = false;
3460          saved_state->at_put(i, NULL);
3461
3462          TRACE_LINEAR_SCAN(4, tty->print_cr("process_successor B%d: invalidating slot %d", block->block_id(), i));
3463        }
3464      }
3465    }
3466
3467    if (saved_state_correct) {
3468      // already processed block with correct input_state
3469      TRACE_LINEAR_SCAN(2, tty->print_cr("process_successor B%d: previous visit already correct", block->block_id()));
3470    } else {
3471      // must re-visit this block
3472      TRACE_LINEAR_SCAN(2, tty->print_cr("process_successor B%d: must re-visit because input state changed", block->block_id()));
3473      add_to_work_list(block);
3474    }
3475
3476  } else {
3477    // block was not processed before, so set initial input_state
3478    TRACE_LINEAR_SCAN(2, tty->print_cr("process_successor B%d: initial visit", block->block_id()));
3479
3480    set_state_for_block(block, copy(input_state));
3481    add_to_work_list(block);
3482  }
3483}
3484
3485
3486IntervalList* RegisterVerifier::copy(IntervalList* input_state) {
3487  IntervalList* copy_state = new IntervalList(input_state->length());
3488  copy_state->push_all(input_state);
3489  return copy_state;
3490}
3491
3492void RegisterVerifier::state_put(IntervalList* input_state, int reg, Interval* interval) {
3493  if (reg != LinearScan::any_reg && reg < state_size()) {
3494    if (interval != NULL) {
3495      TRACE_LINEAR_SCAN(4, tty->print_cr("        reg[%d] = %d", reg, interval->reg_num()));
3496    } else if (input_state->at(reg) != NULL) {
3497      TRACE_LINEAR_SCAN(4, tty->print_cr("        reg[%d] = NULL", reg));
3498    }
3499
3500    input_state->at_put(reg, interval);
3501  }
3502}
3503
3504bool RegisterVerifier::check_state(IntervalList* input_state, int reg, Interval* interval) {
3505  if (reg != LinearScan::any_reg && reg < state_size()) {
3506    if (input_state->at(reg) != interval) {
3507      tty->print_cr("!! Error in register allocation: register %d does not contain interval %d", reg, interval->reg_num());
3508      return true;
3509    }
3510  }
3511  return false;
3512}
3513
3514void RegisterVerifier::process_operations(LIR_List* ops, IntervalList* input_state) {
3515  // visit all instructions of the block
3516  LIR_OpVisitState visitor;
3517  bool has_error = false;
3518
3519  for (int i = 0; i < ops->length(); i++) {
3520    LIR_Op* op = ops->at(i);
3521    visitor.visit(op);
3522
3523    TRACE_LINEAR_SCAN(4, op->print_on(tty));
3524
3525    // check if input operands are correct
3526    int j;
3527    int n = visitor.opr_count(LIR_OpVisitState::inputMode);
3528    for (j = 0; j < n; j++) {
3529      LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::inputMode, j);
3530      if (opr->is_register() && LinearScan::is_processed_reg_num(reg_num(opr))) {
3531        Interval* interval = interval_at(reg_num(opr));
3532        if (op->id() != -1) {
3533          interval = interval->split_child_at_op_id(op->id(), LIR_OpVisitState::inputMode);
3534        }
3535
3536        has_error |= check_state(input_state, interval->assigned_reg(),   interval->split_parent());
3537        has_error |= check_state(input_state, interval->assigned_regHi(), interval->split_parent());
3538
3539        // When an operand is marked with is_last_use, then the fpu stack allocator
3540        // removes the register from the fpu stack -> the register contains no value
3541        if (opr->is_last_use()) {
3542          state_put(input_state, interval->assigned_reg(),   NULL);
3543          state_put(input_state, interval->assigned_regHi(), NULL);
3544        }
3545      }
3546    }
3547
3548    // invalidate all caller save registers at calls
3549    if (visitor.has_call()) {
3550      for (j = 0; j < FrameMap::nof_caller_save_cpu_regs; j++) {
3551        state_put(input_state, reg_num(FrameMap::caller_save_cpu_reg_at(j)), NULL);
3552      }
3553      for (j = 0; j < FrameMap::nof_caller_save_fpu_regs; j++) {
3554        state_put(input_state, reg_num(FrameMap::caller_save_fpu_reg_at(j)), NULL);
3555      }
3556
3557#ifdef X86
3558      for (j = 0; j < FrameMap::nof_caller_save_xmm_regs; j++) {
3559        state_put(input_state, reg_num(FrameMap::caller_save_xmm_reg_at(j)), NULL);
3560      }
3561#endif
3562    }
3563
3564    // process xhandler before output and temp operands
3565    XHandlers* xhandlers = visitor.all_xhandler();
3566    n = xhandlers->length();
3567    for (int k = 0; k < n; k++) {
3568      process_xhandler(xhandlers->handler_at(k), input_state);
3569    }
3570
3571    // set temp operands (some operations use temp operands also as output operands, so can't set them NULL)
3572    n = visitor.opr_count(LIR_OpVisitState::tempMode);
3573    for (j = 0; j < n; j++) {
3574      LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::tempMode, j);
3575      if (opr->is_register() && LinearScan::is_processed_reg_num(reg_num(opr))) {
3576        Interval* interval = interval_at(reg_num(opr));
3577        if (op->id() != -1) {
3578          interval = interval->split_child_at_op_id(op->id(), LIR_OpVisitState::tempMode);
3579        }
3580
3581        state_put(input_state, interval->assigned_reg(),   interval->split_parent());
3582        state_put(input_state, interval->assigned_regHi(), interval->split_parent());
3583      }
3584    }
3585
3586    // set output operands
3587    n = visitor.opr_count(LIR_OpVisitState::outputMode);
3588    for (j = 0; j < n; j++) {
3589      LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::outputMode, j);
3590      if (opr->is_register() && LinearScan::is_processed_reg_num(reg_num(opr))) {
3591        Interval* interval = interval_at(reg_num(opr));
3592        if (op->id() != -1) {
3593          interval = interval->split_child_at_op_id(op->id(), LIR_OpVisitState::outputMode);
3594        }
3595
3596        state_put(input_state, interval->assigned_reg(),   interval->split_parent());
3597        state_put(input_state, interval->assigned_regHi(), interval->split_parent());
3598      }
3599    }
3600  }
3601  assert(has_error == false, "Error in register allocation");
3602}
3603
3604#endif // ASSERT
3605
3606
3607
3608// **** Implementation of MoveResolver ******************************
3609
3610MoveResolver::MoveResolver(LinearScan* allocator) :
3611  _allocator(allocator),
3612  _multiple_reads_allowed(false),
3613  _mapping_from(8),
3614  _mapping_from_opr(8),
3615  _mapping_to(8),
3616  _insert_list(NULL),
3617  _insert_idx(-1),
3618  _insertion_buffer()
3619{
3620  for (int i = 0; i < LinearScan::nof_regs; i++) {
3621    _register_blocked[i] = 0;
3622  }
3623  DEBUG_ONLY(check_empty());
3624}
3625
3626
3627#ifdef ASSERT
3628
3629void MoveResolver::check_empty() {
3630  assert(_mapping_from.length() == 0 && _mapping_from_opr.length() == 0 && _mapping_to.length() == 0, "list must be empty before and after processing");
3631  for (int i = 0; i < LinearScan::nof_regs; i++) {
3632    assert(register_blocked(i) == 0, "register map must be empty before and after processing");
3633  }
3634  assert(_multiple_reads_allowed == false, "must have default value");
3635}
3636
3637void MoveResolver::verify_before_resolve() {
3638  assert(_mapping_from.length() == _mapping_from_opr.length(), "length must be equal");
3639  assert(_mapping_from.length() == _mapping_to.length(), "length must be equal");
3640  assert(_insert_list != NULL && _insert_idx != -1, "insert position not set");
3641
3642  int i, j;
3643  if (!_multiple_reads_allowed) {
3644    for (i = 0; i < _mapping_from.length(); i++) {
3645      for (j = i + 1; j < _mapping_from.length(); j++) {
3646        assert(_mapping_from.at(i) == NULL || _mapping_from.at(i) != _mapping_from.at(j), "cannot read from same interval twice");
3647      }
3648    }
3649  }
3650
3651  for (i = 0; i < _mapping_to.length(); i++) {
3652    for (j = i + 1; j < _mapping_to.length(); j++) {
3653      assert(_mapping_to.at(i) != _mapping_to.at(j), "cannot write to same interval twice");
3654    }
3655  }
3656
3657
3658  BitMap used_regs(LinearScan::nof_regs + allocator()->frame_map()->argcount() + allocator()->max_spills());
3659  used_regs.clear();
3660  if (!_multiple_reads_allowed) {
3661    for (i = 0; i < _mapping_from.length(); i++) {
3662      Interval* it = _mapping_from.at(i);
3663      if (it != NULL) {
3664        assert(!used_regs.at(it->assigned_reg()), "cannot read from same register twice");
3665        used_regs.set_bit(it->assigned_reg());
3666
3667        if (it->assigned_regHi() != LinearScan::any_reg) {
3668          assert(!used_regs.at(it->assigned_regHi()), "cannot read from same register twice");
3669          used_regs.set_bit(it->assigned_regHi());
3670        }
3671      }
3672    }
3673  }
3674
3675  used_regs.clear();
3676  for (i = 0; i < _mapping_to.length(); i++) {
3677    Interval* it = _mapping_to.at(i);
3678    assert(!used_regs.at(it->assigned_reg()), "cannot write to same register twice");
3679    used_regs.set_bit(it->assigned_reg());
3680
3681    if (it->assigned_regHi() != LinearScan::any_reg) {
3682      assert(!used_regs.at(it->assigned_regHi()), "cannot write to same register twice");
3683      used_regs.set_bit(it->assigned_regHi());
3684    }
3685  }
3686
3687  used_regs.clear();
3688  for (i = 0; i < _mapping_from.length(); i++) {
3689    Interval* it = _mapping_from.at(i);
3690    if (it != NULL && it->assigned_reg() >= LinearScan::nof_regs) {
3691      used_regs.set_bit(it->assigned_reg());
3692    }
3693  }
3694  for (i = 0; i < _mapping_to.length(); i++) {
3695    Interval* it = _mapping_to.at(i);
3696    assert(!used_regs.at(it->assigned_reg()) || it->assigned_reg() == _mapping_from.at(i)->assigned_reg(), "stack slots used in _mapping_from must be disjoint to _mapping_to");
3697  }
3698}
3699
3700#endif // ASSERT
3701
3702
3703// mark assigned_reg and assigned_regHi of the interval as blocked
3704void MoveResolver::block_registers(Interval* it) {
3705  int reg = it->assigned_reg();
3706  if (reg < LinearScan::nof_regs) {
3707    assert(_multiple_reads_allowed || register_blocked(reg) == 0, "register already marked as used");
3708    set_register_blocked(reg, 1);
3709  }
3710  reg = it->assigned_regHi();
3711  if (reg != LinearScan::any_reg && reg < LinearScan::nof_regs) {
3712    assert(_multiple_reads_allowed || register_blocked(reg) == 0, "register already marked as used");
3713    set_register_blocked(reg, 1);
3714  }
3715}
3716
3717// mark assigned_reg and assigned_regHi of the interval as unblocked
3718void MoveResolver::unblock_registers(Interval* it) {
3719  int reg = it->assigned_reg();
3720  if (reg < LinearScan::nof_regs) {
3721    assert(register_blocked(reg) > 0, "register already marked as unused");
3722    set_register_blocked(reg, -1);
3723  }
3724  reg = it->assigned_regHi();
3725  if (reg != LinearScan::any_reg && reg < LinearScan::nof_regs) {
3726    assert(register_blocked(reg) > 0, "register already marked as unused");
3727    set_register_blocked(reg, -1);
3728  }
3729}
3730
3731// check if assigned_reg and assigned_regHi of the to-interval are not blocked (or only blocked by from)
3732bool MoveResolver::save_to_process_move(Interval* from, Interval* to) {
3733  int from_reg = -1;
3734  int from_regHi = -1;
3735  if (from != NULL) {
3736    from_reg = from->assigned_reg();
3737    from_regHi = from->assigned_regHi();
3738  }
3739
3740  int reg = to->assigned_reg();
3741  if (reg < LinearScan::nof_regs) {
3742    if (register_blocked(reg) > 1 || (register_blocked(reg) == 1 && reg != from_reg && reg != from_regHi)) {
3743      return false;
3744    }
3745  }
3746  reg = to->assigned_regHi();
3747  if (reg != LinearScan::any_reg && reg < LinearScan::nof_regs) {
3748    if (register_blocked(reg) > 1 || (register_blocked(reg) == 1 && reg != from_reg && reg != from_regHi)) {
3749      return false;
3750    }
3751  }
3752
3753  return true;
3754}
3755
3756
3757void MoveResolver::create_insertion_buffer(LIR_List* list) {
3758  assert(!_insertion_buffer.initialized(), "overwriting existing buffer");
3759  _insertion_buffer.init(list);
3760}
3761
3762void MoveResolver::append_insertion_buffer() {
3763  if (_insertion_buffer.initialized()) {
3764    _insertion_buffer.lir_list()->append(&_insertion_buffer);
3765  }
3766  assert(!_insertion_buffer.initialized(), "must be uninitialized now");
3767
3768  _insert_list = NULL;
3769  _insert_idx = -1;
3770}
3771
3772void MoveResolver::insert_move(Interval* from_interval, Interval* to_interval) {
3773  assert(from_interval->reg_num() != to_interval->reg_num(), "from and to interval equal");
3774  assert(from_interval->type() == to_interval->type(), "move between different types");
3775  assert(_insert_list != NULL && _insert_idx != -1, "must setup insert position first");
3776  assert(_insertion_buffer.lir_list() == _insert_list, "wrong insertion buffer");
3777
3778  LIR_Opr from_opr = LIR_OprFact::virtual_register(from_interval->reg_num(), from_interval->type());
3779  LIR_Opr to_opr = LIR_OprFact::virtual_register(to_interval->reg_num(), to_interval->type());
3780
3781  if (!_multiple_reads_allowed) {
3782    // the last_use flag is an optimization for FPU stack allocation. When the same
3783    // input interval is used in more than one move, then it is too difficult to determine
3784    // if this move is really the last use.
3785    from_opr = from_opr->make_last_use();
3786  }
3787  _insertion_buffer.move(_insert_idx, from_opr, to_opr);
3788
3789  TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: inserted move from register %d (%d, %d) to %d (%d, %d)", from_interval->reg_num(), from_interval->assigned_reg(), from_interval->assigned_regHi(), to_interval->reg_num(), to_interval->assigned_reg(), to_interval->assigned_regHi()));
3790}
3791
3792void MoveResolver::insert_move(LIR_Opr from_opr, Interval* to_interval) {
3793  assert(from_opr->type() == to_interval->type(), "move between different types");
3794  assert(_insert_list != NULL && _insert_idx != -1, "must setup insert position first");
3795  assert(_insertion_buffer.lir_list() == _insert_list, "wrong insertion buffer");
3796
3797  LIR_Opr to_opr = LIR_OprFact::virtual_register(to_interval->reg_num(), to_interval->type());
3798  _insertion_buffer.move(_insert_idx, from_opr, to_opr);
3799
3800  TRACE_LINEAR_SCAN(4, tty->print("MoveResolver: inserted move from constant "); from_opr->print(); tty->print_cr("  to %d (%d, %d)", to_interval->reg_num(), to_interval->assigned_reg(), to_interval->assigned_regHi()));
3801}
3802
3803
3804void MoveResolver::resolve_mappings() {
3805  TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: resolving mappings for Block B%d, index %d", _insert_list->block() != NULL ? _insert_list->block()->block_id() : -1, _insert_idx));
3806  DEBUG_ONLY(verify_before_resolve());
3807
3808  // Block all registers that are used as input operands of a move.
3809  // When a register is blocked, no move to this register is emitted.
3810  // This is necessary for detecting cycles in moves.
