1/*
2 * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "asm/codeBuffer.hpp"
27#include "asm/macroAssembler.hpp"
28#include "asm/macroAssembler.inline.hpp"
29#include "runtime/atomic.hpp"
30#include "runtime/icache.hpp"
31#include "runtime/os.hpp"
32#include "runtime/thread.hpp"
33
34
35// Implementation of AbstractAssembler
36//
37// The AbstractAssembler is generating code into a CodeBuffer. To make code generation faster,
38// the assembler keeps a copy of the code buffers boundaries & modifies them when
39// emitting bytes rather than using the code buffers accessor functions all the time.
40// The code buffer is updated via set_code_end(...) after emitting a whole instruction.
41
42AbstractAssembler::AbstractAssembler(CodeBuffer* code) {
43  if (code == NULL)  return;
44  CodeSection* cs = code->insts();
45  cs->clear_mark();   // new assembler kills old mark
46  if (cs->start() == NULL)  {
47    vm_exit_out_of_memory(0, OOM_MMAP_ERROR, "CodeCache: no room for %s", code->name());
48  }
49  _code_section = cs;
50  _oop_recorder= code->oop_recorder();
51  DEBUG_ONLY( _short_branch_delta = 0; )
52}
53
54void AbstractAssembler::set_code_section(CodeSection* cs) {
55  assert(cs->outer() == code_section()->outer(), "sanity");
56  assert(cs->is_allocated(), "need to pre-allocate this section");
57  cs->clear_mark();  // new assembly into this section kills old mark
58  _code_section = cs;
59}
60
61// Inform CodeBuffer that incoming code and relocation will be for stubs
62address AbstractAssembler::start_a_stub(int required_space) {
63  CodeBuffer*  cb = code();
64  CodeSection* cs = cb->stubs();
65  assert(_code_section == cb->insts(), "not in insts?");
66  if (cs->maybe_expand_to_ensure_remaining(required_space)
67      && cb->blob() == NULL) {
68    return NULL;
69  }
70  set_code_section(cs);
71  return pc();
72}
73
74// Inform CodeBuffer that incoming code and relocation will be code
75// Should not be called if start_a_stub() returned NULL
76void AbstractAssembler::end_a_stub() {
77  assert(_code_section == code()->stubs(), "not in stubs?");
78  set_code_section(code()->insts());
79}
80
81// Inform CodeBuffer that incoming code and relocation will be for stubs
82address AbstractAssembler::start_a_const(int required_space, int required_align) {
83  CodeBuffer*  cb = code();
84  CodeSection* cs = cb->consts();
85  assert(_code_section == cb->insts() || _code_section == cb->stubs(), "not in insts/stubs?");
86  address end = cs->end();
87  int pad = -(intptr_t)end & (required_align-1);
88  if (cs->maybe_expand_to_ensure_remaining(pad + required_space)) {
89    if (cb->blob() == NULL)  return NULL;
90    end = cs->end();  // refresh pointer
91  }
92  if (pad > 0) {
93    while (--pad >= 0) { *end++ = 0; }
94    cs->set_end(end);
95  }
96  set_code_section(cs);
97  return end;
98}
99
100// Inform CodeBuffer that incoming code and relocation will be code
101// in section cs (insts or stubs).
102void AbstractAssembler::end_a_const(CodeSection* cs) {
103  assert(_code_section == code()->consts(), "not in consts?");
104  set_code_section(cs);
105}
106
107void AbstractAssembler::flush() {
108  ICache::invalidate_range(addr_at(0), offset());
109}
110
111void AbstractAssembler::bind(Label& L) {
112  if (L.is_bound()) {
113    // Assembler can bind a label more than once to the same place.
114    guarantee(L.loc() == locator(), "attempt to redefine label");
115    return;
116  }
117  L.bind_loc(locator());
118  L.patch_instructions((MacroAssembler*)this);
119}
120
121void AbstractAssembler::generate_stack_overflow_check(int frame_size_in_bytes) {
122  if (UseStackBanging) {
123    // Each code entry causes one stack bang n pages down the stack where n
124    // is configurable by StackShadowPages.  The setting depends on the maximum
125    // depth of VM call stack or native before going back into java code,
126    // since only java code can raise a stack overflow exception using the
127    // stack banging mechanism.  The VM and native code does not detect stack
128    // overflow.
