1/*
2 * Copyright (c) 2003, 2013, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include <jni.h>
26#include <unistd.h>
27#include <fcntl.h>
28#include <string.h>
29#include <stdlib.h>
30#include <stddef.h>
31#include <elf.h>
32#include <link.h>
33#include "libproc_impl.h"
34#include "salibelf.h"
35
36// This file has the libproc implementation to read core files.
37// For live processes, refer to ps_proc.c. Portions of this is adapted
38// /modelled after Solaris libproc.so (in particular Pcore.c)
39
40//----------------------------------------------------------------------
41// ps_prochandle cleanup helper functions
42
43// close all file descriptors
44static void close_files(struct ps_prochandle* ph) {
45  lib_info* lib = NULL;
46
47  // close core file descriptor
48  if (ph->core->core_fd >= 0)
49    close(ph->core->core_fd);
50
51  // close exec file descriptor
52  if (ph->core->exec_fd >= 0)
53    close(ph->core->exec_fd);
54
55  // close interp file descriptor
56  if (ph->core->interp_fd >= 0)
57    close(ph->core->interp_fd);
58
59  // close class share archive file
60  if (ph->core->classes_jsa_fd >= 0)
61    close(ph->core->classes_jsa_fd);
62
63  // close all library file descriptors
64  lib = ph->libs;
65  while (lib) {
66    int fd = lib->fd;
67    if (fd >= 0 && fd != ph->core->exec_fd) {
68      close(fd);
69    }
70    lib = lib->next;
71  }
72}
73
74// clean all map_info stuff
75static void destroy_map_info(struct ps_prochandle* ph) {
76  map_info* map = ph->core->maps;
77  while (map) {
78    map_info* next = map->next;
79    free(map);
80    map = next;
81  }
82
83  if (ph->core->map_array) {
84    free(ph->core->map_array);
85  }
86
87  // Part of the class sharing workaround
88  map = ph->core->class_share_maps;
89  while (map) {
90    map_info* next = map->next;
91    free(map);
92    map = next;
93  }
94}
95
96// ps_prochandle operations
97static void core_release(struct ps_prochandle* ph) {
98  if (ph->core) {
99    close_files(ph);
100    destroy_map_info(ph);
101    free(ph->core);
102  }
103}
104
105static map_info* allocate_init_map(int fd, off_t offset, uintptr_t vaddr, size_t memsz) {
106  map_info* map;
107  if ( (map = (map_info*) calloc(1, sizeof(map_info))) == NULL) {
108    print_debug("can't allocate memory for map_info\n");
109    return NULL;
110  }
111
112  // initialize map
113  map->fd     = fd;
114  map->offset = offset;
115  map->vaddr  = vaddr;
116  map->memsz  = memsz;
117  return map;
118}
119
120// add map info with given fd, offset, vaddr and memsz
121static map_info* add_map_info(struct ps_prochandle* ph, int fd, off_t offset,
122                             uintptr_t vaddr, size_t memsz) {
123  map_info* map;
124  if ((map = allocate_init_map(fd, offset, vaddr, memsz)) == NULL) {
125    return NULL;
126  }
127
128  // add this to map list
129  map->next  = ph->core->maps;
130  ph->core->maps   = map;
131  ph->core->num_maps++;
132
133  return map;
134}
135
136// Part of the class sharing workaround
137static map_info* add_class_share_map_info(struct ps_prochandle* ph, off_t offset,
138                             uintptr_t vaddr, size_t memsz) {
139  map_info* map;
140  if ((map = allocate_init_map(ph->core->classes_jsa_fd,
141                               offset, vaddr, memsz)) == NULL) {
142    return NULL;
143  }
144
145  map->next = ph->core->class_share_maps;
146  ph->core->class_share_maps = map;
147  return map;
148}
149
150// Return the map_info for the given virtual address.  We keep a sorted
151// array of pointers in ph->map_array, so we can binary search.
152static map_info* core_lookup(struct ps_prochandle *ph, uintptr_t addr) {
153  int mid, lo = 0, hi = ph->core->num_maps - 1;
154  map_info *mp;
155
156  while (hi - lo > 1) {
157    mid = (lo + hi) / 2;
158    if (addr >= ph->core->map_array[mid]->vaddr) {
159      lo = mid;
160    } else {
161      hi = mid;
162    }
163  }
164
165  if (addr < ph->core->map_array[hi]->vaddr) {
166    mp = ph->core->map_array[lo];
167  } else {
168    mp = ph->core->map_array[hi];
169  }
170
171  if (addr >= mp->vaddr && addr < mp->vaddr + mp->memsz) {
172    return (mp);
173  }
174
175
176  // Part of the class sharing workaround
177  // Unfortunately, we have no way of detecting -Xshare state.
178  // Check out the share maps atlast, if we don't find anywhere.
179  // This is done this way so to avoid reading share pages
180  // ahead of other normal maps. For eg. with -Xshare:off we don't
181  // want to prefer class sharing data to data from core.
