assembler.cpp revision 2073:b92c45f2bc75
1/*
2 * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "asm/assembler.hpp"
27#include "asm/assembler.inline.hpp"
28#include "asm/codeBuffer.hpp"
29#include "runtime/icache.hpp"
30#include "runtime/os.hpp"
31#ifdef TARGET_ARCH_x86
32# include "assembler_x86.inline.hpp"
33#endif
34#ifdef TARGET_ARCH_sparc
35# include "assembler_sparc.inline.hpp"
36#endif
37#ifdef TARGET_ARCH_zero
38# include "assembler_zero.inline.hpp"
39#endif
40#ifdef TARGET_ARCH_arm
41# include "assembler_arm.inline.hpp"
42#endif
43#ifdef TARGET_ARCH_ppc
44# include "assembler_ppc.inline.hpp"
45#endif
46
47
48// Implementation of AbstractAssembler
49//
50// The AbstractAssembler is generating code into a CodeBuffer. To make code generation faster,
51// the assembler keeps a copy of the code buffers boundaries & modifies them when
52// emitting bytes rather than using the code buffers accessor functions all the time.
53// The code buffer is updated via set_code_end(...) after emitting a whole instruction.
54
55AbstractAssembler::AbstractAssembler(CodeBuffer* code) {
56  if (code == NULL)  return;
57  CodeSection* cs = code->insts();
58  cs->clear_mark();   // new assembler kills old mark
59  _code_section = cs;
60  _code_begin  = cs->start();
61  _code_limit  = cs->limit();
62  _code_pos    = cs->end();
63  _oop_recorder= code->oop_recorder();
64  if (_code_begin == NULL)  {
65    vm_exit_out_of_memory(0, err_msg("CodeCache: no room for %s",
66                                     code->name()));
67  }
68}
69
70void AbstractAssembler::set_code_section(CodeSection* cs) {
71  assert(cs->outer() == code_section()->outer(), "sanity");
72  assert(cs->is_allocated(), "need to pre-allocate this section");
73  cs->clear_mark();  // new assembly into this section kills old mark
74  _code_section = cs;
75  _code_begin  = cs->start();
76  _code_limit  = cs->limit();
77  _code_pos    = cs->end();
78}
79
80// Inform CodeBuffer that incoming code and relocation will be for stubs
81address AbstractAssembler::start_a_stub(int required_space) {
82  CodeBuffer*  cb = code();
83  CodeSection* cs = cb->stubs();
84  assert(_code_section == cb->insts(), "not in insts?");
85  sync();
86  if (cs->maybe_expand_to_ensure_remaining(required_space)
87      && cb->blob() == NULL) {
88    return NULL;
89  }
90  set_code_section(cs);
91  return pc();
92}
93
94// Inform CodeBuffer that incoming code and relocation will be code
95// Should not be called if start_a_stub() returned NULL
96void AbstractAssembler::end_a_stub() {
97  assert(_code_section == code()->stubs(), "not in stubs?");
98  sync();
99  set_code_section(code()->insts());
100}
101
102// Inform CodeBuffer that incoming code and relocation will be for stubs
103address AbstractAssembler::start_a_const(int required_space, int required_align) {
104  CodeBuffer*  cb = code();
105  CodeSection* cs = cb->consts();
106  assert(_code_section == cb->insts(), "not in insts?");
107  sync();
108  address end = cs->end();
109  int pad = -(intptr_t)end & (required_align-1);
110  if (cs->maybe_expand_to_ensure_remaining(pad + required_space)) {
111    if (cb->blob() == NULL)  return NULL;
112    end = cs->end();  // refresh pointer
113  }
114  if (pad > 0) {
115    while (--pad >= 0) { *end++ = 0; }
116    cs->set_end(end);
117  }
118  set_code_section(cs);
119  return end;
120}
121
122// Inform CodeBuffer that incoming code and relocation will be code
123// Should not be called if start_a_const() returned NULL
124void AbstractAssembler::end_a_const() {
125  assert(_code_section == code()->consts(), "not in consts?");
126  sync();
127  set_code_section(code()->insts());
128}
129
130
131void AbstractAssembler::flush() {
132  sync();
133  ICache::invalidate_range(addr_at(0), offset());
134}
135
136
137void AbstractAssembler::a_byte(int x) {
138  emit_byte(x);
139}
140
141
142void AbstractAssembler::a_long(jint x) {
143  emit_long(x);
144}
145
146// Labels refer to positions in the (to be) generated code.  There are bound
147// and unbound
148//
149// Bound labels refer to known positions in the already generated code.
150// offset() is the position the label refers to.
