sparc.ad revision 2614:95134e034042
1//
2// Copyright (c) 1998, 2011, Oracle and/or its affiliates. All rights reserved.
3// DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4//
5// This code is free software; you can redistribute it and/or modify it
6// under the terms of the GNU General Public License version 2 only, as
7// published by the Free Software Foundation.
8//
9// This code is distributed in the hope that it will be useful, but WITHOUT
10// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11// FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12// version 2 for more details (a copy is included in the LICENSE file that
13// accompanied this code).
14//
15// You should have received a copy of the GNU General Public License version
16// 2 along with this work; if not, write to the Free Software Foundation,
17// Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18//
19// Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20// or visit www.oracle.com if you need additional information or have any
21// questions.
22//
23//
24
25// SPARC Architecture Description File
26
27//----------REGISTER DEFINITION BLOCK------------------------------------------
28// This information is used by the matcher and the register allocator to
29// describe individual registers and classes of registers within the target
30// archtecture.
31register %{
32//----------Architecture Description Register Definitions----------------------
33// General Registers
34// "reg_def"  name ( register save type, C convention save type,
35//                   ideal register type, encoding, vm name );
36// Register Save Types:
37//
38// NS  = No-Save:       The register allocator assumes that these registers
39//                      can be used without saving upon entry to the method, &
40//                      that they do not need to be saved at call sites.
41//
42// SOC = Save-On-Call:  The register allocator assumes that these registers
43//                      can be used without saving upon entry to the method,
44//                      but that they must be saved at call sites.
45//
46// SOE = Save-On-Entry: The register allocator assumes that these registers
47//                      must be saved before using them upon entry to the
48//                      method, but they do not need to be saved at call
49//                      sites.
50//
51// AS  = Always-Save:   The register allocator assumes that these registers
52//                      must be saved before using them upon entry to the
53//                      method, & that they must be saved at call sites.
54//
55// Ideal Register Type is used to determine how to save & restore a
56// register.  Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
57// spilled with LoadP/StoreP.  If the register supports both, use Op_RegI.
58//
59// The encoding number is the actual bit-pattern placed into the opcodes.
60
61
62// ----------------------------
63// Integer/Long Registers
64// ----------------------------
65
66// Need to expose the hi/lo aspect of 64-bit registers
67// This register set is used for both the 64-bit build and
68// the 32-bit build with 1-register longs.
69
70// Global Registers 0-7
71reg_def R_G0H( NS,  NS, Op_RegI,128, G0->as_VMReg()->next());
72reg_def R_G0 ( NS,  NS, Op_RegI,  0, G0->as_VMReg());
73reg_def R_G1H(SOC, SOC, Op_RegI,129, G1->as_VMReg()->next());
74reg_def R_G1 (SOC, SOC, Op_RegI,  1, G1->as_VMReg());
75reg_def R_G2H( NS,  NS, Op_RegI,130, G2->as_VMReg()->next());
76reg_def R_G2 ( NS,  NS, Op_RegI,  2, G2->as_VMReg());
77reg_def R_G3H(SOC, SOC, Op_RegI,131, G3->as_VMReg()->next());
78reg_def R_G3 (SOC, SOC, Op_RegI,  3, G3->as_VMReg());
79reg_def R_G4H(SOC, SOC, Op_RegI,132, G4->as_VMReg()->next());
80reg_def R_G4 (SOC, SOC, Op_RegI,  4, G4->as_VMReg());
81reg_def R_G5H(SOC, SOC, Op_RegI,133, G5->as_VMReg()->next());
82reg_def R_G5 (SOC, SOC, Op_RegI,  5, G5->as_VMReg());
83reg_def R_G6H( NS,  NS, Op_RegI,134, G6->as_VMReg()->next());
84reg_def R_G6 ( NS,  NS, Op_RegI,  6, G6->as_VMReg());
85reg_def R_G7H( NS,  NS, Op_RegI,135, G7->as_VMReg()->next());
86reg_def R_G7 ( NS,  NS, Op_RegI,  7, G7->as_VMReg());
87
88// Output Registers 0-7
89reg_def R_O0H(SOC, SOC, Op_RegI,136, O0->as_VMReg()->next());
90reg_def R_O0 (SOC, SOC, Op_RegI,  8, O0->as_VMReg());
91reg_def R_O1H(SOC, SOC, Op_RegI,137, O1->as_VMReg()->next());
92reg_def R_O1 (SOC, SOC, Op_RegI,  9, O1->as_VMReg());
93reg_def R_O2H(SOC, SOC, Op_RegI,138, O2->as_VMReg()->next());
94reg_def R_O2 (SOC, SOC, Op_RegI, 10, O2->as_VMReg());
95reg_def R_O3H(SOC, SOC, Op_RegI,139, O3->as_VMReg()->next());
96reg_def R_O3 (SOC, SOC, Op_RegI, 11, O3->as_VMReg());
97reg_def R_O4H(SOC, SOC, Op_RegI,140, O4->as_VMReg()->next());
98reg_def R_O4 (SOC, SOC, Op_RegI, 12, O4->as_VMReg());
99reg_def R_O5H(SOC, SOC, Op_RegI,141, O5->as_VMReg()->next());
100reg_def R_O5 (SOC, SOC, Op_RegI, 13, O5->as_VMReg());
101reg_def R_SPH( NS,  NS, Op_RegI,142, SP->as_VMReg()->next());
102reg_def R_SP ( NS,  NS, Op_RegI, 14, SP->as_VMReg());
103reg_def R_O7H(SOC, SOC, Op_RegI,143, O7->as_VMReg()->next());
104reg_def R_O7 (SOC, SOC, Op_RegI, 15, O7->as_VMReg());
105
106// Local Registers 0-7
107reg_def R_L0H( NS,  NS, Op_RegI,144, L0->as_VMReg()->next());
108reg_def R_L0 ( NS,  NS, Op_RegI, 16, L0->as_VMReg());
109reg_def R_L1H( NS,  NS, Op_RegI,145, L1->as_VMReg()->next());
110reg_def R_L1 ( NS,  NS, Op_RegI, 17, L1->as_VMReg());
111reg_def R_L2H( NS,  NS, Op_RegI,146, L2->as_VMReg()->next());
112reg_def R_L2 ( NS,  NS, Op_RegI, 18, L2->as_VMReg());
113reg_def R_L3H( NS,  NS, Op_RegI,147, L3->as_VMReg()->next());
114reg_def R_L3 ( NS,  NS, Op_RegI, 19, L3->as_VMReg());
115reg_def R_L4H( NS,  NS, Op_RegI,148, L4->as_VMReg()->next());
116reg_def R_L4 ( NS,  NS, Op_RegI, 20, L4->as_VMReg());
117reg_def R_L5H( NS,  NS, Op_RegI,149, L5->as_VMReg()->next());
118reg_def R_L5 ( NS,  NS, Op_RegI, 21, L5->as_VMReg());
119reg_def R_L6H( NS,  NS, Op_RegI,150, L6->as_VMReg()->next());
120reg_def R_L6 ( NS,  NS, Op_RegI, 22, L6->as_VMReg());
121reg_def R_L7H( NS,  NS, Op_RegI,151, L7->as_VMReg()->next());
122reg_def R_L7 ( NS,  NS, Op_RegI, 23, L7->as_VMReg());
123
124// Input Registers 0-7
125reg_def R_I0H( NS,  NS, Op_RegI,152, I0->as_VMReg()->next());
126reg_def R_I0 ( NS,  NS, Op_RegI, 24, I0->as_VMReg());
127reg_def R_I1H( NS,  NS, Op_RegI,153, I1->as_VMReg()->next());
128reg_def R_I1 ( NS,  NS, Op_RegI, 25, I1->as_VMReg());
129reg_def R_I2H( NS,  NS, Op_RegI,154, I2->as_VMReg()->next());
130reg_def R_I2 ( NS,  NS, Op_RegI, 26, I2->as_VMReg());
131reg_def R_I3H( NS,  NS, Op_RegI,155, I3->as_VMReg()->next());
132reg_def R_I3 ( NS,  NS, Op_RegI, 27, I3->as_VMReg());
133reg_def R_I4H( NS,  NS, Op_RegI,156, I4->as_VMReg()->next());
134reg_def R_I4 ( NS,  NS, Op_RegI, 28, I4->as_VMReg());
135reg_def R_I5H( NS,  NS, Op_RegI,157, I5->as_VMReg()->next());
136reg_def R_I5 ( NS,  NS, Op_RegI, 29, I5->as_VMReg());
137reg_def R_FPH( NS,  NS, Op_RegI,158, FP->as_VMReg()->next());
138reg_def R_FP ( NS,  NS, Op_RegI, 30, FP->as_VMReg());
139reg_def R_I7H( NS,  NS, Op_RegI,159, I7->as_VMReg()->next());
140reg_def R_I7 ( NS,  NS, Op_RegI, 31, I7->as_VMReg());
141
142// ----------------------------
143// Float/Double Registers
144// ----------------------------
145
146// Float Registers
147reg_def R_F0 ( SOC, SOC, Op_RegF,  0, F0->as_VMReg());
148reg_def R_F1 ( SOC, SOC, Op_RegF,  1, F1->as_VMReg());
149reg_def R_F2 ( SOC, SOC, Op_RegF,  2, F2->as_VMReg());
150reg_def R_F3 ( SOC, SOC, Op_RegF,  3, F3->as_VMReg());
151reg_def R_F4 ( SOC, SOC, Op_RegF,  4, F4->as_VMReg());
152reg_def R_F5 ( SOC, SOC, Op_RegF,  5, F5->as_VMReg());
153reg_def R_F6 ( SOC, SOC, Op_RegF,  6, F6->as_VMReg());
154reg_def R_F7 ( SOC, SOC, Op_RegF,  7, F7->as_VMReg());
155reg_def R_F8 ( SOC, SOC, Op_RegF,  8, F8->as_VMReg());
156reg_def R_F9 ( SOC, SOC, Op_RegF,  9, F9->as_VMReg());
157reg_def R_F10( SOC, SOC, Op_RegF, 10, F10->as_VMReg());
158reg_def R_F11( SOC, SOC, Op_RegF, 11, F11->as_VMReg());
159reg_def R_F12( SOC, SOC, Op_RegF, 12, F12->as_VMReg());
160reg_def R_F13( SOC, SOC, Op_RegF, 13, F13->as_VMReg());
161reg_def R_F14( SOC, SOC, Op_RegF, 14, F14->as_VMReg());
162reg_def R_F15( SOC, SOC, Op_RegF, 15, F15->as_VMReg());
163reg_def R_F16( SOC, SOC, Op_RegF, 16, F16->as_VMReg());
164reg_def R_F17( SOC, SOC, Op_RegF, 17, F17->as_VMReg());
165reg_def R_F18( SOC, SOC, Op_RegF, 18, F18->as_VMReg());
166reg_def R_F19( SOC, SOC, Op_RegF, 19, F19->as_VMReg());
167reg_def R_F20( SOC, SOC, Op_RegF, 20, F20->as_VMReg());
168reg_def R_F21( SOC, SOC, Op_RegF, 21, F21->as_VMReg());
169reg_def R_F22( SOC, SOC, Op_RegF, 22, F22->as_VMReg());
170reg_def R_F23( SOC, SOC, Op_RegF, 23, F23->as_VMReg());
171reg_def R_F24( SOC, SOC, Op_RegF, 24, F24->as_VMReg());
172reg_def R_F25( SOC, SOC, Op_RegF, 25, F25->as_VMReg());
173reg_def R_F26( SOC, SOC, Op_RegF, 26, F26->as_VMReg());
174reg_def R_F27( SOC, SOC, Op_RegF, 27, F27->as_VMReg());
175reg_def R_F28( SOC, SOC, Op_RegF, 28, F28->as_VMReg());
176reg_def R_F29( SOC, SOC, Op_RegF, 29, F29->as_VMReg());
177reg_def R_F30( SOC, SOC, Op_RegF, 30, F30->as_VMReg());
178reg_def R_F31( SOC, SOC, Op_RegF, 31, F31->as_VMReg());
179
180// Double Registers
181// The rules of ADL require that double registers be defined in pairs.
182// Each pair must be two 32-bit values, but not necessarily a pair of
183// single float registers.  In each pair, ADLC-assigned register numbers
184// must be adjacent, with the lower number even.  Finally, when the
185// CPU stores such a register pair to memory, the word associated with
186// the lower ADLC-assigned number must be stored to the lower address.
187
188// These definitions specify the actual bit encodings of the sparc
189// double fp register numbers.  FloatRegisterImpl in register_sparc.hpp
190// wants 0-63, so we have to convert every time we want to use fp regs
191// with the macroassembler, using reg_to_DoubleFloatRegister_object().
192// 255 is a flag meaning "don't go here".
193// I believe we can't handle callee-save doubles D32 and up until
194// the place in the sparc stack crawler that asserts on the 255 is
195// fixed up.
196reg_def R_D32 (SOC, SOC, Op_RegD,  1, F32->as_VMReg());
197reg_def R_D32x(SOC, SOC, Op_RegD,255, F32->as_VMReg()->next());
198reg_def R_D34 (SOC, SOC, Op_RegD,  3, F34->as_VMReg());
199reg_def R_D34x(SOC, SOC, Op_RegD,255, F34->as_VMReg()->next());
200reg_def R_D36 (SOC, SOC, Op_RegD,  5, F36->as_VMReg());
201reg_def R_D36x(SOC, SOC, Op_RegD,255, F36->as_VMReg()->next());
202reg_def R_D38 (SOC, SOC, Op_RegD,  7, F38->as_VMReg());
203reg_def R_D38x(SOC, SOC, Op_RegD,255, F38->as_VMReg()->next());
204reg_def R_D40 (SOC, SOC, Op_RegD,  9, F40->as_VMReg());
205reg_def R_D40x(SOC, SOC, Op_RegD,255, F40->as_VMReg()->next());
206reg_def R_D42 (SOC, SOC, Op_RegD, 11, F42->as_VMReg());
207reg_def R_D42x(SOC, SOC, Op_RegD,255, F42->as_VMReg()->next());
208reg_def R_D44 (SOC, SOC, Op_RegD, 13, F44->as_VMReg());
209reg_def R_D44x(SOC, SOC, Op_RegD,255, F44->as_VMReg()->next());
210reg_def R_D46 (SOC, SOC, Op_RegD, 15, F46->as_VMReg());
211reg_def R_D46x(SOC, SOC, Op_RegD,255, F46->as_VMReg()->next());
212reg_def R_D48 (SOC, SOC, Op_RegD, 17, F48->as_VMReg());
213reg_def R_D48x(SOC, SOC, Op_RegD,255, F48->as_VMReg()->next());
214reg_def R_D50 (SOC, SOC, Op_RegD, 19, F50->as_VMReg());
215reg_def R_D50x(SOC, SOC, Op_RegD,255, F50->as_VMReg()->next());
216reg_def R_D52 (SOC, SOC, Op_RegD, 21, F52->as_VMReg());
217reg_def R_D52x(SOC, SOC, Op_RegD,255, F52->as_VMReg()->next());
218reg_def R_D54 (SOC, SOC, Op_RegD, 23, F54->as_VMReg());
219reg_def R_D54x(SOC, SOC, Op_RegD,255, F54->as_VMReg()->next());
220reg_def R_D56 (SOC, SOC, Op_RegD, 25, F56->as_VMReg());
221reg_def R_D56x(SOC, SOC, Op_RegD,255, F56->as_VMReg()->next());
222reg_def R_D58 (SOC, SOC, Op_RegD, 27, F58->as_VMReg());
223reg_def R_D58x(SOC, SOC, Op_RegD,255, F58->as_VMReg()->next());
224reg_def R_D60 (SOC, SOC, Op_RegD, 29, F60->as_VMReg());
225reg_def R_D60x(SOC, SOC, Op_RegD,255, F60->as_VMReg()->next());
226reg_def R_D62 (SOC, SOC, Op_RegD, 31, F62->as_VMReg());
227reg_def R_D62x(SOC, SOC, Op_RegD,255, F62->as_VMReg()->next());
228
229
230// ----------------------------
231// Special Registers
232// Condition Codes Flag Registers
233// I tried to break out ICC and XCC but it's not very pretty.
234// Every Sparc instruction which defs/kills one also kills the other.
235// Hence every compare instruction which defs one kind of flags ends
236// up needing a kill of the other.
237reg_def CCR (SOC, SOC,  Op_RegFlags, 0, VMRegImpl::Bad());
238
239reg_def FCC0(SOC, SOC,  Op_RegFlags, 0, VMRegImpl::Bad());
240reg_def FCC1(SOC, SOC,  Op_RegFlags, 1, VMRegImpl::Bad());
241reg_def FCC2(SOC, SOC,  Op_RegFlags, 2, VMRegImpl::Bad());
242reg_def FCC3(SOC, SOC,  Op_RegFlags, 3, VMRegImpl::Bad());
243
244// ----------------------------
245// Specify the enum values for the registers.  These enums are only used by the
246// OptoReg "class". We can convert these enum values at will to VMReg when needed
247// for visibility to the rest of the vm. The order of this enum influences the
248// register allocator so having the freedom to set this order and not be stuck
249// with the order that is natural for the rest of the vm is worth it.
250alloc_class chunk0(
251  R_L0,R_L0H, R_L1,R_L1H, R_L2,R_L2H, R_L3,R_L3H, R_L4,R_L4H, R_L5,R_L5H, R_L6,R_L6H, R_L7,R_L7H,
252  R_G0,R_G0H, R_G1,R_G1H, R_G2,R_G2H, R_G3,R_G3H, R_G4,R_G4H, R_G5,R_G5H, R_G6,R_G6H, R_G7,R_G7H,
253  R_O7,R_O7H, R_SP,R_SPH, R_O0,R_O0H, R_O1,R_O1H, R_O2,R_O2H, R_O3,R_O3H, R_O4,R_O4H, R_O5,R_O5H,
254  R_I0,R_I0H, R_I1,R_I1H, R_I2,R_I2H, R_I3,R_I3H, R_I4,R_I4H, R_I5,R_I5H, R_FP,R_FPH, R_I7,R_I7H);
255
256// Note that a register is not allocatable unless it is also mentioned
257// in a widely-used reg_class below.  Thus, R_G7 and R_G0 are outside i_reg.
258
259alloc_class chunk1(
260  // The first registers listed here are those most likely to be used
261  // as temporaries.  We move F0..F7 away from the front of the list,
262  // to reduce the likelihood of interferences with parameters and
263  // return values.  Likewise, we avoid using F0/F1 for parameters,
264  // since they are used for return values.
265  // This FPU fine-tuning is worth about 1% on the SPEC geomean.
266  R_F8 ,R_F9 ,R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
267  R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,
268  R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,R_F30,R_F31,
269  R_F0 ,R_F1 ,R_F2 ,R_F3 ,R_F4 ,R_F5 ,R_F6 ,R_F7 , // used for arguments and return values
270  R_D32,R_D32x,R_D34,R_D34x,R_D36,R_D36x,R_D38,R_D38x,
271  R_D40,R_D40x,R_D42,R_D42x,R_D44,R_D44x,R_D46,R_D46x,
272  R_D48,R_D48x,R_D50,R_D50x,R_D52,R_D52x,R_D54,R_D54x,
273  R_D56,R_D56x,R_D58,R_D58x,R_D60,R_D60x,R_D62,R_D62x);
274
275alloc_class chunk2(CCR, FCC0, FCC1, FCC2, FCC3);
276
277//----------Architecture Description Register Classes--------------------------
278// Several register classes are automatically defined based upon information in
279// this architecture description.
280// 1) reg_class inline_cache_reg           ( as defined in frame section )
281// 2) reg_class interpreter_method_oop_reg ( as defined in frame section )
282// 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
283//
284
285// G0 is not included in integer class since it has special meaning.
286reg_class g0_reg(R_G0);
287
288// ----------------------------
289// Integer Register Classes
290// ----------------------------
291// Exclusions from i_reg:
292// R_G0: hardwired zero
293// R_G2: reserved by HotSpot to the TLS register (invariant within Java)
294// R_G6: reserved by Solaris ABI to tools
295// R_G7: reserved by Solaris ABI to libthread
296// R_O7: Used as a temp in many encodings
297reg_class int_reg(R_G1,R_G3,R_G4,R_G5,R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
298
299// Class for all integer registers, except the G registers.  This is used for
300// encodings which use G registers as temps.  The regular inputs to such
301// instructions use a "notemp_" prefix, as a hack to ensure that the allocator
302// will not put an input into a temp register.
303reg_class notemp_int_reg(R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
304
305reg_class g1_regI(R_G1);
306reg_class g3_regI(R_G3);
307reg_class g4_regI(R_G4);
308reg_class o0_regI(R_O0);
309reg_class o7_regI(R_O7);
310
311// ----------------------------
312// Pointer Register Classes
313// ----------------------------
314#ifdef _LP64
315// 64-bit build means 64-bit pointers means hi/lo pairs
316reg_class ptr_reg(            R_G1H,R_G1,             R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5,
317                  R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5,
318                  R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
319                  R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5 );
320// Lock encodings use G3 and G4 internally
321reg_class lock_ptr_reg(       R_G1H,R_G1,                                     R_G5H,R_G5,
322                  R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5,
323                  R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
324                  R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5 );
325// Special class for storeP instructions, which can store SP or RPC to TLS.
326// It is also used for memory addressing, allowing direct TLS addressing.
327reg_class sp_ptr_reg(         R_G1H,R_G1, R_G2H,R_G2, R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5,
328                  R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5, R_SPH,R_SP,
329                  R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
330                  R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5, R_FPH,R_FP );
331// R_L7 is the lowest-priority callee-save (i.e., NS) register
332// We use it to save R_G2 across calls out of Java.
333reg_class l7_regP(R_L7H,R_L7);
334
335// Other special pointer regs
336reg_class g1_regP(R_G1H,R_G1);
337reg_class g2_regP(R_G2H,R_G2);
338reg_class g3_regP(R_G3H,R_G3);
339reg_class g4_regP(R_G4H,R_G4);
340reg_class g5_regP(R_G5H,R_G5);
341reg_class i0_regP(R_I0H,R_I0);
342reg_class o0_regP(R_O0H,R_O0);
343reg_class o1_regP(R_O1H,R_O1);
344reg_class o2_regP(R_O2H,R_O2);
345reg_class o7_regP(R_O7H,R_O7);
346
347#else // _LP64
348// 32-bit build means 32-bit pointers means 1 register.
349reg_class ptr_reg(     R_G1,     R_G3,R_G4,R_G5,
350                  R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,
351                  R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
352                  R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
353// Lock encodings use G3 and G4 internally
354reg_class lock_ptr_reg(R_G1,               R_G5,
355                  R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,
356                  R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
357                  R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
358// Special class for storeP instructions, which can store SP or RPC to TLS.
359// It is also used for memory addressing, allowing direct TLS addressing.
360reg_class sp_ptr_reg(  R_G1,R_G2,R_G3,R_G4,R_G5,
361                  R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_SP,
362                  R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
363                  R_I0,R_I1,R_I2,R_I3,R_I4,R_I5,R_FP);
364// R_L7 is the lowest-priority callee-save (i.e., NS) register
365// We use it to save R_G2 across calls out of Java.
366reg_class l7_regP(R_L7);
367
368// Other special pointer regs
369reg_class g1_regP(R_G1);
370reg_class g2_regP(R_G2);
371reg_class g3_regP(R_G3);
372reg_class g4_regP(R_G4);
373reg_class g5_regP(R_G5);
374reg_class i0_regP(R_I0);
375reg_class o0_regP(R_O0);
376reg_class o1_regP(R_O1);
377reg_class o2_regP(R_O2);
378reg_class o7_regP(R_O7);
379#endif // _LP64
380
381
382// ----------------------------
383// Long Register Classes
384// ----------------------------
385// Longs in 1 register.  Aligned adjacent hi/lo pairs.
386// Note:  O7 is never in this class; it is sometimes used as an encoding temp.
387reg_class long_reg(             R_G1H,R_G1,             R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5
388                   ,R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5
389#ifdef _LP64
390// 64-bit, longs in 1 register: use all 64-bit integer registers
391// 32-bit, longs in 1 register: cannot use I's and L's.  Restrict to O's and G's.
392                   ,R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7
393                   ,R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5
394#endif // _LP64
395                  );
396
397reg_class g1_regL(R_G1H,R_G1);
398reg_class g3_regL(R_G3H,R_G3);
399reg_class o2_regL(R_O2H,R_O2);
400reg_class o7_regL(R_O7H,R_O7);
401
402// ----------------------------
403// Special Class for Condition Code Flags Register
404reg_class int_flags(CCR);
405reg_class float_flags(FCC0,FCC1,FCC2,FCC3);
406reg_class float_flag0(FCC0);
407
408
409// ----------------------------
410// Float Point Register Classes
411// ----------------------------
412// Skip F30/F31, they are reserved for mem-mem copies
413reg_class sflt_reg(R_F0,R_F1,R_F2,R_F3,R_F4,R_F5,R_F6,R_F7,R_F8,R_F9,R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29);
414
415// Paired floating point registers--they show up in the same order as the floats,
416// but they are used with the "Op_RegD" type, and always occur in even/odd pairs.
417reg_class dflt_reg(R_F0, R_F1, R_F2, R_F3, R_F4, R_F5, R_F6, R_F7, R_F8, R_F9, R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
418                   R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,
419                   /* Use extra V9 double registers; this AD file does not support V8 */
420                   R_D32,R_D32x,R_D34,R_D34x,R_D36,R_D36x,R_D38,R_D38x,R_D40,R_D40x,R_D42,R_D42x,R_D44,R_D44x,R_D46,R_D46x,
421                   R_D48,R_D48x,R_D50,R_D50x,R_D52,R_D52x,R_D54,R_D54x,R_D56,R_D56x,R_D58,R_D58x,R_D60,R_D60x,R_D62,R_D62x
422                   );
423
424// Paired floating point registers--they show up in the same order as the floats,
425// but they are used with the "Op_RegD" type, and always occur in even/odd pairs.
426// This class is usable for mis-aligned loads as happen in I2C adapters.
427reg_class dflt_low_reg(R_F0, R_F1, R_F2, R_F3, R_F4, R_F5, R_F6, R_F7, R_F8, R_F9, R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
428                   R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29);
429%}
430
431//----------DEFINITION BLOCK---------------------------------------------------
432// Define name --> value mappings to inform the ADLC of an integer valued name
433// Current support includes integer values in the range [0, 0x7FFFFFFF]
434// Format:
435//        int_def  <name>         ( <int_value>, <expression>);
436// Generated Code in ad_<arch>.hpp
437//        #define  <name>   (<expression>)
438//        // value == <int_value>
439// Generated code in ad_<arch>.cpp adlc_verification()
440//        assert( <name> == <int_value>, "Expect (<expression>) to equal <int_value>");
441//
442definitions %{
443// The default cost (of an ALU instruction).
444  int_def DEFAULT_COST      (    100,     100);
445  int_def HUGE_COST         (1000000, 1000000);
446
447// Memory refs are twice as expensive as run-of-the-mill.
448  int_def MEMORY_REF_COST   (    200, DEFAULT_COST * 2);
449
450// Branches are even more expensive.
451  int_def BRANCH_COST       (    300, DEFAULT_COST * 3);
452  int_def CALL_COST         (    300, DEFAULT_COST * 3);
453%}
454
455
456//----------SOURCE BLOCK-------------------------------------------------------
457// This is a block of C++ code which provides values, functions, and
458// definitions necessary in the rest of the architecture description
459source_hpp %{
460// Must be visible to the DFA in dfa_sparc.cpp
461extern bool can_branch_register( Node *bol, Node *cmp );
462
463// Macros to extract hi & lo halves from a long pair.
464// G0 is not part of any long pair, so assert on that.
465// Prevents accidentally using G1 instead of G0.
466#define LONG_HI_REG(x) (x)
467#define LONG_LO_REG(x) (x)
468
469%}
470
471source %{
472#define __ _masm.
473
474// Block initializing store
475#define ASI_BLK_INIT_QUAD_LDD_P    0xE2
476
477// tertiary op of a LoadP or StoreP encoding
478#define REGP_OP true
479
480static FloatRegister reg_to_SingleFloatRegister_object(int register_encoding);
481static FloatRegister reg_to_DoubleFloatRegister_object(int register_encoding);
482static Register reg_to_register_object(int register_encoding);
483
484// Used by the DFA in dfa_sparc.cpp.
485// Check for being able to use a V9 branch-on-register.  Requires a
486// compare-vs-zero, equal/not-equal, of a value which was zero- or sign-
487// extended.  Doesn't work following an integer ADD, for example, because of
488// overflow (-1 incremented yields 0 plus a carry in the high-order word).  On
489// 32-bit V9 systems, interrupts currently blow away the high-order 32 bits and
490// replace them with zero, which could become sign-extension in a different OS
491// release.  There's no obvious reason why an interrupt will ever fill these
492// bits with non-zero junk (the registers are reloaded with standard LD
493// instructions which either zero-fill or sign-fill).
494bool can_branch_register( Node *bol, Node *cmp ) {
495  if( !BranchOnRegister ) return false;
496#ifdef _LP64
497  if( cmp->Opcode() == Op_CmpP )
498    return true;  // No problems with pointer compares
499#endif
500  if( cmp->Opcode() == Op_CmpL )
501    return true;  // No problems with long compares
502
503  if( !SparcV9RegsHiBitsZero ) return false;
504  if( bol->as_Bool()->_test._test != BoolTest::ne &&
505      bol->as_Bool()->_test._test != BoolTest::eq )
506     return false;
507
508  // Check for comparing against a 'safe' value.  Any operation which
509  // clears out the high word is safe.  Thus, loads and certain shifts
510  // are safe, as are non-negative constants.  Any operation which
511  // preserves zero bits in the high word is safe as long as each of its
512  // inputs are safe.  Thus, phis and bitwise booleans are safe if their
513  // inputs are safe.  At present, the only important case to recognize
514  // seems to be loads.  Constants should fold away, and shifts &
515  // logicals can use the 'cc' forms.
516  Node *x = cmp->in(1);
517  if( x->is_Load() ) return true;
518  if( x->is_Phi() ) {
519    for( uint i = 1; i < x->req(); i++ )
520      if( !x->in(i)->is_Load() )
521        return false;
522    return true;
523  }
524  return false;
525}
526
527// ****************************************************************************
528
529// REQUIRED FUNCTIONALITY
530
531// !!!!! Special hack to get all type of calls to specify the byte offset
532//       from the start of the call to the point where the return address
533//       will point.
534//       The "return address" is the address of the call instruction, plus 8.
535
536int MachCallStaticJavaNode::ret_addr_offset() {
537  int offset = NativeCall::instruction_size;  // call; delay slot
538  if (_method_handle_invoke)
539    offset += 4;  // restore SP
540  return offset;
541}
542
543int MachCallDynamicJavaNode::ret_addr_offset() {
544  int vtable_index = this->_vtable_index;
545  if (vtable_index < 0) {
546    // must be invalid_vtable_index, not nonvirtual_vtable_index
547    assert(vtable_index == methodOopDesc::invalid_vtable_index, "correct sentinel value");
548    return (NativeMovConstReg::instruction_size +
549           NativeCall::instruction_size);  // sethi; setlo; call; delay slot
550  } else {
551    assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
552    int entry_offset = instanceKlass::vtable_start_offset() + vtable_index*vtableEntry::size();
553    int v_off = entry_offset*wordSize + vtableEntry::method_offset_in_bytes();
554    int klass_load_size;
555    if (UseCompressedOops) {
556      assert(Universe::heap() != NULL, "java heap should be initialized");
557      if (Universe::narrow_oop_base() == NULL)
558        klass_load_size = 2*BytesPerInstWord; // see MacroAssembler::load_klass()
559      else
560        klass_load_size = 3*BytesPerInstWord;
561    } else {
562      klass_load_size = 1*BytesPerInstWord;
563    }
564    if( Assembler::is_simm13(v_off) ) {
565      return klass_load_size +
566             (2*BytesPerInstWord +           // ld_ptr, ld_ptr
567             NativeCall::instruction_size);  // call; delay slot
568    } else {
569      return klass_load_size +
570             (4*BytesPerInstWord +           // set_hi, set, ld_ptr, ld_ptr
571             NativeCall::instruction_size);  // call; delay slot
572    }
573  }
574}
575
576int MachCallRuntimeNode::ret_addr_offset() {
577#ifdef _LP64
578  if (MacroAssembler::is_far_target(entry_point())) {
579    return NativeFarCall::instruction_size;
580  } else {
581    return NativeCall::instruction_size;
582  }
583#else
584  return NativeCall::instruction_size;  // call; delay slot
585#endif
586}
587
588// Indicate if the safepoint node needs the polling page as an input.
589// Since Sparc does not have absolute addressing, it does.
590bool SafePointNode::needs_polling_address_input() {
591  return true;
592}
593
594// emit an interrupt that is caught by the debugger (for debugging compiler)
595void emit_break(CodeBuffer &cbuf) {
596  MacroAssembler _masm(&cbuf);
597  __ breakpoint_trap();
598}
599
600#ifndef PRODUCT
601void MachBreakpointNode::format( PhaseRegAlloc *, outputStream *st ) const {
602  st->print("TA");
603}
604#endif
605
606void MachBreakpointNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
607  emit_break(cbuf);
608}
609
610uint MachBreakpointNode::size(PhaseRegAlloc *ra_) const {
611  return MachNode::size(ra_);
612}
613
614// Traceable jump
615void  emit_jmpl(CodeBuffer &cbuf, int jump_target) {
616  MacroAssembler _masm(&cbuf);
617  Register rdest = reg_to_register_object(jump_target);
618  __ JMP(rdest, 0);
619  __ delayed()->nop();
620}
621
622// Traceable jump and set exception pc
623void  emit_jmpl_set_exception_pc(CodeBuffer &cbuf, int jump_target) {
624  MacroAssembler _masm(&cbuf);
625  Register rdest = reg_to_register_object(jump_target);
626  __ JMP(rdest, 0);
627  __ delayed()->add(O7, frame::pc_return_offset, Oissuing_pc );
628}
629
630void emit_nop(CodeBuffer &cbuf) {
631  MacroAssembler _masm(&cbuf);
632  __ nop();
633}
634
635void emit_illtrap(CodeBuffer &cbuf) {
636  MacroAssembler _masm(&cbuf);
637  __ illtrap(0);
638}
639
640
641intptr_t get_offset_from_base(const MachNode* n, const TypePtr* atype, int disp32) {
642  assert(n->rule() != loadUB_rule, "");
643
644  intptr_t offset = 0;
645  const TypePtr *adr_type = TYPE_PTR_SENTINAL;  // Check for base==RegI, disp==immP
646  const Node* addr = n->get_base_and_disp(offset, adr_type);
647  assert(adr_type == (const TypePtr*)-1, "VerifyOops: no support for sparc operands with base==RegI, disp==immP");
648  assert(addr != NULL && addr != (Node*)-1, "invalid addr");
649  assert(addr->bottom_type()->isa_oopptr() == atype, "");
650  atype = atype->add_offset(offset);
651  assert(disp32 == offset, "wrong disp32");
652  return atype->_offset;
653}
654
655
656intptr_t get_offset_from_base_2(const MachNode* n, const TypePtr* atype, int disp32) {
657  assert(n->rule() != loadUB_rule, "");
658
659  intptr_t offset = 0;
660  Node* addr = n->in(2);
661  assert(addr->bottom_type()->isa_oopptr() == atype, "");
662  if (addr->is_Mach() && addr->as_Mach()->ideal_Opcode() == Op_AddP) {
663    Node* a = addr->in(2/*AddPNode::Address*/);
664    Node* o = addr->in(3/*AddPNode::Offset*/);
665    offset = o->is_Con() ? o->bottom_type()->is_intptr_t()->get_con() : Type::OffsetBot;
666    atype = a->bottom_type()->is_ptr()->add_offset(offset);
667    assert(atype->isa_oop_ptr(), "still an oop");
668  }
669  offset = atype->is_ptr()->_offset;
670  if (offset != Type::OffsetBot)  offset += disp32;
671  return offset;
672}
673
674static inline jdouble replicate_immI(int con, int count, int width) {
675  // Load a constant replicated "count" times with width "width"
676  int bit_width = width * 8;
677  jlong elt_val = con;
678  elt_val &= (((jlong) 1) << bit_width) - 1;  // mask off sign bits
679  jlong val = elt_val;
680  for (int i = 0; i < count - 1; i++) {
681    val <<= bit_width;
682    val |= elt_val;
683  }
684  jdouble dval = *((jdouble*) &val);  // coerce to double type
685  return dval;
686}
687
688// Standard Sparc opcode form2 field breakdown
689static inline void emit2_19(CodeBuffer &cbuf, int f30, int f29, int f25, int f22, int f20, int f19, int f0 ) {
690  f0 &= (1<<19)-1;     // Mask displacement to 19 bits
691  int op = (f30 << 30) |
692           (f29 << 29) |
693           (f25 << 25) |
694           (f22 << 22) |
695           (f20 << 20) |
696           (f19 << 19) |
697           (f0  <<  0);
698  cbuf.insts()->emit_int32(op);
699}
700
701// Standard Sparc opcode form2 field breakdown
702static inline void emit2_22(CodeBuffer &cbuf, int f30, int f25, int f22, int f0 ) {
703  f0 >>= 10;           // Drop 10 bits
704  f0 &= (1<<22)-1;     // Mask displacement to 22 bits
705  int op = (f30 << 30) |
706           (f25 << 25) |
707           (f22 << 22) |
708           (f0  <<  0);
709  cbuf.insts()->emit_int32(op);
710}
711
712// Standard Sparc opcode form3 field breakdown
713static inline void emit3(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int f5, int f0 ) {
714  int op = (f30 << 30) |
715           (f25 << 25) |
716           (f19 << 19) |
717           (f14 << 14) |
718           (f5  <<  5) |
719           (f0  <<  0);
720  cbuf.insts()->emit_int32(op);
721}
722
723// Standard Sparc opcode form3 field breakdown
724static inline void emit3_simm13(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int simm13 ) {
725  simm13 &= (1<<13)-1; // Mask to 13 bits
726  int op = (f30 << 30) |
727           (f25 << 25) |
728           (f19 << 19) |
729           (f14 << 14) |
730           (1   << 13) | // bit to indicate immediate-mode
731           (simm13<<0);
732  cbuf.insts()->emit_int32(op);
733}
734
735static inline void emit3_simm10(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int simm10 ) {
736  simm10 &= (1<<10)-1; // Mask to 10 bits
737  emit3_simm13(cbuf,f30,f25,f19,f14,simm10);
738}
739
740#ifdef ASSERT
741// Helper function for VerifyOops in emit_form3_mem_reg
742void verify_oops_warning(const MachNode *n, int ideal_op, int mem_op) {
743  warning("VerifyOops encountered unexpected instruction:");
744  n->dump(2);
745  warning("Instruction has ideal_Opcode==Op_%s and op_ld==Op_%s \n", NodeClassNames[ideal_op], NodeClassNames[mem_op]);
746}
747#endif
748
749
750void emit_form3_mem_reg(CodeBuffer &cbuf, const MachNode* n, int primary, int tertiary,
751                        int src1_enc, int disp32, int src2_enc, int dst_enc) {
752
753#ifdef ASSERT
754  // The following code implements the +VerifyOops feature.
