vm_version_x86.hpp revision 9814:22fd02fad88b
1/*
2 * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#ifndef CPU_X86_VM_VM_VERSION_X86_HPP
26#define CPU_X86_VM_VM_VERSION_X86_HPP
27
28#include "runtime/globals_extension.hpp"
29#include "runtime/vm_version.hpp"
30
31class VM_Version : public Abstract_VM_Version {
32  friend class VMStructs;
33  friend class JVMCIVMStructs;
34
35 public:
36  // cpuid result register layouts.  These are all unions of a uint32_t
37  // (in case anyone wants access to the register as a whole) and a bitfield.
38
39  union StdCpuid1Eax {
40    uint32_t value;
41    struct {
42      uint32_t stepping   : 4,
43               model      : 4,
44               family     : 4,
45               proc_type  : 2,
46                          : 2,
47               ext_model  : 4,
48               ext_family : 8,
49                          : 4;
50    } bits;
51  };
52
53  union StdCpuid1Ebx { // example, unused
54    uint32_t value;
55    struct {
56      uint32_t brand_id         : 8,
57               clflush_size     : 8,
58               threads_per_cpu  : 8,
59               apic_id          : 8;
60    } bits;
61  };
62
63  union StdCpuid1Ecx {
64    uint32_t value;
65    struct {
66      uint32_t sse3     : 1,
67               clmul    : 1,
68                        : 1,
69               monitor  : 1,
70                        : 1,
71               vmx      : 1,
72                        : 1,
73               est      : 1,
74                        : 1,
75               ssse3    : 1,
76               cid      : 1,
77                        : 2,
78               cmpxchg16: 1,
79                        : 4,
80               dca      : 1,
81               sse4_1   : 1,
82               sse4_2   : 1,
83                        : 2,
84               popcnt   : 1,
85                        : 1,
86               aes      : 1,
87                        : 1,
88               osxsave  : 1,
89               avx      : 1,
90                        : 3;
91    } bits;
92  };
93
94  union StdCpuid1Edx {
95    uint32_t value;
96    struct {
97      uint32_t          : 4,
98               tsc      : 1,
99                        : 3,
100               cmpxchg8 : 1,
101                        : 6,
102               cmov     : 1,
103                        : 3,
104               clflush  : 1,
105                        : 3,
106               mmx      : 1,
107               fxsr     : 1,
108               sse      : 1,
109               sse2     : 1,
110                        : 1,
111               ht       : 1,
112                        : 3;
113    } bits;
114  };
115
116  union DcpCpuid4Eax {
117    uint32_t value;
118    struct {
119      uint32_t cache_type    : 5,
120                             : 21,
121               cores_per_cpu : 6;
122    } bits;
123  };
124
125  union DcpCpuid4Ebx {
126    uint32_t value;
127    struct {
128      uint32_t L1_line_size  : 12,
129               partitions    : 10,
130               associativity : 10;
131    } bits;
132  };
133
134  union TplCpuidBEbx {
135    uint32_t value;
136    struct {
137      uint32_t logical_cpus : 16,
138                            : 16;
139    } bits;
140  };
141
142  union ExtCpuid1Ecx {
143    uint32_t value;
144    struct {
145      uint32_t LahfSahf     : 1,
146               CmpLegacy    : 1,
147                            : 3,
148               lzcnt_intel  : 1,
149               lzcnt        : 1,
150               sse4a        : 1,
151               misalignsse  : 1,
152               prefetchw    : 1,
153                            : 22;
154    } bits;
155  };
156
157  union ExtCpuid1Edx {
158    uint32_t value;
159    struct {
160      uint32_t           : 22,
161               mmx_amd   : 1,
162               mmx       : 1,
163               fxsr      : 1,
164                         : 4,
165               long_mode : 1,
166               tdnow2    : 1,
167               tdnow     : 1;
168    } bits;
169  };
170
171  union ExtCpuid5Ex {
172    uint32_t value;
173    struct {
174      uint32_t L1_line_size : 8,
175               L1_tag_lines : 8,
176               L1_assoc     : 8,
177               L1_size      : 8;
178    } bits;
179  };
180
181  union ExtCpuid7Edx {
182    uint32_t value;
183    struct {
184      uint32_t               : 8,
