assembler.cpp revision 3883:cd3d6a6b95d9
1/*
2 * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "asm/macroAssembler.hpp"
27#include "asm/macroAssembler.inline.hpp"
28#include "asm/codeBuffer.hpp"
29#include "runtime/atomic.hpp"
30#include "runtime/atomic.inline.hpp"
31#include "runtime/icache.hpp"
32#include "runtime/os.hpp"
33
34
35// Implementation of AbstractAssembler
36//
37// The AbstractAssembler is generating code into a CodeBuffer. To make code generation faster,
38// the assembler keeps a copy of the code buffers boundaries & modifies them when
39// emitting bytes rather than using the code buffers accessor functions all the time.
40// The code buffer is updated via set_code_end(...) after emitting a whole instruction.
41
42AbstractAssembler::AbstractAssembler(CodeBuffer* code) {
43  if (code == NULL)  return;
44  CodeSection* cs = code->insts();
45  cs->clear_mark();   // new assembler kills old mark
46  if (cs->start() == NULL)  {
47    vm_exit_out_of_memory(0, err_msg("CodeCache: no room for %s",
48                                     code->name()));
49  }
50  _code_section = cs;
51  _oop_recorder= code->oop_recorder();
52  DEBUG_ONLY( _short_branch_delta = 0; )
53}
54
55void AbstractAssembler::set_code_section(CodeSection* cs) {
56  assert(cs->outer() == code_section()->outer(), "sanity");
57  assert(cs->is_allocated(), "need to pre-allocate this section");
58  cs->clear_mark();  // new assembly into this section kills old mark
59  _code_section = cs;
60}
61
62// Inform CodeBuffer that incoming code and relocation will be for stubs
63address AbstractAssembler::start_a_stub(int required_space) {
64  CodeBuffer*  cb = code();
65  CodeSection* cs = cb->stubs();
66  assert(_code_section == cb->insts(), "not in insts?");
67  if (cs->maybe_expand_to_ensure_remaining(required_space)
68      && cb->blob() == NULL) {
69    return NULL;
70  }
71  set_code_section(cs);
72  return pc();
73}
74
75// Inform CodeBuffer that incoming code and relocation will be code
76// Should not be called if start_a_stub() returned NULL
77void AbstractAssembler::end_a_stub() {
78  assert(_code_section == code()->stubs(), "not in stubs?");
79  set_code_section(code()->insts());
80}
81
82// Inform CodeBuffer that incoming code and relocation will be for stubs
83address AbstractAssembler::start_a_const(int required_space, int required_align) {
84  CodeBuffer*  cb = code();
85  CodeSection* cs = cb->consts();
86  assert(_code_section == cb->insts() || _code_section == cb->stubs(), "not in insts/stubs?");
87  address end = cs->end();
88  int pad = -(intptr_t)end & (required_align-1);
89  if (cs->maybe_expand_to_ensure_remaining(pad + required_space)) {
90    if (cb->blob() == NULL)  return NULL;
91    end = cs->end();  // refresh pointer
92  }
93  if (pad > 0) {
94    while (--pad >= 0) { *end++ = 0; }
95    cs->set_end(end);
96  }
97  set_code_section(cs);
98  return end;
99}
100
101// Inform CodeBuffer that incoming code and relocation will be code
102// in section cs (insts or stubs).
103void AbstractAssembler::end_a_const(CodeSection* cs) {
104  assert(_code_section == code()->consts(), "not in consts?");
105  set_code_section(cs);
106}
107
108void AbstractAssembler::flush() {
109  ICache::invalidate_range(addr_at(0), offset());
110}
111
112
113void AbstractAssembler::a_byte(int x) {
114  emit_byte(x);
115}
116
117
118void AbstractAssembler::a_long(jint x) {
119  emit_long(x);
120}
121
122// Labels refer to positions in the (to be) generated code.  There are bound
123// and unbound
124//
125// Bound labels refer to known positions in the already generated code.
126// offset() is the position the label refers to.
127//
128// Unbound labels refer to unknown positions in the code to be generated; it
129// may contain a list of unresolved displacements that refer to it
130#ifndef PRODUCT
131void AbstractAssembler::print(Label& L) {
132  if (L.is_bound()) {
133    tty->print_cr("bound label to %d|%d", L.loc_pos(), L.loc_sect());
134  } else if (L.is_unbound()) {
135    L.print_instructions((MacroAssembler*)this);
136  } else {
137    tty->print_cr("label in inconsistent state (loc = %d)", L.loc());
138  }
139}
140#endif // PRODUCT
141
142
143void AbstractAssembler::bind(Label& L) {
144  if (L.is_bound()) {
145    // Assembler can bind a label more than once to the same place.