3811  int i;
3812  for (i = _mapping_from.length() - 1; i >= 0; i--) {
3813    Interval* from_interval = _mapping_from.at(i);
3814    if (from_interval != NULL) {
3815      block_registers(from_interval);
3816    }
3817  }
3818
3819  int spill_candidate = -1;
3820  while (_mapping_from.length() > 0) {
3821    bool processed_interval = false;
3822
3823    for (i = _mapping_from.length() - 1; i >= 0; i--) {
3824      Interval* from_interval = _mapping_from.at(i);
3825      Interval* to_interval = _mapping_to.at(i);
3826
3827      if (save_to_process_move(from_interval, to_interval)) {
3828        // this inverval can be processed because target is free
3829        if (from_interval != NULL) {
3830          insert_move(from_interval, to_interval);
3831          unblock_registers(from_interval);
3832        } else {
3833          insert_move(_mapping_from_opr.at(i), to_interval);
3834        }
3835        _mapping_from.remove_at(i);
3836        _mapping_from_opr.remove_at(i);
3837        _mapping_to.remove_at(i);
3838
3839        processed_interval = true;
3840      } else if (from_interval != NULL && from_interval->assigned_reg() < LinearScan::nof_regs) {
3841        // this interval cannot be processed now because target is not free
3842        // it starts in a register, so it is a possible candidate for spilling
3843        spill_candidate = i;
3844      }
3845    }
3846
3847    if (!processed_interval) {
3848      // no move could be processed because there is a cycle in the move list
3849      // (e.g. r1 -> r2, r2 -> r1), so one interval must be spilled to memory
3850      assert(spill_candidate != -1, "no interval in register for spilling found");
3851
3852      // create a new spill interval and assign a stack slot to it
3853      Interval* from_interval = _mapping_from.at(spill_candidate);
3854      Interval* spill_interval = new Interval(-1);
3855      spill_interval->set_type(from_interval->type());
3856
3857      // add a dummy range because real position is difficult to calculate
3858      // Note: this range is a special case when the integrity of the allocation is checked
3859      spill_interval->add_range(1, 2);
3860
3861      //       do not allocate a new spill slot for temporary interval, but
3862      //       use spill slot assigned to from_interval. Otherwise moves from
3863      //       one stack slot to another can happen (not allowed by LIR_Assembler
3864      int spill_slot = from_interval->canonical_spill_slot();
3865      if (spill_slot < 0) {
3866        spill_slot = allocator()->allocate_spill_slot(type2spill_size[spill_interval->type()] == 2);
3867        from_interval->set_canonical_spill_slot(spill_slot);
3868      }
3869      spill_interval->assign_reg(spill_slot);
3870      allocator()->append_interval(spill_interval);
3871
3872      TRACE_LINEAR_SCAN(4, tty->print_cr("created new Interval %d for spilling", spill_interval->reg_num()));
3873
3874      // insert a move from register to stack and update the mapping
3875      insert_move(from_interval, spill_interval);
3876      _mapping_from.at_put(spill_candidate, spill_interval);
3877      unblock_registers(from_interval);
3878    }
3879  }
3880
3881  // reset to default value
3882  _multiple_reads_allowed = false;
3883
3884  // check that all intervals have been processed
3885  DEBUG_ONLY(check_empty());
3886}
3887
3888
3889void MoveResolver::set_insert_position(LIR_List* insert_list, int insert_idx) {
3890  TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: setting insert position to Block B%d, index %d", insert_list->block() != NULL ? insert_list->block()->block_id() : -1, insert_idx));
3891  assert(_insert_list == NULL && _insert_idx == -1, "use move_insert_position instead of set_insert_position when data already set");
3892
3893  create_insertion_buffer(insert_list);
3894  _insert_list = insert_list;
3895  _insert_idx = insert_idx;
3896}
3897
3898void MoveResolver::move_insert_position(LIR_List* insert_list, int insert_idx) {
3899  TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: moving insert position to Block B%d, index %d", insert_list->block() != NULL ? insert_list->block()->block_id() : -1, insert_idx));
3900
3901  if (_insert_list != NULL && (insert_list != _insert_list || insert_idx != _insert_idx)) {
3902    // insert position changed -> resolve current mappings
3903    resolve_mappings();
3904  }
3905
3906  if (insert_list != _insert_list) {
3907    // block changed -> append insertion_buffer because it is
3908    // bound to a specific block and create a new insertion_buffer
3909    append_insertion_buffer();
3910    create_insertion_buffer(insert_list);
3911  }
3912
3913  _insert_list = insert_list;
3914  _insert_idx = insert_idx;
3915}
3916
3917void MoveResolver::add_mapping(Interval* from_interval, Interval* to_interval) {
3918  TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: adding mapping from %d (%d, %d) to %d (%d, %d)", from_interval->reg_num(), from_interval->assigned_reg(), from_interval->assigned_regHi(), to_interval->reg_num(), to_interval->assigned_reg(), to_interval->assigned_regHi()));
3919
3920  _mapping_from.append(from_interval);
3921  _mapping_from_opr.append(LIR_OprFact::illegalOpr);
3922  _mapping_to.append(to_interval);
3923}
3924
3925
3926void MoveResolver::add_mapping(LIR_Opr from_opr, Interval* to_interval) {
3927  TRACE_LINEAR_SCAN(4, tty->print("MoveResolver: adding mapping from "); from_opr->print(); tty->print_cr(" to %d (%d, %d)", to_interval->reg_num(), to_interval->assigned_reg(), to_interval->assigned_regHi()));
3928  assert(from_opr->is_constant(), "only for constants");
3929
3930  _mapping_from.append(NULL);
3931  _mapping_from_opr.append(from_opr);
3932  _mapping_to.append(to_interval);
3933}
3934
3935void MoveResolver::resolve_and_append_moves() {
3936  if (has_mappings()) {
3937    resolve_mappings();
3938  }
3939  append_insertion_buffer();
3940}
3941
3942
3943
3944// **** Implementation of Range *************************************
3945
3946Range::Range(int from, int to, Range* next) :
3947  _from(from),
3948  _to(to),
3949  _next(next)
3950{
3951}
3952
3953// initialize sentinel
3954Range* Range::_end = NULL;
3955void Range::initialize(Arena* arena) {
3956  _end = new (arena) Range(max_jint, max_jint, NULL);
3957}
3958
3959int Range::intersects_at(Range* r2) const {
3960  const Range* r1 = this;
3961
3962  assert(r1 != NULL && r2 != NULL, "null ranges not allowed");
3963  assert(r1 != _end && r2 != _end, "empty ranges not allowed");
3964
3965  do {
3966    if (r1->from() < r2->from()) {
3967      if (r1->to() <= r2->from()) {
3968        r1 = r1->next(); if (r1 == _end) return -1;
3969      } else {
3970        return r2->from();
3971      }
3972    } else if (r2->from() < r1->from()) {
3973      if (r2->to() <= r1->from()) {
3974        r2 = r2->next(); if (r2 == _end) return -1;
3975      } else {
3976        return r1->from();
3977      }
3978    } else { // r1->from() == r2->from()
3979      if (r1->from() == r1->to()) {
3980        r1 = r1->next(); if (r1 == _end) return -1;
3981      } else if (r2->from() == r2->to()) {
3982        r2 = r2->next(); if (r2 == _end) return -1;
3983      } else {
3984        return r1->from();
3985      }
3986    }
3987  } while (true);
3988}
3989
3990#ifndef PRODUCT
3991void Range::print(outputStream* out) const {
3992  out->print("[%d, %d[ ", _from, _to);
3993}
3994#endif
3995
3996
3997
3998// **** Implementation of Interval **********************************
3999
4000// initialize sentinel
4001Interval* Interval::_end = NULL;
4002void Interval::initialize(Arena* arena) {
4003  Range::initialize(arena);
4004  _end = new (arena) Interval(-1);
4005}
4006
4007Interval::Interval(int reg_num) :
4008  _reg_num(reg_num),
4009  _type(T_ILLEGAL),
4010  _first(Range::end()),
4011  _use_pos_and_kinds(12),
4012  _current(Range::end()),
4013  _next(_end),
4014  _state(invalidState),
4015  _assigned_reg(LinearScan::any_reg),
4016  _assigned_regHi(LinearScan::any_reg),
4017  _cached_to(-1),
4018  _cached_opr(LIR_OprFact::illegalOpr),
4019  _cached_vm_reg(VMRegImpl::Bad()),
4020  _split_children(0),
4021  _canonical_spill_slot(-1),
4022  _insert_move_when_activated(false),
4023  _register_hint(NULL),
4024  _spill_state(noDefinitionFound),
4025  _spill_definition_pos(-1)
4026{
4027  _split_parent = this;
4028  _current_split_child = this;
4029}
4030
4031int Interval::calc_to() {
4032  assert(_first != Range::end(), "interval has no range");
4033
4034  Range* r = _first;
4035  while (r->next() != Range::end()) {
4036    r = r->next();
4037  }
4038  return r->to();
4039}
4040
4041
4042#ifdef ASSERT
4043// consistency check of split-children
4044void Interval::check_split_children() {
4045  if (_split_children.length() > 0) {
4046    assert(is_split_parent(), "only split parents can have children");
4047
4048    for (int i = 0; i < _split_children.length(); i++) {
4049      Interval* i1 = _split_children.at(i);
4050
4051      assert(i1->split_parent() == this, "not a split child of this interval");
4052      assert(i1->type() == type(), "must be equal for all split children");
4053      assert(i1->canonical_spill_slot() == canonical_spill_slot(), "must be equal for all split children");
4054
4055      for (int j = i + 1; j < _split_children.length(); j++) {
4056        Interval* i2 = _split_children.at(j);
4057
4058        assert(i1->reg_num() != i2->reg_num(), "same register number");
4059
4060        if (i1->from() < i2->from()) {
4061          assert(i1->to() <= i2->from() && i1->to() < i2->to(), "intervals overlapping");
4062        } else {
4063          assert(i2->from() < i1->from(), "intervals start at same op_id");
4064          assert(i2->to() <= i1->from() && i2->to() < i1->to(), "intervals overlapping");
4065        }
4066      }
4067    }
4068  }
4069}
4070#endif // ASSERT
4071
4072Interval* Interval::register_hint(bool search_split_child) const {
4073  if (!search_split_child) {
4074    return _register_hint;
4075  }
4076
4077  if (_register_hint != NULL) {
4078    assert(_register_hint->is_split_parent(), "ony split parents are valid hint registers");
4079
4080    if (_register_hint->assigned_reg() >= 0 && _register_hint->assigned_reg() < LinearScan::nof_regs) {
4081      return _register_hint;
4082
4083    } else if (_register_hint->_split_children.length() > 0) {
4084      // search the first split child that has a register assigned
4085      int len = _register_hint->_split_children.length();
4086      for (int i = 0; i < len; i++) {
4087        Interval* cur = _register_hint->_split_children.at(i);
4088
4089        if (cur->assigned_reg() >= 0 && cur->assigned_reg() < LinearScan::nof_regs) {
4090          return cur;
4091        }
4092      }
4093    }
4094  }
4095
4096  // no hint interval found that has a register assigned
4097  return NULL;
4098}
4099
4100
4101Interval* Interval::split_child_at_op_id(int op_id, LIR_OpVisitState::OprMode mode) {
4102  assert(is_split_parent(), "can only be called for split parents");
4103  assert(op_id >= 0, "invalid op_id (method can not be called for spill moves)");
4104
4105  Interval* result;
4106  if (_split_children.length() == 0) {
4107    result = this;
4108  } else {
4109    result = NULL;
4110    int len = _split_children.length();
4111
4112    // in outputMode, the end of the interval (op_id == cur->to()) is not valid
4113    int to_offset = (mode == LIR_OpVisitState::outputMode ? 0 : 1);
4114
4115    int i;
4116    for (i = 0; i < len; i++) {
4117      Interval* cur = _split_children.at(i);
4118      if (cur->from() <= op_id && op_id < cur->to() + to_offset) {
4119        if (i > 0) {
4120          // exchange current split child to start of list (faster access for next call)
4121          _split_children.at_put(i, _split_children.at(0));
4122          _split_children.at_put(0, cur);
4123        }
4124
4125        // interval found
4126        result = cur;
4127        break;
4128      }
4129    }
4130
4131#ifdef ASSERT
4132    for (i = 0; i < len; i++) {
4133      Interval* tmp = _split_children.at(i);
4134      if (tmp != result && tmp->from() <= op_id && op_id < tmp->to() + to_offset) {
4135        tty->print_cr("two valid result intervals found for op_id %d: %d and %d", op_id, result->reg_num(), tmp->reg_num());
4136        result->print();
4137        tmp->print();
4138        assert(false, "two valid result intervals found");
4139      }
4140    }
4141#endif
4142  }
4143
4144  assert(result != NULL, "no matching interval found");
4145  assert(result->covers(op_id, mode), "op_id not covered by interval");
4146
4147  return result;
4148}
4149
4150
4151// returns the last split child that ends before the given op_id
4152Interval* Interval::split_child_before_op_id(int op_id) {
4153  assert(op_id >= 0, "invalid op_id");
4154
4155  Interval* parent = split_parent();
4156  Interval* result = NULL;
4157
4158  int len = parent->_split_children.length();
4159  assert(len > 0, "no split children available");
4160
4161  for (int i = len - 1; i >= 0; i--) {
4162    Interval* cur = parent->_split_children.at(i);
4163    if (cur->to() <= op_id && (result == NULL || result->to() < cur->to())) {
4164      result = cur;
4165    }
4166  }
4167
4168  assert(result != NULL, "no split child found");
4169  return result;
4170}
4171
4172
4173// checks if op_id is covered by any split child
4174bool Interval::split_child_covers(int op_id, LIR_OpVisitState::OprMode mode) {
4175  assert(is_split_parent(), "can only be called for split parents");
4176  assert(op_id >= 0, "invalid op_id (method can not be called for spill moves)");
4177
4178  if (_split_children.length() == 0) {
4179    // simple case if interval was not split
4180    return covers(op_id, mode);
4181
4182  } else {
4183    // extended case: check all split children
4184    int len = _split_children.length();
4185    for (int i = 0; i < len; i++) {
4186      Interval* cur = _split_children.at(i);
4187      if (cur->covers(op_id, mode)) {
4188        return true;
4189      }
4190    }
4191    return false;
4192  }
4193}
4194
4195
4196// Note: use positions are sorted descending -> first use has highest index
4197int Interval::first_usage(IntervalUseKind min_use_kind) const {
4198  assert(LinearScan::is_virtual_interval(this), "cannot access use positions for fixed intervals");
4199
4200  for (int i = _use_pos_and_kinds.length() - 2; i >= 0; i -= 2) {
4201    if (_use_pos_and_kinds.at(i + 1) >= min_use_kind) {
4202      return _use_pos_and_kinds.at(i);
4203    }
4204  }
4205  return max_jint;
4206}
4207
4208int Interval::next_usage(IntervalUseKind min_use_kind, int from) const {
4209  assert(LinearScan::is_virtual_interval(this), "cannot access use positions for fixed intervals");
4210
4211  for (int i = _use_pos_and_kinds.length() - 2; i >= 0; i -= 2) {
4212    if (_use_pos_and_kinds.at(i) >= from && _use_pos_and_kinds.at(i + 1) >= min_use_kind) {
4213      return _use_pos_and_kinds.at(i);
4214    }
4215  }
4216  return max_jint;
4217}
4218
4219int Interval::next_usage_exact(IntervalUseKind exact_use_kind, int from) const {
4220  assert(LinearScan::is_virtual_interval(this), "cannot access use positions for fixed intervals");
4221
4222  for (int i = _use_pos_and_kinds.length() - 2; i >= 0; i -= 2) {
4223    if (_use_pos_and_kinds.at(i) >= from && _use_pos_and_kinds.at(i + 1) == exact_use_kind) {
4224      return _use_pos_and_kinds.at(i);
4225    }
4226  }
4227  return max_jint;
4228}
4229
4230int Interval::previous_usage(IntervalUseKind min_use_kind, int from) const {
4231  assert(LinearScan::is_virtual_interval(this), "cannot access use positions for fixed intervals");
4232
4233  int prev = 0;
4234  for (int i = _use_pos_and_kinds.length() - 2; i >= 0; i -= 2) {
4235    if (_use_pos_and_kinds.at(i) > from) {
4236      return prev;
4237    }
4238    if (_use_pos_and_kinds.at(i + 1) >= min_use_kind) {
4239      prev = _use_pos_and_kinds.at(i);
4240    }
4241  }
4242  return prev;
4243}
4244
4245void Interval::add_use_pos(int pos, IntervalUseKind use_kind) {
4246  assert(covers(pos, LIR_OpVisitState::inputMode), "use position not covered by live range");
4247
4248  // do not add use positions for precolored intervals because
4249  // they are never used
4250  if (use_kind != noUse && reg_num() >= LIR_OprDesc::vreg_base) {
4251#ifdef ASSERT
4252    assert(_use_pos_and_kinds.length() % 2 == 0, "must be");
4253    for (int i = 0; i < _use_pos_and_kinds.length(); i += 2) {
4254      assert(pos <= _use_pos_and_kinds.at(i), "already added a use-position with lower position");
4255      assert(_use_pos_and_kinds.at(i + 1) >= firstValidKind && _use_pos_and_kinds.at(i + 1) <= lastValidKind, "invalid use kind");
4256      if (i > 0) {
4257        assert(_use_pos_and_kinds.at(i) < _use_pos_and_kinds.at(i - 2), "not sorted descending");
4258      }
4259    }
4260#endif
4261
4262    // Note: add_use is called in descending order, so list gets sorted
4263    //       automatically by just appending new use positions
4264    int len = _use_pos_and_kinds.length();
4265    if (len == 0 || _use_pos_and_kinds.at(len - 2) > pos) {
4266      _use_pos_and_kinds.append(pos);
4267      _use_pos_and_kinds.append(use_kind);
4268    } else if (_use_pos_and_kinds.at(len - 1) < use_kind) {
4269      assert(_use_pos_and_kinds.at(len - 2) == pos, "list not sorted correctly");
4270      _use_pos_and_kinds.at_put(len - 1, use_kind);
4271    }
4272  }
4273}
4274
4275void Interval::add_range(int from, int to) {
4276  assert(from < to, "invalid range");
4277  assert(first() == Range::end() || to < first()->next()->from(), "not inserting at begin of interval");
4278  assert(from <= first()->to(), "not inserting at begin of interval");
4279
4280  if (first()->from() <= to) {
4281    // join intersecting ranges
4282    first()->set_from(MIN2(from, first()->from()));
4283    first()->set_to  (MAX2(to,   first()->to()));
4284  } else {
4285    // insert new range
4286    _first = new Range(from, to, first());
4287  }
4288}
4289
4290Interval* Interval::new_split_child() {
4291  // allocate new interval
4292  Interval* result = new Interval(-1);
4293  result->set_type(type());
4294
4295  Interval* parent = split_parent();
4296  result->_split_parent = parent;
4297  result->set_register_hint(parent);
4298
4299  // insert new interval in children-list of parent
4300  if (parent->_split_children.length() == 0) {
4301    assert(is_split_parent(), "list must be initialized at first split");
4302
4303    parent->_split_children = IntervalList(4);
4304    parent->_split_children.append(this);
4305  }
4306  parent->_split_children.append(result);
4307
4308  return result;
4309}
4310
4311// split this interval at the specified position and return
4312// the remainder as a new interval.
