sharedRuntime_x86_32.cpp revision 9149:a8a8604f890f
1/*
2 * Copyright (c) 2003, 2015, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "asm/macroAssembler.hpp"
27#include "asm/macroAssembler.inline.hpp"
28#include "code/debugInfoRec.hpp"
29#include "code/icBuffer.hpp"
30#include "code/vtableStubs.hpp"
31#include "interpreter/interpreter.hpp"
32#include "oops/compiledICHolder.hpp"
33#include "prims/jvmtiRedefineClassesTrace.hpp"
34#include "runtime/sharedRuntime.hpp"
35#include "runtime/vframeArray.hpp"
36#include "vmreg_x86.inline.hpp"
37#ifdef COMPILER1
38#include "c1/c1_Runtime1.hpp"
39#endif
40#ifdef COMPILER2
41#include "opto/runtime.hpp"
42#endif
43
44#define __ masm->
45
46const int StackAlignmentInSlots = StackAlignmentInBytes / VMRegImpl::stack_slot_size;
47
48class RegisterSaver {
49  // Capture info about frame layout
50#define DEF_XMM_OFFS(regnum) xmm ## regnum ## _off = xmm_off + (regnum)*16/BytesPerInt, xmm ## regnum ## H_off
51  enum layout {
52                fpu_state_off = 0,
53                fpu_state_end = fpu_state_off+FPUStateSizeInWords,
54                st0_off, st0H_off,
55                st1_off, st1H_off,
56                st2_off, st2H_off,
57                st3_off, st3H_off,
58                st4_off, st4H_off,
59                st5_off, st5H_off,
60                st6_off, st6H_off,
61                st7_off, st7H_off,
62                xmm_off,
63                DEF_XMM_OFFS(0),
64                DEF_XMM_OFFS(1),
65                DEF_XMM_OFFS(2),
66                DEF_XMM_OFFS(3),
67                DEF_XMM_OFFS(4),
68                DEF_XMM_OFFS(5),
69                DEF_XMM_OFFS(6),
70                DEF_XMM_OFFS(7),
71                flags_off = xmm7_off + 16/BytesPerInt + 1, // 16-byte stack alignment fill word
72                rdi_off,
73                rsi_off,
74                ignore_off,  // extra copy of rbp,
75                rsp_off,
76                rbx_off,
77                rdx_off,
78                rcx_off,
79                rax_off,
80                // The frame sender code expects that rbp will be in the "natural" place and
81                // will override any oopMap setting for it. We must therefore force the layout
82                // so that it agrees with the frame sender code.
83                rbp_off,
84                return_off,      // slot for return address
85                reg_save_size };
86  enum { FPU_regs_live = flags_off - fpu_state_end };
87
88  public:
89
90  static OopMap* save_live_registers(MacroAssembler* masm, int additional_frame_words,
91                                     int* total_frame_words, bool verify_fpu = true, bool save_vectors = false);
92  static void restore_live_registers(MacroAssembler* masm, bool restore_vectors = false);
93
94  static int rax_offset() { return rax_off; }
95  static int rbx_offset() { return rbx_off; }
96
97  // Offsets into the register save area
98  // Used by deoptimization when it is managing result register
99  // values on its own
100
101  static int raxOffset(void) { return rax_off; }
102  static int rdxOffset(void) { return rdx_off; }
103  static int rbxOffset(void) { return rbx_off; }
104  static int xmm0Offset(void) { return xmm0_off; }
105  // This really returns a slot in the fp save area, which one is not important
106  static int fpResultOffset(void) { return st0_off; }
107
108  // During deoptimization only the result register need to be restored
109  // all the other values have already been extracted.
110
111  static void restore_result_registers(MacroAssembler* masm);
112
113};
114
115OopMap* RegisterSaver::save_live_registers(MacroAssembler* masm, int additional_frame_words,
116                                           int* total_frame_words, bool verify_fpu, bool save_vectors) {
117  int vect_words = 0;
118  int num_xmm_regs = XMMRegisterImpl::number_of_registers;
119#ifdef COMPILER2
120  if (save_vectors) {
121    assert(UseAVX > 0, "512bit vectors are supported only with EVEX");
122    assert(MaxVectorSize == 64, "only 512bit vectors are supported now");
123    // Save upper half of ZMM/YMM registers :
124    vect_words = 8 * 16 / wordSize;
125    additional_frame_words += vect_words;
126  }
127#else
128  assert(!save_vectors, "vectors are generated only by C2");
129#endif
130  int frame_size_in_bytes = (reg_save_size + additional_frame_words) * wordSize;
131  int frame_words = frame_size_in_bytes / wordSize;
132  *total_frame_words = frame_words;
133
134  assert(FPUStateSizeInWords == 27, "update stack layout");
135
136  // save registers, fpu state, and flags
137  // We assume caller has already has return address slot on the stack
138  // We push epb twice in this sequence because we want the real rbp,
139  // to be under the return like a normal enter and we want to use pusha
140  // We push by hand instead of pusing push
141  __ enter();
142  __ pusha();
143  __ pushf();
144  __ subptr(rsp,FPU_regs_live*wordSize); // Push FPU registers space
145  __ push_FPU_state();          // Save FPU state & init
146
147  if (verify_fpu) {
148    // Some stubs may have non standard FPU control word settings so
149    // only check and reset the value when it required to be the
150    // standard value.  The safepoint blob in particular can be used
151    // in methods which are using the 24 bit control word for
152    // optimized float math.
153
154#ifdef ASSERT
155    // Make sure the control word has the expected value
156    Label ok;
157    __ cmpw(Address(rsp, 0), StubRoutines::fpu_cntrl_wrd_std());
158    __ jccb(Assembler::equal, ok);
159    __ stop("corrupted control word detected");
160    __ bind(ok);
161#endif
162
163    // Reset the control word to guard against exceptions being unmasked
164    // since fstp_d can cause FPU stack underflow exceptions.  Write it
165    // into the on stack copy and then reload that to make sure that the
166    // current and future values are correct.
167    __ movw(Address(rsp, 0), StubRoutines::fpu_cntrl_wrd_std());
168  }
169
170  __ frstor(Address(rsp, 0));
171  if (!verify_fpu) {
172    // Set the control word so that exceptions are masked for the
173    // following code.
174    __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
175  }
176
177  int off = st0_off;
178  int delta = st1_off - off;
179
180  // Save the FPU registers in de-opt-able form
181  for (int n = 0; n < FloatRegisterImpl::number_of_registers; n++) {
182    __ fstp_d(Address(rsp, off*wordSize));
183    off += delta;
184  }
185
186  off = xmm0_off;
187  delta = xmm1_off - off;
188  if(UseSSE == 1) {           // Save the XMM state
189    for (int n = 0; n < num_xmm_regs; n++) {
190      __ movflt(Address(rsp, off*wordSize), as_XMMRegister(n));
191      off += delta;
192    }
193  } else if(UseSSE >= 2) {
194    // Save whole 128bit (16 bytes) XMM regiters
195    if (VM_Version::supports_avx512novl()) {
196      for (int n = 0; n < num_xmm_regs; n++) {
197        __ vextractf32x4h(Address(rsp, off*wordSize), as_XMMRegister(n), 0);
198        off += delta;
199      }
200    } else {
201      for (int n = 0; n < num_xmm_regs; n++) {
202        __ movdqu(Address(rsp, off*wordSize), as_XMMRegister(n));
203        off += delta;
204      }
205    }
206  }
207
208  if (vect_words > 0) {
209    assert(vect_words*wordSize == 128, "");
210    __ subptr(rsp, 128); // Save upper half of YMM registes
211    off = 0;
212    for (int n = 0; n < num_xmm_regs; n++) {
213      __ vextractf128h(Address(rsp, off++*16), as_XMMRegister(n));
214    }
215    if (UseAVX > 2) {
216      __ subptr(rsp, 256); // Save upper half of ZMM registes
217      off = 0;
218      for (int n = 0; n < num_xmm_regs; n++) {
219        __ vextractf64x4h(Address(rsp, off++*32), as_XMMRegister(n));
220      }
221    }
222  }
223
224  // Set an oopmap for the call site.  This oopmap will map all
225  // oop-registers and debug-info registers as callee-saved.  This
226  // will allow deoptimization at this safepoint to find all possible
227  // debug-info recordings, as well as let GC find all oops.
228
229  OopMapSet *oop_maps = new OopMapSet();
230  OopMap* map =  new OopMap( frame_words, 0 );
231
232#define STACK_OFFSET(x) VMRegImpl::stack2reg((x) + additional_frame_words)
233#define NEXTREG(x) (x)->as_VMReg()->next()
234
235  map->set_callee_saved(STACK_OFFSET(rax_off), rax->as_VMReg());
236  map->set_callee_saved(STACK_OFFSET(rcx_off), rcx->as_VMReg());
237  map->set_callee_saved(STACK_OFFSET(rdx_off), rdx->as_VMReg());
238  map->set_callee_saved(STACK_OFFSET(rbx_off), rbx->as_VMReg());
239  // rbp, location is known implicitly, no oopMap
240  map->set_callee_saved(STACK_OFFSET(rsi_off), rsi->as_VMReg());
241  map->set_callee_saved(STACK_OFFSET(rdi_off), rdi->as_VMReg());
242  // %%% This is really a waste but we'll keep things as they were for now for the upper component
243  off = st0_off;
244  delta = st1_off - off;
245  for (int n = 0; n < FloatRegisterImpl::number_of_registers; n++) {
246    FloatRegister freg_name = as_FloatRegister(n);
247    map->set_callee_saved(STACK_OFFSET(off), freg_name->as_VMReg());
248    map->set_callee_saved(STACK_OFFSET(off+1), NEXTREG(freg_name));
249    off += delta;
250  }
251  off = xmm0_off;
252  delta = xmm1_off - off;
253  for (int n = 0; n < num_xmm_regs; n++) {
254    XMMRegister xmm_name = as_XMMRegister(n);
255    map->set_callee_saved(STACK_OFFSET(off), xmm_name->as_VMReg());
256    map->set_callee_saved(STACK_OFFSET(off+1), NEXTREG(xmm_name));
257    off += delta;
258  }
259#undef NEXTREG
260#undef STACK_OFFSET
261
262  return map;
263}
264
265void RegisterSaver::restore_live_registers(MacroAssembler* masm, bool restore_vectors) {
266  int num_xmm_regs = XMMRegisterImpl::number_of_registers;
267  // Recover XMM & FPU state
268  int additional_frame_bytes = 0;
269#ifdef COMPILER2
270  if (restore_vectors) {
271    assert(UseAVX > 0, "512bit vectors are supported only with EVEX");
272    assert(MaxVectorSize == 64, "only 512bit vectors are supported now");
273    additional_frame_bytes = 128;
274  }
275#else
276  assert(!restore_vectors, "vectors are generated only by C2");
277#endif
278  int off = xmm0_off;
279  int delta = xmm1_off - off;
280
281  if (UseSSE == 1) {
282    assert(additional_frame_bytes == 0, "");
283    for (int n = 0; n < num_xmm_regs; n++) {
284      __ movflt(as_XMMRegister(n), Address(rsp, off*wordSize));
285      off += delta;
286    }
287  } else if (UseSSE >= 2) {
288    if (VM_Version::supports_avx512novl()) {
289      for (int n = 0; n < num_xmm_regs; n++) {
290        __ vinsertf32x4h(as_XMMRegister(n), Address(rsp, off*wordSize+additional_frame_bytes), 0);
291        off += delta;
292      }
293    } else {
294      for (int n = 0; n < num_xmm_regs; n++) {
295        __ movdqu(as_XMMRegister(n), Address(rsp, off*wordSize+additional_frame_bytes));
296        off += delta;
297      }
298    }
299  }
300  if (restore_vectors) {
301    if (UseAVX > 2) {
302      off = 0;
303      for (int n = 0; n < num_xmm_regs; n++) {
304        __ vinsertf64x4h(as_XMMRegister(n), Address(rsp, off++*32));
305      }
306      __ addptr(rsp, additional_frame_bytes*2); // Save upper half of ZMM registes
307    }
308    // Restore upper half of YMM registes.
309    assert(additional_frame_bytes == 128, "");
310    off = 0;
311    for (int n = 0; n < num_xmm_regs; n++) {
312      __ vinsertf128h(as_XMMRegister(n), Address(rsp, off++*16));
313    }
314    __ addptr(rsp, additional_frame_bytes); // Save upper half of YMM registes
315  }
316  __ pop_FPU_state();
317  __ addptr(rsp, FPU_regs_live*wordSize); // Pop FPU registers
318
319  __ popf();
320  __ popa();
321  // Get the rbp, described implicitly by the frame sender code (no oopMap)
322  __ pop(rbp);
323
324}
325
326void RegisterSaver::restore_result_registers(MacroAssembler* masm) {
327
328  // Just restore result register. Only used by deoptimization. By
329  // now any callee save register that needs to be restore to a c2
330  // caller of the deoptee has been extracted into the vframeArray
331  // and will be stuffed into the c2i adapter we create for later
332  // restoration so only result registers need to be restored here.
333  //
334
335  __ frstor(Address(rsp, 0));      // Restore fpu state
336
337  // Recover XMM & FPU state
338  if( UseSSE == 1 ) {
339    __ movflt(xmm0, Address(rsp, xmm0_off*wordSize));
340  } else if( UseSSE >= 2 ) {
341    __ movdbl(xmm0, Address(rsp, xmm0_off*wordSize));
342  }
343  __ movptr(rax, Address(rsp, rax_off*wordSize));
344  __ movptr(rdx, Address(rsp, rdx_off*wordSize));
345  // Pop all of the register save are off the stack except the return address
346  __ addptr(rsp, return_off * wordSize);
347}
348
349// Is vector's size (in bytes) bigger than a size saved by default?
350// 16 bytes XMM registers are saved by default using SSE2 movdqu instructions.
351// Note, MaxVectorSize == 0 with UseSSE < 2 and vectors are not generated.
352bool SharedRuntime::is_wide_vector(int size) {
353  return size > 16;
354}
355
356// The java_calling_convention describes stack locations as ideal slots on
357// a frame with no abi restrictions. Since we must observe abi restrictions
358// (like the placement of the register window) the slots must be biased by
359// the following value.
360static int reg2offset_in(VMReg r) {
361  // Account for saved rbp, and return address
362  // This should really be in_preserve_stack_slots
363  return (r->reg2stack() + 2) * VMRegImpl::stack_slot_size;
364}
365
366static int reg2offset_out(VMReg r) {
367  return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
368}
369
370// ---------------------------------------------------------------------------
371// Read the array of BasicTypes from a signature, and compute where the
372// arguments should go.  Values in the VMRegPair regs array refer to 4-byte
373// quantities.  Values less than SharedInfo::stack0 are registers, those above
374// refer to 4-byte stack slots.  All stack slots are based off of the stack pointer
375// as framesizes are fixed.
376// VMRegImpl::stack0 refers to the first slot 0(sp).
377// and VMRegImpl::stack0+1 refers to the memory word 4-byes higher.  Register
378// up to RegisterImpl::number_of_registers) are the 32-bit
379// integer registers.
380
381// Pass first two oop/int args in registers ECX and EDX.
382// Pass first two float/double args in registers XMM0 and XMM1.
383// Doubles have precedence, so if you pass a mix of floats and doubles
384// the doubles will grab the registers before the floats will.
385
386// Note: the INPUTS in sig_bt are in units of Java argument words, which are
387// either 32-bit or 64-bit depending on the build.  The OUTPUTS are in 32-bit
388// units regardless of build. Of course for i486 there is no 64 bit build
389
390
391// ---------------------------------------------------------------------------
392// The compiled Java calling convention.
393// Pass first two oop/int args in registers ECX and EDX.
394// Pass first two float/double args in registers XMM0 and XMM1.
395// Doubles have precedence, so if you pass a mix of floats and doubles
396// the doubles will grab the registers before the floats will.