182  mp = ph->core->class_share_maps;
183  if (mp) {
184    print_debug("can't locate map_info at 0x%lx, trying class share maps\n", addr);
185  }
186  while (mp) {
187    if (addr >= mp->vaddr && addr < mp->vaddr + mp->memsz) {
188      print_debug("located map_info at 0x%lx from class share maps\n", addr);
189      return (mp);
190    }
191    mp = mp->next;
192  }
193
194  print_debug("can't locate map_info at 0x%lx\n", addr);
195  return (NULL);
196}
197
198//---------------------------------------------------------------
199// Part of the class sharing workaround:
200//
201// With class sharing, pages are mapped from classes.jsa file.
202// The read-only class sharing pages are mapped as MAP_SHARED,
203// PROT_READ pages. These pages are not dumped into core dump.
204// With this workaround, these pages are read from classes.jsa.
205
206// FIXME: !HACK ALERT!
207// The format of sharing achive file header is needed to read shared heap
208// file mappings. For now, I am hard coding portion of FileMapHeader here.
209// Refer to filemap.hpp.
210
211// FileMapHeader describes the shared space data in the file to be
212// mapped.  This structure gets written to a file.  It is not a class,
213// so that the compilers don't add any compiler-private data to it.
214
215#define NUM_SHARED_MAPS 4
216
217// Refer to FileMapInfo::_current_version in filemap.hpp
218#define CURRENT_ARCHIVE_VERSION 1
219
220struct FileMapHeader {
221  int   _magic;              // identify file type.
222  int   _version;            // (from enum, above.)
223  size_t _alignment;         // how shared archive should be aligned
224
225  struct space_info {
226    int    _file_offset;     // sizeof(this) rounded to vm page size
227    char*  _base;            // copy-on-write base address
228    size_t _capacity;        // for validity checking
229    size_t _used;            // for setting space top on read
230
231    // 4991491 NOTICE These are C++ bool's in filemap.hpp and must match up with
232    // the C type matching the C++ bool type on any given platform.
233    // We assume the corresponding C type is char but licensees
234    // may need to adjust the type of these fields.
235    char   _read_only;       // read only space?
236    char   _allow_exec;      // executable code in space?
237
238  } _space[NUM_SHARED_MAPS];
239
240  // Ignore the rest of the FileMapHeader. We don't need those fields here.
241};
242
243static bool read_jboolean(struct ps_prochandle* ph, uintptr_t addr, jboolean* pvalue) {
244  jboolean i;
245  if (ps_pdread(ph, (psaddr_t) addr, &i, sizeof(i)) == PS_OK) {
246    *pvalue = i;
247    return true;
248  } else {
249    return false;
250  }
251}
252
253static bool read_pointer(struct ps_prochandle* ph, uintptr_t addr, uintptr_t* pvalue) {
254  uintptr_t uip;
255  if (ps_pdread(ph, (psaddr_t) addr, (char *)&uip, sizeof(uip)) == PS_OK) {
256    *pvalue = uip;
257    return true;
258  } else {
259    return false;
260  }
261}
262
263// used to read strings from debuggee
264static bool read_string(struct ps_prochandle* ph, uintptr_t addr, char* buf, size_t size) {
265  size_t i = 0;
266  char  c = ' ';
267
268  while (c != '\0') {
269    if (ps_pdread(ph, (psaddr_t) addr, &c, sizeof(char)) != PS_OK) {
270      return false;
271    }
272    if (i < size - 1) {
273      buf[i] = c;
274    } else {
275      // smaller buffer
276      return false;
277    }
278    i++; addr++;
279  }
280
281  buf[i] = '\0';
282  return true;
283}
284
285#define USE_SHARED_SPACES_SYM "UseSharedSpaces"
286// mangled name of Arguments::SharedArchivePath
287#define SHARED_ARCHIVE_PATH_SYM "_ZN9Arguments17SharedArchivePathE"
288#define LIBJVM_NAME "/libjvm.so"
289
290static bool init_classsharing_workaround(struct ps_prochandle* ph) {
291  lib_info* lib = ph->libs;
292  while (lib != NULL) {
293    // we are iterating over shared objects from the core dump. look for
294    // libjvm.so.
295    const char *jvm_name = 0;
296    if ((jvm_name = strstr(lib->name, LIBJVM_NAME)) != 0) {
297      char classes_jsa[PATH_MAX];
298      struct FileMapHeader header;
299      int fd = -1;
300      int m = 0;
301      size_t n = 0;
302      uintptr_t base = 0, useSharedSpacesAddr = 0;
303      uintptr_t sharedArchivePathAddrAddr = 0, sharedArchivePathAddr = 0;
304      jboolean useSharedSpaces = 0;
305      map_info* mi = 0;
306
307      memset(classes_jsa, 0, sizeof(classes_jsa));
308      jvm_name = lib->name;
309      useSharedSpacesAddr = lookup_symbol(ph, jvm_name, USE_SHARED_SPACES_SYM);
310      if (useSharedSpacesAddr == 0) {
311        print_debug("can't lookup 'UseSharedSpaces' flag\n");
312        return false;
313      }
314
315      // Hotspot vm types are not exported to build this library. So
316      // using equivalent type jboolean to read the value of
317      // UseSharedSpaces which is same as hotspot type "bool".