146    guarantee(L.loc() == locator(), "attempt to redefine label");
147    return;
148  }
149  L.bind_loc(locator());
150  L.patch_instructions((MacroAssembler*)this);
151}
152
153void AbstractAssembler::generate_stack_overflow_check( int frame_size_in_bytes) {
154  if (UseStackBanging) {
155    // Each code entry causes one stack bang n pages down the stack where n
156    // is configurable by StackBangPages.  The setting depends on the maximum
157    // depth of VM call stack or native before going back into java code,
158    // since only java code can raise a stack overflow exception using the
159    // stack banging mechanism.  The VM and native code does not detect stack
160    // overflow.
161    // The code in JavaCalls::call() checks that there is at least n pages
162    // available, so all entry code needs to do is bang once for the end of
163    // this shadow zone.
164    // The entry code may need to bang additional pages if the framesize
165    // is greater than a page.
166
167    const int page_size = os::vm_page_size();
168    int bang_end = StackShadowPages*page_size;
169
170    // This is how far the previous frame's stack banging extended.
171    const int bang_end_safe = bang_end;
172
173    if (frame_size_in_bytes > page_size) {
174      bang_end += frame_size_in_bytes;
175    }
176
177    int bang_offset = bang_end_safe;
178    while (bang_offset <= bang_end) {
179      // Need at least one stack bang at end of shadow zone.
180      bang_stack_with_offset(bang_offset);
181      bang_offset += page_size;
182    }
183  } // end (UseStackBanging)
184}
185
186void Label::add_patch_at(CodeBuffer* cb, int branch_loc) {
187  assert(_loc == -1, "Label is unbound");
188  if (_patch_index < PatchCacheSize) {
189    _patches[_patch_index] = branch_loc;
190  } else {
191    if (_patch_overflow == NULL) {
192      _patch_overflow = cb->create_patch_overflow();
193    }
194    _patch_overflow->push(branch_loc);
195  }
196  ++_patch_index;
197}
198
199void Label::patch_instructions(MacroAssembler* masm) {
200  assert(is_bound(), "Label is bound");
201  CodeBuffer* cb = masm->code();
202  int target_sect = CodeBuffer::locator_sect(loc());
203  address target = cb->locator_address(loc());
204  while (_patch_index > 0) {
205    --_patch_index;
206    int branch_loc;
207    if (_patch_index >= PatchCacheSize) {
208      branch_loc = _patch_overflow->pop();
209    } else {
210      branch_loc = _patches[_patch_index];
211    }
212    int branch_sect = CodeBuffer::locator_sect(branch_loc);
213    address branch = cb->locator_address(branch_loc);
214    if (branch_sect == CodeBuffer::SECT_CONSTS) {
215      // The thing to patch is a constant word.
216      *(address*)branch = target;
217      continue;
218    }
219
220#ifdef ASSERT
221    // Cross-section branches only work if the
222    // intermediate section boundaries are frozen.
223    if (target_sect != branch_sect) {
224      for (int n = MIN2(target_sect, branch_sect),
225               nlimit = (target_sect + branch_sect) - n;
226           n < nlimit; n++) {
227        CodeSection* cs = cb->code_section(n);
228        assert(cs->is_frozen(), "cross-section branch needs stable offsets");
229      }
230    }
231#endif //ASSERT
232
233    // Push the target offset into the branch instruction.
234    masm->pd_patch_instruction(branch, target);
235  }
236}
237
238struct DelayedConstant {
239  typedef void (*value_fn_t)();
240  BasicType type;
241  intptr_t value;
242  value_fn_t value_fn;
243  // This limit of 20 is generous for initial uses.
244  // The limit needs to be large enough to store the field offsets
245  // into classes which do not have statically fixed layouts.
246  // (Initial use is for method handle object offsets.)
247  // Look for uses of "delayed_value" in the source code
248  // and make sure this number is generous enough to handle all of them.
249  enum { DC_LIMIT = 20 };
250  static DelayedConstant delayed_constants[DC_LIMIT];
251  static DelayedConstant* add(BasicType type, value_fn_t value_fn);
252  bool match(BasicType t, value_fn_t cfn) {
253    return type == t && value_fn == cfn;
254  }
255  static void update_all();
256};
257
258DelayedConstant DelayedConstant::delayed_constants[DC_LIMIT];
259// Default C structure initialization rules have the following effect here:
260// = { { (BasicType)0, (intptr_t)NULL }, ... };
261
262DelayedConstant* DelayedConstant::add(BasicType type,
263                                      DelayedConstant::value_fn_t cfn) {
264  for (int i = 0; i < DC_LIMIT; i++) {
265    DelayedConstant* dcon = &delayed_constants[i];
266    if (dcon->match(type, cfn))
267      return dcon;
268    if (dcon->value_fn == NULL) {
269      // (cmpxchg not because this is multi-threaded but because I'm paranoid)
270      if (Atomic::cmpxchg_ptr(CAST_FROM_FN_PTR(void*, cfn), &dcon->value_fn, NULL) == NULL) {
271        dcon->type = type;
272        return dcon;
273      }
274    }
275  }
276  // If this assert is hit (in pre-integration testing!) then re-evaluate
277  // the comment on the definition of DC_LIMIT.
