1/*
2 * Copyright (c) 2003, 2017, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "asm/macroAssembler.hpp"
27#include "asm/macroAssembler.inline.hpp"
28#include "code/debugInfoRec.hpp"
29#include "code/icBuffer.hpp"
30#include "code/vtableStubs.hpp"
31#include "interpreter/interpreter.hpp"
32#include "logging/log.hpp"
33#include "memory/resourceArea.hpp"
34#include "oops/compiledICHolder.hpp"
35#include "runtime/sharedRuntime.hpp"
36#include "runtime/vframeArray.hpp"
37#include "utilities/align.hpp"
38#include "vmreg_x86.inline.hpp"
39#ifdef COMPILER1
40#include "c1/c1_Runtime1.hpp"
41#endif
42#ifdef COMPILER2
43#include "opto/runtime.hpp"
44#endif
45#include "vm_version_x86.hpp"
46
47#define __ masm->
48
49const int StackAlignmentInSlots = StackAlignmentInBytes / VMRegImpl::stack_slot_size;
50
51class RegisterSaver {
52  // Capture info about frame layout
53#define DEF_XMM_OFFS(regnum) xmm ## regnum ## _off = xmm_off + (regnum)*16/BytesPerInt, xmm ## regnum ## H_off
54  enum layout {
55                fpu_state_off = 0,
56                fpu_state_end = fpu_state_off+FPUStateSizeInWords,
57                st0_off, st0H_off,
58                st1_off, st1H_off,
59                st2_off, st2H_off,
60                st3_off, st3H_off,
61                st4_off, st4H_off,
62                st5_off, st5H_off,
63                st6_off, st6H_off,
64                st7_off, st7H_off,
65                xmm_off,
66                DEF_XMM_OFFS(0),
67                DEF_XMM_OFFS(1),
68                DEF_XMM_OFFS(2),
69                DEF_XMM_OFFS(3),
70                DEF_XMM_OFFS(4),
71                DEF_XMM_OFFS(5),
72                DEF_XMM_OFFS(6),
73                DEF_XMM_OFFS(7),
74                flags_off = xmm7_off + 16/BytesPerInt + 1, // 16-byte stack alignment fill word
75                rdi_off,
76                rsi_off,
77                ignore_off,  // extra copy of rbp,
78                rsp_off,
79                rbx_off,
80                rdx_off,
81                rcx_off,
82                rax_off,
83                // The frame sender code expects that rbp will be in the "natural" place and
84                // will override any oopMap setting for it. We must therefore force the layout
85                // so that it agrees with the frame sender code.
86                rbp_off,
87                return_off,      // slot for return address
88                reg_save_size };
89  enum { FPU_regs_live = flags_off - fpu_state_end };
90
91  public:
92
93  static OopMap* save_live_registers(MacroAssembler* masm, int additional_frame_words,
94                                     int* total_frame_words, bool verify_fpu = true, bool save_vectors = false);
95  static void restore_live_registers(MacroAssembler* masm, bool restore_vectors = false);
96
97  static int rax_offset() { return rax_off; }
98  static int rbx_offset() { return rbx_off; }
99
100  // Offsets into the register save area
101  // Used by deoptimization when it is managing result register
102  // values on its own
103
104  static int raxOffset(void) { return rax_off; }
105  static int rdxOffset(void) { return rdx_off; }
106  static int rbxOffset(void) { return rbx_off; }
107  static int xmm0Offset(void) { return xmm0_off; }
108  // This really returns a slot in the fp save area, which one is not important
109  static int fpResultOffset(void) { return st0_off; }
110
111  // During deoptimization only the result register need to be restored
112  // all the other values have already been extracted.
113
114  static void restore_result_registers(MacroAssembler* masm);
115
116};
117
118OopMap* RegisterSaver::save_live_registers(MacroAssembler* masm, int additional_frame_words,
119                                           int* total_frame_words, bool verify_fpu, bool save_vectors) {
120  int num_xmm_regs = XMMRegisterImpl::number_of_registers;
121  int ymm_bytes = num_xmm_regs * 16;
122  int zmm_bytes = num_xmm_regs * 32;
123#ifdef COMPILER2
124  if (save_vectors) {
125    assert(UseAVX > 0, "Vectors larger than 16 byte long are supported only with AVX");
126    assert(MaxVectorSize <= 64, "Only up to 64 byte long vectors are supported");
127    // Save upper half of YMM registers
128    int vect_bytes = ymm_bytes;
129    if (UseAVX > 2) {
130      // Save upper half of ZMM registers as well
131      vect_bytes += zmm_bytes;
132    }
133    additional_frame_words += vect_bytes / wordSize;
134  }
135#else
136  assert(!save_vectors, "vectors are generated only by C2");
137#endif
138  int frame_size_in_bytes = (reg_save_size + additional_frame_words) * wordSize;
139  int frame_words = frame_size_in_bytes / wordSize;
140  *total_frame_words = frame_words;
141
142  assert(FPUStateSizeInWords == 27, "update stack layout");
143
144  // save registers, fpu state, and flags
145  // We assume caller has already has return address slot on the stack
146  // We push epb twice in this sequence because we want the real rbp,
147  // to be under the return like a normal enter and we want to use pusha
148  // We push by hand instead of pusing push
149  __ enter();
150  __ pusha();
151  __ pushf();
152  __ subptr(rsp,FPU_regs_live*wordSize); // Push FPU registers space
153  __ push_FPU_state();          // Save FPU state & init
154
155  if (verify_fpu) {
156    // Some stubs may have non standard FPU control word settings so
157    // only check and reset the value when it required to be the
158    // standard value.  The safepoint blob in particular can be used
159    // in methods which are using the 24 bit control word for
160    // optimized float math.
161
162#ifdef ASSERT
163    // Make sure the control word has the expected value
164    Label ok;
165    __ cmpw(Address(rsp, 0), StubRoutines::fpu_cntrl_wrd_std());
166    __ jccb(Assembler::equal, ok);
167    __ stop("corrupted control word detected");
168    __ bind(ok);
169#endif
170
171    // Reset the control word to guard against exceptions being unmasked
172    // since fstp_d can cause FPU stack underflow exceptions.  Write it
173    // into the on stack copy and then reload that to make sure that the
174    // current and future values are correct.
175    __ movw(Address(rsp, 0), StubRoutines::fpu_cntrl_wrd_std());
176  }
177
178  __ frstor(Address(rsp, 0));
179  if (!verify_fpu) {
180    // Set the control word so that exceptions are masked for the
181    // following code.
182    __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
183  }
184
185  int off = st0_off;
186  int delta = st1_off - off;
187
188  // Save the FPU registers in de-opt-able form
189  for (int n = 0; n < FloatRegisterImpl::number_of_registers; n++) {
190    __ fstp_d(Address(rsp, off*wordSize));
191    off += delta;
192  }
193
194  off = xmm0_off;
195  delta = xmm1_off - off;
196  if(UseSSE == 1) {
197    // Save the XMM state
198    for (int n = 0; n < num_xmm_regs; n++) {
199      __ movflt(Address(rsp, off*wordSize), as_XMMRegister(n));
200      off += delta;
201    }
202  } else if(UseSSE >= 2) {
203    // Save whole 128bit (16 bytes) XMM registers
204    for (int n = 0; n < num_xmm_regs; n++) {
205      __ movdqu(Address(rsp, off*wordSize), as_XMMRegister(n));
206      off += delta;
207    }
208  }
209
210  if (save_vectors) {
211    __ subptr(rsp, ymm_bytes);
212    // Save upper half of YMM registers
213    for (int n = 0; n < num_xmm_regs; n++) {
214      __ vextractf128_high(Address(rsp, n*16), as_XMMRegister(n));
215    }
216    if (UseAVX > 2) {
217      __ subptr(rsp, zmm_bytes);
218      // Save upper half of ZMM registers
219      for (int n = 0; n < num_xmm_regs; n++) {
220        __ vextractf64x4_high(Address(rsp, n*32), as_XMMRegister(n));
221      }
222    }
223  }
224  __ vzeroupper();
225
226  // Set an oopmap for the call site.  This oopmap will map all
227  // oop-registers and debug-info registers as callee-saved.  This
228  // will allow deoptimization at this safepoint to find all possible
229  // debug-info recordings, as well as let GC find all oops.
230
231  OopMapSet *oop_maps = new OopMapSet();
232  OopMap* map =  new OopMap( frame_words, 0 );
233
234#define STACK_OFFSET(x) VMRegImpl::stack2reg((x) + additional_frame_words)
235#define NEXTREG(x) (x)->as_VMReg()->next()
236
237  map->set_callee_saved(STACK_OFFSET(rax_off), rax->as_VMReg());
238  map->set_callee_saved(STACK_OFFSET(rcx_off), rcx->as_VMReg());
239  map->set_callee_saved(STACK_OFFSET(rdx_off), rdx->as_VMReg());
240  map->set_callee_saved(STACK_OFFSET(rbx_off), rbx->as_VMReg());
241  // rbp, location is known implicitly, no oopMap
242  map->set_callee_saved(STACK_OFFSET(rsi_off), rsi->as_VMReg());
243  map->set_callee_saved(STACK_OFFSET(rdi_off), rdi->as_VMReg());
244  // %%% This is really a waste but we'll keep things as they were for now for the upper component
245  off = st0_off;
246  delta = st1_off - off;
247  for (int n = 0; n < FloatRegisterImpl::number_of_registers; n++) {
248    FloatRegister freg_name = as_FloatRegister(n);
249    map->set_callee_saved(STACK_OFFSET(off), freg_name->as_VMReg());
250    map->set_callee_saved(STACK_OFFSET(off+1), NEXTREG(freg_name));
251    off += delta;
252  }
253  off = xmm0_off;
254  delta = xmm1_off - off;
255  for (int n = 0; n < num_xmm_regs; n++) {
256    XMMRegister xmm_name = as_XMMRegister(n);
257    map->set_callee_saved(STACK_OFFSET(off), xmm_name->as_VMReg());
258    map->set_callee_saved(STACK_OFFSET(off+1), NEXTREG(xmm_name));
259    off += delta;
260  }
261#undef NEXTREG
262#undef STACK_OFFSET
263
264  return map;
265}
266
267void RegisterSaver::restore_live_registers(MacroAssembler* masm, bool restore_vectors) {
268  int num_xmm_regs = XMMRegisterImpl::number_of_registers;
269  int ymm_bytes = num_xmm_regs * 16;
270  int zmm_bytes = num_xmm_regs * 32;
271  // Recover XMM & FPU state
272  int additional_frame_bytes = 0;
273#ifdef COMPILER2
274  if (restore_vectors) {
275    assert(UseAVX > 0, "Vectors larger than 16 byte long are supported only with AVX");
276    assert(MaxVectorSize <= 64, "Only up to 64 byte long vectors are supported");
277    // Save upper half of YMM registers
278    additional_frame_bytes = ymm_bytes;
279    if (UseAVX > 2) {
280      // Save upper half of ZMM registers as well
281      additional_frame_bytes += zmm_bytes;
282    }
283  }
284#else
285  assert(!restore_vectors, "vectors are generated only by C2");
286#endif
287
288  int off = xmm0_off;
289  int delta = xmm1_off - off;
290
291  __ vzeroupper();
292
293  if (UseSSE == 1) {
294    // Restore XMM registers
295    assert(additional_frame_bytes == 0, "");
296    for (int n = 0; n < num_xmm_regs; n++) {
297      __ movflt(as_XMMRegister(n), Address(rsp, off*wordSize));
298      off += delta;
299    }
300  } else if (UseSSE >= 2) {
301    // Restore whole 128bit (16 bytes) XMM registers. Do this before restoring YMM and
302    // ZMM because the movdqu instruction zeros the upper part of the XMM register.
303    for (int n = 0; n < num_xmm_regs; n++) {
304      __ movdqu(as_XMMRegister(n), Address(rsp, off*wordSize+additional_frame_bytes));
305      off += delta;
306    }
307  }
308
309  if (restore_vectors) {
310    if (UseAVX > 2) {
311      // Restore upper half of ZMM registers.
312      for (int n = 0; n < num_xmm_regs; n++) {
313        __ vinsertf64x4_high(as_XMMRegister(n), Address(rsp, n*32));
314      }
315      __ addptr(rsp, zmm_bytes);
316    }
317    // Restore upper half of YMM registers.
318    for (int n = 0; n < num_xmm_regs; n++) {
319      __ vinsertf128_high(as_XMMRegister(n), Address(rsp, n*16));
320    }
321    __ addptr(rsp, ymm_bytes);
322  }
323
324  __ pop_FPU_state();
325  __ addptr(rsp, FPU_regs_live*wordSize); // Pop FPU registers
326
327  __ popf();
328  __ popa();
329  // Get the rbp, described implicitly by the frame sender code (no oopMap)
330  __ pop(rbp);
331}
332
333void RegisterSaver::restore_result_registers(MacroAssembler* masm) {
334
335  // Just restore result register. Only used by deoptimization. By
336  // now any callee save register that needs to be restore to a c2
337  // caller of the deoptee has been extracted into the vframeArray
338  // and will be stuffed into the c2i adapter we create for later
339  // restoration so only result registers need to be restored here.
340  //
341
342  __ frstor(Address(rsp, 0));      // Restore fpu state
343
344  // Recover XMM & FPU state
345  if( UseSSE == 1 ) {
346    __ movflt(xmm0, Address(rsp, xmm0_off*wordSize));
347  } else if( UseSSE >= 2 ) {
348    __ movdbl(xmm0, Address(rsp, xmm0_off*wordSize));
349  }
350  __ movptr(rax, Address(rsp, rax_off*wordSize));
351  __ movptr(rdx, Address(rsp, rdx_off*wordSize));
352  // Pop all of the register save are off the stack except the return address
353  __ addptr(rsp, return_off * wordSize);
354}
355
356// Is vector's size (in bytes) bigger than a size saved by default?
357// 16 bytes XMM registers are saved by default using SSE2 movdqu instructions.
358// Note, MaxVectorSize == 0 with UseSSE < 2 and vectors are not generated.
359bool SharedRuntime::is_wide_vector(int size) {
360  return size > 16;
361}
362
363size_t SharedRuntime::trampoline_size() {
364  return 16;
365}
366
367void SharedRuntime::generate_trampoline(MacroAssembler *masm, address destination) {
368  __ jump(RuntimeAddress(destination));
369}
370
371// The java_calling_convention describes stack locations as ideal slots on
372// a frame with no abi restrictions. Since we must observe abi restrictions
373// (like the placement of the register window) the slots must be biased by
374// the following value.
375static int reg2offset_in(VMReg r) {
376  // Account for saved rbp, and return address
377  // This should really be in_preserve_stack_slots
378  return (r->reg2stack() + 2) * VMRegImpl::stack_slot_size;
379}
380
381static int reg2offset_out(VMReg r) {
382  return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
383}
384
385// ---------------------------------------------------------------------------
386// Read the array of BasicTypes from a signature, and compute where the
387// arguments should go.  Values in the VMRegPair regs array refer to 4-byte
388// quantities.  Values less than SharedInfo::stack0 are registers, those above
389// refer to 4-byte stack slots.  All stack slots are based off of the stack pointer
390// as framesizes are fixed.
391// VMRegImpl::stack0 refers to the first slot 0(sp).
392// and VMRegImpl::stack0+1 refers to the memory word 4-byes higher.  Register
393// up to RegisterImpl::number_of_registers) are the 32-bit
394// integer registers.
395
396// Pass first two oop/int args in registers ECX and EDX.
397// Pass first two float/double args in registers XMM0 and XMM1.
398// Doubles have precedence, so if you pass a mix of floats and doubles
399// the doubles will grab the registers before the floats will.