4313//
4314// when an interval is split, a bi-directional link is established between the original interval
4315// (the split parent) and the intervals that are split off this interval (the split children)
4316// When a split child is split again, the new created interval is also a direct child
4317// of the original parent (there is no tree of split children stored, but a flat list)
4318// All split children are spilled to the same stack slot (stored in _canonical_spill_slot)
4319//
4320// Note: The new interval has no valid reg_num
4321Interval* Interval::split(int split_pos) {
4322  assert(LinearScan::is_virtual_interval(this), "cannot split fixed intervals");
4323
4324  // allocate new interval
4325  Interval* result = new_split_child();
4326
4327  // split the ranges
4328  Range* prev = NULL;
4329  Range* cur = _first;
4330  while (cur != Range::end() && cur->to() <= split_pos) {
4331    prev = cur;
4332    cur = cur->next();
4333  }
4334  assert(cur != Range::end(), "split interval after end of last range");
4335
4336  if (cur->from() < split_pos) {
4337    result->_first = new Range(split_pos, cur->to(), cur->next());
4338    cur->set_to(split_pos);
4339    cur->set_next(Range::end());
4340
4341  } else {
4342    assert(prev != NULL, "split before start of first range");
4343    result->_first = cur;
4344    prev->set_next(Range::end());
4345  }
4346  result->_current = result->_first;
4347  _cached_to = -1; // clear cached value
4348
4349  // split list of use positions
4350  int total_len = _use_pos_and_kinds.length();
4351  int start_idx = total_len - 2;
4352  while (start_idx >= 0 && _use_pos_and_kinds.at(start_idx) < split_pos) {
4353    start_idx -= 2;
4354  }
4355
4356  intStack new_use_pos_and_kinds(total_len - start_idx);
4357  int i;
4358  for (i = start_idx + 2; i < total_len; i++) {
4359    new_use_pos_and_kinds.append(_use_pos_and_kinds.at(i));
4360  }
4361
4362  _use_pos_and_kinds.truncate(start_idx + 2);
4363  result->_use_pos_and_kinds = _use_pos_and_kinds;
4364  _use_pos_and_kinds = new_use_pos_and_kinds;
4365
4366#ifdef ASSERT
4367  assert(_use_pos_and_kinds.length() % 2 == 0, "must have use kind for each use pos");
4368  assert(result->_use_pos_and_kinds.length() % 2 == 0, "must have use kind for each use pos");
4369  assert(_use_pos_and_kinds.length() + result->_use_pos_and_kinds.length() == total_len, "missed some entries");
4370
4371  for (i = 0; i < _use_pos_and_kinds.length(); i += 2) {
4372    assert(_use_pos_and_kinds.at(i) < split_pos, "must be");
4373    assert(_use_pos_and_kinds.at(i + 1) >= firstValidKind && _use_pos_and_kinds.at(i + 1) <= lastValidKind, "invalid use kind");
4374  }
4375  for (i = 0; i < result->_use_pos_and_kinds.length(); i += 2) {
4376    assert(result->_use_pos_and_kinds.at(i) >= split_pos, "must be");
4377    assert(result->_use_pos_and_kinds.at(i + 1) >= firstValidKind && result->_use_pos_and_kinds.at(i + 1) <= lastValidKind, "invalid use kind");
4378  }
4379#endif
4380
4381  return result;
4382}
4383
4384// split this interval at the specified position and return
4385// the head as a new interval (the original interval is the tail)
4386//
4387// Currently, only the first range can be split, and the new interval
4388// must not have split positions
4389Interval* Interval::split_from_start(int split_pos) {
4390  assert(LinearScan::is_virtual_interval(this), "cannot split fixed intervals");
4391  assert(split_pos > from() && split_pos < to(), "can only split inside interval");
4392  assert(split_pos > _first->from() && split_pos <= _first->to(), "can only split inside first range");
4393  assert(first_usage(noUse) > split_pos, "can not split when use positions are present");
4394
4395  // allocate new interval
4396  Interval* result = new_split_child();
4397
4398  // the new created interval has only one range (checked by assertion above),
4399  // so the splitting of the ranges is very simple
4400  result->add_range(_first->from(), split_pos);
4401
4402  if (split_pos == _first->to()) {
4403    assert(_first->next() != Range::end(), "must not be at end");
4404    _first = _first->next();
4405  } else {
4406    _first->set_from(split_pos);
4407  }
4408
4409  return result;
4410}
4411
4412
4413// returns true if the op_id is inside the interval
4414bool Interval::covers(int op_id, LIR_OpVisitState::OprMode mode) const {
4415  Range* cur  = _first;
4416
4417  while (cur != Range::end() && cur->to() < op_id) {
4418    cur = cur->next();
4419  }
4420  if (cur != Range::end()) {
4421    assert(cur->to() != cur->next()->from(), "ranges not separated");
4422
4423    if (mode == LIR_OpVisitState::outputMode) {
4424      return cur->from() <= op_id && op_id < cur->to();
4425    } else {
4426      return cur->from() <= op_id && op_id <= cur->to();
4427    }
4428  }
4429  return false;
4430}
4431
4432// returns true if the interval has any hole between hole_from and hole_to
4433// (even if the hole has only the length 1)
4434bool Interval::has_hole_between(int hole_from, int hole_to) {
4435  assert(hole_from < hole_to, "check");
4436  assert(from() <= hole_from && hole_to <= to(), "index out of interval");
4437
4438  Range* cur  = _first;
4439  while (cur != Range::end()) {
4440    assert(cur->to() < cur->next()->from(), "no space between ranges");
4441
4442    // hole-range starts before this range -> hole
4443    if (hole_from < cur->from()) {
4444      return true;
4445
4446    // hole-range completely inside this range -> no hole
4447    } else if (hole_to <= cur->to()) {
4448      return false;
4449
4450    // overlapping of hole-range with this range -> hole
4451    } else if (hole_from <= cur->to()) {
4452      return true;
4453    }
4454
4455    cur = cur->next();
4456  }
4457
4458  return false;
4459}
4460
4461
4462#ifndef PRODUCT
4463void Interval::print(outputStream* out) const {
4464  const char* SpillState2Name[] = { "no definition", "no spill store", "one spill store", "store at definition", "start in memory", "no optimization" };
4465  const char* UseKind2Name[] = { "N", "L", "S", "M" };
4466
4467  const char* type_name;
4468  LIR_Opr opr = LIR_OprFact::illegal();
4469  if (reg_num() < LIR_OprDesc::vreg_base) {
4470    type_name = "fixed";
4471    // need a temporary operand for fixed intervals because type() cannot be called
4472    if (assigned_reg() >= pd_first_cpu_reg && assigned_reg() <= pd_last_cpu_reg) {
4473      opr = LIR_OprFact::single_cpu(assigned_reg());
4474    } else if (assigned_reg() >= pd_first_fpu_reg && assigned_reg() <= pd_last_fpu_reg) {
4475      opr = LIR_OprFact::single_fpu(assigned_reg() - pd_first_fpu_reg);
4476#ifdef X86
4477    } else if (assigned_reg() >= pd_first_xmm_reg && assigned_reg() <= pd_last_xmm_reg) {
4478      opr = LIR_OprFact::single_xmm(assigned_reg() - pd_first_xmm_reg);
4479#endif
4480    } else {
4481      ShouldNotReachHere();
4482    }
4483  } else {
4484    type_name = type2name(type());
4485    if (assigned_reg() != -1) {
4486      opr = LinearScan::calc_operand_for_interval(this);
4487    }
4488  }
4489
4490  out->print("%d %s ", reg_num(), type_name);
4491  if (opr->is_valid()) {
4492    out->print("\"");
4493    opr->print(out);
4494    out->print("\" ");
4495  }
4496  out->print("%d %d ", split_parent()->reg_num(), (register_hint(false) != NULL ? register_hint(false)->reg_num() : -1));
4497
4498  // print ranges
4499  Range* cur = _first;
4500  while (cur != Range::end()) {
4501    cur->print(out);
4502    cur = cur->next();
4503    assert(cur != NULL, "range list not closed with range sentinel");
4504  }
4505
4506  // print use positions
4507  int prev = 0;
4508  assert(_use_pos_and_kinds.length() % 2 == 0, "must be");
4509  for (int i =_use_pos_and_kinds.length() - 2; i >= 0; i -= 2) {
4510    assert(_use_pos_and_kinds.at(i + 1) >= firstValidKind && _use_pos_and_kinds.at(i + 1) <= lastValidKind, "invalid use kind");
4511    assert(prev < _use_pos_and_kinds.at(i), "use positions not sorted");
4512
4513    out->print("%d %s ", _use_pos_and_kinds.at(i), UseKind2Name[_use_pos_and_kinds.at(i + 1)]);
4514    prev = _use_pos_and_kinds.at(i);
4515  }
4516
4517  out->print(" \"%s\"", SpillState2Name[spill_state()]);
4518  out->cr();
4519}
4520#endif
4521
4522
4523
4524// **** Implementation of IntervalWalker ****************************
4525
4526IntervalWalker::IntervalWalker(LinearScan* allocator, Interval* unhandled_fixed_first, Interval* unhandled_any_first)
4527 : _compilation(allocator->compilation())
4528 , _allocator(allocator)
4529{
4530  _unhandled_first[fixedKind] = unhandled_fixed_first;
4531  _unhandled_first[anyKind]   = unhandled_any_first;
4532  _active_first[fixedKind]    = Interval::end();
4533  _inactive_first[fixedKind]  = Interval::end();
4534  _active_first[anyKind]      = Interval::end();
4535  _inactive_first[anyKind]    = Interval::end();
4536  _current_position = -1;
4537  _current = NULL;
4538  next_interval();
4539}
4540
4541
4542// append interval at top of list
4543void IntervalWalker::append_unsorted(Interval** list, Interval* interval) {
4544  interval->set_next(*list); *list = interval;
4545}
4546
4547
4548// append interval in order of current range from()
4549void IntervalWalker::append_sorted(Interval** list, Interval* interval) {
4550  Interval* prev = NULL;
4551  Interval* cur  = *list;
4552  while (cur->current_from() < interval->current_from()) {
4553    prev = cur; cur = cur->next();
4554  }
4555  if (prev == NULL) {
4556    *list = interval;
4557  } else {
4558    prev->set_next(interval);
4559  }
4560  interval->set_next(cur);
4561}
4562
4563void IntervalWalker::append_to_unhandled(Interval** list, Interval* interval) {
4564  assert(interval->from() >= current()->current_from(), "cannot append new interval before current walk position");
4565
4566  Interval* prev = NULL;
4567  Interval* cur  = *list;
4568  while (cur->from() < interval->from() || (cur->from() == interval->from() && cur->first_usage(noUse) < interval->first_usage(noUse))) {
4569    prev = cur; cur = cur->next();
4570  }
4571  if (prev == NULL) {
4572    *list = interval;
4573  } else {
4574    prev->set_next(interval);
4575  }
4576  interval->set_next(cur);
4577}
4578
4579
4580inline bool IntervalWalker::remove_from_list(Interval** list, Interval* i) {
4581  while (*list != Interval::end() && *list != i) {
4582    list = (*list)->next_addr();
4583  }
4584  if (*list != Interval::end()) {
4585    assert(*list == i, "check");
4586    *list = (*list)->next();
4587    return true;
4588  } else {
4589    return false;
4590  }
4591}
4592
4593void IntervalWalker::remove_from_list(Interval* i) {
4594  bool deleted;
4595
4596  if (i->state() == activeState) {
4597    deleted = remove_from_list(active_first_addr(anyKind), i);
4598  } else {
4599    assert(i->state() == inactiveState, "invalid state");
4600    deleted = remove_from_list(inactive_first_addr(anyKind), i);
4601  }
4602
4603  assert(deleted, "interval has not been found in list");
4604}
4605
4606
4607void IntervalWalker::walk_to(IntervalState state, int from) {
4608  assert (state == activeState || state == inactiveState, "wrong state");
4609  for_each_interval_kind(kind) {
4610    Interval** prev = state == activeState ? active_first_addr(kind) : inactive_first_addr(kind);
4611    Interval* next   = *prev;
4612    while (next->current_from() <= from) {
4613      Interval* cur = next;
4614      next = cur->next();
4615
4616      bool range_has_changed = false;
4617      while (cur->current_to() <= from) {
4618        cur->next_range();
4619        range_has_changed = true;
4620      }
4621
4622      // also handle move from inactive list to active list
4623      range_has_changed = range_has_changed || (state == inactiveState && cur->current_from() <= from);
4624
4625      if (range_has_changed) {
4626        // remove cur from list
4627        *prev = next;
4628        if (cur->current_at_end()) {
4629          // move to handled state (not maintained as a list)
4630          cur->set_state(handledState);
4631          interval_moved(cur, kind, state, handledState);
4632        } else if (cur->current_from() <= from){
4633          // sort into active list
4634          append_sorted(active_first_addr(kind), cur);
4635          cur->set_state(activeState);
4636          if (*prev == cur) {
4637            assert(state == activeState, "check");
4638            prev = cur->next_addr();
4639          }
4640          interval_moved(cur, kind, state, activeState);
4641        } else {
4642          // sort into inactive list
4643          append_sorted(inactive_first_addr(kind), cur);
4644          cur->set_state(inactiveState);
4645          if (*prev == cur) {
4646            assert(state == inactiveState, "check");
4647            prev = cur->next_addr();
4648          }
4649          interval_moved(cur, kind, state, inactiveState);
4650        }
4651      } else {
4652        prev = cur->next_addr();
4653        continue;
4654      }
4655    }
4656  }
4657}
4658
4659
4660void IntervalWalker::next_interval() {
4661  IntervalKind kind;
4662  Interval* any   = _unhandled_first[anyKind];
4663  Interval* fixed = _unhandled_first[fixedKind];
4664
4665  if (any != Interval::end()) {
4666    // intervals may start at same position -> prefer fixed interval
4667    kind = fixed != Interval::end() && fixed->from() <= any->from() ? fixedKind : anyKind;
4668
4669    assert (kind == fixedKind && fixed->from() <= any->from() ||
4670            kind == anyKind   && any->from() <= fixed->from(), "wrong interval!!!");
4671    assert(any == Interval::end() || fixed == Interval::end() || any->from() != fixed->from() || kind == fixedKind, "if fixed and any-Interval start at same position, fixed must be processed first");
4672
4673  } else if (fixed != Interval::end()) {
4674    kind = fixedKind;
4675  } else {
4676    _current = NULL; return;
4677  }
4678  _current_kind = kind;
4679  _current = _unhandled_first[kind];
4680  _unhandled_first[kind] = _current->next();
4681  _current->set_next(Interval::end());
4682  _current->rewind_range();
4683}
4684
4685
4686void IntervalWalker::walk_to(int lir_op_id) {
4687  assert(_current_position <= lir_op_id, "can not walk backwards");