397int SharedRuntime::java_calling_convention(const BasicType *sig_bt,
398                                           VMRegPair *regs,
399                                           int total_args_passed,
400                                           int is_outgoing) {
401  uint    stack = 0;          // Starting stack position for args on stack
402
403
404  // Pass first two oop/int args in registers ECX and EDX.
405  uint reg_arg0 = 9999;
406  uint reg_arg1 = 9999;
407
408  // Pass first two float/double args in registers XMM0 and XMM1.
409  // Doubles have precedence, so if you pass a mix of floats and doubles
410  // the doubles will grab the registers before the floats will.
411  // CNC - TURNED OFF FOR non-SSE.
412  //       On Intel we have to round all doubles (and most floats) at
413  //       call sites by storing to the stack in any case.
414  // UseSSE=0 ==> Don't Use ==> 9999+0
415  // UseSSE=1 ==> Floats only ==> 9999+1
416  // UseSSE>=2 ==> Floats or doubles ==> 9999+2
417  enum { fltarg_dontuse = 9999+0, fltarg_float_only = 9999+1, fltarg_flt_dbl = 9999+2 };
418  uint fargs = (UseSSE>=2) ? 2 : UseSSE;
419  uint freg_arg0 = 9999+fargs;
420  uint freg_arg1 = 9999+fargs;
421
422  // Pass doubles & longs aligned on the stack.  First count stack slots for doubles
423  int i;
424  for( i = 0; i < total_args_passed; i++) {
425    if( sig_bt[i] == T_DOUBLE ) {
426      // first 2 doubles go in registers
427      if( freg_arg0 == fltarg_flt_dbl ) freg_arg0 = i;
428      else if( freg_arg1 == fltarg_flt_dbl ) freg_arg1 = i;
429      else // Else double is passed low on the stack to be aligned.
430        stack += 2;
431    } else if( sig_bt[i] == T_LONG ) {
432      stack += 2;
433    }
434  }
435  int dstack = 0;             // Separate counter for placing doubles
436
437  // Now pick where all else goes.
438  for( i = 0; i < total_args_passed; i++) {
439    // From the type and the argument number (count) compute the location
440    switch( sig_bt[i] ) {
441    case T_SHORT:
442    case T_CHAR:
443    case T_BYTE:
444    case T_BOOLEAN:
445    case T_INT:
446    case T_ARRAY:
447    case T_OBJECT:
448    case T_ADDRESS:
449      if( reg_arg0 == 9999 )  {
450        reg_arg0 = i;
451        regs[i].set1(rcx->as_VMReg());
452      } else if( reg_arg1 == 9999 )  {
453        reg_arg1 = i;
454        regs[i].set1(rdx->as_VMReg());
455      } else {
456        regs[i].set1(VMRegImpl::stack2reg(stack++));
457      }
458      break;
459    case T_FLOAT:
460      if( freg_arg0 == fltarg_flt_dbl || freg_arg0 == fltarg_float_only ) {
461        freg_arg0 = i;
462        regs[i].set1(xmm0->as_VMReg());
463      } else if( freg_arg1 == fltarg_flt_dbl || freg_arg1 == fltarg_float_only ) {
464        freg_arg1 = i;
465        regs[i].set1(xmm1->as_VMReg());
466      } else {
467        regs[i].set1(VMRegImpl::stack2reg(stack++));
468      }
469      break;
470    case T_LONG:
471      assert(sig_bt[i+1] == T_VOID, "missing Half" );
472      regs[i].set2(VMRegImpl::stack2reg(dstack));
473      dstack += 2;
474      break;
475    case T_DOUBLE:
476      assert(sig_bt[i+1] == T_VOID, "missing Half" );
477      if( freg_arg0 == (uint)i ) {
478        regs[i].set2(xmm0->as_VMReg());
479      } else if( freg_arg1 == (uint)i ) {
480        regs[i].set2(xmm1->as_VMReg());
481      } else {
482        regs[i].set2(VMRegImpl::stack2reg(dstack));
483        dstack += 2;
484      }
485      break;
486    case T_VOID: regs[i].set_bad(); break;
487      break;
488    default:
489      ShouldNotReachHere();
490      break;
491    }
492  }
493
494  // return value can be odd number of VMRegImpl stack slots make multiple of 2
495  return round_to(stack, 2);
496}
497
498// Patch the callers callsite with entry to compiled code if it exists.
499static void patch_callers_callsite(MacroAssembler *masm) {
500  Label L;
501  __ cmpptr(Address(rbx, in_bytes(Method::code_offset())), (int32_t)NULL_WORD);
502  __ jcc(Assembler::equal, L);
503  // Schedule the branch target address early.
504  // Call into the VM to patch the caller, then jump to compiled callee
505  // rax, isn't live so capture return address while we easily can
506  __ movptr(rax, Address(rsp, 0));
507  __ pusha();
508  __ pushf();
509
510  if (UseSSE == 1) {
511    __ subptr(rsp, 2*wordSize);
512    __ movflt(Address(rsp, 0), xmm0);
513    __ movflt(Address(rsp, wordSize), xmm1);
514  }
515  if (UseSSE >= 2) {
516    __ subptr(rsp, 4*wordSize);
517    __ movdbl(Address(rsp, 0), xmm0);
518    __ movdbl(Address(rsp, 2*wordSize), xmm1);
519  }
520#ifdef COMPILER2
521  // C2 may leave the stack dirty if not in SSE2+ mode
522  if (UseSSE >= 2) {
523    __ verify_FPU(0, "c2i transition should have clean FPU stack");
524  } else {
525    __ empty_FPU_stack();
526  }
527#endif /* COMPILER2 */
528
529  // VM needs caller's callsite
530  __ push(rax);
531  // VM needs target method
532  __ push(rbx);
533  __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite)));
534  __ addptr(rsp, 2*wordSize);
535
536  if (UseSSE == 1) {
537    __ movflt(xmm0, Address(rsp, 0));
538    __ movflt(xmm1, Address(rsp, wordSize));
539    __ addptr(rsp, 2*wordSize);
540  }
541  if (UseSSE >= 2) {
542    __ movdbl(xmm0, Address(rsp, 0));
543    __ movdbl(xmm1, Address(rsp, 2*wordSize));
544    __ addptr(rsp, 4*wordSize);
545  }
546
547  __ popf();
548  __ popa();
549  __ bind(L);
550}
551
552
553static void move_c2i_double(MacroAssembler *masm, XMMRegister r, int st_off) {
554  int next_off = st_off - Interpreter::stackElementSize;
555  __ movdbl(Address(rsp, next_off), r);
556}
557
558static void gen_c2i_adapter(MacroAssembler *masm,
559                            int total_args_passed,
560                            int comp_args_on_stack,
561                            const BasicType *sig_bt,
562                            const VMRegPair *regs,
563                            Label& skip_fixup) {
564  // Before we get into the guts of the C2I adapter, see if we should be here
565  // at all.  We've come from compiled code and are attempting to jump to the
566  // interpreter, which means the caller made a static call to get here
567  // (vcalls always get a compiled target if there is one).  Check for a
568  // compiled target.  If there is one, we need to patch the caller's call.
569  patch_callers_callsite(masm);
570
571  __ bind(skip_fixup);
572
573#ifdef COMPILER2
574  // C2 may leave the stack dirty if not in SSE2+ mode
575  if (UseSSE >= 2) {
576    __ verify_FPU(0, "c2i transition should have clean FPU stack");
577  } else {
578    __ empty_FPU_stack();
579  }
580#endif /* COMPILER2 */
581
582  // Since all args are passed on the stack, total_args_passed * interpreter_
583  // stack_element_size  is the
584  // space we need.
585  int extraspace = total_args_passed * Interpreter::stackElementSize;
586
587  // Get return address
588  __ pop(rax);
589
590  // set senderSP value
591  __ movptr(rsi, rsp);
592
593  __ subptr(rsp, extraspace);
594
595  // Now write the args into the outgoing interpreter space
596  for (int i = 0; i < total_args_passed; i++) {
597    if (sig_bt[i] == T_VOID) {
598      assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
599      continue;
600    }
601
602    // st_off points to lowest address on stack.
603    int st_off = ((total_args_passed - 1) - i) * Interpreter::stackElementSize;
604    int next_off = st_off - Interpreter::stackElementSize;
605
606    // Say 4 args:
607    // i   st_off
608    // 0   12 T_LONG
609    // 1    8 T_VOID
610    // 2    4 T_OBJECT
611    // 3    0 T_BOOL
612    VMReg r_1 = regs[i].first();
613    VMReg r_2 = regs[i].second();
614    if (!r_1->is_valid()) {
615      assert(!r_2->is_valid(), "");
616      continue;
617    }
618
619    if (r_1->is_stack()) {
620      // memory to memory use fpu stack top
621      int ld_off = r_1->reg2stack() * VMRegImpl::stack_slot_size + extraspace;
622
623      if (!r_2->is_valid()) {
624        __ movl(rdi, Address(rsp, ld_off));
625        __ movptr(Address(rsp, st_off), rdi);
626      } else {
627
628        // ld_off == LSW, ld_off+VMRegImpl::stack_slot_size == MSW
629        // st_off == MSW, st_off-wordSize == LSW
630
631        __ movptr(rdi, Address(rsp, ld_off));
632        __ movptr(Address(rsp, next_off), rdi);
633#ifndef _LP64
634        __ movptr(rdi, Address(rsp, ld_off + wordSize));
635        __ movptr(Address(rsp, st_off), rdi);
636#else
637#ifdef ASSERT
638        // Overwrite the unused slot with known junk
639        __ mov64(rax, CONST64(0xdeadffffdeadaaaa));
640        __ movptr(Address(rsp, st_off), rax);
641#endif /* ASSERT */
642#endif // _LP64
643      }
644    } else if (r_1->is_Register()) {
645      Register r = r_1->as_Register();
646      if (!r_2->is_valid()) {
647        __ movl(Address(rsp, st_off), r);
648      } else {
649        // long/double in gpr
650        NOT_LP64(ShouldNotReachHere());
651        // Two VMRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG
652        // T_DOUBLE and T_LONG use two slots in the interpreter
653        if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
654          // long/double in gpr
655#ifdef ASSERT
656          // Overwrite the unused slot with known junk
657          LP64_ONLY(__ mov64(rax, CONST64(0xdeadffffdeadaaab)));
658          __ movptr(Address(rsp, st_off), rax);
659#endif /* ASSERT */
660          __ movptr(Address(rsp, next_off), r);
661        } else {
662          __ movptr(Address(rsp, st_off), r);
663        }
664      }
665    } else {
666      assert(r_1->is_XMMRegister(), "");
667      if (!r_2->is_valid()) {
668        __ movflt(Address(rsp, st_off), r_1->as_XMMRegister());
669      } else {
670        assert(sig_bt[i] == T_DOUBLE || sig_bt[i] == T_LONG, "wrong type");
671        move_c2i_double(masm, r_1->as_XMMRegister(), st_off);
672      }
673    }
674  }
675
676  // Schedule the branch target address early.
677  __ movptr(rcx, Address(rbx, in_bytes(Method::interpreter_entry_offset())));
678  // And repush original return address
679  __ push(rax);
680  __ jmp(rcx);
681}
682
683
684static void move_i2c_double(MacroAssembler *masm, XMMRegister r, Register saved_sp, int ld_off) {
685  int next_val_off = ld_off - Interpreter::stackElementSize;
686  __ movdbl(r, Address(saved_sp, next_val_off));
687}
688
689static void range_check(MacroAssembler* masm, Register pc_reg, Register temp_reg,
690                        address code_start, address code_end,
691                        Label& L_ok) {
692  Label L_fail;
693  __ lea(temp_reg, ExternalAddress(code_start));
694  __ cmpptr(pc_reg, temp_reg);
695  __ jcc(Assembler::belowEqual, L_fail);
696  __ lea(temp_reg, ExternalAddress(code_end));
697  __ cmpptr(pc_reg, temp_reg);
698  __ jcc(Assembler::below, L_ok);
699  __ bind(L_fail);
700}
701
702void SharedRuntime::gen_i2c_adapter(MacroAssembler *masm,
703                                    int total_args_passed,
704                                    int comp_args_on_stack,
705                                    const BasicType *sig_bt,
706                                    const VMRegPair *regs) {
707  // Note: rsi contains the senderSP on entry. We must preserve it since
708  // we may do a i2c -> c2i transition if we lose a race where compiled
709  // code goes non-entrant while we get args ready.
710
711  // Adapters can be frameless because they do not require the caller
712  // to perform additional cleanup work, such as correcting the stack pointer.
713  // An i2c adapter is frameless because the *caller* frame, which is interpreted,
714  // routinely repairs its own stack pointer (from interpreter_frame_last_sp),
715  // even if a callee has modified the stack pointer.
716  // A c2i adapter is frameless because the *callee* frame, which is interpreted,
717  // routinely repairs its caller's stack pointer (from sender_sp, which is set
718  // up via the senderSP register).
719  // In other words, if *either* the caller or callee is interpreted, we can
720  // get the stack pointer repaired after a call.
721  // This is why c2i and i2c adapters cannot be indefinitely composed.
722  // In particular, if a c2i adapter were to somehow call an i2c adapter,
723  // both caller and callee would be compiled methods, and neither would
724  // clean up the stack pointer changes performed by the two adapters.
725  // If this happens, control eventually transfers back to the compiled
726  // caller, but with an uncorrected stack, causing delayed havoc.
727
728  // Pick up the return address
729  __ movptr(rax, Address(rsp, 0));
730
731  if (VerifyAdapterCalls &&
732      (Interpreter::code() != NULL || StubRoutines::code1() != NULL)) {
733    // So, let's test for cascading c2i/i2c adapters right now.
734    //  assert(Interpreter::contains($return_addr) ||
735    //         StubRoutines::contains($return_addr),
736    //         "i2c adapter must return to an interpreter frame");
737    __ block_comment("verify_i2c { ");
738    Label L_ok;
739    if (Interpreter::code() != NULL)
740      range_check(masm, rax, rdi,
741                  Interpreter::code()->code_start(), Interpreter::code()->code_end(),
742                  L_ok);
743    if (StubRoutines::code1() != NULL)
744      range_check(masm, rax, rdi,
745                  StubRoutines::code1()->code_begin(), StubRoutines::code1()->code_end(),
746                  L_ok);
747    if (StubRoutines::code2() != NULL)
748      range_check(masm, rax, rdi,
749                  StubRoutines::code2()->code_begin(), StubRoutines::code2()->code_end(),
750                  L_ok);
751    const char* msg = "i2c adapter must return to an interpreter frame";
752    __ block_comment(msg);
753    __ stop(msg);
754    __ bind(L_ok);
755    __ block_comment("} verify_i2ce ");
756  }
757
758  // Must preserve original SP for loading incoming arguments because
759  // we need to align the outgoing SP for compiled code.
760  __ movptr(rdi, rsp);
761
762  // Cut-out for having no stack args.  Since up to 2 int/oop args are passed
763  // in registers, we will occasionally have no stack args.
764  int comp_words_on_stack = 0;
765  if (comp_args_on_stack) {
766    // Sig words on the stack are greater-than VMRegImpl::stack0.  Those in
767    // registers are below.  By subtracting stack0, we either get a negative
768    // number (all values in registers) or the maximum stack slot accessed.
769    // int comp_args_on_stack = VMRegImpl::reg2stack(max_arg);
770    // Convert 4-byte stack slots to words.
771    comp_words_on_stack = round_to(comp_args_on_stack*4, wordSize)>>LogBytesPerWord;
772    // Round up to miminum stack alignment, in wordSize
773    comp_words_on_stack = round_to(comp_words_on_stack, 2);
774    __ subptr(rsp, comp_words_on_stack * wordSize);
775  }
776
777  // Align the outgoing SP
778  __ andptr(rsp, -(StackAlignmentInBytes));
779
780  // push the return address on the stack (note that pushing, rather
781  // than storing it, yields the correct frame alignment for the callee)
782  __ push(rax);
783
784  // Put saved SP in another register
785  const Register saved_sp = rax;
786  __ movptr(saved_sp, rdi);
787
788
789  // Will jump to the compiled code just as if compiled code was doing it.