400
401// Note: the INPUTS in sig_bt are in units of Java argument words, which are
402// either 32-bit or 64-bit depending on the build.  The OUTPUTS are in 32-bit
403// units regardless of build. Of course for i486 there is no 64 bit build
404
405
406// ---------------------------------------------------------------------------
407// The compiled Java calling convention.
408// Pass first two oop/int args in registers ECX and EDX.
409// Pass first two float/double args in registers XMM0 and XMM1.
410// Doubles have precedence, so if you pass a mix of floats and doubles
411// the doubles will grab the registers before the floats will.
412int SharedRuntime::java_calling_convention(const BasicType *sig_bt,
413                                           VMRegPair *regs,
414                                           int total_args_passed,
415                                           int is_outgoing) {
416  uint    stack = 0;          // Starting stack position for args on stack
417
418
419  // Pass first two oop/int args in registers ECX and EDX.
420  uint reg_arg0 = 9999;
421  uint reg_arg1 = 9999;
422
423  // Pass first two float/double args in registers XMM0 and XMM1.
424  // Doubles have precedence, so if you pass a mix of floats and doubles
425  // the doubles will grab the registers before the floats will.
426  // CNC - TURNED OFF FOR non-SSE.
427  //       On Intel we have to round all doubles (and most floats) at
428  //       call sites by storing to the stack in any case.
429  // UseSSE=0 ==> Don't Use ==> 9999+0
430  // UseSSE=1 ==> Floats only ==> 9999+1
431  // UseSSE>=2 ==> Floats or doubles ==> 9999+2
432  enum { fltarg_dontuse = 9999+0, fltarg_float_only = 9999+1, fltarg_flt_dbl = 9999+2 };
433  uint fargs = (UseSSE>=2) ? 2 : UseSSE;
434  uint freg_arg0 = 9999+fargs;
435  uint freg_arg1 = 9999+fargs;
436
437  // Pass doubles & longs aligned on the stack.  First count stack slots for doubles
438  int i;
439  for( i = 0; i < total_args_passed; i++) {
440    if( sig_bt[i] == T_DOUBLE ) {
441      // first 2 doubles go in registers
442      if( freg_arg0 == fltarg_flt_dbl ) freg_arg0 = i;
443      else if( freg_arg1 == fltarg_flt_dbl ) freg_arg1 = i;
444      else // Else double is passed low on the stack to be aligned.
445        stack += 2;
446    } else if( sig_bt[i] == T_LONG ) {
447      stack += 2;
448    }
449  }
450  int dstack = 0;             // Separate counter for placing doubles
451
452  // Now pick where all else goes.
453  for( i = 0; i < total_args_passed; i++) {
454    // From the type and the argument number (count) compute the location
455    switch( sig_bt[i] ) {
456    case T_SHORT:
457    case T_CHAR:
458    case T_BYTE:
459    case T_BOOLEAN:
460    case T_INT:
461    case T_ARRAY:
462    case T_OBJECT:
463    case T_ADDRESS:
464      if( reg_arg0 == 9999 )  {
465        reg_arg0 = i;
466        regs[i].set1(rcx->as_VMReg());
467      } else if( reg_arg1 == 9999 )  {
468        reg_arg1 = i;
469        regs[i].set1(rdx->as_VMReg());
470      } else {
471        regs[i].set1(VMRegImpl::stack2reg(stack++));
472      }
473      break;
474    case T_FLOAT:
475      if( freg_arg0 == fltarg_flt_dbl || freg_arg0 == fltarg_float_only ) {
476        freg_arg0 = i;
477        regs[i].set1(xmm0->as_VMReg());
478      } else if( freg_arg1 == fltarg_flt_dbl || freg_arg1 == fltarg_float_only ) {
479        freg_arg1 = i;
480        regs[i].set1(xmm1->as_VMReg());
481      } else {
482        regs[i].set1(VMRegImpl::stack2reg(stack++));
483      }
484      break;
485    case T_LONG:
486      assert((i + 1) < total_args_passed && sig_bt[i+1] == T_VOID, "missing Half" );
487      regs[i].set2(VMRegImpl::stack2reg(dstack));
488      dstack += 2;
489      break;
490    case T_DOUBLE:
491      assert((i + 1) < total_args_passed && sig_bt[i+1] == T_VOID, "missing Half" );
492      if( freg_arg0 == (uint)i ) {
493        regs[i].set2(xmm0->as_VMReg());
494      } else if( freg_arg1 == (uint)i ) {
495        regs[i].set2(xmm1->as_VMReg());
496      } else {
497        regs[i].set2(VMRegImpl::stack2reg(dstack));
498        dstack += 2;
499      }
500      break;
501    case T_VOID: regs[i].set_bad(); break;
502      break;
503    default:
504      ShouldNotReachHere();
505      break;
506    }
507  }
508
509  // return value can be odd number of VMRegImpl stack slots make multiple of 2
510  return align_up(stack, 2);
511}
512
513// Patch the callers callsite with entry to compiled code if it exists.
514static void patch_callers_callsite(MacroAssembler *masm) {
515  Label L;
516  __ cmpptr(Address(rbx, in_bytes(Method::code_offset())), (int32_t)NULL_WORD);
517  __ jcc(Assembler::equal, L);
518  // Schedule the branch target address early.
519  // Call into the VM to patch the caller, then jump to compiled callee
520  // rax, isn't live so capture return address while we easily can
521  __ movptr(rax, Address(rsp, 0));
522  __ pusha();
523  __ pushf();
524
525  if (UseSSE == 1) {
526    __ subptr(rsp, 2*wordSize);
527    __ movflt(Address(rsp, 0), xmm0);
528    __ movflt(Address(rsp, wordSize), xmm1);
529  }
530  if (UseSSE >= 2) {
531    __ subptr(rsp, 4*wordSize);
532    __ movdbl(Address(rsp, 0), xmm0);
533    __ movdbl(Address(rsp, 2*wordSize), xmm1);
534  }
535#ifdef COMPILER2
536  // C2 may leave the stack dirty if not in SSE2+ mode
537  if (UseSSE >= 2) {
538    __ verify_FPU(0, "c2i transition should have clean FPU stack");
539  } else {
540    __ empty_FPU_stack();
541  }
542#endif /* COMPILER2 */
543
544  // VM needs caller's callsite
545  __ push(rax);
546  // VM needs target method
547  __ push(rbx);
548  __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite)));
549  __ addptr(rsp, 2*wordSize);
550
551  if (UseSSE == 1) {
552    __ movflt(xmm0, Address(rsp, 0));
553    __ movflt(xmm1, Address(rsp, wordSize));
554    __ addptr(rsp, 2*wordSize);
555  }
556  if (UseSSE >= 2) {
557    __ movdbl(xmm0, Address(rsp, 0));
558    __ movdbl(xmm1, Address(rsp, 2*wordSize));
559    __ addptr(rsp, 4*wordSize);
560  }
561
562  __ popf();
563  __ popa();
564  __ bind(L);
565}
566
567
568static void move_c2i_double(MacroAssembler *masm, XMMRegister r, int st_off) {
569  int next_off = st_off - Interpreter::stackElementSize;
570  __ movdbl(Address(rsp, next_off), r);
571}
572
573static void gen_c2i_adapter(MacroAssembler *masm,
574                            int total_args_passed,
575                            int comp_args_on_stack,
576                            const BasicType *sig_bt,
577                            const VMRegPair *regs,
578                            Label& skip_fixup) {
579  // Before we get into the guts of the C2I adapter, see if we should be here
580  // at all.  We've come from compiled code and are attempting to jump to the
581  // interpreter, which means the caller made a static call to get here
582  // (vcalls always get a compiled target if there is one).  Check for a
583  // compiled target.  If there is one, we need to patch the caller's call.
584  patch_callers_callsite(masm);
585
586  __ bind(skip_fixup);
587
588#ifdef COMPILER2
589  // C2 may leave the stack dirty if not in SSE2+ mode
590  if (UseSSE >= 2) {
591    __ verify_FPU(0, "c2i transition should have clean FPU stack");
592  } else {
593    __ empty_FPU_stack();
594  }
595#endif /* COMPILER2 */
596
597  // Since all args are passed on the stack, total_args_passed * interpreter_
598  // stack_element_size  is the
599  // space we need.
600  int extraspace = total_args_passed * Interpreter::stackElementSize;
601
602  // Get return address
603  __ pop(rax);
604
605  // set senderSP value
606  __ movptr(rsi, rsp);
607
608  __ subptr(rsp, extraspace);
609
610  // Now write the args into the outgoing interpreter space
611  for (int i = 0; i < total_args_passed; i++) {
612    if (sig_bt[i] == T_VOID) {
613      assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
614      continue;
615    }
616
617    // st_off points to lowest address on stack.
618    int st_off = ((total_args_passed - 1) - i) * Interpreter::stackElementSize;
619    int next_off = st_off - Interpreter::stackElementSize;
620
621    // Say 4 args:
622    // i   st_off
623    // 0   12 T_LONG
624    // 1    8 T_VOID
625    // 2    4 T_OBJECT
626    // 3    0 T_BOOL
627    VMReg r_1 = regs[i].first();
628    VMReg r_2 = regs[i].second();
629    if (!r_1->is_valid()) {
630      assert(!r_2->is_valid(), "");
631      continue;
632    }
633
634    if (r_1->is_stack()) {
635      // memory to memory use fpu stack top
636      int ld_off = r_1->reg2stack() * VMRegImpl::stack_slot_size + extraspace;
637
638      if (!r_2->is_valid()) {
639        __ movl(rdi, Address(rsp, ld_off));
640        __ movptr(Address(rsp, st_off), rdi);
641      } else {
642
643        // ld_off == LSW, ld_off+VMRegImpl::stack_slot_size == MSW
644        // st_off == MSW, st_off-wordSize == LSW
645
646        __ movptr(rdi, Address(rsp, ld_off));
647        __ movptr(Address(rsp, next_off), rdi);
648#ifndef _LP64
649        __ movptr(rdi, Address(rsp, ld_off + wordSize));
650        __ movptr(Address(rsp, st_off), rdi);
651#else
652#ifdef ASSERT
653        // Overwrite the unused slot with known junk
654        __ mov64(rax, CONST64(0xdeadffffdeadaaaa));
655        __ movptr(Address(rsp, st_off), rax);
656#endif /* ASSERT */
657#endif // _LP64
658      }
659    } else if (r_1->is_Register()) {
660      Register r = r_1->as_Register();
661      if (!r_2->is_valid()) {
662        __ movl(Address(rsp, st_off), r);
663      } else {
664        // long/double in gpr
665        NOT_LP64(ShouldNotReachHere());
666        // Two VMRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG
667        // T_DOUBLE and T_LONG use two slots in the interpreter
668        if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
669          // long/double in gpr
670#ifdef ASSERT
671          // Overwrite the unused slot with known junk
672          LP64_ONLY(__ mov64(rax, CONST64(0xdeadffffdeadaaab)));
673          __ movptr(Address(rsp, st_off), rax);
674#endif /* ASSERT */
675          __ movptr(Address(rsp, next_off), r);
676        } else {
677          __ movptr(Address(rsp, st_off), r);
678        }
679      }
680    } else {
681      assert(r_1->is_XMMRegister(), "");
682      if (!r_2->is_valid()) {
683        __ movflt(Address(rsp, st_off), r_1->as_XMMRegister());
684      } else {
685        assert(sig_bt[i] == T_DOUBLE || sig_bt[i] == T_LONG, "wrong type");
686        move_c2i_double(masm, r_1->as_XMMRegister(), st_off);
687      }
688    }
689  }
690
691  // Schedule the branch target address early.
692  __ movptr(rcx, Address(rbx, in_bytes(Method::interpreter_entry_offset())));
693  // And repush original return address
694  __ push(rax);
695  __ jmp(rcx);
696}
697
698
699static void move_i2c_double(MacroAssembler *masm, XMMRegister r, Register saved_sp, int ld_off) {
700  int next_val_off = ld_off - Interpreter::stackElementSize;
701  __ movdbl(r, Address(saved_sp, next_val_off));
702}
703
704static void range_check(MacroAssembler* masm, Register pc_reg, Register temp_reg,
705                        address code_start, address code_end,
706                        Label& L_ok) {
707  Label L_fail;
708  __ lea(temp_reg, ExternalAddress(code_start));
709  __ cmpptr(pc_reg, temp_reg);
710  __ jcc(Assembler::belowEqual, L_fail);
711  __ lea(temp_reg, ExternalAddress(code_end));
712  __ cmpptr(pc_reg, temp_reg);
713  __ jcc(Assembler::below, L_ok);
714  __ bind(L_fail);
715}
716
717void SharedRuntime::gen_i2c_adapter(MacroAssembler *masm,
718                                    int total_args_passed,
719                                    int comp_args_on_stack,
720                                    const BasicType *sig_bt,
721                                    const VMRegPair *regs) {
722  // Note: rsi contains the senderSP on entry. We must preserve it since
723  // we may do a i2c -> c2i transition if we lose a race where compiled
724  // code goes non-entrant while we get args ready.
725
726  // Adapters can be frameless because they do not require the caller
727  // to perform additional cleanup work, such as correcting the stack pointer.
728  // An i2c adapter is frameless because the *caller* frame, which is interpreted,
729  // routinely repairs its own stack pointer (from interpreter_frame_last_sp),
730  // even if a callee has modified the stack pointer.
731  // A c2i adapter is frameless because the *callee* frame, which is interpreted,
732  // routinely repairs its caller's stack pointer (from sender_sp, which is set
733  // up via the senderSP register).
734  // In other words, if *either* the caller or callee is interpreted, we can
735  // get the stack pointer repaired after a call.
736  // This is why c2i and i2c adapters cannot be indefinitely composed.
737  // In particular, if a c2i adapter were to somehow call an i2c adapter,
738  // both caller and callee would be compiled methods, and neither would
739  // clean up the stack pointer changes performed by the two adapters.
740  // If this happens, control eventually transfers back to the compiled
741  // caller, but with an uncorrected stack, causing delayed havoc.
742
743  // Pick up the return address
744  __ movptr(rax, Address(rsp, 0));
745
746  if (VerifyAdapterCalls &&
747      (Interpreter::code() != NULL || StubRoutines::code1() != NULL)) {
748    // So, let's test for cascading c2i/i2c adapters right now.
749    //  assert(Interpreter::contains($return_addr) ||
750    //         StubRoutines::contains($return_addr),
751    //         "i2c adapter must return to an interpreter frame");
752    __ block_comment("verify_i2c { ");
753    Label L_ok;
754    if (Interpreter::code() != NULL)
755      range_check(masm, rax, rdi,
756                  Interpreter::code()->code_start(), Interpreter::code()->code_end(),
757                  L_ok);
758    if (StubRoutines::code1() != NULL)
759      range_check(masm, rax, rdi,
760                  StubRoutines::code1()->code_begin(), StubRoutines::code1()->code_end(),
761                  L_ok);
762    if (StubRoutines::code2() != NULL)
763      range_check(masm, rax, rdi,
764                  StubRoutines::code2()->code_begin(), StubRoutines::code2()->code_end(),
765                  L_ok);
766    const char* msg = "i2c adapter must return to an interpreter frame";
767    __ block_comment(msg);
768    __ stop(msg);
769    __ bind(L_ok);
770    __ block_comment("} verify_i2ce ");
771  }
772
773  // Must preserve original SP for loading incoming arguments because
774  // we need to align the outgoing SP for compiled code.
775  __ movptr(rdi, rsp);
776
777  // Cut-out for having no stack args.  Since up to 2 int/oop args are passed
778  // in registers, we will occasionally have no stack args.
779  int comp_words_on_stack = 0;
780  if (comp_args_on_stack) {
781    // Sig words on the stack are greater-than VMRegImpl::stack0.  Those in
782    // registers are below.  By subtracting stack0, we either get a negative
783    // number (all values in registers) or the maximum stack slot accessed.