185              tsc_invariance : 1,
186                             : 23;
187    } bits;
188  };
189
190  union ExtCpuid8Ecx {
191    uint32_t value;
192    struct {
193      uint32_t cores_per_cpu : 8,
194                             : 24;
195    } bits;
196  };
197
198  union SefCpuid7Eax {
199    uint32_t value;
200  };
201
202  union SefCpuid7Ebx {
203    uint32_t value;
204    struct {
205      uint32_t fsgsbase : 1,
206                        : 2,
207                   bmi1 : 1,
208                        : 1,
209                   avx2 : 1,
210                        : 2,
211                   bmi2 : 1,
212                   erms : 1,
213                        : 1,
214                    rtm : 1,
215                        : 4,
216                avx512f : 1,
217               avx512dq : 1,
218                        : 1,
219                    adx : 1,
220                        : 6,
221               avx512pf : 1,
222               avx512er : 1,
223               avx512cd : 1,
224                        : 1,
225               avx512bw : 1,
226               avx512vl : 1;
227    } bits;
228  };
229
230  union XemXcr0Eax {
231    uint32_t value;
232    struct {
233      uint32_t x87     : 1,
234               sse     : 1,
235               ymm     : 1,
236               bndregs : 1,
237               bndcsr  : 1,
238               opmask  : 1,
239               zmm512  : 1,
240               zmm32   : 1,
241                       : 24;
242    } bits;
243  };
244
245protected:
246  static int _cpu;
247  static int _model;
248  static int _stepping;
249
250  static address   _cpuinfo_segv_addr; // address of instruction which causes SEGV
251  static address   _cpuinfo_cont_addr; // address of instruction after the one which causes SEGV
252
253  enum Feature_Flag {
254    CPU_CX8      = (1 << 0), // next bits are from cpuid 1 (EDX)
255    CPU_CMOV     = (1 << 1),
256    CPU_FXSR     = (1 << 2),
257    CPU_HT       = (1 << 3),
258    CPU_MMX      = (1 << 4),
259    CPU_3DNOW_PREFETCH = (1 << 5), // Processor supports 3dnow prefetch and prefetchw instructions
260                                   // may not necessarily support other 3dnow instructions
261    CPU_SSE      = (1 << 6),
262    CPU_SSE2     = (1 << 7),
263    CPU_SSE3     = (1 << 8),  // SSE3 comes from cpuid 1 (ECX)
264    CPU_SSSE3    = (1 << 9),
265    CPU_SSE4A    = (1 << 10),
266    CPU_SSE4_1   = (1 << 11),
267    CPU_SSE4_2   = (1 << 12),
268    CPU_POPCNT   = (1 << 13),
269    CPU_LZCNT    = (1 << 14),
270    CPU_TSC      = (1 << 15),
271    CPU_TSCINV   = (1 << 16),
272    CPU_AVX      = (1 << 17),
273    CPU_AVX2     = (1 << 18),
274    CPU_AES      = (1 << 19),
275    CPU_ERMS     = (1 << 20), // enhanced 'rep movsb/stosb' instructions
276    CPU_CLMUL    = (1 << 21), // carryless multiply for CRC
277    CPU_BMI1     = (1 << 22),
278    CPU_BMI2     = (1 << 23),
279    CPU_RTM      = (1 << 24), // Restricted Transactional Memory instructions
280    CPU_ADX      = (1 << 25),
281    CPU_AVX512F  = (1 << 26), // AVX 512bit foundation instructions
282    CPU_AVX512DQ = (1 << 27),
283    CPU_AVX512PF = (1 << 28),
284    CPU_AVX512ER = (1 << 29),
285    CPU_AVX512CD = (1 << 30),
286    CPU_AVX512BW = (1 << 31)
287  };
288
289#define CPU_AVX512VL UCONST64(0x100000000) // EVEX instructions with smaller vector length : enums are limited to 32bit
290
291  enum Extended_Family {
292    // AMD
293    CPU_FAMILY_AMD_11H       = 0x11,
294    // Intel
295    CPU_FAMILY_INTEL_CORE    = 6,
296    CPU_MODEL_NEHALEM        = 0x1e,
297    CPU_MODEL_NEHALEM_EP     = 0x1a,
298    CPU_MODEL_NEHALEM_EX     = 0x2e,
299    CPU_MODEL_WESTMERE       = 0x25,
300    CPU_MODEL_WESTMERE_EP    = 0x2c,
301    CPU_MODEL_WESTMERE_EX    = 0x2f,
302    CPU_MODEL_SANDYBRIDGE    = 0x2a,
303    CPU_MODEL_SANDYBRIDGE_EP = 0x2d,
304    CPU_MODEL_IVYBRIDGE_EP   = 0x3a,
305    CPU_MODEL_HASWELL_E3     = 0x3c,
306    CPU_MODEL_HASWELL_E7     = 0x3f,
307    CPU_MODEL_BROADWELL      = 0x3d,
308    CPU_MODEL_SKYLAKE        = CPU_MODEL_HASWELL_E3
309  };
310
311  // cpuid information block.  All info derived from executing cpuid with
312  // various function numbers is stored here.  Intel and AMD info is
313  // merged in this block: accessor methods disentangle it.