129    // The code in JavaCalls::call() checks that there is at least n pages
130    // available, so all entry code needs to do is bang once for the end of
131    // this shadow zone.
132    // The entry code may need to bang additional pages if the framesize
133    // is greater than a page.
134
135    const int page_size = os::vm_page_size();
136    int bang_end = (int)JavaThread::stack_shadow_zone_size();
137
138    // This is how far the previous frame's stack banging extended.
139    const int bang_end_safe = bang_end;
140
141    if (frame_size_in_bytes > page_size) {
142      bang_end += frame_size_in_bytes;
143    }
144
145    int bang_offset = bang_end_safe;
146    while (bang_offset <= bang_end) {
147      // Need at least one stack bang at end of shadow zone.
148      bang_stack_with_offset(bang_offset);
149      bang_offset += page_size;
150    }
151  } // end (UseStackBanging)
152}
153
154void Label::add_patch_at(CodeBuffer* cb, int branch_loc) {
155  assert(_loc == -1, "Label is unbound");
156  // Don't add patch locations during scratch emit.
157  if (cb->insts()->scratch_emit()) { return; }
158  if (_patch_index < PatchCacheSize) {
159    _patches[_patch_index] = branch_loc;
160  } else {
161    if (_patch_overflow == NULL) {
162      _patch_overflow = cb->create_patch_overflow();
163    }
164    _patch_overflow->push(branch_loc);
165  }
166  ++_patch_index;
167}
168
169void Label::patch_instructions(MacroAssembler* masm) {
170  assert(is_bound(), "Label is bound");
171  CodeBuffer* cb = masm->code();
172  int target_sect = CodeBuffer::locator_sect(loc());
173  address target = cb->locator_address(loc());
174  while (_patch_index > 0) {
175    --_patch_index;
176    int branch_loc;
177    if (_patch_index >= PatchCacheSize) {
178      branch_loc = _patch_overflow->pop();
179    } else {
180      branch_loc = _patches[_patch_index];
181    }
182    int branch_sect = CodeBuffer::locator_sect(branch_loc);
183    address branch = cb->locator_address(branch_loc);
184    if (branch_sect == CodeBuffer::SECT_CONSTS) {
185      // The thing to patch is a constant word.
186      *(address*)branch = target;
187      continue;
188    }
189
190#ifdef ASSERT
191    // Cross-section branches only work if the
192    // intermediate section boundaries are frozen.
193    if (target_sect != branch_sect) {
194      for (int n = MIN2(target_sect, branch_sect),
195               nlimit = (target_sect + branch_sect) - n;
196           n < nlimit; n++) {
197        CodeSection* cs = cb->code_section(n);
198        assert(cs->is_frozen(), "cross-section branch needs stable offsets");
199      }
200    }
201#endif //ASSERT
202
203    // Push the target offset into the branch instruction.
204    masm->pd_patch_instruction(branch, target);
205  }
206}
207
208struct DelayedConstant {
209  typedef void (*value_fn_t)();
210  BasicType type;
211  intptr_t value;
212  value_fn_t value_fn;
213  // This limit of 20 is generous for initial uses.
214  // The limit needs to be large enough to store the field offsets
215  // into classes which do not have statically fixed layouts.
216  // (Initial use is for method handle object offsets.)
217  // Look for uses of "delayed_value" in the source code
218  // and make sure this number is generous enough to handle all of them.