318      if (read_jboolean(ph, useSharedSpacesAddr, &useSharedSpaces) != true) {
319        print_debug("can't read the value of 'UseSharedSpaces' flag\n");
320        return false;
321      }
322
323      if ((int)useSharedSpaces == 0) {
324        print_debug("UseSharedSpaces is false, assuming -Xshare:off!\n");
325        return true;
326      }
327
328      sharedArchivePathAddrAddr = lookup_symbol(ph, jvm_name, SHARED_ARCHIVE_PATH_SYM);
329      if (sharedArchivePathAddrAddr == 0) {
330        print_debug("can't lookup shared archive path symbol\n");
331        return false;
332      }
333
334      if (read_pointer(ph, sharedArchivePathAddrAddr, &sharedArchivePathAddr) != true) {
335        print_debug("can't read shared archive path pointer\n");
336        return false;
337      }
338
339      if (read_string(ph, sharedArchivePathAddr, classes_jsa, sizeof(classes_jsa)) != true) {
340        print_debug("can't read shared archive path value\n");
341        return false;
342      }
343
344      print_debug("looking for %s\n", classes_jsa);
345      // open the class sharing archive file
346      fd = pathmap_open(classes_jsa);
347      if (fd < 0) {
348        print_debug("can't open %s!\n", classes_jsa);
349        ph->core->classes_jsa_fd = -1;
350        return false;
351      } else {
352        print_debug("opened %s\n", classes_jsa);
353      }
354
355      // read FileMapHeader from the file
356      memset(&header, 0, sizeof(struct FileMapHeader));
357      if ((n = read(fd, &header, sizeof(struct FileMapHeader)))
358           != sizeof(struct FileMapHeader)) {
359        print_debug("can't read shared archive file map header from %s\n", classes_jsa);
360        close(fd);
361        return false;
362      }
363
364      // check file magic
365      if (header._magic != 0xf00baba2) {
366        print_debug("%s has bad shared archive file magic number 0x%x, expecing 0xf00baba2\n",
367                     classes_jsa, header._magic);
368        close(fd);
369        return false;
370      }
371
372      // check version
373      if (header._version != CURRENT_ARCHIVE_VERSION) {
374        print_debug("%s has wrong shared archive file version %d, expecting %d\n",
375                     classes_jsa, header._version, CURRENT_ARCHIVE_VERSION);
376        close(fd);
377        return false;
378      }
379
380      ph->core->classes_jsa_fd = fd;
381      // add read-only maps from classes.jsa to the list of maps
382      for (m = 0; m < NUM_SHARED_MAPS; m++) {
383        if (header._space[m]._read_only) {
384          base = (uintptr_t) header._space[m]._base;
385          // no need to worry about the fractional pages at-the-end.
386          // possible fractional pages are handled by core_read_data.
387          add_class_share_map_info(ph, (off_t) header._space[m]._file_offset,
388                                   base, (size_t) header._space[m]._used);
389          print_debug("added a share archive map at 0x%lx\n", base);
390        }
391      }
392      return true;
393   }
394   lib = lib->next;
395  }
396  return true;
397}
398
399
400//---------------------------------------------------------------------------
401// functions to handle map_info
402
403// Order mappings based on virtual address.  We use this function as the
404// callback for sorting the array of map_info pointers.
405static int core_cmp_mapping(const void *lhsp, const void *rhsp)
406{
407  const map_info *lhs = *((const map_info **)lhsp);
408  const map_info *rhs = *((const map_info **)rhsp);
409
410  if (lhs->vaddr == rhs->vaddr) {
411    return (0);
412  }
413
414  return (lhs->vaddr < rhs->vaddr ? -1 : 1);
415}
416
417// we sort map_info by starting virtual address so that we can do
418// binary search to read from an address.
419static bool sort_map_array(struct ps_prochandle* ph) {
420  size_t num_maps = ph->core->num_maps;
421  map_info* map = ph->core->maps;
422  int i = 0;
423
424  // allocate map_array
425  map_info** array;
426  if ( (array = (map_info**) malloc(sizeof(map_info*) * num_maps)) == NULL) {
427    print_debug("can't allocate memory for map array\n");
428    return false;
429  }
430
431  // add maps to array
432  while (map) {
433    array[i] = map;
434    i++;
435    map = map->next;
436  }
437
438  // sort is called twice. If this is second time, clear map array
439  if (ph->core->map_array) {
440    free(ph->core->map_array);
441  }
442
443  ph->core->map_array = array;
444  // sort the map_info array by base virtual address.
