vm_version_x86.hpp revision 6178:8867fec28aa1
1/*
2 * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#ifndef CPU_X86_VM_VM_VERSION_X86_HPP
26#define CPU_X86_VM_VM_VERSION_X86_HPP
27
28#include "runtime/globals_extension.hpp"
29#include "runtime/vm_version.hpp"
30
31class VM_Version : public Abstract_VM_Version {
32public:
33  // cpuid result register layouts.  These are all unions of a uint32_t
34  // (in case anyone wants access to the register as a whole) and a bitfield.
35
36  union StdCpuid1Eax {
37    uint32_t value;
38    struct {
39      uint32_t stepping   : 4,
40               model      : 4,
41               family     : 4,
42               proc_type  : 2,
43                          : 2,
44               ext_model  : 4,
45               ext_family : 8,
46                          : 4;
47    } bits;
48  };
49
50  union StdCpuid1Ebx { // example, unused
51    uint32_t value;
52    struct {
53      uint32_t brand_id         : 8,
54               clflush_size     : 8,
55               threads_per_cpu  : 8,
56               apic_id          : 8;
57    } bits;
58  };
59
60  union StdCpuid1Ecx {
61    uint32_t value;
62    struct {
63      uint32_t sse3     : 1,
64               clmul    : 1,
65                        : 1,
66               monitor  : 1,
67                        : 1,
68               vmx      : 1,
69                        : 1,
70               est      : 1,
71                        : 1,
72               ssse3    : 1,
73               cid      : 1,
74                        : 2,
75               cmpxchg16: 1,
76                        : 4,
77               dca      : 1,
78               sse4_1   : 1,
79               sse4_2   : 1,
80                        : 2,
81               popcnt   : 1,
82                        : 1,
83               aes      : 1,
84                        : 1,
85               osxsave  : 1,
86               avx      : 1,
87                        : 3;
88    } bits;
89  };
90
91  union StdCpuid1Edx {
92    uint32_t value;
93    struct {
94      uint32_t          : 4,
95               tsc      : 1,
96                        : 3,
97               cmpxchg8 : 1,
98                        : 6,
99               cmov     : 1,
100                        : 3,
101               clflush  : 1,
102                        : 3,
103               mmx      : 1,
104               fxsr     : 1,
105               sse      : 1,
106               sse2     : 1,
107                        : 1,
108               ht       : 1,
109                        : 3;
110    } bits;
111  };
112
113  union DcpCpuid4Eax {
114    uint32_t value;
115    struct {
116      uint32_t cache_type    : 5,
117                             : 21,
118               cores_per_cpu : 6;
119    } bits;
120  };
121
122  union DcpCpuid4Ebx {
123    uint32_t value;
124    struct {
125      uint32_t L1_line_size  : 12,
126               partitions    : 10,
127               associativity : 10;
128    } bits;
129  };
130
131  union TplCpuidBEbx {
132    uint32_t value;
133    struct {
134      uint32_t logical_cpus : 16,
135                            : 16;
136    } bits;
137  };
138
139  union ExtCpuid1Ecx {
140    uint32_t value;
141    struct {
142      uint32_t LahfSahf     : 1,
143               CmpLegacy    : 1,
144                            : 3,
145               lzcnt_intel  : 1,
146               lzcnt        : 1,
147               sse4a        : 1,
148               misalignsse  : 1,
149               prefetchw    : 1,
150                            : 22;
151    } bits;
152  };
153
154  union ExtCpuid1Edx {
155    uint32_t value;
156    struct {
157      uint32_t           : 22,
158               mmx_amd   : 1,
159               mmx       : 1,