790  // Pre-load the register-jump target early, to schedule it better.
791  __ movptr(rdi, Address(rbx, in_bytes(Method::from_compiled_offset())));
792
793  // Now generate the shuffle code.  Pick up all register args and move the
794  // rest through the floating point stack top.
795  for (int i = 0; i < total_args_passed; i++) {
796    if (sig_bt[i] == T_VOID) {
797      // Longs and doubles are passed in native word order, but misaligned
798      // in the 32-bit build.
799      assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
800      continue;
801    }
802
803    // Pick up 0, 1 or 2 words from SP+offset.
804
805    assert(!regs[i].second()->is_valid() || regs[i].first()->next() == regs[i].second(),
806            "scrambled load targets?");
807    // Load in argument order going down.
808    int ld_off = (total_args_passed - i) * Interpreter::stackElementSize;
809    // Point to interpreter value (vs. tag)
810    int next_off = ld_off - Interpreter::stackElementSize;
811    //
812    //
813    //
814    VMReg r_1 = regs[i].first();
815    VMReg r_2 = regs[i].second();
816    if (!r_1->is_valid()) {
817      assert(!r_2->is_valid(), "");
818      continue;
819    }
820    if (r_1->is_stack()) {
821      // Convert stack slot to an SP offset (+ wordSize to account for return address )
822      int st_off = regs[i].first()->reg2stack()*VMRegImpl::stack_slot_size + wordSize;
823
824      // We can use rsi as a temp here because compiled code doesn't need rsi as an input
825      // and if we end up going thru a c2i because of a miss a reasonable value of rsi
826      // we be generated.
827      if (!r_2->is_valid()) {
828        // __ fld_s(Address(saved_sp, ld_off));
829        // __ fstp_s(Address(rsp, st_off));
830        __ movl(rsi, Address(saved_sp, ld_off));
831        __ movptr(Address(rsp, st_off), rsi);
832      } else {
833        // Interpreter local[n] == MSW, local[n+1] == LSW however locals
834        // are accessed as negative so LSW is at LOW address
835
836        // ld_off is MSW so get LSW
837        // st_off is LSW (i.e. reg.first())
838        // __ fld_d(Address(saved_sp, next_off));
839        // __ fstp_d(Address(rsp, st_off));
840        //
841        // We are using two VMRegs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE
842        // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case
843        // So we must adjust where to pick up the data to match the interpreter.
844        //
845        // Interpreter local[n] == MSW, local[n+1] == LSW however locals
846        // are accessed as negative so LSW is at LOW address
847
848        // ld_off is MSW so get LSW
849        const int offset = (NOT_LP64(true ||) sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)?
850                           next_off : ld_off;
851        __ movptr(rsi, Address(saved_sp, offset));
852        __ movptr(Address(rsp, st_off), rsi);
853#ifndef _LP64
854        __ movptr(rsi, Address(saved_sp, ld_off));
855        __ movptr(Address(rsp, st_off + wordSize), rsi);
856#endif // _LP64
857      }
858    } else if (r_1->is_Register()) {  // Register argument
859      Register r = r_1->as_Register();
860      assert(r != rax, "must be different");
861      if (r_2->is_valid()) {
862        //
863        // We are using two VMRegs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE
864        // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case
865        // So we must adjust where to pick up the data to match the interpreter.
866
867        const int offset = (NOT_LP64(true ||) sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)?
868                           next_off : ld_off;
869
870        // this can be a misaligned move
871        __ movptr(r, Address(saved_sp, offset));
872#ifndef _LP64
873        assert(r_2->as_Register() != rax, "need another temporary register");
874        // Remember r_1 is low address (and LSB on x86)
875        // So r_2 gets loaded from high address regardless of the platform
876        __ movptr(r_2->as_Register(), Address(saved_sp, ld_off));
877#endif // _LP64
878      } else {
879        __ movl(r, Address(saved_sp, ld_off));
880      }
881    } else {
882      assert(r_1->is_XMMRegister(), "");
883      if (!r_2->is_valid()) {
884        __ movflt(r_1->as_XMMRegister(), Address(saved_sp, ld_off));
885      } else {
886        move_i2c_double(masm, r_1->as_XMMRegister(), saved_sp, ld_off);
887      }
888    }
889  }
890
891  // 6243940 We might end up in handle_wrong_method if
892  // the callee is deoptimized as we race thru here. If that
893  // happens we don't want to take a safepoint because the
894  // caller frame will look interpreted and arguments are now
895  // "compiled" so it is much better to make this transition
896  // invisible to the stack walking code. Unfortunately if
897  // we try and find the callee by normal means a safepoint
898  // is possible. So we stash the desired callee in the thread
899  // and the vm will find there should this case occur.
900
901  __ get_thread(rax);
902  __ movptr(Address(rax, JavaThread::callee_target_offset()), rbx);
903
904  // move Method* to rax, in case we end up in an c2i adapter.
905  // the c2i adapters expect Method* in rax, (c2) because c2's
906  // resolve stubs return the result (the method) in rax,.
907  // I'd love to fix this.
908  __ mov(rax, rbx);
909
910  __ jmp(rdi);
911}
912
913// ---------------------------------------------------------------
914AdapterHandlerEntry* SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm,
915                                                            int total_args_passed,
916                                                            int comp_args_on_stack,
917                                                            const BasicType *sig_bt,
918                                                            const VMRegPair *regs,
919                                                            AdapterFingerPrint* fingerprint) {
920  address i2c_entry = __ pc();
921
922  gen_i2c_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs);
923
924  // -------------------------------------------------------------------------
925  // Generate a C2I adapter.  On entry we know rbx, holds the Method* during calls
926  // to the interpreter.  The args start out packed in the compiled layout.  They
927  // need to be unpacked into the interpreter layout.  This will almost always
928  // require some stack space.  We grow the current (compiled) stack, then repack
929  // the args.  We  finally end in a jump to the generic interpreter entry point.
930  // On exit from the interpreter, the interpreter will restore our SP (lest the
931  // compiled code, which relys solely on SP and not EBP, get sick).
932
933  address c2i_unverified_entry = __ pc();
934  Label skip_fixup;
935
936  Register holder = rax;
937  Register receiver = rcx;
938  Register temp = rbx;
939
940  {
941
942    Label missed;
943    __ movptr(temp, Address(receiver, oopDesc::klass_offset_in_bytes()));
944    __ cmpptr(temp, Address(holder, CompiledICHolder::holder_klass_offset()));
945    __ movptr(rbx, Address(holder, CompiledICHolder::holder_method_offset()));
946    __ jcc(Assembler::notEqual, missed);
947    // Method might have been compiled since the call site was patched to
948    // interpreted if that is the case treat it as a miss so we can get
949    // the call site corrected.
950    __ cmpptr(Address(rbx, in_bytes(Method::code_offset())), (int32_t)NULL_WORD);
951    __ jcc(Assembler::equal, skip_fixup);
952
953    __ bind(missed);
954    __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
955  }
956
957  address c2i_entry = __ pc();
958
959  gen_c2i_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs, skip_fixup);
960
961  __ flush();
962  return AdapterHandlerLibrary::new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
963}
964
965int SharedRuntime::c_calling_convention(const BasicType *sig_bt,
966                                         VMRegPair *regs,
967                                         VMRegPair *regs2,
968                                         int total_args_passed) {
969  assert(regs2 == NULL, "not needed on x86");
970// We return the amount of VMRegImpl stack slots we need to reserve for all
971// the arguments NOT counting out_preserve_stack_slots.
972
973  uint    stack = 0;        // All arguments on stack
974
975  for( int i = 0; i < total_args_passed; i++) {
976    // From the type and the argument number (count) compute the location
977    switch( sig_bt[i] ) {
978    case T_BOOLEAN:
979    case T_CHAR:
980    case T_FLOAT:
981    case T_BYTE:
982    case T_SHORT:
983    case T_INT:
984    case T_OBJECT:
985    case T_ARRAY:
986    case T_ADDRESS:
987    case T_METADATA:
988      regs[i].set1(VMRegImpl::stack2reg(stack++));
989      break;
990    case T_LONG:
991    case T_DOUBLE: // The stack numbering is reversed from Java
992      // Since C arguments do not get reversed, the ordering for
993      // doubles on the stack must be opposite the Java convention
994      assert(sig_bt[i+1] == T_VOID, "missing Half" );
995      regs[i].set2(VMRegImpl::stack2reg(stack));
996      stack += 2;
997      break;
998    case T_VOID: regs[i].set_bad(); break;
999    default:
1000      ShouldNotReachHere();
1001      break;
1002    }
1003  }
1004  return stack;
1005}
1006
1007// A simple move of integer like type
1008static void simple_move32(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1009  if (src.first()->is_stack()) {
1010    if (dst.first()->is_stack()) {
1011      // stack to stack
1012      // __ ld(FP, reg2offset(src.first()) + STACK_BIAS, L5);
1013      // __ st(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
1014      __ movl2ptr(rax, Address(rbp, reg2offset_in(src.first())));
1015      __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
1016    } else {
1017      // stack to reg
1018      __ movl2ptr(dst.first()->as_Register(),  Address(rbp, reg2offset_in(src.first())));
1019    }
1020  } else if (dst.first()->is_stack()) {
1021    // reg to stack
1022    // no need to sign extend on 64bit
1023    __ movptr(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register());
1024  } else {
1025    if (dst.first() != src.first()) {
1026      __ mov(dst.first()->as_Register(), src.first()->as_Register());
1027    }
1028  }
1029}
1030
1031// An oop arg. Must pass a handle not the oop itself
1032static void object_move(MacroAssembler* masm,
1033                        OopMap* map,
1034                        int oop_handle_offset,
1035                        int framesize_in_slots,
1036                        VMRegPair src,
1037                        VMRegPair dst,
1038                        bool is_receiver,
1039                        int* receiver_offset) {
1040
1041  // Because of the calling conventions we know that src can be a
1042  // register or a stack location. dst can only be a stack location.
1043
1044  assert(dst.first()->is_stack(), "must be stack");
1045  // must pass a handle. First figure out the location we use as a handle
1046
1047  if (src.first()->is_stack()) {
1048    // Oop is already on the stack as an argument
1049    Register rHandle = rax;
1050    Label nil;
1051    __ xorptr(rHandle, rHandle);
1052    __ cmpptr(Address(rbp, reg2offset_in(src.first())), (int32_t)NULL_WORD);
1053    __ jcc(Assembler::equal, nil);
1054    __ lea(rHandle, Address(rbp, reg2offset_in(src.first())));
1055    __ bind(nil);
1056    __ movptr(Address(rsp, reg2offset_out(dst.first())), rHandle);
1057
1058    int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
1059    map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots));
1060    if (is_receiver) {
1061      *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size;
1062    }
1063  } else {
1064    // Oop is in an a register we must store it to the space we reserve
1065    // on the stack for oop_handles
1066    const Register rOop = src.first()->as_Register();
1067    const Register rHandle = rax;
1068    int oop_slot = (rOop == rcx ? 0 : 1) * VMRegImpl::slots_per_word + oop_handle_offset;
1069    int offset = oop_slot*VMRegImpl::stack_slot_size;
1070    Label skip;
1071    __ movptr(Address(rsp, offset), rOop);
1072    map->set_oop(VMRegImpl::stack2reg(oop_slot));
1073    __ xorptr(rHandle, rHandle);
1074    __ cmpptr(rOop, (int32_t)NULL_WORD);
1075    __ jcc(Assembler::equal, skip);
1076    __ lea(rHandle, Address(rsp, offset));
1077    __ bind(skip);
1078    // Store the handle parameter
1079    __ movptr(Address(rsp, reg2offset_out(dst.first())), rHandle);
1080    if (is_receiver) {
1081      *receiver_offset = offset;
1082    }
1083  }
1084}
1085
1086// A float arg may have to do float reg int reg conversion
1087static void float_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1088  assert(!src.second()->is_valid() && !dst.second()->is_valid(), "bad float_move");
1089
1090  // Because of the calling convention we know that src is either a stack location
1091  // or an xmm register. dst can only be a stack location.
1092
1093  assert(dst.first()->is_stack() && ( src.first()->is_stack() || src.first()->is_XMMRegister()), "bad parameters");
1094
1095  if (src.first()->is_stack()) {
1096    __ movl(rax, Address(rbp, reg2offset_in(src.first())));
1097    __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
1098  } else {
1099    // reg to stack
1100    __ movflt(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister());
1101  }
1102}
1103
1104// A long move
1105static void long_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1106
1107  // The only legal possibility for a long_move VMRegPair is:
1108  // 1: two stack slots (possibly unaligned)
1109  // as neither the java  or C calling convention will use registers
1110  // for longs.
1111
1112  if (src.first()->is_stack() && dst.first()->is_stack()) {
1113    assert(src.second()->is_stack() && dst.second()->is_stack(), "must be all stack");
1114    __ movptr(rax, Address(rbp, reg2offset_in(src.first())));
1115    NOT_LP64(__ movptr(rbx, Address(rbp, reg2offset_in(src.second()))));
1116    __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
1117    NOT_LP64(__ movptr(Address(rsp, reg2offset_out(dst.second())), rbx));
1118  } else {
1119    ShouldNotReachHere();
1120  }
1121}
1122
1123// A double move
1124static void double_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1125
1126  // The only legal possibilities for a double_move VMRegPair are:
1127  // The painful thing here is that like long_move a VMRegPair might be
1128
1129  // Because of the calling convention we know that src is either
1130  //   1: a single physical register (xmm registers only)
1131  //   2: two stack slots (possibly unaligned)
1132  // dst can only be a pair of stack slots.
1133
1134  assert(dst.first()->is_stack() && (src.first()->is_XMMRegister() || src.first()->is_stack()), "bad args");
1135
1136  if (src.first()->is_stack()) {
1137    // source is all stack
1138    __ movptr(rax, Address(rbp, reg2offset_in(src.first())));
1139    NOT_LP64(__ movptr(rbx, Address(rbp, reg2offset_in(src.second()))));
1140    __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
1141    NOT_LP64(__ movptr(Address(rsp, reg2offset_out(dst.second())), rbx));
1142  } else {
1143    // reg to stack
1144    // No worries about stack alignment
1145    __ movdbl(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister());
1146  }
1147}
1148
1149
1150void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
1151  // We always ignore the frame_slots arg and just use the space just below frame pointer
1152  // which by this time is free to use
1153  switch (ret_type) {
1154  case T_FLOAT:
1155    __ fstp_s(Address(rbp, -wordSize));
1156    break;
1157  case T_DOUBLE:
1158    __ fstp_d(Address(rbp, -2*wordSize));
1159    break;
1160  case T_VOID:  break;
1161  case T_LONG:
1162    __ movptr(Address(rbp, -wordSize), rax);
1163    NOT_LP64(__ movptr(Address(rbp, -2*wordSize), rdx));
1164    break;
1165  default: {
1166    __ movptr(Address(rbp, -wordSize), rax);
1167    }
1168  }
1169}
1170
1171void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
1172  // We always ignore the frame_slots arg and just use the space just below frame pointer
1173  // which by this time is free to use
1174  switch (ret_type) {
1175  case T_FLOAT:
1176    __ fld_s(Address(rbp, -wordSize));
1177    break;
1178  case T_DOUBLE:
1179    __ fld_d(Address(rbp, -2*wordSize));
1180    break;
1181  case T_LONG:
1182    __ movptr(rax, Address(rbp, -wordSize));
1183    NOT_LP64(__ movptr(rdx, Address(rbp, -2*wordSize)));
1184    break;
1185  case T_VOID:  break;
1186  default: {
1187    __ movptr(rax, Address(rbp, -wordSize));
1188    }
1189  }
1190}
1191
1192
1193static void save_or_restore_arguments(MacroAssembler* masm,
1194                                      const int stack_slots,
1195                                      const int total_in_args,
1196                                      const int arg_save_area,
1197                                      OopMap* map,
1198                                      VMRegPair* in_regs,
1199                                      BasicType* in_sig_bt) {
1200  // if map is non-NULL then the code should store the values,
1201  // otherwise it should load them.