445  qsort(ph->core->map_array, ph->core->num_maps, sizeof (map_info*),
446        core_cmp_mapping);
447
448  // print map
449  if (is_debug()) {
450    int j = 0;
451    print_debug("---- sorted virtual address map ----\n");
452    for (j = 0; j < ph->core->num_maps; j++) {
453      print_debug("base = 0x%lx\tsize = %zu\n", ph->core->map_array[j]->vaddr,
454                  ph->core->map_array[j]->memsz);
455    }
456  }
457
458  return true;
459}
460
461#ifndef MIN
462#define MIN(x, y) (((x) < (y))? (x): (y))
463#endif
464
465static bool core_read_data(struct ps_prochandle* ph, uintptr_t addr, char *buf, size_t size) {
466   ssize_t resid = size;
467   int page_size=sysconf(_SC_PAGE_SIZE);
468   while (resid != 0) {
469      map_info *mp = core_lookup(ph, addr);
470      uintptr_t mapoff;
471      ssize_t len, rem;
472      off_t off;
473      int fd;
474
475      if (mp == NULL) {
476         break;  /* No mapping for this address */
477      }
478
479      fd = mp->fd;
480      mapoff = addr - mp->vaddr;
481      len = MIN(resid, mp->memsz - mapoff);
482      off = mp->offset + mapoff;
483
484      if ((len = pread(fd, buf, len, off)) <= 0) {
485         break;
486      }
487
488      resid -= len;
489      addr += len;
490      buf = (char *)buf + len;
491
492      // mappings always start at page boundary. But, may end in fractional
493      // page. fill zeros for possible fractional page at the end of a mapping.
494      rem = mp->memsz % page_size;
495      if (rem > 0) {
496         rem = page_size - rem;
497         len = MIN(resid, rem);
498         resid -= len;
499         addr += len;
500         // we are not assuming 'buf' to be zero initialized.
501         memset(buf, 0, len);
502         buf += len;
503      }
504   }
505
506   if (resid) {
507      print_debug("core read failed for %d byte(s) @ 0x%lx (%d more bytes)\n",
508              size, addr, resid);
509      return false;
510   } else {
511      return true;
512   }
513}
514
515// null implementation for write
516static bool core_write_data(struct ps_prochandle* ph,
517                             uintptr_t addr, const char *buf , size_t size) {
518   return false;
519}
520
521static bool core_get_lwp_regs(struct ps_prochandle* ph, lwpid_t lwp_id,
522                          struct user_regs_struct* regs) {
523   // for core we have cached the lwp regs from NOTE section
524   thread_info* thr = ph->threads;
525   while (thr) {
526     if (thr->lwp_id == lwp_id) {
527       memcpy(regs, &thr->regs, sizeof(struct user_regs_struct));
528       return true;
529     }
530     thr = thr->next;
531   }
532   return false;
533}
534
535static ps_prochandle_ops core_ops = {
536   .release=  core_release,
537   .p_pread=  core_read_data,
538   .p_pwrite= core_write_data,
539   .get_lwp_regs= core_get_lwp_regs
540};
541
542// read regs and create thread from NT_PRSTATUS entries from core file
543static bool core_handle_prstatus(struct ps_prochandle* ph, const char* buf, size_t nbytes) {
544   // we have to read prstatus_t from buf
545   // assert(nbytes == sizeof(prstaus_t), "size mismatch on prstatus_t");
546   prstatus_t* prstat = (prstatus_t*) buf;
547   thread_info* newthr;
548   print_debug("got integer regset for lwp %d\n", prstat->pr_pid);
549   // we set pthread_t to -1 for core dump
550   if((newthr = add_thread_info(ph, (pthread_t) -1,  prstat->pr_pid)) == NULL)
551      return false;
552
553   // copy regs
554   memcpy(&newthr->regs, prstat->pr_reg, sizeof(struct user_regs_struct));
555
556   if (is_debug()) {
557      print_debug("integer regset\n");
558#ifdef i386
559      // print the regset
560      print_debug("\teax = 0x%x\n", newthr->regs.eax);
561      print_debug("\tebx = 0x%x\n", newthr->regs.ebx);
562      print_debug("\tecx = 0x%x\n", newthr->regs.ecx);
563      print_debug("\tedx = 0x%x\n", newthr->regs.edx);
564      print_debug("\tesp = 0x%x\n", newthr->regs.esp);
565      print_debug("\tebp = 0x%x\n", newthr->regs.ebp);
566      print_debug("\tesi = 0x%x\n", newthr->regs.esi);
567      print_debug("\tedi = 0x%x\n", newthr->regs.edi);
568      print_debug("\teip = 0x%x\n", newthr->regs.eip);
569#endif
570
571#if defined(amd64) || defined(x86_64)
572      // print the regset
573      print_debug("\tr15 = 0x%lx\n", newthr->regs.r15);
574      print_debug("\tr14 = 0x%lx\n", newthr->regs.r14);
575      print_debug("\tr13 = 0x%lx\n", newthr->regs.r13);
576      print_debug("\tr12 = 0x%lx\n", newthr->regs.r12);
577      print_debug("\trbp = 0x%lx\n", newthr->regs.rbp);
578      print_debug("\trbx = 0x%lx\n", newthr->regs.rbx);
579      print_debug("\tr11 = 0x%lx\n", newthr->regs.r11);
580      print_debug("\tr10 = 0x%lx\n", newthr->regs.r10);
581      print_debug("\tr9 = 0x%lx\n", newthr->regs.r9);
582      print_debug("\tr8 = 0x%lx\n", newthr->regs.r8);
583      print_debug("\trax = 0x%lx\n", newthr->regs.rax);
584      print_debug("\trcx = 0x%lx\n", newthr->regs.rcx);
585      print_debug("\trdx = 0x%lx\n", newthr->regs.rdx);
586      print_debug("\trsi = 0x%lx\n", newthr->regs.rsi);
587      print_debug("\trdi = 0x%lx\n", newthr->regs.rdi);
588      print_debug("\torig_rax = 0x%lx\n", newthr->regs.orig_rax);
589      print_debug("\trip = 0x%lx\n", newthr->regs.rip);
590      print_debug("\tcs = 0x%lx\n", newthr->regs.cs);
591      print_debug("\teflags = 0x%lx\n", newthr->regs.eflags);
592      print_debug("\trsp = 0x%lx\n", newthr->regs.rsp);
593      print_debug("\tss = 0x%lx\n", newthr->regs.ss);
594      print_debug("\tfs_base = 0x%lx\n", newthr->regs.fs_base);
595      print_debug("\tgs_base = 0x%lx\n", newthr->regs.gs_base);
596      print_debug("\tds = 0x%lx\n", newthr->regs.ds);
597      print_debug("\tes = 0x%lx\n", newthr->regs.es);
598      print_debug("\tfs = 0x%lx\n", newthr->regs.fs);
599      print_debug("\tgs = 0x%lx\n", newthr->regs.gs);
600#endif
601   }
602
603   return true;
604}
605
606#define ROUNDUP(x, y)  ((((x)+((y)-1))/(y))*(y))
607
608// read NT_PRSTATUS entries from core NOTE segment
609static bool core_handle_note(struct ps_prochandle* ph, ELF_PHDR* note_phdr) {
610   char* buf = NULL;
611   char* p = NULL;
612   size_t size = note_phdr->p_filesz;
613
614   // we are interested in just prstatus entries. we will ignore the rest.