784    // int comp_args_on_stack = VMRegImpl::reg2stack(max_arg);
785    // Convert 4-byte stack slots to words.
786    comp_words_on_stack = align_up(comp_args_on_stack*4, wordSize)>>LogBytesPerWord;
787    // Round up to miminum stack alignment, in wordSize
788    comp_words_on_stack = align_up(comp_words_on_stack, 2);
789    __ subptr(rsp, comp_words_on_stack * wordSize);
790  }
791
792  // Align the outgoing SP
793  __ andptr(rsp, -(StackAlignmentInBytes));
794
795  // push the return address on the stack (note that pushing, rather
796  // than storing it, yields the correct frame alignment for the callee)
797  __ push(rax);
798
799  // Put saved SP in another register
800  const Register saved_sp = rax;
801  __ movptr(saved_sp, rdi);
802
803
804  // Will jump to the compiled code just as if compiled code was doing it.
805  // Pre-load the register-jump target early, to schedule it better.
806  __ movptr(rdi, Address(rbx, in_bytes(Method::from_compiled_offset())));
807
808  // Now generate the shuffle code.  Pick up all register args and move the
809  // rest through the floating point stack top.
810  for (int i = 0; i < total_args_passed; i++) {
811    if (sig_bt[i] == T_VOID) {
812      // Longs and doubles are passed in native word order, but misaligned
813      // in the 32-bit build.
814      assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
815      continue;
816    }
817
818    // Pick up 0, 1 or 2 words from SP+offset.
819
820    assert(!regs[i].second()->is_valid() || regs[i].first()->next() == regs[i].second(),
821            "scrambled load targets?");
822    // Load in argument order going down.
823    int ld_off = (total_args_passed - i) * Interpreter::stackElementSize;
824    // Point to interpreter value (vs. tag)
825    int next_off = ld_off - Interpreter::stackElementSize;
826    //
827    //
828    //
829    VMReg r_1 = regs[i].first();
830    VMReg r_2 = regs[i].second();
831    if (!r_1->is_valid()) {
832      assert(!r_2->is_valid(), "");
833      continue;
834    }
835    if (r_1->is_stack()) {
836      // Convert stack slot to an SP offset (+ wordSize to account for return address )
837      int st_off = regs[i].first()->reg2stack()*VMRegImpl::stack_slot_size + wordSize;
838
839      // We can use rsi as a temp here because compiled code doesn't need rsi as an input
840      // and if we end up going thru a c2i because of a miss a reasonable value of rsi
841      // we be generated.
842      if (!r_2->is_valid()) {
843        // __ fld_s(Address(saved_sp, ld_off));
844        // __ fstp_s(Address(rsp, st_off));
845        __ movl(rsi, Address(saved_sp, ld_off));
846        __ movptr(Address(rsp, st_off), rsi);
847      } else {
848        // Interpreter local[n] == MSW, local[n+1] == LSW however locals
849        // are accessed as negative so LSW is at LOW address
850
851        // ld_off is MSW so get LSW
852        // st_off is LSW (i.e. reg.first())
853        // __ fld_d(Address(saved_sp, next_off));
854        // __ fstp_d(Address(rsp, st_off));
855        //
856        // We are using two VMRegs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE
857        // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case
858        // So we must adjust where to pick up the data to match the interpreter.
859        //
860        // Interpreter local[n] == MSW, local[n+1] == LSW however locals
861        // are accessed as negative so LSW is at LOW address
862
863        // ld_off is MSW so get LSW
864        const int offset = (NOT_LP64(true ||) sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)?
865                           next_off : ld_off;
866        __ movptr(rsi, Address(saved_sp, offset));
867        __ movptr(Address(rsp, st_off), rsi);
868#ifndef _LP64
869        __ movptr(rsi, Address(saved_sp, ld_off));
870        __ movptr(Address(rsp, st_off + wordSize), rsi);
871#endif // _LP64
872      }
873    } else if (r_1->is_Register()) {  // Register argument
874      Register r = r_1->as_Register();
875      assert(r != rax, "must be different");
876      if (r_2->is_valid()) {
877        //
878        // We are using two VMRegs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE
879        // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case
880        // So we must adjust where to pick up the data to match the interpreter.
881
882        const int offset = (NOT_LP64(true ||) sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)?
883                           next_off : ld_off;
884
885        // this can be a misaligned move
886        __ movptr(r, Address(saved_sp, offset));
887#ifndef _LP64
888        assert(r_2->as_Register() != rax, "need another temporary register");
889        // Remember r_1 is low address (and LSB on x86)
890        // So r_2 gets loaded from high address regardless of the platform
891        __ movptr(r_2->as_Register(), Address(saved_sp, ld_off));
892#endif // _LP64
893      } else {
894        __ movl(r, Address(saved_sp, ld_off));
895      }
896    } else {
897      assert(r_1->is_XMMRegister(), "");
898      if (!r_2->is_valid()) {
899        __ movflt(r_1->as_XMMRegister(), Address(saved_sp, ld_off));
900      } else {
901        move_i2c_double(masm, r_1->as_XMMRegister(), saved_sp, ld_off);
902      }
903    }
904  }
905
906  // 6243940 We might end up in handle_wrong_method if
907  // the callee is deoptimized as we race thru here. If that
908  // happens we don't want to take a safepoint because the
909  // caller frame will look interpreted and arguments are now
910  // "compiled" so it is much better to make this transition
911  // invisible to the stack walking code. Unfortunately if
912  // we try and find the callee by normal means a safepoint
913  // is possible. So we stash the desired callee in the thread
914  // and the vm will find there should this case occur.
915
916  __ get_thread(rax);
917  __ movptr(Address(rax, JavaThread::callee_target_offset()), rbx);
918
919  // move Method* to rax, in case we end up in an c2i adapter.
920  // the c2i adapters expect Method* in rax, (c2) because c2's
921  // resolve stubs return the result (the method) in rax,.
922  // I'd love to fix this.
923  __ mov(rax, rbx);
924
925  __ jmp(rdi);
926}
927
928// ---------------------------------------------------------------
929AdapterHandlerEntry* SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm,
930                                                            int total_args_passed,
931                                                            int comp_args_on_stack,
932                                                            const BasicType *sig_bt,
933                                                            const VMRegPair *regs,
934                                                            AdapterFingerPrint* fingerprint) {
935  address i2c_entry = __ pc();
936
937  gen_i2c_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs);
938
939  // -------------------------------------------------------------------------
940  // Generate a C2I adapter.  On entry we know rbx, holds the Method* during calls
941  // to the interpreter.  The args start out packed in the compiled layout.  They
942  // need to be unpacked into the interpreter layout.  This will almost always
943  // require some stack space.  We grow the current (compiled) stack, then repack
944  // the args.  We  finally end in a jump to the generic interpreter entry point.
945  // On exit from the interpreter, the interpreter will restore our SP (lest the
946  // compiled code, which relys solely on SP and not EBP, get sick).
947
948  address c2i_unverified_entry = __ pc();
949  Label skip_fixup;
950
951  Register holder = rax;
952  Register receiver = rcx;
953  Register temp = rbx;
954
955  {
956
957    Label missed;
958    __ movptr(temp, Address(receiver, oopDesc::klass_offset_in_bytes()));
959    __ cmpptr(temp, Address(holder, CompiledICHolder::holder_klass_offset()));
960    __ movptr(rbx, Address(holder, CompiledICHolder::holder_method_offset()));
961    __ jcc(Assembler::notEqual, missed);
962    // Method might have been compiled since the call site was patched to
963    // interpreted if that is the case treat it as a miss so we can get
964    // the call site corrected.
965    __ cmpptr(Address(rbx, in_bytes(Method::code_offset())), (int32_t)NULL_WORD);
966    __ jcc(Assembler::equal, skip_fixup);
967
968    __ bind(missed);
969    __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
970  }
971
972  address c2i_entry = __ pc();
973
974  gen_c2i_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs, skip_fixup);
975
976  __ flush();
977  return AdapterHandlerLibrary::new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
978}
979
980int SharedRuntime::c_calling_convention(const BasicType *sig_bt,
981                                         VMRegPair *regs,
982                                         VMRegPair *regs2,
983                                         int total_args_passed) {
984  assert(regs2 == NULL, "not needed on x86");
985// We return the amount of VMRegImpl stack slots we need to reserve for all
986// the arguments NOT counting out_preserve_stack_slots.
987
988  uint    stack = 0;        // All arguments on stack
989
990  for( int i = 0; i < total_args_passed; i++) {
991    // From the type and the argument number (count) compute the location
992    switch( sig_bt[i] ) {
993    case T_BOOLEAN:
994    case T_CHAR:
995    case T_FLOAT:
996    case T_BYTE:
997    case T_SHORT:
998    case T_INT:
999    case T_OBJECT:
1000    case T_ARRAY:
1001    case T_ADDRESS:
1002    case T_METADATA:
1003      regs[i].set1(VMRegImpl::stack2reg(stack++));
1004      break;
1005    case T_LONG:
1006    case T_DOUBLE: // The stack numbering is reversed from Java
1007      // Since C arguments do not get reversed, the ordering for
1008      // doubles on the stack must be opposite the Java convention
1009      assert((i + 1) < total_args_passed && sig_bt[i+1] == T_VOID, "missing Half" );
1010      regs[i].set2(VMRegImpl::stack2reg(stack));
1011      stack += 2;
1012      break;
1013    case T_VOID: regs[i].set_bad(); break;
1014    default:
1015      ShouldNotReachHere();
1016      break;
1017    }
1018  }
1019  return stack;
1020}
1021
1022// A simple move of integer like type
1023static void simple_move32(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1024  if (src.first()->is_stack()) {
1025    if (dst.first()->is_stack()) {
1026      // stack to stack
1027      // __ ld(FP, reg2offset(src.first()) + STACK_BIAS, L5);
1028      // __ st(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
1029      __ movl2ptr(rax, Address(rbp, reg2offset_in(src.first())));
1030      __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
1031    } else {
1032      // stack to reg
1033      __ movl2ptr(dst.first()->as_Register(),  Address(rbp, reg2offset_in(src.first())));
1034    }
1035  } else if (dst.first()->is_stack()) {
1036    // reg to stack
1037    // no need to sign extend on 64bit
1038    __ movptr(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register());
1039  } else {
1040    if (dst.first() != src.first()) {
1041      __ mov(dst.first()->as_Register(), src.first()->as_Register());
1042    }
1043  }
1044}
1045
1046// An oop arg. Must pass a handle not the oop itself
1047static void object_move(MacroAssembler* masm,
1048                        OopMap* map,
1049                        int oop_handle_offset,
1050                        int framesize_in_slots,
1051                        VMRegPair src,
1052                        VMRegPair dst,
1053                        bool is_receiver,
1054                        int* receiver_offset) {
1055
1056  // Because of the calling conventions we know that src can be a
1057  // register or a stack location. dst can only be a stack location.
1058
1059  assert(dst.first()->is_stack(), "must be stack");
1060  // must pass a handle. First figure out the location we use as a handle
1061
1062  if (src.first()->is_stack()) {
1063    // Oop is already on the stack as an argument
1064    Register rHandle = rax;
1065    Label nil;
1066    __ xorptr(rHandle, rHandle);
1067    __ cmpptr(Address(rbp, reg2offset_in(src.first())), (int32_t)NULL_WORD);
1068    __ jcc(Assembler::equal, nil);
1069    __ lea(rHandle, Address(rbp, reg2offset_in(src.first())));
1070    __ bind(nil);
1071    __ movptr(Address(rsp, reg2offset_out(dst.first())), rHandle);
1072
1073    int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
1074    map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots));
1075    if (is_receiver) {
1076      *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size;
1077    }
1078  } else {
1079    // Oop is in an a register we must store it to the space we reserve
1080    // on the stack for oop_handles
1081    const Register rOop = src.first()->as_Register();
1082    const Register rHandle = rax;
1083    int oop_slot = (rOop == rcx ? 0 : 1) * VMRegImpl::slots_per_word + oop_handle_offset;
1084    int offset = oop_slot*VMRegImpl::stack_slot_size;
1085    Label skip;
1086    __ movptr(Address(rsp, offset), rOop);
1087    map->set_oop(VMRegImpl::stack2reg(oop_slot));
1088    __ xorptr(rHandle, rHandle);
1089    __ cmpptr(rOop, (int32_t)NULL_WORD);
1090    __ jcc(Assembler::equal, skip);
1091    __ lea(rHandle, Address(rsp, offset));
1092    __ bind(skip);
1093    // Store the handle parameter
1094    __ movptr(Address(rsp, reg2offset_out(dst.first())), rHandle);
1095    if (is_receiver) {
1096      *receiver_offset = offset;
1097    }
1098  }
1099}
1100
1101// A float arg may have to do float reg int reg conversion
1102static void float_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1103  assert(!src.second()->is_valid() && !dst.second()->is_valid(), "bad float_move");
1104
1105  // Because of the calling convention we know that src is either a stack location
1106  // or an xmm register. dst can only be a stack location.
1107
1108  assert(dst.first()->is_stack() && ( src.first()->is_stack() || src.first()->is_XMMRegister()), "bad parameters");
1109
1110  if (src.first()->is_stack()) {
1111    __ movl(rax, Address(rbp, reg2offset_in(src.first())));
1112    __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
1113  } else {
1114    // reg to stack
1115    __ movflt(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister());
1116  }
1117}
1118
1119// A long move
1120static void long_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1121
1122  // The only legal possibility for a long_move VMRegPair is:
1123  // 1: two stack slots (possibly unaligned)
1124  // as neither the java  or C calling convention will use registers
1125  // for longs.
1126
1127  if (src.first()->is_stack() && dst.first()->is_stack()) {
1128    assert(src.second()->is_stack() && dst.second()->is_stack(), "must be all stack");
1129    __ movptr(rax, Address(rbp, reg2offset_in(src.first())));
1130    NOT_LP64(__ movptr(rbx, Address(rbp, reg2offset_in(src.second()))));
1131    __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
1132    NOT_LP64(__ movptr(Address(rsp, reg2offset_out(dst.second())), rbx));
1133  } else {
1134    ShouldNotReachHere();
1135  }
1136}
1137
1138// A double move
1139static void double_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1140
1141  // The only legal possibilities for a double_move VMRegPair are:
1142  // The painful thing here is that like long_move a VMRegPair might be
1143
1144  // Because of the calling convention we know that src is either
1145  //   1: a single physical register (xmm registers only)
1146  //   2: two stack slots (possibly unaligned)
1147  // dst can only be a pair of stack slots.
1148
1149  assert(dst.first()->is_stack() && (src.first()->is_XMMRegister() || src.first()->is_stack()), "bad args");
1150
1151  if (src.first()->is_stack()) {
1152    // source is all stack
1153    __ movptr(rax, Address(rbp, reg2offset_in(src.first())));
1154    NOT_LP64(__ movptr(rbx, Address(rbp, reg2offset_in(src.second()))));
1155    __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
1156    NOT_LP64(__ movptr(Address(rsp, reg2offset_out(dst.second())), rbx));
1157  } else {
1158    // reg to stack
1159    // No worries about stack alignment
1160    __ movdbl(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister());
1161  }
1162}
1163
1164
1165void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
1166  // We always ignore the frame_slots arg and just use the space just below frame pointer
1167  // which by this time is free to use
1168  switch (ret_type) {
1169  case T_FLOAT:
1170    __ fstp_s(Address(rbp, -wordSize));
1171    break;
1172  case T_DOUBLE:
1173    __ fstp_d(Address(rbp, -2*wordSize));
1174    break;
1175  case T_VOID:  break;
1176  case T_LONG:
1177    __ movptr(Address(rbp, -wordSize), rax);
1178    NOT_LP64(__ movptr(Address(rbp, -2*wordSize), rdx));
1179    break;
1180  default: {
1181    __ movptr(Address(rbp, -wordSize), rax);
1182    }
1183  }
1184}
1185
1186void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
1187  // We always ignore the frame_slots arg and just use the space just below frame pointer
1188  // which by this time is free to use
1189  switch (ret_type) {
1190  case T_FLOAT:
1191    __ fld_s(Address(rbp, -wordSize));
1192    break;
1193  case T_DOUBLE:
1194    __ fld_d(Address(rbp, -2*wordSize));
1195    break;
1196  case T_LONG:
1197    __ movptr(rax, Address(rbp, -wordSize));
1198    NOT_LP64(__ movptr(rdx, Address(rbp, -2*wordSize)));
1199    break;
1200  case T_VOID:  break;
1201  default: {
1202    __ movptr(rax, Address(rbp, -wordSize));
1203    }
1204  }
1205}
1206
1207
1208static void save_or_restore_arguments(MacroAssembler* masm,
1209                                      const int stack_slots,
1210                                      const int total_in_args,
1211                                      const int arg_save_area,
1212                                      OopMap* map,
1213                                      VMRegPair* in_regs,
1214                                      BasicType* in_sig_bt) {
1215  // if map is non-NULL then the code should store the values,
1216  // otherwise it should load them.