160               fxsr      : 1,
161                         : 4,
162               long_mode : 1,
163               tdnow2    : 1,
164               tdnow     : 1;
165    } bits;
166  };
167
168  union ExtCpuid5Ex {
169    uint32_t value;
170    struct {
171      uint32_t L1_line_size : 8,
172               L1_tag_lines : 8,
173               L1_assoc     : 8,
174               L1_size      : 8;
175    } bits;
176  };
177
178  union ExtCpuid7Edx {
179    uint32_t value;
180    struct {
181      uint32_t               : 8,
182              tsc_invariance : 1,
183                             : 23;
184    } bits;
185  };
186
187  union ExtCpuid8Ecx {
188    uint32_t value;
189    struct {
190      uint32_t cores_per_cpu : 8,
191                             : 24;
192    } bits;
193  };
194
195  union SefCpuid7Eax {
196    uint32_t value;
197  };
198
199  union SefCpuid7Ebx {
200    uint32_t value;
201    struct {
202      uint32_t fsgsbase : 1,
203                        : 2,
204                   bmi1 : 1,
205                        : 1,
206                   avx2 : 1,
207                        : 2,
208                   bmi2 : 1,
209                   erms : 1,
210                        : 22;
211    } bits;
212  };
213
214  union XemXcr0Eax {
215    uint32_t value;
216    struct {
217      uint32_t x87 : 1,
218               sse : 1,
219               ymm : 1,
220                   : 29;
221    } bits;
222  };
223
224protected:
225  static int _cpu;
226  static int _model;
227  static int _stepping;
228  static int _cpuFeatures;     // features returned by the "cpuid" instruction
229                               // 0 if this instruction is not available
230  static const char* _features_str;
231
232  static address   _cpuinfo_segv_addr; // address of instruction which causes SEGV
233  static address   _cpuinfo_cont_addr; // address of instruction after the one which causes SEGV
234
235  enum {
236    CPU_CX8    = (1 << 0), // next bits are from cpuid 1 (EDX)
237    CPU_CMOV   = (1 << 1),
238    CPU_FXSR   = (1 << 2),
239    CPU_HT     = (1 << 3),
240    CPU_MMX    = (1 << 4),
241    CPU_3DNOW_PREFETCH  = (1 << 5), // Processor supports 3dnow prefetch and prefetchw instructions
242                                    // may not necessarily support other 3dnow instructions
243    CPU_SSE    = (1 << 6),
244    CPU_SSE2   = (1 << 7),
245    CPU_SSE3   = (1 << 8), // SSE3 comes from cpuid 1 (ECX)
246    CPU_SSSE3  = (1 << 9),
247    CPU_SSE4A  = (1 << 10),
248    CPU_SSE4_1 = (1 << 11),
249    CPU_SSE4_2 = (1 << 12),
250    CPU_POPCNT = (1 << 13),
251    CPU_LZCNT  = (1 << 14),
252    CPU_TSC    = (1 << 15),
253    CPU_TSCINV = (1 << 16),
254    CPU_AVX    = (1 << 17),
255    CPU_AVX2   = (1 << 18),
256    CPU_AES    = (1 << 19),
257    CPU_ERMS   = (1 << 20), // enhanced 'rep movsb/stosb' instructions
258    CPU_CLMUL  = (1 << 21), // carryless multiply for CRC
259    CPU_BMI1   = (1 << 22),
260    CPU_BMI2   = (1 << 23)
261  } cpuFeatureFlags;
262
263  enum {
264    // AMD
265    CPU_FAMILY_AMD_11H       = 0x11,
266    // Intel
267    CPU_FAMILY_INTEL_CORE    = 6,
268    CPU_MODEL_NEHALEM        = 0x1e,
269    CPU_MODEL_NEHALEM_EP     = 0x1a,
270    CPU_MODEL_NEHALEM_EX     = 0x2e,
271    CPU_MODEL_WESTMERE       = 0x25,
272    CPU_MODEL_WESTMERE_EP    = 0x2c,
273    CPU_MODEL_WESTMERE_EX    = 0x2f,
274    CPU_MODEL_SANDYBRIDGE    = 0x2a,
275    CPU_MODEL_SANDYBRIDGE_EP = 0x2d,
276    CPU_MODEL_IVYBRIDGE_EP   = 0x3a
277  } cpuExtendedFamily;
278
279  // cpuid information block.  All info derived from executing cpuid with
280  // various function numbers is stored here.  Intel and AMD info is
281  // merged in this block: accessor methods disentangle it.
