1/*
2 * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#ifndef CPU_X86_VM_VM_VERSION_X86_HPP
26#define CPU_X86_VM_VM_VERSION_X86_HPP
27
28#include "runtime/globals_extension.hpp"
29#include "runtime/vm_version.hpp"
30
31class VM_Version : public Abstract_VM_Version {
32  friend class VMStructs;
33  friend class JVMCIVMStructs;
34
35 public:
36  // cpuid result register layouts.  These are all unions of a uint32_t
37  // (in case anyone wants access to the register as a whole) and a bitfield.
38
39  union StdCpuid1Eax {
40    uint32_t value;
41    struct {
42      uint32_t stepping   : 4,
43               model      : 4,
44               family     : 4,
45               proc_type  : 2,
46                          : 2,
47               ext_model  : 4,
48               ext_family : 8,
49                          : 4;
50    } bits;
51  };
52
53  union StdCpuid1Ebx { // example, unused
54    uint32_t value;
55    struct {
56      uint32_t brand_id         : 8,
57               clflush_size     : 8,
58               threads_per_cpu  : 8,
59               apic_id          : 8;
60    } bits;
61  };
62
63  union StdCpuid1Ecx {
64    uint32_t value;
65    struct {
66      uint32_t sse3     : 1,
67               clmul    : 1,
68                        : 1,
69               monitor  : 1,
70                        : 1,
71               vmx      : 1,
72                        : 1,
73               est      : 1,
74                        : 1,
75               ssse3    : 1,
76               cid      : 1,
77                        : 1,
78               fma      : 1,
79               cmpxchg16: 1,
80                        : 4,
81               dca      : 1,
82               sse4_1   : 1,
83               sse4_2   : 1,
84                        : 2,
85               popcnt   : 1,
86                        : 1,
87               aes      : 1,
88                        : 1,
89               osxsave  : 1,
90               avx      : 1,
91                        : 3;
92    } bits;
93  };
94
95  union StdCpuid1Edx {
96    uint32_t value;
97    struct {
98      uint32_t          : 4,
99               tsc      : 1,
100                        : 3,
101               cmpxchg8 : 1,
102                        : 6,
103               cmov     : 1,
104                        : 3,
105               clflush  : 1,
106                        : 3,
107               mmx      : 1,
108               fxsr     : 1,
109               sse      : 1,
110               sse2     : 1,
111                        : 1,
112               ht       : 1,
113                        : 3;
114    } bits;
115  };
116
117  union DcpCpuid4Eax {
118    uint32_t value;
119    struct {
120      uint32_t cache_type    : 5,
121                             : 21,
122               cores_per_cpu : 6;
123    } bits;
124  };
125
126  union DcpCpuid4Ebx {
127    uint32_t value;
128    struct {
129      uint32_t L1_line_size  : 12,
130               partitions    : 10,
131               associativity : 10;
132    } bits;
133  };
134
135  union TplCpuidBEbx {
136    uint32_t value;
137    struct {
138      uint32_t logical_cpus : 16,
139                            : 16;
140    } bits;
141  };
142
143  union ExtCpuid1Ecx {
144    uint32_t value;
145    struct {
146      uint32_t LahfSahf     : 1,
147               CmpLegacy    : 1,
148                            : 3,
149               lzcnt_intel  : 1,
150               lzcnt        : 1,
151               sse4a        : 1,
152               misalignsse  : 1,
153               prefetchw    : 1,
154                            : 22;
155    } bits;
156  };
157
158  union ExtCpuid1Edx {
159    uint32_t value;
160    struct {
161      uint32_t           : 22,
162               mmx_amd   : 1,
163               mmx       : 1,
164               fxsr      : 1,
165                         : 4,
166               long_mode : 1,
167               tdnow2    : 1,
168               tdnow     : 1;
169    } bits;
170  };
171
172  union ExtCpuid5Ex {
173    uint32_t value;
174    struct {
175      uint32_t L1_line_size : 8,
176               L1_tag_lines : 8,
177               L1_assoc     : 8,
178               L1_size      : 8;
179    } bits;
180  };
181
182  union ExtCpuid7Edx {
183    uint32_t value;
184    struct {
185      uint32_t               : 8,
186              tsc_invariance : 1,
187                             : 23;
188    } bits;
189  };
190
191  union ExtCpuid8Ecx {
192    uint32_t value;