755  // It verifies oop values which are loaded into or stored out of
756  // the current method activation.  +VerifyOops complements techniques
757  // like ScavengeALot, because it eagerly inspects oops in transit,
758  // as they enter or leave the stack, as opposed to ScavengeALot,
759  // which inspects oops "at rest", in the stack or heap, at safepoints.
760  // For this reason, +VerifyOops can sometimes detect bugs very close
761  // to their point of creation.  It can also serve as a cross-check
762  // on the validity of oop maps, when used toegether with ScavengeALot.
763
764  // It would be good to verify oops at other points, especially
765  // when an oop is used as a base pointer for a load or store.
766  // This is presently difficult, because it is hard to know when
767  // a base address is biased or not.  (If we had such information,
768  // it would be easy and useful to make a two-argument version of
769  // verify_oop which unbiases the base, and performs verification.)
770
771  assert((uint)tertiary == 0xFFFFFFFF || tertiary == REGP_OP, "valid tertiary");
772  bool is_verified_oop_base  = false;
773  bool is_verified_oop_load  = false;
774  bool is_verified_oop_store = false;
775  int tmp_enc = -1;
776  if (VerifyOops && src1_enc != R_SP_enc) {
777    // classify the op, mainly for an assert check
778    int st_op = 0, ld_op = 0;
779    switch (primary) {
780    case Assembler::stb_op3:  st_op = Op_StoreB; break;
781    case Assembler::sth_op3:  st_op = Op_StoreC; break;
782    case Assembler::stx_op3:  // may become StoreP or stay StoreI or StoreD0
783    case Assembler::stw_op3:  st_op = Op_StoreI; break;
784    case Assembler::std_op3:  st_op = Op_StoreL; break;
785    case Assembler::stf_op3:  st_op = Op_StoreF; break;
786    case Assembler::stdf_op3: st_op = Op_StoreD; break;
787
788    case Assembler::ldsb_op3: ld_op = Op_LoadB; break;
789    case Assembler::lduh_op3: ld_op = Op_LoadUS; break;
790    case Assembler::ldsh_op3: ld_op = Op_LoadS; break;
791    case Assembler::ldx_op3:  // may become LoadP or stay LoadI
792    case Assembler::ldsw_op3: // may become LoadP or stay LoadI
793    case Assembler::lduw_op3: ld_op = Op_LoadI; break;
794    case Assembler::ldd_op3:  ld_op = Op_LoadL; break;
795    case Assembler::ldf_op3:  ld_op = Op_LoadF; break;
796    case Assembler::lddf_op3: ld_op = Op_LoadD; break;
797    case Assembler::ldub_op3: ld_op = Op_LoadB; break;
798    case Assembler::prefetch_op3: ld_op = Op_LoadI; break;
799
800    default: ShouldNotReachHere();
801    }
802    if (tertiary == REGP_OP) {
803      if      (st_op == Op_StoreI)  st_op = Op_StoreP;
804      else if (ld_op == Op_LoadI)   ld_op = Op_LoadP;
805      else                          ShouldNotReachHere();
806      if (st_op) {
807        // a store
808        // inputs are (0:control, 1:memory, 2:address, 3:value)
809        Node* n2 = n->in(3);
810        if (n2 != NULL) {
811          const Type* t = n2->bottom_type();
812          is_verified_oop_store = t->isa_oop_ptr() ? (t->is_ptr()->_offset==0) : false;
813        }
814      } else {
815        // a load
816        const Type* t = n->bottom_type();
817        is_verified_oop_load = t->isa_oop_ptr() ? (t->is_ptr()->_offset==0) : false;
818      }
819    }
820
821    if (ld_op) {
822      // a Load
823      // inputs are (0:control, 1:memory, 2:address)
824      if (!(n->ideal_Opcode()==ld_op)       && // Following are special cases
825          !(n->ideal_Opcode()==Op_LoadLLocked && ld_op==Op_LoadI) &&
826          !(n->ideal_Opcode()==Op_LoadPLocked && ld_op==Op_LoadP) &&
827          !(n->ideal_Opcode()==Op_LoadI     && ld_op==Op_LoadF) &&
828          !(n->ideal_Opcode()==Op_LoadF     && ld_op==Op_LoadI) &&
829          !(n->ideal_Opcode()==Op_LoadRange && ld_op==Op_LoadI) &&
830          !(n->ideal_Opcode()==Op_LoadKlass && ld_op==Op_LoadP) &&
831          !(n->ideal_Opcode()==Op_LoadL     && ld_op==Op_LoadI) &&
832          !(n->ideal_Opcode()==Op_LoadL_unaligned && ld_op==Op_LoadI) &&
833          !(n->ideal_Opcode()==Op_LoadD_unaligned && ld_op==Op_LoadF) &&
834          !(n->ideal_Opcode()==Op_ConvI2F   && ld_op==Op_LoadF) &&
835          !(n->ideal_Opcode()==Op_ConvI2D   && ld_op==Op_LoadF) &&
836          !(n->ideal_Opcode()==Op_PrefetchRead  && ld_op==Op_LoadI) &&
837          !(n->ideal_Opcode()==Op_PrefetchWrite && ld_op==Op_LoadI) &&
838          !(n->ideal_Opcode()==Op_Load2I    && ld_op==Op_LoadD) &&
839          !(n->ideal_Opcode()==Op_Load4C    && ld_op==Op_LoadD) &&
840          !(n->ideal_Opcode()==Op_Load4S    && ld_op==Op_LoadD) &&
841          !(n->ideal_Opcode()==Op_Load8B    && ld_op==Op_LoadD) &&
842          !(n->rule() == loadUB_rule)) {
843        verify_oops_warning(n, n->ideal_Opcode(), ld_op);
844      }
845    } else if (st_op) {
846      // a Store
847      // inputs are (0:control, 1:memory, 2:address, 3:value)
848      if (!(n->ideal_Opcode()==st_op)    && // Following are special cases
849          !(n->ideal_Opcode()==Op_StoreCM && st_op==Op_StoreB) &&
850          !(n->ideal_Opcode()==Op_StoreI && st_op==Op_StoreF) &&
851          !(n->ideal_Opcode()==Op_StoreF && st_op==Op_StoreI) &&
852          !(n->ideal_Opcode()==Op_StoreL && st_op==Op_StoreI) &&
853          !(n->ideal_Opcode()==Op_Store2I && st_op==Op_StoreD) &&
854          !(n->ideal_Opcode()==Op_Store4C && st_op==Op_StoreD) &&
855          !(n->ideal_Opcode()==Op_Store8B && st_op==Op_StoreD) &&
856          !(n->ideal_Opcode()==Op_StoreD && st_op==Op_StoreI && n->rule() == storeD0_rule)) {
857        verify_oops_warning(n, n->ideal_Opcode(), st_op);
858      }
859    }
860
861    if (src2_enc == R_G0_enc && n->rule() != loadUB_rule && n->ideal_Opcode() != Op_StoreCM ) {
862      Node* addr = n->in(2);
863      if (!(addr->is_Mach() && addr->as_Mach()->ideal_Opcode() == Op_AddP)) {
864        const TypeOopPtr* atype = addr->bottom_type()->isa_instptr();  // %%% oopptr?
865        if (atype != NULL) {
866          intptr_t offset = get_offset_from_base(n, atype, disp32);
867          intptr_t offset_2 = get_offset_from_base_2(n, atype, disp32);
868          if (offset != offset_2) {
869            get_offset_from_base(n, atype, disp32);
870            get_offset_from_base_2(n, atype, disp32);
871          }
872          assert(offset == offset_2, "different offsets");
873          if (offset == disp32) {
874            // we now know that src1 is a true oop pointer
875            is_verified_oop_base = true;
876            if (ld_op && src1_enc == dst_enc && ld_op != Op_LoadF && ld_op != Op_LoadD) {
877              if( primary == Assembler::ldd_op3 ) {
878                is_verified_oop_base = false; // Cannot 'ldd' into O7
879              } else {
880                tmp_enc = dst_enc;
881                dst_enc = R_O7_enc; // Load into O7; preserve source oop
882                assert(src1_enc != dst_enc, "");
883              }
884            }
885          }
886          if (st_op && (( offset == oopDesc::klass_offset_in_bytes())
887                       || offset == oopDesc::mark_offset_in_bytes())) {
888                      // loading the mark should not be allowed either, but
889                      // we don't check this since it conflicts with InlineObjectHash
890                      // usage of LoadINode to get the mark. We could keep the
891                      // check if we create a new LoadMarkNode
892            // but do not verify the object before its header is initialized
893            ShouldNotReachHere();
894          }
895        }
896      }
897    }
898  }
899#endif
900
901  uint instr;
902  instr = (Assembler::ldst_op << 30)
903        | (dst_enc        << 25)
904        | (primary        << 19)
905        | (src1_enc       << 14);
906
907  uint index = src2_enc;
908  int disp = disp32;
909
910  if (src1_enc == R_SP_enc || src1_enc == R_FP_enc)
911    disp += STACK_BIAS;
912
913  // We should have a compiler bailout here rather than a guarantee.
914  // Better yet would be some mechanism to handle variable-size matches correctly.
915  guarantee(Assembler::is_simm13(disp), "Do not match large constant offsets" );
916
917  if( disp == 0 ) {
918    // use reg-reg form
919    // bit 13 is already zero
920    instr |= index;
921  } else {
922    // use reg-imm form
923    instr |= 0x00002000;          // set bit 13 to one
924    instr |= disp & 0x1FFF;
925  }
926
927  cbuf.insts()->emit_int32(instr);
928
929#ifdef ASSERT
930  {
931    MacroAssembler _masm(&cbuf);
932    if (is_verified_oop_base) {
933      __ verify_oop(reg_to_register_object(src1_enc));
934    }
935    if (is_verified_oop_store) {
936      __ verify_oop(reg_to_register_object(dst_enc));
937    }
938    if (tmp_enc != -1) {
939      __ mov(O7, reg_to_register_object(tmp_enc));
940    }
941    if (is_verified_oop_load) {
942      __ verify_oop(reg_to_register_object(dst_enc));
943    }
944  }
945#endif
946}
947
948void emit_call_reloc(CodeBuffer &cbuf, intptr_t entry_point, relocInfo::relocType rtype, bool preserve_g2 = false) {
949  // The method which records debug information at every safepoint
950  // expects the call to be the first instruction in the snippet as
951  // it creates a PcDesc structure which tracks the offset of a call
952  // from the start of the codeBlob. This offset is computed as
953  // code_end() - code_begin() of the code which has been emitted
954  // so far.
955  // In this particular case we have skirted around the problem by
956  // putting the "mov" instruction in the delay slot but the problem
957  // may bite us again at some other point and a cleaner/generic
958  // solution using relocations would be needed.
959  MacroAssembler _masm(&cbuf);
960  __ set_inst_mark();
961
962  // We flush the current window just so that there is a valid stack copy
963  // the fact that the current window becomes active again instantly is
964  // not a problem there is nothing live in it.
965
966#ifdef ASSERT
967  int startpos = __ offset();
968#endif /* ASSERT */
969
970  __ call((address)entry_point, rtype);
971
972  if (preserve_g2)   __ delayed()->mov(G2, L7);
973  else __ delayed()->nop();
974
975  if (preserve_g2)   __ mov(L7, G2);
976
977#ifdef ASSERT
978  if (preserve_g2 && (VerifyCompiledCode || VerifyOops)) {
979#ifdef _LP64
980    // Trash argument dump slots.
981    __ set(0xb0b8ac0db0b8ac0d, G1);
982    __ mov(G1, G5);
983    __ stx(G1, SP, STACK_BIAS + 0x80);
984    __ stx(G1, SP, STACK_BIAS + 0x88);
985    __ stx(G1, SP, STACK_BIAS + 0x90);
986    __ stx(G1, SP, STACK_BIAS + 0x98);
987    __ stx(G1, SP, STACK_BIAS + 0xA0);
988    __ stx(G1, SP, STACK_BIAS + 0xA8);
989#else // _LP64
990    // this is also a native call, so smash the first 7 stack locations,
991    // and the various registers
992
993    // Note:  [SP+0x40] is sp[callee_aggregate_return_pointer_sp_offset],
994    // while [SP+0x44..0x58] are the argument dump slots.
995    __ set((intptr_t)0xbaadf00d, G1);
996    __ mov(G1, G5);
997    __ sllx(G1, 32, G1);
998    __ or3(G1, G5, G1);
999    __ mov(G1, G5);
1000    __ stx(G1, SP, 0x40);
1001    __ stx(G1, SP, 0x48);
1002    __ stx(G1, SP, 0x50);
1003    __ stw(G1, SP, 0x58); // Do not trash [SP+0x5C] which is a usable spill slot
1004#endif // _LP64
1005  }
1006#endif /*ASSERT*/
1007}
1008
1009//=============================================================================
1010// REQUIRED FUNCTIONALITY for encoding
1011void emit_lo(CodeBuffer &cbuf, int val) {  }
1012void emit_hi(CodeBuffer &cbuf, int val) {  }
1013
1014
1015//=============================================================================
1016const bool Matcher::constant_table_absolute_addressing = false;
1017const RegMask& MachConstantBaseNode::_out_RegMask = PTR_REG_mask;
1018
1019void MachConstantBaseNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const {
1020  Compile* C = ra_->C;
1021  Compile::ConstantTable& constant_table = C->constant_table();
1022  MacroAssembler _masm(&cbuf);
1023
1024  Register r = as_Register(ra_->get_encode(this));
1025  CodeSection* cs = __ code()->consts();
1026  int consts_size = cs->align_at_start(cs->size());
1027
1028  if (UseRDPCForConstantTableBase) {
1029    // For the following RDPC logic to work correctly the consts
1030    // section must be allocated right before the insts section.  This
1031    // assert checks for that.  The layout and the SECT_* constants
1032    // are defined in src/share/vm/asm/codeBuffer.hpp.
1033    assert(CodeBuffer::SECT_CONSTS + 1 == CodeBuffer::SECT_INSTS, "must be");
1034    int offset = __ offset();
1035    int disp;
1036
1037    // If the displacement from the current PC to the constant table
1038    // base fits into simm13 we set the constant table base to the
1039    // current PC.
1040    if (__ is_simm13(-(consts_size + offset))) {
1041      constant_table.set_table_base_offset(-(consts_size + offset));
1042      disp = 0;
1043    } else {
1044      // If the offset of the top constant (last entry in the table)
1045      // fits into simm13 we set the constant table base to the actual
1046      // table base.
1047      if (__ is_simm13(constant_table.top_offset())) {
1048        constant_table.set_table_base_offset(0);
1049        disp = consts_size + offset;
1050      } else {
1051        // Otherwise we set the constant table base in the middle of the
1052        // constant table.
1053        int half_consts_size = consts_size / 2;
1054        assert(half_consts_size * 2 == consts_size, "sanity");
1055        constant_table.set_table_base_offset(-half_consts_size);  // table base offset gets added to the load displacement.
1056        disp = half_consts_size + offset;
1057      }
1058    }
1059
1060    __ rdpc(r);
1061
1062    if (disp != 0) {
1063      assert(r != O7, "need temporary");
1064      __ sub(r, __ ensure_simm13_or_reg(disp, O7), r);
1065    }
1066  }
1067  else {
1068    // Materialize the constant table base.
1069    assert(constant_table.size() == consts_size, err_msg("must be: %d == %d", constant_table.size(), consts_size));
1070    address baseaddr = cs->start() + -(constant_table.table_base_offset());
1071    RelocationHolder rspec = internal_word_Relocation::spec(baseaddr);
1072    AddressLiteral base(baseaddr, rspec);
1073    __ set(base, r);
1074  }
1075}
1076
1077uint MachConstantBaseNode::size(PhaseRegAlloc*) const {
1078  if (UseRDPCForConstantTableBase) {
1079    // This is really the worst case but generally it's only 1 instruction.
1080    return (1 /*rdpc*/ + 1 /*sub*/ + MacroAssembler::worst_case_insts_for_set()) * BytesPerInstWord;
1081  } else {
1082    return MacroAssembler::worst_case_insts_for_set() * BytesPerInstWord;
1083  }
1084}
1085
1086#ifndef PRODUCT
1087void MachConstantBaseNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
1088  char reg[128];
1089  ra_->dump_register(this, reg);
1090  if (UseRDPCForConstantTableBase) {
1091    st->print("RDPC   %s\t! constant table base", reg);
1092  } else {
1093    st->print("SET    &constanttable,%s\t! constant table base", reg);
1094  }
1095}
1096#endif
1097
1098
1099//=============================================================================
1100
1101#ifndef PRODUCT
1102void MachPrologNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1103  Compile* C = ra_->C;
1104
1105  for (int i = 0; i < OptoPrologueNops; i++) {
1106    st->print_cr("NOP"); st->print("\t");
1107  }
1108
1109  if( VerifyThread ) {
1110    st->print_cr("Verify_Thread"); st->print("\t");
1111  }
1112
1113  size_t framesize = C->frame_slots() << LogBytesPerInt;
1114
1115  // Calls to C2R adapters often do not accept exceptional returns.
1116  // We require that their callers must bang for them.  But be careful, because
1117  // some VM calls (such as call site linkage) can use several kilobytes of
1118  // stack.  But the stack safety zone should account for that.
1119  // See bugs 4446381, 4468289, 4497237.
1120  if (C->need_stack_bang(framesize)) {
1121    st->print_cr("! stack bang"); st->print("\t");
1122  }
1123
1124  if (Assembler::is_simm13(-framesize)) {
1125    st->print   ("SAVE   R_SP,-%d,R_SP",framesize);
1126  } else {
1127    st->print_cr("SETHI  R_SP,hi%%(-%d),R_G3",framesize); st->print("\t");
1128    st->print_cr("ADD    R_G3,lo%%(-%d),R_G3",framesize); st->print("\t");
1129    st->print   ("SAVE   R_SP,R_G3,R_SP");
1130  }
1131
1132}
1133#endif
1134
1135void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1136  Compile* C = ra_->C;
1137  MacroAssembler _masm(&cbuf);
1138
1139  for (int i = 0; i < OptoPrologueNops; i++) {
1140    __ nop();
1141  }
1142
1143  __ verify_thread();
1144
1145  size_t framesize = C->frame_slots() << LogBytesPerInt;
1146  assert(framesize >= 16*wordSize, "must have room for reg. save area");
1147  assert(framesize%(2*wordSize) == 0, "must preserve 2*wordSize alignment");
1148
1149  // Calls to C2R adapters often do not accept exceptional returns.
1150  // We require that their callers must bang for them.  But be careful, because
1151  // some VM calls (such as call site linkage) can use several kilobytes of
1152  // stack.  But the stack safety zone should account for that.
1153  // See bugs 4446381, 4468289, 4497237.
1154  if (C->need_stack_bang(framesize)) {
1155    __ generate_stack_overflow_check(framesize);
1156  }
1157
1158  if (Assembler::is_simm13(-framesize)) {
1159    __ save(SP, -framesize, SP);
1160  } else {
1161    __ sethi(-framesize & ~0x3ff, G3);
1162    __ add(G3, -framesize & 0x3ff, G3);
1163    __ save(SP, G3, SP);
1164  }
1165  C->set_frame_complete( __ offset() );
1166}
1167
1168uint MachPrologNode::size(PhaseRegAlloc *ra_) const {
1169  return MachNode::size(ra_);
1170}
1171
1172int MachPrologNode::reloc() const {
1173  return 10; // a large enough number
1174}
1175
1176//=============================================================================
1177#ifndef PRODUCT
1178void MachEpilogNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1179  Compile* C = ra_->C;
1180
1181  if( do_polling() && ra_->C->is_method_compilation() ) {
1182    st->print("SETHI  #PollAddr,L0\t! Load Polling address\n\t");
1183#ifdef _LP64
1184    st->print("LDX    [L0],G0\t!Poll for Safepointing\n\t");
1185#else
1186    st->print("LDUW   [L0],G0\t!Poll for Safepointing\n\t");
1187#endif
1188  }
1189
1190  if( do_polling() )
1191    st->print("RET\n\t");
1192
1193  st->print("RESTORE");
1194}
1195#endif
1196
1197void MachEpilogNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1198  MacroAssembler _masm(&cbuf);
1199  Compile* C = ra_->C;
1200
1201  __ verify_thread();
1202
1203  // If this does safepoint polling, then do it here
1204  if( do_polling() && ra_->C->is_method_compilation() ) {
1205    AddressLiteral polling_page(os::get_polling_page());
1206    __ sethi(polling_page, L0);
1207    __ relocate(relocInfo::poll_return_type);
1208    __ ld_ptr( L0, 0, G0 );
1209  }
1210
1211  // If this is a return, then stuff the restore in the delay slot
1212  if( do_polling() ) {
1213    __ ret();
1214    __ delayed()->restore();
1215  } else {
1216    __ restore();
1217  }
1218}
1219
1220uint MachEpilogNode::size(PhaseRegAlloc *ra_) const {
1221  return MachNode::size(ra_);
1222}
1223
1224int MachEpilogNode::reloc() const {
1225  return 16; // a large enough number
1226}
1227
1228const Pipeline * MachEpilogNode::pipeline() const {
1229  return MachNode::pipeline_class();
1230}
1231
1232int MachEpilogNode::safepoint_offset() const {
1233  assert( do_polling(), "no return for this epilog node");
1234  return MacroAssembler::insts_for_sethi(os::get_polling_page()) * BytesPerInstWord;
1235}
1236
1237//=============================================================================
1238
1239// Figure out which register class each belongs in: rc_int, rc_float, rc_stack
1240enum RC { rc_bad, rc_int, rc_float, rc_stack };
1241static enum RC rc_class( OptoReg::Name reg ) {
1242  if( !OptoReg::is_valid(reg)  ) return rc_bad;
1243  if (OptoReg::is_stack(reg)) return rc_stack;
1244  VMReg r = OptoReg::as_VMReg(reg);
1245  if (r->is_Register()) return rc_int;
1246  assert(r->is_FloatRegister(), "must be");
1247  return rc_float;
1248}
1249
1250static int impl_helper( const MachNode *mach, CodeBuffer *cbuf, PhaseRegAlloc *ra_, bool do_size, bool is_load, int offset, int reg, int opcode, const char *op_str, int size, outputStream* st ) {
1251  if( cbuf ) {
1252    // Better yet would be some mechanism to handle variable-size matches correctly
1253    if (!Assembler::is_simm13(offset + STACK_BIAS)) {
1254      ra_->C->record_method_not_compilable("unable to handle large constant offsets");
1255    } else {
1256      emit_form3_mem_reg(*cbuf, mach, opcode, -1, R_SP_enc, offset, 0, Matcher::_regEncode[reg]);
1257    }
1258  }
1259#ifndef PRODUCT
1260  else if( !do_size ) {
1261    if( size != 0 ) st->print("\n\t");
1262    if( is_load ) st->print("%s   [R_SP + #%d],R_%s\t! spill",op_str,offset,OptoReg::regname(reg));
1263    else          st->print("%s   R_%s,[R_SP + #%d]\t! spill",op_str,OptoReg::regname(reg),offset);
1264  }
1265#endif
1266  return size+4;
1267}
1268
1269static int impl_mov_helper( CodeBuffer *cbuf, bool do_size, int src, int dst, int op1, int op2, const char *op_str, int size, outputStream* st ) {
1270  if( cbuf ) emit3( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst], op1, 0, op2, Matcher::_regEncode[src] );
1271#ifndef PRODUCT
1272  else if( !do_size ) {
1273    if( size != 0 ) st->print("\n\t");
1274    st->print("%s  R_%s,R_%s\t! spill",op_str,OptoReg::regname(src),OptoReg::regname(dst));
1275  }
1276#endif
1277  return size+4;
1278}
1279
1280uint MachSpillCopyNode::implementation( CodeBuffer *cbuf,
1281                                        PhaseRegAlloc *ra_,
1282                                        bool do_size,
1283                                        outputStream* st ) const {
1284  // Get registers to move
1285  OptoReg::Name src_second = ra_->get_reg_second(in(1));
1286  OptoReg::Name src_first = ra_->get_reg_first(in(1));
1287  OptoReg::Name dst_second = ra_->get_reg_second(this );
1288  OptoReg::Name dst_first = ra_->get_reg_first(this );
1289
1290  enum RC src_second_rc = rc_class(src_second);
1291  enum RC src_first_rc = rc_class(src_first);
1292  enum RC dst_second_rc = rc_class(dst_second);
1293  enum RC dst_first_rc = rc_class(dst_first);
1294
1295  assert( OptoReg::is_valid(src_first) && OptoReg::is_valid(dst_first), "must move at least 1 register" );
1296
1297  // Generate spill code!
1298  int size = 0;
1299
1300  if( src_first == dst_first && src_second == dst_second )
1301    return size;            // Self copy, no move
1302
1303  // --------------------------------------
1304  // Check for mem-mem move.  Load into unused float registers and fall into
1305  // the float-store case.
1306  if( src_first_rc == rc_stack && dst_first_rc == rc_stack ) {
1307    int offset = ra_->reg2offset(src_first);
1308    // Further check for aligned-adjacent pair, so we can use a double load
1309    if( (src_first&1)==0 && src_first+1 == src_second ) {
1310      src_second    = OptoReg::Name(R_F31_num);
1311      src_second_rc = rc_float;
1312      size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F30_num,Assembler::lddf_op3,"LDDF",size, st);
1313    } else {
1314      size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F30_num,Assembler::ldf_op3 ,"LDF ",size, st);
1315    }
1316    src_first    = OptoReg::Name(R_F30_num);
1317    src_first_rc = rc_float;
1318  }
1319
1320  if( src_second_rc == rc_stack && dst_second_rc == rc_stack ) {
1321    int offset = ra_->reg2offset(src_second);
1322    size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F31_num,Assembler::ldf_op3,"LDF ",size, st);
1323    src_second    = OptoReg::Name(R_F31_num);
1324    src_second_rc = rc_float;
1325  }
1326
1327  // --------------------------------------
1328  // Check for float->int copy; requires a trip through memory
1329  if (src_first_rc == rc_float && dst_first_rc == rc_int && UseVIS < 3) {
1330    int offset = frame::register_save_words*wordSize;
1331    if (cbuf) {
1332      emit3_simm13( *cbuf, Assembler::arith_op, R_SP_enc, Assembler::sub_op3, R_SP_enc, 16 );
1333      impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
1334      impl_helper(this,cbuf,ra_,do_size,true ,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
1335      emit3_simm13( *cbuf, Assembler::arith_op, R_SP_enc, Assembler::add_op3, R_SP_enc, 16 );
1336    }
1337#ifndef PRODUCT
1338    else if (!do_size) {
1339      if (size != 0) st->print("\n\t");
1340      st->print(  "SUB    R_SP,16,R_SP\n");
1341      impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
1342      impl_helper(this,cbuf,ra_,do_size,true ,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
1343      st->print("\tADD    R_SP,16,R_SP\n");
1344    }
1345#endif
1346    size += 16;
1347  }
1348
1349  // Check for float->int copy on T4
1350  if (src_first_rc == rc_float && dst_first_rc == rc_int && UseVIS >= 3) {
1351    // Further check for aligned-adjacent pair, so we can use a double move
1352    if ((src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second)
1353      return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mdtox_opf,"MOVDTOX",size, st);
1354    size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mstouw_opf,"MOVSTOUW",size, st);
1355  }
1356  // Check for int->float copy on T4
1357  if (src_first_rc == rc_int && dst_first_rc == rc_float && UseVIS >= 3) {
1358    // Further check for aligned-adjacent pair, so we can use a double move
1359    if ((src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second)
1360      return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mxtod_opf,"MOVXTOD",size, st);
1361    size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mwtos_opf,"MOVWTOS",size, st);
1362  }
1363
1364  // --------------------------------------
1365  // In the 32-bit 1-reg-longs build ONLY, I see mis-aligned long destinations.
1366  // In such cases, I have to do the big-endian swap.  For aligned targets, the
1367  // hardware does the flop for me.  Doubles are always aligned, so no problem
1368  // there.  Misaligned sources only come from native-long-returns (handled
1369  // special below).
1370#ifndef _LP64
1371  if( src_first_rc == rc_int &&     // source is already big-endian
1372      src_second_rc != rc_bad &&    // 64-bit move
1373      ((dst_first&1)!=0 || dst_second != dst_first+1) ) { // misaligned dst
1374    assert( (src_first&1)==0 && src_second == src_first+1, "source must be aligned" );
1375    // Do the big-endian flop.
1376    OptoReg::Name tmp    = dst_first   ; dst_first    = dst_second   ; dst_second    = tmp   ;
1377    enum RC       tmp_rc = dst_first_rc; dst_first_rc = dst_second_rc; dst_second_rc = tmp_rc;
1378  }
1379#endif
1380
1381  // --------------------------------------
1382  // Check for integer reg-reg copy
1383  if( src_first_rc == rc_int && dst_first_rc == rc_int ) {
1384#ifndef _LP64
1385    if( src_first == R_O0_num && src_second == R_O1_num ) {  // Check for the evil O0/O1 native long-return case
1386      // Note: The _first and _second suffixes refer to the addresses of the the 2 halves of the 64-bit value
1387      //       as stored in memory.  On a big-endian machine like SPARC, this means that the _second
1388      //       operand contains the least significant word of the 64-bit value and vice versa.
1389      OptoReg::Name tmp = OptoReg::Name(R_O7_num);
1390      assert( (dst_first&1)==0 && dst_second == dst_first+1, "return a native O0/O1 long to an aligned-adjacent 64-bit reg" );
1391      // Shift O0 left in-place, zero-extend O1, then OR them into the dst
1392      if( cbuf ) {
1393        emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[tmp], Assembler::sllx_op3, Matcher::_regEncode[src_first], 0x1020 );
1394        emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[src_second], Assembler::srl_op3, Matcher::_regEncode[src_second], 0x0000 );
1395        emit3       ( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_first], Assembler:: or_op3, Matcher::_regEncode[tmp], 0, Matcher::_regEncode[src_second] );
1396#ifndef PRODUCT
1397      } else if( !do_size ) {
1398        if( size != 0 ) st->print("\n\t");
1399        st->print("SLLX   R_%s,32,R_%s\t! Move O0-first to O7-high\n\t", OptoReg::regname(src_first), OptoReg::regname(tmp));
1400        st->print("SRL    R_%s, 0,R_%s\t! Zero-extend O1\n\t", OptoReg::regname(src_second), OptoReg::regname(src_second));
1401        st->print("OR     R_%s,R_%s,R_%s\t! spill",OptoReg::regname(tmp), OptoReg::regname(src_second), OptoReg::regname(dst_first));
1402#endif
1403      }
1404      return size+12;
1405    }
1406    else if( dst_first == R_I0_num && dst_second == R_I1_num ) {
1407      // returning a long value in I0/I1
1408      // a SpillCopy must be able to target a return instruction's reg_class
1409      // Note: The _first and _second suffixes refer to the addresses of the the 2 halves of the 64-bit value
1410      //       as stored in memory.  On a big-endian machine like SPARC, this means that the _second
1411      //       operand contains the least significant word of the 64-bit value and vice versa.
1412      OptoReg::Name tdest = dst_first;
1413
1414      if (src_first == dst_first) {
1415        tdest = OptoReg::Name(R_O7_num);
1416        size += 4;
1417      }
1418
1419      if( cbuf ) {
1420        assert( (src_first&1) == 0 && (src_first+1) == src_second, "return value was in an aligned-adjacent 64-bit reg");
1421        // Shift value in upper 32-bits of src to lower 32-bits of I0; move lower 32-bits to I1
1422        // ShrL_reg_imm6
1423        emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[tdest], Assembler::srlx_op3, Matcher::_regEncode[src_second], 32 | 0x1000 );
1424        // ShrR_reg_imm6  src, 0, dst
1425        emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_second], Assembler::srl_op3, Matcher::_regEncode[src_first], 0x0000 );
1426        if (tdest != dst_first) {
1427          emit3     ( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_first], Assembler::or_op3, 0/*G0*/, 0/*op2*/, Matcher::_regEncode[tdest] );
1428        }
1429      }
1430#ifndef PRODUCT
1431      else if( !do_size ) {
1432        if( size != 0 ) st->print("\n\t");  // %%%%% !!!!!
1433        st->print("SRLX   R_%s,32,R_%s\t! Extract MSW\n\t",OptoReg::regname(src_second),OptoReg::regname(tdest));
1434        st->print("SRL    R_%s, 0,R_%s\t! Extract LSW\n\t",OptoReg::regname(src_first),OptoReg::regname(dst_second));
1435        if (tdest != dst_first) {
1436          st->print("MOV    R_%s,R_%s\t! spill\n\t", OptoReg::regname(tdest), OptoReg::regname(dst_first));
1437        }
1438      }
1439#endif // PRODUCT
1440      return size+8;
1441    }
1442#endif // !_LP64
1443    // Else normal reg-reg copy
1444    assert( src_second != dst_first, "smashed second before evacuating it" );
1445    size = impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::or_op3,0,"MOV  ",size, st);
1446    assert( (src_first&1) == 0 && (dst_first&1) == 0, "never move second-halves of int registers" );
1447    // This moves an aligned adjacent pair.
1448    // See if we are done.