151//
152// Unbound labels refer to unknown positions in the code to be generated; it
153// may contain a list of unresolved displacements that refer to it
154#ifndef PRODUCT
155void AbstractAssembler::print(Label& L) {
156  if (L.is_bound()) {
157    tty->print_cr("bound label to %d|%d", L.loc_pos(), L.loc_sect());
158  } else if (L.is_unbound()) {
159    L.print_instructions((MacroAssembler*)this);
160  } else {
161    tty->print_cr("label in inconsistent state (loc = %d)", L.loc());
162  }
163}
164#endif // PRODUCT
165
166
167void AbstractAssembler::bind(Label& L) {
168  if (L.is_bound()) {
169    // Assembler can bind a label more than once to the same place.
170    guarantee(L.loc() == locator(), "attempt to redefine label");
171    return;
172  }
173  L.bind_loc(locator());
174  L.patch_instructions((MacroAssembler*)this);
175}
176
177void AbstractAssembler::generate_stack_overflow_check( int frame_size_in_bytes) {
178  if (UseStackBanging) {
179    // Each code entry causes one stack bang n pages down the stack where n
180    // is configurable by StackBangPages.  The setting depends on the maximum
181    // depth of VM call stack or native before going back into java code,
182    // since only java code can raise a stack overflow exception using the
183    // stack banging mechanism.  The VM and native code does not detect stack
184    // overflow.
185    // The code in JavaCalls::call() checks that there is at least n pages
186    // available, so all entry code needs to do is bang once for the end of
187    // this shadow zone.
188    // The entry code may need to bang additional pages if the framesize
189    // is greater than a page.
190
191    const int page_size = os::vm_page_size();
192    int bang_end = StackShadowPages*page_size;
193
194    // This is how far the previous frame's stack banging extended.
195    const int bang_end_safe = bang_end;
196
197    if (frame_size_in_bytes > page_size) {
198      bang_end += frame_size_in_bytes;
199    }
200
201    int bang_offset = bang_end_safe;
202    while (bang_offset <= bang_end) {
203      // Need at least one stack bang at end of shadow zone.
204      bang_stack_with_offset(bang_offset);
205      bang_offset += page_size;
206    }
207  } // end (UseStackBanging)
208}
209
210void Label::add_patch_at(CodeBuffer* cb, int branch_loc) {
211  assert(_loc == -1, "Label is unbound");
212  if (_patch_index < PatchCacheSize) {
213    _patches[_patch_index] = branch_loc;
214  } else {
215    if (_patch_overflow == NULL) {
216      _patch_overflow = cb->create_patch_overflow();
217    }
218    _patch_overflow->push(branch_loc);
219  }
220  ++_patch_index;
221}
222
223void Label::patch_instructions(MacroAssembler* masm) {
224  assert(is_bound(), "Label is bound");
225  CodeBuffer* cb = masm->code();
226  int target_sect = CodeBuffer::locator_sect(loc());
227  address target = cb->locator_address(loc());
228  while (_patch_index > 0) {
229    --_patch_index;
230    int branch_loc;
231    if (_patch_index >= PatchCacheSize) {
232      branch_loc = _patch_overflow->pop();
233    } else {
234      branch_loc = _patches[_patch_index];
235    }
236    int branch_sect = CodeBuffer::locator_sect(branch_loc);
237    address branch = cb->locator_address(branch_loc);
238    if (branch_sect == CodeBuffer::SECT_CONSTS) {
239      // The thing to patch is a constant word.
240      *(address*)branch = target;
241      continue;
242    }
243
244#ifdef ASSERT
245    // Cross-section branches only work if the
246    // intermediate section boundaries are frozen.
247    if (target_sect != branch_sect) {
248      for (int n = MIN2(target_sect, branch_sect),
249               nlimit = (target_sect + branch_sect) - n;
250           n < nlimit; n++) {
251        CodeSection* cs = cb->code_section(n);
252        assert(cs->is_frozen(), "cross-section branch needs stable offsets");
253      }
254    }
255#endif //ASSERT
256
257    // Push the target offset into the branch instruction.
258    masm->pd_patch_instruction(branch, target);
259  }
260}
261
262struct DelayedConstant {
263  typedef void (*value_fn_t)();
264  BasicType type;
265  intptr_t value;
266  value_fn_t value_fn;
267  // This limit of 20 is generous for initial uses.
268  // The limit needs to be large enough to store the field offsets
269  // into classes which do not have statically fixed layouts.
270  // (Initial use is for method handle object offsets.)
271  // Look for uses of "delayed_value" in the source code
272  // and make sure this number is generous enough to handle all of them.