314  //
315  // The info block is laid out in subblocks of 4 dwords corresponding to
316  // eax, ebx, ecx and edx, whether or not they contain anything useful.
317  struct CpuidInfo {
318    // cpuid function 0
319    uint32_t std_max_function;
320    uint32_t std_vendor_name_0;
321    uint32_t std_vendor_name_1;
322    uint32_t std_vendor_name_2;
323
324    // cpuid function 1
325    StdCpuid1Eax std_cpuid1_eax;
326    StdCpuid1Ebx std_cpuid1_ebx;
327    StdCpuid1Ecx std_cpuid1_ecx;
328    StdCpuid1Edx std_cpuid1_edx;
329
330    // cpuid function 4 (deterministic cache parameters)
331    DcpCpuid4Eax dcp_cpuid4_eax;
332    DcpCpuid4Ebx dcp_cpuid4_ebx;
333    uint32_t     dcp_cpuid4_ecx; // unused currently
334    uint32_t     dcp_cpuid4_edx; // unused currently
335
336    // cpuid function 7 (structured extended features)
337    SefCpuid7Eax sef_cpuid7_eax;
338    SefCpuid7Ebx sef_cpuid7_ebx;
339    uint32_t     sef_cpuid7_ecx; // unused currently
340    uint32_t     sef_cpuid7_edx; // unused currently
341
342    // cpuid function 0xB (processor topology)
343    // ecx = 0
344    uint32_t     tpl_cpuidB0_eax;
345    TplCpuidBEbx tpl_cpuidB0_ebx;
346    uint32_t     tpl_cpuidB0_ecx; // unused currently
347    uint32_t     tpl_cpuidB0_edx; // unused currently
348
349    // ecx = 1
350    uint32_t     tpl_cpuidB1_eax;
351    TplCpuidBEbx tpl_cpuidB1_ebx;
352    uint32_t     tpl_cpuidB1_ecx; // unused currently
353    uint32_t     tpl_cpuidB1_edx; // unused currently
354
355    // ecx = 2
356    uint32_t     tpl_cpuidB2_eax;
357    TplCpuidBEbx tpl_cpuidB2_ebx;
358    uint32_t     tpl_cpuidB2_ecx; // unused currently
359    uint32_t     tpl_cpuidB2_edx; // unused currently
360
361    // cpuid function 0x80000000 // example, unused
362    uint32_t ext_max_function;
363    uint32_t ext_vendor_name_0;
364    uint32_t ext_vendor_name_1;
365    uint32_t ext_vendor_name_2;
366
367    // cpuid function 0x80000001
368    uint32_t     ext_cpuid1_eax; // reserved
369    uint32_t     ext_cpuid1_ebx; // reserved
370    ExtCpuid1Ecx ext_cpuid1_ecx;
371    ExtCpuid1Edx ext_cpuid1_edx;
372
373    // cpuid functions 0x80000002 thru 0x80000004: example, unused
374    uint32_t proc_name_0, proc_name_1, proc_name_2, proc_name_3;
375    uint32_t proc_name_4, proc_name_5, proc_name_6, proc_name_7;
376    uint32_t proc_name_8, proc_name_9, proc_name_10,proc_name_11;
377
378    // cpuid function 0x80000005 // AMD L1, Intel reserved
379    uint32_t     ext_cpuid5_eax; // unused currently
380    uint32_t     ext_cpuid5_ebx; // reserved
381    ExtCpuid5Ex  ext_cpuid5_ecx; // L1 data cache info (AMD)
382    ExtCpuid5Ex  ext_cpuid5_edx; // L1 instruction cache info (AMD)
383
384    // cpuid function 0x80000007
385    uint32_t     ext_cpuid7_eax; // reserved
386    uint32_t     ext_cpuid7_ebx; // reserved
387    uint32_t     ext_cpuid7_ecx; // reserved
388    ExtCpuid7Edx ext_cpuid7_edx; // tscinv
389
390    // cpuid function 0x80000008
391    uint32_t     ext_cpuid8_eax; // unused currently
392    uint32_t     ext_cpuid8_ebx; // reserved
393    ExtCpuid8Ecx ext_cpuid8_ecx;
394    uint32_t     ext_cpuid8_edx; // reserved
395
396    // extended control register XCR0 (the XFEATURE_ENABLED_MASK register)
397    XemXcr0Eax   xem_xcr0_eax;
398    uint32_t     xem_xcr0_edx; // reserved
399
400    // Space to save ymm registers after signal handle
401    int          ymm_save[8*4]; // Save ymm0, ymm7, ymm8, ymm15
402
403    // Space to save zmm registers after signal handle
404    int          zmm_save[16*4]; // Save zmm0, zmm7, zmm8, zmm31
405  };
406
407  // The actual cpuid info block
408  static CpuidInfo _cpuid_info;
409
410  // Extractors and predicates
411  static uint32_t extended_cpu_family() {