4688  while (current() != NULL) {
4689    bool is_active = current()->from() <= lir_op_id;
4690    int id = is_active ? current()->from() : lir_op_id;
4691
4692    TRACE_LINEAR_SCAN(2, if (_current_position < id) { tty->cr(); tty->print_cr("walk_to(%d) **************************************************************", id); })
4693
4694    // set _current_position prior to call of walk_to
4695    _current_position = id;
4696
4697    // call walk_to even if _current_position == id
4698    walk_to(activeState, id);
4699    walk_to(inactiveState, id);
4700
4701    if (is_active) {
4702      current()->set_state(activeState);
4703      if (activate_current()) {
4704        append_sorted(active_first_addr(current_kind()), current());
4705        interval_moved(current(), current_kind(), unhandledState, activeState);
4706      }
4707
4708      next_interval();
4709    } else {
4710      return;
4711    }
4712  }
4713}
4714
4715void IntervalWalker::interval_moved(Interval* interval, IntervalKind kind, IntervalState from, IntervalState to) {
4716#ifndef PRODUCT
4717  if (TraceLinearScanLevel >= 4) {
4718    #define print_state(state) \
4719    switch(state) {\
4720      case unhandledState: tty->print("unhandled"); break;\
4721      case activeState: tty->print("active"); break;\
4722      case inactiveState: tty->print("inactive"); break;\
4723      case handledState: tty->print("handled"); break;\
4724      default: ShouldNotReachHere(); \
4725    }
4726
4727    print_state(from); tty->print(" to "); print_state(to);
4728    tty->fill_to(23);
4729    interval->print();
4730
4731    #undef print_state
4732  }
4733#endif
4734}
4735
4736
4737
4738// **** Implementation of LinearScanWalker **************************
4739
4740LinearScanWalker::LinearScanWalker(LinearScan* allocator, Interval* unhandled_fixed_first, Interval* unhandled_any_first)
4741  : IntervalWalker(allocator, unhandled_fixed_first, unhandled_any_first)
4742  , _move_resolver(allocator)
4743{
4744  for (int i = 0; i < LinearScan::nof_regs; i++) {
4745    _spill_intervals[i] = new IntervalList(2);
4746  }
4747}
4748
4749
4750inline void LinearScanWalker::init_use_lists(bool only_process_use_pos) {
4751  for (int i = _first_reg; i <= _last_reg; i++) {
4752    _use_pos[i] = max_jint;
4753
4754    if (!only_process_use_pos) {
4755      _block_pos[i] = max_jint;
4756      _spill_intervals[i]->clear();
4757    }
4758  }
4759}
4760
4761inline void LinearScanWalker::exclude_from_use(int reg) {
4762  assert(reg < LinearScan::nof_regs, "interval must have a register assigned (stack slots not allowed)");
4763  if (reg >= _first_reg && reg <= _last_reg) {
4764    _use_pos[reg] = 0;
4765  }
4766}
4767inline void LinearScanWalker::exclude_from_use(Interval* i) {
4768  assert(i->assigned_reg() != any_reg, "interval has no register assigned");
4769
4770  exclude_from_use(i->assigned_reg());
4771  exclude_from_use(i->assigned_regHi());
4772}
4773
4774inline void LinearScanWalker::set_use_pos(int reg, Interval* i, int use_pos, bool only_process_use_pos) {
4775  assert(use_pos != 0, "must use exclude_from_use to set use_pos to 0");
4776
4777  if (reg >= _first_reg && reg <= _last_reg) {
4778    if (_use_pos[reg] > use_pos) {
4779      _use_pos[reg] = use_pos;
4780    }
4781    if (!only_process_use_pos) {
4782      _spill_intervals[reg]->append(i);
4783    }
4784  }
4785}
4786inline void LinearScanWalker::set_use_pos(Interval* i, int use_pos, bool only_process_use_pos) {
4787  assert(i->assigned_reg() != any_reg, "interval has no register assigned");
4788  if (use_pos != -1) {
4789    set_use_pos(i->assigned_reg(), i, use_pos, only_process_use_pos);
4790    set_use_pos(i->assigned_regHi(), i, use_pos, only_process_use_pos);
4791  }
4792}
4793
4794inline void LinearScanWalker::set_block_pos(int reg, Interval* i, int block_pos) {
4795  if (reg >= _first_reg && reg <= _last_reg) {
4796    if (_block_pos[reg] > block_pos) {
4797      _block_pos[reg] = block_pos;
4798    }
4799    if (_use_pos[reg] > block_pos) {
4800      _use_pos[reg] = block_pos;
4801    }
4802  }
4803}
4804inline void LinearScanWalker::set_block_pos(Interval* i, int block_pos) {
4805  assert(i->assigned_reg() != any_reg, "interval has no register assigned");
4806  if (block_pos != -1) {
4807    set_block_pos(i->assigned_reg(), i, block_pos);
4808    set_block_pos(i->assigned_regHi(), i, block_pos);
4809  }
4810}
4811
4812
4813void LinearScanWalker::free_exclude_active_fixed() {
4814  Interval* list = active_first(fixedKind);
4815  while (list != Interval::end()) {
4816    assert(list->assigned_reg() < LinearScan::nof_regs, "active interval must have a register assigned");
4817    exclude_from_use(list);
4818    list = list->next();
4819  }
4820}
4821
4822void LinearScanWalker::free_exclude_active_any() {
4823  Interval* list = active_first(anyKind);
4824  while (list != Interval::end()) {
4825    exclude_from_use(list);
4826    list = list->next();
4827  }
4828}
4829
4830void LinearScanWalker::free_collect_inactive_fixed(Interval* cur) {
4831  Interval* list = inactive_first(fixedKind);
4832  while (list != Interval::end()) {
4833    if (cur->to() <= list->current_from()) {
4834      assert(list->current_intersects_at(cur) == -1, "must not intersect");
4835      set_use_pos(list, list->current_from(), true);
4836    } else {
4837      set_use_pos(list, list->current_intersects_at(cur), true);
4838    }
4839    list = list->next();
4840  }
4841}
4842
4843void LinearScanWalker::free_collect_inactive_any(Interval* cur) {
4844  Interval* list = inactive_first(anyKind);
4845  while (list != Interval::end()) {
4846    set_use_pos(list, list->current_intersects_at(cur), true);
4847    list = list->next();
4848  }
4849}
4850
4851void LinearScanWalker::free_collect_unhandled(IntervalKind kind, Interval* cur) {
4852  Interval* list = unhandled_first(kind);
4853  while (list != Interval::end()) {
4854    set_use_pos(list, list->intersects_at(cur), true);
4855    if (kind == fixedKind && cur->to() <= list->from()) {
4856      set_use_pos(list, list->from(), true);
4857    }
4858    list = list->next();
4859  }
4860}
4861
4862void LinearScanWalker::spill_exclude_active_fixed() {
4863  Interval* list = active_first(fixedKind);
4864  while (list != Interval::end()) {
4865    exclude_from_use(list);
4866    list = list->next();
4867  }
4868}
4869
4870void LinearScanWalker::spill_block_unhandled_fixed(Interval* cur) {
4871  Interval* list = unhandled_first(fixedKind);
4872  while (list != Interval::end()) {
4873    set_block_pos(list, list->intersects_at(cur));
4874    list = list->next();
4875  }
4876}
4877
4878void LinearScanWalker::spill_block_inactive_fixed(Interval* cur) {
4879  Interval* list = inactive_first(fixedKind);
4880  while (list != Interval::end()) {
4881    if (cur->to() > list->current_from()) {
4882      set_block_pos(list, list->current_intersects_at(cur));
4883    } else {
4884      assert(list->current_intersects_at(cur) == -1, "invalid optimization: intervals intersect");
4885    }
4886
4887    list = list->next();
4888  }
4889}
4890
4891void LinearScanWalker::spill_collect_active_any() {
4892  Interval* list = active_first(anyKind);
4893  while (list != Interval::end()) {
4894    set_use_pos(list, MIN2(list->next_usage(loopEndMarker, _current_position), list->to()), false);
4895    list = list->next();
4896  }
4897}
4898
4899void LinearScanWalker::spill_collect_inactive_any(Interval* cur) {
4900  Interval* list = inactive_first(anyKind);
4901  while (list != Interval::end()) {
4902    if (list->current_intersects(cur)) {
4903      set_use_pos(list, MIN2(list->next_usage(loopEndMarker, _current_position), list->to()), false);
4904    }
4905    list = list->next();
4906  }
4907}
4908
4909
4910void LinearScanWalker::insert_move(int op_id, Interval* src_it, Interval* dst_it) {
4911  // output all moves here. When source and target are equal, the move is
4912  // optimized away later in assign_reg_nums
4913
4914  op_id = (op_id + 1) & ~1;
4915  BlockBegin* op_block = allocator()->block_of_op_with_id(op_id);
4916  assert(op_id > 0 && allocator()->block_of_op_with_id(op_id - 2) == op_block, "cannot insert move at block boundary");
4917
4918  // calculate index of instruction inside instruction list of current block
4919  // the minimal index (for a block with no spill moves) can be calculated because the
4920  // numbering of instructions is known.
4921  // When the block already contains spill moves, the index must be increased until the
4922  // correct index is reached.
4923  LIR_OpList* list = op_block->lir()->instructions_list();
4924  int index = (op_id - list->at(0)->id()) / 2;
4925  assert(list->at(index)->id() <= op_id, "error in calculation");
4926
4927  while (list->at(index)->id() != op_id) {
4928    index++;
4929    assert(0 <= index && index < list->length(), "index out of bounds");
4930  }
4931  assert(1 <= index && index < list->length(), "index out of bounds");
4932  assert(list->at(index)->id() == op_id, "error in calculation");
4933
4934  // insert new instruction before instruction at position index
4935  _move_resolver.move_insert_position(op_block->lir(), index - 1);
4936  _move_resolver.add_mapping(src_it, dst_it);
4937}
4938
4939
4940int LinearScanWalker::find_optimal_split_pos(BlockBegin* min_block, BlockBegin* max_block, int max_split_pos) {
4941  int from_block_nr = min_block->linear_scan_number();
4942  int to_block_nr = max_block->linear_scan_number();
4943
4944  assert(0 <= from_block_nr && from_block_nr < block_count(), "out of range");
4945  assert(0 <= to_block_nr && to_block_nr < block_count(), "out of range");
4946  assert(from_block_nr < to_block_nr, "must cross block boundary");
4947
4948  // Try to split at end of max_block. If this would be after
4949  // max_split_pos, then use the begin of max_block
4950  int optimal_split_pos = max_block->last_lir_instruction_id() + 2;
4951  if (optimal_split_pos > max_split_pos) {
4952    optimal_split_pos = max_block->first_lir_instruction_id();
4953  }
4954
4955  int min_loop_depth = max_block->loop_depth();
4956  for (int i = to_block_nr - 1; i >= from_block_nr; i--) {
4957    BlockBegin* cur = block_at(i);
4958
4959    if (cur->loop_depth() < min_loop_depth) {
4960      // block with lower loop-depth found -> split at the end of this block
4961      min_loop_depth = cur->loop_depth();
4962      optimal_split_pos = cur->last_lir_instruction_id() + 2;
4963    }
4964  }
4965  assert(optimal_split_pos > allocator()->max_lir_op_id() || allocator()->is_block_begin(optimal_split_pos), "algorithm must move split pos to block boundary");
4966
4967  return optimal_split_pos;
4968}
4969
4970
4971int LinearScanWalker::find_optimal_split_pos(Interval* it, int min_split_pos, int max_split_pos, bool do_loop_optimization) {
4972  int optimal_split_pos = -1;
4973  if (min_split_pos == max_split_pos) {
4974    // trivial case, no optimization of split position possible
4975    TRACE_LINEAR_SCAN(4, tty->print_cr("      min-pos and max-pos are equal, no optimization possible"));
4976    optimal_split_pos = min_split_pos;
4977
4978  } else {
4979    assert(min_split_pos < max_split_pos, "must be true then");
4980    assert(min_split_pos > 0, "cannot access min_split_pos - 1 otherwise");
4981
4982    // reason for using min_split_pos - 1: when the minimal split pos is exactly at the
4983    // beginning of a block, then min_split_pos is also a possible split position.
4984    // Use the block before as min_block, because then min_block->last_lir_instruction_id() + 2 == min_split_pos
4985    BlockBegin* min_block = allocator()->block_of_op_with_id(min_split_pos - 1);
4986
4987    // reason for using max_split_pos - 1: otherwise there would be an assertion failure
4988    // when an interval ends at the end of the last block of the method
4989    // (in this case, max_split_pos == allocator()->max_lir_op_id() + 2, and there is no
4990    // block at this op_id)
4991    BlockBegin* max_block = allocator()->block_of_op_with_id(max_split_pos - 1);
4992
4993    assert(min_block->linear_scan_number() <= max_block->linear_scan_number(), "invalid order");
4994    if (min_block == max_block) {
4995      // split position cannot be moved to block boundary, so split as late as possible
4996      TRACE_LINEAR_SCAN(4, tty->print_cr("      cannot move split pos to block boundary because min_pos and max_pos are in same block"));
4997      optimal_split_pos = max_split_pos;
4998
4999    } else if (it->has_hole_between(max_split_pos - 1, max_split_pos) && !allocator()->is_block_begin(max_split_pos)) {
5000      // Do not move split position if the interval has a hole before max_split_pos.
5001      // Intervals resulting from Phi-Functions have more than one definition (marked
5002      // as mustHaveRegister) with a hole before each definition. When the register is needed
5003      // for the second definition, an earlier reloading is unnecessary.
5004      TRACE_LINEAR_SCAN(4, tty->print_cr("      interval has hole just before max_split_pos, so splitting at max_split_pos"));
5005      optimal_split_pos = max_split_pos;
5006
5007    } else {
5008      // seach optimal block boundary between min_split_pos and max_split_pos
5009      TRACE_LINEAR_SCAN(4, tty->print_cr("      moving split pos to optimal block boundary between block B%d and B%d", min_block->block_id(), max_block->block_id()));
5010
5011      if (do_loop_optimization) {
5012        // Loop optimization: if a loop-end marker is found between min- and max-position,
5013        // then split before this loop
5014        int loop_end_pos = it->next_usage_exact(loopEndMarker, min_block->last_lir_instruction_id() + 2);
5015        TRACE_LINEAR_SCAN(4, tty->print_cr("      loop optimization: loop end found at pos %d", loop_end_pos));
5016
5017        assert(loop_end_pos > min_split_pos, "invalid order");
5018        if (loop_end_pos < max_split_pos) {
5019          // loop-end marker found between min- and max-position
5020          // if it is not the end marker for the same loop as the min-position, then move
5021          // the max-position to this loop block.