1217  int handle_index = 0;
1218  // Save down double word first
1219  for ( int i = 0; i < total_in_args; i++) {
1220    if (in_regs[i].first()->is_XMMRegister() && in_sig_bt[i] == T_DOUBLE) {
1221      int slot = handle_index * VMRegImpl::slots_per_word + arg_save_area;
1222      int offset = slot * VMRegImpl::stack_slot_size;
1223      handle_index += 2;
1224      assert(handle_index <= stack_slots, "overflow");
1225      if (map != NULL) {
1226        __ movdbl(Address(rsp, offset), in_regs[i].first()->as_XMMRegister());
1227      } else {
1228        __ movdbl(in_regs[i].first()->as_XMMRegister(), Address(rsp, offset));
1229      }
1230    }
1231    if (in_regs[i].first()->is_Register() && in_sig_bt[i] == T_LONG) {
1232      int slot = handle_index * VMRegImpl::slots_per_word + arg_save_area;
1233      int offset = slot * VMRegImpl::stack_slot_size;
1234      handle_index += 2;
1235      assert(handle_index <= stack_slots, "overflow");
1236      if (map != NULL) {
1237        __ movl(Address(rsp, offset), in_regs[i].first()->as_Register());
1238        if (in_regs[i].second()->is_Register()) {
1239          __ movl(Address(rsp, offset + 4), in_regs[i].second()->as_Register());
1240        }
1241      } else {
1242        __ movl(in_regs[i].first()->as_Register(), Address(rsp, offset));
1243        if (in_regs[i].second()->is_Register()) {
1244          __ movl(in_regs[i].second()->as_Register(), Address(rsp, offset + 4));
1245        }
1246      }
1247    }
1248  }
1249  // Save or restore single word registers
1250  for ( int i = 0; i < total_in_args; i++) {
1251    if (in_regs[i].first()->is_Register()) {
1252      int slot = handle_index++ * VMRegImpl::slots_per_word + arg_save_area;
1253      int offset = slot * VMRegImpl::stack_slot_size;
1254      assert(handle_index <= stack_slots, "overflow");
1255      if (in_sig_bt[i] == T_ARRAY && map != NULL) {
1256        map->set_oop(VMRegImpl::stack2reg(slot));;
1257      }
1258
1259      // Value is in an input register pass we must flush it to the stack
1260      const Register reg = in_regs[i].first()->as_Register();
1261      switch (in_sig_bt[i]) {
1262        case T_ARRAY:
1263          if (map != NULL) {
1264            __ movptr(Address(rsp, offset), reg);
1265          } else {
1266            __ movptr(reg, Address(rsp, offset));
1267          }
1268          break;
1269        case T_BOOLEAN:
1270        case T_CHAR:
1271        case T_BYTE:
1272        case T_SHORT:
1273        case T_INT:
1274          if (map != NULL) {
1275            __ movl(Address(rsp, offset), reg);
1276          } else {
1277            __ movl(reg, Address(rsp, offset));
1278          }
1279          break;
1280        case T_OBJECT:
1281        default: ShouldNotReachHere();
1282      }
1283    } else if (in_regs[i].first()->is_XMMRegister()) {
1284      if (in_sig_bt[i] == T_FLOAT) {
1285        int slot = handle_index++ * VMRegImpl::slots_per_word + arg_save_area;
1286        int offset = slot * VMRegImpl::stack_slot_size;
1287        assert(handle_index <= stack_slots, "overflow");
1288        if (map != NULL) {
1289          __ movflt(Address(rsp, offset), in_regs[i].first()->as_XMMRegister());
1290        } else {
1291          __ movflt(in_regs[i].first()->as_XMMRegister(), Address(rsp, offset));
1292        }
1293      }
1294    } else if (in_regs[i].first()->is_stack()) {
1295      if (in_sig_bt[i] == T_ARRAY && map != NULL) {
1296        int offset_in_older_frame = in_regs[i].first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
1297        map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + stack_slots));
1298      }
1299    }
1300  }
1301}
1302
1303// Check GCLocker::needs_gc and enter the runtime if it's true.  This
1304// keeps a new JNI critical region from starting until a GC has been
1305// forced.  Save down any oops in registers and describe them in an
1306// OopMap.
1307static void check_needs_gc_for_critical_native(MacroAssembler* masm,
1308                                               Register thread,
1309                                               int stack_slots,
1310                                               int total_c_args,
1311                                               int total_in_args,
1312                                               int arg_save_area,
1313                                               OopMapSet* oop_maps,
1314                                               VMRegPair* in_regs,
1315                                               BasicType* in_sig_bt) {
1316  __ block_comment("check GCLocker::needs_gc");
1317  Label cont;
1318  __ cmp8(ExternalAddress((address)GCLocker::needs_gc_address()), false);
1319  __ jcc(Assembler::equal, cont);
1320
1321  // Save down any incoming oops and call into the runtime to halt for a GC
1322
1323  OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
1324
1325  save_or_restore_arguments(masm, stack_slots, total_in_args,
1326                            arg_save_area, map, in_regs, in_sig_bt);
1327
1328  address the_pc = __ pc();
1329  oop_maps->add_gc_map( __ offset(), map);
1330  __ set_last_Java_frame(thread, rsp, noreg, the_pc);
1331
1332  __ block_comment("block_for_jni_critical");
1333  __ push(thread);
1334  __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::block_for_jni_critical)));
1335  __ increment(rsp, wordSize);
1336
1337  __ get_thread(thread);
1338  __ reset_last_Java_frame(thread, false);
1339
1340  save_or_restore_arguments(masm, stack_slots, total_in_args,
1341                            arg_save_area, NULL, in_regs, in_sig_bt);
1342
1343  __ bind(cont);
1344#ifdef ASSERT
1345  if (StressCriticalJNINatives) {
1346    // Stress register saving
1347    OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
1348    save_or_restore_arguments(masm, stack_slots, total_in_args,
1349                              arg_save_area, map, in_regs, in_sig_bt);
1350    // Destroy argument registers
1351    for (int i = 0; i < total_in_args - 1; i++) {
1352      if (in_regs[i].first()->is_Register()) {
1353        const Register reg = in_regs[i].first()->as_Register();
1354        __ xorptr(reg, reg);
1355      } else if (in_regs[i].first()->is_XMMRegister()) {
1356        __ xorpd(in_regs[i].first()->as_XMMRegister(), in_regs[i].first()->as_XMMRegister());
1357      } else if (in_regs[i].first()->is_FloatRegister()) {
1358        ShouldNotReachHere();
1359      } else if (in_regs[i].first()->is_stack()) {
1360        // Nothing to do
1361      } else {
1362        ShouldNotReachHere();
1363      }
1364      if (in_sig_bt[i] == T_LONG || in_sig_bt[i] == T_DOUBLE) {
1365        i++;
1366      }
1367    }
1368
1369    save_or_restore_arguments(masm, stack_slots, total_in_args,
1370                              arg_save_area, NULL, in_regs, in_sig_bt);
1371  }
1372#endif
1373}
1374
1375// Unpack an array argument into a pointer to the body and the length
1376// if the array is non-null, otherwise pass 0 for both.
1377static void unpack_array_argument(MacroAssembler* masm, VMRegPair reg, BasicType in_elem_type, VMRegPair body_arg, VMRegPair length_arg) {
1378  Register tmp_reg = rax;
1379  assert(!body_arg.first()->is_Register() || body_arg.first()->as_Register() != tmp_reg,
1380         "possible collision");
1381  assert(!length_arg.first()->is_Register() || length_arg.first()->as_Register() != tmp_reg,
1382         "possible collision");
1383
1384  // Pass the length, ptr pair
1385  Label is_null, done;
1386  VMRegPair tmp(tmp_reg->as_VMReg());
1387  if (reg.first()->is_stack()) {
1388    // Load the arg up from the stack
1389    simple_move32(masm, reg, tmp);
1390    reg = tmp;
1391  }
1392  __ testptr(reg.first()->as_Register(), reg.first()->as_Register());
1393  __ jccb(Assembler::equal, is_null);
1394  __ lea(tmp_reg, Address(reg.first()->as_Register(), arrayOopDesc::base_offset_in_bytes(in_elem_type)));
1395  simple_move32(masm, tmp, body_arg);
1396  // load the length relative to the body.
1397  __ movl(tmp_reg, Address(tmp_reg, arrayOopDesc::length_offset_in_bytes() -
1398                           arrayOopDesc::base_offset_in_bytes(in_elem_type)));
1399  simple_move32(masm, tmp, length_arg);
1400  __ jmpb(done);
1401  __ bind(is_null);
1402  // Pass zeros
1403  __ xorptr(tmp_reg, tmp_reg);
1404  simple_move32(masm, tmp, body_arg);
1405  simple_move32(masm, tmp, length_arg);
1406  __ bind(done);
1407}
1408
1409static void verify_oop_args(MacroAssembler* masm,
1410                            const methodHandle& method,
1411                            const BasicType* sig_bt,
1412                            const VMRegPair* regs) {
1413  Register temp_reg = rbx;  // not part of any compiled calling seq
1414  if (VerifyOops) {
1415    for (int i = 0; i < method->size_of_parameters(); i++) {
1416      if (sig_bt[i] == T_OBJECT ||
1417          sig_bt[i] == T_ARRAY) {
1418        VMReg r = regs[i].first();
1419        assert(r->is_valid(), "bad oop arg");
1420        if (r->is_stack()) {
1421          __ movptr(temp_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
1422          __ verify_oop(temp_reg);
1423        } else {
1424          __ verify_oop(r->as_Register());
1425        }
1426      }
1427    }
1428  }
1429}
1430
1431static void gen_special_dispatch(MacroAssembler* masm,
1432                                 const methodHandle& method,
1433                                 const BasicType* sig_bt,
1434                                 const VMRegPair* regs) {
1435  verify_oop_args(masm, method, sig_bt, regs);
1436  vmIntrinsics::ID iid = method->intrinsic_id();
1437
1438  // Now write the args into the outgoing interpreter space
1439  bool     has_receiver   = false;
1440  Register receiver_reg   = noreg;
1441  int      member_arg_pos = -1;
1442  Register member_reg     = noreg;
1443  int      ref_kind       = MethodHandles::signature_polymorphic_intrinsic_ref_kind(iid);
1444  if (ref_kind != 0) {
1445    member_arg_pos = method->size_of_parameters() - 1;  // trailing MemberName argument
1446    member_reg = rbx;  // known to be free at this point
1447    has_receiver = MethodHandles::ref_kind_has_receiver(ref_kind);
1448  } else if (iid == vmIntrinsics::_invokeBasic) {
1449    has_receiver = true;
1450  } else {
1451    fatal("unexpected intrinsic id %d", iid);
1452  }
1453
1454  if (member_reg != noreg) {
1455    // Load the member_arg into register, if necessary.
1456    SharedRuntime::check_member_name_argument_is_last_argument(method, sig_bt, regs);
1457    VMReg r = regs[member_arg_pos].first();
1458    if (r->is_stack()) {
1459      __ movptr(member_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
1460    } else {
1461      // no data motion is needed
1462      member_reg = r->as_Register();
1463    }
1464  }
1465
1466  if (has_receiver) {
1467    // Make sure the receiver is loaded into a register.
1468    assert(method->size_of_parameters() > 0, "oob");
1469    assert(sig_bt[0] == T_OBJECT, "receiver argument must be an object");
1470    VMReg r = regs[0].first();
1471    assert(r->is_valid(), "bad receiver arg");
1472    if (r->is_stack()) {
1473      // Porting note:  This assumes that compiled calling conventions always
1474      // pass the receiver oop in a register.  If this is not true on some
1475      // platform, pick a temp and load the receiver from stack.
1476      fatal("receiver always in a register");
1477      receiver_reg = rcx;  // known to be free at this point
1478      __ movptr(receiver_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
1479    } else {
1480      // no data motion is needed
1481      receiver_reg = r->as_Register();
1482    }
1483  }
1484
1485  // Figure out which address we are really jumping to:
1486  MethodHandles::generate_method_handle_dispatch(masm, iid,
1487                                                 receiver_reg, member_reg, /*for_compiler_entry:*/ true);
1488}
1489
1490// ---------------------------------------------------------------------------
1491// Generate a native wrapper for a given method.  The method takes arguments
1492// in the Java compiled code convention, marshals them to the native
1493// convention (handlizes oops, etc), transitions to native, makes the call,
1494// returns to java state (possibly blocking), unhandlizes any result and
1495// returns.
1496//
1497// Critical native functions are a shorthand for the use of
1498// GetPrimtiveArrayCritical and disallow the use of any other JNI
1499// functions.  The wrapper is expected to unpack the arguments before
1500// passing them to the callee and perform checks before and after the
1501// native call to ensure that they GCLocker
1502// lock_critical/unlock_critical semantics are followed.  Some other
1503// parts of JNI setup are skipped like the tear down of the JNI handle
1504// block and the check for pending exceptions it's impossible for them
1505// to be thrown.
1506//
1507// They are roughly structured like this:
1508//    if (GCLocker::needs_gc())
1509//      SharedRuntime::block_for_jni_critical();
1510//    tranistion to thread_in_native
1511//    unpack arrray arguments and call native entry point
1512//    check for safepoint in progress
1513//    check if any thread suspend flags are set
1514//      call into JVM and possible unlock the JNI critical
1515//      if a GC was suppressed while in the critical native.