412    uint32_t result = _cpuid_info.std_cpuid1_eax.bits.family;
413    result += _cpuid_info.std_cpuid1_eax.bits.ext_family;
414    return result;
415  }
416
417  static uint32_t extended_cpu_model() {
418    uint32_t result = _cpuid_info.std_cpuid1_eax.bits.model;
419    result |= _cpuid_info.std_cpuid1_eax.bits.ext_model << 4;
420    return result;
421  }
422
423  static uint32_t cpu_stepping() {
424    uint32_t result = _cpuid_info.std_cpuid1_eax.bits.stepping;
425    return result;
426  }
427
428  static uint logical_processor_count() {
429    uint result = threads_per_core();
430    return result;
431  }
432
433  static uint64_t feature_flags() {
434    uint64_t result = 0;
435    if (_cpuid_info.std_cpuid1_edx.bits.cmpxchg8 != 0)
436      result |= CPU_CX8;
437    if (_cpuid_info.std_cpuid1_edx.bits.cmov != 0)
438      result |= CPU_CMOV;
439    if (_cpuid_info.std_cpuid1_edx.bits.fxsr != 0 || (is_amd() &&
440        _cpuid_info.ext_cpuid1_edx.bits.fxsr != 0))
441      result |= CPU_FXSR;
442    // HT flag is set for multi-core processors also.
443    if (threads_per_core() > 1)
444      result |= CPU_HT;
445    if (_cpuid_info.std_cpuid1_edx.bits.mmx != 0 || (is_amd() &&
446        _cpuid_info.ext_cpuid1_edx.bits.mmx != 0))
447      result |= CPU_MMX;
448    if (_cpuid_info.std_cpuid1_edx.bits.sse != 0)
449      result |= CPU_SSE;
450    if (_cpuid_info.std_cpuid1_edx.bits.sse2 != 0)
451      result |= CPU_SSE2;
452    if (_cpuid_info.std_cpuid1_ecx.bits.sse3 != 0)
453      result |= CPU_SSE3;
454    if (_cpuid_info.std_cpuid1_ecx.bits.ssse3 != 0)
455      result |= CPU_SSSE3;
456    if (_cpuid_info.std_cpuid1_ecx.bits.sse4_1 != 0)
457      result |= CPU_SSE4_1;
458    if (_cpuid_info.std_cpuid1_ecx.bits.sse4_2 != 0)
459      result |= CPU_SSE4_2;
460    if (_cpuid_info.std_cpuid1_ecx.bits.popcnt != 0)
461      result |= CPU_POPCNT;
462    if (_cpuid_info.std_cpuid1_ecx.bits.avx != 0 &&
463        _cpuid_info.std_cpuid1_ecx.bits.osxsave != 0 &&
464        _cpuid_info.xem_xcr0_eax.bits.sse != 0 &&
465        _cpuid_info.xem_xcr0_eax.bits.ymm != 0) {
466      result |= CPU_AVX;
467      if (_cpuid_info.sef_cpuid7_ebx.bits.avx2 != 0)
468        result |= CPU_AVX2;
469      if (_cpuid_info.sef_cpuid7_ebx.bits.avx512f != 0 &&
470          _cpuid_info.xem_xcr0_eax.bits.opmask != 0 &&
471          _cpuid_info.xem_xcr0_eax.bits.zmm512 != 0 &&
472          _cpuid_info.xem_xcr0_eax.bits.zmm32 != 0) {
473        result |= CPU_AVX512F;
474        if (_cpuid_info.sef_cpuid7_ebx.bits.avx512cd != 0)
475          result |= CPU_AVX512CD;
476        if (_cpuid_info.sef_cpuid7_ebx.bits.avx512dq != 0)
477          result |= CPU_AVX512DQ;
478        if (_cpuid_info.sef_cpuid7_ebx.bits.avx512pf != 0)
479          result |= CPU_AVX512PF;
480        if (_cpuid_info.sef_cpuid7_ebx.bits.avx512er != 0)
481          result |= CPU_AVX512ER;
482        if (_cpuid_info.sef_cpuid7_ebx.bits.avx512bw != 0)
483          result |= CPU_AVX512BW;
484        if (_cpuid_info.sef_cpuid7_ebx.bits.avx512vl != 0)
485          result |= CPU_AVX512VL;
486      }
487    }
488    if(_cpuid_info.sef_cpuid7_ebx.bits.bmi1 != 0)
489      result |= CPU_BMI1;
490    if (_cpuid_info.std_cpuid1_edx.bits.tsc != 0)
491      result |= CPU_TSC;
492    if (_cpuid_info.ext_cpuid7_edx.bits.tsc_invariance != 0)
493      result |= CPU_TSCINV;
494    if (_cpuid_info.std_cpuid1_ecx.bits.aes != 0)
495      result |= CPU_AES;
496    if (_cpuid_info.sef_cpuid7_ebx.bits.erms != 0)
497      result |= CPU_ERMS;
498    if (_cpuid_info.std_cpuid1_ecx.bits.clmul != 0)
499      result |= CPU_CLMUL;
500    if (_cpuid_info.sef_cpuid7_ebx.bits.rtm != 0)
501      result |= CPU_RTM;
502
503    // AMD features.