193    struct {
194      uint32_t cores_per_cpu : 8,
195                             : 24;
196    } bits;
197  };
198
199  union SefCpuid7Eax {
200    uint32_t value;
201  };
202
203  union SefCpuid7Ebx {
204    uint32_t value;
205    struct {
206      uint32_t fsgsbase : 1,
207                        : 2,
208                   bmi1 : 1,
209                        : 1,
210                   avx2 : 1,
211                        : 2,
212                   bmi2 : 1,
213                   erms : 1,
214                        : 1,
215                    rtm : 1,
216                        : 4,
217                avx512f : 1,
218               avx512dq : 1,
219                        : 1,
220                    adx : 1,
221                        : 6,
222               avx512pf : 1,
223               avx512er : 1,
224               avx512cd : 1,
225                    sha : 1,
226               avx512bw : 1,
227               avx512vl : 1;
228    } bits;
229  };
230
231  union XemXcr0Eax {
232    uint32_t value;
233    struct {
234      uint32_t x87     : 1,
235               sse     : 1,
236               ymm     : 1,
237               bndregs : 1,
238               bndcsr  : 1,
239               opmask  : 1,
240               zmm512  : 1,
241               zmm32   : 1,
242                       : 24;
243    } bits;
244  };
245
246protected:
247  static int _cpu;
248  static int _model;
249  static int _stepping;
250
251  static address   _cpuinfo_segv_addr; // address of instruction which causes SEGV
252  static address   _cpuinfo_cont_addr; // address of instruction after the one which causes SEGV
253
254  enum Feature_Flag {
255    CPU_CX8      = (1 << 0), // next bits are from cpuid 1 (EDX)
256    CPU_CMOV     = (1 << 1),
257    CPU_FXSR     = (1 << 2),
258    CPU_HT       = (1 << 3),
259    CPU_MMX      = (1 << 4),
260    CPU_3DNOW_PREFETCH = (1 << 5), // Processor supports 3dnow prefetch and prefetchw instructions
261                                   // may not necessarily support other 3dnow instructions
262    CPU_SSE      = (1 << 6),
263    CPU_SSE2     = (1 << 7),
264    CPU_SSE3     = (1 << 8),  // SSE3 comes from cpuid 1 (ECX)
265    CPU_SSSE3    = (1 << 9),
266    CPU_SSE4A    = (1 << 10),
267    CPU_SSE4_1   = (1 << 11),
268    CPU_SSE4_2   = (1 << 12),
269    CPU_POPCNT   = (1 << 13),
270    CPU_LZCNT    = (1 << 14),
271    CPU_TSC      = (1 << 15),
272    CPU_TSCINV   = (1 << 16),
273    CPU_AVX      = (1 << 17),
274    CPU_AVX2     = (1 << 18),
275    CPU_AES      = (1 << 19),
276    CPU_ERMS     = (1 << 20), // enhanced 'rep movsb/stosb' instructions
277    CPU_CLMUL    = (1 << 21), // carryless multiply for CRC
278    CPU_BMI1     = (1 << 22),
279    CPU_BMI2     = (1 << 23),
280    CPU_RTM      = (1 << 24), // Restricted Transactional Memory instructions
281    CPU_ADX      = (1 << 25),
282    CPU_AVX512F  = (1 << 26), // AVX 512bit foundation instructions
283    CPU_AVX512DQ = (1 << 27),
284    CPU_AVX512PF = (1 << 28),
285    CPU_AVX512ER = (1 << 29),
286    CPU_AVX512CD = (1 << 30)
287    // Keeping sign bit 31 unassigned.
288  };
289
290#define CPU_AVX512BW ((uint64_t)UCONST64(0x100000000)) // enums are limited to 31 bit
291#define CPU_AVX512VL ((uint64_t)UCONST64(0x200000000)) // EVEX instructions with smaller vector length
292#define CPU_SHA ((uint64_t)UCONST64(0x400000000))      // SHA instructions
293#define CPU_FMA ((uint64_t)UCONST64(0x800000000))      // FMA instructions
294#define CPU_VZEROUPPER ((uint64_t)UCONST64(0x1000000000))      // Vzeroupper instruction
295
296  enum Extended_Family {
297    // AMD
298    CPU_FAMILY_AMD_11H       = 0x11,
299    // Intel
300    CPU_FAMILY_INTEL_CORE    = 6,
301    CPU_MODEL_NEHALEM        = 0x1e,
302    CPU_MODEL_NEHALEM_EP     = 0x1a,
303    CPU_MODEL_NEHALEM_EX     = 0x2e,
304    CPU_MODEL_WESTMERE       = 0x25,
305    CPU_MODEL_WESTMERE_EP    = 0x2c,
306    CPU_MODEL_WESTMERE_EX    = 0x2f,
307    CPU_MODEL_SANDYBRIDGE    = 0x2a,
308    CPU_MODEL_SANDYBRIDGE_EP = 0x2d,
309    CPU_MODEL_IVYBRIDGE_EP   = 0x3a,
310    CPU_MODEL_HASWELL_E3     = 0x3c,
311    CPU_MODEL_HASWELL_E7     = 0x3f,
312    CPU_MODEL_BROADWELL      = 0x3d,
313    CPU_MODEL_SKYLAKE        = CPU_MODEL_HASWELL_E3
314  };
315
316  // cpuid information block.  All info derived from executing cpuid with
317  // various function numbers is stored here.  Intel and AMD info is
318  // merged in this block: accessor methods disentangle it.