1516//    transition back to thread_in_Java
1517//    return to caller
1518//
1519nmethod* SharedRuntime::generate_native_wrapper(MacroAssembler* masm,
1520                                                const methodHandle& method,
1521                                                int compile_id,
1522                                                BasicType* in_sig_bt,
1523                                                VMRegPair* in_regs,
1524                                                BasicType ret_type) {
1525  if (method->is_method_handle_intrinsic()) {
1526    vmIntrinsics::ID iid = method->intrinsic_id();
1527    intptr_t start = (intptr_t)__ pc();
1528    int vep_offset = ((intptr_t)__ pc()) - start;
1529    gen_special_dispatch(masm,
1530                         method,
1531                         in_sig_bt,
1532                         in_regs);
1533    int frame_complete = ((intptr_t)__ pc()) - start;  // not complete, period
1534    __ flush();
1535    int stack_slots = SharedRuntime::out_preserve_stack_slots();  // no out slots at all, actually
1536    return nmethod::new_native_nmethod(method,
1537                                       compile_id,
1538                                       masm->code(),
1539                                       vep_offset,
1540                                       frame_complete,
1541                                       stack_slots / VMRegImpl::slots_per_word,
1542                                       in_ByteSize(-1),
1543                                       in_ByteSize(-1),
1544                                       (OopMapSet*)NULL);
1545  }
1546  bool is_critical_native = true;
1547  address native_func = method->critical_native_function();
1548  if (native_func == NULL) {
1549    native_func = method->native_function();
1550    is_critical_native = false;
1551  }
1552  assert(native_func != NULL, "must have function");
1553
1554  // An OopMap for lock (and class if static)
1555  OopMapSet *oop_maps = new OopMapSet();
1556
1557  // We have received a description of where all the java arg are located
1558  // on entry to the wrapper. We need to convert these args to where
1559  // the jni function will expect them. To figure out where they go
1560  // we convert the java signature to a C signature by inserting
1561  // the hidden arguments as arg[0] and possibly arg[1] (static method)
1562
1563  const int total_in_args = method->size_of_parameters();
1564  int total_c_args = total_in_args;
1565  if (!is_critical_native) {
1566    total_c_args += 1;
1567    if (method->is_static()) {
1568      total_c_args++;
1569    }
1570  } else {
1571    for (int i = 0; i < total_in_args; i++) {
1572      if (in_sig_bt[i] == T_ARRAY) {
1573        total_c_args++;
1574      }
1575    }
1576  }
1577
1578  BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args);
1579  VMRegPair* out_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_c_args);
1580  BasicType* in_elem_bt = NULL;
1581
1582  int argc = 0;
1583  if (!is_critical_native) {
1584    out_sig_bt[argc++] = T_ADDRESS;
1585    if (method->is_static()) {
1586      out_sig_bt[argc++] = T_OBJECT;
1587    }
1588
1589    for (int i = 0; i < total_in_args ; i++ ) {
1590      out_sig_bt[argc++] = in_sig_bt[i];
1591    }
1592  } else {
1593    Thread* THREAD = Thread::current();
1594    in_elem_bt = NEW_RESOURCE_ARRAY(BasicType, total_in_args);
1595    SignatureStream ss(method->signature());
1596    for (int i = 0; i < total_in_args ; i++ ) {
1597      if (in_sig_bt[i] == T_ARRAY) {
1598        // Arrays are passed as int, elem* pair
1599        out_sig_bt[argc++] = T_INT;
1600        out_sig_bt[argc++] = T_ADDRESS;
1601        Symbol* atype = ss.as_symbol(CHECK_NULL);
1602        const char* at = atype->as_C_string();
1603        if (strlen(at) == 2) {
1604          assert(at[0] == '[', "must be");
1605          switch (at[1]) {
1606            case 'B': in_elem_bt[i]  = T_BYTE; break;
1607            case 'C': in_elem_bt[i]  = T_CHAR; break;
1608            case 'D': in_elem_bt[i]  = T_DOUBLE; break;
1609            case 'F': in_elem_bt[i]  = T_FLOAT; break;
1610            case 'I': in_elem_bt[i]  = T_INT; break;
1611            case 'J': in_elem_bt[i]  = T_LONG; break;
1612            case 'S': in_elem_bt[i]  = T_SHORT; break;
1613            case 'Z': in_elem_bt[i]  = T_BOOLEAN; break;
1614            default: ShouldNotReachHere();
1615          }
1616        }
1617      } else {
1618        out_sig_bt[argc++] = in_sig_bt[i];
1619        in_elem_bt[i] = T_VOID;
1620      }
1621      if (in_sig_bt[i] != T_VOID) {
1622        assert(in_sig_bt[i] == ss.type(), "must match");
1623        ss.next();
1624      }
1625    }
1626  }
1627
1628  // Now figure out where the args must be stored and how much stack space
1629  // they require.
1630  int out_arg_slots;
1631  out_arg_slots = c_calling_convention(out_sig_bt, out_regs, NULL, total_c_args);
1632
1633  // Compute framesize for the wrapper.  We need to handlize all oops in
1634  // registers a max of 2 on x86.
1635
1636  // Calculate the total number of stack slots we will need.
1637
1638  // First count the abi requirement plus all of the outgoing args
1639  int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
1640
1641  // Now the space for the inbound oop handle area
1642  int total_save_slots = 2 * VMRegImpl::slots_per_word; // 2 arguments passed in registers
1643  if (is_critical_native) {
1644    // Critical natives may have to call out so they need a save area
1645    // for register arguments.
1646    int double_slots = 0;
1647    int single_slots = 0;
1648    for ( int i = 0; i < total_in_args; i++) {
1649      if (in_regs[i].first()->is_Register()) {
1650        const Register reg = in_regs[i].first()->as_Register();
1651        switch (in_sig_bt[i]) {
1652          case T_ARRAY:  // critical array (uses 2 slots on LP64)
1653          case T_BOOLEAN:
1654          case T_BYTE:
1655          case T_SHORT:
1656          case T_CHAR:
1657          case T_INT:  single_slots++; break;
1658          case T_LONG: double_slots++; break;
1659          default:  ShouldNotReachHere();
1660        }
1661      } else if (in_regs[i].first()->is_XMMRegister()) {
1662        switch (in_sig_bt[i]) {
1663          case T_FLOAT:  single_slots++; break;
1664          case T_DOUBLE: double_slots++; break;
1665          default:  ShouldNotReachHere();
1666        }
1667      } else if (in_regs[i].first()->is_FloatRegister()) {
1668        ShouldNotReachHere();
1669      }
1670    }
1671    total_save_slots = double_slots * 2 + single_slots;
1672    // align the save area
1673    if (double_slots != 0) {
1674      stack_slots = align_up(stack_slots, 2);
1675    }
1676  }
1677
1678  int oop_handle_offset = stack_slots;
1679  stack_slots += total_save_slots;
1680
1681  // Now any space we need for handlizing a klass if static method
1682
1683  int klass_slot_offset = 0;
1684  int klass_offset = -1;
1685  int lock_slot_offset = 0;
1686  bool is_static = false;
1687
1688  if (method->is_static()) {
1689    klass_slot_offset = stack_slots;
1690    stack_slots += VMRegImpl::slots_per_word;
1691    klass_offset = klass_slot_offset * VMRegImpl::stack_slot_size;
1692    is_static = true;
1693  }
1694
1695  // Plus a lock if needed
1696
1697  if (method->is_synchronized()) {
1698    lock_slot_offset = stack_slots;
1699    stack_slots += VMRegImpl::slots_per_word;
1700  }
1701
1702  // Now a place (+2) to save return values or temp during shuffling
1703  // + 2 for return address (which we own) and saved rbp,
1704  stack_slots += 4;
1705
1706  // Ok The space we have allocated will look like:
1707  //
1708  //
1709  // FP-> |                     |
1710  //      |---------------------|
1711  //      | 2 slots for moves   |
1712  //      |---------------------|
1713  //      | lock box (if sync)  |
1714  //      |---------------------| <- lock_slot_offset  (-lock_slot_rbp_offset)
1715  //      | klass (if static)   |
1716  //      |---------------------| <- klass_slot_offset
1717  //      | oopHandle area      |
1718  //      |---------------------| <- oop_handle_offset (a max of 2 registers)
1719  //      | outbound memory     |
1720  //      | based arguments     |
1721  //      |                     |
1722  //      |---------------------|
1723  //      |                     |
1724  // SP-> | out_preserved_slots |
1725  //
1726  //
1727  // ****************************************************************************
1728  // WARNING - on Windows Java Natives use pascal calling convention and pop the
1729  // arguments off of the stack after the jni call. Before the call we can use
1730  // instructions that are SP relative. After the jni call we switch to FP
1731  // relative instructions instead of re-adjusting the stack on windows.
1732  // ****************************************************************************
1733
1734
1735  // Now compute actual number of stack words we need rounding to make
1736  // stack properly aligned.
1737  stack_slots = align_up(stack_slots, StackAlignmentInSlots);
1738
1739  int stack_size = stack_slots * VMRegImpl::stack_slot_size;
1740
1741  intptr_t start = (intptr_t)__ pc();
1742
1743  // First thing make an ic check to see if we should even be here
1744
1745  // We are free to use all registers as temps without saving them and
1746  // restoring them except rbp. rbp is the only callee save register
1747  // as far as the interpreter and the compiler(s) are concerned.
1748
1749
1750  const Register ic_reg = rax;
1751  const Register receiver = rcx;
1752  Label hit;
1753  Label exception_pending;
1754
1755  __ verify_oop(receiver);
1756  __ cmpptr(ic_reg, Address(receiver, oopDesc::klass_offset_in_bytes()));
1757  __ jcc(Assembler::equal, hit);
1758
1759  __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
1760
1761  // verified entry must be aligned for code patching.
1762  // and the first 5 bytes must be in the same cache line
1763  // if we align at 8 then we will be sure 5 bytes are in the same line
1764  __ align(8);
1765
1766  __ bind(hit);
1767
1768  int vep_offset = ((intptr_t)__ pc()) - start;
1769
1770#ifdef COMPILER1
1771  // For Object.hashCode, System.identityHashCode try to pull hashCode from object header if available.
1772  if ((InlineObjectHash && method->intrinsic_id() == vmIntrinsics::_hashCode) || (method->intrinsic_id() == vmIntrinsics::_identityHashCode)) {
1773    inline_check_hashcode_from_object_header(masm, method, rcx /*obj_reg*/, rax /*result*/);
1774   }
1775#endif // COMPILER1
1776
1777  // The instruction at the verified entry point must be 5 bytes or longer
1778  // because it can be patched on the fly by make_non_entrant. The stack bang
1779  // instruction fits that requirement.
1780
1781  // Generate stack overflow check
1782
1783  if (UseStackBanging) {
1784    __ bang_stack_with_offset((int)JavaThread::stack_shadow_zone_size());
1785  } else {
1786    // need a 5 byte instruction to allow MT safe patching to non-entrant
1787    __ fat_nop();
1788  }
1789
1790  // Generate a new frame for the wrapper.
1791  __ enter();
1792  // -2 because return address is already present and so is saved rbp
1793  __ subptr(rsp, stack_size - 2*wordSize);
1794
1795  // Frame is now completed as far as size and linkage.
1796  int frame_complete = ((intptr_t)__ pc()) - start;
1797
1798  if (UseRTMLocking) {
1799    // Abort RTM transaction before calling JNI
1800    // because critical section will be large and will be
1801    // aborted anyway. Also nmethod could be deoptimized.
1802    __ xabort(0);
1803  }
1804
1805  // Calculate the difference between rsp and rbp,. We need to know it
1806  // after the native call because on windows Java Natives will pop
1807  // the arguments and it is painful to do rsp relative addressing
1808  // in a platform independent way. So after the call we switch to
1809  // rbp, relative addressing.
1810
1811  int fp_adjustment = stack_size - 2*wordSize;
1812
1813#ifdef COMPILER2
1814  // C2 may leave the stack dirty if not in SSE2+ mode
1815  if (UseSSE >= 2) {
1816    __ verify_FPU(0, "c2i transition should have clean FPU stack");
1817  } else {
1818    __ empty_FPU_stack();
1819  }
1820#endif /* COMPILER2 */
1821
1822  // Compute the rbp, offset for any slots used after the jni call
1823
1824  int lock_slot_rbp_offset = (lock_slot_offset*VMRegImpl::stack_slot_size) - fp_adjustment;
1825
1826  // We use rdi as a thread pointer because it is callee save and
1827  // if we load it once it is usable thru the entire wrapper
1828  const Register thread = rdi;
1829
1830  // We use rsi as the oop handle for the receiver/klass
1831  // It is callee save so it survives the call to native
1832
1833  const Register oop_handle_reg = rsi;
1834
1835  __ get_thread(thread);
1836
1837  if (is_critical_native) {
1838    check_needs_gc_for_critical_native(masm, thread, stack_slots, total_c_args, total_in_args,
1839                                       oop_handle_offset, oop_maps, in_regs, in_sig_bt);
1840  }
1841
1842  //
1843  // We immediately shuffle the arguments so that any vm call we have to
1844  // make from here on out (sync slow path, jvmti, etc.) we will have
1845  // captured the oops from our caller and have a valid oopMap for
1846  // them.
1847
1848  // -----------------
1849  // The Grand Shuffle
1850  //
1851  // Natives require 1 or 2 extra arguments over the normal ones: the JNIEnv*
1852  // and, if static, the class mirror instead of a receiver.  This pretty much
1853  // guarantees that register layout will not match (and x86 doesn't use reg
1854  // parms though amd does).  Since the native abi doesn't use register args
1855  // and the java conventions does we don't have to worry about collisions.
1856  // All of our moved are reg->stack or stack->stack.
1857  // We ignore the extra arguments during the shuffle and handle them at the
1858  // last moment. The shuffle is described by the two calling convention
1859  // vectors we have in our possession. We simply walk the java vector to
1860  // get the source locations and the c vector to get the destinations.
1861
1862  int c_arg = is_critical_native ? 0 : (method->is_static() ? 2 : 1 );
1863
1864  // Record rsp-based slot for receiver on stack for non-static methods
1865  int receiver_offset = -1;
1866
1867  // This is a trick. We double the stack slots so we can claim
1868  // the oops in the caller's frame. Since we are sure to have
1869  // more args than the caller doubling is enough to make
1870  // sure we can capture all the incoming oop args from the
1871  // caller.
1872  //
1873  OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
1874
1875  // Mark location of rbp,
1876  // map->set_callee_saved(VMRegImpl::stack2reg( stack_slots - 2), stack_slots * 2, 0, rbp->as_VMReg());
1877
1878  // We know that we only have args in at most two integer registers (rcx, rdx). So rax, rbx
1879  // Are free to temporaries if we have to do  stack to steck moves.
1880  // All inbound args are referenced based on rbp, and all outbound args via rsp.
1881
1882  for (int i = 0; i < total_in_args ; i++, c_arg++ ) {
1883    switch (in_sig_bt[i]) {
1884      case T_ARRAY:
1885        if (is_critical_native) {
1886          unpack_array_argument(masm, in_regs[i], in_elem_bt[i], out_regs[c_arg + 1], out_regs[c_arg]);
1887          c_arg++;
1888          break;
1889        }
1890      case T_OBJECT:
1891        assert(!is_critical_native, "no oop arguments");
1892        object_move(masm, map, oop_handle_offset, stack_slots, in_regs[i], out_regs[c_arg],
1893                    ((i == 0) && (!is_static)),
1894                    &receiver_offset);
1895        break;
1896      case T_VOID:
1897        break;
1898
1899      case T_FLOAT:
1900        float_move(masm, in_regs[i], out_regs[c_arg]);
1901          break;
1902
1903      case T_DOUBLE:
1904        assert( i + 1 < total_in_args &&
1905                in_sig_bt[i + 1] == T_VOID &&
1906                out_sig_bt[c_arg+1] == T_VOID, "bad arg list");
1907        double_move(masm, in_regs[i], out_regs[c_arg]);
1908        break;
1909
1910      case T_LONG :
1911        long_move(masm, in_regs[i], out_regs[c_arg]);
1912        break;
1913
1914      case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
1915
1916      default:
1917        simple_move32(masm, in_regs[i], out_regs[c_arg]);
1918    }
1919  }
1920
1921  // Pre-load a static method's oop into rsi.  Used both by locking code and
1922  // the normal JNI call code.
1923  if (method->is_static() && !is_critical_native) {
1924
1925    //  load opp into a register
1926    __ movoop(oop_handle_reg, JNIHandles::make_local(method->method_holder()->java_mirror()));
1927
1928    // Now handlize the static class mirror it's known not-null.
1929    __ movptr(Address(rsp, klass_offset), oop_handle_reg);
1930    map->set_oop(VMRegImpl::stack2reg(klass_slot_offset));
1931
1932    // Now get the handle
1933    __ lea(oop_handle_reg, Address(rsp, klass_offset));
1934    // store the klass handle as second argument
1935    __ movptr(Address(rsp, wordSize), oop_handle_reg);
1936  }
1937
1938  // Change state to native (we save the return address in the thread, since it might not
1939  // be pushed on the stack when we do a a stack traversal). It is enough that the pc()
1940  // points into the right code segment. It does not have to be the correct return pc.