504    if (is_amd()) {
505      if ((_cpuid_info.ext_cpuid1_edx.bits.tdnow != 0) ||
506          (_cpuid_info.ext_cpuid1_ecx.bits.prefetchw != 0))
507        result |= CPU_3DNOW_PREFETCH;
508      if (_cpuid_info.ext_cpuid1_ecx.bits.lzcnt != 0)
509        result |= CPU_LZCNT;
510      if (_cpuid_info.ext_cpuid1_ecx.bits.sse4a != 0)
511        result |= CPU_SSE4A;
512    }
513    // Intel features.
514    if(is_intel()) {
515      if(_cpuid_info.sef_cpuid7_ebx.bits.adx != 0)
516         result |= CPU_ADX;
517      if(_cpuid_info.sef_cpuid7_ebx.bits.bmi2 != 0)
518        result |= CPU_BMI2;
519      if(_cpuid_info.ext_cpuid1_ecx.bits.lzcnt_intel != 0)
520        result |= CPU_LZCNT;
521      // for Intel, ecx.bits.misalignsse bit (bit 8) indicates support for prefetchw
522      if (_cpuid_info.ext_cpuid1_ecx.bits.misalignsse != 0) {
523        result |= CPU_3DNOW_PREFETCH;
524      }
525    }
526
527    return result;
528  }
529
530  static bool os_supports_avx_vectors() {
531    bool retVal = false;
532    if (supports_evex()) {
533      // Verify that OS save/restore all bits of EVEX registers
534      // during signal processing.
535      int nreg = 2 LP64_ONLY(+2);
536      retVal = true;
537      for (int i = 0; i < 16 * nreg; i++) { // 64 bytes per zmm register
538        if (_cpuid_info.zmm_save[i] != ymm_test_value()) {
539          retVal = false;
540          break;
541        }
542      }
543    } else if (supports_avx()) {
544      // Verify that OS save/restore all bits of AVX registers
545      // during signal processing.
546      int nreg = 2 LP64_ONLY(+2);
547      retVal = true;
548      for (int i = 0; i < 8 * nreg; i++) { // 32 bytes per ymm register
549        if (_cpuid_info.ymm_save[i] != ymm_test_value()) {
550          retVal = false;
551          break;
552        }
553      }
554      // zmm_save will be set on a EVEX enabled machine even if we choose AVX code gen
555      if (retVal == false) {
556        // Verify that OS save/restore all bits of EVEX registers
557        // during signal processing.