5022          // Desired result: uses tagged as shouldHaveRegister inside a loop cause a reloading
5023          // of the interval (normally, only mustHaveRegister causes a reloading)
5024          BlockBegin* loop_block = allocator()->block_of_op_with_id(loop_end_pos);
5025
5026          TRACE_LINEAR_SCAN(4, tty->print_cr("      interval is used in loop that ends in block B%d, so trying to move max_block back from B%d to B%d", loop_block->block_id(), max_block->block_id(), loop_block->block_id()));
5027          assert(loop_block != min_block, "loop_block and min_block must be different because block boundary is needed between");
5028
5029          optimal_split_pos = find_optimal_split_pos(min_block, loop_block, loop_block->last_lir_instruction_id() + 2);
5030          if (optimal_split_pos == loop_block->last_lir_instruction_id() + 2) {
5031            optimal_split_pos = -1;
5032            TRACE_LINEAR_SCAN(4, tty->print_cr("      loop optimization not necessary"));
5033          } else {
5034            TRACE_LINEAR_SCAN(4, tty->print_cr("      loop optimization successful"));
5035          }
5036        }
5037      }
5038
5039      if (optimal_split_pos == -1) {
5040        // not calculated by loop optimization
5041        optimal_split_pos = find_optimal_split_pos(min_block, max_block, max_split_pos);
5042      }
5043    }
5044  }
5045  TRACE_LINEAR_SCAN(4, tty->print_cr("      optimal split position: %d", optimal_split_pos));
5046
5047  return optimal_split_pos;
5048}
5049
5050
5051/*
5052  split an interval at the optimal position between min_split_pos and
5053  max_split_pos in two parts:
5054  1) the left part has already a location assigned
5055  2) the right part is sorted into to the unhandled-list
5056*/
5057void LinearScanWalker::split_before_usage(Interval* it, int min_split_pos, int max_split_pos) {
5058  TRACE_LINEAR_SCAN(2, tty->print   ("----- splitting interval: "); it->print());
5059  TRACE_LINEAR_SCAN(2, tty->print_cr("      between %d and %d", min_split_pos, max_split_pos));
5060
5061  assert(it->from() < min_split_pos,         "cannot split at start of interval");
5062  assert(current_position() < min_split_pos, "cannot split before current position");
5063  assert(min_split_pos <= max_split_pos,     "invalid order");
5064  assert(max_split_pos <= it->to(),          "cannot split after end of interval");
5065
5066  int optimal_split_pos = find_optimal_split_pos(it, min_split_pos, max_split_pos, true);
5067
5068  assert(min_split_pos <= optimal_split_pos && optimal_split_pos <= max_split_pos, "out of range");
5069  assert(optimal_split_pos <= it->to(),  "cannot split after end of interval");
5070  assert(optimal_split_pos > it->from(), "cannot split at start of interval");
5071
5072  if (optimal_split_pos == it->to() && it->next_usage(mustHaveRegister, min_split_pos) == max_jint) {
5073    // the split position would be just before the end of the interval
5074    // -> no split at all necessary
5075    TRACE_LINEAR_SCAN(4, tty->print_cr("      no split necessary because optimal split position is at end of interval"));
5076    return;
5077  }
5078
5079  // must calculate this before the actual split is performed and before split position is moved to odd op_id
5080  bool move_necessary = !allocator()->is_block_begin(optimal_split_pos) && !it->has_hole_between(optimal_split_pos - 1, optimal_split_pos);
5081
5082  if (!allocator()->is_block_begin(optimal_split_pos)) {
5083    // move position before actual instruction (odd op_id)
5084    optimal_split_pos = (optimal_split_pos - 1) | 1;
5085  }
5086
5087  TRACE_LINEAR_SCAN(4, tty->print_cr("      splitting at position %d", optimal_split_pos));
5088  assert(allocator()->is_block_begin(optimal_split_pos) || (optimal_split_pos % 2 == 1), "split pos must be odd when not on block boundary");
5089  assert(!allocator()->is_block_begin(optimal_split_pos) || (optimal_split_pos % 2 == 0), "split pos must be even on block boundary");
5090
5091  Interval* split_part = it->split(optimal_split_pos);
5092
5093  allocator()->append_interval(split_part);
5094  allocator()->copy_register_flags(it, split_part);
5095  split_part->set_insert_move_when_activated(move_necessary);
5096  append_to_unhandled(unhandled_first_addr(anyKind), split_part);
5097
5098  TRACE_LINEAR_SCAN(2, tty->print_cr("      split interval in two parts (insert_move_when_activated: %d)", move_necessary));
5099  TRACE_LINEAR_SCAN(2, tty->print   ("      "); it->print());
5100  TRACE_LINEAR_SCAN(2, tty->print   ("      "); split_part->print());
5101}
5102
5103/*
5104  split an interval at the optimal position between min_split_pos and
5105  max_split_pos in two parts:
5106  1) the left part has already a location assigned
5107  2) the right part is always on the stack and therefore ignored in further processing
5108*/
5109void LinearScanWalker::split_for_spilling(Interval* it) {
5110  // calculate allowed range of splitting position
5111  int max_split_pos = current_position();
5112  int min_split_pos = MAX2(it->previous_usage(shouldHaveRegister, max_split_pos) + 1, it->from());
5113
5114  TRACE_LINEAR_SCAN(2, tty->print   ("----- splitting and spilling interval: "); it->print());
5115  TRACE_LINEAR_SCAN(2, tty->print_cr("      between %d and %d", min_split_pos, max_split_pos));
5116
5117  assert(it->state() == activeState,     "why spill interval that is not active?");
5118  assert(it->from() <= min_split_pos,    "cannot split before start of interval");
5119  assert(min_split_pos <= max_split_pos, "invalid order");
5120  assert(max_split_pos < it->to(),       "cannot split at end end of interval");
5121  assert(current_position() < it->to(),  "interval must not end before current position");
5122
5123  if (min_split_pos == it->from()) {
5124    // the whole interval is never used, so spill it entirely to memory
5125    TRACE_LINEAR_SCAN(2, tty->print_cr("      spilling entire interval because split pos is at beginning of interval"));
5126    assert(it->first_usage(shouldHaveRegister) > current_position(), "interval must not have use position before current_position");
5127
5128    allocator()->assign_spill_slot(it);
5129    allocator()->change_spill_state(it, min_split_pos);
5130
5131    // Also kick parent intervals out of register to memory when they have no use
5132    // position. This avoids short interval in register surrounded by intervals in
5133    // memory -> avoid useless moves from memory to register and back
5134    Interval* parent = it;
5135    while (parent != NULL && parent->is_split_child()) {
5136      parent = parent->split_child_before_op_id(parent->from());
5137
5138      if (parent->assigned_reg() < LinearScan::nof_regs) {
5139        if (parent->first_usage(shouldHaveRegister) == max_jint) {
5140          // parent is never used, so kick it out of its assigned register
5141          TRACE_LINEAR_SCAN(4, tty->print_cr("      kicking out interval %d out of its register because it is never used", parent->reg_num()));
5142          allocator()->assign_spill_slot(parent);
5143        } else {
5144          // do not go further back because the register is actually used by the interval
5145          parent = NULL;
5146        }
5147      }
5148    }
5149
5150  } else {
5151    // search optimal split pos, split interval and spill only the right hand part
5152    int optimal_split_pos = find_optimal_split_pos(it, min_split_pos, max_split_pos, false);
5153
5154    assert(min_split_pos <= optimal_split_pos && optimal_split_pos <= max_split_pos, "out of range");
5155    assert(optimal_split_pos < it->to(), "cannot split at end of interval");
5156    assert(optimal_split_pos >= it->from(), "cannot split before start of interval");
5157
5158    if (!allocator()->is_block_begin(optimal_split_pos)) {
5159      // move position before actual instruction (odd op_id)
5160      optimal_split_pos = (optimal_split_pos - 1) | 1;
5161    }
5162
5163    TRACE_LINEAR_SCAN(4, tty->print_cr("      splitting at position %d", optimal_split_pos));
5164    assert(allocator()->is_block_begin(optimal_split_pos)  || (optimal_split_pos % 2 == 1), "split pos must be odd when not on block boundary");
5165    assert(!allocator()->is_block_begin(optimal_split_pos) || (optimal_split_pos % 2 == 0), "split pos must be even on block boundary");
5166
5167    Interval* spilled_part = it->split(optimal_split_pos);
5168    allocator()->append_interval(spilled_part);
5169    allocator()->assign_spill_slot(spilled_part);
5170    allocator()->change_spill_state(spilled_part, optimal_split_pos);
5171
5172    if (!allocator()->is_block_begin(optimal_split_pos)) {
5173      TRACE_LINEAR_SCAN(4, tty->print_cr("      inserting move from interval %d to %d", it->reg_num(), spilled_part->reg_num()));
5174      insert_move(optimal_split_pos, it, spilled_part);
5175    }
5176
5177    // the current_split_child is needed later when moves are inserted for reloading
5178    assert(spilled_part->current_split_child() == it, "overwriting wrong current_split_child");
5179    spilled_part->make_current_split_child();
5180
5181    TRACE_LINEAR_SCAN(2, tty->print_cr("      split interval in two parts"));
5182    TRACE_LINEAR_SCAN(2, tty->print   ("      "); it->print());
5183    TRACE_LINEAR_SCAN(2, tty->print   ("      "); spilled_part->print());
5184  }
5185}
5186
5187
5188void LinearScanWalker::split_stack_interval(Interval* it) {
5189  int min_split_pos = current_position() + 1;
5190  int max_split_pos = MIN2(it->first_usage(shouldHaveRegister), it->to());
5191
5192  split_before_usage(it, min_split_pos, max_split_pos);
5193}
5194
5195void LinearScanWalker::split_when_partial_register_available(Interval* it, int register_available_until) {
5196  int min_split_pos = MAX2(it->previous_usage(shouldHaveRegister, register_available_until), it->from() + 1);
5197  int max_split_pos = register_available_until;
5198
5199  split_before_usage(it, min_split_pos, max_split_pos);
5200}
5201
5202void LinearScanWalker::split_and_spill_interval(Interval* it) {
5203  assert(it->state() == activeState || it->state() == inactiveState, "other states not allowed");
5204
5205  int current_pos = current_position();
5206  if (it->state() == inactiveState) {
5207    // the interval is currently inactive, so no spill slot is needed for now.
5208    // when the split part is activated, the interval has a new chance to get a register,
5209    // so in the best case no stack slot is necessary
5210    assert(it->has_hole_between(current_pos - 1, current_pos + 1), "interval can not be inactive otherwise");
5211    split_before_usage(it, current_pos + 1, current_pos + 1);
5212
5213  } else {
5214    // search the position where the interval must have a register and split
5215    // at the optimal position before.
5216    // The new created part is added to the unhandled list and will get a register
5217    // when it is activated
5218    int min_split_pos = current_pos + 1;
5219    int max_split_pos = MIN2(it->next_usage(mustHaveRegister, min_split_pos), it->to());
5220
5221    split_before_usage(it, min_split_pos, max_split_pos);
5222
5223    assert(it->next_usage(mustHaveRegister, current_pos) == max_jint, "the remaining part is spilled to stack and therefore has no register");
5224    split_for_spilling(it);
5225  }
5226}
5227
5228
5229int LinearScanWalker::find_free_reg(int reg_needed_until, int interval_to, int hint_reg, int ignore_reg, bool* need_split) {
5230  int min_full_reg = any_reg;
5231  int max_partial_reg = any_reg;
5232
5233  for (int i = _first_reg; i <= _last_reg; i++) {
5234    if (i == ignore_reg) {
5235      // this register must be ignored
5236
5237    } else if (_use_pos[i] >= interval_to) {
5238      // this register is free for the full interval
5239      if (min_full_reg == any_reg || i == hint_reg || (_use_pos[i] < _use_pos[min_full_reg] && min_full_reg != hint_reg)) {
5240        min_full_reg = i;
5241      }
5242    } else if (_use_pos[i] > reg_needed_until) {
5243      // this register is at least free until reg_needed_until
5244      if (max_partial_reg == any_reg || i == hint_reg || (_use_pos[i] > _use_pos[max_partial_reg] && max_partial_reg != hint_reg)) {
5245        max_partial_reg = i;
5246      }
5247    }
5248  }
5249
5250  if (min_full_reg != any_reg) {
5251    return min_full_reg;
5252  } else if (max_partial_reg != any_reg) {
5253    *need_split = true;
5254    return max_partial_reg;
5255  } else {
5256    return any_reg;
5257  }
5258}
5259
5260int LinearScanWalker::find_free_double_reg(int reg_needed_until, int interval_to, int hint_reg, bool* need_split) {
5261  assert((_last_reg - _first_reg + 1) % 2 == 0, "adjust algorithm");
5262
5263  int min_full_reg = any_reg;
5264  int max_partial_reg = any_reg;
5265
5266  for (int i = _first_reg; i < _last_reg; i+=2) {
5267    if (_use_pos[i] >= interval_to && _use_pos[i + 1] >= interval_to) {
5268      // this register is free for the full interval
5269      if (min_full_reg == any_reg || i == hint_reg || (_use_pos[i] < _use_pos[min_full_reg] && min_full_reg != hint_reg)) {
5270        min_full_reg = i;
5271      }
5272    } else if (_use_pos[i] > reg_needed_until && _use_pos[i + 1] > reg_needed_until) {
5273      // this register is at least free until reg_needed_until
5274      if (max_partial_reg == any_reg || i == hint_reg || (_use_pos[i] > _use_pos[max_partial_reg] && max_partial_reg != hint_reg)) {
5275        max_partial_reg = i;
5276      }
5277    }
5278  }
5279
5280  if (min_full_reg != any_reg) {
5281    return min_full_reg;
5282  } else if (max_partial_reg != any_reg) {
5283    *need_split = true;
5284    return max_partial_reg;
5285  } else {
5286    return any_reg;
5287  }
5288}
5289
5290
5291bool LinearScanWalker::alloc_free_reg(Interval* cur) {
5292  TRACE_LINEAR_SCAN(2, tty->print("trying to find free register for "); cur->print());
5293
5294  init_use_lists(true);
5295  free_exclude_active_fixed();
5296  free_exclude_active_any();
5297  free_collect_inactive_fixed(cur);
5298  free_collect_inactive_any(cur);
5299//  free_collect_unhandled(fixedKind, cur);
5300  assert(unhandled_first(fixedKind) == Interval::end(), "must not have unhandled fixed intervals because all fixed intervals have a use at position 0");
5301
5302  // _use_pos contains the start of the next interval that has this register assigned
5303  // (either as a fixed register or a normal allocated register in the past)
5304  // only intervals overlapping with cur are processed, non-overlapping invervals can be ignored safely
5305  TRACE_LINEAR_SCAN(4, tty->print_cr("      state of registers:"));
5306  TRACE_LINEAR_SCAN(4, for (int i = _first_reg; i <= _last_reg; i++) tty->print_cr("      reg %d: use_pos: %d", i, _use_pos[i]));
5307
5308  int hint_reg, hint_regHi;
5309  Interval* register_hint = cur->register_hint();
5310  if (register_hint != NULL) {
5311    hint_reg = register_hint->assigned_reg();
5312    hint_regHi = register_hint->assigned_regHi();
5313
5314    if (allocator()->is_precolored_cpu_interval(register_hint)) {
5315      assert(hint_reg != any_reg && hint_regHi == any_reg, "must be for fixed intervals");
5316      hint_regHi = hint_reg + 1;  // connect e.g. eax-edx
5317    }
5318    TRACE_LINEAR_SCAN(4, tty->print("      hint registers %d, %d from interval ", hint_reg, hint_regHi); register_hint->print());
5319
5320  } else {
5321    hint_reg = any_reg;
5322    hint_regHi = any_reg;
5323  }
5324  assert(hint_reg == any_reg || hint_reg != hint_regHi, "hint reg and regHi equal");
5325  assert(cur->assigned_reg() == any_reg && cur->assigned_regHi() == any_reg, "register already assigned to interval");
5326
5327  // the register must be free at least until this position
5328  int reg_needed_until = cur->from() + 1;
5329  int interval_to = cur->to();
5330
5331  bool need_split = false;
5332  int split_pos = -1;
5333  int reg = any_reg;
5334  int regHi = any_reg;
5335
5336  if (_adjacent_regs) {
5337    reg = find_free_double_reg(reg_needed_until, interval_to, hint_reg, &need_split);
5338    regHi = reg + 1;
5339    if (reg == any_reg) {
5340      return false;
5341    }
5342    split_pos = MIN2(_use_pos[reg], _use_pos[regHi]);
5343
5344  } else {
5345    reg = find_free_reg(reg_needed_until, interval_to, hint_reg, any_reg, &need_split);
5346    if (reg == any_reg) {
5347      return false;
5348    }
5349    split_pos = _use_pos[reg];
5350
5351    if (_num_phys_regs == 2) {
5352      regHi = find_free_reg(reg_needed_until, interval_to, hint_regHi, reg, &need_split);
5353
5354      if (_use_pos[reg] < interval_to && regHi == any_reg) {
5355        // do not split interval if only one register can be assigned until the split pos
5356        // (when one register is found for the whole interval, split&spill is only
5357        // performed for the hi register)
5358        return false;
5359
5360      } else if (regHi != any_reg) {
5361        split_pos = MIN2(split_pos, _use_pos[regHi]);
5362
5363        // sort register numbers to prevent e.g. a move from eax,ebx to ebx,eax
5364        if (reg > regHi) {
5365          int temp = reg;
5366          reg = regHi;
5367          regHi = temp;
5368        }
5369      }
5370    }
5371  }
5372
5373  cur->assign_reg(reg, regHi);
5374  TRACE_LINEAR_SCAN(2, tty->print_cr("selected register %d, %d", reg, regHi));
5375
5376  assert(split_pos > 0, "invalid split_pos");
5377  if (need_split) {
5378    // register not available for full interval, so split it
5379    split_when_partial_register_available(cur, split_pos);
5380  }
5381
5382  // only return true if interval is completely assigned
5383  return _num_phys_regs == 1 || regHi != any_reg;
5384}
5385
5386
5387int LinearScanWalker::find_locked_reg(int reg_needed_until, int interval_to, int hint_reg, int ignore_reg, bool* need_split) {
5388  int max_reg = any_reg;
5389
5390  for (int i = _first_reg; i <= _last_reg; i++) {
5391    if (i == ignore_reg) {
5392      // this register must be ignored
5393
5394    } else if (_use_pos[i] > reg_needed_until) {