278  guarantee(false, "too many delayed constants");
279  return NULL;
280}
281
282void DelayedConstant::update_all() {
283  for (int i = 0; i < DC_LIMIT; i++) {
284    DelayedConstant* dcon = &delayed_constants[i];
285    if (dcon->value_fn != NULL && dcon->value == 0) {
286      typedef int     (*int_fn_t)();
287      typedef address (*address_fn_t)();
288      switch (dcon->type) {
289      case T_INT:     dcon->value = (intptr_t) ((int_fn_t)    dcon->value_fn)(); break;
290      case T_ADDRESS: dcon->value = (intptr_t) ((address_fn_t)dcon->value_fn)(); break;
291      }
292    }
293  }
294}
295
296RegisterOrConstant AbstractAssembler::delayed_value(int(*value_fn)(), Register tmp, int offset) {
297  intptr_t val = (intptr_t) (*value_fn)();
298  if (val != 0)  return val + offset;
299  return delayed_value_impl(delayed_value_addr(value_fn), tmp, offset);
300}
301RegisterOrConstant AbstractAssembler::delayed_value(address(*value_fn)(), Register tmp, int offset) {
302  intptr_t val = (intptr_t) (*value_fn)();
303  if (val != 0)  return val + offset;
304  return delayed_value_impl(delayed_value_addr(value_fn), tmp, offset);
305}
306intptr_t* AbstractAssembler::delayed_value_addr(int(*value_fn)()) {
307  DelayedConstant* dcon = DelayedConstant::add(T_INT, (DelayedConstant::value_fn_t) value_fn);
308  return &dcon->value;
309}
310intptr_t* AbstractAssembler::delayed_value_addr(address(*value_fn)()) {
311  DelayedConstant* dcon = DelayedConstant::add(T_ADDRESS, (DelayedConstant::value_fn_t) value_fn);
312  return &dcon->value;
313}
314void AbstractAssembler::update_delayed_values() {
315  DelayedConstant::update_all();
316}
317
318
319
320
321void AbstractAssembler::block_comment(const char* comment) {
322  if (sect() == CodeBuffer::SECT_INSTS) {
323    code_section()->outer()->block_comment(offset(), comment);
324  }
325}
326
327bool MacroAssembler::needs_explicit_null_check(intptr_t offset) {
328  // Exception handler checks the nmethod's implicit null checks table
329  // only when this method returns false.
330#ifdef _LP64
331  if (UseCompressedOops && Universe::narrow_oop_base() != NULL) {
332    assert (Universe::heap() != NULL, "java heap should be initialized");
333    // The first page after heap_base is unmapped and
334    // the 'offset' is equal to [heap_base + offset] for
335    // narrow oop implicit null checks.
336    uintptr_t base = (uintptr_t)Universe::narrow_oop_base();
337    if ((uintptr_t)offset >= base) {
338      // Normalize offset for the next check.
339      offset = (intptr_t)(pointer_delta((void*)offset, (void*)base, 1));
340    }
341  }
342#endif
343  return offset < 0 || os::vm_page_size() <= offset;
344}
345
346#ifndef PRODUCT
347void Label::print_instructions(MacroAssembler* masm) const {
348  CodeBuffer* cb = masm->code();
349  for (int i = 0; i < _patch_index; ++i) {
350    int branch_loc;
351    if (i >= PatchCacheSize) {
352      branch_loc = _patch_overflow->at(i - PatchCacheSize);
353    } else {
354      branch_loc = _patches[i];
355    }
356    int branch_pos  = CodeBuffer::locator_pos(branch_loc);
357    int branch_sect = CodeBuffer::locator_sect(branch_loc);
358    address branch = cb->locator_address(branch_loc);
359    tty->print_cr("unbound label");
360    tty->print("@ %d|%d ", branch_pos, branch_sect);
361    if (branch_sect == CodeBuffer::SECT_CONSTS) {
362      tty->print_cr(PTR_FORMAT, *(address*)branch);
363      continue;
364    }
365    masm->pd_print_patched_instruction(branch);
366    tty->cr();
367  }
368}
369#endif // ndef PRODUCT
370