558        int nreg = 2 LP64_ONLY(+2);
559        retVal = true;
560        for (int i = 0; i < 16 * nreg; i++) { // 64 bytes per zmm register
561          if (_cpuid_info.zmm_save[i] != ymm_test_value()) {
562            retVal = false;
563            break;
564          }
565        }
566      }
567    }
568    return retVal;
569  }
570
571  static void get_processor_features();
572
573public:
574  // Offsets for cpuid asm stub
575  static ByteSize std_cpuid0_offset() { return byte_offset_of(CpuidInfo, std_max_function); }
576  static ByteSize std_cpuid1_offset() { return byte_offset_of(CpuidInfo, std_cpuid1_eax); }
577  static ByteSize dcp_cpuid4_offset() { return byte_offset_of(CpuidInfo, dcp_cpuid4_eax); }
578  static ByteSize sef_cpuid7_offset() { return byte_offset_of(CpuidInfo, sef_cpuid7_eax); }
579  static ByteSize ext_cpuid1_offset() { return byte_offset_of(CpuidInfo, ext_cpuid1_eax); }
580  static ByteSize ext_cpuid5_offset() { return byte_offset_of(CpuidInfo, ext_cpuid5_eax); }
581  static ByteSize ext_cpuid7_offset() { return byte_offset_of(CpuidInfo, ext_cpuid7_eax); }
582  static ByteSize ext_cpuid8_offset() { return byte_offset_of(CpuidInfo, ext_cpuid8_eax); }
583  static ByteSize tpl_cpuidB0_offset() { return byte_offset_of(CpuidInfo, tpl_cpuidB0_eax); }
584  static ByteSize tpl_cpuidB1_offset() { return byte_offset_of(CpuidInfo, tpl_cpuidB1_eax); }
585  static ByteSize tpl_cpuidB2_offset() { return byte_offset_of(CpuidInfo, tpl_cpuidB2_eax); }
586  static ByteSize xem_xcr0_offset() { return byte_offset_of(CpuidInfo, xem_xcr0_eax); }
587  static ByteSize ymm_save_offset() { return byte_offset_of(CpuidInfo, ymm_save); }
588  static ByteSize zmm_save_offset() { return byte_offset_of(CpuidInfo, zmm_save); }
589
590  // The value used to check ymm register after signal handle
591  static int ymm_test_value()    { return 0xCAFEBABE; }
592
593  static void get_cpu_info_wrapper();
594  static void set_cpuinfo_segv_addr(address pc) { _cpuinfo_segv_addr = pc; }
595  static bool  is_cpuinfo_segv_addr(address pc) { return _cpuinfo_segv_addr == pc; }
596  static void set_cpuinfo_cont_addr(address pc) { _cpuinfo_cont_addr = pc; }
597  static address  cpuinfo_cont_addr()           { return _cpuinfo_cont_addr; }
598
599  static void clean_cpuFeatures()   { _features = 0; }
600  static void set_avx_cpuFeatures() { _features = (CPU_SSE | CPU_SSE2 | CPU_AVX); }
601  static void set_evex_cpuFeatures() { _features = (CPU_AVX512F | CPU_SSE | CPU_SSE2 ); }
602
603
604  // Initialization
605  static void initialize();
606
607  // Override Abstract_VM_Version implementation
608  static bool use_biased_locking();
609
610  // Asserts
611  static void assert_is_initialized() {
612    assert(_cpuid_info.std_cpuid1_eax.bits.family != 0, "VM_Version not initialized");
613  }
614
615  //
616  // Processor family:
617  //       3   -  386
618  //       4   -  486
619  //       5   -  Pentium
620  //       6   -  PentiumPro, Pentium II, Celeron, Xeon, Pentium III, Athlon,
621  //              Pentium M, Core Solo, Core Duo, Core2 Duo
622  //    family 6 model:   9,        13,       14,        15
623  //    0x0f   -  Pentium 4, Opteron
624  //
625  // Note: The cpu family should be used to select between
626  //       instruction sequences which are valid on all Intel
627  //       processors.  Use the feature test functions below to
628  //       determine whether a particular instruction is supported.
629  //
630  static int  cpu_family()        { return _cpu;}
631  static bool is_P6()             { return cpu_family() >= 6; }
632  static bool is_amd()            { assert_is_initialized(); return _cpuid_info.std_vendor_name_0 == 0x68747541; } // 'htuA'
633  static bool is_intel()          { assert_is_initialized(); return _cpuid_info.std_vendor_name_0 == 0x756e6547; } // 'uneG'
634
635  static bool supports_processor_topology() {
636    return (_cpuid_info.std_max_function >= 0xB) &&
637           // eax[4:0] | ebx[0:15] == 0 indicates invalid topology level.
638           // Some cpus have max cpuid >= 0xB but do not support processor topology.
639           (((_cpuid_info.tpl_cpuidB0_eax & 0x1f) | _cpuid_info.tpl_cpuidB0_ebx.bits.logical_cpus) != 0);
640  }
641
642  static uint cores_per_cpu()  {
643    uint result = 1;
644    if (is_intel()) {
645      bool supports_topology = supports_processor_topology();
646      if (supports_topology) {
647        result = _cpuid_info.tpl_cpuidB1_ebx.bits.logical_cpus /
648                 _cpuid_info.tpl_cpuidB0_ebx.bits.logical_cpus;
649      }
650      if (!supports_topology || result == 0) {
651        result = (_cpuid_info.dcp_cpuid4_eax.bits.cores_per_cpu + 1);
652      }
653    } else if (is_amd()) {
654      result = (_cpuid_info.ext_cpuid8_ecx.bits.cores_per_cpu + 1);
655    }
656    return result;
657  }
658
659  static uint threads_per_core()  {
660    uint result = 1;
661    if (is_intel() && supports_processor_topology()) {
662      result = _cpuid_info.tpl_cpuidB0_ebx.bits.logical_cpus;
663    } else if (_cpuid_info.std_cpuid1_edx.bits.ht != 0) {
664      result = _cpuid_info.std_cpuid1_ebx.bits.threads_per_cpu /
665               cores_per_cpu();
666    }
667    return (result == 0 ? 1 : result);
668  }
669
670  static intx L1_line_size()  {
671    intx result = 0;
672    if (is_intel()) {
673      result = (_cpuid_info.dcp_cpuid4_ebx.bits.L1_line_size + 1);
674    } else if (is_amd()) {
675      result = _cpuid_info.ext_cpuid5_ecx.bits.L1_line_size;
676    }
677    if (result < 32) // not defined ?