282  //
283  // The info block is laid out in subblocks of 4 dwords corresponding to
284  // eax, ebx, ecx and edx, whether or not they contain anything useful.
285  struct CpuidInfo {
286    // cpuid function 0
287    uint32_t std_max_function;
288    uint32_t std_vendor_name_0;
289    uint32_t std_vendor_name_1;
290    uint32_t std_vendor_name_2;
291
292    // cpuid function 1
293    StdCpuid1Eax std_cpuid1_eax;
294    StdCpuid1Ebx std_cpuid1_ebx;
295    StdCpuid1Ecx std_cpuid1_ecx;
296    StdCpuid1Edx std_cpuid1_edx;
297
298    // cpuid function 4 (deterministic cache parameters)
299    DcpCpuid4Eax dcp_cpuid4_eax;
300    DcpCpuid4Ebx dcp_cpuid4_ebx;
301    uint32_t     dcp_cpuid4_ecx; // unused currently
302    uint32_t     dcp_cpuid4_edx; // unused currently
303
304    // cpuid function 7 (structured extended features)
305    SefCpuid7Eax sef_cpuid7_eax;
306    SefCpuid7Ebx sef_cpuid7_ebx;
307    uint32_t     sef_cpuid7_ecx; // unused currently
308    uint32_t     sef_cpuid7_edx; // unused currently
309
310    // cpuid function 0xB (processor topology)
311    // ecx = 0
312    uint32_t     tpl_cpuidB0_eax;
313    TplCpuidBEbx tpl_cpuidB0_ebx;
314    uint32_t     tpl_cpuidB0_ecx; // unused currently
315    uint32_t     tpl_cpuidB0_edx; // unused currently
316
317    // ecx = 1
318    uint32_t     tpl_cpuidB1_eax;
319    TplCpuidBEbx tpl_cpuidB1_ebx;
320    uint32_t     tpl_cpuidB1_ecx; // unused currently
321    uint32_t     tpl_cpuidB1_edx; // unused currently
322
323    // ecx = 2
324    uint32_t     tpl_cpuidB2_eax;
325    TplCpuidBEbx tpl_cpuidB2_ebx;
326    uint32_t     tpl_cpuidB2_ecx; // unused currently
327    uint32_t     tpl_cpuidB2_edx; // unused currently
328
329    // cpuid function 0x80000000 // example, unused
330    uint32_t ext_max_function;
331    uint32_t ext_vendor_name_0;
332    uint32_t ext_vendor_name_1;
333    uint32_t ext_vendor_name_2;
334
335    // cpuid function 0x80000001
336    uint32_t     ext_cpuid1_eax; // reserved
337    uint32_t     ext_cpuid1_ebx; // reserved
338    ExtCpuid1Ecx ext_cpuid1_ecx;
339    ExtCpuid1Edx ext_cpuid1_edx;
340
341    // cpuid functions 0x80000002 thru 0x80000004: example, unused
342    uint32_t proc_name_0, proc_name_1, proc_name_2, proc_name_3;
343    uint32_t proc_name_4, proc_name_5, proc_name_6, proc_name_7;
344    uint32_t proc_name_8, proc_name_9, proc_name_10,proc_name_11;
345
346    // cpuid function 0x80000005 // AMD L1, Intel reserved
347    uint32_t     ext_cpuid5_eax; // unused currently
348    uint32_t     ext_cpuid5_ebx; // reserved
349    ExtCpuid5Ex  ext_cpuid5_ecx; // L1 data cache info (AMD)
350    ExtCpuid5Ex  ext_cpuid5_edx; // L1 instruction cache info (AMD)
351
352    // cpuid function 0x80000007
353    uint32_t     ext_cpuid7_eax; // reserved
354    uint32_t     ext_cpuid7_ebx; // reserved
355    uint32_t     ext_cpuid7_ecx; // reserved
356    ExtCpuid7Edx ext_cpuid7_edx; // tscinv
357
358    // cpuid function 0x80000008
359    uint32_t     ext_cpuid8_eax; // unused currently
360    uint32_t     ext_cpuid8_ebx; // reserved
361    ExtCpuid8Ecx ext_cpuid8_ecx;
362    uint32_t     ext_cpuid8_edx; // reserved
363