319  //
320  // The info block is laid out in subblocks of 4 dwords corresponding to
321  // eax, ebx, ecx and edx, whether or not they contain anything useful.
322  struct CpuidInfo {
323    // cpuid function 0
324    uint32_t std_max_function;
325    uint32_t std_vendor_name_0;
326    uint32_t std_vendor_name_1;
327    uint32_t std_vendor_name_2;
328
329    // cpuid function 1
330    StdCpuid1Eax std_cpuid1_eax;
331    StdCpuid1Ebx std_cpuid1_ebx;
332    StdCpuid1Ecx std_cpuid1_ecx;
333    StdCpuid1Edx std_cpuid1_edx;
334
335    // cpuid function 4 (deterministic cache parameters)
336    DcpCpuid4Eax dcp_cpuid4_eax;
337    DcpCpuid4Ebx dcp_cpuid4_ebx;
338    uint32_t     dcp_cpuid4_ecx; // unused currently
339    uint32_t     dcp_cpuid4_edx; // unused currently
340
341    // cpuid function 7 (structured extended features)
342    SefCpuid7Eax sef_cpuid7_eax;
343    SefCpuid7Ebx sef_cpuid7_ebx;
344    uint32_t     sef_cpuid7_ecx; // unused currently
345    uint32_t     sef_cpuid7_edx; // unused currently
346
347    // cpuid function 0xB (processor topology)
348    // ecx = 0
349    uint32_t     tpl_cpuidB0_eax;
350    TplCpuidBEbx tpl_cpuidB0_ebx;
351    uint32_t     tpl_cpuidB0_ecx; // unused currently
352    uint32_t     tpl_cpuidB0_edx; // unused currently
353
354    // ecx = 1
355    uint32_t     tpl_cpuidB1_eax;
356    TplCpuidBEbx tpl_cpuidB1_ebx;
357    uint32_t     tpl_cpuidB1_ecx; // unused currently
358    uint32_t     tpl_cpuidB1_edx; // unused currently
359
360    // ecx = 2
361    uint32_t     tpl_cpuidB2_eax;
362    TplCpuidBEbx tpl_cpuidB2_ebx;
363    uint32_t     tpl_cpuidB2_ecx; // unused currently
364    uint32_t     tpl_cpuidB2_edx; // unused currently
365
366    // cpuid function 0x80000000 // example, unused
367    uint32_t ext_max_function;
368    uint32_t ext_vendor_name_0;
369    uint32_t ext_vendor_name_1;
370    uint32_t ext_vendor_name_2;
371
372    // cpuid function 0x80000001
373    uint32_t     ext_cpuid1_eax; // reserved
374    uint32_t     ext_cpuid1_ebx; // reserved
375    ExtCpuid1Ecx ext_cpuid1_ecx;
376    ExtCpuid1Edx ext_cpuid1_edx;
377
378    // cpuid functions 0x80000002 thru 0x80000004: example, unused
379    uint32_t proc_name_0, proc_name_1, proc_name_2, proc_name_3;
380    uint32_t proc_name_4, proc_name_5, proc_name_6, proc_name_7;
381    uint32_t proc_name_8, proc_name_9, proc_name_10,proc_name_11;
382
383    // cpuid function 0x80000005 // AMD L1, Intel reserved
384    uint32_t     ext_cpuid5_eax; // unused currently
385    uint32_t     ext_cpuid5_ebx; // reserved
386    ExtCpuid5Ex  ext_cpuid5_ecx; // L1 data cache info (AMD)
387    ExtCpuid5Ex  ext_cpuid5_edx; // L1 instruction cache info (AMD)
388
389    // cpuid function 0x80000007
390    uint32_t     ext_cpuid7_eax; // reserved
391    uint32_t     ext_cpuid7_ebx; // reserved
392    uint32_t     ext_cpuid7_ecx; // reserved
393    ExtCpuid7Edx ext_cpuid7_edx; // tscinv
394
395    // cpuid function 0x80000008
396    uint32_t     ext_cpuid8_eax; // unused currently
397    uint32_t     ext_cpuid8_ebx; // reserved
398    ExtCpuid8Ecx ext_cpuid8_ecx;
399    uint32_t     ext_cpuid8_edx; // reserved
400
401    // extended control register XCR0 (the XFEATURE_ENABLED_MASK register)
402    XemXcr0Eax   xem_xcr0_eax;
403    uint32_t     xem_xcr0_edx; // reserved
404
405    // Space to save ymm registers after signal handle
406    int          ymm_save[8*4]; // Save ymm0, ymm7, ymm8, ymm15
407
408    // Space to save zmm registers after signal handle
409    int          zmm_save[16*4]; // Save zmm0, zmm7, zmm8, zmm31
410  };
411
412  // The actual cpuid info block
413  static CpuidInfo _cpuid_info;
414
415  // Extractors and predicates
416  static uint32_t extended_cpu_family() {