1449    if( src_first+1 == src_second && dst_first+1 == dst_second )
1450      return size;
1451  }
1452
1453  // Check for integer store
1454  if( src_first_rc == rc_int && dst_first_rc == rc_stack ) {
1455    int offset = ra_->reg2offset(dst_first);
1456    // Further check for aligned-adjacent pair, so we can use a double store
1457    if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1458      return impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stx_op3,"STX ",size, st);
1459    size  =  impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stw_op3,"STW ",size, st);
1460  }
1461
1462  // Check for integer load
1463  if( dst_first_rc == rc_int && src_first_rc == rc_stack ) {
1464    int offset = ra_->reg2offset(src_first);
1465    // Further check for aligned-adjacent pair, so we can use a double load
1466    if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1467      return impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::ldx_op3 ,"LDX ",size, st);
1468    size  =  impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
1469  }
1470
1471  // Check for float reg-reg copy
1472  if( src_first_rc == rc_float && dst_first_rc == rc_float ) {
1473    // Further check for aligned-adjacent pair, so we can use a double move
1474    if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1475      return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::fpop1_op3,Assembler::fmovd_opf,"FMOVD",size, st);
1476    size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::fpop1_op3,Assembler::fmovs_opf,"FMOVS",size, st);
1477  }
1478
1479  // Check for float store
1480  if( src_first_rc == rc_float && dst_first_rc == rc_stack ) {
1481    int offset = ra_->reg2offset(dst_first);
1482    // Further check for aligned-adjacent pair, so we can use a double store
1483    if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1484      return impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stdf_op3,"STDF",size, st);
1485    size  =  impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
1486  }
1487
1488  // Check for float load
1489  if( dst_first_rc == rc_float && src_first_rc == rc_stack ) {
1490    int offset = ra_->reg2offset(src_first);
1491    // Further check for aligned-adjacent pair, so we can use a double load
1492    if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1493      return impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::lddf_op3,"LDDF",size, st);
1494    size  =  impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::ldf_op3 ,"LDF ",size, st);
1495  }
1496
1497  // --------------------------------------------------------------------
1498  // Check for hi bits still needing moving.  Only happens for misaligned
1499  // arguments to native calls.
1500  if( src_second == dst_second )
1501    return size;               // Self copy; no move
1502  assert( src_second_rc != rc_bad && dst_second_rc != rc_bad, "src_second & dst_second cannot be Bad" );
1503
1504#ifndef _LP64
1505  // In the LP64 build, all registers can be moved as aligned/adjacent
1506  // pairs, so there's never any need to move the high bits separately.
1507  // The 32-bit builds have to deal with the 32-bit ABI which can force
1508  // all sorts of silly alignment problems.
1509
1510  // Check for integer reg-reg copy.  Hi bits are stuck up in the top
1511  // 32-bits of a 64-bit register, but are needed in low bits of another
1512  // register (else it's a hi-bits-to-hi-bits copy which should have
1513  // happened already as part of a 64-bit move)
1514  if( src_second_rc == rc_int && dst_second_rc == rc_int ) {
1515    assert( (src_second&1)==1, "its the evil O0/O1 native return case" );
1516    assert( (dst_second&1)==0, "should have moved with 1 64-bit move" );
1517    // Shift src_second down to dst_second's low bits.
1518    if( cbuf ) {
1519      emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_second], Assembler::srlx_op3, Matcher::_regEncode[src_second-1], 0x1020 );
1520#ifndef PRODUCT
1521    } else if( !do_size ) {
1522      if( size != 0 ) st->print("\n\t");
1523      st->print("SRLX   R_%s,32,R_%s\t! spill: Move high bits down low",OptoReg::regname(src_second-1),OptoReg::regname(dst_second));
1524#endif
1525    }
1526    return size+4;
1527  }
1528
1529  // Check for high word integer store.  Must down-shift the hi bits
1530  // into a temp register, then fall into the case of storing int bits.
1531  if( src_second_rc == rc_int && dst_second_rc == rc_stack && (src_second&1)==1 ) {
1532    // Shift src_second down to dst_second's low bits.
1533    if( cbuf ) {
1534      emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[R_O7_num], Assembler::srlx_op3, Matcher::_regEncode[src_second-1], 0x1020 );
1535#ifndef PRODUCT
1536    } else if( !do_size ) {
1537      if( size != 0 ) st->print("\n\t");
1538      st->print("SRLX   R_%s,32,R_%s\t! spill: Move high bits down low",OptoReg::regname(src_second-1),OptoReg::regname(R_O7_num));
1539#endif
1540    }
1541    size+=4;
1542    src_second = OptoReg::Name(R_O7_num); // Not R_O7H_num!
1543  }
1544
1545  // Check for high word integer load
1546  if( dst_second_rc == rc_int && src_second_rc == rc_stack )
1547    return impl_helper(this,cbuf,ra_,do_size,true ,ra_->reg2offset(src_second),dst_second,Assembler::lduw_op3,"LDUW",size, st);
1548
1549  // Check for high word integer store
1550  if( src_second_rc == rc_int && dst_second_rc == rc_stack )
1551    return impl_helper(this,cbuf,ra_,do_size,false,ra_->reg2offset(dst_second),src_second,Assembler::stw_op3 ,"STW ",size, st);
1552
1553  // Check for high word float store
1554  if( src_second_rc == rc_float && dst_second_rc == rc_stack )
1555    return impl_helper(this,cbuf,ra_,do_size,false,ra_->reg2offset(dst_second),src_second,Assembler::stf_op3 ,"STF ",size, st);
1556
1557#endif // !_LP64
1558
1559  Unimplemented();
1560}
1561
1562#ifndef PRODUCT
1563void MachSpillCopyNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1564  implementation( NULL, ra_, false, st );
1565}
1566#endif
1567
1568void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1569  implementation( &cbuf, ra_, false, NULL );
1570}
1571
1572uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
1573  return implementation( NULL, ra_, true, NULL );
1574}
1575
1576//=============================================================================
1577#ifndef PRODUCT
1578void MachNopNode::format( PhaseRegAlloc *, outputStream *st ) const {
1579  st->print("NOP \t# %d bytes pad for loops and calls", 4 * _count);
1580}
1581#endif
1582
1583void MachNopNode::emit(CodeBuffer &cbuf, PhaseRegAlloc * ) const {
1584  MacroAssembler _masm(&cbuf);
1585  for(int i = 0; i < _count; i += 1) {
1586    __ nop();
1587  }
1588}
1589
1590uint MachNopNode::size(PhaseRegAlloc *ra_) const {
1591  return 4 * _count;
1592}
1593
1594
1595//=============================================================================
1596#ifndef PRODUCT
1597void BoxLockNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1598  int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
1599  int reg = ra_->get_reg_first(this);
1600  st->print("LEA    [R_SP+#%d+BIAS],%s",offset,Matcher::regName[reg]);
1601}
1602#endif
1603
1604void BoxLockNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1605  MacroAssembler _masm(&cbuf);
1606  int offset = ra_->reg2offset(in_RegMask(0).find_first_elem()) + STACK_BIAS;
1607  int reg = ra_->get_encode(this);
1608
1609  if (Assembler::is_simm13(offset)) {
1610     __ add(SP, offset, reg_to_register_object(reg));
1611  } else {
1612     __ set(offset, O7);
1613     __ add(SP, O7, reg_to_register_object(reg));
1614  }
1615}
1616
1617uint BoxLockNode::size(PhaseRegAlloc *ra_) const {
1618  // BoxLockNode is not a MachNode, so we can't just call MachNode::size(ra_)
1619  assert(ra_ == ra_->C->regalloc(), "sanity");
1620  return ra_->C->scratch_emit_size(this);
1621}
1622
1623//=============================================================================
1624
1625// emit call stub, compiled java to interpretor
1626void emit_java_to_interp(CodeBuffer &cbuf ) {
1627
1628  // Stub is fixed up when the corresponding call is converted from calling
1629  // compiled code to calling interpreted code.
1630  // set (empty), G5
1631  // jmp -1
1632
1633  address mark = cbuf.insts_mark();  // get mark within main instrs section
1634
1635  MacroAssembler _masm(&cbuf);
1636
1637  address base =
1638  __ start_a_stub(Compile::MAX_stubs_size);
1639  if (base == NULL)  return;  // CodeBuffer::expand failed
1640
1641  // static stub relocation stores the instruction address of the call
1642  __ relocate(static_stub_Relocation::spec(mark));
1643
1644  __ set_oop(NULL, reg_to_register_object(Matcher::inline_cache_reg_encode()));
1645
1646  __ set_inst_mark();
1647  AddressLiteral addrlit(-1);
1648  __ JUMP(addrlit, G3, 0);
1649
1650  __ delayed()->nop();
1651
1652  // Update current stubs pointer and restore code_end.
1653  __ end_a_stub();
1654}
1655
1656// size of call stub, compiled java to interpretor
1657uint size_java_to_interp() {
1658  // This doesn't need to be accurate but it must be larger or equal to
1659  // the real size of the stub.
1660  return (NativeMovConstReg::instruction_size +  // sethi/setlo;
1661          NativeJump::instruction_size + // sethi; jmp; nop
1662          (TraceJumps ? 20 * BytesPerInstWord : 0) );
1663}
1664// relocation entries for call stub, compiled java to interpretor
1665uint reloc_java_to_interp() {
1666  return 10;  // 4 in emit_java_to_interp + 1 in Java_Static_Call
1667}
1668
1669
1670//=============================================================================
1671#ifndef PRODUCT
1672void MachUEPNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1673  st->print_cr("\nUEP:");
1674#ifdef    _LP64
1675  if (UseCompressedOops) {
1676    assert(Universe::heap() != NULL, "java heap should be initialized");
1677    st->print_cr("\tLDUW   [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check - compressed klass");
1678    st->print_cr("\tSLL    R_G5,3,R_G5");
1679    if (Universe::narrow_oop_base() != NULL)
1680      st->print_cr("\tADD    R_G5,R_G6_heap_base,R_G5");
1681  } else {
1682    st->print_cr("\tLDX    [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check");
1683  }
1684  st->print_cr("\tCMP    R_G5,R_G3" );
1685  st->print   ("\tTne    xcc,R_G0+ST_RESERVED_FOR_USER_0+2");
1686#else  // _LP64
1687  st->print_cr("\tLDUW   [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check");
1688  st->print_cr("\tCMP    R_G5,R_G3" );
1689  st->print   ("\tTne    icc,R_G0+ST_RESERVED_FOR_USER_0+2");
1690#endif // _LP64
1691}
1692#endif
1693
1694void MachUEPNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1695  MacroAssembler _masm(&cbuf);
1696  Register G5_ic_reg  = reg_to_register_object(Matcher::inline_cache_reg_encode());
1697  Register temp_reg   = G3;
1698  assert( G5_ic_reg != temp_reg, "conflicting registers" );
1699
1700  // Load klass from receiver
1701  __ load_klass(O0, temp_reg);
1702  // Compare against expected klass
1703  __ cmp(temp_reg, G5_ic_reg);
1704  // Branch to miss code, checks xcc or icc depending
1705  __ trap(Assembler::notEqual, Assembler::ptr_cc, G0, ST_RESERVED_FOR_USER_0+2);
1706}
1707
1708uint MachUEPNode::size(PhaseRegAlloc *ra_) const {
1709  return MachNode::size(ra_);
1710}
1711
1712
1713//=============================================================================
1714
1715uint size_exception_handler() {
1716  if (TraceJumps) {
1717    return (400); // just a guess
1718  }
1719  return ( NativeJump::instruction_size ); // sethi;jmp;nop
1720}
1721
1722uint size_deopt_handler() {
1723  if (TraceJumps) {
1724    return (400); // just a guess
1725  }
1726  return ( 4+  NativeJump::instruction_size ); // save;sethi;jmp;restore
1727}
1728
1729// Emit exception handler code.
1730int emit_exception_handler(CodeBuffer& cbuf) {
1731  Register temp_reg = G3;
1732  AddressLiteral exception_blob(OptoRuntime::exception_blob()->entry_point());
1733  MacroAssembler _masm(&cbuf);
1734
1735  address base =
1736  __ start_a_stub(size_exception_handler());
1737  if (base == NULL)  return 0;  // CodeBuffer::expand failed
1738
1739  int offset = __ offset();
1740
1741  __ JUMP(exception_blob, temp_reg, 0); // sethi;jmp
1742  __ delayed()->nop();
1743
1744  assert(__ offset() - offset <= (int) size_exception_handler(), "overflow");
1745
1746  __ end_a_stub();
1747
1748  return offset;
1749}
1750
1751int emit_deopt_handler(CodeBuffer& cbuf) {
1752  // Can't use any of the current frame's registers as we may have deopted
1753  // at a poll and everything (including G3) can be live.
1754  Register temp_reg = L0;
1755  AddressLiteral deopt_blob(SharedRuntime::deopt_blob()->unpack());
1756  MacroAssembler _masm(&cbuf);
1757
1758  address base =
1759  __ start_a_stub(size_deopt_handler());
1760  if (base == NULL)  return 0;  // CodeBuffer::expand failed
1761
1762  int offset = __ offset();
1763  __ save_frame(0);
1764  __ JUMP(deopt_blob, temp_reg, 0); // sethi;jmp
1765  __ delayed()->restore();
1766
1767  assert(__ offset() - offset <= (int) size_deopt_handler(), "overflow");
1768
1769  __ end_a_stub();
1770  return offset;
1771
1772}
1773
1774// Given a register encoding, produce a Integer Register object
1775static Register reg_to_register_object(int register_encoding) {
1776  assert(L5->encoding() == R_L5_enc && G1->encoding() == R_G1_enc, "right coding");
1777  return as_Register(register_encoding);
1778}
1779
1780// Given a register encoding, produce a single-precision Float Register object
1781static FloatRegister reg_to_SingleFloatRegister_object(int register_encoding) {
1782  assert(F5->encoding(FloatRegisterImpl::S) == R_F5_enc && F12->encoding(FloatRegisterImpl::S) == R_F12_enc, "right coding");
1783  return as_SingleFloatRegister(register_encoding);
1784}
1785
1786// Given a register encoding, produce a double-precision Float Register object
1787static FloatRegister reg_to_DoubleFloatRegister_object(int register_encoding) {
1788  assert(F4->encoding(FloatRegisterImpl::D) == R_F4_enc, "right coding");
1789  assert(F32->encoding(FloatRegisterImpl::D) == R_D32_enc, "right coding");
1790  return as_DoubleFloatRegister(register_encoding);
1791}
1792
1793const bool Matcher::match_rule_supported(int opcode) {
1794  if (!has_match_rule(opcode))
1795    return false;
1796
1797  switch (opcode) {
1798  case Op_CountLeadingZerosI:
1799  case Op_CountLeadingZerosL:
1800  case Op_CountTrailingZerosI:
1801  case Op_CountTrailingZerosL:
1802    if (!UsePopCountInstruction)
1803      return false;
1804    break;
1805  }
1806
1807  return true;  // Per default match rules are supported.
1808}
1809
1810int Matcher::regnum_to_fpu_offset(int regnum) {
1811  return regnum - 32; // The FP registers are in the second chunk
1812}
1813
1814#ifdef ASSERT
1815address last_rethrow = NULL;  // debugging aid for Rethrow encoding
1816#endif
1817
1818// Vector width in bytes
1819const uint Matcher::vector_width_in_bytes(void) {
1820  return 8;
1821}
1822
1823// Vector ideal reg
1824const uint Matcher::vector_ideal_reg(void) {
1825  return Op_RegD;
1826}
1827
1828// USII supports fxtof through the whole range of number, USIII doesn't
1829const bool Matcher::convL2FSupported(void) {
1830  return VM_Version::has_fast_fxtof();
1831}
1832
1833// Is this branch offset short enough that a short branch can be used?
1834//
1835// NOTE: If the platform does not provide any short branch variants, then
1836//       this method should return false for offset 0.
1837bool Matcher::is_short_branch_offset(int rule, int br_size, int offset) {
1838  // The passed offset is relative to address of the branch.
1839  // Don't need to adjust the offset.
1840  return UseCBCond && Assembler::is_simm(offset, 12);
1841}
1842
1843const bool Matcher::isSimpleConstant64(jlong value) {
1844  // Will one (StoreL ConL) be cheaper than two (StoreI ConI)?.
1845  // Depends on optimizations in MacroAssembler::setx.
1846  int hi = (int)(value >> 32);
1847  int lo = (int)(value & ~0);
1848  return (hi == 0) || (hi == -1) || (lo == 0);
1849}
1850
1851// No scaling for the parameter the ClearArray node.
1852const bool Matcher::init_array_count_is_in_bytes = true;
1853
1854// Threshold size for cleararray.
1855const int Matcher::init_array_short_size = 8 * BytesPerLong;
1856
1857// Should the Matcher clone shifts on addressing modes, expecting them to
1858// be subsumed into complex addressing expressions or compute them into
1859// registers?  True for Intel but false for most RISCs
1860const bool Matcher::clone_shift_expressions = false;
1861
1862// Do we need to mask the count passed to shift instructions or does
1863// the cpu only look at the lower 5/6 bits anyway?
1864const bool Matcher::need_masked_shift_count = false;
1865
1866bool Matcher::narrow_oop_use_complex_address() {
1867  NOT_LP64(ShouldNotCallThis());
1868  assert(UseCompressedOops, "only for compressed oops code");
1869  return false;
1870}
1871
1872// Is it better to copy float constants, or load them directly from memory?
1873// Intel can load a float constant from a direct address, requiring no
1874// extra registers.  Most RISCs will have to materialize an address into a
1875// register first, so they would do better to copy the constant from stack.
1876const bool Matcher::rematerialize_float_constants = false;
1877
1878// If CPU can load and store mis-aligned doubles directly then no fixup is
1879// needed.  Else we split the double into 2 integer pieces and move it
1880// piece-by-piece.  Only happens when passing doubles into C code as the
1881// Java calling convention forces doubles to be aligned.
1882#ifdef _LP64
1883const bool Matcher::misaligned_doubles_ok = true;
1884#else
1885const bool Matcher::misaligned_doubles_ok = false;
1886#endif
1887
1888// No-op on SPARC.
1889void Matcher::pd_implicit_null_fixup(MachNode *node, uint idx) {
1890}
1891
1892// Advertise here if the CPU requires explicit rounding operations
1893// to implement the UseStrictFP mode.
1894const bool Matcher::strict_fp_requires_explicit_rounding = false;
1895
1896// Are floats conerted to double when stored to stack during deoptimization?
1897// Sparc does not handle callee-save floats.
1898bool Matcher::float_in_double() { return false; }
1899
1900// Do ints take an entire long register or just half?
1901// Note that we if-def off of _LP64.
1902// The relevant question is how the int is callee-saved.  In _LP64
1903// the whole long is written but de-opt'ing will have to extract
1904// the relevant 32 bits, in not-_LP64 only the low 32 bits is written.
1905#ifdef _LP64
1906const bool Matcher::int_in_long = true;
1907#else
1908const bool Matcher::int_in_long = false;
1909#endif
1910
1911// Return whether or not this register is ever used as an argument.  This
1912// function is used on startup to build the trampoline stubs in generateOptoStub.
1913// Registers not mentioned will be killed by the VM call in the trampoline, and
1914// arguments in those registers not be available to the callee.
1915bool Matcher::can_be_java_arg( int reg ) {
1916  // Standard sparc 6 args in registers
1917  if( reg == R_I0_num ||
1918      reg == R_I1_num ||
1919      reg == R_I2_num ||
1920      reg == R_I3_num ||
1921      reg == R_I4_num ||
1922      reg == R_I5_num ) return true;
1923#ifdef _LP64
1924  // 64-bit builds can pass 64-bit pointers and longs in
1925  // the high I registers
1926  if( reg == R_I0H_num ||
1927      reg == R_I1H_num ||
1928      reg == R_I2H_num ||
1929      reg == R_I3H_num ||
1930      reg == R_I4H_num ||
1931      reg == R_I5H_num ) return true;
1932
1933  if ((UseCompressedOops) && (reg == R_G6_num || reg == R_G6H_num)) {
1934    return true;
1935  }
1936
1937#else
1938  // 32-bit builds with longs-in-one-entry pass longs in G1 & G4.
1939  // Longs cannot be passed in O regs, because O regs become I regs
1940  // after a 'save' and I regs get their high bits chopped off on
1941  // interrupt.
1942  if( reg == R_G1H_num || reg == R_G1_num ) return true;
1943  if( reg == R_G4H_num || reg == R_G4_num ) return true;
1944#endif
1945  // A few float args in registers
1946  if( reg >= R_F0_num && reg <= R_F7_num ) return true;
1947
1948  return false;
1949}
1950
1951bool Matcher::is_spillable_arg( int reg ) {
1952  return can_be_java_arg(reg);
1953}
1954
1955bool Matcher::use_asm_for_ldiv_by_con( jlong divisor ) {
1956  // Use hardware SDIVX instruction when it is
1957  // faster than a code which use multiply.
1958  return VM_Version::has_fast_idiv();
1959}
1960
1961// Register for DIVI projection of divmodI
1962RegMask Matcher::divI_proj_mask() {
1963  ShouldNotReachHere();
1964  return RegMask();
1965}
1966
1967// Register for MODI projection of divmodI
1968RegMask Matcher::modI_proj_mask() {
1969  ShouldNotReachHere();
1970  return RegMask();
1971}
1972
1973// Register for DIVL projection of divmodL
1974RegMask Matcher::divL_proj_mask() {
1975  ShouldNotReachHere();
1976  return RegMask();
1977}
1978
1979// Register for MODL projection of divmodL
1980RegMask Matcher::modL_proj_mask() {
1981  ShouldNotReachHere();
1982  return RegMask();
1983}
1984
1985const RegMask Matcher::method_handle_invoke_SP_save_mask() {
1986  return L7_REGP_mask;
1987}
1988
1989%}
1990
1991
1992// The intptr_t operand types, defined by textual substitution.
1993// (Cf. opto/type.hpp.  This lets us avoid many, many other ifdefs.)
1994#ifdef _LP64
1995#define immX      immL
1996#define immX13    immL13
1997#define immX13m7  immL13m7
1998#define iRegX     iRegL
1999#define g1RegX    g1RegL
2000#else
2001#define immX      immI
2002#define immX13    immI13
2003#define immX13m7  immI13m7
2004#define iRegX     iRegI
2005#define g1RegX    g1RegI
2006#endif
2007
2008//----------ENCODING BLOCK-----------------------------------------------------
2009// This block specifies the encoding classes used by the compiler to output
2010// byte streams.  Encoding classes are parameterized macros used by
2011// Machine Instruction Nodes in order to generate the bit encoding of the
2012// instruction.  Operands specify their base encoding interface with the
2013// interface keyword.  There are currently supported four interfaces,
2014// REG_INTER, CONST_INTER, MEMORY_INTER, & COND_INTER.  REG_INTER causes an
2015// operand to generate a function which returns its register number when
2016// queried.   CONST_INTER causes an operand to generate a function which
2017// returns the value of the constant when queried.  MEMORY_INTER causes an
2018// operand to generate four functions which return the Base Register, the
2019// Index Register, the Scale Value, and the Offset Value of the operand when
2020// queried.  COND_INTER causes an operand to generate six functions which
2021// return the encoding code (ie - encoding bits for the instruction)
2022// associated with each basic boolean condition for a conditional instruction.
2023//
2024// Instructions specify two basic values for encoding.  Again, a function
2025// is available to check if the constant displacement is an oop. They use the
2026// ins_encode keyword to specify their encoding classes (which must be
2027// a sequence of enc_class names, and their parameters, specified in
2028// the encoding block), and they use the
2029// opcode keyword to specify, in order, their primary, secondary, and
2030// tertiary opcode.  Only the opcode sections which a particular instruction
2031// needs for encoding need to be specified.
2032encode %{
2033  enc_class enc_untested %{
2034#ifdef ASSERT
2035    MacroAssembler _masm(&cbuf);
2036    __ untested("encoding");
2037#endif
2038  %}
2039
2040  enc_class form3_mem_reg( memory mem, iRegI dst ) %{
2041    emit_form3_mem_reg(cbuf, this, $primary, $tertiary,
2042                       $mem$$base, $mem$$disp, $mem$$index, $dst$$reg);
2043  %}
2044
2045  enc_class simple_form3_mem_reg( memory mem, iRegI dst ) %{
2046    emit_form3_mem_reg(cbuf, this, $primary, -1,
2047                       $mem$$base, $mem$$disp, $mem$$index, $dst$$reg);
2048  %}
2049
2050  enc_class form3_mem_prefetch_read( memory mem ) %{
2051    emit_form3_mem_reg(cbuf, this, $primary, -1,
2052                       $mem$$base, $mem$$disp, $mem$$index, 0/*prefetch function many-reads*/);
2053  %}
2054
2055  enc_class form3_mem_prefetch_write( memory mem ) %{
2056    emit_form3_mem_reg(cbuf, this, $primary, -1,
2057                       $mem$$base, $mem$$disp, $mem$$index, 2/*prefetch function many-writes*/);
2058  %}
2059
2060  enc_class form3_mem_reg_long_unaligned_marshal( memory mem, iRegL reg ) %{
2061    assert( Assembler::is_simm13($mem$$disp  ), "need disp and disp+4" );
2062    assert( Assembler::is_simm13($mem$$disp+4), "need disp and disp+4" );
2063    guarantee($mem$$index == R_G0_enc, "double index?");
2064    emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp+4, R_G0_enc, R_O7_enc );
2065    emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp,   R_G0_enc, $reg$$reg );
2066    emit3_simm13( cbuf, Assembler::arith_op, $reg$$reg, Assembler::sllx_op3, $reg$$reg, 0x1020 );
2067    emit3( cbuf, Assembler::arith_op, $reg$$reg, Assembler::or_op3, $reg$$reg, 0, R_O7_enc );
2068  %}
2069
2070  enc_class form3_mem_reg_double_unaligned( memory mem, RegD_low reg ) %{
2071    assert( Assembler::is_simm13($mem$$disp  ), "need disp and disp+4" );
2072    assert( Assembler::is_simm13($mem$$disp+4), "need disp and disp+4" );
2073    guarantee($mem$$index == R_G0_enc, "double index?");
2074    // Load long with 2 instructions
2075    emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp,   R_G0_enc, $reg$$reg+0 );
2076    emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp+4, R_G0_enc, $reg$$reg+1 );
2077  %}
2078
2079  //%%% form3_mem_plus_4_reg is a hack--get rid of it
2080  enc_class form3_mem_plus_4_reg( memory mem, iRegI dst ) %{
2081    guarantee($mem$$disp, "cannot offset a reg-reg operand by 4");
2082    emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp + 4, $mem$$index, $dst$$reg);
2083  %}
2084
2085  enc_class form3_g0_rs2_rd_move( iRegI rs2, iRegI rd ) %{
2086    // Encode a reg-reg copy.  If it is useless, then empty encoding.
2087    if( $rs2$$reg != $rd$$reg )
2088      emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, $rs2$$reg );
2089  %}
2090
2091  // Target lo half of long
2092  enc_class form3_g0_rs2_rd_move_lo( iRegI rs2, iRegL rd ) %{
2093    // Encode a reg-reg copy.  If it is useless, then empty encoding.
2094    if( $rs2$$reg != LONG_LO_REG($rd$$reg) )
2095      emit3( cbuf, Assembler::arith_op, LONG_LO_REG($rd$$reg), Assembler::or_op3, 0, 0, $rs2$$reg );
2096  %}
2097
2098  // Source lo half of long
2099  enc_class form3_g0_rs2_rd_move_lo2( iRegL rs2, iRegI rd ) %{
2100    // Encode a reg-reg copy.  If it is useless, then empty encoding.
2101    if( LONG_LO_REG($rs2$$reg) != $rd$$reg )
2102      emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, LONG_LO_REG($rs2$$reg) );
2103  %}
2104
2105  // Target hi half of long
2106  enc_class form3_rs1_rd_copysign_hi( iRegI rs1, iRegL rd ) %{
2107    emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::sra_op3, $rs1$$reg, 31 );
2108  %}
2109
2110  // Source lo half of long, and leave it sign extended.
2111  enc_class form3_rs1_rd_signextend_lo1( iRegL rs1, iRegI rd ) %{
2112    // Sign extend low half
2113    emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::sra_op3, $rs1$$reg, 0, 0 );
2114  %}
2115
2116  // Source hi half of long, and leave it sign extended.
2117  enc_class form3_rs1_rd_copy_hi1( iRegL rs1, iRegI rd ) %{
2118    // Shift high half to low half
2119    emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::srlx_op3, $rs1$$reg, 32 );
2120  %}
2121
2122  // Source hi half of long
2123  enc_class form3_g0_rs2_rd_move_hi2( iRegL rs2, iRegI rd ) %{
2124    // Encode a reg-reg copy.  If it is useless, then empty encoding.
2125    if( LONG_HI_REG($rs2$$reg) != $rd$$reg )
2126      emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, LONG_HI_REG($rs2$$reg) );
2127  %}
2128
2129  enc_class form3_rs1_rs2_rd( iRegI rs1, iRegI rs2, iRegI rd ) %{
2130    emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, 0, $rs2$$reg );
2131  %}
2132
2133  enc_class enc_to_bool( iRegI src, iRegI dst ) %{
2134    emit3       ( cbuf, Assembler::arith_op,         0, Assembler::subcc_op3, 0, 0, $src$$reg );
2135    emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::addc_op3 , 0, 0 );
2136  %}
2137
2138  enc_class enc_ltmask( iRegI p, iRegI q, iRegI dst ) %{
2139    emit3       ( cbuf, Assembler::arith_op,         0, Assembler::subcc_op3, $p$$reg, 0, $q$$reg );
2140    // clear if nothing else is happening
2141    emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0,  0 );
2142    // blt,a,pn done
2143    emit2_19    ( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::less, Assembler::bp_op2, Assembler::icc, 0/*predict not taken*/, 2 );
2144    // mov dst,-1 in delay slot
2145    emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, -1 );
2146  %}
2147
2148  enc_class form3_rs1_imm5_rd( iRegI rs1, immU5 imm5, iRegI rd ) %{
2149    emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $imm5$$constant & 0x1F );
2150  %}
2151
2152  enc_class form3_sd_rs1_imm6_rd( iRegL rs1, immU6 imm6, iRegL rd ) %{
2153    emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, ($imm6$$constant & 0x3F) | 0x1000 );
2154  %}
2155
2156  enc_class form3_sd_rs1_rs2_rd( iRegL rs1, iRegI rs2, iRegL rd ) %{
2157    emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, 0x80, $rs2$$reg );
2158  %}
2159
2160  enc_class form3_rs1_simm13_rd( iRegI rs1, immI13 simm13, iRegI rd ) %{
2161    emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $simm13$$constant );
2162  %}
2163
2164  enc_class move_return_pc_to_o1() %{
2165    emit3_simm13( cbuf, Assembler::arith_op, R_O1_enc, Assembler::add_op3, R_O7_enc, frame::pc_return_offset );
2166  %}
2167
2168#ifdef _LP64
2169  /* %%% merge with enc_to_bool */
2170  enc_class enc_convP2B( iRegI dst, iRegP src ) %{
2171    MacroAssembler _masm(&cbuf);
2172
2173    Register   src_reg = reg_to_register_object($src$$reg);
2174    Register   dst_reg = reg_to_register_object($dst$$reg);
2175    __ movr(Assembler::rc_nz, src_reg, 1, dst_reg);
2176  %}
2177#endif
2178
2179  enc_class enc_cadd_cmpLTMask( iRegI p, iRegI q, iRegI y, iRegI tmp ) %{
2180    // (Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)))
2181    MacroAssembler _masm(&cbuf);
2182
2183    Register   p_reg = reg_to_register_object($p$$reg);
2184    Register   q_reg = reg_to_register_object($q$$reg);
2185    Register   y_reg = reg_to_register_object($y$$reg);
2186    Register tmp_reg = reg_to_register_object($tmp$$reg);
2187
2188    __ subcc( p_reg, q_reg,   p_reg );
2189    __ add  ( p_reg, y_reg, tmp_reg );
2190    __ movcc( Assembler::less, false, Assembler::icc, tmp_reg, p_reg );
2191  %}
2192
2193  enc_class form_d2i_helper(regD src, regF dst) %{
2194    // fcmp %fcc0,$src,$src
2195    emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmpd_opf, $src$$reg );
2196    // branch %fcc0 not-nan, predict taken
2197    emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
2198    // fdtoi $src,$dst
2199    emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fdtoi_opf, $src$$reg );
2200    // fitos $dst,$dst (if nan)
2201    emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fitos_opf, $dst$$reg );
2202    // clear $dst (if nan)
2203    emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubs_opf, $dst$$reg );
2204    // carry on here...
2205  %}
2206
2207  enc_class form_d2l_helper(regD src, regD dst) %{
2208    // fcmp %fcc0,$src,$src  check for NAN
2209    emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmpd_opf, $src$$reg );
2210    // branch %fcc0 not-nan, predict taken
2211    emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
2212    // fdtox $src,$dst   convert in delay slot
2213    emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fdtox_opf, $src$$reg );
2214    // fxtod $dst,$dst  (if nan)
2215    emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fxtod_opf, $dst$$reg );
2216    // clear $dst (if nan)
2217    emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubd_opf, $dst$$reg );
2218    // carry on here...
2219  %}
2220
2221  enc_class form_f2i_helper(regF src, regF dst) %{
2222    // fcmps %fcc0,$src,$src
2223    emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmps_opf, $src$$reg );
2224    // branch %fcc0 not-nan, predict taken
2225    emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
2226    // fstoi $src,$dst
2227    emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fstoi_opf, $src$$reg );
2228    // fitos $dst,$dst (if nan)
2229    emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fitos_opf, $dst$$reg );
2230    // clear $dst (if nan)
2231    emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubs_opf, $dst$$reg );
2232    // carry on here...
2233  %}
2234
2235  enc_class form_f2l_helper(regF src, regD dst) %{
2236    // fcmps %fcc0,$src,$src
2237    emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmps_opf, $src$$reg );
2238    // branch %fcc0 not-nan, predict taken
2239    emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
2240    // fstox $src,$dst
2241    emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fstox_opf, $src$$reg );
2242    // fxtod $dst,$dst (if nan)
2243    emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fxtod_opf, $dst$$reg );
2244    // clear $dst (if nan)
2245    emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubd_opf, $dst$$reg );
2246    // carry on here...
2247  %}
2248
2249  enc_class form3_opf_rs2F_rdF(regF rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2250  enc_class form3_opf_rs2F_rdD(regF rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2251  enc_class form3_opf_rs2D_rdF(regD rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2252  enc_class form3_opf_rs2D_rdD(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2253
2254  enc_class form3_opf_rs2D_lo_rdF(regD rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg+1); %}
2255
2256  enc_class form3_opf_rs2D_hi_rdD_hi(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2257  enc_class form3_opf_rs2D_lo_rdD_lo(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg+1,$primary,0,$tertiary,$rs2$$reg+1); %}
2258
2259  enc_class form3_opf_rs1F_rs2F_rdF( regF rs1, regF rs2, regF rd ) %{
2260    emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
2261  %}
2262
2263  enc_class form3_opf_rs1D_rs2D_rdD( regD rs1, regD rs2, regD rd ) %{
2264    emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
2265  %}
2266
2267  enc_class form3_opf_rs1F_rs2F_fcc( regF rs1, regF rs2, flagsRegF fcc ) %{
2268    emit3( cbuf, $secondary, $fcc$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
2269  %}
2270
2271  enc_class form3_opf_rs1D_rs2D_fcc( regD rs1, regD rs2, flagsRegF fcc ) %{
2272    emit3( cbuf, $secondary, $fcc$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
2273  %}
2274
2275  enc_class form3_convI2F(regF rs2, regF rd) %{
2276    emit3(cbuf,Assembler::arith_op,$rd$$reg,Assembler::fpop1_op3,0,$secondary,$rs2$$reg);
2277  %}
2278
2279  // Encloding class for traceable jumps
2280  enc_class form_jmpl(g3RegP dest) %{
2281    emit_jmpl(cbuf, $dest$$reg);
2282  %}
2283
2284  enc_class form_jmpl_set_exception_pc(g1RegP dest) %{
2285    emit_jmpl_set_exception_pc(cbuf, $dest$$reg);
2286  %}
2287
2288  enc_class form2_nop() %{
2289    emit_nop(cbuf);
2290  %}
2291
2292  enc_class form2_illtrap() %{
2293    emit_illtrap(cbuf);
2294  %}
2295
2296
2297  // Compare longs and convert into -1, 0, 1.