678      result = 32;   // 32 bytes by default on x86 and other x64
679    return result;
680  }
681
682  static intx prefetch_data_size()  {
683    return L1_line_size();
684  }
685
686  //
687  // Feature identification
688  //
689  static bool supports_cpuid()    { return _features  != 0; }
690  static bool supports_cmpxchg8() { return (_features & CPU_CX8) != 0; }
691  static bool supports_cmov()     { return (_features & CPU_CMOV) != 0; }
692  static bool supports_fxsr()     { return (_features & CPU_FXSR) != 0; }
693  static bool supports_ht()       { return (_features & CPU_HT) != 0; }
694  static bool supports_mmx()      { return (_features & CPU_MMX) != 0; }
695  static bool supports_sse()      { return (_features & CPU_SSE) != 0; }
696  static bool supports_sse2()     { return (_features & CPU_SSE2) != 0; }
697  static bool supports_sse3()     { return (_features & CPU_SSE3) != 0; }
698  static bool supports_ssse3()    { return (_features & CPU_SSSE3)!= 0; }
699  static bool supports_sse4_1()   { return (_features & CPU_SSE4_1) != 0; }
700  static bool supports_sse4_2()   { return (_features & CPU_SSE4_2) != 0; }
701  static bool supports_popcnt()   { return (_features & CPU_POPCNT) != 0; }
702  static bool supports_avx()      { return (_features & CPU_AVX) != 0; }
703  static bool supports_avx2()     { return (_features & CPU_AVX2) != 0; }
704  static bool supports_tsc()      { return (_features & CPU_TSC)    != 0; }
705  static bool supports_aes()      { return (_features & CPU_AES) != 0; }
706  static bool supports_erms()     { return (_features & CPU_ERMS) != 0; }
707  static bool supports_clmul()    { return (_features & CPU_CLMUL) != 0; }
708  static bool supports_rtm()      { return (_features & CPU_RTM) != 0; }
709  static bool supports_bmi1()     { return (_features & CPU_BMI1) != 0; }
710  static bool supports_bmi2()     { return (_features & CPU_BMI2) != 0; }
711  static bool supports_adx()      { return (_features & CPU_ADX) != 0; }
712  static bool supports_evex()     { return (_features & CPU_AVX512F) != 0; }
713  static bool supports_avx512dq() { return (_features & CPU_AVX512DQ) != 0; }
714  static bool supports_avx512pf() { return (_features & CPU_AVX512PF) != 0; }
715  static bool supports_avx512er() { return (_features & CPU_AVX512ER) != 0; }
716  static bool supports_avx512cd() { return (_features & CPU_AVX512CD) != 0; }
717  static bool supports_avx512bw() { return (_features & CPU_AVX512BW) != 0; }
718  static bool supports_avx512vl() { return (_features & CPU_AVX512VL) != 0; }
719  static bool supports_avx512vlbw() { return (supports_avx512bw() && supports_avx512vl()); }
720  static bool supports_avx512novl() { return (supports_evex() && !supports_avx512vl()); }
721  static bool supports_avx512nobw() { return (supports_evex() && !supports_avx512bw()); }
722  static bool supports_avx256only() { return (supports_avx2() && !supports_evex()); }
723  static bool supports_avxonly()    { return ((supports_avx2() || supports_avx()) && !supports_evex()); }
724  // Intel features
725  static bool is_intel_family_core() { return is_intel() &&
726                                       extended_cpu_family() == CPU_FAMILY_INTEL_CORE; }
727
728  static bool is_intel_tsc_synched_at_init()  {
729    if (is_intel_family_core()) {
730      uint32_t ext_model = extended_cpu_model();
731      if (ext_model == CPU_MODEL_NEHALEM_EP     ||
732          ext_model == CPU_MODEL_WESTMERE_EP    ||
733          ext_model == CPU_MODEL_SANDYBRIDGE_EP ||
734          ext_model == CPU_MODEL_IVYBRIDGE_EP) {
735        // <= 2-socket invariant tsc support. EX versions are usually used
736        // in > 2-socket systems and likely don't synchronize tscs at
737        // initialization.