417    uint32_t result = _cpuid_info.std_cpuid1_eax.bits.family;
418    result += _cpuid_info.std_cpuid1_eax.bits.ext_family;
419    return result;
420  }
421
422  static uint32_t extended_cpu_model() {
423    uint32_t result = _cpuid_info.std_cpuid1_eax.bits.model;
424    result |= _cpuid_info.std_cpuid1_eax.bits.ext_model << 4;
425    return result;
426  }
427
428  static uint32_t cpu_stepping() {
429    uint32_t result = _cpuid_info.std_cpuid1_eax.bits.stepping;
430    return result;
431  }
432
433  static uint logical_processor_count() {
434    uint result = threads_per_core();
435    return result;
436  }
437
438  static uint64_t feature_flags() {
439    uint64_t result = 0;
440    if (_cpuid_info.std_cpuid1_edx.bits.cmpxchg8 != 0)
441      result |= CPU_CX8;
442    if (_cpuid_info.std_cpuid1_edx.bits.cmov != 0)
443      result |= CPU_CMOV;
444    if (_cpuid_info.std_cpuid1_edx.bits.fxsr != 0 || (is_amd() &&
445        _cpuid_info.ext_cpuid1_edx.bits.fxsr != 0))
446      result |= CPU_FXSR;
447    // HT flag is set for multi-core processors also.
448    if (threads_per_core() > 1)
449      result |= CPU_HT;
450    if (_cpuid_info.std_cpuid1_edx.bits.mmx != 0 || (is_amd() &&
451        _cpuid_info.ext_cpuid1_edx.bits.mmx != 0))
452      result |= CPU_MMX;
453    if (_cpuid_info.std_cpuid1_edx.bits.sse != 0)
454      result |= CPU_SSE;
455    if (_cpuid_info.std_cpuid1_edx.bits.sse2 != 0)
456      result |= CPU_SSE2;
457    if (_cpuid_info.std_cpuid1_ecx.bits.sse3 != 0)
458      result |= CPU_SSE3;
459    if (_cpuid_info.std_cpuid1_ecx.bits.ssse3 != 0)
460      result |= CPU_SSSE3;
461    if (_cpuid_info.std_cpuid1_ecx.bits.sse4_1 != 0)
462      result |= CPU_SSE4_1;
463    if (_cpuid_info.std_cpuid1_ecx.bits.sse4_2 != 0)
464      result |= CPU_SSE4_2;
465    if (_cpuid_info.std_cpuid1_ecx.bits.popcnt != 0)
466      result |= CPU_POPCNT;
467    if (_cpuid_info.std_cpuid1_ecx.bits.avx != 0 &&
468        _cpuid_info.std_cpuid1_ecx.bits.osxsave != 0 &&
469        _cpuid_info.xem_xcr0_eax.bits.sse != 0 &&
470        _cpuid_info.xem_xcr0_eax.bits.ymm != 0) {
471      result |= CPU_AVX;
472      result |= CPU_VZEROUPPER;
473      if (_cpuid_info.sef_cpuid7_ebx.bits.avx2 != 0)
474        result |= CPU_AVX2;
475      if (_cpuid_info.sef_cpuid7_ebx.bits.avx512f != 0 &&
476          _cpuid_info.xem_xcr0_eax.bits.opmask != 0 &&
477          _cpuid_info.xem_xcr0_eax.bits.zmm512 != 0 &&
478          _cpuid_info.xem_xcr0_eax.bits.zmm32 != 0) {
479        result |= CPU_AVX512F;
480        if (_cpuid_info.sef_cpuid7_ebx.bits.avx512cd != 0)
481          result |= CPU_AVX512CD;
482        if (_cpuid_info.sef_cpuid7_ebx.bits.avx512dq != 0)
483          result |= CPU_AVX512DQ;
484        if (_cpuid_info.sef_cpuid7_ebx.bits.avx512pf != 0)
485          result |= CPU_AVX512PF;
486        if (_cpuid_info.sef_cpuid7_ebx.bits.avx512er != 0)
487          result |= CPU_AVX512ER;
488        if (_cpuid_info.sef_cpuid7_ebx.bits.avx512bw != 0)
489          result |= CPU_AVX512BW;
490        if (_cpuid_info.sef_cpuid7_ebx.bits.avx512vl != 0)
491          result |= CPU_AVX512VL;
492      }
493    }
494    if(_cpuid_info.sef_cpuid7_ebx.bits.bmi1 != 0)
495      result |= CPU_BMI1;
496    if (_cpuid_info.std_cpuid1_edx.bits.tsc != 0)
497      result |= CPU_TSC;
498    if (_cpuid_info.ext_cpuid7_edx.bits.tsc_invariance != 0)
499      result |= CPU_TSCINV;
500    if (_cpuid_info.std_cpuid1_ecx.bits.aes != 0)
501      result |= CPU_AES;
502    if (_cpuid_info.sef_cpuid7_ebx.bits.erms != 0)
503      result |= CPU_ERMS;
504    if (_cpuid_info.std_cpuid1_ecx.bits.clmul != 0)
505      result |= CPU_CLMUL;
506    if (_cpuid_info.sef_cpuid7_ebx.bits.rtm != 0)
507      result |= CPU_RTM;
508
509    // AMD features.