2298  enc_class cmpl_flag( iRegL src1, iRegL src2, iRegI dst ) %{
2299    // CMP $src1,$src2
2300    emit3( cbuf, Assembler::arith_op, 0, Assembler::subcc_op3, $src1$$reg, 0, $src2$$reg );
2301    // blt,a,pn done
2302    emit2_19( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::less   , Assembler::bp_op2, Assembler::xcc, 0/*predict not taken*/, 5 );
2303    // mov dst,-1 in delay slot
2304    emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, -1 );
2305    // bgt,a,pn done
2306    emit2_19( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::greater, Assembler::bp_op2, Assembler::xcc, 0/*predict not taken*/, 3 );
2307    // mov dst,1 in delay slot
2308    emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0,  1 );
2309    // CLR    $dst
2310    emit3( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3 , 0, 0, 0 );
2311  %}
2312
2313  enc_class enc_PartialSubtypeCheck() %{
2314    MacroAssembler _masm(&cbuf);
2315    __ call(StubRoutines::Sparc::partial_subtype_check(), relocInfo::runtime_call_type);
2316    __ delayed()->nop();
2317  %}
2318
2319  enc_class enc_bp( label labl, cmpOp cmp, flagsReg cc ) %{
2320    MacroAssembler _masm(&cbuf);
2321    Label* L = $labl$$label;
2322    Assembler::Predict predict_taken =
2323      cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
2324
2325    __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
2326    __ delayed()->nop();
2327  %}
2328
2329  enc_class enc_bpr( label labl, cmpOp_reg cmp, iRegI op1 ) %{
2330    MacroAssembler _masm(&cbuf);
2331    Label* L = $labl$$label;
2332    Assembler::Predict predict_taken =
2333      cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
2334
2335    __ bpr( (Assembler::RCondition)($cmp$$cmpcode), false, predict_taken, as_Register($op1$$reg), *L);
2336    __ delayed()->nop();
2337  %}
2338
2339  enc_class enc_cmov_reg( cmpOp cmp, iRegI dst, iRegI src, immI pcc) %{
2340    int op = (Assembler::arith_op << 30) |
2341             ($dst$$reg << 25) |
2342             (Assembler::movcc_op3 << 19) |
2343             (1 << 18) |                    // cc2 bit for 'icc'
2344             ($cmp$$cmpcode << 14) |
2345             (0 << 13) |                    // select register move
2346             ($pcc$$constant << 11) |       // cc1, cc0 bits for 'icc' or 'xcc'
2347             ($src$$reg << 0);
2348    cbuf.insts()->emit_int32(op);
2349  %}
2350
2351  enc_class enc_cmov_imm( cmpOp cmp, iRegI dst, immI11 src, immI pcc ) %{
2352    int simm11 = $src$$constant & ((1<<11)-1); // Mask to 11 bits
2353    int op = (Assembler::arith_op << 30) |
2354             ($dst$$reg << 25) |
2355             (Assembler::movcc_op3 << 19) |
2356             (1 << 18) |                    // cc2 bit for 'icc'
2357             ($cmp$$cmpcode << 14) |
2358             (1 << 13) |                    // select immediate move
2359             ($pcc$$constant << 11) |       // cc1, cc0 bits for 'icc'
2360             (simm11 << 0);
2361    cbuf.insts()->emit_int32(op);
2362  %}
2363
2364  enc_class enc_cmov_reg_f( cmpOpF cmp, iRegI dst, iRegI src, flagsRegF fcc ) %{
2365    int op = (Assembler::arith_op << 30) |
2366             ($dst$$reg << 25) |
2367             (Assembler::movcc_op3 << 19) |
2368             (0 << 18) |                    // cc2 bit for 'fccX'
2369             ($cmp$$cmpcode << 14) |
2370             (0 << 13) |                    // select register move
2371             ($fcc$$reg << 11) |            // cc1, cc0 bits for fcc0-fcc3
2372             ($src$$reg << 0);
2373    cbuf.insts()->emit_int32(op);
2374  %}
2375
2376  enc_class enc_cmov_imm_f( cmpOp cmp, iRegI dst, immI11 src, flagsRegF fcc ) %{
2377    int simm11 = $src$$constant & ((1<<11)-1); // Mask to 11 bits
2378    int op = (Assembler::arith_op << 30) |
2379             ($dst$$reg << 25) |
2380             (Assembler::movcc_op3 << 19) |
2381             (0 << 18) |                    // cc2 bit for 'fccX'
2382             ($cmp$$cmpcode << 14) |
2383             (1 << 13) |                    // select immediate move
2384             ($fcc$$reg << 11) |            // cc1, cc0 bits for fcc0-fcc3
2385             (simm11 << 0);
2386    cbuf.insts()->emit_int32(op);
2387  %}
2388
2389  enc_class enc_cmovf_reg( cmpOp cmp, regD dst, regD src, immI pcc ) %{
2390    int op = (Assembler::arith_op << 30) |
2391             ($dst$$reg << 25) |
2392             (Assembler::fpop2_op3 << 19) |
2393             (0 << 18) |
2394             ($cmp$$cmpcode << 14) |
2395             (1 << 13) |                    // select register move
2396             ($pcc$$constant << 11) |       // cc1-cc0 bits for 'icc' or 'xcc'
2397             ($primary << 5) |              // select single, double or quad
2398             ($src$$reg << 0);
2399    cbuf.insts()->emit_int32(op);
2400  %}
2401
2402  enc_class enc_cmovff_reg( cmpOpF cmp, flagsRegF fcc, regD dst, regD src ) %{
2403    int op = (Assembler::arith_op << 30) |
2404             ($dst$$reg << 25) |
2405             (Assembler::fpop2_op3 << 19) |
2406             (0 << 18) |
2407             ($cmp$$cmpcode << 14) |
2408             ($fcc$$reg << 11) |            // cc2-cc0 bits for 'fccX'
2409             ($primary << 5) |              // select single, double or quad
2410             ($src$$reg << 0);
2411    cbuf.insts()->emit_int32(op);
2412  %}
2413
2414  // Used by the MIN/MAX encodings.  Same as a CMOV, but
2415  // the condition comes from opcode-field instead of an argument.
2416  enc_class enc_cmov_reg_minmax( iRegI dst, iRegI src ) %{
2417    int op = (Assembler::arith_op << 30) |
2418             ($dst$$reg << 25) |
2419             (Assembler::movcc_op3 << 19) |
2420             (1 << 18) |                    // cc2 bit for 'icc'
2421             ($primary << 14) |
2422             (0 << 13) |                    // select register move
2423             (0 << 11) |                    // cc1, cc0 bits for 'icc'
2424             ($src$$reg << 0);
2425    cbuf.insts()->emit_int32(op);
2426  %}
2427
2428  enc_class enc_cmov_reg_minmax_long( iRegL dst, iRegL src ) %{
2429    int op = (Assembler::arith_op << 30) |
2430             ($dst$$reg << 25) |
2431             (Assembler::movcc_op3 << 19) |
2432             (6 << 16) |                    // cc2 bit for 'xcc'
2433             ($primary << 14) |
2434             (0 << 13) |                    // select register move
2435             (0 << 11) |                    // cc1, cc0 bits for 'icc'
2436             ($src$$reg << 0);
2437    cbuf.insts()->emit_int32(op);
2438  %}
2439
2440  enc_class Set13( immI13 src, iRegI rd ) %{
2441    emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, $src$$constant );
2442  %}
2443
2444  enc_class SetHi22( immI src, iRegI rd ) %{
2445    emit2_22( cbuf, Assembler::branch_op, $rd$$reg, Assembler::sethi_op2, $src$$constant );
2446  %}
2447
2448  enc_class Set32( immI src, iRegI rd ) %{
2449    MacroAssembler _masm(&cbuf);
2450    __ set($src$$constant, reg_to_register_object($rd$$reg));
2451  %}
2452
2453  enc_class call_epilog %{
2454    if( VerifyStackAtCalls ) {
2455      MacroAssembler _masm(&cbuf);
2456      int framesize = ra_->C->frame_slots() << LogBytesPerInt;
2457      Register temp_reg = G3;
2458      __ add(SP, framesize, temp_reg);
2459      __ cmp(temp_reg, FP);
2460      __ breakpoint_trap(Assembler::notEqual, Assembler::ptr_cc);
2461    }
2462  %}
2463
2464  // Long values come back from native calls in O0:O1 in the 32-bit VM, copy the value
2465  // to G1 so the register allocator will not have to deal with the misaligned register
2466  // pair.
2467  enc_class adjust_long_from_native_call %{
2468#ifndef _LP64
2469    if (returns_long()) {
2470      //    sllx  O0,32,O0
2471      emit3_simm13( cbuf, Assembler::arith_op, R_O0_enc, Assembler::sllx_op3, R_O0_enc, 0x1020 );
2472      //    srl   O1,0,O1
2473      emit3_simm13( cbuf, Assembler::arith_op, R_O1_enc, Assembler::srl_op3, R_O1_enc, 0x0000 );
2474      //    or    O0,O1,G1
2475      emit3       ( cbuf, Assembler::arith_op, R_G1_enc, Assembler:: or_op3, R_O0_enc, 0, R_O1_enc );
2476    }
2477#endif
2478  %}
2479
2480  enc_class Java_To_Runtime (method meth) %{    // CALL Java_To_Runtime
2481    // CALL directly to the runtime
2482    // The user of this is responsible for ensuring that R_L7 is empty (killed).
2483    emit_call_reloc(cbuf, $meth$$method, relocInfo::runtime_call_type,
2484                    /*preserve_g2=*/true);
2485  %}
2486
2487  enc_class preserve_SP %{
2488    MacroAssembler _masm(&cbuf);
2489    __ mov(SP, L7_mh_SP_save);
2490  %}
2491
2492  enc_class restore_SP %{
2493    MacroAssembler _masm(&cbuf);
2494    __ mov(L7_mh_SP_save, SP);
2495  %}
2496
2497  enc_class Java_Static_Call (method meth) %{    // JAVA STATIC CALL
2498    // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
2499    // who we intended to call.
2500    if ( !_method ) {
2501      emit_call_reloc(cbuf, $meth$$method, relocInfo::runtime_call_type);
2502    } else if (_optimized_virtual) {
2503      emit_call_reloc(cbuf, $meth$$method, relocInfo::opt_virtual_call_type);
2504    } else {
2505      emit_call_reloc(cbuf, $meth$$method, relocInfo::static_call_type);
2506    }
2507    if( _method ) {  // Emit stub for static call
2508      emit_java_to_interp(cbuf);
2509    }
2510  %}
2511
2512  enc_class Java_Dynamic_Call (method meth) %{    // JAVA DYNAMIC CALL
2513    MacroAssembler _masm(&cbuf);
2514    __ set_inst_mark();
2515    int vtable_index = this->_vtable_index;
2516    // MachCallDynamicJavaNode::ret_addr_offset uses this same test
2517    if (vtable_index < 0) {
2518      // must be invalid_vtable_index, not nonvirtual_vtable_index
2519      assert(vtable_index == methodOopDesc::invalid_vtable_index, "correct sentinel value");
2520      Register G5_ic_reg = reg_to_register_object(Matcher::inline_cache_reg_encode());
2521      assert(G5_ic_reg == G5_inline_cache_reg, "G5_inline_cache_reg used in assemble_ic_buffer_code()");
2522      assert(G5_ic_reg == G5_megamorphic_method, "G5_megamorphic_method used in megamorphic call stub");
2523      // !!!!!
2524      // Generate  "set 0x01, R_G5", placeholder instruction to load oop-info
2525      // emit_call_dynamic_prologue( cbuf );
2526      __ set_oop((jobject)Universe::non_oop_word(), G5_ic_reg);
2527
2528      address  virtual_call_oop_addr = __ inst_mark();
2529      // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
2530      // who we intended to call.
2531      __ relocate(virtual_call_Relocation::spec(virtual_call_oop_addr));
2532      emit_call_reloc(cbuf, $meth$$method, relocInfo::none);
2533    } else {
2534      assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
2535      // Just go thru the vtable
2536      // get receiver klass (receiver already checked for non-null)
2537      // If we end up going thru a c2i adapter interpreter expects method in G5
2538      int off = __ offset();
2539      __ load_klass(O0, G3_scratch);
2540      int klass_load_size;
2541      if (UseCompressedOops) {
2542        assert(Universe::heap() != NULL, "java heap should be initialized");
2543        if (Universe::narrow_oop_base() == NULL)
2544          klass_load_size = 2*BytesPerInstWord;
2545        else
2546          klass_load_size = 3*BytesPerInstWord;
2547      } else {
2548        klass_load_size = 1*BytesPerInstWord;
2549      }
2550      int entry_offset = instanceKlass::vtable_start_offset() + vtable_index*vtableEntry::size();
2551      int v_off = entry_offset*wordSize + vtableEntry::method_offset_in_bytes();
2552      if( __ is_simm13(v_off) ) {
2553        __ ld_ptr(G3, v_off, G5_method);
2554      } else {
2555        // Generate 2 instructions
2556        __ Assembler::sethi(v_off & ~0x3ff, G5_method);
2557        __ or3(G5_method, v_off & 0x3ff, G5_method);
2558        // ld_ptr, set_hi, set
2559        assert(__ offset() - off == klass_load_size + 2*BytesPerInstWord,
2560               "Unexpected instruction size(s)");
2561        __ ld_ptr(G3, G5_method, G5_method);
2562      }
2563      // NOTE: for vtable dispatches, the vtable entry will never be null.
2564      // However it may very well end up in handle_wrong_method if the
2565      // method is abstract for the particular class.
2566      __ ld_ptr(G5_method, in_bytes(methodOopDesc::from_compiled_offset()), G3_scratch);
2567      // jump to target (either compiled code or c2iadapter)
2568      __ jmpl(G3_scratch, G0, O7);
2569      __ delayed()->nop();
2570    }
2571  %}
2572
2573  enc_class Java_Compiled_Call (method meth) %{    // JAVA COMPILED CALL
2574    MacroAssembler _masm(&cbuf);
2575
2576    Register G5_ic_reg = reg_to_register_object(Matcher::inline_cache_reg_encode());
2577    Register temp_reg = G3;   // caller must kill G3!  We cannot reuse G5_ic_reg here because
2578                              // we might be calling a C2I adapter which needs it.
2579
2580    assert(temp_reg != G5_ic_reg, "conflicting registers");
2581    // Load nmethod
2582    __ ld_ptr(G5_ic_reg, in_bytes(methodOopDesc::from_compiled_offset()), temp_reg);
2583
2584    // CALL to compiled java, indirect the contents of G3
2585    __ set_inst_mark();
2586    __ callr(temp_reg, G0);
2587    __ delayed()->nop();
2588  %}
2589
2590enc_class idiv_reg(iRegIsafe src1, iRegIsafe src2, iRegIsafe dst) %{
2591    MacroAssembler _masm(&cbuf);
2592    Register Rdividend = reg_to_register_object($src1$$reg);
2593    Register Rdivisor = reg_to_register_object($src2$$reg);
2594    Register Rresult = reg_to_register_object($dst$$reg);
2595
2596    __ sra(Rdivisor, 0, Rdivisor);
2597    __ sra(Rdividend, 0, Rdividend);
2598    __ sdivx(Rdividend, Rdivisor, Rresult);
2599%}
2600
2601enc_class idiv_imm(iRegIsafe src1, immI13 imm, iRegIsafe dst) %{
2602    MacroAssembler _masm(&cbuf);
2603
2604    Register Rdividend = reg_to_register_object($src1$$reg);
2605    int divisor = $imm$$constant;
2606    Register Rresult = reg_to_register_object($dst$$reg);
2607
2608    __ sra(Rdividend, 0, Rdividend);
2609    __ sdivx(Rdividend, divisor, Rresult);
2610%}
2611
2612enc_class enc_mul_hi(iRegIsafe dst, iRegIsafe src1, iRegIsafe src2) %{
2613    MacroAssembler _masm(&cbuf);
2614    Register Rsrc1 = reg_to_register_object($src1$$reg);
2615    Register Rsrc2 = reg_to_register_object($src2$$reg);
2616    Register Rdst  = reg_to_register_object($dst$$reg);
2617
2618    __ sra( Rsrc1, 0, Rsrc1 );
2619    __ sra( Rsrc2, 0, Rsrc2 );
2620    __ mulx( Rsrc1, Rsrc2, Rdst );
2621    __ srlx( Rdst, 32, Rdst );
2622%}
2623
2624enc_class irem_reg(iRegIsafe src1, iRegIsafe src2, iRegIsafe dst, o7RegL scratch) %{
2625    MacroAssembler _masm(&cbuf);
2626    Register Rdividend = reg_to_register_object($src1$$reg);
2627    Register Rdivisor = reg_to_register_object($src2$$reg);
2628    Register Rresult = reg_to_register_object($dst$$reg);
2629    Register Rscratch = reg_to_register_object($scratch$$reg);
2630
2631    assert(Rdividend != Rscratch, "");
2632    assert(Rdivisor  != Rscratch, "");
2633
2634    __ sra(Rdividend, 0, Rdividend);
2635    __ sra(Rdivisor, 0, Rdivisor);
2636    __ sdivx(Rdividend, Rdivisor, Rscratch);
2637    __ mulx(Rscratch, Rdivisor, Rscratch);
2638    __ sub(Rdividend, Rscratch, Rresult);
2639%}
2640
2641enc_class irem_imm(iRegIsafe src1, immI13 imm, iRegIsafe dst, o7RegL scratch) %{
2642    MacroAssembler _masm(&cbuf);
2643
2644    Register Rdividend = reg_to_register_object($src1$$reg);
2645    int divisor = $imm$$constant;
2646    Register Rresult = reg_to_register_object($dst$$reg);
2647    Register Rscratch = reg_to_register_object($scratch$$reg);
2648
2649    assert(Rdividend != Rscratch, "");
2650
2651    __ sra(Rdividend, 0, Rdividend);
2652    __ sdivx(Rdividend, divisor, Rscratch);
2653    __ mulx(Rscratch, divisor, Rscratch);
2654    __ sub(Rdividend, Rscratch, Rresult);
2655%}
2656
2657enc_class fabss (sflt_reg dst, sflt_reg src) %{
2658    MacroAssembler _masm(&cbuf);
2659
2660    FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
2661    FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
2662
2663    __ fabs(FloatRegisterImpl::S, Fsrc, Fdst);
2664%}
2665
2666enc_class fabsd (dflt_reg dst, dflt_reg src) %{
2667    MacroAssembler _masm(&cbuf);
2668
2669    FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
2670    FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
2671
2672    __ fabs(FloatRegisterImpl::D, Fsrc, Fdst);
2673%}
2674
2675enc_class fnegd (dflt_reg dst, dflt_reg src) %{
2676    MacroAssembler _masm(&cbuf);
2677
2678    FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
2679    FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
2680
2681    __ fneg(FloatRegisterImpl::D, Fsrc, Fdst);
2682%}
2683
2684enc_class fsqrts (sflt_reg dst, sflt_reg src) %{
2685    MacroAssembler _masm(&cbuf);
2686
2687    FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
2688    FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
2689
2690    __ fsqrt(FloatRegisterImpl::S, Fsrc, Fdst);
2691%}
2692
2693enc_class fsqrtd (dflt_reg dst, dflt_reg src) %{
2694    MacroAssembler _masm(&cbuf);
2695
2696    FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
2697    FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
2698
2699    __ fsqrt(FloatRegisterImpl::D, Fsrc, Fdst);
2700%}
2701
2702enc_class fmovs (dflt_reg dst, dflt_reg src) %{
2703    MacroAssembler _masm(&cbuf);
2704
2705    FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
2706    FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
2707
2708    __ fmov(FloatRegisterImpl::S, Fsrc, Fdst);
2709%}
2710
2711enc_class fmovd (dflt_reg dst, dflt_reg src) %{
2712    MacroAssembler _masm(&cbuf);
2713
2714    FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
2715    FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
2716
2717    __ fmov(FloatRegisterImpl::D, Fsrc, Fdst);
2718%}
2719
2720enc_class Fast_Lock(iRegP oop, iRegP box, o7RegP scratch, iRegP scratch2) %{
2721    MacroAssembler _masm(&cbuf);
2722
2723    Register Roop  = reg_to_register_object($oop$$reg);
2724    Register Rbox  = reg_to_register_object($box$$reg);
2725    Register Rscratch = reg_to_register_object($scratch$$reg);
2726    Register Rmark =    reg_to_register_object($scratch2$$reg);
2727
2728    assert(Roop  != Rscratch, "");
2729    assert(Roop  != Rmark, "");
2730    assert(Rbox  != Rscratch, "");
2731    assert(Rbox  != Rmark, "");
2732
2733    __ compiler_lock_object(Roop, Rmark, Rbox, Rscratch, _counters, UseBiasedLocking && !UseOptoBiasInlining);
2734%}
2735
2736enc_class Fast_Unlock(iRegP oop, iRegP box, o7RegP scratch, iRegP scratch2) %{
2737    MacroAssembler _masm(&cbuf);
2738
2739    Register Roop  = reg_to_register_object($oop$$reg);
2740    Register Rbox  = reg_to_register_object($box$$reg);
2741    Register Rscratch = reg_to_register_object($scratch$$reg);
2742    Register Rmark =    reg_to_register_object($scratch2$$reg);
2743
2744    assert(Roop  != Rscratch, "");
2745    assert(Roop  != Rmark, "");
2746    assert(Rbox  != Rscratch, "");
2747    assert(Rbox  != Rmark, "");
2748
2749    __ compiler_unlock_object(Roop, Rmark, Rbox, Rscratch, UseBiasedLocking && !UseOptoBiasInlining);
2750  %}
2751
2752  enc_class enc_cas( iRegP mem, iRegP old, iRegP new ) %{
2753    MacroAssembler _masm(&cbuf);
2754    Register Rmem = reg_to_register_object($mem$$reg);
2755    Register Rold = reg_to_register_object($old$$reg);
2756    Register Rnew = reg_to_register_object($new$$reg);
2757
2758    // casx_under_lock picks 1 of 3 encodings:
2759    // For 32-bit pointers you get a 32-bit CAS
2760    // For 64-bit pointers you get a 64-bit CASX
2761    __ casn(Rmem, Rold, Rnew); // Swap(*Rmem,Rnew) if *Rmem == Rold
2762    __ cmp( Rold, Rnew );
2763  %}
2764
2765  enc_class enc_casx( iRegP mem, iRegL old, iRegL new) %{
2766    Register Rmem = reg_to_register_object($mem$$reg);
2767    Register Rold = reg_to_register_object($old$$reg);
2768    Register Rnew = reg_to_register_object($new$$reg);
2769
2770    MacroAssembler _masm(&cbuf);
2771    __ mov(Rnew, O7);
2772    __ casx(Rmem, Rold, O7);
2773    __ cmp( Rold, O7 );
2774  %}
2775
2776  // raw int cas, used for compareAndSwap
2777  enc_class enc_casi( iRegP mem, iRegL old, iRegL new) %{
2778    Register Rmem = reg_to_register_object($mem$$reg);
2779    Register Rold = reg_to_register_object($old$$reg);
2780    Register Rnew = reg_to_register_object($new$$reg);
2781
2782    MacroAssembler _masm(&cbuf);
2783    __ mov(Rnew, O7);
2784    __ cas(Rmem, Rold, O7);
2785    __ cmp( Rold, O7 );
2786  %}
2787
2788  enc_class enc_lflags_ne_to_boolean( iRegI res ) %{
2789    Register Rres = reg_to_register_object($res$$reg);
2790
2791    MacroAssembler _masm(&cbuf);
2792    __ mov(1, Rres);
2793    __ movcc( Assembler::notEqual, false, Assembler::xcc, G0, Rres );
2794  %}
2795
2796  enc_class enc_iflags_ne_to_boolean( iRegI res ) %{
2797    Register Rres = reg_to_register_object($res$$reg);
2798
2799    MacroAssembler _masm(&cbuf);
2800    __ mov(1, Rres);
2801    __ movcc( Assembler::notEqual, false, Assembler::icc, G0, Rres );
2802  %}
2803
2804  enc_class floating_cmp ( iRegP dst, regF src1, regF src2 ) %{
2805    MacroAssembler _masm(&cbuf);
2806    Register Rdst = reg_to_register_object($dst$$reg);
2807    FloatRegister Fsrc1 = $primary ? reg_to_SingleFloatRegister_object($src1$$reg)
2808                                     : reg_to_DoubleFloatRegister_object($src1$$reg);
2809    FloatRegister Fsrc2 = $primary ? reg_to_SingleFloatRegister_object($src2$$reg)
2810                                     : reg_to_DoubleFloatRegister_object($src2$$reg);
2811
2812    // Convert condition code fcc0 into -1,0,1; unordered reports less-than (-1)
2813    __ float_cmp( $primary, -1, Fsrc1, Fsrc2, Rdst);
2814  %}
2815
2816  // Compiler ensures base is doubleword aligned and cnt is count of doublewords
2817  enc_class enc_Clear_Array(iRegX cnt, iRegP base, iRegX temp) %{
2818    MacroAssembler _masm(&cbuf);
2819    Register    nof_bytes_arg   = reg_to_register_object($cnt$$reg);
2820    Register    nof_bytes_tmp    = reg_to_register_object($temp$$reg);
2821    Register    base_pointer_arg = reg_to_register_object($base$$reg);
2822
2823    Label loop;
2824    __ mov(nof_bytes_arg, nof_bytes_tmp);
2825
2826    // Loop and clear, walking backwards through the array.
2827    // nof_bytes_tmp (if >0) is always the number of bytes to zero
2828    __ bind(loop);
2829    __ deccc(nof_bytes_tmp, 8);
2830    __ br(Assembler::greaterEqual, true, Assembler::pt, loop);
2831    __ delayed()-> stx(G0, base_pointer_arg, nof_bytes_tmp);
2832    // %%%% this mini-loop must not cross a cache boundary!
2833  %}
2834
2835
2836  enc_class enc_String_Compare(o0RegP str1, o1RegP str2, g3RegI cnt1, g4RegI cnt2, notemp_iRegI result) %{
2837    Label Ldone, Lloop;
2838    MacroAssembler _masm(&cbuf);
2839
2840    Register   str1_reg = reg_to_register_object($str1$$reg);
2841    Register   str2_reg = reg_to_register_object($str2$$reg);
2842    Register   cnt1_reg = reg_to_register_object($cnt1$$reg);
2843    Register   cnt2_reg = reg_to_register_object($cnt2$$reg);
2844    Register result_reg = reg_to_register_object($result$$reg);
2845
2846    assert(result_reg != str1_reg &&
2847           result_reg != str2_reg &&
2848           result_reg != cnt1_reg &&
2849           result_reg != cnt2_reg ,
2850           "need different registers");
2851
2852    // Compute the minimum of the string lengths(str1_reg) and the
2853    // difference of the string lengths (stack)
2854
2855    // See if the lengths are different, and calculate min in str1_reg.
2856    // Stash diff in O7 in case we need it for a tie-breaker.
2857    Label Lskip;
2858    __ subcc(cnt1_reg, cnt2_reg, O7);
2859    __ sll(cnt1_reg, exact_log2(sizeof(jchar)), cnt1_reg); // scale the limit
2860    __ br(Assembler::greater, true, Assembler::pt, Lskip);
2861    // cnt2 is shorter, so use its count:
2862    __ delayed()->sll(cnt2_reg, exact_log2(sizeof(jchar)), cnt1_reg); // scale the limit
2863    __ bind(Lskip);
2864
2865    // reallocate cnt1_reg, cnt2_reg, result_reg
2866    // Note:  limit_reg holds the string length pre-scaled by 2
2867    Register limit_reg =   cnt1_reg;
2868    Register  chr2_reg =   cnt2_reg;
2869    Register  chr1_reg = result_reg;
2870    // str{12} are the base pointers
2871
2872    // Is the minimum length zero?
2873    __ cmp(limit_reg, (int)(0 * sizeof(jchar))); // use cast to resolve overloading ambiguity
2874    __ br(Assembler::equal, true, Assembler::pn, Ldone);
2875    __ delayed()->mov(O7, result_reg);  // result is difference in lengths
2876
2877    // Load first characters
2878    __ lduh(str1_reg, 0, chr1_reg);
2879    __ lduh(str2_reg, 0, chr2_reg);
2880
2881    // Compare first characters
2882    __ subcc(chr1_reg, chr2_reg, chr1_reg);
2883    __ br(Assembler::notZero, false, Assembler::pt,  Ldone);
2884    assert(chr1_reg == result_reg, "result must be pre-placed");
2885    __ delayed()->nop();
2886
2887    {
2888      // Check after comparing first character to see if strings are equivalent
2889      Label LSkip2;
2890      // Check if the strings start at same location
2891      __ cmp(str1_reg, str2_reg);
2892      __ brx(Assembler::notEqual, true, Assembler::pt, LSkip2);
2893      __ delayed()->nop();
2894
2895      // Check if the length difference is zero (in O7)
2896      __ cmp(G0, O7);
2897      __ br(Assembler::equal, true, Assembler::pn, Ldone);
2898      __ delayed()->mov(G0, result_reg);  // result is zero
2899
2900      // Strings might not be equal
2901      __ bind(LSkip2);
2902    }
2903
2904    __ subcc(limit_reg, 1 * sizeof(jchar), chr1_reg);
2905    __ br(Assembler::equal, true, Assembler::pn, Ldone);
2906    __ delayed()->mov(O7, result_reg);  // result is difference in lengths
2907
2908    // Shift str1_reg and str2_reg to the end of the arrays, negate limit
2909    __ add(str1_reg, limit_reg, str1_reg);
2910    __ add(str2_reg, limit_reg, str2_reg);
2911    __ neg(chr1_reg, limit_reg);  // limit = -(limit-2)
2912
2913    // Compare the rest of the characters
2914    __ lduh(str1_reg, limit_reg, chr1_reg);
2915    __ bind(Lloop);
2916    // __ lduh(str1_reg, limit_reg, chr1_reg); // hoisted
2917    __ lduh(str2_reg, limit_reg, chr2_reg);
2918    __ subcc(chr1_reg, chr2_reg, chr1_reg);
2919    __ br(Assembler::notZero, false, Assembler::pt, Ldone);
2920    assert(chr1_reg == result_reg, "result must be pre-placed");
2921    __ delayed()->inccc(limit_reg, sizeof(jchar));
2922    // annul LDUH if branch is not taken to prevent access past end of string
2923    __ br(Assembler::notZero, true, Assembler::pt, Lloop);
2924    __ delayed()->lduh(str1_reg, limit_reg, chr1_reg); // hoisted
2925
2926    // If strings are equal up to min length, return the length difference.
2927    __ mov(O7, result_reg);
2928
2929    // Otherwise, return the difference between the first mismatched chars.
2930    __ bind(Ldone);
2931  %}
2932
2933enc_class enc_String_Equals(o0RegP str1, o1RegP str2, g3RegI cnt, notemp_iRegI result) %{
2934    Label Lword_loop, Lpost_word, Lchar, Lchar_loop, Ldone;
2935    MacroAssembler _masm(&cbuf);
2936
2937    Register   str1_reg = reg_to_register_object($str1$$reg);
2938    Register   str2_reg = reg_to_register_object($str2$$reg);
2939    Register    cnt_reg = reg_to_register_object($cnt$$reg);
2940    Register   tmp1_reg = O7;
2941    Register result_reg = reg_to_register_object($result$$reg);
2942
2943    assert(result_reg != str1_reg &&
2944           result_reg != str2_reg &&
2945           result_reg !=  cnt_reg &&
2946           result_reg != tmp1_reg ,
2947           "need different registers");
2948
2949    __ cmp(str1_reg, str2_reg); //same char[] ?
2950    __ brx(Assembler::equal, true, Assembler::pn, Ldone);
2951    __ delayed()->add(G0, 1, result_reg);
2952
2953    __ cmp_zero_and_br(Assembler::zero, cnt_reg, Ldone, true, Assembler::pn);
2954    __ delayed()->add(G0, 1, result_reg); // count == 0
2955
2956    //rename registers
2957    Register limit_reg =    cnt_reg;
2958    Register  chr1_reg = result_reg;
2959    Register  chr2_reg =   tmp1_reg;
2960
2961    //check for alignment and position the pointers to the ends
2962    __ or3(str1_reg, str2_reg, chr1_reg);
2963    __ andcc(chr1_reg, 0x3, chr1_reg);
2964    // notZero means at least one not 4-byte aligned.
2965    // We could optimize the case when both arrays are not aligned
2966    // but it is not frequent case and it requires additional checks.
2967    __ br(Assembler::notZero, false, Assembler::pn, Lchar); // char by char compare
2968    __ delayed()->sll(limit_reg, exact_log2(sizeof(jchar)), limit_reg); // set byte count
2969
2970    // Compare char[] arrays aligned to 4 bytes.
2971    __ char_arrays_equals(str1_reg, str2_reg, limit_reg, result_reg,
2972                          chr1_reg, chr2_reg, Ldone);
2973    __ ba(Ldone);
2974    __ delayed()->add(G0, 1, result_reg);
2975
2976    // char by char compare
2977    __ bind(Lchar);
2978    __ add(str1_reg, limit_reg, str1_reg);
2979    __ add(str2_reg, limit_reg, str2_reg);
2980    __ neg(limit_reg); //negate count
2981
2982    __ lduh(str1_reg, limit_reg, chr1_reg);
2983    // Lchar_loop
2984    __ bind(Lchar_loop);
2985    __ lduh(str2_reg, limit_reg, chr2_reg);
2986    __ cmp(chr1_reg, chr2_reg);
2987    __ br(Assembler::notEqual, true, Assembler::pt, Ldone);
2988    __ delayed()->mov(G0, result_reg); //not equal
2989    __ inccc(limit_reg, sizeof(jchar));
2990    // annul LDUH if branch is not taken to prevent access past end of string
2991    __ br(Assembler::notZero, true, Assembler::pt, Lchar_loop);
2992    __ delayed()->lduh(str1_reg, limit_reg, chr1_reg); // hoisted
2993
2994    __ add(G0, 1, result_reg);  //equal
2995
2996    __ bind(Ldone);
2997  %}
2998
2999enc_class enc_Array_Equals(o0RegP ary1, o1RegP ary2, g3RegP tmp1, notemp_iRegI result) %{
3000    Label Lvector, Ldone, Lloop;
3001    MacroAssembler _masm(&cbuf);
3002
3003    Register   ary1_reg = reg_to_register_object($ary1$$reg);
3004    Register   ary2_reg = reg_to_register_object($ary2$$reg);
3005    Register   tmp1_reg = reg_to_register_object($tmp1$$reg);
3006    Register   tmp2_reg = O7;
3007    Register result_reg = reg_to_register_object($result$$reg);
3008
3009    int length_offset  = arrayOopDesc::length_offset_in_bytes();
3010    int base_offset    = arrayOopDesc::base_offset_in_bytes(T_CHAR);
3011
3012    // return true if the same array
3013    __ cmp(ary1_reg, ary2_reg);
3014    __ brx(Assembler::equal, true, Assembler::pn, Ldone);
3015    __ delayed()->add(G0, 1, result_reg); // equal
3016
3017    __ br_null(ary1_reg, true, Assembler::pn, Ldone);
3018    __ delayed()->mov(G0, result_reg);    // not equal
3019
3020    __ br_null(ary2_reg, true, Assembler::pn, Ldone);
3021    __ delayed()->mov(G0, result_reg);    // not equal
3022
3023    //load the lengths of arrays
3024    __ ld(Address(ary1_reg, length_offset), tmp1_reg);
3025    __ ld(Address(ary2_reg, length_offset), tmp2_reg);
3026
3027    // return false if the two arrays are not equal length
3028    __ cmp(tmp1_reg, tmp2_reg);
3029    __ br(Assembler::notEqual, true, Assembler::pn, Ldone);
3030    __ delayed()->mov(G0, result_reg);     // not equal
3031
3032    __ cmp_zero_and_br(Assembler::zero, tmp1_reg, Ldone, true, Assembler::pn);
3033    __ delayed()->add(G0, 1, result_reg); // zero-length arrays are equal
3034
3035    // load array addresses
3036    __ add(ary1_reg, base_offset, ary1_reg);
3037    __ add(ary2_reg, base_offset, ary2_reg);
3038
3039    // renaming registers
3040    Register chr1_reg  =  result_reg; // for characters in ary1
3041    Register chr2_reg  =  tmp2_reg;   // for characters in ary2
3042    Register limit_reg =  tmp1_reg;   // length
3043
3044    // set byte count
3045    __ sll(limit_reg, exact_log2(sizeof(jchar)), limit_reg);
3046
3047    // Compare char[] arrays aligned to 4 bytes.
3048    __ char_arrays_equals(ary1_reg, ary2_reg, limit_reg, result_reg,
3049                          chr1_reg, chr2_reg, Ldone);
3050    __ add(G0, 1, result_reg); // equals
3051
3052    __ bind(Ldone);
3053  %}
3054
3055  enc_class enc_rethrow() %{
3056    cbuf.set_insts_mark();
3057    Register temp_reg = G3;
3058    AddressLiteral rethrow_stub(OptoRuntime::rethrow_stub());
3059    assert(temp_reg != reg_to_register_object(R_I0_num), "temp must not break oop_reg");
3060    MacroAssembler _masm(&cbuf);
3061#ifdef ASSERT
3062    __ save_frame(0);
3063    AddressLiteral last_rethrow_addrlit(&last_rethrow);
3064    __ sethi(last_rethrow_addrlit, L1);
3065    Address addr(L1, last_rethrow_addrlit.low10());
3066    __ get_pc(L2);
3067    __ inc(L2, 3 * BytesPerInstWord);  // skip this & 2 more insns to point at jump_to
3068    __ st_ptr(L2, addr);
3069    __ restore();
3070#endif
3071    __ JUMP(rethrow_stub, temp_reg, 0); // sethi;jmp
3072    __ delayed()->nop();
3073  %}
3074
3075  enc_class emit_mem_nop() %{
3076    // Generates the instruction LDUXA [o6,g0],#0x82,g0
3077    cbuf.insts()->emit_int32((unsigned int) 0xc0839040);
3078  %}
3079
3080  enc_class emit_fadd_nop() %{
3081    // Generates the instruction FMOVS f31,f31
3082    cbuf.insts()->emit_int32((unsigned int) 0xbfa0003f);
3083  %}
3084
3085  enc_class emit_br_nop() %{
3086    // Generates the instruction BPN,PN .