1202  int handle_index = 0;
1203  // Save down double word first
1204  for ( int i = 0; i < total_in_args; i++) {
1205    if (in_regs[i].first()->is_XMMRegister() && in_sig_bt[i] == T_DOUBLE) {
1206      int slot = handle_index * VMRegImpl::slots_per_word + arg_save_area;
1207      int offset = slot * VMRegImpl::stack_slot_size;
1208      handle_index += 2;
1209      assert(handle_index <= stack_slots, "overflow");
1210      if (map != NULL) {
1211        __ movdbl(Address(rsp, offset), in_regs[i].first()->as_XMMRegister());
1212      } else {
1213        __ movdbl(in_regs[i].first()->as_XMMRegister(), Address(rsp, offset));
1214      }
1215    }
1216    if (in_regs[i].first()->is_Register() && in_sig_bt[i] == T_LONG) {
1217      int slot = handle_index * VMRegImpl::slots_per_word + arg_save_area;
1218      int offset = slot * VMRegImpl::stack_slot_size;
1219      handle_index += 2;
1220      assert(handle_index <= stack_slots, "overflow");
1221      if (map != NULL) {
1222        __ movl(Address(rsp, offset), in_regs[i].first()->as_Register());
1223        if (in_regs[i].second()->is_Register()) {
1224          __ movl(Address(rsp, offset + 4), in_regs[i].second()->as_Register());
1225        }
1226      } else {
1227        __ movl(in_regs[i].first()->as_Register(), Address(rsp, offset));
1228        if (in_regs[i].second()->is_Register()) {
1229          __ movl(in_regs[i].second()->as_Register(), Address(rsp, offset + 4));
1230        }
1231      }
1232    }
1233  }
1234  // Save or restore single word registers
1235  for ( int i = 0; i < total_in_args; i++) {
1236    if (in_regs[i].first()->is_Register()) {
1237      int slot = handle_index++ * VMRegImpl::slots_per_word + arg_save_area;
1238      int offset = slot * VMRegImpl::stack_slot_size;
1239      assert(handle_index <= stack_slots, "overflow");
1240      if (in_sig_bt[i] == T_ARRAY && map != NULL) {
1241        map->set_oop(VMRegImpl::stack2reg(slot));;
1242      }
1243
1244      // Value is in an input register pass we must flush it to the stack
1245      const Register reg = in_regs[i].first()->as_Register();
1246      switch (in_sig_bt[i]) {
1247        case T_ARRAY:
1248          if (map != NULL) {
1249            __ movptr(Address(rsp, offset), reg);
1250          } else {
1251            __ movptr(reg, Address(rsp, offset));
1252          }
1253          break;
1254        case T_BOOLEAN:
1255        case T_CHAR:
1256        case T_BYTE:
1257        case T_SHORT:
1258        case T_INT:
1259          if (map != NULL) {
1260            __ movl(Address(rsp, offset), reg);
1261          } else {
1262            __ movl(reg, Address(rsp, offset));
1263          }
1264          break;
1265        case T_OBJECT:
1266        default: ShouldNotReachHere();
1267      }
1268    } else if (in_regs[i].first()->is_XMMRegister()) {
1269      if (in_sig_bt[i] == T_FLOAT) {
1270        int slot = handle_index++ * VMRegImpl::slots_per_word + arg_save_area;
1271        int offset = slot * VMRegImpl::stack_slot_size;
1272        assert(handle_index <= stack_slots, "overflow");
1273        if (map != NULL) {
1274          __ movflt(Address(rsp, offset), in_regs[i].first()->as_XMMRegister());
1275        } else {
1276          __ movflt(in_regs[i].first()->as_XMMRegister(), Address(rsp, offset));
1277        }
1278      }
1279    } else if (in_regs[i].first()->is_stack()) {
1280      if (in_sig_bt[i] == T_ARRAY && map != NULL) {
1281        int offset_in_older_frame = in_regs[i].first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
1282        map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + stack_slots));
1283      }
1284    }
1285  }
1286}
1287
1288// Check GC_locker::needs_gc and enter the runtime if it's true.  This
1289// keeps a new JNI critical region from starting until a GC has been
1290// forced.  Save down any oops in registers and describe them in an
1291// OopMap.
1292static void check_needs_gc_for_critical_native(MacroAssembler* masm,
1293                                               Register thread,
1294                                               int stack_slots,
1295                                               int total_c_args,
1296                                               int total_in_args,
1297                                               int arg_save_area,
1298                                               OopMapSet* oop_maps,
1299                                               VMRegPair* in_regs,
1300                                               BasicType* in_sig_bt) {
1301  __ block_comment("check GC_locker::needs_gc");
1302  Label cont;
1303  __ cmp8(ExternalAddress((address)GC_locker::needs_gc_address()), false);
1304  __ jcc(Assembler::equal, cont);
1305
1306  // Save down any incoming oops and call into the runtime to halt for a GC
1307
1308  OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
1309
1310  save_or_restore_arguments(masm, stack_slots, total_in_args,
1311                            arg_save_area, map, in_regs, in_sig_bt);
1312
1313  address the_pc = __ pc();
1314  oop_maps->add_gc_map( __ offset(), map);
1315  __ set_last_Java_frame(thread, rsp, noreg, the_pc);
1316
1317  __ block_comment("block_for_jni_critical");
1318  __ push(thread);
1319  __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::block_for_jni_critical)));
1320  __ increment(rsp, wordSize);
1321
1322  __ get_thread(thread);
1323  __ reset_last_Java_frame(thread, false, true);
1324
1325  save_or_restore_arguments(masm, stack_slots, total_in_args,
1326                            arg_save_area, NULL, in_regs, in_sig_bt);
1327
1328  __ bind(cont);
1329#ifdef ASSERT
1330  if (StressCriticalJNINatives) {
1331    // Stress register saving
1332    OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
1333    save_or_restore_arguments(masm, stack_slots, total_in_args,
1334                              arg_save_area, map, in_regs, in_sig_bt);
1335    // Destroy argument registers
1336    for (int i = 0; i < total_in_args - 1; i++) {
1337      if (in_regs[i].first()->is_Register()) {
1338        const Register reg = in_regs[i].first()->as_Register();
1339        __ xorptr(reg, reg);
1340      } else if (in_regs[i].first()->is_XMMRegister()) {
1341        __ xorpd(in_regs[i].first()->as_XMMRegister(), in_regs[i].first()->as_XMMRegister());
1342      } else if (in_regs[i].first()->is_FloatRegister()) {
1343        ShouldNotReachHere();
1344      } else if (in_regs[i].first()->is_stack()) {
1345        // Nothing to do
1346      } else {
1347        ShouldNotReachHere();
1348      }
1349      if (in_sig_bt[i] == T_LONG || in_sig_bt[i] == T_DOUBLE) {
1350        i++;
1351      }
1352    }
1353
1354    save_or_restore_arguments(masm, stack_slots, total_in_args,
1355                              arg_save_area, NULL, in_regs, in_sig_bt);
1356  }
1357#endif
1358}
1359
1360// Unpack an array argument into a pointer to the body and the length
1361// if the array is non-null, otherwise pass 0 for both.
1362static void unpack_array_argument(MacroAssembler* masm, VMRegPair reg, BasicType in_elem_type, VMRegPair body_arg, VMRegPair length_arg) {
1363  Register tmp_reg = rax;
1364  assert(!body_arg.first()->is_Register() || body_arg.first()->as_Register() != tmp_reg,
1365         "possible collision");
1366  assert(!length_arg.first()->is_Register() || length_arg.first()->as_Register() != tmp_reg,
1367         "possible collision");
1368
1369  // Pass the length, ptr pair
1370  Label is_null, done;
1371  VMRegPair tmp(tmp_reg->as_VMReg());
1372  if (reg.first()->is_stack()) {
1373    // Load the arg up from the stack
1374    simple_move32(masm, reg, tmp);
1375    reg = tmp;
1376  }
1377  __ testptr(reg.first()->as_Register(), reg.first()->as_Register());
1378  __ jccb(Assembler::equal, is_null);
1379  __ lea(tmp_reg, Address(reg.first()->as_Register(), arrayOopDesc::base_offset_in_bytes(in_elem_type)));
1380  simple_move32(masm, tmp, body_arg);
1381  // load the length relative to the body.
1382  __ movl(tmp_reg, Address(tmp_reg, arrayOopDesc::length_offset_in_bytes() -
1383                           arrayOopDesc::base_offset_in_bytes(in_elem_type)));
1384  simple_move32(masm, tmp, length_arg);
1385  __ jmpb(done);
1386  __ bind(is_null);
1387  // Pass zeros
1388  __ xorptr(tmp_reg, tmp_reg);
1389  simple_move32(masm, tmp, body_arg);
1390  simple_move32(masm, tmp, length_arg);
1391  __ bind(done);
1392}
1393
1394static void verify_oop_args(MacroAssembler* masm,
1395                            methodHandle method,
1396                            const BasicType* sig_bt,
1397                            const VMRegPair* regs) {
1398  Register temp_reg = rbx;  // not part of any compiled calling seq
1399  if (VerifyOops) {
1400    for (int i = 0; i < method->size_of_parameters(); i++) {
1401      if (sig_bt[i] == T_OBJECT ||
1402          sig_bt[i] == T_ARRAY) {
1403        VMReg r = regs[i].first();
1404        assert(r->is_valid(), "bad oop arg");
1405        if (r->is_stack()) {
1406          __ movptr(temp_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
1407          __ verify_oop(temp_reg);
1408        } else {
1409          __ verify_oop(r->as_Register());
1410        }
1411      }
1412    }
1413  }
1414}
1415
1416static void gen_special_dispatch(MacroAssembler* masm,
1417                                 methodHandle method,
1418                                 const BasicType* sig_bt,
1419                                 const VMRegPair* regs) {
1420  verify_oop_args(masm, method, sig_bt, regs);
1421  vmIntrinsics::ID iid = method->intrinsic_id();
1422
1423  // Now write the args into the outgoing interpreter space
1424  bool     has_receiver   = false;
1425  Register receiver_reg   = noreg;
1426  int      member_arg_pos = -1;
1427  Register member_reg     = noreg;
1428  int      ref_kind       = MethodHandles::signature_polymorphic_intrinsic_ref_kind(iid);
1429  if (ref_kind != 0) {
1430    member_arg_pos = method->size_of_parameters() - 1;  // trailing MemberName argument
1431    member_reg = rbx;  // known to be free at this point
1432    has_receiver = MethodHandles::ref_kind_has_receiver(ref_kind);
1433  } else if (iid == vmIntrinsics::_invokeBasic) {
1434    has_receiver = true;
1435  } else {
1436    fatal("unexpected intrinsic id %d", iid);
1437  }
1438
1439  if (member_reg != noreg) {
1440    // Load the member_arg into register, if necessary.
1441    SharedRuntime::check_member_name_argument_is_last_argument(method, sig_bt, regs);
1442    VMReg r = regs[member_arg_pos].first();
1443    if (r->is_stack()) {
1444      __ movptr(member_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
1445    } else {
1446      // no data motion is needed
1447      member_reg = r->as_Register();
1448    }
1449  }
1450
1451  if (has_receiver) {
1452    // Make sure the receiver is loaded into a register.
1453    assert(method->size_of_parameters() > 0, "oob");
1454    assert(sig_bt[0] == T_OBJECT, "receiver argument must be an object");
1455    VMReg r = regs[0].first();
1456    assert(r->is_valid(), "bad receiver arg");
1457    if (r->is_stack()) {
1458      // Porting note:  This assumes that compiled calling conventions always
1459      // pass the receiver oop in a register.  If this is not true on some
1460      // platform, pick a temp and load the receiver from stack.
1461      fatal("receiver always in a register");
1462      receiver_reg = rcx;  // known to be free at this point
1463      __ movptr(receiver_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
1464    } else {
1465      // no data motion is needed
1466      receiver_reg = r->as_Register();
1467    }
1468  }
1469
1470  // Figure out which address we are really jumping to:
1471  MethodHandles::generate_method_handle_dispatch(masm, iid,
1472                                                 receiver_reg, member_reg, /*for_compiler_entry:*/ true);
1473}
1474
1475// ---------------------------------------------------------------------------
1476// Generate a native wrapper for a given method.  The method takes arguments
1477// in the Java compiled code convention, marshals them to the native
1478// convention (handlizes oops, etc), transitions to native, makes the call,
1479// returns to java state (possibly blocking), unhandlizes any result and
1480// returns.
1481//
1482// Critical native functions are a shorthand for the use of
1483// GetPrimtiveArrayCritical and disallow the use of any other JNI
1484// functions.  The wrapper is expected to unpack the arguments before
1485// passing them to the callee and perform checks before and after the
1486// native call to ensure that they GC_locker
1487// lock_critical/unlock_critical semantics are followed.  Some other
1488// parts of JNI setup are skipped like the tear down of the JNI handle
1489// block and the check for pending exceptions it's impossible for them
1490// to be thrown.
1491//
1492// They are roughly structured like this:
1493//    if (GC_locker::needs_gc())
1494//      SharedRuntime::block_for_jni_critical();
1495//    tranistion to thread_in_native
1496//    unpack arrray arguments and call native entry point
1497//    check for safepoint in progress
1498//    check if any thread suspend flags are set
1499//      call into JVM and possible unlock the JNI critical
1500//      if a GC was suppressed while in the critical native.
