assembler.cpp revision 5776:de6a9e811145
1/*
2 * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "asm/macroAssembler.hpp"
27#include "asm/macroAssembler.inline.hpp"
28#include "asm/codeBuffer.hpp"
29#include "runtime/atomic.hpp"
30#include "runtime/atomic.inline.hpp"
31#include "runtime/icache.hpp"
32#include "runtime/os.hpp"
33
34
35// Implementation of AbstractAssembler
36//
37// The AbstractAssembler is generating code into a CodeBuffer. To make code generation faster,
38// the assembler keeps a copy of the code buffers boundaries & modifies them when
39// emitting bytes rather than using the code buffers accessor functions all the time.
40// The code buffer is updated via set_code_end(...) after emitting a whole instruction.
41
42AbstractAssembler::AbstractAssembler(CodeBuffer* code) {
43  if (code == NULL)  return;
44  CodeSection* cs = code->insts();
45  cs->clear_mark();   // new assembler kills old mark
46  if (cs->start() == NULL)  {
47    vm_exit_out_of_memory(0, OOM_MMAP_ERROR, err_msg("CodeCache: no room for %s",
48                                     code->name()));
49  }
50  _code_section = cs;
51  _oop_recorder= code->oop_recorder();
52  DEBUG_ONLY( _short_branch_delta = 0; )
53}
54
55void AbstractAssembler::set_code_section(CodeSection* cs) {
56  assert(cs->outer() == code_section()->outer(), "sanity");
57  assert(cs->is_allocated(), "need to pre-allocate this section");
58  cs->clear_mark();  // new assembly into this section kills old mark
59  _code_section = cs;
60}
61
62// Inform CodeBuffer that incoming code and relocation will be for stubs
63address AbstractAssembler::start_a_stub(int required_space) {
64  CodeBuffer*  cb = code();
65  CodeSection* cs = cb->stubs();
66  assert(_code_section == cb->insts(), "not in insts?");
67  if (cs->maybe_expand_to_ensure_remaining(required_space)
68      && cb->blob() == NULL) {
69    return NULL;
70  }
71  set_code_section(cs);
72  return pc();
73}
74
75// Inform CodeBuffer that incoming code and relocation will be code
76// Should not be called if start_a_stub() returned NULL
77void AbstractAssembler::end_a_stub() {
78  assert(_code_section == code()->stubs(), "not in stubs?");
79  set_code_section(code()->insts());
80}
81
82// Inform CodeBuffer that incoming code and relocation will be for stubs
83address AbstractAssembler::start_a_const(int required_space, int required_align) {
84  CodeBuffer*  cb = code();
85  CodeSection* cs = cb->consts();
86  assert(_code_section == cb->insts() || _code_section == cb->stubs(), "not in insts/stubs?");
87  address end = cs->end();
88  int pad = -(intptr_t)end & (required_align-1);
89  if (cs->maybe_expand_to_ensure_remaining(pad + required_space)) {
90    if (cb->blob() == NULL)  return NULL;
91    end = cs->end();  // refresh pointer
92  }
93  if (pad > 0) {
94    while (--pad >= 0) { *end++ = 0; }
95    cs->set_end(end);
96  }
97  set_code_section(cs);
98  return end;
99}
100
101// Inform CodeBuffer that incoming code and relocation will be code
102// in section cs (insts or stubs).
103void AbstractAssembler::end_a_const(CodeSection* cs) {
104  assert(_code_section == code()->consts(), "not in consts?");
105  set_code_section(cs);
106}
107
108void AbstractAssembler::flush() {
109  ICache::invalidate_range(addr_at(0), offset());
110}
111
112void AbstractAssembler::bind(Label& L) {
113  if (L.is_bound()) {
114    // Assembler can bind a label more than once to the same place.
115    guarantee(L.loc() == locator(), "attempt to redefine label");
116    return;
117  }
118  L.bind_loc(locator());
119  L.patch_instructions((MacroAssembler*)this);
120}
121
122void AbstractAssembler::generate_stack_overflow_check( int frame_size_in_bytes) {
123  if (UseStackBanging) {
124    // Each code entry causes one stack bang n pages down the stack where n
125    // is configurable by StackShadowPages.  The setting depends on the maximum
126    // depth of VM call stack or native before going back into java code,
127    // since only java code can raise a stack overflow exception using the
128    // stack banging mechanism.  The VM and native code does not detect stack
129    // overflow.