3087    cbuf.insts()->emit_int32((unsigned int) 0x00400000);
3088  %}
3089
3090  enc_class enc_membar_acquire %{
3091    MacroAssembler _masm(&cbuf);
3092    __ membar( Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::LoadLoad) );
3093  %}
3094
3095  enc_class enc_membar_release %{
3096    MacroAssembler _masm(&cbuf);
3097    __ membar( Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::StoreStore) );
3098  %}
3099
3100  enc_class enc_membar_volatile %{
3101    MacroAssembler _masm(&cbuf);
3102    __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad) );
3103  %}
3104
3105  enc_class enc_repl8b( iRegI src, iRegL dst ) %{
3106    MacroAssembler _masm(&cbuf);
3107    Register src_reg = reg_to_register_object($src$$reg);
3108    Register dst_reg = reg_to_register_object($dst$$reg);
3109    __ sllx(src_reg, 56, dst_reg);
3110    __ srlx(dst_reg,  8, O7);
3111    __ or3 (dst_reg, O7, dst_reg);
3112    __ srlx(dst_reg, 16, O7);
3113    __ or3 (dst_reg, O7, dst_reg);
3114    __ srlx(dst_reg, 32, O7);
3115    __ or3 (dst_reg, O7, dst_reg);
3116  %}
3117
3118  enc_class enc_repl4b( iRegI src, iRegL dst ) %{
3119    MacroAssembler _masm(&cbuf);
3120    Register src_reg = reg_to_register_object($src$$reg);
3121    Register dst_reg = reg_to_register_object($dst$$reg);
3122    __ sll(src_reg, 24, dst_reg);
3123    __ srl(dst_reg,  8, O7);
3124    __ or3(dst_reg, O7, dst_reg);
3125    __ srl(dst_reg, 16, O7);
3126    __ or3(dst_reg, O7, dst_reg);
3127  %}
3128
3129  enc_class enc_repl4s( iRegI src, iRegL dst ) %{
3130    MacroAssembler _masm(&cbuf);
3131    Register src_reg = reg_to_register_object($src$$reg);
3132    Register dst_reg = reg_to_register_object($dst$$reg);
3133    __ sllx(src_reg, 48, dst_reg);
3134    __ srlx(dst_reg, 16, O7);
3135    __ or3 (dst_reg, O7, dst_reg);
3136    __ srlx(dst_reg, 32, O7);
3137    __ or3 (dst_reg, O7, dst_reg);
3138  %}
3139
3140  enc_class enc_repl2i( iRegI src, iRegL dst ) %{
3141    MacroAssembler _masm(&cbuf);
3142    Register src_reg = reg_to_register_object($src$$reg);
3143    Register dst_reg = reg_to_register_object($dst$$reg);
3144    __ sllx(src_reg, 32, dst_reg);
3145    __ srlx(dst_reg, 32, O7);
3146    __ or3 (dst_reg, O7, dst_reg);
3147  %}
3148
3149%}
3150
3151//----------FRAME--------------------------------------------------------------
3152// Definition of frame structure and management information.
3153//
3154//  S T A C K   L A Y O U T    Allocators stack-slot number
3155//                             |   (to get allocators register number
3156//  G  Owned by    |        |  v    add VMRegImpl::stack0)
3157//  r   CALLER     |        |
3158//  o     |        +--------+      pad to even-align allocators stack-slot
3159//  w     V        |  pad0  |        numbers; owned by CALLER
3160//  t   -----------+--------+----> Matcher::_in_arg_limit, unaligned
3161//  h     ^        |   in   |  5
3162//        |        |  args  |  4   Holes in incoming args owned by SELF
3163//  |     |        |        |  3
3164//  |     |        +--------+
3165//  V     |        | old out|      Empty on Intel, window on Sparc
3166//        |    old |preserve|      Must be even aligned.
3167//        |     SP-+--------+----> Matcher::_old_SP, 8 (or 16 in LP64)-byte aligned
3168//        |        |   in   |  3   area for Intel ret address
3169//     Owned by    |preserve|      Empty on Sparc.
3170//       SELF      +--------+
3171//        |        |  pad2  |  2   pad to align old SP
3172//        |        +--------+  1
3173//        |        | locks  |  0
3174//        |        +--------+----> VMRegImpl::stack0, 8 (or 16 in LP64)-byte aligned
3175//        |        |  pad1  | 11   pad to align new SP
3176//        |        +--------+
3177//        |        |        | 10
3178//        |        | spills |  9   spills
3179//        V        |        |  8   (pad0 slot for callee)
3180//      -----------+--------+----> Matcher::_out_arg_limit, unaligned
3181//        ^        |  out   |  7
3182//        |        |  args  |  6   Holes in outgoing args owned by CALLEE
3183//     Owned by    +--------+
3184//      CALLEE     | new out|  6   Empty on Intel, window on Sparc
3185//        |    new |preserve|      Must be even-aligned.
3186//        |     SP-+--------+----> Matcher::_new_SP, even aligned
3187//        |        |        |
3188//
3189// Note 1: Only region 8-11 is determined by the allocator.  Region 0-5 is
3190//         known from SELF's arguments and the Java calling convention.
3191//         Region 6-7 is determined per call site.
3192// Note 2: If the calling convention leaves holes in the incoming argument
3193//         area, those holes are owned by SELF.  Holes in the outgoing area
3194//         are owned by the CALLEE.  Holes should not be nessecary in the
3195//         incoming area, as the Java calling convention is completely under
3196//         the control of the AD file.  Doubles can be sorted and packed to
3197//         avoid holes.  Holes in the outgoing arguments may be nessecary for
3198//         varargs C calling conventions.
3199// Note 3: Region 0-3 is even aligned, with pad2 as needed.  Region 3-5 is
3200//         even aligned with pad0 as needed.
3201//         Region 6 is even aligned.  Region 6-7 is NOT even aligned;
3202//         region 6-11 is even aligned; it may be padded out more so that
3203//         the region from SP to FP meets the minimum stack alignment.
3204
3205frame %{
3206  // What direction does stack grow in (assumed to be same for native & Java)
3207  stack_direction(TOWARDS_LOW);
3208
3209  // These two registers define part of the calling convention
3210  // between compiled code and the interpreter.
3211  inline_cache_reg(R_G5);                // Inline Cache Register or methodOop for I2C
3212  interpreter_method_oop_reg(R_G5);      // Method Oop Register when calling interpreter
3213
3214  // Optional: name the operand used by cisc-spilling to access [stack_pointer + offset]
3215  cisc_spilling_operand_name(indOffset);
3216
3217  // Number of stack slots consumed by a Monitor enter
3218#ifdef _LP64
3219  sync_stack_slots(2);
3220#else
3221  sync_stack_slots(1);
3222#endif
3223
3224  // Compiled code's Frame Pointer
3225  frame_pointer(R_SP);
3226
3227  // Stack alignment requirement
3228  stack_alignment(StackAlignmentInBytes);
3229  //  LP64: Alignment size in bytes (128-bit -> 16 bytes)
3230  // !LP64: Alignment size in bytes (64-bit  ->  8 bytes)
3231
3232  // Number of stack slots between incoming argument block and the start of
3233  // a new frame.  The PROLOG must add this many slots to the stack.  The
3234  // EPILOG must remove this many slots.
3235  in_preserve_stack_slots(0);
3236
3237  // Number of outgoing stack slots killed above the out_preserve_stack_slots
3238  // for calls to C.  Supports the var-args backing area for register parms.
3239  // ADLC doesn't support parsing expressions, so I folded the math by hand.
3240#ifdef _LP64
3241  // (callee_register_argument_save_area_words (6) + callee_aggregate_return_pointer_words (0)) * 2-stack-slots-per-word
3242  varargs_C_out_slots_killed(12);
3243#else
3244  // (callee_register_argument_save_area_words (6) + callee_aggregate_return_pointer_words (1)) * 1-stack-slots-per-word
3245  varargs_C_out_slots_killed( 7);
3246#endif
3247
3248  // The after-PROLOG location of the return address.  Location of
3249  // return address specifies a type (REG or STACK) and a number
3250  // representing the register number (i.e. - use a register name) or
3251  // stack slot.
3252  return_addr(REG R_I7);          // Ret Addr is in register I7
3253
3254  // Body of function which returns an OptoRegs array locating
3255  // arguments either in registers or in stack slots for calling
3256  // java
3257  calling_convention %{
3258    (void) SharedRuntime::java_calling_convention(sig_bt, regs, length, is_outgoing);
3259
3260  %}
3261
3262  // Body of function which returns an OptoRegs array locating
3263  // arguments either in registers or in stack slots for callin
3264  // C.
3265  c_calling_convention %{
3266    // This is obviously always outgoing
3267    (void) SharedRuntime::c_calling_convention(sig_bt, regs, length);
3268  %}
3269
3270  // Location of native (C/C++) and interpreter return values.  This is specified to
3271  // be the  same as Java.  In the 32-bit VM, long values are actually returned from
3272  // native calls in O0:O1 and returned to the interpreter in I0:I1.  The copying
3273  // to and from the register pairs is done by the appropriate call and epilog
3274  // opcodes.  This simplifies the register allocator.
3275  c_return_value %{
3276    assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
3277#ifdef     _LP64
3278    static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_O0_num };
3279    static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_O0H_num,    OptoReg::Bad, R_F1_num, R_O0H_num};
3280    static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_I0_num };
3281    static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_I0H_num,    OptoReg::Bad, R_F1_num, R_I0H_num};
3282#else  // !_LP64
3283    static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_G1_num };
3284    static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num };
3285    static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_G1_num };
3286    static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num };
3287#endif
3288    return OptoRegPair( (is_outgoing?hi_out:hi_in)[ideal_reg],
3289                        (is_outgoing?lo_out:lo_in)[ideal_reg] );
3290  %}
3291
3292  // Location of compiled Java return values.  Same as C
3293  return_value %{
3294    assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
3295#ifdef     _LP64
3296    static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_O0_num };
3297    static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_O0H_num,    OptoReg::Bad, R_F1_num, R_O0H_num};
3298    static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_I0_num };
3299    static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_I0H_num,    OptoReg::Bad, R_F1_num, R_I0H_num};
3300#else  // !_LP64
3301    static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_G1_num };
3302    static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num};
3303    static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_G1_num };
3304    static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num};
3305#endif
3306    return OptoRegPair( (is_outgoing?hi_out:hi_in)[ideal_reg],
3307                        (is_outgoing?lo_out:lo_in)[ideal_reg] );
3308  %}
3309
3310%}
3311
3312
3313//----------ATTRIBUTES---------------------------------------------------------
3314//----------Operand Attributes-------------------------------------------------
3315op_attrib op_cost(1);          // Required cost attribute
3316
3317//----------Instruction Attributes---------------------------------------------
3318ins_attrib ins_cost(DEFAULT_COST); // Required cost attribute
3319ins_attrib ins_size(32);           // Required size attribute (in bits)
3320ins_attrib ins_avoid_back_to_back(0); // instruction should not be generated back to back
3321ins_attrib ins_short_branch(0);    // Required flag: is this instruction a
3322                                   // non-matching short branch variant of some
3323                                                            // long branch?
3324
3325//----------OPERANDS-----------------------------------------------------------
3326// Operand definitions must precede instruction definitions for correct parsing
3327// in the ADLC because operands constitute user defined types which are used in
3328// instruction definitions.
3329
3330//----------Simple Operands----------------------------------------------------
3331// Immediate Operands
3332// Integer Immediate: 32-bit
3333operand immI() %{
3334  match(ConI);
3335
3336  op_cost(0);
3337  // formats are generated automatically for constants and base registers
3338  format %{ %}
3339  interface(CONST_INTER);
3340%}
3341
3342// Integer Immediate: 8-bit
3343operand immI8() %{
3344  predicate(Assembler::is_simm(n->get_int(), 8));
3345  match(ConI);
3346  op_cost(0);
3347  format %{ %}
3348  interface(CONST_INTER);
3349%}
3350
3351// Integer Immediate: 13-bit
3352operand immI13() %{
3353  predicate(Assembler::is_simm13(n->get_int()));
3354  match(ConI);
3355  op_cost(0);
3356
3357  format %{ %}
3358  interface(CONST_INTER);
3359%}
3360
3361// Integer Immediate: 13-bit minus 7
3362operand immI13m7() %{
3363  predicate((-4096 < n->get_int()) && ((n->get_int() + 7) <= 4095));
3364  match(ConI);
3365  op_cost(0);
3366
3367  format %{ %}
3368  interface(CONST_INTER);
3369%}
3370
3371// Integer Immediate: 16-bit
3372operand immI16() %{
3373  predicate(Assembler::is_simm(n->get_int(), 16));
3374  match(ConI);
3375  op_cost(0);
3376  format %{ %}
3377  interface(CONST_INTER);
3378%}
3379
3380// Unsigned (positive) Integer Immediate: 13-bit
3381operand immU13() %{
3382  predicate((0 <= n->get_int()) && Assembler::is_simm13(n->get_int()));
3383  match(ConI);
3384  op_cost(0);
3385
3386  format %{ %}
3387  interface(CONST_INTER);
3388%}
3389
3390// Integer Immediate: 6-bit
3391operand immU6() %{
3392  predicate(n->get_int() >= 0 && n->get_int() <= 63);
3393  match(ConI);
3394  op_cost(0);
3395  format %{ %}
3396  interface(CONST_INTER);
3397%}
3398
3399// Integer Immediate: 11-bit
3400operand immI11() %{
3401  predicate(Assembler::is_simm(n->get_int(),11));
3402  match(ConI);
3403  op_cost(0);
3404  format %{ %}
3405  interface(CONST_INTER);
3406%}
3407
3408// Integer Immediate: 5-bit
3409operand immI5() %{
3410  predicate(Assembler::is_simm(n->get_int(), 5));
3411  match(ConI);
3412  op_cost(0);
3413  format %{ %}
3414  interface(CONST_INTER);
3415%}
3416
3417// Integer Immediate: 0-bit
3418operand immI0() %{
3419  predicate(n->get_int() == 0);
3420  match(ConI);
3421  op_cost(0);
3422
3423  format %{ %}
3424  interface(CONST_INTER);
3425%}
3426
3427// Integer Immediate: the value 10
3428operand immI10() %{
3429  predicate(n->get_int() == 10);
3430  match(ConI);
3431  op_cost(0);
3432
3433  format %{ %}
3434  interface(CONST_INTER);
3435%}
3436
3437// Integer Immediate: the values 0-31
3438operand immU5() %{
3439  predicate(n->get_int() >= 0 && n->get_int() <= 31);
3440  match(ConI);
3441  op_cost(0);
3442
3443  format %{ %}
3444  interface(CONST_INTER);
3445%}
3446
3447// Integer Immediate: the values 1-31
3448operand immI_1_31() %{
3449  predicate(n->get_int() >= 1 && n->get_int() <= 31);
3450  match(ConI);
3451  op_cost(0);
3452
3453  format %{ %}
3454  interface(CONST_INTER);
3455%}
3456
3457// Integer Immediate: the values 32-63
3458operand immI_32_63() %{
3459  predicate(n->get_int() >= 32 && n->get_int() <= 63);
3460  match(ConI);
3461  op_cost(0);
3462
3463  format %{ %}
3464  interface(CONST_INTER);
3465%}
3466
3467// Immediates for special shifts (sign extend)
3468
3469// Integer Immediate: the value 16
3470operand immI_16() %{
3471  predicate(n->get_int() == 16);
3472  match(ConI);
3473  op_cost(0);
3474
3475  format %{ %}
3476  interface(CONST_INTER);
3477%}
3478
3479// Integer Immediate: the value 24
3480operand immI_24() %{
3481  predicate(n->get_int() == 24);
3482  match(ConI);
3483  op_cost(0);
3484
3485  format %{ %}
3486  interface(CONST_INTER);
3487%}
3488
3489// Integer Immediate: the value 255
3490operand immI_255() %{
3491  predicate( n->get_int() == 255 );
3492  match(ConI);
3493  op_cost(0);
3494
3495  format %{ %}
3496  interface(CONST_INTER);
3497%}
3498
3499// Integer Immediate: the value 65535
3500operand immI_65535() %{
3501  predicate(n->get_int() == 65535);
3502  match(ConI);
3503  op_cost(0);
3504
3505  format %{ %}
3506  interface(CONST_INTER);
3507%}
3508
3509// Long Immediate: the value FF
3510operand immL_FF() %{
3511  predicate( n->get_long() == 0xFFL );
3512  match(ConL);
3513  op_cost(0);
3514
3515  format %{ %}
3516  interface(CONST_INTER);
3517%}
3518
3519// Long Immediate: the value FFFF
3520operand immL_FFFF() %{
3521  predicate( n->get_long() == 0xFFFFL );
3522  match(ConL);
3523  op_cost(0);
3524
3525  format %{ %}
3526  interface(CONST_INTER);
3527%}
3528
3529// Pointer Immediate: 32 or 64-bit
3530operand immP() %{
3531  match(ConP);
3532
3533  op_cost(5);
3534  // formats are generated automatically for constants and base registers
3535  format %{ %}
3536  interface(CONST_INTER);
3537%}
3538
3539#ifdef _LP64
3540// Pointer Immediate: 64-bit
3541operand immP_set() %{
3542  predicate(!VM_Version::is_niagara_plus());
3543  match(ConP);
3544
3545  op_cost(5);
3546  // formats are generated automatically for constants and base registers
3547  format %{ %}
3548  interface(CONST_INTER);
3549%}
3550
3551// Pointer Immediate: 64-bit
3552// From Niagara2 processors on a load should be better than materializing.
3553operand immP_load() %{
3554  predicate(VM_Version::is_niagara_plus() && (n->bottom_type()->isa_oop_ptr() || (MacroAssembler::insts_for_set(n->get_ptr()) > 3)));
3555  match(ConP);
3556
3557  op_cost(5);
3558  // formats are generated automatically for constants and base registers
3559  format %{ %}
3560  interface(CONST_INTER);
3561%}
3562
3563// Pointer Immediate: 64-bit
3564operand immP_no_oop_cheap() %{
3565  predicate(VM_Version::is_niagara_plus() && !n->bottom_type()->isa_oop_ptr() && (MacroAssembler::insts_for_set(n->get_ptr()) <= 3));
3566  match(ConP);
3567
3568  op_cost(5);
3569  // formats are generated automatically for constants and base registers
3570  format %{ %}
3571  interface(CONST_INTER);
3572%}
3573#endif
3574
3575operand immP13() %{
3576  predicate((-4096 < n->get_ptr()) && (n->get_ptr() <= 4095));
3577  match(ConP);
3578  op_cost(0);
3579
3580  format %{ %}
3581  interface(CONST_INTER);
3582%}
3583
3584operand immP0() %{
3585  predicate(n->get_ptr() == 0);
3586  match(ConP);
3587  op_cost(0);
3588
3589  format %{ %}
3590  interface(CONST_INTER);
3591%}
3592
3593operand immP_poll() %{
3594  predicate(n->get_ptr() != 0 && n->get_ptr() == (intptr_t)os::get_polling_page());
3595  match(ConP);
3596
3597  // formats are generated automatically for constants and base registers
3598  format %{ %}
3599  interface(CONST_INTER);
3600%}
3601
3602// Pointer Immediate
3603operand immN()
3604%{
3605  match(ConN);
3606
3607  op_cost(10);
3608  format %{ %}
3609  interface(CONST_INTER);
3610%}
3611
3612// NULL Pointer Immediate
3613operand immN0()
3614%{
3615  predicate(n->get_narrowcon() == 0);
3616  match(ConN);
3617
3618  op_cost(0);
3619  format %{ %}
3620  interface(CONST_INTER);
3621%}
3622
3623operand immL() %{
3624  match(ConL);
3625  op_cost(40);
3626  // formats are generated automatically for constants and base registers
3627  format %{ %}
3628  interface(CONST_INTER);
3629%}
3630
3631operand immL0() %{
3632  predicate(n->get_long() == 0L);
3633  match(ConL);
3634  op_cost(0);
3635  // formats are generated automatically for constants and base registers
3636  format %{ %}
3637  interface(CONST_INTER);
3638%}
3639
3640// Integer Immediate: 5-bit
3641operand immL5() %{
3642  predicate(n->get_long() == (int)n->get_long() && Assembler::is_simm((int)n->get_long(), 5));
3643  match(ConL);
3644  op_cost(0);
3645  format %{ %}
3646  interface(CONST_INTER);
3647%}
3648
3649// Long Immediate: 13-bit
3650operand immL13() %{
3651  predicate((-4096L < n->get_long()) && (n->get_long() <= 4095L));
3652  match(ConL);
3653  op_cost(0);
3654
3655  format %{ %}
3656  interface(CONST_INTER);
3657%}
3658
3659// Long Immediate: 13-bit minus 7
3660operand immL13m7() %{
3661  predicate((-4096L < n->get_long()) && ((n->get_long() + 7L) <= 4095L));
3662  match(ConL);
3663  op_cost(0);
3664
3665  format %{ %}
3666  interface(CONST_INTER);
3667%}
3668
3669// Long Immediate: low 32-bit mask
3670operand immL_32bits() %{
3671  predicate(n->get_long() == 0xFFFFFFFFL);
3672  match(ConL);
3673  op_cost(0);
3674
3675  format %{ %}
3676  interface(CONST_INTER);
3677%}
3678
3679// Long Immediate: cheap (materialize in <= 3 instructions)
3680operand immL_cheap() %{
3681  predicate(!VM_Version::is_niagara_plus() || MacroAssembler::insts_for_set64(n->get_long()) <= 3);
3682  match(ConL);
3683  op_cost(0);
3684
3685  format %{ %}
3686  interface(CONST_INTER);
3687%}
3688
3689// Long Immediate: expensive (materialize in > 3 instructions)
3690operand immL_expensive() %{
3691  predicate(VM_Version::is_niagara_plus() && MacroAssembler::insts_for_set64(n->get_long()) > 3);
3692  match(ConL);
3693  op_cost(0);
3694
3695  format %{ %}
3696  interface(CONST_INTER);
3697%}
3698
3699// Double Immediate
3700operand immD() %{
3701  match(ConD);
3702
3703  op_cost(40);
3704  format %{ %}
3705  interface(CONST_INTER);
3706%}
3707
3708operand immD0() %{
3709#ifdef _LP64
3710  // on 64-bit architectures this comparision is faster
3711  predicate(jlong_cast(n->getd()) == 0);
3712#else
3713  predicate((n->getd() == 0) && (fpclass(n->getd()) == FP_PZERO));
3714#endif
3715  match(ConD);
3716
3717  op_cost(0);
3718  format %{ %}
3719  interface(CONST_INTER);
3720%}
3721
3722// Float Immediate
3723operand immF() %{
3724  match(ConF);
3725
3726  op_cost(20);
3727  format %{ %}
3728  interface(CONST_INTER);
3729%}
3730
3731// Float Immediate: 0
3732operand immF0() %{
3733  predicate((n->getf() == 0) && (fpclass(n->getf()) == FP_PZERO));
3734  match(ConF);
3735
3736  op_cost(0);
3737  format %{ %}
3738  interface(CONST_INTER);
3739%}
3740
3741// Integer Register Operands
3742// Integer Register
3743operand iRegI() %{
3744  constraint(ALLOC_IN_RC(int_reg));
3745  match(RegI);
3746
3747  match(notemp_iRegI);
3748  match(g1RegI);
3749  match(o0RegI);
3750  match(iRegIsafe);
3751
3752  format %{ %}
3753  interface(REG_INTER);
3754%}
3755
3756operand notemp_iRegI() %{
3757  constraint(ALLOC_IN_RC(notemp_int_reg));
3758  match(RegI);
3759
3760  match(o0RegI);
3761
3762  format %{ %}
3763  interface(REG_INTER);
3764%}
3765
3766operand o0RegI() %{
3767  constraint(ALLOC_IN_RC(o0_regI));
3768  match(iRegI);
3769
3770  format %{ %}
3771  interface(REG_INTER);
3772%}
3773
3774// Pointer Register
3775operand iRegP() %{
3776  constraint(ALLOC_IN_RC(ptr_reg));
3777  match(RegP);
3778
3779  match(lock_ptr_RegP);
3780  match(g1RegP);
3781  match(g2RegP);
3782  match(g3RegP);
3783  match(g4RegP);
3784  match(i0RegP);
3785  match(o0RegP);
3786  match(o1RegP);
3787  match(l7RegP);
3788
3789  format %{ %}
3790  interface(REG_INTER);
3791%}
3792
3793operand sp_ptr_RegP() %{
3794  constraint(ALLOC_IN_RC(sp_ptr_reg));
3795  match(RegP);
3796  match(iRegP);
3797
3798  format %{ %}
3799  interface(REG_INTER);
3800%}
3801
3802operand lock_ptr_RegP() %{
3803  constraint(ALLOC_IN_RC(lock_ptr_reg));
3804  match(RegP);
3805  match(i0RegP);
3806  match(o0RegP);
3807  match(o1RegP);
3808  match(l7RegP);
3809
3810  format %{ %}
3811  interface(REG_INTER);
3812%}
3813
3814operand g1RegP() %{
3815  constraint(ALLOC_IN_RC(g1_regP));
3816  match(iRegP);
3817
3818  format %{ %}
3819  interface(REG_INTER);
3820%}
3821
3822operand g2RegP() %{
3823  constraint(ALLOC_IN_RC(g2_regP));
3824  match(iRegP);
3825
3826  format %{ %}
3827  interface(REG_INTER);
3828%}
3829
3830operand g3RegP() %{
3831  constraint(ALLOC_IN_RC(g3_regP));
3832  match(iRegP);
3833
3834  format %{ %}
3835  interface(REG_INTER);
3836%}
3837
3838operand g1RegI() %{
3839  constraint(ALLOC_IN_RC(g1_regI));
3840  match(iRegI);
3841
3842  format %{ %}
3843  interface(REG_INTER);
3844%}
3845
3846operand g3RegI() %{
3847  constraint(ALLOC_IN_RC(g3_regI));
3848  match(iRegI);
3849
3850  format %{ %}
3851  interface(REG_INTER);
3852%}
3853
3854operand g4RegI() %{
3855  constraint(ALLOC_IN_RC(g4_regI));
3856  match(iRegI);
3857
3858  format %{ %}
3859  interface(REG_INTER);
3860%}
3861
3862operand g4RegP() %{
3863  constraint(ALLOC_IN_RC(g4_regP));
3864  match(iRegP);
3865
3866  format %{ %}
3867  interface(REG_INTER);
3868%}
3869
3870operand i0RegP() %{
3871  constraint(ALLOC_IN_RC(i0_regP));
3872  match(iRegP);
3873
3874  format %{ %}
3875  interface(REG_INTER);
3876%}
3877
3878operand o0RegP() %{
3879  constraint(ALLOC_IN_RC(o0_regP));
3880  match(iRegP);
3881
3882  format %{ %}
3883  interface(REG_INTER);
3884%}
3885
3886operand o1RegP() %{
3887  constraint(ALLOC_IN_RC(o1_regP));
3888  match(iRegP);
3889
3890  format %{ %}
3891  interface(REG_INTER);
3892%}
3893
3894operand o2RegP() %{
3895  constraint(ALLOC_IN_RC(o2_regP));
3896  match(iRegP);
3897
3898  format %{ %}
3899  interface(REG_INTER);
3900%}
3901
3902operand o7RegP() %{
3903  constraint(ALLOC_IN_RC(o7_regP));
3904  match(iRegP);
3905
3906  format %{ %}
3907  interface(REG_INTER);
3908%}
3909
3910operand l7RegP() %{
3911  constraint(ALLOC_IN_RC(l7_regP));
3912  match(iRegP);
3913
3914  format %{ %}
3915  interface(REG_INTER);
3916%}
3917
3918operand o7RegI() %{
3919  constraint(ALLOC_IN_RC(o7_regI));
3920  match(iRegI);
3921
3922  format %{ %}
3923  interface(REG_INTER);
3924%}
3925
3926operand iRegN() %{
3927  constraint(ALLOC_IN_RC(int_reg));
3928  match(RegN);
3929
3930  format %{ %}
3931  interface(REG_INTER);
3932%}
3933
3934// Long Register
3935operand iRegL() %{
3936  constraint(ALLOC_IN_RC(long_reg));
3937  match(RegL);
3938
3939  format %{ %}
3940  interface(REG_INTER);
3941%}
3942
3943operand o2RegL() %{
3944  constraint(ALLOC_IN_RC(o2_regL));
3945  match(iRegL);
3946
3947  format %{ %}
3948  interface(REG_INTER);
3949%}
3950
3951operand o7RegL() %{
3952  constraint(ALLOC_IN_RC(o7_regL));
3953  match(iRegL);
3954
3955  format %{ %}
3956  interface(REG_INTER);
3957%}
3958
3959operand g1RegL() %{
3960  constraint(ALLOC_IN_RC(g1_regL));
3961  match(iRegL);
3962
3963  format %{ %}
3964  interface(REG_INTER);
3965%}
3966
3967operand g3RegL() %{
3968  constraint(ALLOC_IN_RC(g3_regL));
3969  match(iRegL);
3970
3971  format %{ %}
3972  interface(REG_INTER);
3973%}
3974
3975// Int Register safe
3976// This is 64bit safe
3977operand iRegIsafe() %{
3978  constraint(ALLOC_IN_RC(long_reg));
3979
3980  match(iRegI);
3981
3982  format %{ %}
3983  interface(REG_INTER);
3984%}
3985
3986// Condition Code Flag Register
3987operand flagsReg() %{
3988  constraint(ALLOC_IN_RC(int_flags));
3989  match(RegFlags);
3990
3991  format %{ "ccr" %} // both ICC and XCC
3992  interface(REG_INTER);
3993%}
3994
3995// Condition Code Register, unsigned comparisons.
3996operand flagsRegU() %{
3997  constraint(ALLOC_IN_RC(int_flags));
3998  match(RegFlags);
3999
4000  format %{ "icc_U" %}
4001  interface(REG_INTER);
4002%}
4003
4004// Condition Code Register, pointer comparisons.
4005operand flagsRegP() %{
4006  constraint(ALLOC_IN_RC(int_flags));
4007  match(RegFlags);
4008
4009#ifdef _LP64
4010  format %{ "xcc_P" %}
4011#else
4012  format %{ "icc_P" %}
4013#endif
4014  interface(REG_INTER);
4015%}
4016
4017// Condition Code Register, long comparisons.
4018operand flagsRegL() %{
4019  constraint(ALLOC_IN_RC(int_flags));
4020  match(RegFlags);
4021
4022  format %{ "xcc_L" %}
4023  interface(REG_INTER);
4024%}
4025
4026// Condition Code Register, floating comparisons, unordered same as "less".
4027operand flagsRegF() %{
4028  constraint(ALLOC_IN_RC(float_flags));
4029  match(RegFlags);
4030  match(flagsRegF0);
4031
4032  format %{ %}
4033  interface(REG_INTER);
4034%}
4035
4036operand flagsRegF0() %{
4037  constraint(ALLOC_IN_RC(float_flag0));
4038  match(RegFlags);
4039
4040  format %{ %}
4041  interface(REG_INTER);
4042%}
4043
4044
4045// Condition Code Flag Register used by long compare
4046operand flagsReg_long_LTGE() %{
4047  constraint(ALLOC_IN_RC(int_flags));
4048  match(RegFlags);
4049  format %{ "icc_LTGE" %}
4050  interface(REG_INTER);
4051%}
4052operand flagsReg_long_EQNE() %{
4053  constraint(ALLOC_IN_RC(int_flags));
4054  match(RegFlags);
4055  format %{ "icc_EQNE" %}
4056  interface(REG_INTER);
4057%}
4058operand flagsReg_long_LEGT() %{
4059  constraint(ALLOC_IN_RC(int_flags));
4060  match(RegFlags);
4061  format %{ "icc_LEGT" %}
4062  interface(REG_INTER);
4063%}
4064
4065
4066operand regD() %{
4067  constraint(ALLOC_IN_RC(dflt_reg));
4068  match(RegD);
4069
4070  match(regD_low);
4071
4072  format %{ %}
4073  interface(REG_INTER);
4074%}
4075
4076operand regF() %{
4077  constraint(ALLOC_IN_RC(sflt_reg));
4078  match(RegF);
4079
4080  format %{ %}
4081  interface(REG_INTER);
4082%}
4083
4084operand regD_low() %{
4085  constraint(ALLOC_IN_RC(dflt_low_reg));
4086  match(regD);
4087
4088  format %{ %}
4089  interface(REG_INTER);
4090%}
4091
4092// Special Registers
4093
4094// Method Register
4095operand inline_cache_regP(iRegP reg) %{
4096  constraint(ALLOC_IN_RC(g5_regP)); // G5=inline_cache_reg but uses 2 bits instead of 1
4097  match(reg);
4098  format %{ %}
4099  interface(REG_INTER);
4100%}
4101
4102operand interpreter_method_oop_regP(iRegP reg) %{
4103  constraint(ALLOC_IN_RC(g5_regP)); // G5=interpreter_method_oop_reg but uses 2 bits instead of 1
4104  match(reg);
4105  format %{ %}
4106  interface(REG_INTER);
4107%}
4108
4109
4110//----------Complex Operands---------------------------------------------------
4111// Indirect Memory Reference
4112operand indirect(sp_ptr_RegP reg) %{
4113  constraint(ALLOC_IN_RC(sp_ptr_reg));
4114  match(reg);
4115
4116  op_cost(100);
4117  format %{ "[$reg]" %}
4118  interface(MEMORY_INTER) %{
4119    base($reg);
4120    index(0x0);
4121    scale(0x0);
4122    disp(0x0);
4123  %}
4124%}
4125
4126// Indirect with simm13 Offset
4127operand indOffset13(sp_ptr_RegP reg, immX13 offset) %{
4128  constraint(ALLOC_IN_RC(sp_ptr_reg));
4129  match(AddP reg offset);
4130
4131  op_cost(100);
4132  format %{ "[$reg + $offset]" %}
4133  interface(MEMORY_INTER) %{
4134    base($reg);
4135    index(0x0);
4136    scale(0x0);
4137    disp($offset);
4138  %}
4139%}
4140
4141// Indirect with simm13 Offset minus 7
4142operand indOffset13m7(sp_ptr_RegP reg, immX13m7 offset) %{
4143  constraint(ALLOC_IN_RC(sp_ptr_reg));
4144  match(AddP reg offset);
4145
4146  op_cost(100);
4147  format %{ "[$reg + $offset]" %}
4148  interface(MEMORY_INTER) %{
4149    base($reg);
4150    index(0x0);
4151    scale(0x0);
4152    disp($offset);
4153  %}
4154%}
4155
4156// Note:  Intel has a swapped version also, like this:
4157//operand indOffsetX(iRegI reg, immP offset) %{
4158//  constraint(ALLOC_IN_RC(int_reg));
4159//  match(AddP offset reg);
4160//
4161//  op_cost(100);
4162//  format %{ "[$reg + $offset]" %}
4163//  interface(MEMORY_INTER) %{
4164//    base($reg);
4165//    index(0x0);
4166//    scale(0x0);
4167//    disp($offset);
4168//  %}
4169//%}
4170//// However, it doesn't make sense for SPARC, since
4171// we have no particularly good way to embed oops in
4172// single instructions.
4173
4174// Indirect with Register Index
4175operand indIndex(iRegP addr, iRegX index) %{
4176  constraint(ALLOC_IN_RC(ptr_reg));
4177  match(AddP addr index);
4178
4179  op_cost(100);
4180  format %{ "[$addr + $index]" %}
4181  interface(MEMORY_INTER) %{
4182    base($addr);
4183    index($index);
4184    scale(0x0);
4185    disp(0x0);
4186  %}
4187%}
4188
4189//----------Special Memory Operands--------------------------------------------
4190// Stack Slot Operand - This operand is used for loading and storing temporary
4191//                      values on the stack where a match requires a value to
4192//                      flow through memory.