1501//    transition back to thread_in_Java
1502//    return to caller
1503//
1504nmethod* SharedRuntime::generate_native_wrapper(MacroAssembler* masm,
1505                                                methodHandle method,
1506                                                int compile_id,
1507                                                BasicType* in_sig_bt,
1508                                                VMRegPair* in_regs,
1509                                                BasicType ret_type) {
1510  if (method->is_method_handle_intrinsic()) {
1511    vmIntrinsics::ID iid = method->intrinsic_id();
1512    intptr_t start = (intptr_t)__ pc();
1513    int vep_offset = ((intptr_t)__ pc()) - start;
1514    gen_special_dispatch(masm,
1515                         method,
1516                         in_sig_bt,
1517                         in_regs);
1518    int frame_complete = ((intptr_t)__ pc()) - start;  // not complete, period
1519    __ flush();
1520    int stack_slots = SharedRuntime::out_preserve_stack_slots();  // no out slots at all, actually
1521    return nmethod::new_native_nmethod(method,
1522                                       compile_id,
1523                                       masm->code(),
1524                                       vep_offset,
1525                                       frame_complete,
1526                                       stack_slots / VMRegImpl::slots_per_word,
1527                                       in_ByteSize(-1),
1528                                       in_ByteSize(-1),
1529                                       (OopMapSet*)NULL);
1530  }
1531  bool is_critical_native = true;
1532  address native_func = method->critical_native_function();
1533  if (native_func == NULL) {
1534    native_func = method->native_function();
1535    is_critical_native = false;
1536  }
1537  assert(native_func != NULL, "must have function");
1538
1539  // An OopMap for lock (and class if static)
1540  OopMapSet *oop_maps = new OopMapSet();
1541
1542  // We have received a description of where all the java arg are located
1543  // on entry to the wrapper. We need to convert these args to where
1544  // the jni function will expect them. To figure out where they go
1545  // we convert the java signature to a C signature by inserting
1546  // the hidden arguments as arg[0] and possibly arg[1] (static method)
1547
1548  const int total_in_args = method->size_of_parameters();
1549  int total_c_args = total_in_args;
1550  if (!is_critical_native) {
1551    total_c_args += 1;
1552    if (method->is_static()) {
1553      total_c_args++;
1554    }
1555  } else {
1556    for (int i = 0; i < total_in_args; i++) {
1557      if (in_sig_bt[i] == T_ARRAY) {
1558        total_c_args++;
1559      }
1560    }
1561  }
1562
1563  BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args);
1564  VMRegPair* out_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_c_args);
1565  BasicType* in_elem_bt = NULL;
1566
1567  int argc = 0;
1568  if (!is_critical_native) {
1569    out_sig_bt[argc++] = T_ADDRESS;
1570    if (method->is_static()) {
1571      out_sig_bt[argc++] = T_OBJECT;
1572    }
1573
1574    for (int i = 0; i < total_in_args ; i++ ) {
1575      out_sig_bt[argc++] = in_sig_bt[i];
1576    }
1577  } else {
1578    Thread* THREAD = Thread::current();
1579    in_elem_bt = NEW_RESOURCE_ARRAY(BasicType, total_in_args);
1580    SignatureStream ss(method->signature());
1581    for (int i = 0; i < total_in_args ; i++ ) {
1582      if (in_sig_bt[i] == T_ARRAY) {
1583        // Arrays are passed as int, elem* pair
1584        out_sig_bt[argc++] = T_INT;
1585        out_sig_bt[argc++] = T_ADDRESS;
1586        Symbol* atype = ss.as_symbol(CHECK_NULL);
1587        const char* at = atype->as_C_string();
1588        if (strlen(at) == 2) {
1589          assert(at[0] == '[', "must be");
1590          switch (at[1]) {
1591            case 'B': in_elem_bt[i]  = T_BYTE; break;
1592            case 'C': in_elem_bt[i]  = T_CHAR; break;
1593            case 'D': in_elem_bt[i]  = T_DOUBLE; break;
1594            case 'F': in_elem_bt[i]  = T_FLOAT; break;
1595            case 'I': in_elem_bt[i]  = T_INT; break;
1596            case 'J': in_elem_bt[i]  = T_LONG; break;
1597            case 'S': in_elem_bt[i]  = T_SHORT; break;
1598            case 'Z': in_elem_bt[i]  = T_BOOLEAN; break;
1599            default: ShouldNotReachHere();
1600          }
1601        }
1602      } else {
1603        out_sig_bt[argc++] = in_sig_bt[i];
1604        in_elem_bt[i] = T_VOID;
1605      }
1606      if (in_sig_bt[i] != T_VOID) {
1607        assert(in_sig_bt[i] == ss.type(), "must match");
1608        ss.next();
1609      }
1610    }
1611  }
1612
1613  // Now figure out where the args must be stored and how much stack space
1614  // they require.
1615  int out_arg_slots;
1616  out_arg_slots = c_calling_convention(out_sig_bt, out_regs, NULL, total_c_args);
1617
1618  // Compute framesize for the wrapper.  We need to handlize all oops in
1619  // registers a max of 2 on x86.
1620
1621  // Calculate the total number of stack slots we will need.
1622
1623  // First count the abi requirement plus all of the outgoing args
1624  int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
1625
1626  // Now the space for the inbound oop handle area
1627  int total_save_slots = 2 * VMRegImpl::slots_per_word; // 2 arguments passed in registers
1628  if (is_critical_native) {
1629    // Critical natives may have to call out so they need a save area
1630    // for register arguments.
1631    int double_slots = 0;
1632    int single_slots = 0;
1633    for ( int i = 0; i < total_in_args; i++) {
1634      if (in_regs[i].first()->is_Register()) {
1635        const Register reg = in_regs[i].first()->as_Register();
1636        switch (in_sig_bt[i]) {
1637          case T_ARRAY:  // critical array (uses 2 slots on LP64)
1638          case T_BOOLEAN:
1639          case T_BYTE:
1640          case T_SHORT:
1641          case T_CHAR:
1642          case T_INT:  single_slots++; break;
1643          case T_LONG: double_slots++; break;
1644          default:  ShouldNotReachHere();
1645        }
1646      } else if (in_regs[i].first()->is_XMMRegister()) {
1647        switch (in_sig_bt[i]) {
1648          case T_FLOAT:  single_slots++; break;
1649          case T_DOUBLE: double_slots++; break;
1650          default:  ShouldNotReachHere();
1651        }
1652      } else if (in_regs[i].first()->is_FloatRegister()) {
1653        ShouldNotReachHere();
1654      }
1655    }
1656    total_save_slots = double_slots * 2 + single_slots;
1657    // align the save area
1658    if (double_slots != 0) {
1659      stack_slots = round_to(stack_slots, 2);
1660    }
1661  }
1662
1663  int oop_handle_offset = stack_slots;
1664  stack_slots += total_save_slots;
1665
1666  // Now any space we need for handlizing a klass if static method
1667
1668  int klass_slot_offset = 0;
1669  int klass_offset = -1;
1670  int lock_slot_offset = 0;
1671  bool is_static = false;
1672
1673  if (method->is_static()) {
1674    klass_slot_offset = stack_slots;
1675    stack_slots += VMRegImpl::slots_per_word;
1676    klass_offset = klass_slot_offset * VMRegImpl::stack_slot_size;
1677    is_static = true;
1678  }
1679
1680  // Plus a lock if needed
1681
1682  if (method->is_synchronized()) {
1683    lock_slot_offset = stack_slots;
1684    stack_slots += VMRegImpl::slots_per_word;
1685  }
1686
1687  // Now a place (+2) to save return values or temp during shuffling
1688  // + 2 for return address (which we own) and saved rbp,
1689  stack_slots += 4;
1690
1691  // Ok The space we have allocated will look like:
1692  //
1693  //
1694  // FP-> |                     |
1695  //      |---------------------|
1696  //      | 2 slots for moves   |
1697  //      |---------------------|
1698  //      | lock box (if sync)  |
1699  //      |---------------------| <- lock_slot_offset  (-lock_slot_rbp_offset)
1700  //      | klass (if static)   |
1701  //      |---------------------| <- klass_slot_offset
1702  //      | oopHandle area      |
1703  //      |---------------------| <- oop_handle_offset (a max of 2 registers)
1704  //      | outbound memory     |
1705  //      | based arguments     |
1706  //      |                     |
1707  //      |---------------------|
1708  //      |                     |
1709  // SP-> | out_preserved_slots |
1710  //
1711  //
1712  // ****************************************************************************
1713  // WARNING - on Windows Java Natives use pascal calling convention and pop the
1714  // arguments off of the stack after the jni call. Before the call we can use
1715  // instructions that are SP relative. After the jni call we switch to FP
1716  // relative instructions instead of re-adjusting the stack on windows.
1717  // ****************************************************************************
1718
1719
1720  // Now compute actual number of stack words we need rounding to make
1721  // stack properly aligned.
1722  stack_slots = round_to(stack_slots, StackAlignmentInSlots);
1723
1724  int stack_size = stack_slots * VMRegImpl::stack_slot_size;
1725
1726  intptr_t start = (intptr_t)__ pc();
1727
1728  // First thing make an ic check to see if we should even be here
1729
1730  // We are free to use all registers as temps without saving them and
1731  // restoring them except rbp. rbp is the only callee save register
1732  // as far as the interpreter and the compiler(s) are concerned.
1733
1734
1735  const Register ic_reg = rax;
1736  const Register receiver = rcx;
1737  Label hit;
1738  Label exception_pending;
1739
1740  __ verify_oop(receiver);
1741  __ cmpptr(ic_reg, Address(receiver, oopDesc::klass_offset_in_bytes()));
1742  __ jcc(Assembler::equal, hit);
1743
1744  __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
1745
1746  // verified entry must be aligned for code patching.
1747  // and the first 5 bytes must be in the same cache line
1748  // if we align at 8 then we will be sure 5 bytes are in the same line
1749  __ align(8);
1750
1751  __ bind(hit);
1752
1753  int vep_offset = ((intptr_t)__ pc()) - start;
1754
1755#ifdef COMPILER1
1756  if (InlineObjectHash && method->intrinsic_id() == vmIntrinsics::_hashCode) {
1757    // Object.hashCode can pull the hashCode from the header word
1758    // instead of doing a full VM transition once it's been computed.
1759    // Since hashCode is usually polymorphic at call sites we can't do
1760    // this optimization at the call site without a lot of work.
1761    Label slowCase;
1762    Register receiver = rcx;
1763    Register result = rax;
1764    __ movptr(result, Address(receiver, oopDesc::mark_offset_in_bytes()));
1765
1766    // check if locked
1767    __ testptr(result, markOopDesc::unlocked_value);
1768    __ jcc (Assembler::zero, slowCase);
1769
1770    if (UseBiasedLocking) {
1771      // Check if biased and fall through to runtime if so
1772      __ testptr(result, markOopDesc::biased_lock_bit_in_place);
1773      __ jcc (Assembler::notZero, slowCase);
1774    }
1775
1776    // get hash
1777    __ andptr(result, markOopDesc::hash_mask_in_place);
1778    // test if hashCode exists
1779    __ jcc  (Assembler::zero, slowCase);
1780    __ shrptr(result, markOopDesc::hash_shift);
1781    __ ret(0);
1782    __ bind (slowCase);
1783  }
1784#endif // COMPILER1
1785
1786  // The instruction at the verified entry point must be 5 bytes or longer
1787  // because it can be patched on the fly by make_non_entrant. The stack bang
1788  // instruction fits that requirement.
1789
1790  // Generate stack overflow check
1791
1792  if (UseStackBanging) {
1793    __ bang_stack_with_offset(StackShadowPages*os::vm_page_size());
1794  } else {
1795    // need a 5 byte instruction to allow MT safe patching to non-entrant
1796    __ fat_nop();
1797  }
1798
1799  // Generate a new frame for the wrapper.
1800  __ enter();
1801  // -2 because return address is already present and so is saved rbp
1802  __ subptr(rsp, stack_size - 2*wordSize);
1803
1804  // Frame is now completed as far as size and linkage.
1805  int frame_complete = ((intptr_t)__ pc()) - start;
1806
1807  if (UseRTMLocking) {
1808    // Abort RTM transaction before calling JNI
1809    // because critical section will be large and will be
1810    // aborted anyway. Also nmethod could be deoptimized.
1811    __ xabort(0);
1812  }
1813
1814  // Calculate the difference between rsp and rbp,. We need to know it
1815  // after the native call because on windows Java Natives will pop
1816  // the arguments and it is painful to do rsp relative addressing
1817  // in a platform independent way. So after the call we switch to
1818  // rbp, relative addressing.
1819
1820  int fp_adjustment = stack_size - 2*wordSize;
1821
1822#ifdef COMPILER2
1823  // C2 may leave the stack dirty if not in SSE2+ mode
1824  if (UseSSE >= 2) {
1825    __ verify_FPU(0, "c2i transition should have clean FPU stack");
1826  } else {
1827    __ empty_FPU_stack();
1828  }
1829#endif /* COMPILER2 */
1830
1831  // Compute the rbp, offset for any slots used after the jni call
1832
1833  int lock_slot_rbp_offset = (lock_slot_offset*VMRegImpl::stack_slot_size) - fp_adjustment;
1834
1835  // We use rdi as a thread pointer because it is callee save and
1836  // if we load it once it is usable thru the entire wrapper
1837  const Register thread = rdi;
1838
1839  // We use rsi as the oop handle for the receiver/klass
1840  // It is callee save so it survives the call to native
1841
1842  const Register oop_handle_reg = rsi;
1843
1844  __ get_thread(thread);
1845
1846  if (is_critical_native) {
1847    check_needs_gc_for_critical_native(masm, thread, stack_slots, total_c_args, total_in_args,
1848                                       oop_handle_offset, oop_maps, in_regs, in_sig_bt);
1849  }
1850
1851  //
1852  // We immediately shuffle the arguments so that any vm call we have to
1853  // make from here on out (sync slow path, jvmti, etc.) we will have
1854  // captured the oops from our caller and have a valid oopMap for
1855  // them.
1856
1857  // -----------------
1858  // The Grand Shuffle
1859  //
1860  // Natives require 1 or 2 extra arguments over the normal ones: the JNIEnv*
1861  // and, if static, the class mirror instead of a receiver.  This pretty much
1862  // guarantees that register layout will not match (and x86 doesn't use reg
1863  // parms though amd does).  Since the native abi doesn't use register args
1864  // and the java conventions does we don't have to worry about collisions.
1865  // All of our moved are reg->stack or stack->stack.
1866  // We ignore the extra arguments during the shuffle and handle them at the
1867  // last moment. The shuffle is described by the two calling convention
1868  // vectors we have in our possession. We simply walk the java vector to
1869  // get the source locations and the c vector to get the destinations.
1870
1871  int c_arg = is_critical_native ? 0 : (method->is_static() ? 2 : 1 );
1872
1873  // Record rsp-based slot for receiver on stack for non-static methods
1874  int receiver_offset = -1;
1875
1876  // This is a trick. We double the stack slots so we can claim
1877  // the oops in the caller's frame. Since we are sure to have
1878  // more args than the caller doubling is enough to make
1879  // sure we can capture all the incoming oop args from the
1880  // caller.
1881  //
1882  OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
1883
1884  // Mark location of rbp,
1885  // map->set_callee_saved(VMRegImpl::stack2reg( stack_slots - 2), stack_slots * 2, 0, rbp->as_VMReg());
1886
1887  // We know that we only have args in at most two integer registers (rcx, rdx). So rax, rbx
1888  // Are free to temporaries if we have to do  stack to steck moves.
1889  // All inbound args are referenced based on rbp, and all outbound args via rsp.
1890
1891  for (int i = 0; i < total_in_args ; i++, c_arg++ ) {
1892    switch (in_sig_bt[i]) {
1893      case T_ARRAY:
1894        if (is_critical_native) {
1895          unpack_array_argument(masm, in_regs[i], in_elem_bt[i], out_regs[c_arg + 1], out_regs[c_arg]);
1896          c_arg++;
1897          break;
1898        }
1899      case T_OBJECT:
1900        assert(!is_critical_native, "no oop arguments");
1901        object_move(masm, map, oop_handle_offset, stack_slots, in_regs[i], out_regs[c_arg],
1902                    ((i == 0) && (!is_static)),
1903                    &receiver_offset);
1904        break;
1905      case T_VOID:
1906        break;
1907
1908      case T_FLOAT:
1909        float_move(masm, in_regs[i], out_regs[c_arg]);
1910          break;
1911
1912      case T_DOUBLE:
1913        assert( i + 1 < total_in_args &&
1914                in_sig_bt[i + 1] == T_VOID &&
1915                out_sig_bt[c_arg+1] == T_VOID, "bad arg list");
1916        double_move(masm, in_regs[i], out_regs[c_arg]);
1917        break;
1918
1919      case T_LONG :
1920        long_move(masm, in_regs[i], out_regs[c_arg]);
1921        break;
1922
1923      case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
1924
1925      default:
1926        simple_move32(masm, in_regs[i], out_regs[c_arg]);
1927    }
1928  }
1929
1930  // Pre-load a static method's oop into rsi.  Used both by locking code and
1931  // the normal JNI call code.
1932  if (method->is_static() && !is_critical_native) {
1933
1934    //  load opp into a register
1935    __ movoop(oop_handle_reg, JNIHandles::make_local(method->method_holder()->java_mirror()));
1936
1937    // Now handlize the static class mirror it's known not-null.
1938    __ movptr(Address(rsp, klass_offset), oop_handle_reg);
1939    map->set_oop(VMRegImpl::stack2reg(klass_slot_offset));
1940
1941    // Now get the handle
1942    __ lea(oop_handle_reg, Address(rsp, klass_offset));
1943    // store the klass handle as second argument
1944    __ movptr(Address(rsp, wordSize), oop_handle_reg);
1945  }
1946
1947  // Change state to native (we save the return address in the thread, since it might not
1948  // be pushed on the stack when we do a a stack traversal). It is enough that the pc()
1949  // points into the right code segment. It does not have to be the correct return pc.
1950  // We use the same pc/oopMap repeatedly when we call out
1951
1952  intptr_t the_pc = (intptr_t) __ pc();
1953  oop_maps->add_gc_map(the_pc - start, map);
1954
1955  __ set_last_Java_frame(thread, rsp, noreg, (address)the_pc);
1956
1957
1958  // We have all of the arguments setup at this point. We must not touch any register
1959  // argument registers at this point (what if we save/restore them there are no oop?