130    // The code in JavaCalls::call() checks that there is at least n pages
131    // available, so all entry code needs to do is bang once for the end of
132    // this shadow zone.
133    // The entry code may need to bang additional pages if the framesize
134    // is greater than a page.
135
136    const int page_size = os::vm_page_size();
137    int bang_end = StackShadowPages*page_size;
138
139    // This is how far the previous frame's stack banging extended.
140    const int bang_end_safe = bang_end;
141
142    if (frame_size_in_bytes > page_size) {
143      bang_end += frame_size_in_bytes;
144    }
145
146    int bang_offset = bang_end_safe;
147    while (bang_offset <= bang_end) {
148      // Need at least one stack bang at end of shadow zone.
149      bang_stack_with_offset(bang_offset);
150      bang_offset += page_size;
151    }
152  } // end (UseStackBanging)
153}
154
155void Label::add_patch_at(CodeBuffer* cb, int branch_loc) {
156  assert(_loc == -1, "Label is unbound");
157  if (_patch_index < PatchCacheSize) {
158    _patches[_patch_index] = branch_loc;
159  } else {
160    if (_patch_overflow == NULL) {
161      _patch_overflow = cb->create_patch_overflow();
162    }
163    _patch_overflow->push(branch_loc);
164  }
165  ++_patch_index;
166}
167
168void Label::patch_instructions(MacroAssembler* masm) {
169  assert(is_bound(), "Label is bound");
170  CodeBuffer* cb = masm->code();
171  int target_sect = CodeBuffer::locator_sect(loc());
172  address target = cb->locator_address(loc());
173  while (_patch_index > 0) {
174    --_patch_index;
175    int branch_loc;
176    if (_patch_index >= PatchCacheSize) {
177      branch_loc = _patch_overflow->pop();
178    } else {
179      branch_loc = _patches[_patch_index];
180    }
181    int branch_sect = CodeBuffer::locator_sect(branch_loc);
182    address branch = cb->locator_address(branch_loc);
183    if (branch_sect == CodeBuffer::SECT_CONSTS) {
184      // The thing to patch is a constant word.
185      *(address*)branch = target;
186      continue;
187    }
188
189#ifdef ASSERT
190    // Cross-section branches only work if the
191    // intermediate section boundaries are frozen.
192    if (target_sect != branch_sect) {
193      for (int n = MIN2(target_sect, branch_sect),
194               nlimit = (target_sect + branch_sect) - n;
195           n < nlimit; n++) {
196        CodeSection* cs = cb->code_section(n);
197        assert(cs->is_frozen(), "cross-section branch needs stable offsets");
198      }
199    }
200#endif //ASSERT
201
202    // Push the target offset into the branch instruction.
203    masm->pd_patch_instruction(branch, target);
204  }
205}
206
207struct DelayedConstant {
208  typedef void (*value_fn_t)();
209  BasicType type;
210  intptr_t value;
211  value_fn_t value_fn;
212  // This limit of 20 is generous for initial uses.
213  // The limit needs to be large enough to store the field offsets
214  // into classes which do not have statically fixed layouts.
215  // (Initial use is for method handle object offsets.)
216  // Look for uses of "delayed_value" in the source code
217  // and make sure this number is generous enough to handle all of them.