273  enum { DC_LIMIT = 20 };
274  static DelayedConstant delayed_constants[DC_LIMIT];
275  static DelayedConstant* add(BasicType type, value_fn_t value_fn);
276  bool match(BasicType t, value_fn_t cfn) {
277    return type == t && value_fn == cfn;
278  }
279  static void update_all();
280};
281
282DelayedConstant DelayedConstant::delayed_constants[DC_LIMIT];
283// Default C structure initialization rules have the following effect here:
284// = { { (BasicType)0, (intptr_t)NULL }, ... };
285
286DelayedConstant* DelayedConstant::add(BasicType type,
287                                      DelayedConstant::value_fn_t cfn) {
288  for (int i = 0; i < DC_LIMIT; i++) {
289    DelayedConstant* dcon = &delayed_constants[i];
290    if (dcon->match(type, cfn))
291      return dcon;
292    if (dcon->value_fn == NULL) {
293      // (cmpxchg not because this is multi-threaded but because I'm paranoid)
294      if (Atomic::cmpxchg_ptr(CAST_FROM_FN_PTR(void*, cfn), &dcon->value_fn, NULL) == NULL) {
295        dcon->type = type;
296        return dcon;
297      }
298    }
299  }
300  // If this assert is hit (in pre-integration testing!) then re-evaluate
301  // the comment on the definition of DC_LIMIT.
302  guarantee(false, "too many delayed constants");
303  return NULL;
304}
305
306void DelayedConstant::update_all() {
307  for (int i = 0; i < DC_LIMIT; i++) {
308    DelayedConstant* dcon = &delayed_constants[i];
309    if (dcon->value_fn != NULL && dcon->value == 0) {
310      typedef int     (*int_fn_t)();
311      typedef address (*address_fn_t)();
312      switch (dcon->type) {
313      case T_INT:     dcon->value = (intptr_t) ((int_fn_t)    dcon->value_fn)(); break;
314      case T_ADDRESS: dcon->value = (intptr_t) ((address_fn_t)dcon->value_fn)(); break;
315      }
316    }
317  }
318}
319
320intptr_t* AbstractAssembler::delayed_value_addr(int(*value_fn)()) {
321  DelayedConstant* dcon = DelayedConstant::add(T_INT, (DelayedConstant::value_fn_t) value_fn);
322  return &dcon->value;
323}
324intptr_t* AbstractAssembler::delayed_value_addr(address(*value_fn)()) {
325  DelayedConstant* dcon = DelayedConstant::add(T_ADDRESS, (DelayedConstant::value_fn_t) value_fn);
326  return &dcon->value;
327}
328void AbstractAssembler::update_delayed_values() {
329  DelayedConstant::update_all();
330}
331
332
333
334
335void AbstractAssembler::block_comment(const char* comment) {
336  if (sect() == CodeBuffer::SECT_INSTS) {
337    code_section()->outer()->block_comment(offset(), comment);
338  }
339}
340
341bool MacroAssembler::needs_explicit_null_check(intptr_t offset) {
342  // Exception handler checks the nmethod's implicit null checks table
343  // only when this method returns false.
344#ifdef _LP64
345  if (UseCompressedOops && Universe::narrow_oop_base() != NULL) {
346    assert (Universe::heap() != NULL, "java heap should be initialized");
347    // The first page after heap_base is unmapped and
348    // the 'offset' is equal to [heap_base + offset] for
349    // narrow oop implicit null checks.
350    uintptr_t base = (uintptr_t)Universe::narrow_oop_base();
351    if ((uintptr_t)offset >= base) {
352      // Normalize offset for the next check.
353      offset = (intptr_t)(pointer_delta((void*)offset, (void*)base, 1));
354    }
355  }
356#endif
357  return offset < 0 || os::vm_page_size() <= offset;
358}
359
360#ifndef PRODUCT
361void Label::print_instructions(MacroAssembler* masm) const {
362  CodeBuffer* cb = masm->code();
363  for (int i = 0; i < _patch_index; ++i) {
364    int branch_loc;
365    if (i >= PatchCacheSize) {
366      branch_loc = _patch_overflow->at(i - PatchCacheSize);
367    } else {
368      branch_loc = _patches[i];
369    }
370    int branch_pos  = CodeBuffer::locator_pos(branch_loc);
371    int branch_sect = CodeBuffer::locator_sect(branch_loc);
372    address branch = cb->locator_address(branch_loc);
373    tty->print_cr("unbound label");
374    tty->print("@ %d|%d ", branch_pos, branch_sect);
375    if (branch_sect == CodeBuffer::SECT_CONSTS) {
376      tty->print_cr(PTR_FORMAT, *(address*)branch);
377      continue;
378    }
379    masm->pd_print_patched_instruction(branch);
380    tty->cr();
381  }
382}
383#endif // ndef PRODUCT
384