364    // extended control register XCR0 (the XFEATURE_ENABLED_MASK register)
365    XemXcr0Eax   xem_xcr0_eax;
366    uint32_t     xem_xcr0_edx; // reserved
367
368    // Space to save ymm registers after signal handle
369    int          ymm_save[8*4]; // Save ymm0, ymm7, ymm8, ymm15
370  };
371
372  // The actual cpuid info block
373  static CpuidInfo _cpuid_info;
374
375  // Extractors and predicates
376  static uint32_t extended_cpu_family() {
377    uint32_t result = _cpuid_info.std_cpuid1_eax.bits.family;
378    result += _cpuid_info.std_cpuid1_eax.bits.ext_family;
379    return result;
380  }
381
382  static uint32_t extended_cpu_model() {
383    uint32_t result = _cpuid_info.std_cpuid1_eax.bits.model;
384    result |= _cpuid_info.std_cpuid1_eax.bits.ext_model << 4;
385    return result;
386  }
387
388  static uint32_t cpu_stepping() {
389    uint32_t result = _cpuid_info.std_cpuid1_eax.bits.stepping;
390    return result;
391  }
392
393  static uint logical_processor_count() {
394    uint result = threads_per_core();
395    return result;
396  }
397
398  static uint32_t feature_flags() {
399    uint32_t result = 0;
400    if (_cpuid_info.std_cpuid1_edx.bits.cmpxchg8 != 0)
401      result |= CPU_CX8;
402    if (_cpuid_info.std_cpuid1_edx.bits.cmov != 0)
403      result |= CPU_CMOV;
404    if (_cpuid_info.std_cpuid1_edx.bits.fxsr != 0 || (is_amd() &&
405        _cpuid_info.ext_cpuid1_edx.bits.fxsr != 0))
406      result |= CPU_FXSR;
407    // HT flag is set for multi-core processors also.
408    if (threads_per_core() > 1)
409      result |= CPU_HT;
410    if (_cpuid_info.std_cpuid1_edx.bits.mmx != 0 || (is_amd() &&
411        _cpuid_info.ext_cpuid1_edx.bits.mmx != 0))
412      result |= CPU_MMX;
413    if (_cpuid_info.std_cpuid1_edx.bits.sse != 0)
414      result |= CPU_SSE;
415    if (_cpuid_info.std_cpuid1_edx.bits.sse2 != 0)
416      result |= CPU_SSE2;
417    if (_cpuid_info.std_cpuid1_ecx.bits.sse3 != 0)
418      result |= CPU_SSE3;
419    if (_cpuid_info.std_cpuid1_ecx.bits.ssse3 != 0)
420      result |= CPU_SSSE3;
421    if (_cpuid_info.std_cpuid1_ecx.bits.sse4_1 != 0)
422      result |= CPU_SSE4_1;
423    if (_cpuid_info.std_cpuid1_ecx.bits.sse4_2 != 0)
424      result |= CPU_SSE4_2;
425    if (_cpuid_info.std_cpuid1_ecx.bits.popcnt != 0)
426      result |= CPU_POPCNT;
427    if (_cpuid_info.std_cpuid1_ecx.bits.avx != 0 &&
428        _cpuid_info.std_cpuid1_ecx.bits.osxsave != 0 &&
429        _cpuid_info.xem_xcr0_eax.bits.sse != 0 &&
430        _cpuid_info.xem_xcr0_eax.bits.ymm != 0) {
431      result |= CPU_AVX;
432      if (_cpuid_info.sef_cpuid7_ebx.bits.avx2 != 0)
433        result |= CPU_AVX2;
434    }
435    if(_cpuid_info.sef_cpuid7_ebx.bits.bmi1 != 0)
436      result |= CPU_BMI1;
437    if (_cpuid_info.std_cpuid1_edx.bits.tsc != 0)
438      result |= CPU_TSC;
439    if (_cpuid_info.ext_cpuid7_edx.bits.tsc_invariance != 0)
440      result |= CPU_TSCINV;
441    if (_cpuid_info.std_cpuid1_ecx.bits.aes != 0)
442      result |= CPU_AES;
443    if (_cpuid_info.sef_cpuid7_ebx.bits.erms != 0)
444      result |= CPU_ERMS;
445    if (_cpuid_info.std_cpuid1_ecx.bits.clmul != 0)
446      result |= CPU_CLMUL;
447
448    // AMD features.