1941  // We use the same pc/oopMap repeatedly when we call out
1942
1943  intptr_t the_pc = (intptr_t) __ pc();
1944  oop_maps->add_gc_map(the_pc - start, map);
1945
1946  __ set_last_Java_frame(thread, rsp, noreg, (address)the_pc);
1947
1948
1949  // We have all of the arguments setup at this point. We must not touch any register
1950  // argument registers at this point (what if we save/restore them there are no oop?
1951
1952  {
1953    SkipIfEqual skip_if(masm, &DTraceMethodProbes, 0);
1954    __ mov_metadata(rax, method());
1955    __ call_VM_leaf(
1956         CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
1957         thread, rax);
1958  }
1959
1960  // RedefineClasses() tracing support for obsolete method entry
1961  if (log_is_enabled(Trace, redefine, class, obsolete)) {
1962    __ mov_metadata(rax, method());
1963    __ call_VM_leaf(
1964         CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
1965         thread, rax);
1966  }
1967
1968  // These are register definitions we need for locking/unlocking
1969  const Register swap_reg = rax;  // Must use rax, for cmpxchg instruction
1970  const Register obj_reg  = rcx;  // Will contain the oop
1971  const Register lock_reg = rdx;  // Address of compiler lock object (BasicLock)
1972
1973  Label slow_path_lock;
1974  Label lock_done;
1975
1976  // Lock a synchronized method
1977  if (method->is_synchronized()) {
1978    assert(!is_critical_native, "unhandled");
1979
1980
1981    const int mark_word_offset = BasicLock::displaced_header_offset_in_bytes();
1982
1983    // Get the handle (the 2nd argument)
1984    __ movptr(oop_handle_reg, Address(rsp, wordSize));
1985
1986    // Get address of the box
1987
1988    __ lea(lock_reg, Address(rbp, lock_slot_rbp_offset));
1989
1990    // Load the oop from the handle
1991    __ movptr(obj_reg, Address(oop_handle_reg, 0));
1992
1993    if (UseBiasedLocking) {
1994      // Note that oop_handle_reg is trashed during this call
1995      __ biased_locking_enter(lock_reg, obj_reg, swap_reg, oop_handle_reg, false, lock_done, &slow_path_lock);
1996    }
1997
1998    // Load immediate 1 into swap_reg %rax,
1999    __ movptr(swap_reg, 1);
2000
2001    // Load (object->mark() | 1) into swap_reg %rax,
2002    __ orptr(swap_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
2003
2004    // Save (object->mark() | 1) into BasicLock's displaced header
2005    __ movptr(Address(lock_reg, mark_word_offset), swap_reg);
2006
2007    if (os::is_MP()) {
2008      __ lock();
2009    }
2010
2011    // src -> dest iff dest == rax, else rax, <- dest
2012    // *obj_reg = lock_reg iff *obj_reg == rax, else rax, = *(obj_reg)
2013    __ cmpxchgptr(lock_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
2014    __ jcc(Assembler::equal, lock_done);
2015
2016    // Test if the oopMark is an obvious stack pointer, i.e.,
2017    //  1) (mark & 3) == 0, and
2018    //  2) rsp <= mark < mark + os::pagesize()
2019    // These 3 tests can be done by evaluating the following
2020    // expression: ((mark - rsp) & (3 - os::vm_page_size())),
2021    // assuming both stack pointer and pagesize have their
2022    // least significant 2 bits clear.
2023    // NOTE: the oopMark is in swap_reg %rax, as the result of cmpxchg
2024
2025    __ subptr(swap_reg, rsp);
2026    __ andptr(swap_reg, 3 - os::vm_page_size());
2027
2028    // Save the test result, for recursive case, the result is zero
2029    __ movptr(Address(lock_reg, mark_word_offset), swap_reg);
2030    __ jcc(Assembler::notEqual, slow_path_lock);
2031    // Slow path will re-enter here
2032    __ bind(lock_done);
2033
2034    if (UseBiasedLocking) {
2035      // Re-fetch oop_handle_reg as we trashed it above
2036      __ movptr(oop_handle_reg, Address(rsp, wordSize));
2037    }
2038  }
2039
2040
2041  // Finally just about ready to make the JNI call
2042
2043
2044  // get JNIEnv* which is first argument to native
2045  if (!is_critical_native) {
2046    __ lea(rdx, Address(thread, in_bytes(JavaThread::jni_environment_offset())));
2047    __ movptr(Address(rsp, 0), rdx);
2048  }
2049
2050  // Now set thread in native
2051  __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native);
2052
2053  __ call(RuntimeAddress(native_func));
2054
2055  // Verify or restore cpu control state after JNI call
2056  __ restore_cpu_control_state_after_jni();
2057
2058  // WARNING - on Windows Java Natives use pascal calling convention and pop the
2059  // arguments off of the stack. We could just re-adjust the stack pointer here
2060  // and continue to do SP relative addressing but we instead switch to FP
2061  // relative addressing.
2062
2063  // Unpack native results.
2064  switch (ret_type) {
2065  case T_BOOLEAN: __ c2bool(rax);            break;
2066  case T_CHAR   : __ andptr(rax, 0xFFFF);    break;
2067  case T_BYTE   : __ sign_extend_byte (rax); break;
2068  case T_SHORT  : __ sign_extend_short(rax); break;
2069  case T_INT    : /* nothing to do */        break;
2070  case T_DOUBLE :
2071  case T_FLOAT  :
2072    // Result is in st0 we'll save as needed
2073    break;
2074  case T_ARRAY:                 // Really a handle
2075  case T_OBJECT:                // Really a handle
2076      break; // can't de-handlize until after safepoint check
2077  case T_VOID: break;
2078  case T_LONG: break;
2079  default       : ShouldNotReachHere();
2080  }
2081
2082  // Switch thread to "native transition" state before reading the synchronization state.
2083  // This additional state is necessary because reading and testing the synchronization
2084  // state is not atomic w.r.t. GC, as this scenario demonstrates:
2085  //     Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
2086  //     VM thread changes sync state to synchronizing and suspends threads for GC.
2087  //     Thread A is resumed to finish this native method, but doesn't block here since it
2088  //     didn't see any synchronization is progress, and escapes.
2089  __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native_trans);
2090
2091  if(os::is_MP()) {
2092    if (UseMembar) {
2093      // Force this write out before the read below
2094      __ membar(Assembler::Membar_mask_bits(
2095           Assembler::LoadLoad | Assembler::LoadStore |
2096           Assembler::StoreLoad | Assembler::StoreStore));
2097    } else {
2098      // Write serialization page so VM thread can do a pseudo remote membar.
2099      // We use the current thread pointer to calculate a thread specific
2100      // offset to write to within the page. This minimizes bus traffic
2101      // due to cache line collision.
2102      __ serialize_memory(thread, rcx);
2103    }
2104  }
2105
2106  if (AlwaysRestoreFPU) {
2107    // Make sure the control word is correct.
2108    __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
2109  }
2110
2111  Label after_transition;
2112
2113  // check for safepoint operation in progress and/or pending suspend requests
2114  { Label Continue;
2115
2116    __ cmp32(ExternalAddress((address)SafepointSynchronize::address_of_state()),
2117             SafepointSynchronize::_not_synchronized);
2118
2119    Label L;
2120    __ jcc(Assembler::notEqual, L);
2121    __ cmpl(Address(thread, JavaThread::suspend_flags_offset()), 0);
2122    __ jcc(Assembler::equal, Continue);
2123    __ bind(L);
2124
2125    // Don't use call_VM as it will see a possible pending exception and forward it
2126    // and never return here preventing us from clearing _last_native_pc down below.
2127    // Also can't use call_VM_leaf either as it will check to see if rsi & rdi are
2128    // preserved and correspond to the bcp/locals pointers. So we do a runtime call
2129    // by hand.
2130    //
2131    __ vzeroupper();
2132
2133    save_native_result(masm, ret_type, stack_slots);
2134    __ push(thread);
2135    if (!is_critical_native) {
2136      __ call(RuntimeAddress(CAST_FROM_FN_PTR(address,
2137                                              JavaThread::check_special_condition_for_native_trans)));
2138    } else {
2139      __ call(RuntimeAddress(CAST_FROM_FN_PTR(address,
2140                                              JavaThread::check_special_condition_for_native_trans_and_transition)));
2141    }
2142    __ increment(rsp, wordSize);
2143    // Restore any method result value
2144    restore_native_result(masm, ret_type, stack_slots);
2145
2146    if (is_critical_native) {
2147      // The call above performed the transition to thread_in_Java so
2148      // skip the transition logic below.
2149      __ jmpb(after_transition);
2150    }
2151
2152    __ bind(Continue);
2153  }
2154
2155  // change thread state
2156  __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_Java);
2157  __ bind(after_transition);
2158
2159  Label reguard;
2160  Label reguard_done;
2161  __ cmpl(Address(thread, JavaThread::stack_guard_state_offset()), JavaThread::stack_guard_yellow_reserved_disabled);
2162  __ jcc(Assembler::equal, reguard);
2163
2164  // slow path reguard  re-enters here
2165  __ bind(reguard_done);
2166
2167  // Handle possible exception (will unlock if necessary)
2168
2169  // native result if any is live
2170
2171  // Unlock
2172  Label slow_path_unlock;
2173  Label unlock_done;
2174  if (method->is_synchronized()) {
2175
2176    Label done;
2177
2178    // Get locked oop from the handle we passed to jni
2179    __ movptr(obj_reg, Address(oop_handle_reg, 0));
2180
2181    if (UseBiasedLocking) {
2182      __ biased_locking_exit(obj_reg, rbx, done);
2183    }
2184
2185    // Simple recursive lock?
2186
2187    __ cmpptr(Address(rbp, lock_slot_rbp_offset), (int32_t)NULL_WORD);
2188    __ jcc(Assembler::equal, done);
2189
2190    // Must save rax, if if it is live now because cmpxchg must use it
2191    if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
2192      save_native_result(masm, ret_type, stack_slots);
2193    }
2194
2195    //  get old displaced header
2196    __ movptr(rbx, Address(rbp, lock_slot_rbp_offset));
2197
2198    // get address of the stack lock
2199    __ lea(rax, Address(rbp, lock_slot_rbp_offset));
2200
2201    // Atomic swap old header if oop still contains the stack lock
2202    if (os::is_MP()) {
2203    __ lock();
2204    }
2205
2206    // src -> dest iff dest == rax, else rax, <- dest
2207    // *obj_reg = rbx, iff *obj_reg == rax, else rax, = *(obj_reg)
2208    __ cmpxchgptr(rbx, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
2209    __ jcc(Assembler::notEqual, slow_path_unlock);
2210
2211    // slow path re-enters here
2212    __ bind(unlock_done);
2213    if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
2214      restore_native_result(masm, ret_type, stack_slots);
2215    }
2216
2217    __ bind(done);
2218
2219  }
2220
2221  {
2222    SkipIfEqual skip_if(masm, &DTraceMethodProbes, 0);
2223    // Tell dtrace about this method exit
2224    save_native_result(masm, ret_type, stack_slots);
2225    __ mov_metadata(rax, method());
2226    __ call_VM_leaf(
2227         CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
2228         thread, rax);
2229    restore_native_result(masm, ret_type, stack_slots);
2230  }
2231
2232  // We can finally stop using that last_Java_frame we setup ages ago
2233
2234  __ reset_last_Java_frame(thread, false);
2235
2236  // Unbox oop result, e.g. JNIHandles::resolve value.
2237  if (ret_type == T_OBJECT || ret_type == T_ARRAY) {
2238    __ resolve_jobject(rax /* value */,
2239                       thread /* thread */,
2240                       rcx /* tmp */);
2241  }
2242
2243  if (CheckJNICalls) {
2244    // clear_pending_jni_exception_check
2245    __ movptr(Address(thread, JavaThread::pending_jni_exception_check_fn_offset()), NULL_WORD);
2246  }
2247
2248  if (!is_critical_native) {
2249    // reset handle block
2250    __ movptr(rcx, Address(thread, JavaThread::active_handles_offset()));
2251    __ movl(Address(rcx, JNIHandleBlock::top_offset_in_bytes()), NULL_WORD);
2252
2253    // Any exception pending?
2254    __ cmpptr(Address(thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
2255    __ jcc(Assembler::notEqual, exception_pending);
2256  }
2257
2258  // no exception, we're almost done
2259
2260  // check that only result value is on FPU stack
2261  __ verify_FPU(ret_type == T_FLOAT || ret_type == T_DOUBLE ? 1 : 0, "native_wrapper normal exit");
2262
2263  // Fixup floating pointer results so that result looks like a return from a compiled method
2264  if (ret_type == T_FLOAT) {
2265    if (UseSSE >= 1) {
2266      // Pop st0 and store as float and reload into xmm register
2267      __ fstp_s(Address(rbp, -4));
2268      __ movflt(xmm0, Address(rbp, -4));
2269    }
2270  } else if (ret_type == T_DOUBLE) {
2271    if (UseSSE >= 2) {
2272      // Pop st0 and store as double and reload into xmm register
2273      __ fstp_d(Address(rbp, -8));
2274      __ movdbl(xmm0, Address(rbp, -8));
2275    }
2276  }
2277
2278  // Return
2279
2280  __ leave();
2281  __ ret(0);
2282
2283  // Unexpected paths are out of line and go here
2284
2285  // Slow path locking & unlocking
2286  if (method->is_synchronized()) {
2287
2288    // BEGIN Slow path lock
2289
2290    __ bind(slow_path_lock);
2291
2292    // has last_Java_frame setup. No exceptions so do vanilla call not call_VM
2293    // args are (oop obj, BasicLock* lock, JavaThread* thread)
2294    __ push(thread);
2295    __ push(lock_reg);
2296    __ push(obj_reg);
2297    __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C)));
2298    __ addptr(rsp, 3*wordSize);
2299
2300#ifdef ASSERT
2301    { Label L;
2302    __ cmpptr(Address(thread, in_bytes(Thread::pending_exception_offset())), (int)NULL_WORD);
2303    __ jcc(Assembler::equal, L);
2304    __ stop("no pending exception allowed on exit from monitorenter");
2305    __ bind(L);
2306    }
2307#endif
2308    __ jmp(lock_done);
2309
2310    // END Slow path lock
2311
2312    // BEGIN Slow path unlock
2313    __ bind(slow_path_unlock);
2314    __ vzeroupper();
2315    // Slow path unlock
2316
2317    if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
2318      save_native_result(masm, ret_type, stack_slots);
2319    }
2320    // Save pending exception around call to VM (which contains an EXCEPTION_MARK)
2321
2322    __ pushptr(Address(thread, in_bytes(Thread::pending_exception_offset())));
2323    __ movptr(Address(thread, in_bytes(Thread::pending_exception_offset())), NULL_WORD);
2324
2325
2326    // should be a peal
2327    // +wordSize because of the push above
2328    // args are (oop obj, BasicLock* lock, JavaThread* thread)
2329    __ push(thread);
2330    __ lea(rax, Address(rbp, lock_slot_rbp_offset));
2331    __ push(rax);
2332
2333    __ push(obj_reg);
2334    __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C)));
2335    __ addptr(rsp, 3*wordSize);
2336#ifdef ASSERT
2337    {
2338      Label L;
2339      __ cmpptr(Address(thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
2340      __ jcc(Assembler::equal, L);
2341      __ stop("no pending exception allowed on exit complete_monitor_unlocking_C");
2342      __ bind(L);
2343    }
2344#endif /* ASSERT */
2345
2346    __ popptr(Address(thread, in_bytes(Thread::pending_exception_offset())));
2347
2348    if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
2349      restore_native_result(masm, ret_type, stack_slots);
2350    }
2351    __ jmp(unlock_done);
2352    // END Slow path unlock
2353
2354  }
2355
2356  // SLOW PATH Reguard the stack if needed
2357
2358  __ bind(reguard);
2359  __ vzeroupper();
2360  save_native_result(masm, ret_type, stack_slots);
2361  {
2362    __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages)));
2363  }
2364  restore_native_result(masm, ret_type, stack_slots);
2365  __ jmp(reguard_done);
2366
2367
2368  // BEGIN EXCEPTION PROCESSING
2369
2370  if (!is_critical_native) {
2371    // Forward  the exception
2372    __ bind(exception_pending);
2373
2374    // remove possible return value from FPU register stack
2375    __ empty_FPU_stack();
2376
2377    // pop our frame
2378    __ leave();
2379    // and forward the exception
2380    __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
2381  }
2382
2383  __ flush();
2384
2385  nmethod *nm = nmethod::new_native_nmethod(method,
2386                                            compile_id,
2387                                            masm->code(),
2388                                            vep_offset,
2389                                            frame_complete,
2390                                            stack_slots / VMRegImpl::slots_per_word,
2391                                            (is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)),
2392                                            in_ByteSize(lock_slot_offset*VMRegImpl::stack_slot_size),
2393                                            oop_maps);
2394
2395  if (is_critical_native) {
2396    nm->set_lazy_critical_native(true);
2397  }
2398
2399  return nm;
2400
2401}
2402
2403// this function returns the adjust size (in number of words) to a c2i adapter
2404// activation for use during deoptimization
2405int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals ) {
2406  return (callee_locals - callee_parameters) * Interpreter::stackElementWords;
2407}
2408
2409
2410uint SharedRuntime::out_preserve_stack_slots() {
2411  return 0;
2412}
2413
2414//------------------------------generate_deopt_blob----------------------------
2415void SharedRuntime::generate_deopt_blob() {
2416  // allocate space for the code
2417  ResourceMark rm;
2418  // setup code generation tools
2419  // note: the buffer code size must account for StackShadowPages=50
2420  CodeBuffer   buffer("deopt_blob", 1536, 1024);
2421  MacroAssembler* masm = new MacroAssembler(&buffer);
2422  int frame_size_in_words;
2423  OopMap* map = NULL;
2424  // Account for the extra args we place on the stack
2425  // by the time we call fetch_unroll_info
2426  const int additional_words = 2; // deopt kind, thread
2427
2428  OopMapSet *oop_maps = new OopMapSet();
2429
2430  // -------------
2431  // This code enters when returning to a de-optimized nmethod.  A return
2432  // address has been pushed on the the stack, and return values are in
2433  // registers.