5395      if (max_reg == any_reg || i == hint_reg || (_use_pos[i] > _use_pos[max_reg] && max_reg != hint_reg)) {
5396        max_reg = i;
5397      }
5398    }
5399  }
5400
5401  if (max_reg != any_reg && _block_pos[max_reg] <= interval_to) {
5402    *need_split = true;
5403  }
5404
5405  return max_reg;
5406}
5407
5408int LinearScanWalker::find_locked_double_reg(int reg_needed_until, int interval_to, int hint_reg, bool* need_split) {
5409  assert((_last_reg - _first_reg + 1) % 2 == 0, "adjust algorithm");
5410
5411  int max_reg = any_reg;
5412
5413  for (int i = _first_reg; i < _last_reg; i+=2) {
5414    if (_use_pos[i] > reg_needed_until && _use_pos[i + 1] > reg_needed_until) {
5415      if (max_reg == any_reg || _use_pos[i] > _use_pos[max_reg]) {
5416        max_reg = i;
5417      }
5418    }
5419  }
5420
5421  if (_block_pos[max_reg] <= interval_to || _block_pos[max_reg + 1] <= interval_to) {
5422    *need_split = true;
5423  }
5424
5425  return max_reg;
5426}
5427
5428void LinearScanWalker::split_and_spill_intersecting_intervals(int reg, int regHi) {
5429  assert(reg != any_reg, "no register assigned");
5430
5431  for (int i = 0; i < _spill_intervals[reg]->length(); i++) {
5432    Interval* it = _spill_intervals[reg]->at(i);
5433    remove_from_list(it);
5434    split_and_spill_interval(it);
5435  }
5436
5437  if (regHi != any_reg) {
5438    IntervalList* processed = _spill_intervals[reg];
5439    for (int i = 0; i < _spill_intervals[regHi]->length(); i++) {
5440      Interval* it = _spill_intervals[regHi]->at(i);
5441      if (processed->index_of(it) == -1) {
5442        remove_from_list(it);
5443        split_and_spill_interval(it);
5444      }
5445    }
5446  }
5447}
5448
5449
5450// Split an Interval and spill it to memory so that cur can be placed in a register
5451void LinearScanWalker::alloc_locked_reg(Interval* cur) {
5452  TRACE_LINEAR_SCAN(2, tty->print("need to split and spill to get register for "); cur->print());
5453
5454  // collect current usage of registers
5455  init_use_lists(false);
5456  spill_exclude_active_fixed();
5457//  spill_block_unhandled_fixed(cur);
5458  assert(unhandled_first(fixedKind) == Interval::end(), "must not have unhandled fixed intervals because all fixed intervals have a use at position 0");
5459  spill_block_inactive_fixed(cur);
5460  spill_collect_active_any();
5461  spill_collect_inactive_any(cur);
5462
5463#ifndef PRODUCT
5464  if (TraceLinearScanLevel >= 4) {
5465    tty->print_cr("      state of registers:");
5466    for (int i = _first_reg; i <= _last_reg; i++) {
5467      tty->print("      reg %d: use_pos: %d, block_pos: %d, intervals: ", i, _use_pos[i], _block_pos[i]);
5468      for (int j = 0; j < _spill_intervals[i]->length(); j++) {
5469        tty->print("%d ", _spill_intervals[i]->at(j)->reg_num());
5470      }
5471      tty->cr();
5472    }
5473  }
5474#endif
5475
5476  // the register must be free at least until this position
5477  int reg_needed_until = MIN2(cur->first_usage(mustHaveRegister), cur->from() + 1);
5478  int interval_to = cur->to();
5479  assert (reg_needed_until > 0 && reg_needed_until < max_jint, "interval has no use");
5480
5481  int split_pos = 0;
5482  int use_pos = 0;
5483  bool need_split = false;
5484  int reg, regHi;
5485
5486  if (_adjacent_regs) {
5487    reg = find_locked_double_reg(reg_needed_until, interval_to, any_reg, &need_split);
5488    regHi = reg + 1;
5489
5490    if (reg != any_reg) {
5491      use_pos = MIN2(_use_pos[reg], _use_pos[regHi]);
5492      split_pos = MIN2(_block_pos[reg], _block_pos[regHi]);
5493    }
5494  } else {
5495    reg = find_locked_reg(reg_needed_until, interval_to, any_reg, cur->assigned_reg(), &need_split);
5496    regHi = any_reg;
5497
5498    if (reg != any_reg) {
5499      use_pos = _use_pos[reg];
5500      split_pos = _block_pos[reg];
5501
5502      if (_num_phys_regs == 2) {
5503        if (cur->assigned_reg() != any_reg) {
5504          regHi = reg;
5505          reg = cur->assigned_reg();
5506        } else {
5507          regHi = find_locked_reg(reg_needed_until, interval_to, any_reg, reg, &need_split);
5508          if (regHi != any_reg) {
5509            use_pos = MIN2(use_pos, _use_pos[regHi]);
5510            split_pos = MIN2(split_pos, _block_pos[regHi]);
5511          }
5512        }
5513
5514        if (regHi != any_reg && reg > regHi) {
5515          // sort register numbers to prevent e.g. a move from eax,ebx to ebx,eax
5516          int temp = reg;
5517          reg = regHi;
5518          regHi = temp;
5519        }
5520      }
5521    }
5522  }
5523
5524  if (reg == any_reg || (_num_phys_regs == 2 && regHi == any_reg) || use_pos <= cur->first_usage(mustHaveRegister)) {
5525    // the first use of cur is later than the spilling position -> spill cur
5526    TRACE_LINEAR_SCAN(4, tty->print_cr("able to spill current interval. first_usage(register): %d, use_pos: %d", cur->first_usage(mustHaveRegister), use_pos));
5527
5528    if (cur->first_usage(mustHaveRegister) <= cur->from() + 1) {
5529      assert(false, "cannot spill interval that is used in first instruction (possible reason: no register found)");
5530      // assign a reasonable register and do a bailout in product mode to avoid errors
5531      allocator()->assign_spill_slot(cur);
5532      BAILOUT("LinearScan: no register found");
5533    }
5534
5535    split_and_spill_interval(cur);
5536  } else {
5537    TRACE_LINEAR_SCAN(4, tty->print_cr("decided to use register %d, %d", reg, regHi));
5538    assert(reg != any_reg && (_num_phys_regs == 1 || regHi != any_reg), "no register found");
5539    assert(split_pos > 0, "invalid split_pos");
5540    assert(need_split == false || split_pos > cur->from(), "splitting interval at from");
5541
5542    cur->assign_reg(reg, regHi);
5543    if (need_split) {
5544      // register not available for full interval, so split it
5545      split_when_partial_register_available(cur, split_pos);
5546    }
5547
5548    // perform splitting and spilling for all affected intervalls
5549    split_and_spill_intersecting_intervals(reg, regHi);
5550  }
5551}
5552
5553bool LinearScanWalker::no_allocation_possible(Interval* cur) {
5554#ifdef X86
5555  // fast calculation of intervals that can never get a register because the
5556  // the next instruction is a call that blocks all registers
5557  // Note: this does not work if callee-saved registers are available (e.g. on Sparc)
5558
5559  // check if this interval is the result of a split operation
5560  // (an interval got a register until this position)
5561  int pos = cur->from();
5562  if ((pos & 1) == 1) {
5563    // the current instruction is a call that blocks all registers
5564    if (pos < allocator()->max_lir_op_id() && allocator()->has_call(pos + 1)) {
5565      TRACE_LINEAR_SCAN(4, tty->print_cr("      free register cannot be available because all registers blocked by following call"));
5566
5567      // safety check that there is really no register available
5568      assert(alloc_free_reg(cur) == false, "found a register for this interval");
5569      return true;
5570    }
5571
5572  }
5573#endif
5574  return false;
5575}
5576
5577void LinearScanWalker::init_vars_for_alloc(Interval* cur) {
5578  BasicType type = cur->type();
5579  _num_phys_regs = LinearScan::num_physical_regs(type);
5580  _adjacent_regs = LinearScan::requires_adjacent_regs(type);
5581
5582  if (pd_init_regs_for_alloc(cur)) {
5583    // the appropriate register range was selected.
5584  } else if (type == T_FLOAT || type == T_DOUBLE) {
5585    _first_reg = pd_first_fpu_reg;
5586    _last_reg = pd_last_fpu_reg;
5587  } else {
5588    _first_reg = pd_first_cpu_reg;
5589    _last_reg = pd_last_cpu_reg;
5590  }
5591
5592  assert(0 <= _first_reg && _first_reg < LinearScan::nof_regs, "out of range");
5593  assert(0 <= _last_reg && _last_reg < LinearScan::nof_regs, "out of range");
5594}
5595
5596
5597bool LinearScanWalker::is_move(LIR_Op* op, Interval* from, Interval* to) {
5598  if (op->code() != lir_move) {
5599    return false;
5600  }
5601  assert(op->as_Op1() != NULL, "move must be LIR_Op1");
5602
5603  LIR_Opr in = ((LIR_Op1*)op)->in_opr();
5604  LIR_Opr res = ((LIR_Op1*)op)->result_opr();
5605  return in->is_virtual() && res->is_virtual() && in->vreg_number() == from->reg_num() && res->vreg_number() == to->reg_num();
5606}
5607
5608// optimization (especially for phi functions of nested loops):
5609// assign same spill slot to non-intersecting intervals
5610void LinearScanWalker::combine_spilled_intervals(Interval* cur) {
5611  if (cur->is_split_child()) {
5612    // optimization is only suitable for split parents
5613    return;
5614  }
5615
5616  Interval* register_hint = cur->register_hint(false);
5617  if (register_hint == NULL) {
5618    // cur is not the target of a move, otherwise register_hint would be set
5619    return;
5620  }
5621  assert(register_hint->is_split_parent(), "register hint must be split parent");
5622
5623  if (cur->spill_state() != noOptimization || register_hint->spill_state() != noOptimization) {
5624    // combining the stack slots for intervals where spill move optimization is applied
5625    // is not benefitial and would cause problems
5626    return;
5627  }
5628
5629  int begin_pos = cur->from();
5630  int end_pos = cur->to();
5631  if (end_pos > allocator()->max_lir_op_id() || (begin_pos & 1) != 0 || (end_pos & 1) != 0) {
5632    // safety check that lir_op_with_id is allowed
5633    return;
5634  }
5635
5636  if (!is_move(allocator()->lir_op_with_id(begin_pos), register_hint, cur) || !is_move(allocator()->lir_op_with_id(end_pos), cur, register_hint)) {
5637    // cur and register_hint are not connected with two moves
5638    return;
5639  }
5640
5641  Interval* begin_hint = register_hint->split_child_at_op_id(begin_pos, LIR_OpVisitState::inputMode);
5642  Interval* end_hint = register_hint->split_child_at_op_id(end_pos, LIR_OpVisitState::outputMode);
5643  if (begin_hint == end_hint || begin_hint->to() != begin_pos || end_hint->from() != end_pos) {
5644    // register_hint must be split, otherwise the re-writing of use positions does not work
5645    return;
5646  }
5647
5648  assert(begin_hint->assigned_reg() != any_reg, "must have register assigned");
5649  assert(end_hint->assigned_reg() == any_reg, "must not have register assigned");
5650  assert(cur->first_usage(mustHaveRegister) == begin_pos, "must have use position at begin of interval because of move");
5651  assert(end_hint->first_usage(mustHaveRegister) == end_pos, "must have use position at begin of interval because of move");
5652
5653  if (begin_hint->assigned_reg() < LinearScan::nof_regs) {
5654    // register_hint is not spilled at begin_pos, so it would not be benefitial to immediately spill cur
5655    return;
5656  }
5657  assert(register_hint->canonical_spill_slot() != -1, "must be set when part of interval was spilled");
5658
5659  // modify intervals such that cur gets the same stack slot as register_hint
5660  // delete use positions to prevent the intervals to get a register at beginning
5661  cur->set_canonical_spill_slot(register_hint->canonical_spill_slot());
5662  cur->remove_first_use_pos();
5663  end_hint->remove_first_use_pos();
5664}
5665
5666
5667// allocate a physical register or memory location to an interval
5668bool LinearScanWalker::activate_current() {
5669  Interval* cur = current();
5670  bool result = true;
5671
5672  TRACE_LINEAR_SCAN(2, tty->print   ("+++++ activating interval "); cur->print());
5673  TRACE_LINEAR_SCAN(4, tty->print_cr("      split_parent: %d, insert_move_when_activated: %d", cur->split_parent()->reg_num(), cur->insert_move_when_activated()));
5674
5675  if (cur->assigned_reg() >= LinearScan::nof_regs) {
5676    // activating an interval that has a stack slot assigned -> split it at first use position
5677    // used for method parameters
5678    TRACE_LINEAR_SCAN(4, tty->print_cr("      interval has spill slot assigned (method parameter) -> split it before first use"));
5679
5680    split_stack_interval(cur);
5681    result = false;
5682
5683  } else if (allocator()->gen()->is_vreg_flag_set(cur->reg_num(), LIRGenerator::must_start_in_memory)) {
5684    // activating an interval that must start in a stack slot, but may get a register later
5685    // used for lir_roundfp: rounding is done by store to stack and reload later
5686    TRACE_LINEAR_SCAN(4, tty->print_cr("      interval must start in stack slot -> split it before first use"));
5687    assert(cur->assigned_reg() == any_reg && cur->assigned_regHi() == any_reg, "register already assigned");
5688
5689    allocator()->assign_spill_slot(cur);
5690    split_stack_interval(cur);
5691    result = false;
5692
5693  } else if (cur->assigned_reg() == any_reg) {
5694    // interval has not assigned register -> normal allocation
5695    // (this is the normal case for most intervals)
5696    TRACE_LINEAR_SCAN(4, tty->print_cr("      normal allocation of register"));
5697
5698    // assign same spill slot to non-intersecting intervals
5699    combine_spilled_intervals(cur);
5700
5701    init_vars_for_alloc(cur);
5702    if (no_allocation_possible(cur) || !alloc_free_reg(cur)) {
5703      // no empty register available.
5704      // split and spill another interval so that this interval gets a register
5705      alloc_locked_reg(cur);
5706    }
5707
5708    // spilled intervals need not be move to active-list
5709    if (cur->assigned_reg() >= LinearScan::nof_regs) {
5710      result = false;
5711    }
5712  }
5713
5714  // load spilled values that become active from stack slot to register
5715  if (cur->insert_move_when_activated()) {
5716    assert(cur->is_split_child(), "must be");
5717    assert(cur->current_split_child() != NULL, "must be");
5718    assert(cur->current_split_child()->reg_num() != cur->reg_num(), "cannot insert move between same interval");
5719    TRACE_LINEAR_SCAN(4, tty->print_cr("Inserting move from interval %d to %d because insert_move_when_activated is set", cur->current_split_child()->reg_num(), cur->reg_num()));
5720
5721    insert_move(cur->from(), cur->current_split_child(), cur);
5722  }
5723  cur->make_current_split_child();
5724
5725  return result; // true = interval is moved to active list
5726}
5727
5728
5729// Implementation of EdgeMoveOptimizer
5730
5731EdgeMoveOptimizer::EdgeMoveOptimizer() :
5732  _edge_instructions(4),
5733  _edge_instructions_idx(4)
5734{
5735}
5736
5737void EdgeMoveOptimizer::optimize(BlockList* code) {
5738  EdgeMoveOptimizer optimizer = EdgeMoveOptimizer();
5739
5740  // ignore the first block in the list (index 0 is not processed)
5741  for (int i = code->length() - 1; i >= 1; i--) {
5742    BlockBegin* block = code->at(i);
5743
5744    if (block->number_of_preds() > 1 && !block->is_set(BlockBegin::exception_entry_flag)) {
5745      optimizer.optimize_moves_at_block_end(block);
5746    }
5747    if (block->number_of_sux() == 2) {
5748      optimizer.optimize_moves_at_block_begin(block);
5749    }
5750  }
5751}
5752
5753
5754// clear all internal data structures
5755void EdgeMoveOptimizer::init_instructions() {
5756  _edge_instructions.clear();
5757  _edge_instructions_idx.clear();
5758}
5759
5760// append a lir-instruction-list and the index of the current operation in to the list
5761void EdgeMoveOptimizer::append_instructions(LIR_OpList* instructions, int instructions_idx) {
5762  _edge_instructions.append(instructions);
5763  _edge_instructions_idx.append(instructions_idx);
5764}
5765
5766// return the current operation of the given edge (predecessor or successor)
5767LIR_Op* EdgeMoveOptimizer::instruction_at(int edge) {
5768  LIR_OpList* instructions = _edge_instructions.at(edge);
5769  int idx = _edge_instructions_idx.at(edge);
5770
5771  if (idx < instructions->length()) {
5772    return instructions->at(idx);
5773  } else {
5774    return NULL;
5775  }
5776}
5777
5778// removes the current operation of the given edge (predecessor or successor)
5779void EdgeMoveOptimizer::remove_cur_instruction(int edge, bool decrement_index) {
5780  LIR_OpList* instructions = _edge_instructions.at(edge);
5781  int idx = _edge_instructions_idx.at(edge);
5782  instructions->remove_at(idx);
5783
5784  if (decrement_index) {
5785    _edge_instructions_idx.at_put(edge, idx - 1);
5786  }
5787}
5788
5789
5790bool EdgeMoveOptimizer::operations_different(LIR_Op* op1, LIR_Op* op2) {
5791  if (op1 == NULL || op2 == NULL) {
5792    // at least one block is already empty -> no optimization possible
5793    return true;
5794  }
5795
5796  if (op1->code() == lir_move && op2->code() == lir_move) {
5797    assert(op1->as_Op1() != NULL, "move must be LIR_Op1");
5798    assert(op2->as_Op1() != NULL, "move must be LIR_Op1");
5799    LIR_Op1* move1 = (LIR_Op1*)op1;
5800    LIR_Op1* move2 = (LIR_Op1*)op2;
5801    if (move1->info() == move2->info() && move1->in_opr() == move2->in_opr() && move1->result_opr() == move2->result_opr()) {
5802      // these moves are exactly equal and can be optimized
5803      return false;
5804    }
5805
5806  } else if (op1->code() == lir_fxch && op2->code() == lir_fxch) {
5807    assert(op1->as_Op1() != NULL, "fxch must be LIR_Op1");
5808    assert(op2->as_Op1() != NULL, "fxch must be LIR_Op1");
5809    LIR_Op1* fxch1 = (LIR_Op1*)op1;
5810    LIR_Op1* fxch2 = (LIR_Op1*)op2;
5811    if (fxch1->in_opr()->as_jint() == fxch2->in_opr()->as_jint()) {
5812      // equal FPU stack operations can be optimized
5813      return false;
5814    }
5815
5816  } else if (op1->code() == lir_fpop_raw && op2->code() == lir_fpop_raw) {
5817    // equal FPU stack operations can be optimized
5818    return false;
5819  }
5820
5821  // no optimization possible
5822  return true;
5823}
5824
5825void EdgeMoveOptimizer::optimize_moves_at_block_end(BlockBegin* block) {
5826  TRACE_LINEAR_SCAN(4, tty->print_cr("optimizing moves at end of block B%d", block->block_id()));
5827
5828  if (block->is_predecessor(block)) {
5829    // currently we can't handle this correctly.