449    if (is_amd()) {
450      if ((_cpuid_info.ext_cpuid1_edx.bits.tdnow != 0) ||
451          (_cpuid_info.ext_cpuid1_ecx.bits.prefetchw != 0))
452        result |= CPU_3DNOW_PREFETCH;
453      if (_cpuid_info.ext_cpuid1_ecx.bits.lzcnt != 0)
454        result |= CPU_LZCNT;
455      if (_cpuid_info.ext_cpuid1_ecx.bits.sse4a != 0)
456        result |= CPU_SSE4A;
457    }
458    // Intel features.
459    if(is_intel()) {
460      if(_cpuid_info.sef_cpuid7_ebx.bits.bmi2 != 0)
461        result |= CPU_BMI2;
462      if(_cpuid_info.ext_cpuid1_ecx.bits.lzcnt_intel != 0)
463        result |= CPU_LZCNT;
464    }
465
466    return result;
467  }
468
469  static bool os_supports_avx_vectors() {
470    if (!supports_avx()) {
471      return false;
472    }
473    // Verify that OS save/restore all bits of AVX registers
474    // during signal processing.
475    int nreg = 2 LP64_ONLY(+2);
476    for (int i = 0; i < 8 * nreg; i++) { // 32 bytes per ymm register
477      if (_cpuid_info.ymm_save[i] != ymm_test_value()) {
478        return false;
479      }
480    }
481    return true;
482  }
483
484  static void get_processor_features();
485
486public:
487  // Offsets for cpuid asm stub
488  static ByteSize std_cpuid0_offset() { return byte_offset_of(CpuidInfo, std_max_function); }
489  static ByteSize std_cpuid1_offset() { return byte_offset_of(CpuidInfo, std_cpuid1_eax); }
490  static ByteSize dcp_cpuid4_offset() { return byte_offset_of(CpuidInfo, dcp_cpuid4_eax); }
491  static ByteSize sef_cpuid7_offset() { return byte_offset_of(CpuidInfo, sef_cpuid7_eax); }
492  static ByteSize ext_cpuid1_offset() { return byte_offset_of(CpuidInfo, ext_cpuid1_eax); }
493  static ByteSize ext_cpuid5_offset() { return byte_offset_of(CpuidInfo, ext_cpuid5_eax); }
494  static ByteSize ext_cpuid7_offset() { return byte_offset_of(CpuidInfo, ext_cpuid7_eax); }
495  static ByteSize ext_cpuid8_offset() { return byte_offset_of(CpuidInfo, ext_cpuid8_eax); }
496  static ByteSize tpl_cpuidB0_offset() { return byte_offset_of(CpuidInfo, tpl_cpuidB0_eax); }
497  static ByteSize tpl_cpuidB1_offset() { return byte_offset_of(CpuidInfo, tpl_cpuidB1_eax); }
498  static ByteSize tpl_cpuidB2_offset() { return byte_offset_of(CpuidInfo, tpl_cpuidB2_eax); }
499  static ByteSize xem_xcr0_offset() { return byte_offset_of(CpuidInfo, xem_xcr0_eax); }
500  static ByteSize ymm_save_offset() { return byte_offset_of(CpuidInfo, ymm_save); }
501
502  // The value used to check ymm register after signal handle
503  static int ymm_test_value()    { return 0xCAFEBABE; }
504
505  static void set_cpuinfo_segv_addr(address pc) { _cpuinfo_segv_addr = pc; }
506  static bool  is_cpuinfo_segv_addr(address pc) { return _cpuinfo_segv_addr == pc; }
507  static void set_cpuinfo_cont_addr(address pc) { _cpuinfo_cont_addr = pc; }
508  static address  cpuinfo_cont_addr()           { return _cpuinfo_cont_addr; }
509
510  static void clean_cpuFeatures()   { _cpuFeatures = 0; }