738        // Code that uses tsc values must be prepared for them to arbitrarily
739        // jump forward or backward.
740        return true;
741      }
742    }
743    return false;
744  }
745
746  // AMD features
747  static bool supports_3dnow_prefetch()    { return (_features & CPU_3DNOW_PREFETCH) != 0; }
748  static bool supports_mmx_ext()  { return is_amd() && _cpuid_info.ext_cpuid1_edx.bits.mmx_amd != 0; }
749  static bool supports_lzcnt()    { return (_features & CPU_LZCNT) != 0; }
750  static bool supports_sse4a()    { return (_features & CPU_SSE4A) != 0; }
751
752  static bool is_amd_Barcelona()  { return is_amd() &&
753                                           extended_cpu_family() == CPU_FAMILY_AMD_11H; }
754
755  // Intel and AMD newer cores support fast timestamps well
756  static bool supports_tscinv_bit() {
757    return (_features & CPU_TSCINV) != 0;
758  }
759  static bool supports_tscinv() {
760    return supports_tscinv_bit() &&
761           ( (is_amd() && !is_amd_Barcelona()) ||
762             is_intel_tsc_synched_at_init() );
763  }
764
765  // Intel Core and newer cpus have fast IDIV instruction (excluding Atom).
766  static bool has_fast_idiv()     { return is_intel() && cpu_family() == 6 &&
767                                           supports_sse3() && _model != 0x1C; }
768
769  static bool supports_compare_and_exchange() { return true; }
770
771  static intx allocate_prefetch_distance() {
772    // This method should be called before allocate_prefetch_style().
773    //
774    // Hardware prefetching (distance/size in bytes):
775    // Pentium 3 -  64 /  32
776    // Pentium 4 - 256 / 128
777    // Athlon    -  64 /  32 ????
778    // Opteron   - 128 /  64 only when 2 sequential cache lines accessed
779    // Core      - 128 /  64
780    //
781    // Software prefetching (distance in bytes / instruction with best score):
782    // Pentium 3 - 128 / prefetchnta
783    // Pentium 4 - 512 / prefetchnta
784    // Athlon    - 128 / prefetchnta
785    // Opteron   - 256 / prefetchnta
786    // Core      - 256 / prefetchnta
787    // It will be used only when AllocatePrefetchStyle > 0
788
789    intx count = AllocatePrefetchDistance;
790    if (count < 0) {   // default ?
791      if (is_amd()) {  // AMD
792        if (supports_sse2())
793          count = 256; // Opteron
794        else
795          count = 128; // Athlon
796      } else {         // Intel
797        if (supports_sse2())
798          if (cpu_family() == 6) {
799            count = 256; // Pentium M, Core, Core2
800          } else {
801            count = 512; // Pentium 4
802          }
803        else
804          count = 128; // Pentium 3 (and all other old CPUs)
805      }
806    }
807    return count;
808  }
809  static intx allocate_prefetch_style() {
810    assert(AllocatePrefetchStyle >= 0, "AllocatePrefetchStyle should be positive");
811    // Return 0 if AllocatePrefetchDistance was not defined.
812    return AllocatePrefetchDistance > 0 ? AllocatePrefetchStyle : 0;
813  }
814
815  // Prefetch interval for gc copy/scan == 9 dcache lines.  Derived from
816  // 50-warehouse specjbb runs on a 2-way 1.8ghz opteron using a 4gb heap.
817  // Tested intervals from 128 to 2048 in increments of 64 == one cache line.
818  // 256 bytes (4 dcache lines) was the nearest runner-up to 576.
819
820  // gc copy/scan is disabled if prefetchw isn't supported, because
821  // Prefetch::write emits an inlined prefetchw on Linux.
822  // Do not use the 3dnow prefetchw instruction.  It isn't supported on em64t.
823  // The used prefetcht0 instruction works for both amd64 and em64t.
824  static intx prefetch_copy_interval_in_bytes() {
825    intx interval = PrefetchCopyIntervalInBytes;
826    return interval >= 0 ? interval : 576;
827  }
828  static intx prefetch_scan_interval_in_bytes() {
829    intx interval = PrefetchScanIntervalInBytes;
830    return interval >= 0 ? interval : 576;
831  }
832  static intx prefetch_fields_ahead() {
833    intx count = PrefetchFieldsAhead;
834    return count >= 0 ? count : 1;
835  }
836  static uint32_t get_xsave_header_lower_segment() {
837    return _cpuid_info.xem_xcr0_eax.value;
838  }
839  static uint32_t get_xsave_header_upper_segment() {
840    return _cpuid_info.xem_xcr0_edx;
841  }
842};
843
844#endif // CPU_X86_VM_VM_VERSION_X86_HPP
845