1960
1961  {
1962    SkipIfEqual skip_if(masm, &DTraceMethodProbes, 0);
1963    __ mov_metadata(rax, method());
1964    __ call_VM_leaf(
1965         CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
1966         thread, rax);
1967  }
1968
1969  // RedefineClasses() tracing support for obsolete method entry
1970  if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
1971    __ mov_metadata(rax, method());
1972    __ call_VM_leaf(
1973         CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
1974         thread, rax);
1975  }
1976
1977  // These are register definitions we need for locking/unlocking
1978  const Register swap_reg = rax;  // Must use rax, for cmpxchg instruction
1979  const Register obj_reg  = rcx;  // Will contain the oop
1980  const Register lock_reg = rdx;  // Address of compiler lock object (BasicLock)
1981
1982  Label slow_path_lock;
1983  Label lock_done;
1984
1985  // Lock a synchronized method
1986  if (method->is_synchronized()) {
1987    assert(!is_critical_native, "unhandled");
1988
1989
1990    const int mark_word_offset = BasicLock::displaced_header_offset_in_bytes();
1991
1992    // Get the handle (the 2nd argument)
1993    __ movptr(oop_handle_reg, Address(rsp, wordSize));
1994
1995    // Get address of the box
1996
1997    __ lea(lock_reg, Address(rbp, lock_slot_rbp_offset));
1998
1999    // Load the oop from the handle
2000    __ movptr(obj_reg, Address(oop_handle_reg, 0));
2001
2002    if (UseBiasedLocking) {
2003      // Note that oop_handle_reg is trashed during this call
2004      __ biased_locking_enter(lock_reg, obj_reg, swap_reg, oop_handle_reg, false, lock_done, &slow_path_lock);
2005    }
2006
2007    // Load immediate 1 into swap_reg %rax,
2008    __ movptr(swap_reg, 1);
2009
2010    // Load (object->mark() | 1) into swap_reg %rax,
2011    __ orptr(swap_reg, Address(obj_reg, 0));
2012
2013    // Save (object->mark() | 1) into BasicLock's displaced header
2014    __ movptr(Address(lock_reg, mark_word_offset), swap_reg);
2015
2016    if (os::is_MP()) {
2017      __ lock();
2018    }
2019
2020    // src -> dest iff dest == rax, else rax, <- dest
2021    // *obj_reg = lock_reg iff *obj_reg == rax, else rax, = *(obj_reg)
2022    __ cmpxchgptr(lock_reg, Address(obj_reg, 0));
2023    __ jcc(Assembler::equal, lock_done);
2024
2025    // Test if the oopMark is an obvious stack pointer, i.e.,
2026    //  1) (mark & 3) == 0, and
2027    //  2) rsp <= mark < mark + os::pagesize()
2028    // These 3 tests can be done by evaluating the following
2029    // expression: ((mark - rsp) & (3 - os::vm_page_size())),
2030    // assuming both stack pointer and pagesize have their
2031    // least significant 2 bits clear.
2032    // NOTE: the oopMark is in swap_reg %rax, as the result of cmpxchg
2033
2034    __ subptr(swap_reg, rsp);
2035    __ andptr(swap_reg, 3 - os::vm_page_size());
2036
2037    // Save the test result, for recursive case, the result is zero
2038    __ movptr(Address(lock_reg, mark_word_offset), swap_reg);
2039    __ jcc(Assembler::notEqual, slow_path_lock);
2040    // Slow path will re-enter here
2041    __ bind(lock_done);
2042
2043    if (UseBiasedLocking) {
2044      // Re-fetch oop_handle_reg as we trashed it above
2045      __ movptr(oop_handle_reg, Address(rsp, wordSize));
2046    }
2047  }
2048
2049
2050  // Finally just about ready to make the JNI call
2051
2052
2053  // get JNIEnv* which is first argument to native
2054  if (!is_critical_native) {
2055    __ lea(rdx, Address(thread, in_bytes(JavaThread::jni_environment_offset())));
2056    __ movptr(Address(rsp, 0), rdx);
2057  }
2058
2059  // Now set thread in native
2060  __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native);
2061
2062  __ call(RuntimeAddress(native_func));
2063
2064  // Verify or restore cpu control state after JNI call
2065  __ restore_cpu_control_state_after_jni();
2066
2067  // WARNING - on Windows Java Natives use pascal calling convention and pop the
2068  // arguments off of the stack. We could just re-adjust the stack pointer here
2069  // and continue to do SP relative addressing but we instead switch to FP
2070  // relative addressing.
2071
2072  // Unpack native results.
2073  switch (ret_type) {
2074  case T_BOOLEAN: __ c2bool(rax);            break;
2075  case T_CHAR   : __ andptr(rax, 0xFFFF);    break;
2076  case T_BYTE   : __ sign_extend_byte (rax); break;
2077  case T_SHORT  : __ sign_extend_short(rax); break;
2078  case T_INT    : /* nothing to do */        break;
2079  case T_DOUBLE :
2080  case T_FLOAT  :
2081    // Result is in st0 we'll save as needed
2082    break;
2083  case T_ARRAY:                 // Really a handle
2084  case T_OBJECT:                // Really a handle
2085      break; // can't de-handlize until after safepoint check
2086  case T_VOID: break;
2087  case T_LONG: break;
2088  default       : ShouldNotReachHere();
2089  }
2090
2091  // Switch thread to "native transition" state before reading the synchronization state.
2092  // This additional state is necessary because reading and testing the synchronization
2093  // state is not atomic w.r.t. GC, as this scenario demonstrates:
2094  //     Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
2095  //     VM thread changes sync state to synchronizing and suspends threads for GC.
2096  //     Thread A is resumed to finish this native method, but doesn't block here since it
2097  //     didn't see any synchronization is progress, and escapes.
2098  __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native_trans);
2099
2100  if(os::is_MP()) {
2101    if (UseMembar) {
2102      // Force this write out before the read below
2103      __ membar(Assembler::Membar_mask_bits(
2104           Assembler::LoadLoad | Assembler::LoadStore |
2105           Assembler::StoreLoad | Assembler::StoreStore));
2106    } else {
2107      // Write serialization page so VM thread can do a pseudo remote membar.
2108      // We use the current thread pointer to calculate a thread specific
2109      // offset to write to within the page. This minimizes bus traffic
2110      // due to cache line collision.
2111      __ serialize_memory(thread, rcx);
2112    }
2113  }
2114
2115  if (AlwaysRestoreFPU) {
2116    // Make sure the control word is correct.
2117    __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
2118  }
2119
2120  Label after_transition;
2121
2122  // check for safepoint operation in progress and/or pending suspend requests
2123  { Label Continue;
2124
2125    __ cmp32(ExternalAddress((address)SafepointSynchronize::address_of_state()),
2126             SafepointSynchronize::_not_synchronized);
2127
2128    Label L;
2129    __ jcc(Assembler::notEqual, L);
2130    __ cmpl(Address(thread, JavaThread::suspend_flags_offset()), 0);
2131    __ jcc(Assembler::equal, Continue);
2132    __ bind(L);
2133
2134    // Don't use call_VM as it will see a possible pending exception and forward it
2135    // and never return here preventing us from clearing _last_native_pc down below.
2136    // Also can't use call_VM_leaf either as it will check to see if rsi & rdi are
2137    // preserved and correspond to the bcp/locals pointers. So we do a runtime call
2138    // by hand.
2139    //
2140    save_native_result(masm, ret_type, stack_slots);
2141    __ push(thread);
2142    if (!is_critical_native) {
2143      __ call(RuntimeAddress(CAST_FROM_FN_PTR(address,
2144                                              JavaThread::check_special_condition_for_native_trans)));
2145    } else {
2146      __ call(RuntimeAddress(CAST_FROM_FN_PTR(address,
2147                                              JavaThread::check_special_condition_for_native_trans_and_transition)));
2148    }
2149    __ increment(rsp, wordSize);
2150    // Restore any method result value
2151    restore_native_result(masm, ret_type, stack_slots);
2152
2153    if (is_critical_native) {
2154      // The call above performed the transition to thread_in_Java so
2155      // skip the transition logic below.
2156      __ jmpb(after_transition);
2157    }
2158
2159    __ bind(Continue);
2160  }
2161
2162  // change thread state
2163  __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_Java);
2164  __ bind(after_transition);
2165
2166  Label reguard;
2167  Label reguard_done;
2168  __ cmpl(Address(thread, JavaThread::stack_guard_state_offset()), JavaThread::stack_guard_yellow_disabled);
2169  __ jcc(Assembler::equal, reguard);
2170
2171  // slow path reguard  re-enters here
2172  __ bind(reguard_done);
2173
2174  // Handle possible exception (will unlock if necessary)
2175
2176  // native result if any is live
2177
2178  // Unlock
2179  Label slow_path_unlock;
2180  Label unlock_done;
2181  if (method->is_synchronized()) {
2182
2183    Label done;
2184
2185    // Get locked oop from the handle we passed to jni
2186    __ movptr(obj_reg, Address(oop_handle_reg, 0));
2187
2188    if (UseBiasedLocking) {
2189      __ biased_locking_exit(obj_reg, rbx, done);
2190    }
2191
2192    // Simple recursive lock?
2193
2194    __ cmpptr(Address(rbp, lock_slot_rbp_offset), (int32_t)NULL_WORD);
2195    __ jcc(Assembler::equal, done);
2196
2197    // Must save rax, if if it is live now because cmpxchg must use it
2198    if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
2199      save_native_result(masm, ret_type, stack_slots);
2200    }
2201
2202    //  get old displaced header
2203    __ movptr(rbx, Address(rbp, lock_slot_rbp_offset));
2204
2205    // get address of the stack lock
2206    __ lea(rax, Address(rbp, lock_slot_rbp_offset));
2207
2208    // Atomic swap old header if oop still contains the stack lock
2209    if (os::is_MP()) {
2210    __ lock();
2211    }
2212
2213    // src -> dest iff dest == rax, else rax, <- dest
2214    // *obj_reg = rbx, iff *obj_reg == rax, else rax, = *(obj_reg)
2215    __ cmpxchgptr(rbx, Address(obj_reg, 0));
2216    __ jcc(Assembler::notEqual, slow_path_unlock);
2217
2218    // slow path re-enters here
2219    __ bind(unlock_done);
2220    if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
2221      restore_native_result(masm, ret_type, stack_slots);
2222    }
2223
2224    __ bind(done);
2225
2226  }
2227
2228  {
2229    SkipIfEqual skip_if(masm, &DTraceMethodProbes, 0);
2230    // Tell dtrace about this method exit
2231    save_native_result(masm, ret_type, stack_slots);
2232    __ mov_metadata(rax, method());
2233    __ call_VM_leaf(
2234         CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
2235         thread, rax);
2236    restore_native_result(masm, ret_type, stack_slots);
2237  }
2238
2239  // We can finally stop using that last_Java_frame we setup ages ago
2240
2241  __ reset_last_Java_frame(thread, false, true);
2242
2243  // Unpack oop result
2244  if (ret_type == T_OBJECT || ret_type == T_ARRAY) {
2245      Label L;
2246      __ cmpptr(rax, (int32_t)NULL_WORD);
2247      __ jcc(Assembler::equal, L);
2248      __ movptr(rax, Address(rax, 0));
2249      __ bind(L);
2250      __ verify_oop(rax);
2251  }
2252
2253  if (!is_critical_native) {
2254    // reset handle block
2255    __ movptr(rcx, Address(thread, JavaThread::active_handles_offset()));
2256    __ movl(Address(rcx, JNIHandleBlock::top_offset_in_bytes()), NULL_WORD);
2257
2258    // Any exception pending?
2259    __ cmpptr(Address(thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
2260    __ jcc(Assembler::notEqual, exception_pending);
2261  }
2262
2263  // no exception, we're almost done
2264
2265  // check that only result value is on FPU stack
2266  __ verify_FPU(ret_type == T_FLOAT || ret_type == T_DOUBLE ? 1 : 0, "native_wrapper normal exit");
2267
2268  // Fixup floating pointer results so that result looks like a return from a compiled method
2269  if (ret_type == T_FLOAT) {
2270    if (UseSSE >= 1) {
2271      // Pop st0 and store as float and reload into xmm register
2272      __ fstp_s(Address(rbp, -4));
2273      __ movflt(xmm0, Address(rbp, -4));
2274    }
2275  } else if (ret_type == T_DOUBLE) {
2276    if (UseSSE >= 2) {
2277      // Pop st0 and store as double and reload into xmm register
2278      __ fstp_d(Address(rbp, -8));
2279      __ movdbl(xmm0, Address(rbp, -8));
2280    }
2281  }
2282
2283  // Return
2284
2285  __ leave();
2286  __ ret(0);
2287
2288  // Unexpected paths are out of line and go here
2289
2290  // Slow path locking & unlocking
2291  if (method->is_synchronized()) {
2292
2293    // BEGIN Slow path lock
2294
2295    __ bind(slow_path_lock);
2296
2297    // has last_Java_frame setup. No exceptions so do vanilla call not call_VM
2298    // args are (oop obj, BasicLock* lock, JavaThread* thread)
2299    __ push(thread);
2300    __ push(lock_reg);
2301    __ push(obj_reg);
2302    __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C)));
2303    __ addptr(rsp, 3*wordSize);
2304
2305#ifdef ASSERT
2306    { Label L;
2307    __ cmpptr(Address(thread, in_bytes(Thread::pending_exception_offset())), (int)NULL_WORD);
2308    __ jcc(Assembler::equal, L);
2309    __ stop("no pending exception allowed on exit from monitorenter");
2310    __ bind(L);
2311    }
2312#endif
2313    __ jmp(lock_done);
2314
2315    // END Slow path lock
2316
2317    // BEGIN Slow path unlock
2318    __ bind(slow_path_unlock);
2319
2320    // Slow path unlock
2321
2322    if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
2323      save_native_result(masm, ret_type, stack_slots);
2324    }
2325    // Save pending exception around call to VM (which contains an EXCEPTION_MARK)
2326
2327    __ pushptr(Address(thread, in_bytes(Thread::pending_exception_offset())));
2328    __ movptr(Address(thread, in_bytes(Thread::pending_exception_offset())), NULL_WORD);
2329
2330
2331    // should be a peal
2332    // +wordSize because of the push above
2333    // args are (oop obj, BasicLock* lock, JavaThread* thread)
2334    __ push(thread);
2335    __ lea(rax, Address(rbp, lock_slot_rbp_offset));
2336    __ push(rax);
2337
2338    __ push(obj_reg);
2339    __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C)));
2340    __ addptr(rsp, 3*wordSize);
2341#ifdef ASSERT
2342    {
2343      Label L;
2344      __ cmpptr(Address(thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
2345      __ jcc(Assembler::equal, L);
2346      __ stop("no pending exception allowed on exit complete_monitor_unlocking_C");
2347      __ bind(L);
2348    }
2349#endif /* ASSERT */
2350
2351    __ popptr(Address(thread, in_bytes(Thread::pending_exception_offset())));
2352
2353    if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
2354      restore_native_result(masm, ret_type, stack_slots);
2355    }
2356    __ jmp(unlock_done);
2357    // END Slow path unlock
2358
2359  }
2360
2361  // SLOW PATH Reguard the stack if needed
2362
2363  __ bind(reguard);
2364  save_native_result(masm, ret_type, stack_slots);
2365  {
2366    __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages)));
2367  }
2368  restore_native_result(masm, ret_type, stack_slots);
2369  __ jmp(reguard_done);
2370
2371
2372  // BEGIN EXCEPTION PROCESSING
2373
2374  if (!is_critical_native) {
2375    // Forward  the exception
2376    __ bind(exception_pending);
2377
2378    // remove possible return value from FPU register stack
2379    __ empty_FPU_stack();
2380
2381    // pop our frame
2382    __ leave();
2383    // and forward the exception
2384    __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
2385  }
2386
2387  __ flush();
2388
2389  nmethod *nm = nmethod::new_native_nmethod(method,
2390                                            compile_id,
2391                                            masm->code(),
2392                                            vep_offset,
2393                                            frame_complete,
2394                                            stack_slots / VMRegImpl::slots_per_word,
2395                                            (is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)),
2396                                            in_ByteSize(lock_slot_offset*VMRegImpl::stack_slot_size),
2397                                            oop_maps);
2398
2399  if (is_critical_native) {
2400    nm->set_lazy_critical_native(true);
2401  }
2402
2403  return nm;
2404
2405}
2406
2407// this function returns the adjust size (in number of words) to a c2i adapter
2408// activation for use during deoptimization
2409int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals ) {
2410  return (callee_locals - callee_parameters) * Interpreter::stackElementWords;
2411}
2412
2413
2414uint SharedRuntime::out_preserve_stack_slots() {
2415  return 0;
2416}
2417
2418//------------------------------generate_deopt_blob----------------------------
2419void SharedRuntime::generate_deopt_blob() {
2420  // allocate space for the code
2421  ResourceMark rm;
2422  // setup code generation tools
2423  // note: the buffer code size must account for StackShadowPages=50
2424  CodeBuffer   buffer("deopt_blob", 1536, 1024);
2425  MacroAssembler* masm = new MacroAssembler(&buffer);
2426  int frame_size_in_words;
2427  OopMap* map = NULL;
2428  // Account for the extra args we place on the stack
2429  // by the time we call fetch_unroll_info
2430  const int additional_words = 2; // deopt kind, thread
2431
2432  OopMapSet *oop_maps = new OopMapSet();
2433
2434  // -------------
2435  // This code enters when returning to a de-optimized nmethod.  A return
2436  // address has been pushed on the the stack, and return values are in
2437  // registers.