511  static void set_avx_cpuFeatures() { _cpuFeatures = (CPU_SSE | CPU_SSE2 | CPU_AVX); }
512
513
514  // Initialization
515  static void initialize();
516
517  // Asserts
518  static void assert_is_initialized() {
519    assert(_cpuid_info.std_cpuid1_eax.bits.family != 0, "VM_Version not initialized");
520  }
521
522  //
523  // Processor family:
524  //       3   -  386
525  //       4   -  486
526  //       5   -  Pentium
527  //       6   -  PentiumPro, Pentium II, Celeron, Xeon, Pentium III, Athlon,
528  //              Pentium M, Core Solo, Core Duo, Core2 Duo
529  //    family 6 model:   9,        13,       14,        15
530  //    0x0f   -  Pentium 4, Opteron
531  //
532  // Note: The cpu family should be used to select between
533  //       instruction sequences which are valid on all Intel
534  //       processors.  Use the feature test functions below to
535  //       determine whether a particular instruction is supported.
536  //
537  static int  cpu_family()        { return _cpu;}
538  static bool is_P6()             { return cpu_family() >= 6; }
539  static bool is_amd()            { assert_is_initialized(); return _cpuid_info.std_vendor_name_0 == 0x68747541; } // 'htuA'
540  static bool is_intel()          { assert_is_initialized(); return _cpuid_info.std_vendor_name_0 == 0x756e6547; } // 'uneG'
541
542  static bool supports_processor_topology() {
543    return (_cpuid_info.std_max_function >= 0xB) &&
544           // eax[4:0] | ebx[0:15] == 0 indicates invalid topology level.
545           // Some cpus have max cpuid >= 0xB but do not support processor topology.
546           (((_cpuid_info.tpl_cpuidB0_eax & 0x1f) | _cpuid_info.tpl_cpuidB0_ebx.bits.logical_cpus) != 0);
547  }
548
549  static uint cores_per_cpu()  {
550    uint result = 1;
551    if (is_intel()) {
552      if (supports_processor_topology()) {
553        result = _cpuid_info.tpl_cpuidB1_ebx.bits.logical_cpus /
554                 _cpuid_info.tpl_cpuidB0_ebx.bits.logical_cpus;
555      } else {
556        result = (_cpuid_info.dcp_cpuid4_eax.bits.cores_per_cpu + 1);
557      }
558    } else if (is_amd()) {
559      result = (_cpuid_info.ext_cpuid8_ecx.bits.cores_per_cpu + 1);
560    }
561    return result;
562  }
563
564  static uint threads_per_core()  {
565    uint result = 1;
566    if (is_intel() && supports_processor_topology()) {
567      result = _cpuid_info.tpl_cpuidB0_ebx.bits.logical_cpus;
568    } else if (_cpuid_info.std_cpuid1_edx.bits.ht != 0) {
569      result = _cpuid_info.std_cpuid1_ebx.bits.threads_per_cpu /
570               cores_per_cpu();
571    }
572    return result;
573  }
574
575  static intx prefetch_data_size()  {
576    intx result = 0;
577    if (is_intel()) {
578      result = (_cpuid_info.dcp_cpuid4_ebx.bits.L1_line_size + 1);
579    } else if (is_amd()) {
580      result = _cpuid_info.ext_cpuid5_ecx.bits.L1_line_size;
581    }
582    if (result < 32) // not defined ?