219  enum { DC_LIMIT = 20 };
220  static DelayedConstant delayed_constants[DC_LIMIT];
221  static DelayedConstant* add(BasicType type, value_fn_t value_fn);
222  bool match(BasicType t, value_fn_t cfn) {
223    return type == t && value_fn == cfn;
224  }
225  static void update_all();
226};
227
228DelayedConstant DelayedConstant::delayed_constants[DC_LIMIT];
229// Default C structure initialization rules have the following effect here:
230// = { { (BasicType)0, (intptr_t)NULL }, ... };
231
232DelayedConstant* DelayedConstant::add(BasicType type,
233                                      DelayedConstant::value_fn_t cfn) {
234  for (int i = 0; i < DC_LIMIT; i++) {
235    DelayedConstant* dcon = &delayed_constants[i];
236    if (dcon->match(type, cfn))
237      return dcon;
238    if (dcon->value_fn == NULL) {
239      // (cmpxchg not because this is multi-threaded but because I'm paranoid)
240      if (Atomic::cmpxchg_ptr(CAST_FROM_FN_PTR(void*, cfn), &dcon->value_fn, NULL) == NULL) {
241        dcon->type = type;
242        return dcon;
243      }
244    }
245  }
246  // If this assert is hit (in pre-integration testing!) then re-evaluate
247  // the comment on the definition of DC_LIMIT.
248  guarantee(false, "too many delayed constants");
249  return NULL;
250}
251
252void DelayedConstant::update_all() {
253  for (int i = 0; i < DC_LIMIT; i++) {
254    DelayedConstant* dcon = &delayed_constants[i];
255    if (dcon->value_fn != NULL && dcon->value == 0) {
256      typedef int     (*int_fn_t)();
257      typedef address (*address_fn_t)();
258      switch (dcon->type) {
259      case T_INT:     dcon->value = (intptr_t) ((int_fn_t)    dcon->value_fn)(); break;
260      case T_ADDRESS: dcon->value = (intptr_t) ((address_fn_t)dcon->value_fn)(); break;
261      default:        break;
262      }
263    }
264  }
265}
266
267RegisterOrConstant AbstractAssembler::delayed_value(int(*value_fn)(), Register tmp, int offset) {
268  intptr_t val = (intptr_t) (*value_fn)();
269  if (val != 0)  return val + offset;
270  return delayed_value_impl(delayed_value_addr(value_fn), tmp, offset);
271}
272RegisterOrConstant AbstractAssembler::delayed_value(address(*value_fn)(), Register tmp, int offset) {
273  intptr_t val = (intptr_t) (*value_fn)();
274  if (val != 0)  return val + offset;
275  return delayed_value_impl(delayed_value_addr(value_fn), tmp, offset);
276}
277intptr_t* AbstractAssembler::delayed_value_addr(int(*value_fn)()) {
278  DelayedConstant* dcon = DelayedConstant::add(T_INT, (DelayedConstant::value_fn_t) value_fn);
279  return &dcon->value;
280}
281intptr_t* AbstractAssembler::delayed_value_addr(address(*value_fn)()) {
282  DelayedConstant* dcon = DelayedConstant::add(T_ADDRESS, (DelayedConstant::value_fn_t) value_fn);
283  return &dcon->value;
284}
285void AbstractAssembler::update_delayed_values() {
286  DelayedConstant::update_all();
287}
288
289void AbstractAssembler::block_comment(const char* comment) {
290  if (sect() == CodeBuffer::SECT_INSTS) {
291    code_section()->outer()->block_comment(offset(), comment);
292  }
293}
294
295const char* AbstractAssembler::code_string(const char* str) {
296  if (sect() == CodeBuffer::SECT_INSTS || sect() == CodeBuffer::SECT_STUBS) {
297    return code_section()->outer()->code_string(str);
298  }
299  return NULL;
300}
301
302bool MacroAssembler::needs_explicit_null_check(intptr_t offset) {
303  // Exception handler checks the nmethod's implicit null checks table
304  // only when this method returns false.
305#ifdef _LP64
306  if (UseCompressedOops && Universe::narrow_oop_base() != NULL) {
307    assert (Universe::heap() != NULL, "java heap should be initialized");
308    // The first page after heap_base is unmapped and
309    // the 'offset' is equal to [heap_base + offset] for
310    // narrow oop implicit null checks.
311    uintptr_t base = (uintptr_t)Universe::narrow_oop_base();
312    if ((uintptr_t)offset >= base) {
313      // Normalize offset for the next check.
314      offset = (intptr_t)(pointer_delta((void*)offset, (void*)base, 1));
315    }
316  }
317#endif
318  return offset < 0 || os::vm_page_size() <= offset;
319}
320