615   // Advance the seek pointer to the start of the PT_NOTE data
616   if (lseek(ph->core->core_fd, note_phdr->p_offset, SEEK_SET) == (off_t)-1) {
617      print_debug("failed to lseek to PT_NOTE data\n");
618      return false;
619   }
620
621   // Now process the PT_NOTE structures.  Each one is preceded by
622   // an Elf{32/64}_Nhdr structure describing its type and size.
623   if ( (buf = (char*) malloc(size)) == NULL) {
624      print_debug("can't allocate memory for reading core notes\n");
625      goto err;
626   }
627
628   // read notes into buffer
629   if (read(ph->core->core_fd, buf, size) != size) {
630      print_debug("failed to read notes, core file must have been truncated\n");
631      goto err;
632   }
633
634   p = buf;
635   while (p < buf + size) {
636      ELF_NHDR* notep = (ELF_NHDR*) p;
637      char* descdata  = p + sizeof(ELF_NHDR) + ROUNDUP(notep->n_namesz, 4);
638      print_debug("Note header with n_type = %d and n_descsz = %u\n",
639                                   notep->n_type, notep->n_descsz);
640
641      if (notep->n_type == NT_PRSTATUS) {
642        if (core_handle_prstatus(ph, descdata, notep->n_descsz) != true) {
643          return false;
644        }
645      } else if (notep->n_type == NT_AUXV) {
646        // Get first segment from entry point
647        ELF_AUXV *auxv = (ELF_AUXV *)descdata;
648        while (auxv->a_type != AT_NULL) {
649          if (auxv->a_type == AT_ENTRY) {
650            // Set entry point address to address of dynamic section.
651            // We will adjust it in read_exec_segments().
652            ph->core->dynamic_addr = auxv->a_un.a_val;
653            break;
654          }
655          auxv++;
656        }
657      }
658      p = descdata + ROUNDUP(notep->n_descsz, 4);
659   }
660
661   free(buf);
662   return true;
663
664err:
665   if (buf) free(buf);
666   return false;
667}
668
669// read all segments from core file
670static bool read_core_segments(struct ps_prochandle* ph, ELF_EHDR* core_ehdr) {
671   int i = 0;
672   ELF_PHDR* phbuf = NULL;
673   ELF_PHDR* core_php = NULL;
674
675   if ((phbuf =  read_program_header_table(ph->core->core_fd, core_ehdr)) == NULL)
676      return false;
677
678   /*
679    * Now iterate through the program headers in the core file.
680    * We're interested in two types of Phdrs: PT_NOTE (which
681    * contains a set of saved /proc structures), and PT_LOAD (which
682    * represents a memory mapping from the process's address space).
683    *
684    * Difference b/w Solaris PT_NOTE and Linux/BSD PT_NOTE:
685    *
686    *     In Solaris there are two PT_NOTE segments the first PT_NOTE (if present)
687    *     contains /proc structs in the pre-2.6 unstructured /proc format. the last
688    *     PT_NOTE has data in new /proc format.
689    *
690    *     In Solaris, there is only one pstatus (process status). pstatus contains
691    *     integer register set among other stuff. For each LWP, we have one lwpstatus
692    *     entry that has integer regset for that LWP.
693    *
694    *     Linux threads are actually 'clone'd processes. To support core analysis
695    *     of "multithreaded" process, Linux creates more than one pstatus (called
696    *     "prstatus") entry in PT_NOTE. Each prstatus entry has integer regset for one
697    *     "thread". Please refer to Linux kernel src file 'fs/binfmt_elf.c', in particular
698    *     function "elf_core_dump".