4193operand stackSlotI(sRegI reg) %{
4194  constraint(ALLOC_IN_RC(stack_slots));
4195  op_cost(100);
4196  //match(RegI);
4197  format %{ "[$reg]" %}
4198  interface(MEMORY_INTER) %{
4199    base(0xE);   // R_SP
4200    index(0x0);
4201    scale(0x0);
4202    disp($reg);  // Stack Offset
4203  %}
4204%}
4205
4206operand stackSlotP(sRegP reg) %{
4207  constraint(ALLOC_IN_RC(stack_slots));
4208  op_cost(100);
4209  //match(RegP);
4210  format %{ "[$reg]" %}
4211  interface(MEMORY_INTER) %{
4212    base(0xE);   // R_SP
4213    index(0x0);
4214    scale(0x0);
4215    disp($reg);  // Stack Offset
4216  %}
4217%}
4218
4219operand stackSlotF(sRegF reg) %{
4220  constraint(ALLOC_IN_RC(stack_slots));
4221  op_cost(100);
4222  //match(RegF);
4223  format %{ "[$reg]" %}
4224  interface(MEMORY_INTER) %{
4225    base(0xE);   // R_SP
4226    index(0x0);
4227    scale(0x0);
4228    disp($reg);  // Stack Offset
4229  %}
4230%}
4231operand stackSlotD(sRegD reg) %{
4232  constraint(ALLOC_IN_RC(stack_slots));
4233  op_cost(100);
4234  //match(RegD);
4235  format %{ "[$reg]" %}
4236  interface(MEMORY_INTER) %{
4237    base(0xE);   // R_SP
4238    index(0x0);
4239    scale(0x0);
4240    disp($reg);  // Stack Offset
4241  %}
4242%}
4243operand stackSlotL(sRegL reg) %{
4244  constraint(ALLOC_IN_RC(stack_slots));
4245  op_cost(100);
4246  //match(RegL);
4247  format %{ "[$reg]" %}
4248  interface(MEMORY_INTER) %{
4249    base(0xE);   // R_SP
4250    index(0x0);
4251    scale(0x0);
4252    disp($reg);  // Stack Offset
4253  %}
4254%}
4255
4256// Operands for expressing Control Flow
4257// NOTE:  Label is a predefined operand which should not be redefined in
4258//        the AD file.  It is generically handled within the ADLC.
4259
4260//----------Conditional Branch Operands----------------------------------------
4261// Comparison Op  - This is the operation of the comparison, and is limited to
4262//                  the following set of codes:
4263//                  L (<), LE (<=), G (>), GE (>=), E (==), NE (!=)
4264//
4265// Other attributes of the comparison, such as unsignedness, are specified
4266// by the comparison instruction that sets a condition code flags register.
4267// That result is represented by a flags operand whose subtype is appropriate
4268// to the unsignedness (etc.) of the comparison.
4269//
4270// Later, the instruction which matches both the Comparison Op (a Bool) and
4271// the flags (produced by the Cmp) specifies the coding of the comparison op
4272// by matching a specific subtype of Bool operand below, such as cmpOpU.
4273
4274operand cmpOp() %{
4275  match(Bool);
4276
4277  format %{ "" %}
4278  interface(COND_INTER) %{
4279    equal(0x1);
4280    not_equal(0x9);
4281    less(0x3);
4282    greater_equal(0xB);
4283    less_equal(0x2);
4284    greater(0xA);
4285  %}
4286%}
4287
4288// Comparison Op, unsigned
4289operand cmpOpU() %{
4290  match(Bool);
4291
4292  format %{ "u" %}
4293  interface(COND_INTER) %{
4294    equal(0x1);
4295    not_equal(0x9);
4296    less(0x5);
4297    greater_equal(0xD);
4298    less_equal(0x4);
4299    greater(0xC);
4300  %}
4301%}
4302
4303// Comparison Op, pointer (same as unsigned)
4304operand cmpOpP() %{
4305  match(Bool);
4306
4307  format %{ "p" %}
4308  interface(COND_INTER) %{
4309    equal(0x1);
4310    not_equal(0x9);
4311    less(0x5);
4312    greater_equal(0xD);
4313    less_equal(0x4);
4314    greater(0xC);
4315  %}
4316%}
4317
4318// Comparison Op, branch-register encoding
4319operand cmpOp_reg() %{
4320  match(Bool);
4321
4322  format %{ "" %}
4323  interface(COND_INTER) %{
4324    equal        (0x1);
4325    not_equal    (0x5);
4326    less         (0x3);
4327    greater_equal(0x7);
4328    less_equal   (0x2);
4329    greater      (0x6);
4330  %}
4331%}
4332
4333// Comparison Code, floating, unordered same as less
4334operand cmpOpF() %{
4335  match(Bool);
4336
4337  format %{ "fl" %}
4338  interface(COND_INTER) %{
4339    equal(0x9);
4340    not_equal(0x1);
4341    less(0x3);
4342    greater_equal(0xB);
4343    less_equal(0xE);
4344    greater(0x6);
4345  %}
4346%}
4347
4348// Used by long compare
4349operand cmpOp_commute() %{
4350  match(Bool);
4351
4352  format %{ "" %}
4353  interface(COND_INTER) %{
4354    equal(0x1);
4355    not_equal(0x9);
4356    less(0xA);
4357    greater_equal(0x2);
4358    less_equal(0xB);
4359    greater(0x3);
4360  %}
4361%}
4362
4363//----------OPERAND CLASSES----------------------------------------------------
4364// Operand Classes are groups of operands that are used to simplify
4365// instruction definitions by not requiring the AD writer to specify separate
4366// instructions for every form of operand when the instruction accepts
4367// multiple operand types with the same basic encoding and format.  The classic
4368// case of this is memory operands.
4369opclass memory( indirect, indOffset13, indIndex );
4370opclass indIndexMemory( indIndex );
4371
4372//----------PIPELINE-----------------------------------------------------------
4373pipeline %{
4374
4375//----------ATTRIBUTES---------------------------------------------------------
4376attributes %{
4377  fixed_size_instructions;           // Fixed size instructions
4378  branch_has_delay_slot;             // Branch has delay slot following
4379  max_instructions_per_bundle = 4;   // Up to 4 instructions per bundle
4380  instruction_unit_size = 4;         // An instruction is 4 bytes long
4381  instruction_fetch_unit_size = 16;  // The processor fetches one line
4382  instruction_fetch_units = 1;       // of 16 bytes
4383
4384  // List of nop instructions
4385  nops( Nop_A0, Nop_A1, Nop_MS, Nop_FA, Nop_BR );
4386%}
4387
4388//----------RESOURCES----------------------------------------------------------
4389// Resources are the functional units available to the machine
4390resources(A0, A1, MS, BR, FA, FM, IDIV, FDIV, IALU = A0 | A1);
4391
4392//----------PIPELINE DESCRIPTION-----------------------------------------------
4393// Pipeline Description specifies the stages in the machine's pipeline
4394
4395pipe_desc(A, P, F, B, I, J, S, R, E, C, M, W, X, T, D);
4396
4397//----------PIPELINE CLASSES---------------------------------------------------
4398// Pipeline Classes describe the stages in which input and output are
4399// referenced by the hardware pipeline.
4400
4401// Integer ALU reg-reg operation
4402pipe_class ialu_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
4403    single_instruction;
4404    dst   : E(write);
4405    src1  : R(read);
4406    src2  : R(read);
4407    IALU  : R;
4408%}
4409
4410// Integer ALU reg-reg long operation
4411pipe_class ialu_reg_reg_2(iRegL dst, iRegL src1, iRegL src2) %{
4412    instruction_count(2);
4413    dst   : E(write);
4414    src1  : R(read);
4415    src2  : R(read);
4416    IALU  : R;
4417    IALU  : R;
4418%}
4419
4420// Integer ALU reg-reg long dependent operation
4421pipe_class ialu_reg_reg_2_dep(iRegL dst, iRegL src1, iRegL src2, flagsReg cr) %{
4422    instruction_count(1); multiple_bundles;
4423    dst   : E(write);
4424    src1  : R(read);
4425    src2  : R(read);
4426    cr    : E(write);
4427    IALU  : R(2);
4428%}
4429
4430// Integer ALU reg-imm operaion
4431pipe_class ialu_reg_imm(iRegI dst, iRegI src1, immI13 src2) %{
4432    single_instruction;
4433    dst   : E(write);
4434    src1  : R(read);
4435    IALU  : R;
4436%}
4437
4438// Integer ALU reg-reg operation with condition code
4439pipe_class ialu_cc_reg_reg(iRegI dst, iRegI src1, iRegI src2, flagsReg cr) %{
4440    single_instruction;
4441    dst   : E(write);
4442    cr    : E(write);
4443    src1  : R(read);
4444    src2  : R(read);
4445    IALU  : R;
4446%}
4447
4448// Integer ALU reg-imm operation with condition code
4449pipe_class ialu_cc_reg_imm(iRegI dst, iRegI src1, immI13 src2, flagsReg cr) %{
4450    single_instruction;
4451    dst   : E(write);
4452    cr    : E(write);
4453    src1  : R(read);
4454    IALU  : R;
4455%}
4456
4457// Integer ALU zero-reg operation
4458pipe_class ialu_zero_reg(iRegI dst, immI0 zero, iRegI src2) %{
4459    single_instruction;
4460    dst   : E(write);
4461    src2  : R(read);
4462    IALU  : R;
4463%}
4464
4465// Integer ALU zero-reg operation with condition code only
4466pipe_class ialu_cconly_zero_reg(flagsReg cr, iRegI src) %{
4467    single_instruction;
4468    cr    : E(write);
4469    src   : R(read);
4470    IALU  : R;
4471%}
4472
4473// Integer ALU reg-reg operation with condition code only
4474pipe_class ialu_cconly_reg_reg(flagsReg cr, iRegI src1, iRegI src2) %{
4475    single_instruction;
4476    cr    : E(write);
4477    src1  : R(read);
4478    src2  : R(read);
4479    IALU  : R;
4480%}
4481
4482// Integer ALU reg-imm operation with condition code only
4483pipe_class ialu_cconly_reg_imm(flagsReg cr, iRegI src1, immI13 src2) %{
4484    single_instruction;
4485    cr    : E(write);
4486    src1  : R(read);
4487    IALU  : R;
4488%}
4489
4490// Integer ALU reg-reg-zero operation with condition code only
4491pipe_class ialu_cconly_reg_reg_zero(flagsReg cr, iRegI src1, iRegI src2, immI0 zero) %{
4492    single_instruction;
4493    cr    : E(write);
4494    src1  : R(read);
4495    src2  : R(read);
4496    IALU  : R;
4497%}
4498
4499// Integer ALU reg-imm-zero operation with condition code only
4500pipe_class ialu_cconly_reg_imm_zero(flagsReg cr, iRegI src1, immI13 src2, immI0 zero) %{
4501    single_instruction;
4502    cr    : E(write);
4503    src1  : R(read);
4504    IALU  : R;
4505%}
4506
4507// Integer ALU reg-reg operation with condition code, src1 modified
4508pipe_class ialu_cc_rwreg_reg(flagsReg cr, iRegI src1, iRegI src2) %{
4509    single_instruction;
4510    cr    : E(write);
4511    src1  : E(write);
4512    src1  : R(read);
4513    src2  : R(read);
4514    IALU  : R;
4515%}
4516
4517// Integer ALU reg-imm operation with condition code, src1 modified
4518pipe_class ialu_cc_rwreg_imm(flagsReg cr, iRegI src1, immI13 src2) %{
4519    single_instruction;
4520    cr    : E(write);
4521    src1  : E(write);
4522    src1  : R(read);
4523    IALU  : R;
4524%}
4525
4526pipe_class cmpL_reg(iRegI dst, iRegL src1, iRegL src2, flagsReg cr ) %{
4527    multiple_bundles;
4528    dst   : E(write)+4;
4529    cr    : E(write);
4530    src1  : R(read);
4531    src2  : R(read);
4532    IALU  : R(3);
4533    BR    : R(2);
4534%}
4535
4536// Integer ALU operation
4537pipe_class ialu_none(iRegI dst) %{
4538    single_instruction;
4539    dst   : E(write);
4540    IALU  : R;
4541%}
4542
4543// Integer ALU reg operation
4544pipe_class ialu_reg(iRegI dst, iRegI src) %{
4545    single_instruction; may_have_no_code;
4546    dst   : E(write);
4547    src   : R(read);
4548    IALU  : R;
4549%}
4550
4551// Integer ALU reg conditional operation
4552// This instruction has a 1 cycle stall, and cannot execute
4553// in the same cycle as the instruction setting the condition
4554// code. We kludge this by pretending to read the condition code
4555// 1 cycle earlier, and by marking the functional units as busy
4556// for 2 cycles with the result available 1 cycle later than
4557// is really the case.
4558pipe_class ialu_reg_flags( iRegI op2_out, iRegI op2_in, iRegI op1, flagsReg cr ) %{
4559    single_instruction;
4560    op2_out : C(write);
4561    op1     : R(read);
4562    cr      : R(read);       // This is really E, with a 1 cycle stall
4563    BR      : R(2);
4564    MS      : R(2);
4565%}
4566
4567#ifdef _LP64
4568pipe_class ialu_clr_and_mover( iRegI dst, iRegP src ) %{
4569    instruction_count(1); multiple_bundles;
4570    dst     : C(write)+1;
4571    src     : R(read)+1;
4572    IALU    : R(1);
4573    BR      : E(2);
4574    MS      : E(2);
4575%}
4576#endif
4577
4578// Integer ALU reg operation
4579pipe_class ialu_move_reg_L_to_I(iRegI dst, iRegL src) %{
4580    single_instruction; may_have_no_code;
4581    dst   : E(write);
4582    src   : R(read);
4583    IALU  : R;
4584%}
4585pipe_class ialu_move_reg_I_to_L(iRegL dst, iRegI src) %{
4586    single_instruction; may_have_no_code;
4587    dst   : E(write);
4588    src   : R(read);
4589    IALU  : R;
4590%}
4591
4592// Two integer ALU reg operations
4593pipe_class ialu_reg_2(iRegL dst, iRegL src) %{
4594    instruction_count(2);
4595    dst   : E(write);
4596    src   : R(read);
4597    A0    : R;
4598    A1    : R;
4599%}
4600
4601// Two integer ALU reg operations
4602pipe_class ialu_move_reg_L_to_L(iRegL dst, iRegL src) %{
4603    instruction_count(2); may_have_no_code;
4604    dst   : E(write);
4605    src   : R(read);
4606    A0    : R;
4607    A1    : R;
4608%}
4609
4610// Integer ALU imm operation
4611pipe_class ialu_imm(iRegI dst, immI13 src) %{
4612    single_instruction;
4613    dst   : E(write);
4614    IALU  : R;
4615%}
4616
4617// Integer ALU reg-reg with carry operation
4618pipe_class ialu_reg_reg_cy(iRegI dst, iRegI src1, iRegI src2, iRegI cy) %{
4619    single_instruction;
4620    dst   : E(write);
4621    src1  : R(read);
4622    src2  : R(read);
4623    IALU  : R;
4624%}
4625
4626// Integer ALU cc operation
4627pipe_class ialu_cc(iRegI dst, flagsReg cc) %{
4628    single_instruction;
4629    dst   : E(write);
4630    cc    : R(read);
4631    IALU  : R;
4632%}
4633
4634// Integer ALU cc / second IALU operation
4635pipe_class ialu_reg_ialu( iRegI dst, iRegI src ) %{
4636    instruction_count(1); multiple_bundles;
4637    dst   : E(write)+1;
4638    src   : R(read);
4639    IALU  : R;
4640%}
4641
4642// Integer ALU cc / second IALU operation
4643pipe_class ialu_reg_reg_ialu( iRegI dst, iRegI p, iRegI q ) %{
4644    instruction_count(1); multiple_bundles;
4645    dst   : E(write)+1;
4646    p     : R(read);
4647    q     : R(read);
4648    IALU  : R;
4649%}
4650
4651// Integer ALU hi-lo-reg operation
4652pipe_class ialu_hi_lo_reg(iRegI dst, immI src) %{
4653    instruction_count(1); multiple_bundles;
4654    dst   : E(write)+1;
4655    IALU  : R(2);
4656%}
4657
4658// Float ALU hi-lo-reg operation (with temp)
4659pipe_class ialu_hi_lo_reg_temp(regF dst, immF src, g3RegP tmp) %{
4660    instruction_count(1); multiple_bundles;
4661    dst   : E(write)+1;
4662    IALU  : R(2);
4663%}
4664
4665// Long Constant
4666pipe_class loadConL( iRegL dst, immL src ) %{
4667    instruction_count(2); multiple_bundles;
4668    dst   : E(write)+1;
4669    IALU  : R(2);
4670    IALU  : R(2);
4671%}
4672
4673// Pointer Constant
4674pipe_class loadConP( iRegP dst, immP src ) %{
4675    instruction_count(0); multiple_bundles;
4676    fixed_latency(6);
4677%}
4678
4679// Polling Address
4680pipe_class loadConP_poll( iRegP dst, immP_poll src ) %{
4681#ifdef _LP64
4682    instruction_count(0); multiple_bundles;
4683    fixed_latency(6);
4684#else
4685    dst   : E(write);
4686    IALU  : R;
4687#endif
4688%}
4689
4690// Long Constant small
4691pipe_class loadConLlo( iRegL dst, immL src ) %{
4692    instruction_count(2);
4693    dst   : E(write);
4694    IALU  : R;
4695    IALU  : R;
4696%}
4697
4698// [PHH] This is wrong for 64-bit.  See LdImmF/D.
4699pipe_class loadConFD(regF dst, immF src, g3RegP tmp) %{
4700    instruction_count(1); multiple_bundles;
4701    src   : R(read);
4702    dst   : M(write)+1;
4703    IALU  : R;
4704    MS    : E;
4705%}
4706
4707// Integer ALU nop operation
4708pipe_class ialu_nop() %{
4709    single_instruction;
4710    IALU  : R;
4711%}
4712
4713// Integer ALU nop operation
4714pipe_class ialu_nop_A0() %{
4715    single_instruction;
4716    A0    : R;
4717%}
4718
4719// Integer ALU nop operation
4720pipe_class ialu_nop_A1() %{
4721    single_instruction;
4722    A1    : R;
4723%}
4724
4725// Integer Multiply reg-reg operation
4726pipe_class imul_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
4727    single_instruction;
4728    dst   : E(write);
4729    src1  : R(read);
4730    src2  : R(read);
4731    MS    : R(5);
4732%}
4733
4734// Integer Multiply reg-imm operation
4735pipe_class imul_reg_imm(iRegI dst, iRegI src1, immI13 src2) %{
4736    single_instruction;
4737    dst   : E(write);
4738    src1  : R(read);
4739    MS    : R(5);
4740%}
4741
4742pipe_class mulL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
4743    single_instruction;
4744    dst   : E(write)+4;
4745    src1  : R(read);
4746    src2  : R(read);
4747    MS    : R(6);
4748%}
4749
4750pipe_class mulL_reg_imm(iRegL dst, iRegL src1, immL13 src2) %{
4751    single_instruction;
4752    dst   : E(write)+4;
4753    src1  : R(read);
4754    MS    : R(6);
4755%}
4756
4757// Integer Divide reg-reg
4758pipe_class sdiv_reg_reg(iRegI dst, iRegI src1, iRegI src2, iRegI temp, flagsReg cr) %{
4759    instruction_count(1); multiple_bundles;
4760    dst   : E(write);
4761    temp  : E(write);
4762    src1  : R(read);
4763    src2  : R(read);
4764    temp  : R(read);
4765    MS    : R(38);
4766%}
4767
4768// Integer Divide reg-imm
4769pipe_class sdiv_reg_imm(iRegI dst, iRegI src1, immI13 src2, iRegI temp, flagsReg cr) %{
4770    instruction_count(1); multiple_bundles;
4771    dst   : E(write);
4772    temp  : E(write);
4773    src1  : R(read);
4774    temp  : R(read);
4775    MS    : R(38);
4776%}
4777
4778// Long Divide
4779pipe_class divL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
4780    dst  : E(write)+71;
4781    src1 : R(read);
4782    src2 : R(read)+1;
4783    MS   : R(70);
4784%}
4785
4786pipe_class divL_reg_imm(iRegL dst, iRegL src1, immL13 src2) %{
4787    dst  : E(write)+71;
4788    src1 : R(read);
4789    MS   : R(70);
4790%}
4791
4792// Floating Point Add Float
4793pipe_class faddF_reg_reg(regF dst, regF src1, regF src2) %{
4794    single_instruction;
4795    dst   : X(write);
4796    src1  : E(read);
4797    src2  : E(read);
4798    FA    : R;
4799%}
4800
4801// Floating Point Add Double
4802pipe_class faddD_reg_reg(regD dst, regD src1, regD src2) %{
4803    single_instruction;
4804    dst   : X(write);
4805    src1  : E(read);
4806    src2  : E(read);
4807    FA    : R;
4808%}
4809
4810// Floating Point Conditional Move based on integer flags
4811pipe_class int_conditional_float_move (cmpOp cmp, flagsReg cr, regF dst, regF src) %{
4812    single_instruction;
4813    dst   : X(write);
4814    src   : E(read);
4815    cr    : R(read);
4816    FA    : R(2);
4817    BR    : R(2);
4818%}
4819
4820// Floating Point Conditional Move based on integer flags
4821pipe_class int_conditional_double_move (cmpOp cmp, flagsReg cr, regD dst, regD src) %{
4822    single_instruction;
4823    dst   : X(write);
4824    src   : E(read);
4825    cr    : R(read);
4826    FA    : R(2);
4827    BR    : R(2);
4828%}
4829
4830// Floating Point Multiply Float
4831pipe_class fmulF_reg_reg(regF dst, regF src1, regF src2) %{
4832    single_instruction;
4833    dst   : X(write);
4834    src1  : E(read);
4835    src2  : E(read);
4836    FM    : R;
4837%}
4838
4839// Floating Point Multiply Double
4840pipe_class fmulD_reg_reg(regD dst, regD src1, regD src2) %{
4841    single_instruction;
4842    dst   : X(write);
4843    src1  : E(read);
4844    src2  : E(read);
4845    FM    : R;
4846%}
4847
4848// Floating Point Divide Float
4849pipe_class fdivF_reg_reg(regF dst, regF src1, regF src2) %{
4850    single_instruction;
4851    dst   : X(write);
4852    src1  : E(read);
4853    src2  : E(read);
4854    FM    : R;
4855    FDIV  : C(14);
4856%}
4857
4858// Floating Point Divide Double
4859pipe_class fdivD_reg_reg(regD dst, regD src1, regD src2) %{
4860    single_instruction;
4861    dst   : X(write);
4862    src1  : E(read);
4863    src2  : E(read);
4864    FM    : R;
4865    FDIV  : C(17);
4866%}
4867
4868// Floating Point Move/Negate/Abs Float
4869pipe_class faddF_reg(regF dst, regF src) %{
4870    single_instruction;
4871    dst   : W(write);
4872    src   : E(read);
4873    FA    : R(1);
4874%}
4875
4876// Floating Point Move/Negate/Abs Double
4877pipe_class faddD_reg(regD dst, regD src) %{
4878    single_instruction;
4879    dst   : W(write);
4880    src   : E(read);
4881    FA    : R;
4882%}
4883
4884// Floating Point Convert F->D
4885pipe_class fcvtF2D(regD dst, regF src) %{
4886    single_instruction;
4887    dst   : X(write);
4888    src   : E(read);
4889    FA    : R;
4890%}
4891
4892// Floating Point Convert I->D
4893pipe_class fcvtI2D(regD dst, regF src) %{
4894    single_instruction;
4895    dst   : X(write);
4896    src   : E(read);
4897    FA    : R;
4898%}
4899
4900// Floating Point Convert LHi->D
4901pipe_class fcvtLHi2D(regD dst, regD src) %{
4902    single_instruction;
4903    dst   : X(write);
4904    src   : E(read);
4905    FA    : R;
4906%}
4907
4908// Floating Point Convert L->D
4909pipe_class fcvtL2D(regD dst, regF src) %{
4910    single_instruction;
4911    dst   : X(write);
4912    src   : E(read);
4913    FA    : R;
4914%}
4915
4916// Floating Point Convert L->F
4917pipe_class fcvtL2F(regD dst, regF src) %{
4918    single_instruction;
4919    dst   : X(write);
4920    src   : E(read);
4921    FA    : R;
4922%}
4923
4924// Floating Point Convert D->F
4925pipe_class fcvtD2F(regD dst, regF src) %{
4926    single_instruction;
4927    dst   : X(write);
4928    src   : E(read);
4929    FA    : R;
4930%}
4931
4932// Floating Point Convert I->L
4933pipe_class fcvtI2L(regD dst, regF src) %{
4934    single_instruction;
4935    dst   : X(write);
4936    src   : E(read);
4937    FA    : R;
4938%}
4939
4940// Floating Point Convert D->F
4941pipe_class fcvtD2I(regF dst, regD src, flagsReg cr) %{
4942    instruction_count(1); multiple_bundles;
4943    dst   : X(write)+6;
4944    src   : E(read);
4945    FA    : R;
4946%}
4947
4948// Floating Point Convert D->L
4949pipe_class fcvtD2L(regD dst, regD src, flagsReg cr) %{
4950    instruction_count(1); multiple_bundles;
4951    dst   : X(write)+6;
4952    src   : E(read);
4953    FA    : R;
4954%}
4955
4956// Floating Point Convert F->I
4957pipe_class fcvtF2I(regF dst, regF src, flagsReg cr) %{
4958    instruction_count(1); multiple_bundles;
4959    dst   : X(write)+6;
4960    src   : E(read);
4961    FA    : R;
4962%}
4963
4964// Floating Point Convert F->L
4965pipe_class fcvtF2L(regD dst, regF src, flagsReg cr) %{
4966    instruction_count(1); multiple_bundles;
4967    dst   : X(write)+6;
4968    src   : E(read);
4969    FA    : R;
4970%}
4971
4972// Floating Point Convert I->F
4973pipe_class fcvtI2F(regF dst, regF src) %{
4974    single_instruction;
4975    dst   : X(write);
4976    src   : E(read);
4977    FA    : R;
4978%}
4979
4980// Floating Point Compare
4981pipe_class faddF_fcc_reg_reg_zero(flagsRegF cr, regF src1, regF src2, immI0 zero) %{
4982    single_instruction;
4983    cr    : X(write);
4984    src1  : E(read);
4985    src2  : E(read);
4986    FA    : R;
4987%}
4988
4989// Floating Point Compare
4990pipe_class faddD_fcc_reg_reg_zero(flagsRegF cr, regD src1, regD src2, immI0 zero) %{
4991    single_instruction;
4992    cr    : X(write);
4993    src1  : E(read);
4994    src2  : E(read);
4995    FA    : R;
4996%}
4997
4998// Floating Add Nop
4999pipe_class fadd_nop() %{
5000    single_instruction;
5001    FA  : R;
5002%}
5003
5004// Integer Store to Memory
5005pipe_class istore_mem_reg(memory mem, iRegI src) %{
5006    single_instruction;
5007    mem   : R(read);
5008    src   : C(read);
5009    MS    : R;
5010%}
5011
5012// Integer Store to Memory
5013pipe_class istore_mem_spORreg(memory mem, sp_ptr_RegP src) %{
5014    single_instruction;
5015    mem   : R(read);
5016    src   : C(read);
5017    MS    : R;
5018%}
5019
5020// Integer Store Zero to Memory
5021pipe_class istore_mem_zero(memory mem, immI0 src) %{
5022    single_instruction;
5023    mem   : R(read);
5024    MS    : R;
5025%}
5026
5027// Special Stack Slot Store
5028pipe_class istore_stk_reg(stackSlotI stkSlot, iRegI src) %{
5029    single_instruction;
5030    stkSlot : R(read);
5031    src     : C(read);
5032    MS      : R;
5033%}
5034
5035// Special Stack Slot Store
5036pipe_class lstoreI_stk_reg(stackSlotL stkSlot, iRegI src) %{
5037    instruction_count(2); multiple_bundles;
5038    stkSlot : R(read);
5039    src     : C(read);
5040    MS      : R(2);
5041%}
5042
5043// Float Store
5044pipe_class fstoreF_mem_reg(memory mem, RegF src) %{
5045    single_instruction;
5046    mem : R(read);
5047    src : C(read);
5048    MS  : R;
5049%}
5050
5051// Float Store
5052pipe_class fstoreF_mem_zero(memory mem, immF0 src) %{
5053    single_instruction;
5054    mem : R(read);
5055    MS  : R;
5056%}
5057
5058// Double Store
5059pipe_class fstoreD_mem_reg(memory mem, RegD src) %{
5060    instruction_count(1);
5061    mem : R(read);
5062    src : C(read);
5063    MS  : R;
5064%}
5065
5066// Double Store
5067pipe_class fstoreD_mem_zero(memory mem, immD0 src) %{
5068    single_instruction;
5069    mem : R(read);
5070    MS  : R;
5071%}
5072
5073// Special Stack Slot Float Store
5074pipe_class fstoreF_stk_reg(stackSlotI stkSlot, RegF src) %{
5075    single_instruction;
5076    stkSlot : R(read);
5077    src     : C(read);
5078    MS      : R;
5079%}
5080
5081// Special Stack Slot Double Store
5082pipe_class fstoreD_stk_reg(stackSlotI stkSlot, RegD src) %{
5083    single_instruction;
5084    stkSlot : R(read);
5085    src     : C(read);
5086    MS      : R;
5087%}
5088
5089// Integer Load (when sign bit propagation not needed)
5090pipe_class iload_mem(iRegI dst, memory mem) %{
5091    single_instruction;
5092    mem : R(read);
5093    dst : C(write);
5094    MS  : R;
5095%}
5096
5097// Integer Load from stack operand
5098pipe_class iload_stkD(iRegI dst, stackSlotD mem ) %{
5099    single_instruction;
5100    mem : R(read);
5101    dst : C(write);
5102    MS  : R;
5103%}
5104
5105// Integer Load (when sign bit propagation or masking is needed)
5106pipe_class iload_mask_mem(iRegI dst, memory mem) %{
5107    single_instruction;
5108    mem : R(read);
5109    dst : M(write);
5110    MS  : R;
5111%}
5112
5113// Float Load
5114pipe_class floadF_mem(regF dst, memory mem) %{
5115    single_instruction;
5116    mem : R(read);
5117    dst : M(write);
5118    MS  : R;
5119%}
5120
5121// Float Load
5122pipe_class floadD_mem(regD dst, memory mem) %{
5123    instruction_count(1); multiple_bundles; // Again, unaligned argument is only multiple case
5124    mem : R(read);
5125    dst : M(write);
5126    MS  : R;
5127%}
5128
5129// Float Load
5130pipe_class floadF_stk(regF dst, stackSlotI stkSlot) %{
5131    single_instruction;
5132    stkSlot : R(read);
5133    dst : M(write);
5134    MS  : R;
5135%}
5136
5137// Float Load
5138pipe_class floadD_stk(regD dst, stackSlotI stkSlot) %{
5139    single_instruction;
5140    stkSlot : R(read);
5141    dst : M(write);
5142    MS  : R;
5143%}
5144
5145// Memory Nop
5146pipe_class mem_nop() %{
5147    single_instruction;
5148    MS  : R;
5149%}
5150
5151pipe_class sethi(iRegP dst, immI src) %{
5152    single_instruction;
5153    dst  : E(write);
5154    IALU : R;
5155%}
5156
5157pipe_class loadPollP(iRegP poll) %{
5158    single_instruction;
5159    poll : R(read);
5160    MS   : R;
5161%}
5162
5163pipe_class br(Universe br, label labl) %{
5164    single_instruction_with_delay_slot;
5165    BR  : R;
5166%}
5167
5168pipe_class br_cc(Universe br, cmpOp cmp, flagsReg cr, label labl) %{
5169    single_instruction_with_delay_slot;
5170    cr    : E(read);
5171    BR    : R;
5172%}
5173
5174pipe_class br_reg(Universe br, cmpOp cmp, iRegI op1, label labl) %{
5175    single_instruction_with_delay_slot;
5176    op1 : E(read);
5177    BR  : R;
5178    MS  : R;
5179%}
5180
5181// Compare and branch
5182pipe_class cmp_br_reg_reg(Universe br, cmpOp cmp, iRegI src1, iRegI src2, label labl, flagsReg cr) %{
5183    instruction_count(2); has_delay_slot;
5184    cr    : E(write);
5185    src1  : R(read);
5186    src2  : R(read);
5187    IALU  : R;
5188    BR    : R;
5189%}
5190
5191// Compare and branch
5192pipe_class cmp_br_reg_imm(Universe br, cmpOp cmp, iRegI src1, immI13 src2, label labl, flagsReg cr) %{
5193    instruction_count(2); has_delay_slot;
5194    cr    : E(write);
5195    src1  : R(read);
5196    IALU  : R;
5197    BR    : R;
5198%}
5199
5200// Compare and branch using cbcond
5201pipe_class cbcond_reg_reg(Universe br, cmpOp cmp, iRegI src1, iRegI src2, label labl) %{
5202    single_instruction;
5203    src1  : E(read);
5204    src2  : E(read);
5205    IALU  : R;
5206    BR    : R;
5207%}
5208
5209// Compare and branch using cbcond
5210pipe_class cbcond_reg_imm(Universe br, cmpOp cmp, iRegI src1, immI5 src2, label labl) %{
5211    single_instruction;
5212    src1  : E(read);
5213    IALU  : R;
5214    BR    : R;
5215%}
5216
5217pipe_class br_fcc(Universe br, cmpOpF cc, flagsReg cr, label labl) %{
5218    single_instruction_with_delay_slot;
5219    cr    : E(read);
5220    BR    : R;
5221%}
5222
5223pipe_class br_nop() %{
5224    single_instruction;
5225    BR  : R;
5226%}
5227
5228pipe_class simple_call(method meth) %{
5229    instruction_count(2); multiple_bundles; force_serialization;
5230    fixed_latency(100);
5231    BR  : R(1);
5232    MS  : R(1);
5233    A0  : R(1);
5234%}
5235
5236pipe_class compiled_call(method meth) %{
5237    instruction_count(1); multiple_bundles; force_serialization;
5238    fixed_latency(100);
5239    MS  : R(1);
5240%}
5241
5242pipe_class call(method meth) %{
5243    instruction_count(0); multiple_bundles; force_serialization;
5244    fixed_latency(100);
5245%}
5246
5247pipe_class tail_call(Universe ignore, label labl) %{
5248    single_instruction; has_delay_slot;
5249    fixed_latency(100);
5250    BR  : R(1);
5251    MS  : R(1);
5252%}
5253
5254pipe_class ret(Universe ignore) %{
5255    single_instruction; has_delay_slot;
5256    BR  : R(1);
5257    MS  : R(1);
5258%}
5259
5260pipe_class ret_poll(g3RegP poll) %{
5261    instruction_count(3); has_delay_slot;
5262    poll : E(read);
5263    MS   : R;
5264%}
5265
5266// The real do-nothing guy
5267pipe_class empty( ) %{
5268    instruction_count(0);
5269%}
5270
5271pipe_class long_memory_op() %{
5272    instruction_count(0); multiple_bundles; force_serialization;
5273    fixed_latency(25);
5274    MS  : R(1);
5275%}
5276
5277// Check-cast
5278pipe_class partial_subtype_check_pipe(Universe ignore, iRegP array, iRegP match ) %{
5279    array : R(read);
5280    match  : R(read);
5281    IALU   : R(2);
5282    BR     : R(2);
5283    MS     : R;
5284%}
5285
5286// Convert FPU flags into +1,0,-1
5287pipe_class floating_cmp( iRegI dst, regF src1, regF src2 ) %{
5288    src1  : E(read);
5289    src2  : E(read);
5290    dst   : E(write);
5291    FA    : R;
5292    MS    : R(2);
5293    BR    : R(2);
5294%}
5295
5296// Compare for p < q, and conditionally add y
5297pipe_class cadd_cmpltmask( iRegI p, iRegI q, iRegI y ) %{
5298    p     : E(read);
5299    q     : E(read);
5300    y     : E(read);
5301    IALU  : R(3)
5302%}
5303
5304// Perform a compare, then move conditionally in a branch delay slot.
5305pipe_class min_max( iRegI src2, iRegI srcdst ) %{
5306    src2   : E(read);
5307    srcdst : E(read);
5308    IALU   : R;
5309    BR     : R;
5310%}
5311
5312// Define the class for the Nop node
5313define %{
5314   MachNop = ialu_nop;
5315%}
5316
5317%}
5318
5319//----------INSTRUCTIONS-------------------------------------------------------
5320
5321//------------Special Stack Slot instructions - no match rules-----------------
5322instruct stkI_to_regF(regF dst, stackSlotI src) %{
5323  // No match rule to avoid chain rule match.
5324  effect(DEF dst, USE src);
5325  ins_cost(MEMORY_REF_COST);
5326  size(4);
5327  format %{ "LDF    $src,$dst\t! stkI to regF" %}
5328  opcode(Assembler::ldf_op3);
5329  ins_encode(simple_form3_mem_reg(src, dst));
5330  ins_pipe(floadF_stk);
5331%}
5332
5333instruct stkL_to_regD(regD dst, stackSlotL src) %{
5334  // No match rule to avoid chain rule match.