583      result = 32;   // 32 bytes by default on x86 and other x64
584    return result;
585  }
586
587  //
588  // Feature identification
589  //
590  static bool supports_cpuid()    { return _cpuFeatures  != 0; }
591  static bool supports_cmpxchg8() { return (_cpuFeatures & CPU_CX8) != 0; }
592  static bool supports_cmov()     { return (_cpuFeatures & CPU_CMOV) != 0; }
593  static bool supports_fxsr()     { return (_cpuFeatures & CPU_FXSR) != 0; }
594  static bool supports_ht()       { return (_cpuFeatures & CPU_HT) != 0; }
595  static bool supports_mmx()      { return (_cpuFeatures & CPU_MMX) != 0; }
596  static bool supports_sse()      { return (_cpuFeatures & CPU_SSE) != 0; }
597  static bool supports_sse2()     { return (_cpuFeatures & CPU_SSE2) != 0; }
598  static bool supports_sse3()     { return (_cpuFeatures & CPU_SSE3) != 0; }
599  static bool supports_ssse3()    { return (_cpuFeatures & CPU_SSSE3)!= 0; }
600  static bool supports_sse4_1()   { return (_cpuFeatures & CPU_SSE4_1) != 0; }
601  static bool supports_sse4_2()   { return (_cpuFeatures & CPU_SSE4_2) != 0; }
602  static bool supports_popcnt()   { return (_cpuFeatures & CPU_POPCNT) != 0; }
603  static bool supports_avx()      { return (_cpuFeatures & CPU_AVX) != 0; }
604  static bool supports_avx2()     { return (_cpuFeatures & CPU_AVX2) != 0; }
605  static bool supports_tsc()      { return (_cpuFeatures & CPU_TSC)    != 0; }
606  static bool supports_aes()      { return (_cpuFeatures & CPU_AES) != 0; }
607  static bool supports_erms()     { return (_cpuFeatures & CPU_ERMS) != 0; }
608  static bool supports_clmul()    { return (_cpuFeatures & CPU_CLMUL) != 0; }
609  static bool supports_bmi1()     { return (_cpuFeatures & CPU_BMI1) != 0; }
610  static bool supports_bmi2()     { return (_cpuFeatures & CPU_BMI2) != 0; }
611  // Intel features
612  static bool is_intel_family_core() { return is_intel() &&
613                                       extended_cpu_family() == CPU_FAMILY_INTEL_CORE; }
614
615  static bool is_intel_tsc_synched_at_init()  {
616    if (is_intel_family_core()) {
617      uint32_t ext_model = extended_cpu_model();
618      if (ext_model == CPU_MODEL_NEHALEM_EP     ||
619          ext_model == CPU_MODEL_WESTMERE_EP    ||
620          ext_model == CPU_MODEL_SANDYBRIDGE_EP ||
621          ext_model == CPU_MODEL_IVYBRIDGE_EP) {
622        // <= 2-socket invariant tsc support. EX versions are usually used
623        // in > 2-socket systems and likely don't synchronize tscs at
624        // initialization.
625        // Code that uses tsc values must be prepared for them to arbitrarily
626        // jump forward or backward.