699    */
700
701    for (core_php = phbuf, i = 0; i < core_ehdr->e_phnum; i++) {
702      switch (core_php->p_type) {
703         case PT_NOTE:
704            if (core_handle_note(ph, core_php) != true) {
705              goto err;
706            }
707            break;
708
709         case PT_LOAD: {
710            if (core_php->p_filesz != 0) {
711               if (add_map_info(ph, ph->core->core_fd, core_php->p_offset,
712                  core_php->p_vaddr, core_php->p_filesz) == NULL) goto err;
713            }
714            break;
715         }
716      }
717
718      core_php++;
719   }
720
721   free(phbuf);
722   return true;
723err:
724   free(phbuf);
725   return false;
726}
727
728// read segments of a shared object
729static bool read_lib_segments(struct ps_prochandle* ph, int lib_fd, ELF_EHDR* lib_ehdr, uintptr_t lib_base) {
730  int i = 0;
731  ELF_PHDR* phbuf;
732  ELF_PHDR* lib_php = NULL;
733
734  int page_size = sysconf(_SC_PAGE_SIZE);
735
736  if ((phbuf = read_program_header_table(lib_fd, lib_ehdr)) == NULL) {
737    return false;
738  }
739
740  // we want to process only PT_LOAD segments that are not writable.
741  // i.e., text segments. The read/write/exec (data) segments would
742  // have been already added from core file segments.
743  for (lib_php = phbuf, i = 0; i < lib_ehdr->e_phnum; i++) {
744    if ((lib_php->p_type == PT_LOAD) && !(lib_php->p_flags & PF_W) && (lib_php->p_filesz != 0)) {
745
746      uintptr_t target_vaddr = lib_php->p_vaddr + lib_base;
747      map_info *existing_map = core_lookup(ph, target_vaddr);
748
749      if (existing_map == NULL){
750        if (add_map_info(ph, lib_fd, lib_php->p_offset,
751                          target_vaddr, lib_php->p_memsz) == NULL) {
752          goto err;
753        }
754      } else {
755        // Coredump stores value of p_memsz elf field
756        // rounded up to page boundary.
757
758        if ((existing_map->memsz != page_size) &&
759            (existing_map->fd != lib_fd) &&
760            (ROUNDUP(existing_map->memsz, page_size) != ROUNDUP(lib_php->p_memsz, page_size))) {
761
762          print_debug("address conflict @ 0x%lx (existing map size = %ld, size = %ld, flags = %d)\n",
763                        target_vaddr, existing_map->memsz, lib_php->p_memsz, lib_php->p_flags);
764          goto err;
765        }
766
767        /* replace PT_LOAD segment with library segment */
768        print_debug("overwrote with new address mapping (memsz %ld -> %ld)\n",
769                     existing_map->memsz, ROUNDUP(lib_php->p_memsz, page_size));
770
771        existing_map->fd = lib_fd;
772        existing_map->offset = lib_php->p_offset;
773        existing_map->memsz = ROUNDUP(lib_php->p_memsz, page_size);
774      }
775    }
776
777    lib_php++;
778  }
779
780  free(phbuf);
781  return true;
782err:
783  free(phbuf);
784  return false;
785}
786
787// process segments from interpreter (ld.so or ld-linux.so)
788static bool read_interp_segments(struct ps_prochandle* ph) {
789  ELF_EHDR interp_ehdr;
790
791  if (read_elf_header(ph->core->interp_fd, &interp_ehdr) != true) {
792    print_debug("interpreter is not a valid ELF file\n");
793    return false;
794  }
795
796  if (read_lib_segments(ph, ph->core->interp_fd, &interp_ehdr, ph->core->ld_base_addr) != true) {
797    print_debug("can't read segments of interpreter\n");
798    return false;
799  }
800
801  return true;
802}
803
804// process segments of a a.out
805static bool read_exec_segments(struct ps_prochandle* ph, ELF_EHDR* exec_ehdr) {
806  int i = 0;
807  ELF_PHDR* phbuf = NULL;
808  ELF_PHDR* exec_php = NULL;
809
810  if ((phbuf = read_program_header_table(ph->core->exec_fd, exec_ehdr)) == NULL) {
811    return false;
812  }
813
814  for (exec_php = phbuf, i = 0; i < exec_ehdr->e_phnum; i++) {
815    switch (exec_php->p_type) {
816
817      // add mappings for PT_LOAD segments
818    case PT_LOAD: {
819      // add only non-writable segments of non-zero filesz
820      if (!(exec_php->p_flags & PF_W) && exec_php->p_filesz != 0) {
821        if (add_map_info(ph, ph->core->exec_fd, exec_php->p_offset, exec_php->p_vaddr, exec_php->p_filesz) == NULL) goto err;
822      }
823      break;
824    }
825
826    // read the interpreter and it's segments
827    case PT_INTERP: {
828      char interp_name[BUF_SIZE + 1];
829
830      // BUF_SIZE is PATH_MAX + NAME_MAX + 1.