510    if (is_amd()) {
511      if ((_cpuid_info.ext_cpuid1_edx.bits.tdnow != 0) ||
512          (_cpuid_info.ext_cpuid1_ecx.bits.prefetchw != 0))
513        result |= CPU_3DNOW_PREFETCH;
514      if (_cpuid_info.ext_cpuid1_ecx.bits.lzcnt != 0)
515        result |= CPU_LZCNT;
516      if (_cpuid_info.ext_cpuid1_ecx.bits.sse4a != 0)
517        result |= CPU_SSE4A;
518    }
519    // Intel features.
520    if(is_intel()) {
521      if(_cpuid_info.sef_cpuid7_ebx.bits.adx != 0)
522         result |= CPU_ADX;
523      if(_cpuid_info.sef_cpuid7_ebx.bits.bmi2 != 0)
524        result |= CPU_BMI2;
525      if (_cpuid_info.sef_cpuid7_ebx.bits.sha != 0)
526        result |= CPU_SHA;
527      if(_cpuid_info.ext_cpuid1_ecx.bits.lzcnt_intel != 0)
528        result |= CPU_LZCNT;
529      if (_cpuid_info.std_cpuid1_ecx.bits.fma != 0)
530        result |= CPU_FMA;
531      // for Intel, ecx.bits.misalignsse bit (bit 8) indicates support for prefetchw
532      if (_cpuid_info.ext_cpuid1_ecx.bits.misalignsse != 0) {
533        result |= CPU_3DNOW_PREFETCH;
534      }
535    }
536
537    return result;
538  }
539
540  static bool os_supports_avx_vectors() {
541    bool retVal = false;
542    if (supports_evex()) {
543      // Verify that OS save/restore all bits of EVEX registers
544      // during signal processing.
545      int nreg = 2 LP64_ONLY(+2);
546      retVal = true;
547      for (int i = 0; i < 16 * nreg; i++) { // 64 bytes per zmm register
548        if (_cpuid_info.zmm_save[i] != ymm_test_value()) {
549          retVal = false;
550          break;
551        }
552      }
553    } else if (supports_avx()) {
554      // Verify that OS save/restore all bits of AVX registers
555      // during signal processing.
556      int nreg = 2 LP64_ONLY(+2);
557      retVal = true;
558      for (int i = 0; i < 8 * nreg; i++) { // 32 bytes per ymm register
559        if (_cpuid_info.ymm_save[i] != ymm_test_value()) {
560          retVal = false;
561          break;
562        }
563      }
564      // zmm_save will be set on a EVEX enabled machine even if we choose AVX code gen
565      if (retVal == false) {
566        // Verify that OS save/restore all bits of EVEX registers
567        // during signal processing.