2438  // If we are doing a normal deopt then we were called from the patched
2439  // nmethod from the point we returned to the nmethod. So the return
2440  // address on the stack is wrong by NativeCall::instruction_size
2441  // We will adjust the value to it looks like we have the original return
2442  // address on the stack (like when we eagerly deoptimized).
2443  // In the case of an exception pending with deoptimized then we enter
2444  // with a return address on the stack that points after the call we patched
2445  // into the exception handler. We have the following register state:
2446  //    rax,: exception
2447  //    rbx,: exception handler
2448  //    rdx: throwing pc
2449  // So in this case we simply jam rdx into the useless return address and
2450  // the stack looks just like we want.
2451  //
2452  // At this point we need to de-opt.  We save the argument return
2453  // registers.  We call the first C routine, fetch_unroll_info().  This
2454  // routine captures the return values and returns a structure which
2455  // describes the current frame size and the sizes of all replacement frames.
2456  // The current frame is compiled code and may contain many inlined
2457  // functions, each with their own JVM state.  We pop the current frame, then
2458  // push all the new frames.  Then we call the C routine unpack_frames() to
2459  // populate these frames.  Finally unpack_frames() returns us the new target
2460  // address.  Notice that callee-save registers are BLOWN here; they have
2461  // already been captured in the vframeArray at the time the return PC was
2462  // patched.
2463  address start = __ pc();
2464  Label cont;
2465
2466  // Prolog for non exception case!
2467
2468  // Save everything in sight.
2469
2470  map = RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false);
2471  // Normal deoptimization
2472  __ push(Deoptimization::Unpack_deopt);
2473  __ jmp(cont);
2474
2475  int reexecute_offset = __ pc() - start;
2476
2477  // Reexecute case
2478  // return address is the pc describes what bci to do re-execute at
2479
2480  // No need to update map as each call to save_live_registers will produce identical oopmap
2481  (void) RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false);
2482
2483  __ push(Deoptimization::Unpack_reexecute);
2484  __ jmp(cont);
2485
2486  int exception_offset = __ pc() - start;
2487
2488  // Prolog for exception case
2489
2490  // all registers are dead at this entry point, except for rax, and
2491  // rdx which contain the exception oop and exception pc
2492  // respectively.  Set them in TLS and fall thru to the
2493  // unpack_with_exception_in_tls entry point.
2494
2495  __ get_thread(rdi);
2496  __ movptr(Address(rdi, JavaThread::exception_pc_offset()), rdx);
2497  __ movptr(Address(rdi, JavaThread::exception_oop_offset()), rax);
2498
2499  int exception_in_tls_offset = __ pc() - start;
2500
2501  // new implementation because exception oop is now passed in JavaThread
2502
2503  // Prolog for exception case
2504  // All registers must be preserved because they might be used by LinearScan
2505  // Exceptiop oop and throwing PC are passed in JavaThread
2506  // tos: stack at point of call to method that threw the exception (i.e. only
2507  // args are on the stack, no return address)
2508
2509  // make room on stack for the return address
2510  // It will be patched later with the throwing pc. The correct value is not
2511  // available now because loading it from memory would destroy registers.
2512  __ push(0);
2513
2514  // Save everything in sight.
2515
2516  // No need to update map as each call to save_live_registers will produce identical oopmap
2517  (void) RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false);
2518
2519  // Now it is safe to overwrite any register
2520
2521  // store the correct deoptimization type
2522  __ push(Deoptimization::Unpack_exception);
2523
2524  // load throwing pc from JavaThread and patch it as the return address
2525  // of the current frame. Then clear the field in JavaThread
2526  __ get_thread(rdi);
2527  __ movptr(rdx, Address(rdi, JavaThread::exception_pc_offset()));
2528  __ movptr(Address(rbp, wordSize), rdx);
2529  __ movptr(Address(rdi, JavaThread::exception_pc_offset()), NULL_WORD);
2530
2531#ifdef ASSERT
2532  // verify that there is really an exception oop in JavaThread
2533  __ movptr(rax, Address(rdi, JavaThread::exception_oop_offset()));
2534  __ verify_oop(rax);
2535
2536  // verify that there is no pending exception
2537  Label no_pending_exception;
2538  __ movptr(rax, Address(rdi, Thread::pending_exception_offset()));
2539  __ testptr(rax, rax);
2540  __ jcc(Assembler::zero, no_pending_exception);
2541  __ stop("must not have pending exception here");
2542  __ bind(no_pending_exception);
2543#endif
2544
2545  __ bind(cont);
2546
2547  // Compiled code leaves the floating point stack dirty, empty it.
2548  __ empty_FPU_stack();
2549
2550
2551  // Call C code.  Need thread and this frame, but NOT official VM entry
2552  // crud.  We cannot block on this call, no GC can happen.
2553  __ get_thread(rcx);
2554  __ push(rcx);
2555  // fetch_unroll_info needs to call last_java_frame()
2556  __ set_last_Java_frame(rcx, noreg, noreg, NULL);
2557
2558  __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info)));
2559
2560  // Need to have an oopmap that tells fetch_unroll_info where to
2561  // find any register it might need.
2562
2563  oop_maps->add_gc_map( __ pc()-start, map);
2564
2565  // Discard arg to fetch_unroll_info
2566  __ pop(rcx);
2567
2568  __ get_thread(rcx);
2569  __ reset_last_Java_frame(rcx, false, false);
2570
2571  // Load UnrollBlock into EDI
2572  __ mov(rdi, rax);
2573
2574  // Move the unpack kind to a safe place in the UnrollBlock because
2575  // we are very short of registers
2576
2577  Address unpack_kind(rdi, Deoptimization::UnrollBlock::unpack_kind_offset_in_bytes());
2578  // retrieve the deopt kind from where we left it.
2579  __ pop(rax);
2580  __ movl(unpack_kind, rax);                      // save the unpack_kind value
2581
2582   Label noException;
2583  __ cmpl(rax, Deoptimization::Unpack_exception);   // Was exception pending?
2584  __ jcc(Assembler::notEqual, noException);
2585  __ movptr(rax, Address(rcx, JavaThread::exception_oop_offset()));
2586  __ movptr(rdx, Address(rcx, JavaThread::exception_pc_offset()));
2587  __ movptr(Address(rcx, JavaThread::exception_oop_offset()), NULL_WORD);
2588  __ movptr(Address(rcx, JavaThread::exception_pc_offset()), NULL_WORD);
2589
2590  __ verify_oop(rax);
2591
2592  // Overwrite the result registers with the exception results.
2593  __ movptr(Address(rsp, RegisterSaver::raxOffset()*wordSize), rax);
2594  __ movptr(Address(rsp, RegisterSaver::rdxOffset()*wordSize), rdx);
2595
2596  __ bind(noException);
2597
2598  // Stack is back to only having register save data on the stack.
2599  // Now restore the result registers. Everything else is either dead or captured
2600  // in the vframeArray.
2601
2602  RegisterSaver::restore_result_registers(masm);
2603
2604  // Non standard control word may be leaked out through a safepoint blob, and we can
2605  // deopt at a poll point with the non standard control word. However, we should make
2606  // sure the control word is correct after restore_result_registers.
2607  __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
2608
2609  // All of the register save area has been popped of the stack. Only the
2610  // return address remains.
2611
2612  // Pop all the frames we must move/replace.
2613  //
2614  // Frame picture (youngest to oldest)
2615  // 1: self-frame (no frame link)
2616  // 2: deopting frame  (no frame link)
2617  // 3: caller of deopting frame (could be compiled/interpreted).
2618  //
2619  // Note: by leaving the return address of self-frame on the stack
2620  // and using the size of frame 2 to adjust the stack
2621  // when we are done the return to frame 3 will still be on the stack.
2622
2623  // Pop deoptimized frame
2624  __ addptr(rsp, Address(rdi,Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset_in_bytes()));
2625
2626  // sp should be pointing at the return address to the caller (3)
2627
2628  // Pick up the initial fp we should save
2629  // restore rbp before stack bang because if stack overflow is thrown it needs to be pushed (and preserved)
2630  __ movptr(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_info_offset_in_bytes()));
2631
2632#ifdef ASSERT
2633  // Compilers generate code that bang the stack by as much as the
2634  // interpreter would need. So this stack banging should never
2635  // trigger a fault. Verify that it does not on non product builds.
2636  if (UseStackBanging) {
2637    __ movl(rbx, Address(rdi ,Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()));
2638    __ bang_stack_size(rbx, rcx);
2639  }
2640#endif
2641
2642  // Load array of frame pcs into ECX
2643  __ movptr(rcx,Address(rdi,Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
2644
2645  __ pop(rsi); // trash the old pc
2646
2647  // Load array of frame sizes into ESI
2648  __ movptr(rsi,Address(rdi,Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes()));
2649
2650  Address counter(rdi, Deoptimization::UnrollBlock::counter_temp_offset_in_bytes());
2651
2652  __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes()));
2653  __ movl(counter, rbx);
2654
2655  // Now adjust the caller's stack to make up for the extra locals
2656  // but record the original sp so that we can save it in the skeletal interpreter
2657  // frame and the stack walking of interpreter_sender will get the unextended sp
2658  // value and not the "real" sp value.
2659
2660  Address sp_temp(rdi, Deoptimization::UnrollBlock::sender_sp_temp_offset_in_bytes());
2661  __ movptr(sp_temp, rsp);
2662  __ movl2ptr(rbx, Address(rdi, Deoptimization::UnrollBlock::caller_adjustment_offset_in_bytes()));
2663  __ subptr(rsp, rbx);
2664
2665  // Push interpreter frames in a loop
2666  Label loop;
2667  __ bind(loop);
2668  __ movptr(rbx, Address(rsi, 0));      // Load frame size
2669#ifdef CC_INTERP
2670  __ subptr(rbx, 4*wordSize);           // we'll push pc and ebp by hand and
2671#ifdef ASSERT
2672  __ push(0xDEADDEAD);                  // Make a recognizable pattern
2673  __ push(0xDEADDEAD);
2674#else /* ASSERT */
2675  __ subptr(rsp, 2*wordSize);           // skip the "static long no_param"
2676#endif /* ASSERT */
2677#else /* CC_INTERP */
2678  __ subptr(rbx, 2*wordSize);           // we'll push pc and rbp, by hand
2679#endif /* CC_INTERP */
2680  __ pushptr(Address(rcx, 0));          // save return address
2681  __ enter();                           // save old & set new rbp,
2682  __ subptr(rsp, rbx);                  // Prolog!
2683  __ movptr(rbx, sp_temp);              // sender's sp
2684#ifdef CC_INTERP
2685  __ movptr(Address(rbp,
2686                  -(sizeof(BytecodeInterpreter)) + in_bytes(byte_offset_of(BytecodeInterpreter, _sender_sp))),
2687          rbx); // Make it walkable
2688#else /* CC_INTERP */
2689  // This value is corrected by layout_activation_impl
2690  __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD);
2691  __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize), rbx); // Make it walkable
2692#endif /* CC_INTERP */
2693  __ movptr(sp_temp, rsp);              // pass to next frame
2694  __ addptr(rsi, wordSize);             // Bump array pointer (sizes)
2695  __ addptr(rcx, wordSize);             // Bump array pointer (pcs)
2696  __ decrementl(counter);             // decrement counter
2697  __ jcc(Assembler::notZero, loop);
2698  __ pushptr(Address(rcx, 0));          // save final return address
2699
2700  // Re-push self-frame
2701  __ enter();                           // save old & set new rbp,
2702
2703  //  Return address and rbp, are in place
2704  // We'll push additional args later. Just allocate a full sized
2705  // register save area
2706  __ subptr(rsp, (frame_size_in_words-additional_words - 2) * wordSize);
2707
2708  // Restore frame locals after moving the frame
2709  __ movptr(Address(rsp, RegisterSaver::raxOffset()*wordSize), rax);
2710  __ movptr(Address(rsp, RegisterSaver::rdxOffset()*wordSize), rdx);
2711  __ fstp_d(Address(rsp, RegisterSaver::fpResultOffset()*wordSize));   // Pop float stack and store in local
2712  if( UseSSE>=2 ) __ movdbl(Address(rsp, RegisterSaver::xmm0Offset()*wordSize), xmm0);
2713  if( UseSSE==1 ) __ movflt(Address(rsp, RegisterSaver::xmm0Offset()*wordSize), xmm0);
2714
2715  // Set up the args to unpack_frame
2716
2717  __ pushl(unpack_kind);                     // get the unpack_kind value
2718  __ get_thread(rcx);
2719  __ push(rcx);
2720
2721  // set last_Java_sp, last_Java_fp
2722  __ set_last_Java_frame(rcx, noreg, rbp, NULL);
2723
2724  // Call C code.  Need thread but NOT official VM entry
2725  // crud.  We cannot block on this call, no GC can happen.  Call should
2726  // restore return values to their stack-slots with the new SP.
2727  __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
2728  // Set an oopmap for the call site
2729  oop_maps->add_gc_map( __ pc()-start, new OopMap( frame_size_in_words, 0 ));
2730
2731  // rax, contains the return result type
2732  __ push(rax);
2733
2734  __ get_thread(rcx);
2735  __ reset_last_Java_frame(rcx, false, false);
2736
2737  // Collect return values
2738  __ movptr(rax,Address(rsp, (RegisterSaver::raxOffset() + additional_words + 1)*wordSize));
2739  __ movptr(rdx,Address(rsp, (RegisterSaver::rdxOffset() + additional_words + 1)*wordSize));
2740
2741  // Clear floating point stack before returning to interpreter
2742  __ empty_FPU_stack();
2743
2744  // Check if we should push the float or double return value.