5335  effect(DEF dst, USE src);
5336  ins_cost(MEMORY_REF_COST);
5337  size(4);
5338  format %{ "LDDF   $src,$dst\t! stkL to regD" %}
5339  opcode(Assembler::lddf_op3);
5340  ins_encode(simple_form3_mem_reg(src, dst));
5341  ins_pipe(floadD_stk);
5342%}
5343
5344instruct regF_to_stkI(stackSlotI dst, regF src) %{
5345  // No match rule to avoid chain rule match.
5346  effect(DEF dst, USE src);
5347  ins_cost(MEMORY_REF_COST);
5348  size(4);
5349  format %{ "STF    $src,$dst\t! regF to stkI" %}
5350  opcode(Assembler::stf_op3);
5351  ins_encode(simple_form3_mem_reg(dst, src));
5352  ins_pipe(fstoreF_stk_reg);
5353%}
5354
5355instruct regD_to_stkL(stackSlotL dst, regD src) %{
5356  // No match rule to avoid chain rule match.
5357  effect(DEF dst, USE src);
5358  ins_cost(MEMORY_REF_COST);
5359  size(4);
5360  format %{ "STDF   $src,$dst\t! regD to stkL" %}
5361  opcode(Assembler::stdf_op3);
5362  ins_encode(simple_form3_mem_reg(dst, src));
5363  ins_pipe(fstoreD_stk_reg);
5364%}
5365
5366instruct regI_to_stkLHi(stackSlotL dst, iRegI src) %{
5367  effect(DEF dst, USE src);
5368  ins_cost(MEMORY_REF_COST*2);
5369  size(8);
5370  format %{ "STW    $src,$dst.hi\t! long\n\t"
5371            "STW    R_G0,$dst.lo" %}
5372  opcode(Assembler::stw_op3);
5373  ins_encode(simple_form3_mem_reg(dst, src), form3_mem_plus_4_reg(dst, R_G0));
5374  ins_pipe(lstoreI_stk_reg);
5375%}
5376
5377instruct regL_to_stkD(stackSlotD dst, iRegL src) %{
5378  // No match rule to avoid chain rule match.
5379  effect(DEF dst, USE src);
5380  ins_cost(MEMORY_REF_COST);
5381  size(4);
5382  format %{ "STX    $src,$dst\t! regL to stkD" %}
5383  opcode(Assembler::stx_op3);
5384  ins_encode(simple_form3_mem_reg( dst, src ) );
5385  ins_pipe(istore_stk_reg);
5386%}
5387
5388//---------- Chain stack slots between similar types --------
5389
5390// Load integer from stack slot
5391instruct stkI_to_regI( iRegI dst, stackSlotI src ) %{
5392  match(Set dst src);
5393  ins_cost(MEMORY_REF_COST);
5394
5395  size(4);
5396  format %{ "LDUW   $src,$dst\t!stk" %}
5397  opcode(Assembler::lduw_op3);
5398  ins_encode(simple_form3_mem_reg( src, dst ) );
5399  ins_pipe(iload_mem);
5400%}
5401
5402// Store integer to stack slot
5403instruct regI_to_stkI( stackSlotI dst, iRegI src ) %{
5404  match(Set dst src);
5405  ins_cost(MEMORY_REF_COST);
5406
5407  size(4);
5408  format %{ "STW    $src,$dst\t!stk" %}
5409  opcode(Assembler::stw_op3);
5410  ins_encode(simple_form3_mem_reg( dst, src ) );
5411  ins_pipe(istore_mem_reg);
5412%}
5413
5414// Load long from stack slot
5415instruct stkL_to_regL( iRegL dst, stackSlotL src ) %{
5416  match(Set dst src);
5417
5418  ins_cost(MEMORY_REF_COST);
5419  size(4);
5420  format %{ "LDX    $src,$dst\t! long" %}
5421  opcode(Assembler::ldx_op3);
5422  ins_encode(simple_form3_mem_reg( src, dst ) );
5423  ins_pipe(iload_mem);
5424%}
5425
5426// Store long to stack slot
5427instruct regL_to_stkL(stackSlotL dst, iRegL src) %{
5428  match(Set dst src);
5429
5430  ins_cost(MEMORY_REF_COST);
5431  size(4);
5432  format %{ "STX    $src,$dst\t! long" %}
5433  opcode(Assembler::stx_op3);
5434  ins_encode(simple_form3_mem_reg( dst, src ) );
5435  ins_pipe(istore_mem_reg);
5436%}
5437
5438#ifdef _LP64
5439// Load pointer from stack slot, 64-bit encoding
5440instruct stkP_to_regP( iRegP dst, stackSlotP src ) %{
5441  match(Set dst src);
5442  ins_cost(MEMORY_REF_COST);
5443  size(4);
5444  format %{ "LDX    $src,$dst\t!ptr" %}
5445  opcode(Assembler::ldx_op3);
5446  ins_encode(simple_form3_mem_reg( src, dst ) );
5447  ins_pipe(iload_mem);
5448%}
5449
5450// Store pointer to stack slot
5451instruct regP_to_stkP(stackSlotP dst, iRegP src) %{
5452  match(Set dst src);
5453  ins_cost(MEMORY_REF_COST);
5454  size(4);
5455  format %{ "STX    $src,$dst\t!ptr" %}
5456  opcode(Assembler::stx_op3);
5457  ins_encode(simple_form3_mem_reg( dst, src ) );
5458  ins_pipe(istore_mem_reg);
5459%}
5460#else // _LP64
5461// Load pointer from stack slot, 32-bit encoding
5462instruct stkP_to_regP( iRegP dst, stackSlotP src ) %{
5463  match(Set dst src);
5464  ins_cost(MEMORY_REF_COST);
5465  format %{ "LDUW   $src,$dst\t!ptr" %}
5466  opcode(Assembler::lduw_op3, Assembler::ldst_op);
5467  ins_encode(simple_form3_mem_reg( src, dst ) );
5468  ins_pipe(iload_mem);
5469%}
5470
5471// Store pointer to stack slot
5472instruct regP_to_stkP(stackSlotP dst, iRegP src) %{
5473  match(Set dst src);
5474  ins_cost(MEMORY_REF_COST);
5475  format %{ "STW    $src,$dst\t!ptr" %}
5476  opcode(Assembler::stw_op3, Assembler::ldst_op);
5477  ins_encode(simple_form3_mem_reg( dst, src ) );
5478  ins_pipe(istore_mem_reg);
5479%}
5480#endif // _LP64
5481
5482//------------Special Nop instructions for bundling - no match rules-----------
5483// Nop using the A0 functional unit
5484instruct Nop_A0() %{
5485  ins_cost(0);
5486
5487  format %{ "NOP    ! Alu Pipeline" %}
5488  opcode(Assembler::or_op3, Assembler::arith_op);
5489  ins_encode( form2_nop() );
5490  ins_pipe(ialu_nop_A0);
5491%}
5492
5493// Nop using the A1 functional unit
5494instruct Nop_A1( ) %{
5495  ins_cost(0);
5496
5497  format %{ "NOP    ! Alu Pipeline" %}
5498  opcode(Assembler::or_op3, Assembler::arith_op);
5499  ins_encode( form2_nop() );
5500  ins_pipe(ialu_nop_A1);
5501%}
5502
5503// Nop using the memory functional unit
5504instruct Nop_MS( ) %{
5505  ins_cost(0);
5506
5507  format %{ "NOP    ! Memory Pipeline" %}
5508  ins_encode( emit_mem_nop );
5509  ins_pipe(mem_nop);
5510%}
5511
5512// Nop using the floating add functional unit
5513instruct Nop_FA( ) %{
5514  ins_cost(0);
5515
5516  format %{ "NOP    ! Floating Add Pipeline" %}
5517  ins_encode( emit_fadd_nop );
5518  ins_pipe(fadd_nop);
5519%}
5520
5521// Nop using the branch functional unit
5522instruct Nop_BR( ) %{
5523  ins_cost(0);
5524
5525  format %{ "NOP    ! Branch Pipeline" %}
5526  ins_encode( emit_br_nop );
5527  ins_pipe(br_nop);
5528%}
5529
5530//----------Load/Store/Move Instructions---------------------------------------
5531//----------Load Instructions--------------------------------------------------
5532// Load Byte (8bit signed)
5533instruct loadB(iRegI dst, memory mem) %{
5534  match(Set dst (LoadB mem));
5535  ins_cost(MEMORY_REF_COST);
5536
5537  size(4);
5538  format %{ "LDSB   $mem,$dst\t! byte" %}
5539  ins_encode %{
5540    __ ldsb($mem$$Address, $dst$$Register);
5541  %}
5542  ins_pipe(iload_mask_mem);
5543%}
5544
5545// Load Byte (8bit signed) into a Long Register
5546instruct loadB2L(iRegL dst, memory mem) %{
5547  match(Set dst (ConvI2L (LoadB mem)));
5548  ins_cost(MEMORY_REF_COST);
5549
5550  size(4);
5551  format %{ "LDSB   $mem,$dst\t! byte -> long" %}
5552  ins_encode %{
5553    __ ldsb($mem$$Address, $dst$$Register);
5554  %}
5555  ins_pipe(iload_mask_mem);
5556%}
5557
5558// Load Unsigned Byte (8bit UNsigned) into an int reg
5559instruct loadUB(iRegI dst, memory mem) %{
5560  match(Set dst (LoadUB mem));
5561  ins_cost(MEMORY_REF_COST);
5562
5563  size(4);
5564  format %{ "LDUB   $mem,$dst\t! ubyte" %}
5565  ins_encode %{
5566    __ ldub($mem$$Address, $dst$$Register);
5567  %}
5568  ins_pipe(iload_mem);
5569%}
5570
5571// Load Unsigned Byte (8bit UNsigned) into a Long Register
5572instruct loadUB2L(iRegL dst, memory mem) %{
5573  match(Set dst (ConvI2L (LoadUB mem)));
5574  ins_cost(MEMORY_REF_COST);
5575
5576  size(4);
5577  format %{ "LDUB   $mem,$dst\t! ubyte -> long" %}
5578  ins_encode %{
5579    __ ldub($mem$$Address, $dst$$Register);
5580  %}
5581  ins_pipe(iload_mem);
5582%}
5583
5584// Load Unsigned Byte (8 bit UNsigned) with 8-bit mask into Long Register
5585instruct loadUB2L_immI8(iRegL dst, memory mem, immI8 mask) %{
5586  match(Set dst (ConvI2L (AndI (LoadUB mem) mask)));
5587  ins_cost(MEMORY_REF_COST + DEFAULT_COST);
5588
5589  size(2*4);
5590  format %{ "LDUB   $mem,$dst\t# ubyte & 8-bit mask -> long\n\t"
5591            "AND    $dst,$mask,$dst" %}
5592  ins_encode %{
5593    __ ldub($mem$$Address, $dst$$Register);
5594    __ and3($dst$$Register, $mask$$constant, $dst$$Register);
5595  %}
5596  ins_pipe(iload_mem);
5597%}
5598
5599// Load Short (16bit signed)
5600instruct loadS(iRegI dst, memory mem) %{
5601  match(Set dst (LoadS mem));
5602  ins_cost(MEMORY_REF_COST);
5603
5604  size(4);
5605  format %{ "LDSH   $mem,$dst\t! short" %}
5606  ins_encode %{
5607    __ ldsh($mem$$Address, $dst$$Register);
5608  %}
5609  ins_pipe(iload_mask_mem);
5610%}
5611
5612// Load Short (16 bit signed) to Byte (8 bit signed)
5613instruct loadS2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
5614  match(Set dst (RShiftI (LShiftI (LoadS mem) twentyfour) twentyfour));
5615  ins_cost(MEMORY_REF_COST);
5616
5617  size(4);
5618
5619  format %{ "LDSB   $mem+1,$dst\t! short -> byte" %}
5620  ins_encode %{
5621    __ ldsb($mem$$Address, $dst$$Register, 1);
5622  %}
5623  ins_pipe(iload_mask_mem);
5624%}
5625
5626// Load Short (16bit signed) into a Long Register
5627instruct loadS2L(iRegL dst, memory mem) %{
5628  match(Set dst (ConvI2L (LoadS mem)));
5629  ins_cost(MEMORY_REF_COST);
5630
5631  size(4);
5632  format %{ "LDSH   $mem,$dst\t! short -> long" %}
5633  ins_encode %{
5634    __ ldsh($mem$$Address, $dst$$Register);
5635  %}
5636  ins_pipe(iload_mask_mem);
5637%}
5638
5639// Load Unsigned Short/Char (16bit UNsigned)
5640instruct loadUS(iRegI dst, memory mem) %{
5641  match(Set dst (LoadUS mem));
5642  ins_cost(MEMORY_REF_COST);
5643
5644  size(4);
5645  format %{ "LDUH   $mem,$dst\t! ushort/char" %}
5646  ins_encode %{
5647    __ lduh($mem$$Address, $dst$$Register);
5648  %}
5649  ins_pipe(iload_mem);
5650%}
5651
5652// Load Unsigned Short/Char (16 bit UNsigned) to Byte (8 bit signed)
5653instruct loadUS2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
5654  match(Set dst (RShiftI (LShiftI (LoadUS mem) twentyfour) twentyfour));
5655  ins_cost(MEMORY_REF_COST);
5656
5657  size(4);
5658  format %{ "LDSB   $mem+1,$dst\t! ushort -> byte" %}
5659  ins_encode %{
5660    __ ldsb($mem$$Address, $dst$$Register, 1);
5661  %}
5662  ins_pipe(iload_mask_mem);
5663%}
5664
5665// Load Unsigned Short/Char (16bit UNsigned) into a Long Register
5666instruct loadUS2L(iRegL dst, memory mem) %{
5667  match(Set dst (ConvI2L (LoadUS mem)));
5668  ins_cost(MEMORY_REF_COST);
5669
5670  size(4);
5671  format %{ "LDUH   $mem,$dst\t! ushort/char -> long" %}
5672  ins_encode %{
5673    __ lduh($mem$$Address, $dst$$Register);
5674  %}
5675  ins_pipe(iload_mem);
5676%}
5677
5678// Load Unsigned Short/Char (16bit UNsigned) with mask 0xFF into a Long Register
5679instruct loadUS2L_immI_255(iRegL dst, indOffset13m7 mem, immI_255 mask) %{
5680  match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
5681  ins_cost(MEMORY_REF_COST);
5682
5683  size(4);
5684  format %{ "LDUB   $mem+1,$dst\t! ushort/char & 0xFF -> long" %}
5685  ins_encode %{
5686    __ ldub($mem$$Address, $dst$$Register, 1);  // LSB is index+1 on BE
5687  %}
5688  ins_pipe(iload_mem);
5689%}
5690
5691// Load Unsigned Short/Char (16bit UNsigned) with a 13-bit mask into a Long Register
5692instruct loadUS2L_immI13(iRegL dst, memory mem, immI13 mask) %{
5693  match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
5694  ins_cost(MEMORY_REF_COST + DEFAULT_COST);
5695
5696  size(2*4);
5697  format %{ "LDUH   $mem,$dst\t! ushort/char & 13-bit mask -> long\n\t"
5698            "AND    $dst,$mask,$dst" %}
5699  ins_encode %{
5700    Register Rdst = $dst$$Register;
5701    __ lduh($mem$$Address, Rdst);
5702    __ and3(Rdst, $mask$$constant, Rdst);
5703  %}
5704  ins_pipe(iload_mem);
5705%}
5706
5707// Load Unsigned Short/Char (16bit UNsigned) with a 16-bit mask into a Long Register
5708instruct loadUS2L_immI16(iRegL dst, memory mem, immI16 mask, iRegL tmp) %{
5709  match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
5710  effect(TEMP dst, TEMP tmp);
5711  ins_cost(MEMORY_REF_COST + 2*DEFAULT_COST);
5712
5713  size((3+1)*4);  // set may use two instructions.
5714  format %{ "LDUH   $mem,$dst\t! ushort/char & 16-bit mask -> long\n\t"
5715            "SET    $mask,$tmp\n\t"
5716            "AND    $dst,$tmp,$dst" %}
5717  ins_encode %{
5718    Register Rdst = $dst$$Register;
5719    Register Rtmp = $tmp$$Register;
5720    __ lduh($mem$$Address, Rdst);
5721    __ set($mask$$constant, Rtmp);
5722    __ and3(Rdst, Rtmp, Rdst);
5723  %}
5724  ins_pipe(iload_mem);
5725%}
5726
5727// Load Integer
5728instruct loadI(iRegI dst, memory mem) %{
5729  match(Set dst (LoadI mem));
5730  ins_cost(MEMORY_REF_COST);
5731
5732  size(4);
5733  format %{ "LDUW   $mem,$dst\t! int" %}
5734  ins_encode %{
5735    __ lduw($mem$$Address, $dst$$Register);
5736  %}
5737  ins_pipe(iload_mem);
5738%}
5739
5740// Load Integer to Byte (8 bit signed)
5741instruct loadI2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
5742  match(Set dst (RShiftI (LShiftI (LoadI mem) twentyfour) twentyfour));
5743  ins_cost(MEMORY_REF_COST);
5744
5745  size(4);
5746
5747  format %{ "LDSB   $mem+3,$dst\t! int -> byte" %}
5748  ins_encode %{
5749    __ ldsb($mem$$Address, $dst$$Register, 3);
5750  %}
5751  ins_pipe(iload_mask_mem);
5752%}
5753
5754// Load Integer to Unsigned Byte (8 bit UNsigned)
5755instruct loadI2UB(iRegI dst, indOffset13m7 mem, immI_255 mask) %{
5756  match(Set dst (AndI (LoadI mem) mask));
5757  ins_cost(MEMORY_REF_COST);
5758
5759  size(4);
5760
5761  format %{ "LDUB   $mem+3,$dst\t! int -> ubyte" %}
5762  ins_encode %{
5763    __ ldub($mem$$Address, $dst$$Register, 3);
5764  %}
5765  ins_pipe(iload_mask_mem);
5766%}
5767
5768// Load Integer to Short (16 bit signed)
5769instruct loadI2S(iRegI dst, indOffset13m7 mem, immI_16 sixteen) %{
5770  match(Set dst (RShiftI (LShiftI (LoadI mem) sixteen) sixteen));
5771  ins_cost(MEMORY_REF_COST);
5772
5773  size(4);
5774
5775  format %{ "LDSH   $mem+2,$dst\t! int -> short" %}
5776  ins_encode %{
5777    __ ldsh($mem$$Address, $dst$$Register, 2);
5778  %}
5779  ins_pipe(iload_mask_mem);
5780%}
5781
5782// Load Integer to Unsigned Short (16 bit UNsigned)
5783instruct loadI2US(iRegI dst, indOffset13m7 mem, immI_65535 mask) %{
5784  match(Set dst (AndI (LoadI mem) mask));
5785  ins_cost(MEMORY_REF_COST);
5786
5787  size(4);
5788
5789  format %{ "LDUH   $mem+2,$dst\t! int -> ushort/char" %}
5790  ins_encode %{
5791    __ lduh($mem$$Address, $dst$$Register, 2);
5792  %}
5793  ins_pipe(iload_mask_mem);
5794%}
5795
5796// Load Integer into a Long Register
5797instruct loadI2L(iRegL dst, memory mem) %{
5798  match(Set dst (ConvI2L (LoadI mem)));
5799  ins_cost(MEMORY_REF_COST);
5800
5801  size(4);
5802  format %{ "LDSW   $mem,$dst\t! int -> long" %}
5803  ins_encode %{
5804    __ ldsw($mem$$Address, $dst$$Register);
5805  %}
5806  ins_pipe(iload_mask_mem);
5807%}
5808
5809// Load Integer with mask 0xFF into a Long Register
5810instruct loadI2L_immI_255(iRegL dst, indOffset13m7 mem, immI_255 mask) %{
5811  match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5812  ins_cost(MEMORY_REF_COST);
5813
5814  size(4);
5815  format %{ "LDUB   $mem+3,$dst\t! int & 0xFF -> long" %}
5816  ins_encode %{
5817    __ ldub($mem$$Address, $dst$$Register, 3);  // LSB is index+3 on BE
5818  %}
5819  ins_pipe(iload_mem);
5820%}
5821
5822// Load Integer with mask 0xFFFF into a Long Register
5823instruct loadI2L_immI_65535(iRegL dst, indOffset13m7 mem, immI_65535 mask) %{
5824  match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5825  ins_cost(MEMORY_REF_COST);
5826
5827  size(4);
5828  format %{ "LDUH   $mem+2,$dst\t! int & 0xFFFF -> long" %}
5829  ins_encode %{
5830    __ lduh($mem$$Address, $dst$$Register, 2);  // LSW is index+2 on BE
5831  %}
5832  ins_pipe(iload_mem);
5833%}
5834
5835// Load Integer with a 13-bit mask into a Long Register
5836instruct loadI2L_immI13(iRegL dst, memory mem, immI13 mask) %{
5837  match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5838  ins_cost(MEMORY_REF_COST + DEFAULT_COST);
5839
5840  size(2*4);
5841  format %{ "LDUW   $mem,$dst\t! int & 13-bit mask -> long\n\t"
5842            "AND    $dst,$mask,$dst" %}
5843  ins_encode %{
5844    Register Rdst = $dst$$Register;
5845    __ lduw($mem$$Address, Rdst);
5846    __ and3(Rdst, $mask$$constant, Rdst);
5847  %}
5848  ins_pipe(iload_mem);
5849%}
5850
5851// Load Integer with a 32-bit mask into a Long Register
5852instruct loadI2L_immI(iRegL dst, memory mem, immI mask, iRegL tmp) %{
5853  match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5854  effect(TEMP dst, TEMP tmp);
5855  ins_cost(MEMORY_REF_COST + 2*DEFAULT_COST);
5856
5857  size((3+1)*4);  // set may use two instructions.
5858  format %{ "LDUW   $mem,$dst\t! int & 32-bit mask -> long\n\t"
5859            "SET    $mask,$tmp\n\t"
5860            "AND    $dst,$tmp,$dst" %}
5861  ins_encode %{
5862    Register Rdst = $dst$$Register;
5863    Register Rtmp = $tmp$$Register;
5864    __ lduw($mem$$Address, Rdst);
5865    __ set($mask$$constant, Rtmp);
5866    __ and3(Rdst, Rtmp, Rdst);
5867  %}
5868  ins_pipe(iload_mem);
5869%}
5870
5871// Load Unsigned Integer into a Long Register
5872instruct loadUI2L(iRegL dst, memory mem) %{
5873  match(Set dst (LoadUI2L mem));
5874  ins_cost(MEMORY_REF_COST);
5875
5876  size(4);
5877  format %{ "LDUW   $mem,$dst\t! uint -> long" %}
5878  ins_encode %{
5879    __ lduw($mem$$Address, $dst$$Register);
5880  %}
5881  ins_pipe(iload_mem);
5882%}
5883
5884// Load Long - aligned
5885instruct loadL(iRegL dst, memory mem ) %{
5886  match(Set dst (LoadL mem));
5887  ins_cost(MEMORY_REF_COST);
5888
5889  size(4);
5890  format %{ "LDX    $mem,$dst\t! long" %}
5891  ins_encode %{
5892    __ ldx($mem$$Address, $dst$$Register);
5893  %}
5894  ins_pipe(iload_mem);
5895%}
5896
5897// Load Long - UNaligned
5898instruct loadL_unaligned(iRegL dst, memory mem, o7RegI tmp) %{
5899  match(Set dst (LoadL_unaligned mem));
5900  effect(KILL tmp);
5901  ins_cost(MEMORY_REF_COST*2+DEFAULT_COST);
5902  size(16);
5903  format %{ "LDUW   $mem+4,R_O7\t! misaligned long\n"
5904          "\tLDUW   $mem  ,$dst\n"
5905          "\tSLLX   #32, $dst, $dst\n"
5906          "\tOR     $dst, R_O7, $dst" %}
5907  opcode(Assembler::lduw_op3);
5908  ins_encode(form3_mem_reg_long_unaligned_marshal( mem, dst ));
5909  ins_pipe(iload_mem);
5910%}
5911
5912// Load Aligned Packed Byte into a Double Register
5913instruct loadA8B(regD dst, memory mem) %{
5914  match(Set dst (Load8B mem));
5915  ins_cost(MEMORY_REF_COST);
5916  size(4);
5917  format %{ "LDDF   $mem,$dst\t! packed8B" %}
5918  opcode(Assembler::lddf_op3);
5919  ins_encode(simple_form3_mem_reg( mem, dst ) );
5920  ins_pipe(floadD_mem);
5921%}
5922
5923// Load Aligned Packed Char into a Double Register
5924instruct loadA4C(regD dst, memory mem) %{
5925  match(Set dst (Load4C mem));
5926  ins_cost(MEMORY_REF_COST);
5927  size(4);
5928  format %{ "LDDF   $mem,$dst\t! packed4C" %}
5929  opcode(Assembler::lddf_op3);
5930  ins_encode(simple_form3_mem_reg( mem, dst ) );
5931  ins_pipe(floadD_mem);
5932%}
5933
5934// Load Aligned Packed Short into a Double Register
5935instruct loadA4S(regD dst, memory mem) %{
5936  match(Set dst (Load4S mem));
5937  ins_cost(MEMORY_REF_COST);
5938  size(4);
5939  format %{ "LDDF   $mem,$dst\t! packed4S" %}
5940  opcode(Assembler::lddf_op3);
5941  ins_encode(simple_form3_mem_reg( mem, dst ) );
5942  ins_pipe(floadD_mem);
5943%}
5944
5945// Load Aligned Packed Int into a Double Register
5946instruct loadA2I(regD dst, memory mem) %{
5947  match(Set dst (Load2I mem));
5948  ins_cost(MEMORY_REF_COST);
5949  size(4);
5950  format %{ "LDDF   $mem,$dst\t! packed2I" %}
5951  opcode(Assembler::lddf_op3);
5952  ins_encode(simple_form3_mem_reg( mem, dst ) );
5953  ins_pipe(floadD_mem);
5954%}
5955
5956// Load Range
5957instruct loadRange(iRegI dst, memory mem) %{
5958  match(Set dst (LoadRange mem));
5959  ins_cost(MEMORY_REF_COST);
5960
5961  size(4);
5962  format %{ "LDUW   $mem,$dst\t! range" %}
5963  opcode(Assembler::lduw_op3);
5964  ins_encode(simple_form3_mem_reg( mem, dst ) );
5965  ins_pipe(iload_mem);
5966%}
5967
5968// Load Integer into %f register (for fitos/fitod)
5969instruct loadI_freg(regF dst, memory mem) %{
5970  match(Set dst (LoadI mem));
5971  ins_cost(MEMORY_REF_COST);
5972  size(4);
5973
5974  format %{ "LDF    $mem,$dst\t! for fitos/fitod" %}
5975  opcode(Assembler::ldf_op3);
5976  ins_encode(simple_form3_mem_reg( mem, dst ) );
5977  ins_pipe(floadF_mem);
5978%}
5979
5980// Load Pointer
5981instruct loadP(iRegP dst, memory mem) %{
5982  match(Set dst (LoadP mem));
5983  ins_cost(MEMORY_REF_COST);
5984  size(4);
5985
5986#ifndef _LP64
5987  format %{ "LDUW   $mem,$dst\t! ptr" %}
5988  ins_encode %{
5989    __ lduw($mem$$Address, $dst$$Register);
5990  %}
5991#else
5992  format %{ "LDX    $mem,$dst\t! ptr" %}
5993  ins_encode %{
5994    __ ldx($mem$$Address, $dst$$Register);
5995  %}
5996#endif
5997  ins_pipe(iload_mem);
5998%}
5999
6000// Load Compressed Pointer
6001instruct loadN(iRegN dst, memory mem) %{
6002  match(Set dst (LoadN mem));
6003  ins_cost(MEMORY_REF_COST);
6004  size(4);
6005
6006  format %{ "LDUW   $mem,$dst\t! compressed ptr" %}
6007  ins_encode %{
6008    __ lduw($mem$$Address, $dst$$Register);
6009  %}
6010  ins_pipe(iload_mem);
6011%}
6012
6013// Load Klass Pointer
6014instruct loadKlass(iRegP dst, memory mem) %{
6015  match(Set dst (LoadKlass mem));
6016  ins_cost(MEMORY_REF_COST);
6017  size(4);
6018
6019#ifndef _LP64
6020  format %{ "LDUW   $mem,$dst\t! klass ptr" %}
6021  ins_encode %{
6022    __ lduw($mem$$Address, $dst$$Register);
6023  %}
6024#else
6025  format %{ "LDX    $mem,$dst\t! klass ptr" %}
6026  ins_encode %{
6027    __ ldx($mem$$Address, $dst$$Register);
6028  %}
6029#endif
6030  ins_pipe(iload_mem);
6031%}
6032
6033// Load narrow Klass Pointer
6034instruct loadNKlass(iRegN dst, memory mem) %{
6035  match(Set dst (LoadNKlass mem));
6036  ins_cost(MEMORY_REF_COST);
6037  size(4);
6038
6039  format %{ "LDUW   $mem,$dst\t! compressed klass ptr" %}
6040  ins_encode %{
6041    __ lduw($mem$$Address, $dst$$Register);
6042  %}
6043  ins_pipe(iload_mem);
6044%}
6045
6046// Load Double
6047instruct loadD(regD dst, memory mem) %{
6048  match(Set dst (LoadD mem));
6049  ins_cost(MEMORY_REF_COST);
6050
6051  size(4);
6052  format %{ "LDDF   $mem,$dst" %}
6053  opcode(Assembler::lddf_op3);
6054  ins_encode(simple_form3_mem_reg( mem, dst ) );
6055  ins_pipe(floadD_mem);
6056%}
6057
6058// Load Double - UNaligned
6059instruct loadD_unaligned(regD_low dst, memory mem ) %{
6060  match(Set dst (LoadD_unaligned mem));
6061  ins_cost(MEMORY_REF_COST*2+DEFAULT_COST);
6062  size(8);
6063  format %{ "LDF    $mem  ,$dst.hi\t! misaligned double\n"
6064          "\tLDF    $mem+4,$dst.lo\t!" %}
6065  opcode(Assembler::ldf_op3);
6066  ins_encode( form3_mem_reg_double_unaligned( mem, dst ));
6067  ins_pipe(iload_mem);
6068%}
6069
6070// Load Float
6071instruct loadF(regF dst, memory mem) %{
6072  match(Set dst (LoadF mem));
6073  ins_cost(MEMORY_REF_COST);
6074
6075  size(4);
6076  format %{ "LDF    $mem,$dst" %}
6077  opcode(Assembler::ldf_op3);
6078  ins_encode(simple_form3_mem_reg( mem, dst ) );
6079  ins_pipe(floadF_mem);
6080%}
6081
6082// Load Constant
6083instruct loadConI( iRegI dst, immI src ) %{
6084  match(Set dst src);
6085  ins_cost(DEFAULT_COST * 3/2);
6086  format %{ "SET    $src,$dst" %}
6087  ins_encode( Set32(src, dst) );
6088  ins_pipe(ialu_hi_lo_reg);
6089%}
6090
6091instruct loadConI13( iRegI dst, immI13 src ) %{
6092  match(Set dst src);
6093
6094  size(4);
6095  format %{ "MOV    $src,$dst" %}
6096  ins_encode( Set13( src, dst ) );
6097  ins_pipe(ialu_imm);
6098%}
6099
6100#ifndef _LP64
6101instruct loadConP(iRegP dst, immP con) %{
6102  match(Set dst con);
6103  ins_cost(DEFAULT_COST * 3/2);
6104  format %{ "SET    $con,$dst\t!ptr" %}
6105  ins_encode %{
6106    // [RGV] This next line should be generated from ADLC
6107    if (_opnds[1]->constant_is_oop()) {
6108      intptr_t val = $con$$constant;
6109      __ set_oop_constant((jobject) val, $dst$$Register);
6110    } else {          // non-oop pointers, e.g. card mark base, heap top
6111      __ set($con$$constant, $dst$$Register);
6112    }
6113  %}
6114  ins_pipe(loadConP);
6115%}
6116#else
6117instruct loadConP_set(iRegP dst, immP_set con) %{
6118  match(Set dst con);
6119  ins_cost(DEFAULT_COST * 3/2);
6120  format %{ "SET    $con,$dst\t! ptr" %}
6121  ins_encode %{
6122    // [RGV] This next line should be generated from ADLC
6123    if (_opnds[1]->constant_is_oop()) {
6124      intptr_t val = $con$$constant;
6125      __ set_oop_constant((jobject) val, $dst$$Register);
6126    } else {          // non-oop pointers, e.g. card mark base, heap top
6127      __ set($con$$constant, $dst$$Register);
6128    }
6129  %}
6130  ins_pipe(loadConP);
6131%}
6132
6133instruct loadConP_load(iRegP dst, immP_load con) %{
6134  match(Set dst con);
6135  ins_cost(MEMORY_REF_COST);
6136  format %{ "LD     [$constanttablebase + $constantoffset],$dst\t! load from constant table: ptr=$con" %}
6137  ins_encode %{
6138    RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $dst$$Register);
6139    __ ld_ptr($constanttablebase, con_offset, $dst$$Register);
6140  %}
6141  ins_pipe(loadConP);
6142%}
6143
6144instruct loadConP_no_oop_cheap(iRegP dst, immP_no_oop_cheap con) %{
6145  match(Set dst con);
6146  ins_cost(DEFAULT_COST * 3/2);
6147  format %{ "SET    $con,$dst\t! non-oop ptr" %}
6148  ins_encode %{
6149    __ set($con$$constant, $dst$$Register);
6150  %}
6151  ins_pipe(loadConP);
6152%}
6153#endif // _LP64
6154
6155instruct loadConP0(iRegP dst, immP0 src) %{
6156  match(Set dst src);
6157
6158  size(4);
6159  format %{ "CLR    $dst\t!ptr" %}
6160  ins_encode %{
6161    __ clr($dst$$Register);
6162  %}
6163  ins_pipe(ialu_imm);
6164%}
6165
6166instruct loadConP_poll(iRegP dst, immP_poll src) %{
6167  match(Set dst src);
6168  ins_cost(DEFAULT_COST);
6169  format %{ "SET    $src,$dst\t!ptr" %}
6170  ins_encode %{
6171    AddressLiteral polling_page(os::get_polling_page());
6172    __ sethi(polling_page, reg_to_register_object($dst$$reg));
6173  %}
6174  ins_pipe(loadConP_poll);
6175%}
6176
6177instruct loadConN0(iRegN dst, immN0 src) %{
6178  match(Set dst src);
6179
6180  size(4);
6181  format %{ "CLR    $dst\t! compressed NULL ptr" %}
6182  ins_encode %{
6183    __ clr($dst$$Register);
6184  %}
6185  ins_pipe(ialu_imm);
6186%}
6187
6188instruct loadConN(iRegN dst, immN src) %{
6189  match(Set dst src);
6190  ins_cost(DEFAULT_COST * 3/2);
6191  format %{ "SET    $src,$dst\t! compressed ptr" %}
6192  ins_encode %{
6193    Register dst = $dst$$Register;
6194    __ set_narrow_oop((jobject)$src$$constant, dst);
6195  %}
6196  ins_pipe(ialu_hi_lo_reg);
6197%}
6198
6199// Materialize long value (predicated by immL_cheap).
6200instruct loadConL_set64(iRegL dst, immL_cheap con, o7RegL tmp) %{
6201  match(Set dst con);
6202  effect(KILL tmp);
6203  ins_cost(DEFAULT_COST * 3);
6204  format %{ "SET64   $con,$dst KILL $tmp\t! cheap long" %}
6205  ins_encode %{
6206    __ set64($con$$constant, $dst$$Register, $tmp$$Register);
6207  %}
6208  ins_pipe(loadConL);
6209%}
6210
6211// Load long value from constant table (predicated by immL_expensive).