568        int nreg = 2 LP64_ONLY(+2);
569        retVal = true;
570        for (int i = 0; i < 16 * nreg; i++) { // 64 bytes per zmm register
571          if (_cpuid_info.zmm_save[i] != ymm_test_value()) {
572            retVal = false;
573            break;
574          }
575        }
576      }
577    }
578    return retVal;
579  }
580
581  static void get_processor_features();
582
583public:
584  // Offsets for cpuid asm stub
585  static ByteSize std_cpuid0_offset() { return byte_offset_of(CpuidInfo, std_max_function); }
586  static ByteSize std_cpuid1_offset() { return byte_offset_of(CpuidInfo, std_cpuid1_eax); }
587  static ByteSize dcp_cpuid4_offset() { return byte_offset_of(CpuidInfo, dcp_cpuid4_eax); }
588  static ByteSize sef_cpuid7_offset() { return byte_offset_of(CpuidInfo, sef_cpuid7_eax); }
589  static ByteSize ext_cpuid1_offset() { return byte_offset_of(CpuidInfo, ext_cpuid1_eax); }
590  static ByteSize ext_cpuid5_offset() { return byte_offset_of(CpuidInfo, ext_cpuid5_eax); }
591  static ByteSize ext_cpuid7_offset() { return byte_offset_of(CpuidInfo, ext_cpuid7_eax); }
592  static ByteSize ext_cpuid8_offset() { return byte_offset_of(CpuidInfo, ext_cpuid8_eax); }
593  static ByteSize tpl_cpuidB0_offset() { return byte_offset_of(CpuidInfo, tpl_cpuidB0_eax); }
594  static ByteSize tpl_cpuidB1_offset() { return byte_offset_of(CpuidInfo, tpl_cpuidB1_eax); }
595  static ByteSize tpl_cpuidB2_offset() { return byte_offset_of(CpuidInfo, tpl_cpuidB2_eax); }
596  static ByteSize xem_xcr0_offset() { return byte_offset_of(CpuidInfo, xem_xcr0_eax); }
597  static ByteSize ymm_save_offset() { return byte_offset_of(CpuidInfo, ymm_save); }
598  static ByteSize zmm_save_offset() { return byte_offset_of(CpuidInfo, zmm_save); }
599
600  // The value used to check ymm register after signal handle
601  static int ymm_test_value()    { return 0xCAFEBABE; }
602
603  static void get_cpu_info_wrapper();
604  static void set_cpuinfo_segv_addr(address pc) { _cpuinfo_segv_addr = pc; }
605  static bool  is_cpuinfo_segv_addr(address pc) { return _cpuinfo_segv_addr == pc; }
606  static void set_cpuinfo_cont_addr(address pc) { _cpuinfo_cont_addr = pc; }
607  static address  cpuinfo_cont_addr()           { return _cpuinfo_cont_addr; }
608
609  static void clean_cpuFeatures()   { _features = 0; }
610  static void set_avx_cpuFeatures() { _features = (CPU_SSE | CPU_SSE2 | CPU_AVX | CPU_VZEROUPPER ); }
611  static void set_evex_cpuFeatures() { _features = (CPU_AVX512F | CPU_SSE | CPU_SSE2 | CPU_VZEROUPPER ); }
612
613
614  // Initialization
615  static void initialize();
616
617  // Override Abstract_VM_Version implementation
618  static bool use_biased_locking();
619
620  // Asserts
621  static void assert_is_initialized() {
622    assert(_cpuid_info.std_cpuid1_eax.bits.family != 0, "VM_Version not initialized");
623  }
624
625  //
626  // Processor family:
627  //       3   -  386
628  //       4   -  486
629  //       5   -  Pentium
630  //       6   -  PentiumPro, Pentium II, Celeron, Xeon, Pentium III, Athlon,
631  //              Pentium M, Core Solo, Core Duo, Core2 Duo
632  //    family 6 model:   9,        13,       14,        15
633  //    0x0f   -  Pentium 4, Opteron
634  //
635  // Note: The cpu family should be used to select between
636  //       instruction sequences which are valid on all Intel
637  //       processors.  Use the feature test functions below to
638  //       determine whether a particular instruction is supported.
639  //
640  static int  cpu_family()        { return _cpu;}
641  static bool is_P6()             { return cpu_family() >= 6; }
642  static bool is_amd()            { assert_is_initialized(); return _cpuid_info.std_vendor_name_0 == 0x68747541; } // 'htuA'
643  static bool is_intel()          { assert_is_initialized(); return _cpuid_info.std_vendor_name_0 == 0x756e6547; } // 'uneG'
644  static bool is_atom_family()    { return ((cpu_family() == 0x06) && ((extended_cpu_model() == 0x36) || (extended_cpu_model() == 0x37) || (extended_cpu_model() == 0x4D))); } //Silvermont and Centerton
645  static bool is_knights_family() { return ((cpu_family() == 0x06) && ((extended_cpu_model() == 0x57) || (extended_cpu_model() == 0x85))); } // Xeon Phi 3200/5200/7200 and Future Xeon Phi
646
647  static bool supports_processor_topology() {
648    return (_cpuid_info.std_max_function >= 0xB) &&
649           // eax[4:0] | ebx[0:15] == 0 indicates invalid topology level.
650           // Some cpus have max cpuid >= 0xB but do not support processor topology.