2745  Label results_done, yes_double_value;
2746  __ cmpl(Address(rsp, 0), T_DOUBLE);
2747  __ jcc (Assembler::zero, yes_double_value);
2748  __ cmpl(Address(rsp, 0), T_FLOAT);
2749  __ jcc (Assembler::notZero, results_done);
2750
2751  // return float value as expected by interpreter
2752  if( UseSSE>=1 ) __ movflt(xmm0, Address(rsp, (RegisterSaver::xmm0Offset() + additional_words + 1)*wordSize));
2753  else            __ fld_d(Address(rsp, (RegisterSaver::fpResultOffset() + additional_words + 1)*wordSize));
2754  __ jmp(results_done);
2755
2756  // return double value as expected by interpreter
2757  __ bind(yes_double_value);
2758  if( UseSSE>=2 ) __ movdbl(xmm0, Address(rsp, (RegisterSaver::xmm0Offset() + additional_words + 1)*wordSize));
2759  else            __ fld_d(Address(rsp, (RegisterSaver::fpResultOffset() + additional_words + 1)*wordSize));
2760
2761  __ bind(results_done);
2762
2763  // Pop self-frame.
2764  __ leave();                              // Epilog!
2765
2766  // Jump to interpreter
2767  __ ret(0);
2768
2769  // -------------
2770  // make sure all code is generated
2771  masm->flush();
2772
2773  _deopt_blob = DeoptimizationBlob::create( &buffer, oop_maps, 0, exception_offset, reexecute_offset, frame_size_in_words);
2774  _deopt_blob->set_unpack_with_exception_in_tls_offset(exception_in_tls_offset);
2775}
2776
2777
2778#ifdef COMPILER2
2779//------------------------------generate_uncommon_trap_blob--------------------
2780void SharedRuntime::generate_uncommon_trap_blob() {
2781  // allocate space for the code
2782  ResourceMark rm;
2783  // setup code generation tools
2784  CodeBuffer   buffer("uncommon_trap_blob", 512, 512);
2785  MacroAssembler* masm = new MacroAssembler(&buffer);
2786
2787  enum frame_layout {
2788    arg0_off,      // thread                     sp + 0 // Arg location for
2789    arg1_off,      // unloaded_class_index       sp + 1 // calling C
2790    // The frame sender code expects that rbp will be in the "natural" place and
2791    // will override any oopMap setting for it. We must therefore force the layout
2792    // so that it agrees with the frame sender code.
2793    rbp_off,       // callee saved register      sp + 2
2794    return_off,    // slot for return address    sp + 3
2795    framesize
2796  };
2797
2798  address start = __ pc();
2799
2800  if (UseRTMLocking) {
2801    // Abort RTM transaction before possible nmethod deoptimization.
2802    __ xabort(0);
2803  }
2804
2805  // Push self-frame.
2806  __ subptr(rsp, return_off*wordSize);     // Epilog!
2807
2808  // rbp, is an implicitly saved callee saved register (i.e. the calling
2809  // convention will save restore it in prolog/epilog) Other than that
2810  // there are no callee save registers no that adapter frames are gone.
2811  __ movptr(Address(rsp, rbp_off*wordSize), rbp);
2812
2813  // Clear the floating point exception stack
2814  __ empty_FPU_stack();
2815
2816  // set last_Java_sp
2817  __ get_thread(rdx);
2818  __ set_last_Java_frame(rdx, noreg, noreg, NULL);
2819
2820  // Call C code.  Need thread but NOT official VM entry
2821  // crud.  We cannot block on this call, no GC can happen.  Call should
2822  // capture callee-saved registers as well as return values.
2823  __ movptr(Address(rsp, arg0_off*wordSize), rdx);
2824  // argument already in ECX
2825  __ movl(Address(rsp, arg1_off*wordSize),rcx);
2826  __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap)));
2827
2828  // Set an oopmap for the call site
2829  OopMapSet *oop_maps = new OopMapSet();
2830  OopMap* map =  new OopMap( framesize, 0 );
2831  // No oopMap for rbp, it is known implicitly
2832
2833  oop_maps->add_gc_map( __ pc()-start, map);
2834
2835  __ get_thread(rcx);
2836
2837  __ reset_last_Java_frame(rcx, false, false);
2838
2839  // Load UnrollBlock into EDI
2840  __ movptr(rdi, rax);
2841
2842  // Pop all the frames we must move/replace.
2843  //
2844  // Frame picture (youngest to oldest)
2845  // 1: self-frame (no frame link)
2846  // 2: deopting frame  (no frame link)
2847  // 3: caller of deopting frame (could be compiled/interpreted).
2848
2849  // Pop self-frame.  We have no frame, and must rely only on EAX and ESP.
2850  __ addptr(rsp,(framesize-1)*wordSize);     // Epilog!
2851
2852  // Pop deoptimized frame
2853  __ movl2ptr(rcx, Address(rdi,Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset_in_bytes()));
2854  __ addptr(rsp, rcx);
2855
2856  // sp should be pointing at the return address to the caller (3)
2857
2858  // Pick up the initial fp we should save
2859  // restore rbp before stack bang because if stack overflow is thrown it needs to be pushed (and preserved)
2860  __ movptr(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_info_offset_in_bytes()));
2861
2862#ifdef ASSERT
2863  // Compilers generate code that bang the stack by as much as the
2864  // interpreter would need. So this stack banging should never
2865  // trigger a fault. Verify that it does not on non product builds.
2866  if (UseStackBanging) {
2867    __ movl(rbx, Address(rdi ,Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()));
2868    __ bang_stack_size(rbx, rcx);
2869  }
2870#endif
2871
2872  // Load array of frame pcs into ECX
2873  __ movl(rcx,Address(rdi,Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
2874
2875  __ pop(rsi); // trash the pc
2876
2877  // Load array of frame sizes into ESI
2878  __ movptr(rsi,Address(rdi,Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes()));
2879
2880  Address counter(rdi, Deoptimization::UnrollBlock::counter_temp_offset_in_bytes());
2881
2882  __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes()));
2883  __ movl(counter, rbx);
2884
2885  // Now adjust the caller's stack to make up for the extra locals
2886  // but record the original sp so that we can save it in the skeletal interpreter
2887  // frame and the stack walking of interpreter_sender will get the unextended sp
2888  // value and not the "real" sp value.
2889
2890  Address sp_temp(rdi, Deoptimization::UnrollBlock::sender_sp_temp_offset_in_bytes());
2891  __ movptr(sp_temp, rsp);
2892  __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::caller_adjustment_offset_in_bytes()));
2893  __ subptr(rsp, rbx);
2894
2895  // Push interpreter frames in a loop
2896  Label loop;
2897  __ bind(loop);
2898  __ movptr(rbx, Address(rsi, 0));      // Load frame size
2899#ifdef CC_INTERP
2900  __ subptr(rbx, 4*wordSize);           // we'll push pc and ebp by hand and
2901#ifdef ASSERT
2902  __ push(0xDEADDEAD);                  // Make a recognizable pattern
2903  __ push(0xDEADDEAD);                  // (parm to RecursiveInterpreter...)
2904#else /* ASSERT */
2905  __ subptr(rsp, 2*wordSize);           // skip the "static long no_param"
2906#endif /* ASSERT */
2907#else /* CC_INTERP */
2908  __ subptr(rbx, 2*wordSize);           // we'll push pc and rbp, by hand
2909#endif /* CC_INTERP */
2910  __ pushptr(Address(rcx, 0));          // save return address
2911  __ enter();                           // save old & set new rbp,
2912  __ subptr(rsp, rbx);                  // Prolog!
2913  __ movptr(rbx, sp_temp);              // sender's sp
2914#ifdef CC_INTERP
2915  __ movptr(Address(rbp,
2916                  -(sizeof(BytecodeInterpreter)) + in_bytes(byte_offset_of(BytecodeInterpreter, _sender_sp))),
2917          rbx); // Make it walkable
2918#else /* CC_INTERP */
2919  // This value is corrected by layout_activation_impl
2920  __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD );
2921  __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize), rbx); // Make it walkable
2922#endif /* CC_INTERP */
2923  __ movptr(sp_temp, rsp);              // pass to next frame
2924  __ addptr(rsi, wordSize);             // Bump array pointer (sizes)
2925  __ addptr(rcx, wordSize);             // Bump array pointer (pcs)
2926  __ decrementl(counter);             // decrement counter
2927  __ jcc(Assembler::notZero, loop);
2928  __ pushptr(Address(rcx, 0));            // save final return address
2929
2930  // Re-push self-frame
2931  __ enter();                           // save old & set new rbp,
2932  __ subptr(rsp, (framesize-2) * wordSize);   // Prolog!
2933
2934
2935  // set last_Java_sp, last_Java_fp
2936  __ get_thread(rdi);
2937  __ set_last_Java_frame(rdi, noreg, rbp, NULL);
2938
2939  // Call C code.  Need thread but NOT official VM entry
2940  // crud.  We cannot block on this call, no GC can happen.  Call should
2941  // restore return values to their stack-slots with the new SP.
2942  __ movptr(Address(rsp,arg0_off*wordSize),rdi);
2943  __ movl(Address(rsp,arg1_off*wordSize), Deoptimization::Unpack_uncommon_trap);
2944  __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
2945  // Set an oopmap for the call site
2946  oop_maps->add_gc_map( __ pc()-start, new OopMap( framesize, 0 ) );
2947
2948  __ get_thread(rdi);
2949  __ reset_last_Java_frame(rdi, true, false);
2950
2951  // Pop self-frame.
2952  __ leave();     // Epilog!
2953
2954  // Jump to interpreter
2955  __ ret(0);
2956
2957  // -------------
2958  // make sure all code is generated
2959  masm->flush();
2960
2961   _uncommon_trap_blob = UncommonTrapBlob::create(&buffer, oop_maps, framesize);
2962}
2963#endif // COMPILER2
2964
2965//------------------------------generate_handler_blob------
2966//
2967// Generate a special Compile2Runtime blob that saves all registers,
2968// setup oopmap, and calls safepoint code to stop the compiled code for
2969// a safepoint.
2970//
2971SafepointBlob* SharedRuntime::generate_handler_blob(address call_ptr, int poll_type) {
2972
2973  // Account for thread arg in our frame
2974  const int additional_words = 1;
2975  int frame_size_in_words;
2976
2977  assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
2978
2979  ResourceMark rm;
2980  OopMapSet *oop_maps = new OopMapSet();
2981  OopMap* map;
2982
2983  // allocate space for the code
2984  // setup code generation tools
2985  CodeBuffer   buffer("handler_blob", 1024, 512);
2986  MacroAssembler* masm = new MacroAssembler(&buffer);
2987
2988  const Register java_thread = rdi; // callee-saved for VC++
2989  address start   = __ pc();
2990  address call_pc = NULL;
2991  bool cause_return = (poll_type == POLL_AT_RETURN);
2992  bool save_vectors = (poll_type == POLL_AT_VECTOR_LOOP);
2993
2994  if (UseRTMLocking) {
2995    // Abort RTM transaction before calling runtime
2996    // because critical section will be large and will be
2997    // aborted anyway. Also nmethod could be deoptimized.
2998    __ xabort(0);
2999  }
3000
3001  // If cause_return is true we are at a poll_return and there is
3002  // the return address on the stack to the caller on the nmethod
3003  // that is safepoint. We can leave this return on the stack and
3004  // effectively complete the return and safepoint in the caller.
3005  // Otherwise we push space for a return address that the safepoint
3006  // handler will install later to make the stack walking sensible.
3007  if (!cause_return)
3008    __ push(rbx);  // Make room for return address (or push it again)
3009
3010  map = RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false, save_vectors);
3011
3012  // The following is basically a call_VM. However, we need the precise
3013  // address of the call in order to generate an oopmap. Hence, we do all the
3014  // work ourselves.
3015
3016  // Push thread argument and setup last_Java_sp
3017  __ get_thread(java_thread);
3018  __ push(java_thread);
3019  __ set_last_Java_frame(java_thread, noreg, noreg, NULL);
3020
3021  // if this was not a poll_return then we need to correct the return address now.
3022  if (!cause_return) {
3023    __ movptr(rax, Address(java_thread, JavaThread::saved_exception_pc_offset()));
3024    __ movptr(Address(rbp, wordSize), rax);
3025  }
3026
3027  // do the call
3028  __ call(RuntimeAddress(call_ptr));
3029
3030  // Set an oopmap for the call site.  This oopmap will map all
3031  // oop-registers and debug-info registers as callee-saved.  This
3032  // will allow deoptimization at this safepoint to find all possible
3033  // debug-info recordings, as well as let GC find all oops.
3034
3035  oop_maps->add_gc_map( __ pc() - start, map);
3036
3037  // Discard arg
3038  __ pop(rcx);
3039
3040  Label noException;
3041
3042  // Clear last_Java_sp again
3043  __ get_thread(java_thread);
3044  __ reset_last_Java_frame(java_thread, false, false);
3045
3046  __ cmpptr(Address(java_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
3047  __ jcc(Assembler::equal, noException);
3048
3049  // Exception pending
3050  RegisterSaver::restore_live_registers(masm, save_vectors);
3051
3052  __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
3053
3054  __ bind(noException);
3055
3056  // Normal exit, register restoring and exit
3057  RegisterSaver::restore_live_registers(masm, save_vectors);
3058
3059  __ ret(0);
3060
3061  // make sure all code is generated
3062  masm->flush();
3063
3064  // Fill-out other meta info
3065  return SafepointBlob::create(&buffer, oop_maps, frame_size_in_words);
3066}
3067
3068//
3069// generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss
3070//
3071// Generate a stub that calls into vm to find out the proper destination
3072// of a java call. All the argument registers are live at this point
3073// but since this is generic code we don't know what they are and the caller
3074// must do any gc of the args.
3075//
3076RuntimeStub* SharedRuntime::generate_resolve_blob(address destination, const char* name) {
3077  assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
3078
3079  // allocate space for the code
3080  ResourceMark rm;
3081
3082  CodeBuffer buffer(name, 1000, 512);
3083  MacroAssembler* masm                = new MacroAssembler(&buffer);
3084
3085  int frame_size_words;
3086  enum frame_layout {
3087                thread_off,
3088                extra_words };
3089
3090  OopMapSet *oop_maps = new OopMapSet();
3091  OopMap* map = NULL;
3092
3093  int start = __ offset();
3094
3095  map = RegisterSaver::save_live_registers(masm, extra_words, &frame_size_words);
3096
3097  int frame_complete = __ offset();
3098
3099  const Register thread = rdi;
3100  __ get_thread(rdi);
3101
3102  __ push(thread);
3103  __ set_last_Java_frame(thread, noreg, rbp, NULL);
3104
3105  __ call(RuntimeAddress(destination));
3106
3107
3108  // Set an oopmap for the call site.
3109  // We need this not only for callee-saved registers, but also for volatile
3110  // registers that the compiler might be keeping live across a safepoint.
3111
3112  oop_maps->add_gc_map( __ offset() - start, map);
3113
3114  // rax, contains the address we are going to jump to assuming no exception got installed
3115
3116  __ addptr(rsp, wordSize);
3117
3118  // clear last_Java_sp
3119  __ reset_last_Java_frame(thread, true, false);
3120  // check for pending exceptions
3121  Label pending;
3122  __ cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
3123  __ jcc(Assembler::notEqual, pending);
3124
3125  // get the returned Method*
3126  __ get_vm_result_2(rbx, thread);
3127  __ movptr(Address(rsp, RegisterSaver::rbx_offset() * wordSize), rbx);
3128
3129  __ movptr(Address(rsp, RegisterSaver::rax_offset() * wordSize), rax);
3130
3131  RegisterSaver::restore_live_registers(masm);
3132
3133  // We are back the the original state on entry and ready to go.
3134
3135  __ jmp(rax);
3136
3137  // Pending exception after the safepoint
3138
3139  __ bind(pending);
3140
3141  RegisterSaver::restore_live_registers(masm);
3142
3143  // exception pending => remove activation and forward to exception handler
3144
3145  __ get_thread(thread);
3146  __ movptr(Address(thread, JavaThread::vm_result_offset()), NULL_WORD);
3147  __ movptr(rax, Address(thread, Thread::pending_exception_offset()));
3148  __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
3149
3150  // -------------
3151  // make sure all code is generated
3152  masm->flush();
3153
3154  // return the  blob
3155  // frame_size_words or bytes??
3156  return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_words, oop_maps, true);
3157}
3158