831      if (exec_php->p_filesz > BUF_SIZE) {
832        goto err;
833      }
834      pread(ph->core->exec_fd, interp_name, exec_php->p_filesz, exec_php->p_offset);
835      interp_name[exec_php->p_filesz] = '\0';
836      print_debug("ELF interpreter %s\n", interp_name);
837      // read interpreter segments as well
838      if ((ph->core->interp_fd = pathmap_open(interp_name)) < 0) {
839        print_debug("can't open runtime loader\n");
840        goto err;
841      }
842      break;
843    }
844
845    // from PT_DYNAMIC we want to read address of first link_map addr
846    case PT_DYNAMIC: {
847      if (exec_ehdr->e_type == ET_EXEC) {
848        ph->core->dynamic_addr = exec_php->p_vaddr;
849      } else { // ET_DYN
850        // dynamic_addr has entry point of executable.
851        // Thus we should substract it.
852        ph->core->dynamic_addr += exec_php->p_vaddr - exec_ehdr->e_entry;
853      }
854      print_debug("address of _DYNAMIC is 0x%lx\n", ph->core->dynamic_addr);
855      break;
856    }
857
858    } // switch
859    exec_php++;
860  } // for
861
862  free(phbuf);
863  return true;
864 err:
865  free(phbuf);
866  return false;
867}
868
869
870#define FIRST_LINK_MAP_OFFSET offsetof(struct r_debug,  r_map)
871#define LD_BASE_OFFSET        offsetof(struct r_debug,  r_ldbase)
872#define LINK_MAP_ADDR_OFFSET  offsetof(struct link_map, l_addr)
873#define LINK_MAP_NAME_OFFSET  offsetof(struct link_map, l_name)
874#define LINK_MAP_NEXT_OFFSET  offsetof(struct link_map, l_next)
875
876// read shared library info from runtime linker's data structures.
877// This work is done by librtlb_db in Solaris
878static bool read_shared_lib_info(struct ps_prochandle* ph) {
879  uintptr_t addr = ph->core->dynamic_addr;
880  uintptr_t debug_base;
881  uintptr_t first_link_map_addr;
882  uintptr_t ld_base_addr;
883  uintptr_t link_map_addr;
884  uintptr_t lib_base_diff;
885  uintptr_t lib_base;
886  uintptr_t lib_name_addr;
887  char lib_name[BUF_SIZE];
888  ELF_DYN dyn;
889  ELF_EHDR elf_ehdr;
890  int lib_fd;
891
892  // _DYNAMIC has information of the form
893  //         [tag] [data] [tag] [data] .....
894  // Both tag and data are pointer sized.
895  // We look for dynamic info with DT_DEBUG. This has shared object info.
896  // refer to struct r_debug in link.h
897
898  dyn.d_tag = DT_NULL;
899  while (dyn.d_tag != DT_DEBUG) {
900    if (ps_pdread(ph, (psaddr_t) addr, &dyn, sizeof(ELF_DYN)) != PS_OK) {
901      print_debug("can't read debug info from _DYNAMIC\n");
902      return false;
903    }
904    addr += sizeof(ELF_DYN);
905  }
906
907  // we have got Dyn entry with DT_DEBUG
908  debug_base = dyn.d_un.d_ptr;
909  // at debug_base we have struct r_debug. This has first link map in r_map field
910  if (ps_pdread(ph, (psaddr_t) debug_base + FIRST_LINK_MAP_OFFSET,
911                 &first_link_map_addr, sizeof(uintptr_t)) != PS_OK) {
912    print_debug("can't read first link map address\n");
913    return false;
914  }
915
916  // read ld_base address from struct r_debug
917  if (ps_pdread(ph, (psaddr_t) debug_base + LD_BASE_OFFSET, &ld_base_addr,
918                 sizeof(uintptr_t)) != PS_OK) {
919    print_debug("can't read ld base address\n");
920    return false;
921  }
922  ph->core->ld_base_addr = ld_base_addr;
923
924  print_debug("interpreter base address is 0x%lx\n", ld_base_addr);
925
926  // now read segments from interp (i.e ld.so or ld-linux.so or ld-elf.so)
927  if (read_interp_segments(ph) != true) {
928      return false;
929  }
930
931  // after adding interpreter (ld.so) mappings sort again
932  if (sort_map_array(ph) != true) {
933    return false;
934  }
935
936   print_debug("first link map is at 0x%lx\n", first_link_map_addr);
937
938   link_map_addr = first_link_map_addr;
939   while (link_map_addr != 0) {
940      // read library base address of the .so. Note that even though <sys/link.h> calls
941      // link_map->l_addr as "base address",  this is * not * really base virtual
942      // address of the shared object. This is actually the difference b/w the virtual
943      // address mentioned in shared object and the actual virtual base where runtime
944      // linker loaded it. We use "base diff" in read_lib_segments call below.
945
946      if (ps_pdread(ph, (psaddr_t) link_map_addr + LINK_MAP_ADDR_OFFSET,
947                   &lib_base_diff, sizeof(uintptr_t)) != PS_OK) {
948         print_debug("can't read shared object base address diff\n");
949         return false;
950      }
951
952      // read address of the name
953      if (ps_pdread(ph, (psaddr_t) link_map_addr + LINK_MAP_NAME_OFFSET,
954                    &lib_name_addr, sizeof(uintptr_t)) != PS_OK) {
955         print_debug("can't read address of shared object name\n");
956         return false;
957      }
958
959      // read name of the shared object
960      lib_name[0] = '\0';
961      if (lib_name_addr != 0 &&
962          read_string(ph, (uintptr_t) lib_name_addr, lib_name, sizeof(lib_name)) != true) {
963         print_debug("can't read shared object name\n");
964         // don't let failure to read the name stop opening the file.  If something is really wrong
965         // it will fail later.