218  enum { DC_LIMIT = 20 };
219  static DelayedConstant delayed_constants[DC_LIMIT];
220  static DelayedConstant* add(BasicType type, value_fn_t value_fn);
221  bool match(BasicType t, value_fn_t cfn) {
222    return type == t && value_fn == cfn;
223  }
224  static void update_all();
225};
226
227DelayedConstant DelayedConstant::delayed_constants[DC_LIMIT];
228// Default C structure initialization rules have the following effect here:
229// = { { (BasicType)0, (intptr_t)NULL }, ... };
230
231DelayedConstant* DelayedConstant::add(BasicType type,
232                                      DelayedConstant::value_fn_t cfn) {
233  for (int i = 0; i < DC_LIMIT; i++) {
234    DelayedConstant* dcon = &delayed_constants[i];
235    if (dcon->match(type, cfn))
236      return dcon;
237    if (dcon->value_fn == NULL) {
238      // (cmpxchg not because this is multi-threaded but because I'm paranoid)
239      if (Atomic::cmpxchg_ptr(CAST_FROM_FN_PTR(void*, cfn), &dcon->value_fn, NULL) == NULL) {
240        dcon->type = type;
241        return dcon;
242      }
243    }
244  }
245  // If this assert is hit (in pre-integration testing!) then re-evaluate
246  // the comment on the definition of DC_LIMIT.
247  guarantee(false, "too many delayed constants");
248  return NULL;
249}
250
251void DelayedConstant::update_all() {
252  for (int i = 0; i < DC_LIMIT; i++) {
253    DelayedConstant* dcon = &delayed_constants[i];
254    if (dcon->value_fn != NULL && dcon->value == 0) {
255      typedef int     (*int_fn_t)();
256      typedef address (*address_fn_t)();
257      switch (dcon->type) {
258      case T_INT:     dcon->value = (intptr_t) ((int_fn_t)    dcon->value_fn)(); break;
259      case T_ADDRESS: dcon->value = (intptr_t) ((address_fn_t)dcon->value_fn)(); break;
260      }
261    }
262  }
263}
264
265RegisterOrConstant AbstractAssembler::delayed_value(int(*value_fn)(), Register tmp, int offset) {
266  intptr_t val = (intptr_t) (*value_fn)();
267  if (val != 0)  return val + offset;
268  return delayed_value_impl(delayed_value_addr(value_fn), tmp, offset);
269}
270RegisterOrConstant AbstractAssembler::delayed_value(address(*value_fn)(), Register tmp, int offset) {
271  intptr_t val = (intptr_t) (*value_fn)();
272  if (val != 0)  return val + offset;
273  return delayed_value_impl(delayed_value_addr(value_fn), tmp, offset);
274}
275intptr_t* AbstractAssembler::delayed_value_addr(int(*value_fn)()) {
276  DelayedConstant* dcon = DelayedConstant::add(T_INT, (DelayedConstant::value_fn_t) value_fn);
277  return &dcon->value;
278}
279intptr_t* AbstractAssembler::delayed_value_addr(address(*value_fn)()) {
280  DelayedConstant* dcon = DelayedConstant::add(T_ADDRESS, (DelayedConstant::value_fn_t) value_fn);
281  return &dcon->value;
282}
283void AbstractAssembler::update_delayed_values() {
284  DelayedConstant::update_all();
285}
286
287void AbstractAssembler::block_comment(const char* comment) {
288  if (sect() == CodeBuffer::SECT_INSTS) {
289    code_section()->outer()->block_comment(offset(), comment);
290  }
291}
292
293const char* AbstractAssembler::code_string(const char* str) {
294  if (sect() == CodeBuffer::SECT_INSTS || sect() == CodeBuffer::SECT_STUBS) {
295    return code_section()->outer()->code_string(str);
296  }
297  return NULL;
298}
299
300bool MacroAssembler::needs_explicit_null_check(intptr_t offset) {
301  // Exception handler checks the nmethod's implicit null checks table
302  // only when this method returns false.
303#ifdef _LP64
304  if (UseCompressedOops && Universe::narrow_oop_base() != NULL) {
305    assert (Universe::heap() != NULL, "java heap should be initialized");
306    // The first page after heap_base is unmapped and
307    // the 'offset' is equal to [heap_base + offset] for
308    // narrow oop implicit null checks.
309    uintptr_t base = (uintptr_t)Universe::narrow_oop_base();
310    if ((uintptr_t)offset >= base) {
311      // Normalize offset for the next check.
312      offset = (intptr_t)(pointer_delta((void*)offset, (void*)base, 1));
313    }
314  }
315#endif
316  return offset < 0 || os::vm_page_size() <= offset;
317}
318