2434  // If we are doing a normal deopt then we were called from the patched
2435  // nmethod from the point we returned to the nmethod. So the return
2436  // address on the stack is wrong by NativeCall::instruction_size
2437  // We will adjust the value to it looks like we have the original return
2438  // address on the stack (like when we eagerly deoptimized).
2439  // In the case of an exception pending with deoptimized then we enter
2440  // with a return address on the stack that points after the call we patched
2441  // into the exception handler. We have the following register state:
2442  //    rax,: exception
2443  //    rbx,: exception handler
2444  //    rdx: throwing pc
2445  // So in this case we simply jam rdx into the useless return address and
2446  // the stack looks just like we want.
2447  //
2448  // At this point we need to de-opt.  We save the argument return
2449  // registers.  We call the first C routine, fetch_unroll_info().  This
2450  // routine captures the return values and returns a structure which
2451  // describes the current frame size and the sizes of all replacement frames.
2452  // The current frame is compiled code and may contain many inlined
2453  // functions, each with their own JVM state.  We pop the current frame, then
2454  // push all the new frames.  Then we call the C routine unpack_frames() to
2455  // populate these frames.  Finally unpack_frames() returns us the new target
2456  // address.  Notice that callee-save registers are BLOWN here; they have
2457  // already been captured in the vframeArray at the time the return PC was
2458  // patched.
2459  address start = __ pc();
2460  Label cont;
2461
2462  // Prolog for non exception case!
2463
2464  // Save everything in sight.
2465
2466  map = RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false);
2467  // Normal deoptimization
2468  __ push(Deoptimization::Unpack_deopt);
2469  __ jmp(cont);
2470
2471  int reexecute_offset = __ pc() - start;
2472
2473  // Reexecute case
2474  // return address is the pc describes what bci to do re-execute at
2475
2476  // No need to update map as each call to save_live_registers will produce identical oopmap
2477  (void) RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false);
2478
2479  __ push(Deoptimization::Unpack_reexecute);
2480  __ jmp(cont);
2481
2482  int exception_offset = __ pc() - start;
2483
2484  // Prolog for exception case
2485
2486  // all registers are dead at this entry point, except for rax, and
2487  // rdx which contain the exception oop and exception pc
2488  // respectively.  Set them in TLS and fall thru to the
2489  // unpack_with_exception_in_tls entry point.
2490
2491  __ get_thread(rdi);
2492  __ movptr(Address(rdi, JavaThread::exception_pc_offset()), rdx);
2493  __ movptr(Address(rdi, JavaThread::exception_oop_offset()), rax);
2494
2495  int exception_in_tls_offset = __ pc() - start;
2496
2497  // new implementation because exception oop is now passed in JavaThread
2498
2499  // Prolog for exception case
2500  // All registers must be preserved because they might be used by LinearScan
2501  // Exceptiop oop and throwing PC are passed in JavaThread
2502  // tos: stack at point of call to method that threw the exception (i.e. only
2503  // args are on the stack, no return address)
2504
2505  // make room on stack for the return address
2506  // It will be patched later with the throwing pc. The correct value is not
2507  // available now because loading it from memory would destroy registers.
2508  __ push(0);
2509
2510  // Save everything in sight.
2511
2512  // No need to update map as each call to save_live_registers will produce identical oopmap
2513  (void) RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false);
2514
2515  // Now it is safe to overwrite any register
2516
2517  // store the correct deoptimization type
2518  __ push(Deoptimization::Unpack_exception);
2519
2520  // load throwing pc from JavaThread and patch it as the return address
2521  // of the current frame. Then clear the field in JavaThread
2522  __ get_thread(rdi);
2523  __ movptr(rdx, Address(rdi, JavaThread::exception_pc_offset()));
2524  __ movptr(Address(rbp, wordSize), rdx);
2525  __ movptr(Address(rdi, JavaThread::exception_pc_offset()), NULL_WORD);
2526
2527#ifdef ASSERT
2528  // verify that there is really an exception oop in JavaThread
2529  __ movptr(rax, Address(rdi, JavaThread::exception_oop_offset()));
2530  __ verify_oop(rax);
2531
2532  // verify that there is no pending exception
2533  Label no_pending_exception;
2534  __ movptr(rax, Address(rdi, Thread::pending_exception_offset()));
2535  __ testptr(rax, rax);
2536  __ jcc(Assembler::zero, no_pending_exception);
2537  __ stop("must not have pending exception here");
2538  __ bind(no_pending_exception);
2539#endif
2540
2541  __ bind(cont);
2542
2543  // Compiled code leaves the floating point stack dirty, empty it.
2544  __ empty_FPU_stack();
2545
2546
2547  // Call C code.  Need thread and this frame, but NOT official VM entry
2548  // crud.  We cannot block on this call, no GC can happen.
2549  __ get_thread(rcx);
2550  __ push(rcx);
2551  // fetch_unroll_info needs to call last_java_frame()
2552  __ set_last_Java_frame(rcx, noreg, noreg, NULL);
2553
2554  __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info)));
2555
2556  // Need to have an oopmap that tells fetch_unroll_info where to
2557  // find any register it might need.
2558
2559  oop_maps->add_gc_map( __ pc()-start, map);
2560
2561  // Discard args to fetch_unroll_info
2562  __ pop(rcx);
2563  __ pop(rcx);
2564
2565  __ get_thread(rcx);
2566  __ reset_last_Java_frame(rcx, false);
2567
2568  // Load UnrollBlock into EDI
2569  __ mov(rdi, rax);
2570
2571  // Move the unpack kind to a safe place in the UnrollBlock because
2572  // we are very short of registers
2573
2574  Address unpack_kind(rdi, Deoptimization::UnrollBlock::unpack_kind_offset_in_bytes());
2575  // retrieve the deopt kind from the UnrollBlock.
2576  __ movl(rax, unpack_kind);
2577
2578   Label noException;
2579  __ cmpl(rax, Deoptimization::Unpack_exception);   // Was exception pending?
2580  __ jcc(Assembler::notEqual, noException);
2581  __ movptr(rax, Address(rcx, JavaThread::exception_oop_offset()));
2582  __ movptr(rdx, Address(rcx, JavaThread::exception_pc_offset()));
2583  __ movptr(Address(rcx, JavaThread::exception_oop_offset()), NULL_WORD);
2584  __ movptr(Address(rcx, JavaThread::exception_pc_offset()), NULL_WORD);
2585
2586  __ verify_oop(rax);
2587
2588  // Overwrite the result registers with the exception results.
2589  __ movptr(Address(rsp, RegisterSaver::raxOffset()*wordSize), rax);
2590  __ movptr(Address(rsp, RegisterSaver::rdxOffset()*wordSize), rdx);
2591
2592  __ bind(noException);
2593
2594  // Stack is back to only having register save data on the stack.
2595  // Now restore the result registers. Everything else is either dead or captured
2596  // in the vframeArray.
2597
2598  RegisterSaver::restore_result_registers(masm);
2599
2600  // Non standard control word may be leaked out through a safepoint blob, and we can
2601  // deopt at a poll point with the non standard control word. However, we should make
2602  // sure the control word is correct after restore_result_registers.
2603  __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
2604
2605  // All of the register save area has been popped of the stack. Only the
2606  // return address remains.
2607
2608  // Pop all the frames we must move/replace.
2609  //
2610  // Frame picture (youngest to oldest)
2611  // 1: self-frame (no frame link)
2612  // 2: deopting frame  (no frame link)
2613  // 3: caller of deopting frame (could be compiled/interpreted).
2614  //
2615  // Note: by leaving the return address of self-frame on the stack
2616  // and using the size of frame 2 to adjust the stack
2617  // when we are done the return to frame 3 will still be on the stack.
2618
2619  // Pop deoptimized frame
2620  __ addptr(rsp, Address(rdi,Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset_in_bytes()));
2621
2622  // sp should be pointing at the return address to the caller (3)
2623
2624  // Pick up the initial fp we should save
2625  // restore rbp before stack bang because if stack overflow is thrown it needs to be pushed (and preserved)
2626  __ movptr(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_info_offset_in_bytes()));
2627
2628#ifdef ASSERT
2629  // Compilers generate code that bang the stack by as much as the
2630  // interpreter would need. So this stack banging should never
2631  // trigger a fault. Verify that it does not on non product builds.
2632  if (UseStackBanging) {
2633    __ movl(rbx, Address(rdi ,Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()));
2634    __ bang_stack_size(rbx, rcx);
2635  }
2636#endif
2637
2638  // Load array of frame pcs into ECX
2639  __ movptr(rcx,Address(rdi,Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
2640
2641  __ pop(rsi); // trash the old pc
2642
2643  // Load array of frame sizes into ESI
2644  __ movptr(rsi,Address(rdi,Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes()));
2645
2646  Address counter(rdi, Deoptimization::UnrollBlock::counter_temp_offset_in_bytes());
2647
2648  __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes()));
2649  __ movl(counter, rbx);
2650
2651  // Now adjust the caller's stack to make up for the extra locals
2652  // but record the original sp so that we can save it in the skeletal interpreter
2653  // frame and the stack walking of interpreter_sender will get the unextended sp
2654  // value and not the "real" sp value.
2655
2656  Address sp_temp(rdi, Deoptimization::UnrollBlock::sender_sp_temp_offset_in_bytes());
2657  __ movptr(sp_temp, rsp);
2658  __ movl2ptr(rbx, Address(rdi, Deoptimization::UnrollBlock::caller_adjustment_offset_in_bytes()));
2659  __ subptr(rsp, rbx);
2660
2661  // Push interpreter frames in a loop
2662  Label loop;
2663  __ bind(loop);
2664  __ movptr(rbx, Address(rsi, 0));      // Load frame size
2665  __ subptr(rbx, 2*wordSize);           // we'll push pc and rbp, by hand
2666  __ pushptr(Address(rcx, 0));          // save return address
2667  __ enter();                           // save old & set new rbp,
2668  __ subptr(rsp, rbx);                  // Prolog!
2669  __ movptr(rbx, sp_temp);              // sender's sp
2670  // This value is corrected by layout_activation_impl
2671  __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD);
2672  __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize), rbx); // Make it walkable
2673  __ movptr(sp_temp, rsp);              // pass to next frame
2674  __ addptr(rsi, wordSize);             // Bump array pointer (sizes)
2675  __ addptr(rcx, wordSize);             // Bump array pointer (pcs)
2676  __ decrementl(counter);             // decrement counter
2677  __ jcc(Assembler::notZero, loop);
2678  __ pushptr(Address(rcx, 0));          // save final return address
2679
2680  // Re-push self-frame
2681  __ enter();                           // save old & set new rbp,
2682
2683  //  Return address and rbp, are in place
2684  // We'll push additional args later. Just allocate a full sized
2685  // register save area
2686  __ subptr(rsp, (frame_size_in_words-additional_words - 2) * wordSize);
2687
2688  // Restore frame locals after moving the frame
2689  __ movptr(Address(rsp, RegisterSaver::raxOffset()*wordSize), rax);
2690  __ movptr(Address(rsp, RegisterSaver::rdxOffset()*wordSize), rdx);
2691  __ fstp_d(Address(rsp, RegisterSaver::fpResultOffset()*wordSize));   // Pop float stack and store in local
2692  if( UseSSE>=2 ) __ movdbl(Address(rsp, RegisterSaver::xmm0Offset()*wordSize), xmm0);
2693  if( UseSSE==1 ) __ movflt(Address(rsp, RegisterSaver::xmm0Offset()*wordSize), xmm0);
2694
2695  // Set up the args to unpack_frame
2696
2697  __ pushl(unpack_kind);                     // get the unpack_kind value
2698  __ get_thread(rcx);
2699  __ push(rcx);
2700
2701  // set last_Java_sp, last_Java_fp
2702  __ set_last_Java_frame(rcx, noreg, rbp, NULL);
2703
2704  // Call C code.  Need thread but NOT official VM entry
2705  // crud.  We cannot block on this call, no GC can happen.  Call should
2706  // restore return values to their stack-slots with the new SP.
2707  __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
2708  // Set an oopmap for the call site
2709  oop_maps->add_gc_map( __ pc()-start, new OopMap( frame_size_in_words, 0 ));
2710
2711  // rax, contains the return result type
2712  __ push(rax);
2713
2714  __ get_thread(rcx);
2715  __ reset_last_Java_frame(rcx, false);
2716
2717  // Collect return values
2718  __ movptr(rax,Address(rsp, (RegisterSaver::raxOffset() + additional_words + 1)*wordSize));
2719  __ movptr(rdx,Address(rsp, (RegisterSaver::rdxOffset() + additional_words + 1)*wordSize));
2720
2721  // Clear floating point stack before returning to interpreter
2722  __ empty_FPU_stack();
2723
2724  // Check if we should push the float or double return value.