966      }
967
968      if (lib_name[0] != '\0') {
969         // ignore empty lib names
970         lib_fd = pathmap_open(lib_name);
971
972         if (lib_fd < 0) {
973            print_debug("can't open shared object %s\n", lib_name);
974            // continue with other libraries...
975         } else {
976            if (read_elf_header(lib_fd, &elf_ehdr)) {
977               lib_base = lib_base_diff + find_base_address(lib_fd, &elf_ehdr);
978               print_debug("reading library %s @ 0x%lx [ 0x%lx ]\n",
979                           lib_name, lib_base, lib_base_diff);
980               // while adding library mappings we need to use "base difference".
981               if (! read_lib_segments(ph, lib_fd, &elf_ehdr, lib_base_diff)) {
982                  print_debug("can't read shared object's segments\n");
983                  close(lib_fd);
984                  return false;
985               }
986               add_lib_info_fd(ph, lib_name, lib_fd, lib_base);
987               // Map info is added for the library (lib_name) so
988               // we need to re-sort it before calling the p_pdread.
989               if (sort_map_array(ph) != true)
990                  return false;
991            } else {
992               print_debug("can't read ELF header for shared object %s\n", lib_name);
993               close(lib_fd);
994               // continue with other libraries...
995            }
996         }
997      }
998
999    // read next link_map address
1000    if (ps_pdread(ph, (psaddr_t) link_map_addr + LINK_MAP_NEXT_OFFSET,
1001                   &link_map_addr, sizeof(uintptr_t)) != PS_OK) {
1002      print_debug("can't read next link in link_map\n");
1003      return false;
1004    }
1005  }
1006
1007  return true;
1008}
1009
1010// the one and only one exposed stuff from this file
1011struct ps_prochandle* Pgrab_core(const char* exec_file, const char* core_file) {
1012  ELF_EHDR core_ehdr;
1013  ELF_EHDR exec_ehdr;
1014  ELF_EHDR lib_ehdr;
1015
1016  struct ps_prochandle* ph = (struct ps_prochandle*) calloc(1, sizeof(struct ps_prochandle));
1017  if (ph == NULL) {
1018    print_debug("can't allocate ps_prochandle\n");
1019    return NULL;
1020  }
1021
1022  if ((ph->core = (struct core_data*) calloc(1, sizeof(struct core_data))) == NULL) {
1023    free(ph);
1024    print_debug("can't allocate ps_prochandle\n");
1025    return NULL;
1026  }
1027
1028  // initialize ph
1029  ph->ops = &core_ops;
1030  ph->core->core_fd   = -1;
1031  ph->core->exec_fd   = -1;
1032  ph->core->interp_fd = -1;
1033
1034  // open the core file
1035  if ((ph->core->core_fd = open(core_file, O_RDONLY)) < 0) {
1036    print_debug("can't open core file\n");
1037    goto err;
1038  }
1039
1040  // read core file ELF header
1041  if (read_elf_header(ph->core->core_fd, &core_ehdr) != true || core_ehdr.e_type != ET_CORE) {
1042    print_debug("core file is not a valid ELF ET_CORE file\n");
1043    goto err;
1044  }
1045
1046  if ((ph->core->exec_fd = open(exec_file, O_RDONLY)) < 0) {
1047    print_debug("can't open executable file\n");
1048    goto err;
1049  }
1050
1051  if (read_elf_header(ph->core->exec_fd, &exec_ehdr) != true ||
1052      ((exec_ehdr.e_type != ET_EXEC) && (exec_ehdr.e_type != ET_DYN))) {
1053    print_debug("executable file is not a valid ELF file\n");
1054    goto err;
1055  }
1056
1057  // process core file segments
1058  if (read_core_segments(ph, &core_ehdr) != true) {
1059    goto err;
1060  }
1061
1062  // process exec file segments
1063  if (read_exec_segments(ph, &exec_ehdr) != true) {
1064    goto err;
1065  }
1066
1067  // exec file is also treated like a shared object for symbol search
1068  if (add_lib_info_fd(ph, exec_file, ph->core->exec_fd,
1069                      (uintptr_t)0 + find_base_address(ph->core->exec_fd, &exec_ehdr)) == NULL) {
1070    goto err;
1071  }
1072
1073  // allocate and sort maps into map_array, we need to do this
1074  // here because read_shared_lib_info needs to read from debuggee
1075  // address space
1076  if (sort_map_array(ph) != true) {
1077    goto err;
1078  }
1079
1080  if (read_shared_lib_info(ph) != true) {
1081    goto err;
1082  }
1083
1084  // sort again because we have added more mappings from shared objects
1085  if (sort_map_array(ph) != true) {
1086    goto err;
1087  }
1088
1089  if (init_classsharing_workaround(ph) != true) {
1090    goto err;
1091  }
1092
1093  return ph;
1094
1095err:
1096  Prelease(ph);
1097  return NULL;
1098}
1099