651           (((_cpuid_info.tpl_cpuidB0_eax & 0x1f) | _cpuid_info.tpl_cpuidB0_ebx.bits.logical_cpus) != 0);
652  }
653
654  static uint cores_per_cpu()  {
655    uint result = 1;
656    if (is_intel()) {
657      bool supports_topology = supports_processor_topology();
658      if (supports_topology) {
659        result = _cpuid_info.tpl_cpuidB1_ebx.bits.logical_cpus /
660                 _cpuid_info.tpl_cpuidB0_ebx.bits.logical_cpus;
661      }
662      if (!supports_topology || result == 0) {
663        result = (_cpuid_info.dcp_cpuid4_eax.bits.cores_per_cpu + 1);
664      }
665    } else if (is_amd()) {
666      result = (_cpuid_info.ext_cpuid8_ecx.bits.cores_per_cpu + 1);
667    }
668    return result;
669  }
670
671  static uint threads_per_core()  {
672    uint result = 1;
673    if (is_intel() && supports_processor_topology()) {
674      result = _cpuid_info.tpl_cpuidB0_ebx.bits.logical_cpus;
675    } else if (_cpuid_info.std_cpuid1_edx.bits.ht != 0) {
676      result = _cpuid_info.std_cpuid1_ebx.bits.threads_per_cpu /
677               cores_per_cpu();
678    }
679    return (result == 0 ? 1 : result);
680  }
681
682  static intx L1_line_size()  {
683    intx result = 0;
684    if (is_intel()) {
685      result = (_cpuid_info.dcp_cpuid4_ebx.bits.L1_line_size + 1);
686    } else if (is_amd()) {
687      result = _cpuid_info.ext_cpuid5_ecx.bits.L1_line_size;
688    }
689    if (result < 32) // not defined ?
690      result = 32;   // 32 bytes by default on x86 and other x64
691    return result;
692  }
693
694  static intx prefetch_data_size()  {
695    return L1_line_size();
696  }
697
698  //
699  // Feature identification
700  //
701  static bool supports_cpuid()    { return _features  != 0; }
702  static bool supports_cmpxchg8() { return (_features & CPU_CX8) != 0; }
703  static bool supports_cmov()     { return (_features & CPU_CMOV) != 0; }
704  static bool supports_fxsr()     { return (_features & CPU_FXSR) != 0; }
705  static bool supports_ht()       { return (_features & CPU_HT) != 0; }
706  static bool supports_mmx()      { return (_features & CPU_MMX) != 0; }
707  static bool supports_sse()      { return (_features & CPU_SSE) != 0; }
708  static bool supports_sse2()     { return (_features & CPU_SSE2) != 0; }
709  static bool supports_sse3()     { return (_features & CPU_SSE3) != 0; }
710  static bool supports_ssse3()    { return (_features & CPU_SSSE3)!= 0; }
711  static bool supports_sse4_1()   { return (_features & CPU_SSE4_1) != 0; }
712  static bool supports_sse4_2()   { return (_features & CPU_SSE4_2) != 0; }
713  static bool supports_popcnt()   { return (_features & CPU_POPCNT) != 0; }
714  static bool supports_avx()      { return (_features & CPU_AVX) != 0; }
715  static bool supports_avx2()     { return (_features & CPU_AVX2) != 0; }
716  static bool supports_tsc()      { return (_features & CPU_TSC)    != 0; }
717  static bool supports_aes()      { return (_features & CPU_AES) != 0; }
718  static bool supports_erms()     { return (_features & CPU_ERMS) != 0; }
719  static bool supports_clmul()    { return (_features & CPU_CLMUL) != 0; }
720  static bool supports_rtm()      { return (_features & CPU_RTM) != 0; }
721  static bool supports_bmi1()     { return (_features & CPU_BMI1) != 0; }
722  static bool supports_bmi2()     { return (_features & CPU_BMI2) != 0; }
723  static bool supports_adx()      { return (_features & CPU_ADX) != 0; }
724  static bool supports_evex()     { return (_features & CPU_AVX512F) != 0; }
725  static bool supports_avx512dq() { return (_features & CPU_AVX512DQ) != 0; }
726  static bool supports_avx512pf() { return (_features & CPU_AVX512PF) != 0; }
727  static bool supports_avx512er() { return (_features & CPU_AVX512ER) != 0; }
728  static bool supports_avx512cd() { return (_features & CPU_AVX512CD) != 0; }
729  static bool supports_avx512bw() { return (_features & CPU_AVX512BW) != 0; }
730  static bool supports_avx512vl() { return (_features & CPU_AVX512VL) != 0; }
731  static bool supports_avx512vlbw() { return (supports_avx512bw() && supports_avx512vl()); }
732  static bool supports_avx512novl() { return (supports_evex() && !supports_avx512vl()); }
733  static bool supports_avx512nobw() { return (supports_evex() && !supports_avx512bw()); }
734  static bool supports_avx256only() { return (supports_avx2() && !supports_evex()); }
735  static bool supports_avxonly()    { return ((supports_avx2() || supports_avx()) && !supports_evex()); }
736  static bool supports_sha()        { return (_features & CPU_SHA) != 0; }
737  static bool supports_fma()        { return (_features & CPU_FMA) != 0 && supports_avx(); }
738  static bool supports_vzeroupper() { return (_features & CPU_VZEROUPPER) != 0; }
739
740  // Intel features
741  static bool is_intel_family_core() { return is_intel() &&
742                                       extended_cpu_family() == CPU_FAMILY_INTEL_CORE; }
743
744  static bool is_intel_tsc_synched_at_init()  {
745    if (is_intel_family_core()) {
746      uint32_t ext_model = extended_cpu_model();
747      if (ext_model == CPU_MODEL_NEHALEM_EP     ||
748          ext_model == CPU_MODEL_WESTMERE_EP    ||
749          ext_model == CPU_MODEL_SANDYBRIDGE_EP ||
750          ext_model == CPU_MODEL_IVYBRIDGE_EP) {
751        // <= 2-socket invariant tsc support. EX versions are usually used
752        // in > 2-socket systems and likely don't synchronize tscs at
753        // initialization.