627        return true;
628      }
629    }
630    return false;
631  }
632
633  // AMD features
634  static bool supports_3dnow_prefetch()    { return (_cpuFeatures & CPU_3DNOW_PREFETCH) != 0; }
635  static bool supports_mmx_ext()  { return is_amd() && _cpuid_info.ext_cpuid1_edx.bits.mmx_amd != 0; }
636  static bool supports_lzcnt()    { return (_cpuFeatures & CPU_LZCNT) != 0; }
637  static bool supports_sse4a()    { return (_cpuFeatures & CPU_SSE4A) != 0; }
638
639  static bool is_amd_Barcelona()  { return is_amd() &&
640                                           extended_cpu_family() == CPU_FAMILY_AMD_11H; }
641
642  // Intel and AMD newer cores support fast timestamps well
643  static bool supports_tscinv_bit() {
644    return (_cpuFeatures & CPU_TSCINV) != 0;
645  }
646  static bool supports_tscinv() {
647    return supports_tscinv_bit() &&
648           ( (is_amd() && !is_amd_Barcelona()) ||
649             is_intel_tsc_synched_at_init() );
650  }
651
652  // Intel Core and newer cpus have fast IDIV instruction (excluding Atom).
653  static bool has_fast_idiv()     { return is_intel() && cpu_family() == 6 &&
654                                           supports_sse3() && _model != 0x1C; }
655
656  static bool supports_compare_and_exchange() { return true; }
657
658  static const char* cpu_features()           { return _features_str; }
659
660  static intx allocate_prefetch_distance() {
661    // This method should be called before allocate_prefetch_style().
662    //
663    // Hardware prefetching (distance/size in bytes):
664    // Pentium 3 -  64 /  32
665    // Pentium 4 - 256 / 128
666    // Athlon    -  64 /  32 ????
667    // Opteron   - 128 /  64 only when 2 sequential cache lines accessed
668    // Core      - 128 /  64
669    //
670    // Software prefetching (distance in bytes / instruction with best score):
671    // Pentium 3 - 128 / prefetchnta
672    // Pentium 4 - 512 / prefetchnta
673    // Athlon    - 128 / prefetchnta
674    // Opteron   - 256 / prefetchnta
675    // Core      - 256 / prefetchnta
676    // It will be used only when AllocatePrefetchStyle > 0
677
678    intx count = AllocatePrefetchDistance;
679    if (count < 0) {   // default ?
680      if (is_amd()) {  // AMD
681        if (supports_sse2())
682          count = 256; // Opteron
683        else
684          count = 128; // Athlon
685      } else {         // Intel
686        if (supports_sse2())
687          if (cpu_family() == 6) {
688            count = 256; // Pentium M, Core, Core2
689          } else {
690            count = 512; // Pentium 4
691          }
692        else
693          count = 128; // Pentium 3 (and all other old CPUs)
694      }
695    }
696    return count;
697  }
698  static intx allocate_prefetch_style() {
699    assert(AllocatePrefetchStyle >= 0, "AllocatePrefetchStyle should be positive");
700    // Return 0 if AllocatePrefetchDistance was not defined.
701    return AllocatePrefetchDistance > 0 ? AllocatePrefetchStyle : 0;
702  }
703
704  // Prefetch interval for gc copy/scan == 9 dcache lines.  Derived from
705  // 50-warehouse specjbb runs on a 2-way 1.8ghz opteron using a 4gb heap.
706  // Tested intervals from 128 to 2048 in increments of 64 == one cache line.
707  // 256 bytes (4 dcache lines) was the nearest runner-up to 576.
708
709  // gc copy/scan is disabled if prefetchw isn't supported, because
710  // Prefetch::write emits an inlined prefetchw on Linux.
711  // Do not use the 3dnow prefetchw instruction.  It isn't supported on em64t.
712  // The used prefetcht0 instruction works for both amd64 and em64t.
713  static intx prefetch_copy_interval_in_bytes() {
714    intx interval = PrefetchCopyIntervalInBytes;
715    return interval >= 0 ? interval : 576;
716  }
717  static intx prefetch_scan_interval_in_bytes() {
718    intx interval = PrefetchScanIntervalInBytes;
719    return interval >= 0 ? interval : 576;
720  }
721  static intx prefetch_fields_ahead() {
722    intx count = PrefetchFieldsAhead;
723    return count >= 0 ? count : 1;
724  }
725};
726
727#endif // CPU_X86_VM_VM_VERSION_X86_HPP
728