2725  Label results_done, yes_double_value;
2726  __ cmpl(Address(rsp, 0), T_DOUBLE);
2727  __ jcc (Assembler::zero, yes_double_value);
2728  __ cmpl(Address(rsp, 0), T_FLOAT);
2729  __ jcc (Assembler::notZero, results_done);
2730
2731  // return float value as expected by interpreter
2732  if( UseSSE>=1 ) __ movflt(xmm0, Address(rsp, (RegisterSaver::xmm0Offset() + additional_words + 1)*wordSize));
2733  else            __ fld_d(Address(rsp, (RegisterSaver::fpResultOffset() + additional_words + 1)*wordSize));
2734  __ jmp(results_done);
2735
2736  // return double value as expected by interpreter
2737  __ bind(yes_double_value);
2738  if( UseSSE>=2 ) __ movdbl(xmm0, Address(rsp, (RegisterSaver::xmm0Offset() + additional_words + 1)*wordSize));
2739  else            __ fld_d(Address(rsp, (RegisterSaver::fpResultOffset() + additional_words + 1)*wordSize));
2740
2741  __ bind(results_done);
2742
2743  // Pop self-frame.
2744  __ leave();                              // Epilog!
2745
2746  // Jump to interpreter
2747  __ ret(0);
2748
2749  // -------------
2750  // make sure all code is generated
2751  masm->flush();
2752
2753  _deopt_blob = DeoptimizationBlob::create( &buffer, oop_maps, 0, exception_offset, reexecute_offset, frame_size_in_words);
2754  _deopt_blob->set_unpack_with_exception_in_tls_offset(exception_in_tls_offset);
2755}
2756
2757
2758#ifdef COMPILER2
2759//------------------------------generate_uncommon_trap_blob--------------------
2760void SharedRuntime::generate_uncommon_trap_blob() {
2761  // allocate space for the code
2762  ResourceMark rm;
2763  // setup code generation tools
2764  CodeBuffer   buffer("uncommon_trap_blob", 512, 512);
2765  MacroAssembler* masm = new MacroAssembler(&buffer);
2766
2767  enum frame_layout {
2768    arg0_off,      // thread                     sp + 0 // Arg location for
2769    arg1_off,      // unloaded_class_index       sp + 1 // calling C
2770    arg2_off,      // exec_mode                  sp + 2
2771    // The frame sender code expects that rbp will be in the "natural" place and
2772    // will override any oopMap setting for it. We must therefore force the layout
2773    // so that it agrees with the frame sender code.
2774    rbp_off,       // callee saved register      sp + 3
2775    return_off,    // slot for return address    sp + 4
2776    framesize
2777  };
2778
2779  address start = __ pc();
2780
2781  if (UseRTMLocking) {
2782    // Abort RTM transaction before possible nmethod deoptimization.
2783    __ xabort(0);
2784  }
2785
2786  // Push self-frame.
2787  __ subptr(rsp, return_off*wordSize);     // Epilog!
2788
2789  // rbp, is an implicitly saved callee saved register (i.e. the calling
2790  // convention will save restore it in prolog/epilog) Other than that
2791  // there are no callee save registers no that adapter frames are gone.
2792  __ movptr(Address(rsp, rbp_off*wordSize), rbp);
2793
2794  // Clear the floating point exception stack
2795  __ empty_FPU_stack();
2796
2797  // set last_Java_sp
2798  __ get_thread(rdx);
2799  __ set_last_Java_frame(rdx, noreg, noreg, NULL);
2800
2801  // Call C code.  Need thread but NOT official VM entry
2802  // crud.  We cannot block on this call, no GC can happen.  Call should
2803  // capture callee-saved registers as well as return values.
2804  __ movptr(Address(rsp, arg0_off*wordSize), rdx);
2805  // argument already in ECX
2806  __ movl(Address(rsp, arg1_off*wordSize),rcx);
2807  __ movl(Address(rsp, arg2_off*wordSize), Deoptimization::Unpack_uncommon_trap);
2808  __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap)));
2809
2810  // Set an oopmap for the call site
2811  OopMapSet *oop_maps = new OopMapSet();
2812  OopMap* map =  new OopMap( framesize, 0 );
2813  // No oopMap for rbp, it is known implicitly
2814
2815  oop_maps->add_gc_map( __ pc()-start, map);
2816
2817  __ get_thread(rcx);
2818
2819  __ reset_last_Java_frame(rcx, false);
2820
2821  // Load UnrollBlock into EDI
2822  __ movptr(rdi, rax);
2823
2824#ifdef ASSERT
2825  { Label L;
2826    __ cmpptr(Address(rdi, Deoptimization::UnrollBlock::unpack_kind_offset_in_bytes()),
2827            (int32_t)Deoptimization::Unpack_uncommon_trap);
2828    __ jcc(Assembler::equal, L);
2829    __ stop("SharedRuntime::generate_deopt_blob: expected Unpack_uncommon_trap");
2830    __ bind(L);
2831  }
2832#endif
2833
2834  // Pop all the frames we must move/replace.
2835  //
2836  // Frame picture (youngest to oldest)
2837  // 1: self-frame (no frame link)
2838  // 2: deopting frame  (no frame link)
2839  // 3: caller of deopting frame (could be compiled/interpreted).
2840
2841  // Pop self-frame.  We have no frame, and must rely only on EAX and ESP.
2842  __ addptr(rsp,(framesize-1)*wordSize);     // Epilog!
2843
2844  // Pop deoptimized frame
2845  __ movl2ptr(rcx, Address(rdi,Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset_in_bytes()));
2846  __ addptr(rsp, rcx);
2847
2848  // sp should be pointing at the return address to the caller (3)
2849
2850  // Pick up the initial fp we should save
2851  // restore rbp before stack bang because if stack overflow is thrown it needs to be pushed (and preserved)
2852  __ movptr(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_info_offset_in_bytes()));
2853
2854#ifdef ASSERT
2855  // Compilers generate code that bang the stack by as much as the
2856  // interpreter would need. So this stack banging should never
2857  // trigger a fault. Verify that it does not on non product builds.
2858  if (UseStackBanging) {
2859    __ movl(rbx, Address(rdi ,Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()));
2860    __ bang_stack_size(rbx, rcx);
2861  }
2862#endif
2863
2864  // Load array of frame pcs into ECX
2865  __ movl(rcx,Address(rdi,Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
2866
2867  __ pop(rsi); // trash the pc
2868
2869  // Load array of frame sizes into ESI
2870  __ movptr(rsi,Address(rdi,Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes()));
2871
2872  Address counter(rdi, Deoptimization::UnrollBlock::counter_temp_offset_in_bytes());
2873
2874  __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes()));
2875  __ movl(counter, rbx);
2876
2877  // Now adjust the caller's stack to make up for the extra locals
2878  // but record the original sp so that we can save it in the skeletal interpreter
2879  // frame and the stack walking of interpreter_sender will get the unextended sp
2880  // value and not the "real" sp value.
2881
2882  Address sp_temp(rdi, Deoptimization::UnrollBlock::sender_sp_temp_offset_in_bytes());
2883  __ movptr(sp_temp, rsp);
2884  __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::caller_adjustment_offset_in_bytes()));
2885  __ subptr(rsp, rbx);
2886
2887  // Push interpreter frames in a loop
2888  Label loop;
2889  __ bind(loop);
2890  __ movptr(rbx, Address(rsi, 0));      // Load frame size
2891  __ subptr(rbx, 2*wordSize);           // we'll push pc and rbp, by hand
2892  __ pushptr(Address(rcx, 0));          // save return address
2893  __ enter();                           // save old & set new rbp,
2894  __ subptr(rsp, rbx);                  // Prolog!
2895  __ movptr(rbx, sp_temp);              // sender's sp
2896  // This value is corrected by layout_activation_impl
2897  __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD );
2898  __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize), rbx); // Make it walkable
2899  __ movptr(sp_temp, rsp);              // pass to next frame
2900  __ addptr(rsi, wordSize);             // Bump array pointer (sizes)
2901  __ addptr(rcx, wordSize);             // Bump array pointer (pcs)
2902  __ decrementl(counter);             // decrement counter
2903  __ jcc(Assembler::notZero, loop);
2904  __ pushptr(Address(rcx, 0));            // save final return address
2905
2906  // Re-push self-frame
2907  __ enter();                           // save old & set new rbp,
2908  __ subptr(rsp, (framesize-2) * wordSize);   // Prolog!
2909
2910
2911  // set last_Java_sp, last_Java_fp
2912  __ get_thread(rdi);
2913  __ set_last_Java_frame(rdi, noreg, rbp, NULL);
2914
2915  // Call C code.  Need thread but NOT official VM entry
2916  // crud.  We cannot block on this call, no GC can happen.  Call should
2917  // restore return values to their stack-slots with the new SP.
2918  __ movptr(Address(rsp,arg0_off*wordSize),rdi);
2919  __ movl(Address(rsp,arg1_off*wordSize), Deoptimization::Unpack_uncommon_trap);
2920  __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
2921  // Set an oopmap for the call site
2922  oop_maps->add_gc_map( __ pc()-start, new OopMap( framesize, 0 ) );
2923
2924  __ get_thread(rdi);
2925  __ reset_last_Java_frame(rdi, true);
2926
2927  // Pop self-frame.
2928  __ leave();     // Epilog!
2929
2930  // Jump to interpreter
2931  __ ret(0);
2932
2933  // -------------
2934  // make sure all code is generated
2935  masm->flush();
2936
2937   _uncommon_trap_blob = UncommonTrapBlob::create(&buffer, oop_maps, framesize);
2938}
2939#endif // COMPILER2
2940
2941//------------------------------generate_handler_blob------
2942//
2943// Generate a special Compile2Runtime blob that saves all registers,
2944// setup oopmap, and calls safepoint code to stop the compiled code for
2945// a safepoint.
2946//
2947SafepointBlob* SharedRuntime::generate_handler_blob(address call_ptr, int poll_type) {
2948
2949  // Account for thread arg in our frame
2950  const int additional_words = 1;
2951  int frame_size_in_words;
2952
2953  assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
2954
2955  ResourceMark rm;
2956  OopMapSet *oop_maps = new OopMapSet();
2957  OopMap* map;
2958
2959  // allocate space for the code
2960  // setup code generation tools
2961  CodeBuffer   buffer("handler_blob", 1024, 512);
2962  MacroAssembler* masm = new MacroAssembler(&buffer);
2963
2964  const Register java_thread = rdi; // callee-saved for VC++
2965  address start   = __ pc();
2966  address call_pc = NULL;
2967  bool cause_return = (poll_type == POLL_AT_RETURN);
2968  bool save_vectors = (poll_type == POLL_AT_VECTOR_LOOP);
2969
2970  if (UseRTMLocking) {
2971    // Abort RTM transaction before calling runtime
2972    // because critical section will be large and will be
2973    // aborted anyway. Also nmethod could be deoptimized.
2974    __ xabort(0);
2975  }
2976
2977  // If cause_return is true we are at a poll_return and there is
2978  // the return address on the stack to the caller on the nmethod
2979  // that is safepoint. We can leave this return on the stack and
2980  // effectively complete the return and safepoint in the caller.
2981  // Otherwise we push space for a return address that the safepoint
2982  // handler will install later to make the stack walking sensible.
2983  if (!cause_return)
2984    __ push(rbx);  // Make room for return address (or push it again)
2985
2986  map = RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false, save_vectors);
2987
2988  // The following is basically a call_VM. However, we need the precise
2989  // address of the call in order to generate an oopmap. Hence, we do all the
2990  // work ourselves.
2991
2992  // Push thread argument and setup last_Java_sp
2993  __ get_thread(java_thread);
2994  __ push(java_thread);
2995  __ set_last_Java_frame(java_thread, noreg, noreg, NULL);
2996
2997  // if this was not a poll_return then we need to correct the return address now.
2998  if (!cause_return) {
2999    __ movptr(rax, Address(java_thread, JavaThread::saved_exception_pc_offset()));
3000    __ movptr(Address(rbp, wordSize), rax);
3001  }
3002
3003  // do the call
3004  __ call(RuntimeAddress(call_ptr));
3005
3006  // Set an oopmap for the call site.  This oopmap will map all
3007  // oop-registers and debug-info registers as callee-saved.  This
3008  // will allow deoptimization at this safepoint to find all possible
3009  // debug-info recordings, as well as let GC find all oops.
3010
3011  oop_maps->add_gc_map( __ pc() - start, map);
3012
3013  // Discard arg
3014  __ pop(rcx);
3015
3016  Label noException;
3017
3018  // Clear last_Java_sp again
3019  __ get_thread(java_thread);
3020  __ reset_last_Java_frame(java_thread, false);
3021
3022  __ cmpptr(Address(java_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
3023  __ jcc(Assembler::equal, noException);
3024
3025  // Exception pending
3026  RegisterSaver::restore_live_registers(masm, save_vectors);
3027
3028  __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
3029
3030  __ bind(noException);
3031
3032  // Normal exit, register restoring and exit
3033  RegisterSaver::restore_live_registers(masm, save_vectors);
3034
3035  __ ret(0);
3036
3037  // make sure all code is generated
3038  masm->flush();
3039
3040  // Fill-out other meta info
3041  return SafepointBlob::create(&buffer, oop_maps, frame_size_in_words);
3042}
3043
3044//
3045// generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss
3046//
3047// Generate a stub that calls into vm to find out the proper destination
3048// of a java call. All the argument registers are live at this point
3049// but since this is generic code we don't know what they are and the caller
3050// must do any gc of the args.
3051//
3052RuntimeStub* SharedRuntime::generate_resolve_blob(address destination, const char* name) {
3053  assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
3054
3055  // allocate space for the code
3056  ResourceMark rm;
3057
3058  CodeBuffer buffer(name, 1000, 512);
3059  MacroAssembler* masm                = new MacroAssembler(&buffer);
3060
3061  int frame_size_words;
3062  enum frame_layout {
3063                thread_off,
3064                extra_words };
3065
3066  OopMapSet *oop_maps = new OopMapSet();
3067  OopMap* map = NULL;
3068
3069  int start = __ offset();
3070
3071  map = RegisterSaver::save_live_registers(masm, extra_words, &frame_size_words);
3072
3073  int frame_complete = __ offset();
3074
3075  const Register thread = rdi;
3076  __ get_thread(rdi);
3077
3078  __ push(thread);
3079  __ set_last_Java_frame(thread, noreg, rbp, NULL);
3080
3081  __ call(RuntimeAddress(destination));
3082
3083
3084  // Set an oopmap for the call site.
3085  // We need this not only for callee-saved registers, but also for volatile
3086  // registers that the compiler might be keeping live across a safepoint.
3087
3088  oop_maps->add_gc_map( __ offset() - start, map);
3089
3090  // rax, contains the address we are going to jump to assuming no exception got installed
3091
3092  __ addptr(rsp, wordSize);
3093
3094  // clear last_Java_sp
3095  __ reset_last_Java_frame(thread, true);
3096  // check for pending exceptions
3097  Label pending;
3098  __ cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
3099  __ jcc(Assembler::notEqual, pending);
3100
3101  // get the returned Method*
3102  __ get_vm_result_2(rbx, thread);
3103  __ movptr(Address(rsp, RegisterSaver::rbx_offset() * wordSize), rbx);
3104
3105  __ movptr(Address(rsp, RegisterSaver::rax_offset() * wordSize), rax);
3106
3107  RegisterSaver::restore_live_registers(masm);
3108
3109  // We are back the the original state on entry and ready to go.
3110
3111  __ jmp(rax);
3112
3113  // Pending exception after the safepoint
3114
3115  __ bind(pending);
3116
3117  RegisterSaver::restore_live_registers(masm);
3118
3119  // exception pending => remove activation and forward to exception handler
3120
3121  __ get_thread(thread);
3122  __ movptr(Address(thread, JavaThread::vm_result_offset()), NULL_WORD);
3123  __ movptr(rax, Address(thread, Thread::pending_exception_offset()));
3124  __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
3125
3126  // -------------
3127  // make sure all code is generated
3128  masm->flush();
3129
3130  // return the  blob
3131  // frame_size_words or bytes??
3132  return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_words, oop_maps, true);
3133}
3134