754        // Code that uses tsc values must be prepared for them to arbitrarily
755        // jump forward or backward.
756        return true;
757      }
758    }
759    return false;
760  }
761
762  // AMD features
763  static bool supports_3dnow_prefetch()    { return (_features & CPU_3DNOW_PREFETCH) != 0; }
764  static bool supports_mmx_ext()  { return is_amd() && _cpuid_info.ext_cpuid1_edx.bits.mmx_amd != 0; }
765  static bool supports_lzcnt()    { return (_features & CPU_LZCNT) != 0; }
766  static bool supports_sse4a()    { return (_features & CPU_SSE4A) != 0; }
767
768  static bool is_amd_Barcelona()  { return is_amd() &&
769                                           extended_cpu_family() == CPU_FAMILY_AMD_11H; }
770
771  // Intel and AMD newer cores support fast timestamps well
772  static bool supports_tscinv_bit() {
773    return (_features & CPU_TSCINV) != 0;
774  }
775  static bool supports_tscinv() {
776    return supports_tscinv_bit() &&
777           ( (is_amd() && !is_amd_Barcelona()) ||
778             is_intel_tsc_synched_at_init() );
779  }
780
781  // Intel Core and newer cpus have fast IDIV instruction (excluding Atom).
782  static bool has_fast_idiv()     { return is_intel() && cpu_family() == 6 &&
783                                           supports_sse3() && _model != 0x1C; }
784
785  static bool supports_compare_and_exchange() { return true; }
786
787  static intx allocate_prefetch_distance(bool use_watermark_prefetch) {
788    // Hardware prefetching (distance/size in bytes):
789    // Pentium 3 -  64 /  32
790    // Pentium 4 - 256 / 128
791    // Athlon    -  64 /  32 ????
792    // Opteron   - 128 /  64 only when 2 sequential cache lines accessed
793    // Core      - 128 /  64
794    //
795    // Software prefetching (distance in bytes / instruction with best score):
796    // Pentium 3 - 128 / prefetchnta
797    // Pentium 4 - 512 / prefetchnta
798    // Athlon    - 128 / prefetchnta
799    // Opteron   - 256 / prefetchnta
800    // Core      - 256 / prefetchnta
801    // It will be used only when AllocatePrefetchStyle > 0
802
803    if (is_amd()) { // AMD
804      if (supports_sse2()) {
805        return 256; // Opteron
806      } else {
807        return 128; // Athlon
808      }
809    } else { // Intel
810      if (supports_sse3() && cpu_family() == 6) {
811        if (supports_sse4_2() && supports_ht()) { // Nehalem based cpus
812          return 192;
813        } else if (use_watermark_prefetch) { // watermark prefetching on Core
814#ifdef _LP64
815          return 384;
816#else
817          return 320;
818#endif
819        }
820      }
821      if (supports_sse2()) {
822        if (cpu_family() == 6) {
823          return 256; // Pentium M, Core, Core2
824        } else {
825          return 512; // Pentium 4
826        }
827      } else {
828        return 128; // Pentium 3 (and all other old CPUs)
829      }
830    }
831  }
832
833  // SSE2 and later processors implement a 'pause' instruction
834  // that can be used for efficient implementation of
835  // the intrinsic for java.lang.Thread.onSpinWait()
836  static bool supports_on_spin_wait() { return supports_sse2(); }
837};
838
839#endif // CPU_X86_VM_VM_VERSION_X86_HPP
840