5830    return;
5831  }
5832
5833  init_instructions();
5834  int num_preds = block->number_of_preds();
5835  assert(num_preds > 1, "do not call otherwise");
5836  assert(!block->is_set(BlockBegin::exception_entry_flag), "exception handlers not allowed");
5837
5838  // setup a list with the lir-instructions of all predecessors
5839  int i;
5840  for (i = 0; i < num_preds; i++) {
5841    BlockBegin* pred = block->pred_at(i);
5842    LIR_OpList* pred_instructions = pred->lir()->instructions_list();
5843
5844    if (pred->number_of_sux() != 1) {
5845      // this can happen with switch-statements where multiple edges are between
5846      // the same blocks.
5847      return;
5848    }
5849
5850    assert(pred->number_of_sux() == 1, "can handle only one successor");
5851    assert(pred->sux_at(0) == block, "invalid control flow");
5852    assert(pred_instructions->last()->code() == lir_branch, "block with successor must end with branch");
5853    assert(pred_instructions->last()->as_OpBranch() != NULL, "branch must be LIR_OpBranch");
5854    assert(pred_instructions->last()->as_OpBranch()->cond() == lir_cond_always, "block must end with unconditional branch");
5855
5856    if (pred_instructions->last()->info() != NULL) {
5857      // can not optimize instructions when debug info is needed
5858      return;
5859    }
5860
5861    // ignore the unconditional branch at the end of the block
5862    append_instructions(pred_instructions, pred_instructions->length() - 2);
5863  }
5864
5865
5866  // process lir-instructions while all predecessors end with the same instruction
5867  while (true) {
5868    LIR_Op* op = instruction_at(0);
5869    for (i = 1; i < num_preds; i++) {
5870      if (operations_different(op, instruction_at(i))) {
5871        // these instructions are different and cannot be optimized ->
5872        // no further optimization possible
5873        return;
5874      }
5875    }
5876
5877    TRACE_LINEAR_SCAN(4, tty->print("found instruction that is equal in all %d predecessors: ", num_preds); op->print());
5878
5879    // insert the instruction at the beginning of the current block
5880    block->lir()->insert_before(1, op);
5881
5882    // delete the instruction at the end of all predecessors
5883    for (i = 0; i < num_preds; i++) {
5884      remove_cur_instruction(i, true);
5885    }
5886  }
5887}
5888
5889
5890void EdgeMoveOptimizer::optimize_moves_at_block_begin(BlockBegin* block) {
5891  TRACE_LINEAR_SCAN(4, tty->print_cr("optimization moves at begin of block B%d", block->block_id()));
5892
5893  init_instructions();
5894  int num_sux = block->number_of_sux();
5895
5896  LIR_OpList* cur_instructions = block->lir()->instructions_list();
5897
5898  assert(num_sux == 2, "method should not be called otherwise");
5899  assert(cur_instructions->last()->code() == lir_branch, "block with successor must end with branch");
5900  assert(cur_instructions->last()->as_OpBranch() != NULL, "branch must be LIR_OpBranch");
5901  assert(cur_instructions->last()->as_OpBranch()->cond() == lir_cond_always, "block must end with unconditional branch");
5902
5903  if (cur_instructions->last()->info() != NULL) {
5904    // can no optimize instructions when debug info is needed
5905    return;
5906  }
5907
5908  LIR_Op* branch = cur_instructions->at(cur_instructions->length() - 2);
5909  if (branch->info() != NULL || (branch->code() != lir_branch && branch->code() != lir_cond_float_branch)) {
5910    // not a valid case for optimization
5911    // currently, only blocks that end with two branches (conditional branch followed
5912    // by unconditional branch) are optimized
5913    return;
5914  }
5915
5916  // now it is guaranteed that the block ends with two branch instructions.
5917  // the instructions are inserted at the end of the block before these two branches
5918  int insert_idx = cur_instructions->length() - 2;
5919
5920  int i;
5921#ifdef ASSERT
5922  for (i = insert_idx - 1; i >= 0; i--) {
5923    LIR_Op* op = cur_instructions->at(i);
5924    if ((op->code() == lir_branch || op->code() == lir_cond_float_branch) && ((LIR_OpBranch*)op)->block() != NULL) {
5925      assert(false, "block with two successors can have only two branch instructions");
5926    }
5927  }
5928#endif
5929
5930  // setup a list with the lir-instructions of all successors
5931  for (i = 0; i < num_sux; i++) {
5932    BlockBegin* sux = block->sux_at(i);
5933    LIR_OpList* sux_instructions = sux->lir()->instructions_list();
5934
5935    assert(sux_instructions->at(0)->code() == lir_label, "block must start with label");
5936
5937    if (sux->number_of_preds() != 1) {
5938      // this can happen with switch-statements where multiple edges are between
5939      // the same blocks.
5940      return;
5941    }
5942    assert(sux->pred_at(0) == block, "invalid control flow");
5943    assert(!sux->is_set(BlockBegin::exception_entry_flag), "exception handlers not allowed");
5944
5945    // ignore the label at the beginning of the block
5946    append_instructions(sux_instructions, 1);
5947  }
5948
5949  // process lir-instructions while all successors begin with the same instruction
5950  while (true) {
5951    LIR_Op* op = instruction_at(0);
5952    for (i = 1; i < num_sux; i++) {
5953      if (operations_different(op, instruction_at(i))) {
5954        // these instructions are different and cannot be optimized ->
5955        // no further optimization possible
5956        return;
5957      }
5958    }
5959
5960    TRACE_LINEAR_SCAN(4, tty->print("----- found instruction that is equal in all %d successors: ", num_sux); op->print());
5961
5962    // insert instruction at end of current block
5963    block->lir()->insert_before(insert_idx, op);
5964    insert_idx++;
5965
5966    // delete the instructions at the beginning of all successors
5967    for (i = 0; i < num_sux; i++) {
5968      remove_cur_instruction(i, false);
5969    }
5970  }
5971}
5972
5973
5974// Implementation of ControlFlowOptimizer
5975
5976ControlFlowOptimizer::ControlFlowOptimizer() :
5977  _original_preds(4)
5978{
5979}
5980
5981void ControlFlowOptimizer::optimize(BlockList* code) {
5982  ControlFlowOptimizer optimizer = ControlFlowOptimizer();
5983
5984  // push the OSR entry block to the end so that we're not jumping over it.
5985  BlockBegin* osr_entry = code->at(0)->end()->as_Base()->osr_entry();
5986  if (osr_entry) {
5987    int index = osr_entry->linear_scan_number();
5988    assert(code->at(index) == osr_entry, "wrong index");
5989    code->remove_at(index);
5990    code->append(osr_entry);
5991  }
5992
5993  optimizer.reorder_short_loops(code);
5994  optimizer.delete_empty_blocks(code);
5995  optimizer.delete_unnecessary_jumps(code);
5996  optimizer.delete_jumps_to_return(code);
5997}
5998
5999void ControlFlowOptimizer::reorder_short_loop(BlockList* code, BlockBegin* header_block, int header_idx) {
6000  int i = header_idx + 1;
6001  int max_end = MIN2(header_idx + ShortLoopSize, code->length());
6002  while (i < max_end && code->at(i)->loop_depth() >= header_block->loop_depth()) {
6003    i++;
6004  }
6005
6006  if (i == code->length() || code->at(i)->loop_depth() < header_block->loop_depth()) {
6007    int end_idx = i - 1;
6008    BlockBegin* end_block = code->at(end_idx);
6009
6010    if (end_block->number_of_sux() == 1 && end_block->sux_at(0) == header_block) {
6011      // short loop from header_idx to end_idx found -> reorder blocks such that
6012      // the header_block is the last block instead of the first block of the loop
6013      TRACE_LINEAR_SCAN(1, tty->print_cr("Reordering short loop: length %d, header B%d, end B%d",
6014                                         end_idx - header_idx + 1,
6015                                         header_block->block_id(), end_block->block_id()));
6016
6017      for (int j = header_idx; j < end_idx; j++) {
6018        code->at_put(j, code->at(j + 1));
6019      }
6020      code->at_put(end_idx, header_block);
6021
6022      // correct the flags so that any loop alignment occurs in the right place.
6023      assert(code->at(end_idx)->is_set(BlockBegin::backward_branch_target_flag), "must be backward branch target");
6024      code->at(end_idx)->clear(BlockBegin::backward_branch_target_flag);
6025      code->at(header_idx)->set(BlockBegin::backward_branch_target_flag);
6026    }
6027  }
6028}
6029
6030void ControlFlowOptimizer::reorder_short_loops(BlockList* code) {
6031  for (int i = code->length() - 1; i >= 0; i--) {
6032    BlockBegin* block = code->at(i);
6033
6034    if (block->is_set(BlockBegin::linear_scan_loop_header_flag)) {
6035      reorder_short_loop(code, block, i);
6036    }
6037  }
6038
6039  DEBUG_ONLY(verify(code));
6040}
6041
6042// only blocks with exactly one successor can be deleted. Such blocks
6043// must always end with an unconditional branch to this successor
6044bool ControlFlowOptimizer::can_delete_block(BlockBegin* block) {
6045  if (block->number_of_sux() != 1 || block->number_of_exception_handlers() != 0 || block->is_entry_block()) {
6046    return false;
6047  }
6048
6049  LIR_OpList* instructions = block->lir()->instructions_list();
6050
6051  assert(instructions->length() >= 2, "block must have label and branch");
6052  assert(instructions->at(0)->code() == lir_label, "first instruction must always be a label");
6053  assert(instructions->last()->as_OpBranch() != NULL, "last instrcution must always be a branch");
6054  assert(instructions->last()->as_OpBranch()->cond() == lir_cond_always, "branch must be unconditional");
6055  assert(instructions->last()->as_OpBranch()->block() == block->sux_at(0), "branch target must be the successor");
6056
6057  // block must have exactly one successor
6058
6059  if (instructions->length() == 2 && instructions->last()->info() == NULL) {
6060    return true;
6061  }
6062  return false;
6063}
6064
6065// substitute branch targets in all branch-instructions of this blocks
6066void ControlFlowOptimizer::substitute_branch_target(BlockBegin* block, BlockBegin* target_from, BlockBegin* target_to) {
6067  TRACE_LINEAR_SCAN(3, tty->print_cr("Deleting empty block: substituting from B%d to B%d inside B%d", target_from->block_id(), target_to->block_id(), block->block_id()));
6068
6069  LIR_OpList* instructions = block->lir()->instructions_list();
6070
6071  assert(instructions->at(0)->code() == lir_label, "first instruction must always be a label");
6072  for (int i = instructions->length() - 1; i >= 1; i--) {
6073    LIR_Op* op = instructions->at(i);
6074
6075    if (op->code() == lir_branch || op->code() == lir_cond_float_branch) {
6076      assert(op->as_OpBranch() != NULL, "branch must be of type LIR_OpBranch");
6077      LIR_OpBranch* branch = (LIR_OpBranch*)op;
6078
6079      if (branch->block() == target_from) {
6080        branch->change_block(target_to);
6081      }
6082      if (branch->ublock() == target_from) {
6083        branch->change_ublock(target_to);
6084      }
6085    }
6086  }
6087}
6088
6089void ControlFlowOptimizer::delete_empty_blocks(BlockList* code) {
6090  int old_pos = 0;
6091  int new_pos = 0;
6092  int num_blocks = code->length();
6093
6094  while (old_pos < num_blocks) {
6095    BlockBegin* block = code->at(old_pos);
6096
6097    if (can_delete_block(block)) {
6098      BlockBegin* new_target = block->sux_at(0);
6099
6100      // propagate backward branch target flag for correct code alignment
6101      if (block->is_set(BlockBegin::backward_branch_target_flag)) {
6102        new_target->set(BlockBegin::backward_branch_target_flag);
6103      }
6104
6105      // collect a list with all predecessors that contains each predecessor only once
6106      // the predecessors of cur are changed during the substitution, so a copy of the
6107      // predecessor list is necessary
6108      int j;
6109      _original_preds.clear();
6110      for (j = block->number_of_preds() - 1; j >= 0; j--) {
6111        BlockBegin* pred = block->pred_at(j);
6112        if (_original_preds.index_of(pred) == -1) {
6113          _original_preds.append(pred);
6114        }
6115      }
6116
6117      for (j = _original_preds.length() - 1; j >= 0; j--) {
6118        BlockBegin* pred = _original_preds.at(j);
6119        substitute_branch_target(pred, block, new_target);
6120        pred->substitute_sux(block, new_target);
6121      }
6122    } else {
6123      // adjust position of this block in the block list if blocks before
6124      // have been deleted
6125      if (new_pos != old_pos) {
6126        code->at_put(new_pos, code->at(old_pos));
6127      }
6128      new_pos++;
6129    }
6130    old_pos++;
6131  }
6132  code->truncate(new_pos);
6133
6134  DEBUG_ONLY(verify(code));
6135}
6136
6137void ControlFlowOptimizer::delete_unnecessary_jumps(BlockList* code) {
6138  // skip the last block because there a branch is always necessary
6139  for (int i = code->length() - 2; i >= 0; i--) {
6140    BlockBegin* block = code->at(i);
6141    LIR_OpList* instructions = block->lir()->instructions_list();
6142
6143    LIR_Op* last_op = instructions->last();
6144    if (last_op->code() == lir_branch) {
6145      assert(last_op->as_OpBranch() != NULL, "branch must be of type LIR_OpBranch");
6146      LIR_OpBranch* last_branch = (LIR_OpBranch*)last_op;
6147
6148      assert(last_branch->block() != NULL, "last branch must always have a block as target");
6149      assert(last_branch->label() == last_branch->block()->label(), "must be equal");
6150
6151      if (last_branch->info() == NULL) {
6152        if (last_branch->block() == code->at(i + 1)) {
6153
6154          TRACE_LINEAR_SCAN(3, tty->print_cr("Deleting unconditional branch at end of block B%d", block->block_id()));
6155
6156          // delete last branch instruction
6157          instructions->truncate(instructions->length() - 1);
6158
6159        } else {
6160          LIR_Op* prev_op = instructions->at(instructions->length() - 2);
6161          if (prev_op->code() == lir_branch || prev_op->code() == lir_cond_float_branch) {
6162            assert(prev_op->as_OpBranch() != NULL, "branch must be of type LIR_OpBranch");
6163            LIR_OpBranch* prev_branch = (LIR_OpBranch*)prev_op;
6164
6165            LIR_Op2* prev_cmp = NULL;
6166
6167            for(int j = instructions->length() - 3; j >= 0 && prev_cmp == NULL; j--) {
6168              prev_op = instructions->at(j);
6169              if(prev_op->code() == lir_cmp) {
6170                assert(prev_op->as_Op2() != NULL, "branch must be of type LIR_Op2");
6171                prev_cmp = (LIR_Op2*)prev_op;
6172                assert(prev_branch->cond() == prev_cmp->condition(), "should be the same");
6173              }
6174            }
6175            assert(prev_cmp != NULL, "should have found comp instruction for branch");
6176            if (prev_branch->block() == code->at(i + 1) && prev_branch->info() == NULL) {
6177
6178              TRACE_LINEAR_SCAN(3, tty->print_cr("Negating conditional branch and deleting unconditional branch at end of block B%d", block->block_id()));
6179
6180              // eliminate a conditional branch to the immediate successor
6181              prev_branch->change_block(last_branch->block());
6182              prev_branch->negate_cond();
6183              prev_cmp->set_condition(prev_branch->cond());
6184              instructions->truncate(instructions->length() - 1);
6185            }
6186          }
6187        }
6188      }
6189    }
6190  }
6191
6192  DEBUG_ONLY(verify(code));
6193}
6194
6195void ControlFlowOptimizer::delete_jumps_to_return(BlockList* code) {
6196#ifdef ASSERT
6197  BitMap return_converted(BlockBegin::number_of_blocks());
6198  return_converted.clear();
6199#endif
6200
6201  for (int i = code->length() - 1; i >= 0; i--) {
6202    BlockBegin* block = code->at(i);
6203    LIR_OpList* cur_instructions = block->lir()->instructions_list();
6204    LIR_Op*     cur_last_op = cur_instructions->last();
6205
6206    assert(cur_instructions->at(0)->code() == lir_label, "first instruction must always be a label");
6207    if (cur_instructions->length() == 2 && cur_last_op->code() == lir_return) {
6208      // the block contains only a label and a return
6209      // if a predecessor ends with an unconditional jump to this block, then the jump
6210      // can be replaced with a return instruction
6211      //
6212      // Note: the original block with only a return statement cannot be deleted completely
6213      //       because the predecessors might have other (conditional) jumps to this block
6214      //       -> this may lead to unnecesary return instructions in the final code
6215
6216      assert(cur_last_op->info() == NULL, "return instructions do not have debug information");
6217      assert(block->number_of_sux() == 0 ||
6218             (return_converted.at(block->block_id()) && block->number_of_sux() == 1),
6219             "blocks that end with return must not have successors");
6220
6221      assert(cur_last_op->as_Op1() != NULL, "return must be LIR_Op1");
6222      LIR_Opr return_opr = ((LIR_Op1*)cur_last_op)->in_opr();
6223
6224      for (int j = block->number_of_preds() - 1; j >= 0; j--) {
6225        BlockBegin* pred = block->pred_at(j);
6226        LIR_OpList* pred_instructions = pred->lir()->instructions_list();
6227        LIR_Op*     pred_last_op = pred_instructions->last();
6228
6229        if (pred_last_op->code() == lir_branch) {
6230          assert(pred_last_op->as_OpBranch() != NULL, "branch must be LIR_OpBranch");
6231          LIR_OpBranch* pred_last_branch = (LIR_OpBranch*)pred_last_op;
6232
6233          if (pred_last_branch->block() == block && pred_last_branch->cond() == lir_cond_always && pred_last_branch->info() == NULL) {
6234            // replace the jump to a return with a direct return
6235            // Note: currently the edge between the blocks is not deleted
6236            pred_instructions->at_put(pred_instructions->length() - 1, new LIR_Op1(lir_return, return_opr));
6237#ifdef ASSERT
6238            return_converted.set_bit(pred->block_id());
6239#endif
6240          }
6241        }
6242      }
6243    }
6244  }
6245}
6246
6247
6248#ifdef ASSERT
6249void ControlFlowOptimizer::verify(BlockList* code) {
6250  for (int i = 0; i < code->length(); i++) {
6251    BlockBegin* block = code->at(i);
6252    LIR_OpList* instructions = block->lir()->instructions_list();
6253
6254    int j;
6255    for (j = 0; j < instructions->length(); j++) {
6256      LIR_OpBranch* op_branch = instructions->at(j)->as_OpBranch();
6257
6258      if (op_branch != NULL) {
6259        assert(op_branch->block() == NULL || code->index_of(op_branch->block()) != -1, "branch target not valid");
6260        assert(op_branch->ublock() == NULL || code->index_of(op_branch->ublock()) != -1, "branch target not valid");
6261      }
6262    }
6263
6264    for (j = 0; j < block->number_of_sux() - 1; j++) {
6265      BlockBegin* sux = block->sux_at(j);
6266      assert(code->index_of(sux) != -1, "successor not valid");
6267    }
6268
6269    for (j = 0; j < block->number_of_preds() - 1; j++) {
6270      BlockBegin* pred = block->pred_at(j);
6271      assert(code->index_of(pred) != -1, "successor not valid");
6272    }
6273  }
6274}
6275#endif
6276
6277
6278#ifndef PRODUCT
6279
6280// Implementation of LinearStatistic
6281
6282const char* LinearScanStatistic::counter_name(int counter_idx) {
6283  switch (counter_idx) {
6284    case counter_method:          return "compiled methods";
6285    case counter_fpu_method:      return "methods using fpu";
6286    case counter_loop_method:     return "methods with loops";
6287    case counter_exception_method:return "methods with xhandler";
6288
6289    case counter_loop:            return "loops";
6290    case counter_block:           return "blocks";
6291    case counter_loop_block:      return "blocks inside loop";
6292    case counter_exception_block: return "exception handler entries";
6293    case counter_interval:        return "intervals";
6294    case counter_fixed_interval:  return "fixed intervals";
6295    case counter_range:           return "ranges";
6296    case counter_fixed_range:     return "fixed ranges";
6297    case counter_use_pos:         return "use positions";
6298    case counter_fixed_use_pos:   return "fixed use positions";
6299    case counter_spill_slots:     return "spill slots";
6300
6301    // counter for classes of lir instructions
6302    case counter_instruction:     return "total instructions";
6303    case counter_label:           return "labels";
6304    case counter_entry:           return "method entries";
6305    case counter_return:          return "method returns";
6306    case counter_call:            return "method calls";
6307    case counter_move:            return "moves";
6308    case counter_cmp:             return "compare";
6309    case counter_cond_branch:     return "conditional branches";
6310    case counter_uncond_branch:   return "unconditional branches";
6311    case counter_stub_branch:     return "branches to stub";
6312    case counter_alu:             return "artithmetic + logic";
6313    case counter_alloc:           return "allocations";
6314    case counter_sync:            return "synchronisation";
6315    case counter_throw:           return "throw";
6316    case counter_unwind:          return "unwind";
6317    case counter_typecheck:       return "type+null-checks";
6318    case counter_fpu_stack:       return "fpu-stack";
6319    case counter_misc_inst:       return "other instructions";
6320    case counter_other_inst:      return "misc. instructions";
6321
6322    // counter for different types of moves
6323    case counter_move_total:      return "total moves";
6324    case counter_move_reg_reg:    return "register->register";
6325    case counter_move_reg_stack:  return "register->stack";
6326    case counter_move_stack_reg:  return "stack->register";
6327    case counter_move_stack_stack:return "stack->stack";
6328    case counter_move_reg_mem:    return "register->memory";
6329    case counter_move_mem_reg:    return "memory->register";
6330    case counter_move_const_any:  return "constant->any";
6331
6332    case blank_line_1:            return "";
6333    case blank_line_2:            return "";
6334
6335    default: ShouldNotReachHere(); return "";
6336  }
6337}
6338
6339LinearScanStatistic::Counter LinearScanStatistic::base_counter(int counter_idx) {
6340  if (counter_idx == counter_fpu_method || counter_idx == counter_loop_method || counter_idx == counter_exception_method) {
6341    return counter_method;
6342  } else if (counter_idx == counter_loop_block || counter_idx == counter_exception_block) {
6343    return counter_block;
6344  } else if (counter_idx >= counter_instruction && counter_idx <= counter_other_inst) {
6345    return counter_instruction;
6346  } else if (counter_idx >= counter_move_total && counter_idx <= counter_move_const_any) {
6347    return counter_move_total;
6348  }
6349  return invalid_counter;
6350}
6351
6352LinearScanStatistic::LinearScanStatistic() {
6353  for (int i = 0; i < number_of_counters; i++) {
6354    _counters_sum[i] = 0;
6355    _counters_max[i] = -1;
6356  }
6357
6358}
6359
6360// add the method-local numbers to the total sum
6361void LinearScanStatistic::sum_up(LinearScanStatistic &method_statistic) {
6362  for (int i = 0; i < number_of_counters; i++) {
6363    _counters_sum[i] += method_statistic._counters_sum[i];
6364    _counters_max[i] = MAX2(_counters_max[i], method_statistic._counters_sum[i]);
6365  }
6366}
6367
6368void LinearScanStatistic::print(const char* title) {
6369  if (CountLinearScan || TraceLinearScanLevel > 0) {
6370    tty->cr();
6371    tty->print_cr("***** LinearScan statistic - %s *****", title);
6372
6373    for (int i = 0; i < number_of_counters; i++) {
6374      if (_counters_sum[i] > 0 || _counters_max[i] >= 0) {
6375        tty->print("%25s: %8d", counter_name(i), _counters_sum[i]);
6376
6377        if (base_counter(i) != invalid_counter) {
6378          tty->print("  (%5.1f%%) ", _counters_sum[i] * 100.0 / _counters_sum[base_counter(i)]);
6379        } else {
6380          tty->print("           ");
6381        }
6382
6383        if (_counters_max[i] >= 0) {
6384          tty->print("%8d", _counters_max[i]);
6385        }
6386      }
6387      tty->cr();
6388    }
6389  }
6390}
6391
6392void LinearScanStatistic::collect(LinearScan* allocator) {
6393  inc_counter(counter_method);
6394  if (allocator->has_fpu_registers()) {
6395    inc_counter(counter_fpu_method);
6396  }
6397  if (allocator->num_loops() > 0) {
6398    inc_counter(counter_loop_method);
6399  }
6400  inc_counter(counter_loop, allocator->num_loops());
6401  inc_counter(counter_spill_slots, allocator->max_spills());
6402
6403  int i;
6404  for (i = 0; i < allocator->interval_count(); i++) {
6405    Interval* cur = allocator->interval_at(i);
6406
6407    if (cur != NULL) {
6408      inc_counter(counter_interval);
6409      inc_counter(counter_use_pos, cur->num_use_positions());
6410      if (LinearScan::is_precolored_interval(cur)) {
6411        inc_counter(counter_fixed_interval);
6412        inc_counter(counter_fixed_use_pos, cur->num_use_positions());
6413      }
6414
6415      Range* range = cur->first();
6416      while (range != Range::end()) {
6417        inc_counter(counter_range);
6418        if (LinearScan::is_precolored_interval(cur)) {
6419          inc_counter(counter_fixed_range);
6420        }
6421        range = range->next();
6422      }
6423    }
6424  }
6425
6426  bool has_xhandlers = false;
6427  // Note: only count blocks that are in code-emit order
6428  for (i = 0; i < allocator->ir()->code()->length(); i++) {
6429    BlockBegin* cur = allocator->ir()->code()->at(i);
6430
6431    inc_counter(counter_block);
6432    if (cur->loop_depth() > 0) {
6433      inc_counter(counter_loop_block);
6434    }
6435    if (cur->is_set(BlockBegin::exception_entry_flag)) {
6436      inc_counter(counter_exception_block);
6437      has_xhandlers = true;
6438    }
6439
6440    LIR_OpList* instructions = cur->lir()->instructions_list();
6441    for (int j = 0; j < instructions->length(); j++) {
6442      LIR_Op* op = instructions->at(j);
6443
6444      inc_counter(counter_instruction);
6445
6446      switch (op->code()) {
6447        case lir_label:           inc_counter(counter_label); break;
6448        case lir_std_entry:
6449        case lir_osr_entry:       inc_counter(counter_entry); break;
6450        case lir_return:          inc_counter(counter_return); break;
6451
6452        case lir_rtcall:
6453        case lir_static_call:
6454        case lir_optvirtual_call:
6455        case lir_virtual_call:    inc_counter(counter_call); break;
6456
6457        case lir_move: {
6458          inc_counter(counter_move);
6459          inc_counter(counter_move_total);
6460
6461          LIR_Opr in = op->as_Op1()->in_opr();
6462          LIR_Opr res = op->as_Op1()->result_opr();
6463          if (in->is_register()) {
6464            if (res->is_register()) {
6465              inc_counter(counter_move_reg_reg);
6466            } else if (res->is_stack()) {
6467              inc_counter(counter_move_reg_stack);
6468            } else if (res->is_address()) {
6469              inc_counter(counter_move_reg_mem);
6470            } else {
6471              ShouldNotReachHere();
6472            }
6473          } else if (in->is_stack()) {
6474            if (res->is_register()) {
6475              inc_counter(counter_move_stack_reg);
6476            } else {
6477              inc_counter(counter_move_stack_stack);
6478            }
6479          } else if (in->is_address()) {
6480            assert(res->is_register(), "must be");
6481            inc_counter(counter_move_mem_reg);
6482          } else if (in->is_constant()) {
6483            inc_counter(counter_move_const_any);
6484          } else {
6485            ShouldNotReachHere();
6486          }
6487          break;
6488        }
6489
6490        case lir_cmp:             inc_counter(counter_cmp); break;
6491
6492        case lir_branch:
6493        case lir_cond_float_branch: {
6494          LIR_OpBranch* branch = op->as_OpBranch();
6495          if (branch->block() == NULL) {
6496            inc_counter(counter_stub_branch);
6497          } else if (branch->cond() == lir_cond_always) {
6498            inc_counter(counter_uncond_branch);
6499          } else {
6500            inc_counter(counter_cond_branch);
6501          }
6502          break;
6503        }
6504
6505        case lir_neg:
6506        case lir_add:
6507        case lir_sub:
6508        case lir_mul:
6509        case lir_mul_strictfp:
6510        case lir_div:
6511        case lir_div_strictfp:
6512        case lir_rem:
6513        case lir_sqrt:
6514        case lir_sin:
6515        case lir_cos:
6516        case lir_abs:
6517        case lir_log10:
6518        case lir_log:
6519        case lir_logic_and:
6520        case lir_logic_or:
6521        case lir_logic_xor:
6522        case lir_shl:
6523        case lir_shr:
6524        case lir_ushr:            inc_counter(counter_alu); break;
6525
6526        case lir_alloc_object:
6527        case lir_alloc_array:     inc_counter(counter_alloc); break;
6528
6529        case lir_monaddr:
6530        case lir_lock:
6531        case lir_unlock:          inc_counter(counter_sync); break;
6532
6533        case lir_throw:           inc_counter(counter_throw); break;
6534
6535        case lir_unwind:          inc_counter(counter_unwind); break;
6536
6537        case lir_null_check:
6538        case lir_leal:
6539        case lir_instanceof:
6540        case lir_checkcast:
6541        case lir_store_check:     inc_counter(counter_typecheck); break;
6542
6543        case lir_fpop_raw:
6544        case lir_fxch:
6545        case lir_fld:             inc_counter(counter_fpu_stack); break;
6546
6547        case lir_nop:
6548        case lir_push:
6549        case lir_pop:
6550        case lir_convert:
6551        case lir_roundfp:
6552        case lir_cmove:           inc_counter(counter_misc_inst); break;
6553
6554        default:                  inc_counter(counter_other_inst); break;
6555      }
6556    }
6557  }
6558
6559  if (has_xhandlers) {
6560    inc_counter(counter_exception_method);
6561  }
6562}
6563
6564void LinearScanStatistic::compute(LinearScan* allocator, LinearScanStatistic &global_statistic) {
6565  if (CountLinearScan || TraceLinearScanLevel > 0) {
6566
6567    LinearScanStatistic local_statistic = LinearScanStatistic();
6568
6569    local_statistic.collect(allocator);
6570    global_statistic.sum_up(local_statistic);
6571
6572    if (TraceLinearScanLevel > 2) {
6573      local_statistic.print("current local statistic");
6574    }
6575  }
6576}
6577
6578
6579// Implementation of LinearTimers
6580
6581LinearScanTimers::LinearScanTimers() {
6582  for (int i = 0; i < number_of_timers; i++) {
6583    timer(i)->reset();
6584  }
6585}
6586
6587const char* LinearScanTimers::timer_name(int idx) {
6588  switch (idx) {
6589    case timer_do_nothing:               return "Nothing (Time Check)";
6590    case timer_number_instructions:      return "Number Instructions";
6591    case timer_compute_local_live_sets:  return "Local Live Sets";
6592    case timer_compute_global_live_sets: return "Global Live Sets";
6593    case timer_build_intervals:          return "Build Intervals";
6594    case timer_sort_intervals_before:    return "Sort Intervals Before";
6595    case timer_allocate_registers:       return "Allocate Registers";
6596    case timer_resolve_data_flow:        return "Resolve Data Flow";
6597    case timer_sort_intervals_after:     return "Sort Intervals After";
6598    case timer_eliminate_spill_moves:    return "Spill optimization";
6599    case timer_assign_reg_num:           return "Assign Reg Num";
6600    case timer_allocate_fpu_stack:       return "Allocate FPU Stack";
6601    case timer_optimize_lir:             return "Optimize LIR";
6602    default: ShouldNotReachHere();       return "";
6603  }
6604}
6605
6606void LinearScanTimers::begin_method() {
6607  if (TimeEachLinearScan) {
6608    // reset all timers to measure only current method
6609    for (int i = 0; i < number_of_timers; i++) {
6610      timer(i)->reset();
6611    }
6612  }
6613}
6614
6615void LinearScanTimers::end_method(LinearScan* allocator) {
6616  if (TimeEachLinearScan) {
6617
6618    double c = timer(timer_do_nothing)->seconds();
6619    double total = 0;
6620    for (int i = 1; i < number_of_timers; i++) {
6621      total += timer(i)->seconds() - c;
6622    }
6623
6624    if (total >= 0.0005) {
6625      // print all information in one line for automatic processing
6626      tty->print("@"); allocator->compilation()->method()->print_name();
6627
6628      tty->print("@ %d ", allocator->compilation()->method()->code_size());
6629      tty->print("@ %d ", allocator->block_at(allocator->block_count() - 1)->last_lir_instruction_id() / 2);
6630      tty->print("@ %d ", allocator->block_count());
6631      tty->print("@ %d ", allocator->num_virtual_regs());
6632      tty->print("@ %d ", allocator->interval_count());
6633      tty->print("@ %d ", allocator->_num_calls);
6634      tty->print("@ %d ", allocator->num_loops());
6635
6636      tty->print("@ %6.6f ", total);
6637      for (int i = 1; i < number_of_timers; i++) {
6638        tty->print("@ %4.1f ", ((timer(i)->seconds() - c) / total) * 100);
6639      }
6640      tty->cr();
6641    }
6642  }
6643}
6644
6645void LinearScanTimers::print(double total_time) {
6646  if (TimeLinearScan) {
6647    // correction value: sum of dummy-timer that only measures the time that
6648    // is necesary to start and stop itself
6649    double c = timer(timer_do_nothing)->seconds();
6650
6651    for (int i = 0; i < number_of_timers; i++) {
6652      double t = timer(i)->seconds();
6653      tty->print_cr("    %25s: %6.3f s (%4.1f%%)  corrected: %6.3f s (%4.1f%%)", timer_name(i), t, (t / total_time) * 100.0, t - c, (t - c) / (total_time - 2 * number_of_timers * c) * 100);
6654    }
6655  }
6656}
6657
6658#endif // #ifndef PRODUCT
6659