6212instruct loadConL_ldx(iRegL dst, immL_expensive con) %{
6213  match(Set dst con);
6214  ins_cost(MEMORY_REF_COST);
6215  format %{ "LDX     [$constanttablebase + $constantoffset],$dst\t! load from constant table: long=$con" %}
6216  ins_encode %{
6217      RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $dst$$Register);
6218    __ ldx($constanttablebase, con_offset, $dst$$Register);
6219  %}
6220  ins_pipe(loadConL);
6221%}
6222
6223instruct loadConL0( iRegL dst, immL0 src ) %{
6224  match(Set dst src);
6225  ins_cost(DEFAULT_COST);
6226  size(4);
6227  format %{ "CLR    $dst\t! long" %}
6228  ins_encode( Set13( src, dst ) );
6229  ins_pipe(ialu_imm);
6230%}
6231
6232instruct loadConL13( iRegL dst, immL13 src ) %{
6233  match(Set dst src);
6234  ins_cost(DEFAULT_COST * 2);
6235
6236  size(4);
6237  format %{ "MOV    $src,$dst\t! long" %}
6238  ins_encode( Set13( src, dst ) );
6239  ins_pipe(ialu_imm);
6240%}
6241
6242instruct loadConF(regF dst, immF con, o7RegI tmp) %{
6243  match(Set dst con);
6244  effect(KILL tmp);
6245  format %{ "LDF    [$constanttablebase + $constantoffset],$dst\t! load from constant table: float=$con" %}
6246  ins_encode %{
6247      RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $tmp$$Register);
6248    __ ldf(FloatRegisterImpl::S, $constanttablebase, con_offset, $dst$$FloatRegister);
6249  %}
6250  ins_pipe(loadConFD);
6251%}
6252
6253instruct loadConD(regD dst, immD con, o7RegI tmp) %{
6254  match(Set dst con);
6255  effect(KILL tmp);
6256  format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: double=$con" %}
6257  ins_encode %{
6258    // XXX This is a quick fix for 6833573.
6259    //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset($con), $dst$$FloatRegister);
6260    RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $tmp$$Register);
6261    __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
6262  %}
6263  ins_pipe(loadConFD);
6264%}
6265
6266// Prefetch instructions.
6267// Must be safe to execute with invalid address (cannot fault).
6268
6269instruct prefetchr( memory mem ) %{
6270  match( PrefetchRead mem );
6271  ins_cost(MEMORY_REF_COST);
6272
6273  format %{ "PREFETCH $mem,0\t! Prefetch read-many" %}
6274  opcode(Assembler::prefetch_op3);
6275  ins_encode( form3_mem_prefetch_read( mem ) );
6276  ins_pipe(iload_mem);
6277%}
6278
6279instruct prefetchw( memory mem ) %{
6280  predicate(AllocatePrefetchStyle != 3 );
6281  match( PrefetchWrite mem );
6282  ins_cost(MEMORY_REF_COST);
6283
6284  format %{ "PREFETCH $mem,2\t! Prefetch write-many (and read)" %}
6285  opcode(Assembler::prefetch_op3);
6286  ins_encode( form3_mem_prefetch_write( mem ) );
6287  ins_pipe(iload_mem);
6288%}
6289
6290// Use BIS instruction to prefetch.
6291instruct prefetchw_bis( memory mem ) %{
6292  predicate(AllocatePrefetchStyle == 3);
6293  match( PrefetchWrite mem );
6294  ins_cost(MEMORY_REF_COST);
6295
6296  format %{ "STXA   G0,$mem\t! // Block initializing store" %}
6297  ins_encode %{
6298     Register base = as_Register($mem$$base);
6299     int disp = $mem$$disp;
6300     if (disp != 0) {
6301       __ add(base, AllocatePrefetchStepSize, base);
6302     }
6303     __ stxa(G0, base, G0, ASI_BLK_INIT_QUAD_LDD_P);
6304  %}
6305  ins_pipe(istore_mem_reg);
6306%}
6307
6308//----------Store Instructions-------------------------------------------------
6309// Store Byte
6310instruct storeB(memory mem, iRegI src) %{
6311  match(Set mem (StoreB mem src));
6312  ins_cost(MEMORY_REF_COST);
6313
6314  size(4);
6315  format %{ "STB    $src,$mem\t! byte" %}
6316  opcode(Assembler::stb_op3);
6317  ins_encode(simple_form3_mem_reg( mem, src ) );
6318  ins_pipe(istore_mem_reg);
6319%}
6320
6321instruct storeB0(memory mem, immI0 src) %{
6322  match(Set mem (StoreB mem src));
6323  ins_cost(MEMORY_REF_COST);
6324
6325  size(4);
6326  format %{ "STB    $src,$mem\t! byte" %}
6327  opcode(Assembler::stb_op3);
6328  ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6329  ins_pipe(istore_mem_zero);
6330%}
6331
6332instruct storeCM0(memory mem, immI0 src) %{
6333  match(Set mem (StoreCM mem src));
6334  ins_cost(MEMORY_REF_COST);
6335
6336  size(4);
6337  format %{ "STB    $src,$mem\t! CMS card-mark byte 0" %}
6338  opcode(Assembler::stb_op3);
6339  ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6340  ins_pipe(istore_mem_zero);
6341%}
6342
6343// Store Char/Short
6344instruct storeC(memory mem, iRegI src) %{
6345  match(Set mem (StoreC mem src));
6346  ins_cost(MEMORY_REF_COST);
6347
6348  size(4);
6349  format %{ "STH    $src,$mem\t! short" %}
6350  opcode(Assembler::sth_op3);
6351  ins_encode(simple_form3_mem_reg( mem, src ) );
6352  ins_pipe(istore_mem_reg);
6353%}
6354
6355instruct storeC0(memory mem, immI0 src) %{
6356  match(Set mem (StoreC mem src));
6357  ins_cost(MEMORY_REF_COST);
6358
6359  size(4);
6360  format %{ "STH    $src,$mem\t! short" %}
6361  opcode(Assembler::sth_op3);
6362  ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6363  ins_pipe(istore_mem_zero);
6364%}
6365
6366// Store Integer
6367instruct storeI(memory mem, iRegI src) %{
6368  match(Set mem (StoreI mem src));
6369  ins_cost(MEMORY_REF_COST);
6370
6371  size(4);
6372  format %{ "STW    $src,$mem" %}
6373  opcode(Assembler::stw_op3);
6374  ins_encode(simple_form3_mem_reg( mem, src ) );
6375  ins_pipe(istore_mem_reg);
6376%}
6377
6378// Store Long
6379instruct storeL(memory mem, iRegL src) %{
6380  match(Set mem (StoreL mem src));
6381  ins_cost(MEMORY_REF_COST);
6382  size(4);
6383  format %{ "STX    $src,$mem\t! long" %}
6384  opcode(Assembler::stx_op3);
6385  ins_encode(simple_form3_mem_reg( mem, src ) );
6386  ins_pipe(istore_mem_reg);
6387%}
6388
6389instruct storeI0(memory mem, immI0 src) %{
6390  match(Set mem (StoreI mem src));
6391  ins_cost(MEMORY_REF_COST);
6392
6393  size(4);
6394  format %{ "STW    $src,$mem" %}
6395  opcode(Assembler::stw_op3);
6396  ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6397  ins_pipe(istore_mem_zero);
6398%}
6399
6400instruct storeL0(memory mem, immL0 src) %{
6401  match(Set mem (StoreL mem src));
6402  ins_cost(MEMORY_REF_COST);
6403
6404  size(4);
6405  format %{ "STX    $src,$mem" %}
6406  opcode(Assembler::stx_op3);
6407  ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6408  ins_pipe(istore_mem_zero);
6409%}
6410
6411// Store Integer from float register (used after fstoi)
6412instruct storeI_Freg(memory mem, regF src) %{
6413  match(Set mem (StoreI mem src));
6414  ins_cost(MEMORY_REF_COST);
6415
6416  size(4);
6417  format %{ "STF    $src,$mem\t! after fstoi/fdtoi" %}
6418  opcode(Assembler::stf_op3);
6419  ins_encode(simple_form3_mem_reg( mem, src ) );
6420  ins_pipe(fstoreF_mem_reg);
6421%}
6422
6423// Store Pointer
6424instruct storeP(memory dst, sp_ptr_RegP src) %{
6425  match(Set dst (StoreP dst src));
6426  ins_cost(MEMORY_REF_COST);
6427  size(4);
6428
6429#ifndef _LP64
6430  format %{ "STW    $src,$dst\t! ptr" %}
6431  opcode(Assembler::stw_op3, 0, REGP_OP);
6432#else
6433  format %{ "STX    $src,$dst\t! ptr" %}
6434  opcode(Assembler::stx_op3, 0, REGP_OP);
6435#endif
6436  ins_encode( form3_mem_reg( dst, src ) );
6437  ins_pipe(istore_mem_spORreg);
6438%}
6439
6440instruct storeP0(memory dst, immP0 src) %{
6441  match(Set dst (StoreP dst src));
6442  ins_cost(MEMORY_REF_COST);
6443  size(4);
6444
6445#ifndef _LP64
6446  format %{ "STW    $src,$dst\t! ptr" %}
6447  opcode(Assembler::stw_op3, 0, REGP_OP);
6448#else
6449  format %{ "STX    $src,$dst\t! ptr" %}
6450  opcode(Assembler::stx_op3, 0, REGP_OP);
6451#endif
6452  ins_encode( form3_mem_reg( dst, R_G0 ) );
6453  ins_pipe(istore_mem_zero);
6454%}
6455
6456// Store Compressed Pointer
6457instruct storeN(memory dst, iRegN src) %{
6458   match(Set dst (StoreN dst src));
6459   ins_cost(MEMORY_REF_COST);
6460   size(4);
6461
6462   format %{ "STW    $src,$dst\t! compressed ptr" %}
6463   ins_encode %{
6464     Register base = as_Register($dst$$base);
6465     Register index = as_Register($dst$$index);
6466     Register src = $src$$Register;
6467     if (index != G0) {
6468       __ stw(src, base, index);
6469     } else {
6470       __ stw(src, base, $dst$$disp);
6471     }
6472   %}
6473   ins_pipe(istore_mem_spORreg);
6474%}
6475
6476instruct storeN0(memory dst, immN0 src) %{
6477   match(Set dst (StoreN dst src));
6478   ins_cost(MEMORY_REF_COST);
6479   size(4);
6480
6481   format %{ "STW    $src,$dst\t! compressed ptr" %}
6482   ins_encode %{
6483     Register base = as_Register($dst$$base);
6484     Register index = as_Register($dst$$index);
6485     if (index != G0) {
6486       __ stw(0, base, index);
6487     } else {
6488       __ stw(0, base, $dst$$disp);
6489     }
6490   %}
6491   ins_pipe(istore_mem_zero);
6492%}
6493
6494// Store Double
6495instruct storeD( memory mem, regD src) %{
6496  match(Set mem (StoreD mem src));
6497  ins_cost(MEMORY_REF_COST);
6498
6499  size(4);
6500  format %{ "STDF   $src,$mem" %}
6501  opcode(Assembler::stdf_op3);
6502  ins_encode(simple_form3_mem_reg( mem, src ) );
6503  ins_pipe(fstoreD_mem_reg);
6504%}
6505
6506instruct storeD0( memory mem, immD0 src) %{
6507  match(Set mem (StoreD mem src));
6508  ins_cost(MEMORY_REF_COST);
6509
6510  size(4);
6511  format %{ "STX    $src,$mem" %}
6512  opcode(Assembler::stx_op3);
6513  ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6514  ins_pipe(fstoreD_mem_zero);
6515%}
6516
6517// Store Float
6518instruct storeF( memory mem, regF src) %{
6519  match(Set mem (StoreF mem src));
6520  ins_cost(MEMORY_REF_COST);
6521
6522  size(4);
6523  format %{ "STF    $src,$mem" %}
6524  opcode(Assembler::stf_op3);
6525  ins_encode(simple_form3_mem_reg( mem, src ) );
6526  ins_pipe(fstoreF_mem_reg);
6527%}
6528
6529instruct storeF0( memory mem, immF0 src) %{
6530  match(Set mem (StoreF mem src));
6531  ins_cost(MEMORY_REF_COST);
6532
6533  size(4);
6534  format %{ "STW    $src,$mem\t! storeF0" %}
6535  opcode(Assembler::stw_op3);
6536  ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6537  ins_pipe(fstoreF_mem_zero);
6538%}
6539
6540// Store Aligned Packed Bytes in Double register to memory
6541instruct storeA8B(memory mem, regD src) %{
6542  match(Set mem (Store8B mem src));
6543  ins_cost(MEMORY_REF_COST);
6544  size(4);
6545  format %{ "STDF   $src,$mem\t! packed8B" %}
6546  opcode(Assembler::stdf_op3);
6547  ins_encode(simple_form3_mem_reg( mem, src ) );
6548  ins_pipe(fstoreD_mem_reg);
6549%}
6550
6551// Convert oop pointer into compressed form
6552instruct encodeHeapOop(iRegN dst, iRegP src) %{
6553  predicate(n->bottom_type()->make_ptr()->ptr() != TypePtr::NotNull);
6554  match(Set dst (EncodeP src));
6555  format %{ "encode_heap_oop $src, $dst" %}
6556  ins_encode %{
6557    __ encode_heap_oop($src$$Register, $dst$$Register);
6558  %}
6559  ins_pipe(ialu_reg);
6560%}
6561
6562instruct encodeHeapOop_not_null(iRegN dst, iRegP src) %{
6563  predicate(n->bottom_type()->make_ptr()->ptr() == TypePtr::NotNull);
6564  match(Set dst (EncodeP src));
6565  format %{ "encode_heap_oop_not_null $src, $dst" %}
6566  ins_encode %{
6567    __ encode_heap_oop_not_null($src$$Register, $dst$$Register);
6568  %}
6569  ins_pipe(ialu_reg);
6570%}
6571
6572instruct decodeHeapOop(iRegP dst, iRegN src) %{
6573  predicate(n->bottom_type()->is_oopptr()->ptr() != TypePtr::NotNull &&
6574            n->bottom_type()->is_oopptr()->ptr() != TypePtr::Constant);
6575  match(Set dst (DecodeN src));
6576  format %{ "decode_heap_oop $src, $dst" %}
6577  ins_encode %{
6578    __ decode_heap_oop($src$$Register, $dst$$Register);
6579  %}
6580  ins_pipe(ialu_reg);
6581%}
6582
6583instruct decodeHeapOop_not_null(iRegP dst, iRegN src) %{
6584  predicate(n->bottom_type()->is_oopptr()->ptr() == TypePtr::NotNull ||
6585            n->bottom_type()->is_oopptr()->ptr() == TypePtr::Constant);
6586  match(Set dst (DecodeN src));
6587  format %{ "decode_heap_oop_not_null $src, $dst" %}
6588  ins_encode %{
6589    __ decode_heap_oop_not_null($src$$Register, $dst$$Register);
6590  %}
6591  ins_pipe(ialu_reg);
6592%}
6593
6594
6595// Store Zero into Aligned Packed Bytes
6596instruct storeA8B0(memory mem, immI0 zero) %{
6597  match(Set mem (Store8B mem zero));
6598  ins_cost(MEMORY_REF_COST);
6599  size(4);
6600  format %{ "STX    $zero,$mem\t! packed8B" %}
6601  opcode(Assembler::stx_op3);
6602  ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6603  ins_pipe(fstoreD_mem_zero);
6604%}
6605
6606// Store Aligned Packed Chars/Shorts in Double register to memory
6607instruct storeA4C(memory mem, regD src) %{
6608  match(Set mem (Store4C mem src));
6609  ins_cost(MEMORY_REF_COST);
6610  size(4);
6611  format %{ "STDF   $src,$mem\t! packed4C" %}
6612  opcode(Assembler::stdf_op3);
6613  ins_encode(simple_form3_mem_reg( mem, src ) );
6614  ins_pipe(fstoreD_mem_reg);
6615%}
6616
6617// Store Zero into Aligned Packed Chars/Shorts
6618instruct storeA4C0(memory mem, immI0 zero) %{
6619  match(Set mem (Store4C mem (Replicate4C zero)));
6620  ins_cost(MEMORY_REF_COST);
6621  size(4);
6622  format %{ "STX    $zero,$mem\t! packed4C" %}
6623  opcode(Assembler::stx_op3);
6624  ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6625  ins_pipe(fstoreD_mem_zero);
6626%}
6627
6628// Store Aligned Packed Ints in Double register to memory
6629instruct storeA2I(memory mem, regD src) %{
6630  match(Set mem (Store2I mem src));
6631  ins_cost(MEMORY_REF_COST);
6632  size(4);
6633  format %{ "STDF   $src,$mem\t! packed2I" %}
6634  opcode(Assembler::stdf_op3);
6635  ins_encode(simple_form3_mem_reg( mem, src ) );
6636  ins_pipe(fstoreD_mem_reg);
6637%}
6638
6639// Store Zero into Aligned Packed Ints
6640instruct storeA2I0(memory mem, immI0 zero) %{
6641  match(Set mem (Store2I mem zero));
6642  ins_cost(MEMORY_REF_COST);
6643  size(4);
6644  format %{ "STX    $zero,$mem\t! packed2I" %}
6645  opcode(Assembler::stx_op3);
6646  ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6647  ins_pipe(fstoreD_mem_zero);
6648%}
6649
6650
6651//----------MemBar Instructions-----------------------------------------------
6652// Memory barrier flavors
6653
6654instruct membar_acquire() %{
6655  match(MemBarAcquire);
6656  ins_cost(4*MEMORY_REF_COST);
6657
6658  size(0);
6659  format %{ "MEMBAR-acquire" %}
6660  ins_encode( enc_membar_acquire );
6661  ins_pipe(long_memory_op);
6662%}
6663
6664instruct membar_acquire_lock() %{
6665  match(MemBarAcquireLock);
6666  ins_cost(0);
6667
6668  size(0);
6669  format %{ "!MEMBAR-acquire (CAS in prior FastLock so empty encoding)" %}
6670  ins_encode( );
6671  ins_pipe(empty);
6672%}
6673
6674instruct membar_release() %{
6675  match(MemBarRelease);
6676  ins_cost(4*MEMORY_REF_COST);
6677
6678  size(0);
6679  format %{ "MEMBAR-release" %}
6680  ins_encode( enc_membar_release );
6681  ins_pipe(long_memory_op);
6682%}
6683
6684instruct membar_release_lock() %{
6685  match(MemBarReleaseLock);
6686  ins_cost(0);
6687
6688  size(0);
6689  format %{ "!MEMBAR-release (CAS in succeeding FastUnlock so empty encoding)" %}
6690  ins_encode( );
6691  ins_pipe(empty);
6692%}
6693
6694instruct membar_volatile() %{
6695  match(MemBarVolatile);
6696  ins_cost(4*MEMORY_REF_COST);
6697
6698  size(4);
6699  format %{ "MEMBAR-volatile" %}
6700  ins_encode( enc_membar_volatile );
6701  ins_pipe(long_memory_op);
6702%}
6703
6704instruct unnecessary_membar_volatile() %{
6705  match(MemBarVolatile);
6706  predicate(Matcher::post_store_load_barrier(n));
6707  ins_cost(0);
6708
6709  size(0);
6710  format %{ "!MEMBAR-volatile (unnecessary so empty encoding)" %}
6711  ins_encode( );
6712  ins_pipe(empty);
6713%}
6714
6715//----------Register Move Instructions-----------------------------------------
6716instruct roundDouble_nop(regD dst) %{
6717  match(Set dst (RoundDouble dst));
6718  ins_cost(0);
6719  // SPARC results are already "rounded" (i.e., normal-format IEEE)
6720  ins_encode( );
6721  ins_pipe(empty);
6722%}
6723
6724
6725instruct roundFloat_nop(regF dst) %{
6726  match(Set dst (RoundFloat dst));
6727  ins_cost(0);
6728  // SPARC results are already "rounded" (i.e., normal-format IEEE)
6729  ins_encode( );
6730  ins_pipe(empty);
6731%}
6732
6733
6734// Cast Index to Pointer for unsafe natives
6735instruct castX2P(iRegX src, iRegP dst) %{
6736  match(Set dst (CastX2P src));
6737
6738  format %{ "MOV    $src,$dst\t! IntX->Ptr" %}
6739  ins_encode( form3_g0_rs2_rd_move( src, dst ) );
6740  ins_pipe(ialu_reg);
6741%}
6742
6743// Cast Pointer to Index for unsafe natives
6744instruct castP2X(iRegP src, iRegX dst) %{
6745  match(Set dst (CastP2X src));
6746
6747  format %{ "MOV    $src,$dst\t! Ptr->IntX" %}
6748  ins_encode( form3_g0_rs2_rd_move( src, dst ) );
6749  ins_pipe(ialu_reg);
6750%}
6751
6752instruct stfSSD(stackSlotD stkSlot, regD src) %{
6753  // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
6754  match(Set stkSlot src);   // chain rule
6755  ins_cost(MEMORY_REF_COST);
6756  format %{ "STDF   $src,$stkSlot\t!stk" %}
6757  opcode(Assembler::stdf_op3);
6758  ins_encode(simple_form3_mem_reg(stkSlot, src));
6759  ins_pipe(fstoreD_stk_reg);
6760%}
6761
6762instruct ldfSSD(regD dst, stackSlotD stkSlot) %{
6763  // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
6764  match(Set dst stkSlot);   // chain rule
6765  ins_cost(MEMORY_REF_COST);
6766  format %{ "LDDF   $stkSlot,$dst\t!stk" %}
6767  opcode(Assembler::lddf_op3);
6768  ins_encode(simple_form3_mem_reg(stkSlot, dst));
6769  ins_pipe(floadD_stk);
6770%}
6771
6772instruct stfSSF(stackSlotF stkSlot, regF src) %{
6773  // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
6774  match(Set stkSlot src);   // chain rule
6775  ins_cost(MEMORY_REF_COST);
6776  format %{ "STF   $src,$stkSlot\t!stk" %}
6777  opcode(Assembler::stf_op3);
6778  ins_encode(simple_form3_mem_reg(stkSlot, src));
6779  ins_pipe(fstoreF_stk_reg);
6780%}
6781
6782//----------Conditional Move---------------------------------------------------
6783// Conditional move
6784instruct cmovIP_reg(cmpOpP cmp, flagsRegP pcc, iRegI dst, iRegI src) %{
6785  match(Set dst (CMoveI (Binary cmp pcc) (Binary dst src)));
6786  ins_cost(150);
6787  format %{ "MOV$cmp $pcc,$src,$dst" %}
6788  ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6789  ins_pipe(ialu_reg);
6790%}
6791
6792instruct cmovIP_imm(cmpOpP cmp, flagsRegP pcc, iRegI dst, immI11 src) %{
6793  match(Set dst (CMoveI (Binary cmp pcc) (Binary dst src)));
6794  ins_cost(140);
6795  format %{ "MOV$cmp $pcc,$src,$dst" %}
6796  ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
6797  ins_pipe(ialu_imm);
6798%}
6799
6800instruct cmovII_reg(cmpOp cmp, flagsReg icc, iRegI dst, iRegI src) %{
6801  match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
6802  ins_cost(150);
6803  size(4);
6804  format %{ "MOV$cmp  $icc,$src,$dst" %}
6805  ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6806  ins_pipe(ialu_reg);
6807%}
6808
6809instruct cmovII_imm(cmpOp cmp, flagsReg icc, iRegI dst, immI11 src) %{
6810  match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
6811  ins_cost(140);
6812  size(4);
6813  format %{ "MOV$cmp  $icc,$src,$dst" %}
6814  ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
6815  ins_pipe(ialu_imm);
6816%}
6817
6818instruct cmovIIu_reg(cmpOpU cmp, flagsRegU icc, iRegI dst, iRegI src) %{
6819  match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
6820  ins_cost(150);
6821  size(4);
6822  format %{ "MOV$cmp  $icc,$src,$dst" %}
6823  ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6824  ins_pipe(ialu_reg);
6825%}
6826
6827instruct cmovIIu_imm(cmpOpU cmp, flagsRegU icc, iRegI dst, immI11 src) %{
6828  match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
6829  ins_cost(140);
6830  size(4);
6831  format %{ "MOV$cmp  $icc,$src,$dst" %}
6832  ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
6833  ins_pipe(ialu_imm);
6834%}
6835
6836instruct cmovIF_reg(cmpOpF cmp, flagsRegF fcc, iRegI dst, iRegI src) %{
6837  match(Set dst (CMoveI (Binary cmp fcc) (Binary dst src)));
6838  ins_cost(150);
6839  size(4);
6840  format %{ "MOV$cmp $fcc,$src,$dst" %}
6841  ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
6842  ins_pipe(ialu_reg);
6843%}
6844
6845instruct cmovIF_imm(cmpOpF cmp, flagsRegF fcc, iRegI dst, immI11 src) %{
6846  match(Set dst (CMoveI (Binary cmp fcc) (Binary dst src)));
6847  ins_cost(140);
6848  size(4);
6849  format %{ "MOV$cmp $fcc,$src,$dst" %}
6850  ins_encode( enc_cmov_imm_f(cmp,dst,src, fcc) );
6851  ins_pipe(ialu_imm);
6852%}
6853
6854// Conditional move for RegN. Only cmov(reg,reg).
6855instruct cmovNP_reg(cmpOpP cmp, flagsRegP pcc, iRegN dst, iRegN src) %{
6856  match(Set dst (CMoveN (Binary cmp pcc) (Binary dst src)));
6857  ins_cost(150);
6858  format %{ "MOV$cmp $pcc,$src,$dst" %}
6859  ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6860  ins_pipe(ialu_reg);
6861%}
6862
6863// This instruction also works with CmpN so we don't need cmovNN_reg.
6864instruct cmovNI_reg(cmpOp cmp, flagsReg icc, iRegN dst, iRegN src) %{
6865  match(Set dst (CMoveN (Binary cmp icc) (Binary dst src)));
6866  ins_cost(150);
6867  size(4);
6868  format %{ "MOV$cmp  $icc,$src,$dst" %}
6869  ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6870  ins_pipe(ialu_reg);
6871%}
6872
6873// This instruction also works with CmpN so we don't need cmovNN_reg.
6874instruct cmovNIu_reg(cmpOpU cmp, flagsRegU icc, iRegN dst, iRegN src) %{
6875  match(Set dst (CMoveN (Binary cmp icc) (Binary dst src)));
6876  ins_cost(150);
6877  size(4);
6878  format %{ "MOV$cmp  $icc,$src,$dst" %}
6879  ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6880  ins_pipe(ialu_reg);
6881%}
6882
6883instruct cmovNF_reg(cmpOpF cmp, flagsRegF fcc, iRegN dst, iRegN src) %{
6884  match(Set dst (CMoveN (Binary cmp fcc) (Binary dst src)));
6885  ins_cost(150);
6886  size(4);
6887  format %{ "MOV$cmp $fcc,$src,$dst" %}
6888  ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
6889  ins_pipe(ialu_reg);
6890%}
6891
6892// Conditional move
6893instruct cmovPP_reg(cmpOpP cmp, flagsRegP pcc, iRegP dst, iRegP src) %{
6894  match(Set dst (CMoveP (Binary cmp pcc) (Binary dst src)));
6895  ins_cost(150);
6896  format %{ "MOV$cmp $pcc,$src,$dst\t! ptr" %}
6897  ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6898  ins_pipe(ialu_reg);
6899%}
6900
6901instruct cmovPP_imm(cmpOpP cmp, flagsRegP pcc, iRegP dst, immP0 src) %{
6902  match(Set dst (CMoveP (Binary cmp pcc) (Binary dst src)));
6903  ins_cost(140);
6904  format %{ "MOV$cmp $pcc,$src,$dst\t! ptr" %}
6905  ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
6906  ins_pipe(ialu_imm);
6907%}
6908
6909// This instruction also works with CmpN so we don't need cmovPN_reg.
6910instruct cmovPI_reg(cmpOp cmp, flagsReg icc, iRegP dst, iRegP src) %{
6911  match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
6912  ins_cost(150);
6913
6914  size(4);
6915  format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
6916  ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6917  ins_pipe(ialu_reg);
6918%}
6919
6920instruct cmovPIu_reg(cmpOpU cmp, flagsRegU icc, iRegP dst, iRegP src) %{
6921  match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
6922  ins_cost(150);
6923
6924  size(4);
6925  format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
6926  ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6927  ins_pipe(ialu_reg);
6928%}
6929
6930instruct cmovPI_imm(cmpOp cmp, flagsReg icc, iRegP dst, immP0 src) %{
6931  match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
6932  ins_cost(140);
6933
6934  size(4);
6935  format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
6936  ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
6937  ins_pipe(ialu_imm);
6938%}
6939
6940instruct cmovPIu_imm(cmpOpU cmp, flagsRegU icc, iRegP dst, immP0 src) %{
6941  match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
6942  ins_cost(140);
6943
6944  size(4);
6945  format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
6946  ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
6947  ins_pipe(ialu_imm);
6948%}
6949
6950instruct cmovPF_reg(cmpOpF cmp, flagsRegF fcc, iRegP dst, iRegP src) %{
6951  match(Set dst (CMoveP (Binary cmp fcc) (Binary dst src)));
6952  ins_cost(150);
6953  size(4);
6954  format %{ "MOV$cmp $fcc,$src,$dst" %}
6955  ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
6956  ins_pipe(ialu_imm);
6957%}
6958
6959instruct cmovPF_imm(cmpOpF cmp, flagsRegF fcc, iRegP dst, immP0 src) %{
6960  match(Set dst (CMoveP (Binary cmp fcc) (Binary dst src)));
6961  ins_cost(140);
6962  size(4);
6963  format %{ "MOV$cmp $fcc,$src,$dst" %}
6964  ins_encode( enc_cmov_imm_f(cmp,dst,src, fcc) );
6965  ins_pipe(ialu_imm);
6966%}
6967
6968// Conditional move
6969instruct cmovFP_reg(cmpOpP cmp, flagsRegP pcc, regF dst, regF src) %{
6970  match(Set dst (CMoveF (Binary cmp pcc) (Binary dst src)));
6971  ins_cost(150);
6972  opcode(0x101);
6973  format %{ "FMOVD$cmp $pcc,$src,$dst" %}
6974  ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6975  ins_pipe(int_conditional_float_move);
6976%}
6977
6978instruct cmovFI_reg(cmpOp cmp, flagsReg icc, regF dst, regF src) %{
6979  match(Set dst (CMoveF (Binary cmp icc) (Binary dst src)));
6980  ins_cost(150);
6981
6982  size(4);
6983  format %{ "FMOVS$cmp $icc,$src,$dst" %}
6984  opcode(0x101);
6985  ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
6986  ins_pipe(int_conditional_float_move);
6987%}
6988
6989instruct cmovFIu_reg(cmpOpU cmp, flagsRegU icc, regF dst, regF src) %{
6990  match(Set dst (CMoveF (Binary cmp icc) (Binary dst src)));
6991  ins_cost(150);
6992
6993  size(4);
6994  format %{ "FMOVS$cmp $icc,$src,$dst" %}
6995  opcode(0x101);
6996  ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
6997  ins_pipe(int_conditional_float_move);
6998%}
6999
7000// Conditional move,
7001instruct cmovFF_reg(cmpOpF cmp, flagsRegF fcc, regF dst, regF src) %{
7002  match(Set dst (CMoveF (Binary cmp fcc) (Binary dst src)));
7003  ins_cost(150);
7004  size(4);
7005  format %{ "FMOVF$cmp $fcc,$src,$dst" %}
7006  opcode(0x1);
7007  ins_encode( enc_cmovff_reg(cmp,fcc,dst,src) );
7008  ins_pipe(int_conditional_double_move);
7009%}
7010
7011// Conditional move
7012instruct cmovDP_reg(cmpOpP cmp, flagsRegP pcc, regD dst, regD src) %{
7013  match(Set dst (CMoveD (Binary cmp pcc) (Binary dst src)));
7014  ins_cost(150);
7015  size(4);
7016  opcode(0x102);
7017  format %{ "FMOVD$cmp $pcc,$src,$dst" %}
7018  ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::ptr_cc)) );
7019  ins_pipe(int_conditional_double_move);
7020%}
7021
7022instruct cmovDI_reg(cmpOp cmp, flagsReg icc, regD dst, regD src) %{
7023  match(Set dst (CMoveD (Binary cmp icc) (Binary dst src)));
7024  ins_cost(150);
7025
7026  size(4);
7027  format %{ "FMOVD$cmp $icc,$src,$dst" %}
7028  opcode(0x102);
7029  ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
7030  ins_pipe(int_conditional_double_move);
7031%}
7032
7033instruct cmovDIu_reg(cmpOpU cmp, flagsRegU icc, regD dst, regD src) %{
7034  match(Set dst (CMoveD (Binary cmp icc) (Binary dst src)));
7035  ins_cost(150);
7036
7037  size(4);
7038  format %{ "FMOVD$cmp $icc,$src,$dst" %}
7039  opcode(0x102);
7040  ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
7041  ins_pipe(int_conditional_double_move);
7042%}
7043
7044// Conditional move,
7045instruct cmovDF_reg(cmpOpF cmp, flagsRegF fcc, regD dst, regD src) %{
7046  match(Set dst (CMoveD (Binary cmp fcc) (Binary dst src)));
7047  ins_cost(150);
7048  size(4);
7049  format %{ "FMOVD$cmp $fcc,$src,$dst" %}
7050  opcode(0x2);
7051  ins_encode( enc_cmovff_reg(cmp,fcc,dst,src) );
7052  ins_pipe(int_conditional_double_move);
7053%}
7054
7055// Conditional move
7056instruct cmovLP_reg(cmpOpP cmp, flagsRegP pcc, iRegL dst, iRegL src) %{
7057  match(Set dst (CMoveL (Binary cmp pcc) (Binary dst src)));
7058  ins_cost(150);
7059  format %{ "MOV$cmp $pcc,$src,$dst\t! long" %}
7060  ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
7061  ins_pipe(ialu_reg);
7062%}
7063
7064instruct cmovLP_imm(cmpOpP cmp, flagsRegP pcc, iRegL dst, immI11 src) %{
7065  match(Set dst (CMoveL (Binary cmp pcc) (Binary dst src)));
7066  ins_cost(140);
7067  format %{ "MOV$cmp $pcc,$src,$dst\t! long" %}
7068  ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
7069  ins_pipe(ialu_imm);
7070%}
7071
7072instruct cmovLI_reg(cmpOp cmp, flagsReg icc, iRegL dst, iRegL src) %{
7073  match(Set dst (CMoveL (Binary cmp icc) (Binary dst src)));
7074  ins_cost(150);
7075
7076  size(4);
7077  format %{ "MOV$cmp  $icc,$src,$dst\t! long" %}
7078  ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
7079  ins_pipe(ialu_reg);
7080%}
7081
7082
7083instruct cmovLIu_reg(cmpOpU cmp, flagsRegU icc, iRegL dst, iRegL src) %{
7084  match(Set dst (CMoveL (Binary cmp icc) (Binary dst src)));
7085  ins_cost(150);
7086
7087  size(4);
7088  format %{ "MOV$cmp  $icc,$src,$dst\t! long" %}
7089  ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
7090  ins_pipe(ialu_reg);
7091%}
7092
7093
7094instruct cmovLF_reg(cmpOpF cmp, flagsRegF fcc, iRegL dst, iRegL src) %{
7095  match(Set dst (CMoveL (Binary cmp fcc) (Binary dst src)));
7096  ins_cost(150);
7097
7098  size(4);
7099  format %{ "MOV$cmp  $fcc,$src,$dst\t! long" %}
7100  ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
7101  ins_pipe(ialu_reg);
7102%}
7103
7104
7105
7106//----------OS and Locking Instructions----------------------------------------
7107
7108// This name is KNOWN by the ADLC and cannot be changed.
7109// The ADLC forces a 'TypeRawPtr::BOTTOM' output type
7110// for this guy.
7111instruct tlsLoadP(g2RegP dst) %{
7112  match(Set dst (ThreadLocal));
7113
7114  size(0);
7115  ins_cost(0);
7116  format %{ "# TLS is in G2" %}
7117  ins_encode( /*empty encoding*/ );
7118  ins_pipe(ialu_none);
7119%}
7120
7121instruct checkCastPP( iRegP dst ) %{
7122  match(Set dst (CheckCastPP dst));
7123
7124  size(0);
7125  format %{ "# checkcastPP of $dst" %}
7126  ins_encode( /*empty encoding*/ );
7127  ins_pipe(empty);
7128%}
7129
7130
7131instruct castPP( iRegP dst ) %{
7132  match(Set dst (CastPP dst));
7133  format %{ "# castPP of $dst" %}
7134  ins_encode( /*empty encoding*/ );
7135  ins_pipe(empty);
7136%}
7137
7138instruct castII( iRegI dst ) %{
7139  match(Set dst (CastII dst));
7140  format %{ "# castII of $dst" %}
7141  ins_encode( /*empty encoding*/ );
7142  ins_cost(0);
7143  ins_pipe(empty);
7144%}
7145
7146//----------Arithmetic Instructions--------------------------------------------
7147// Addition Instructions
7148// Register Addition
7149instruct addI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7150  match(Set dst (AddI src1 src2));
7151
7152  size(4);
7153  format %{ "ADD    $src1,$src2,$dst" %}
7154  ins_encode %{
7155    __ add($src1$$Register, $src2$$Register, $dst$$Register);
7156  %}
7157  ins_pipe(ialu_reg_reg);
7158%}
7159
7160// Immediate Addition
7161instruct addI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
7162  match(Set dst (AddI src1 src2));
7163
7164  size(4);
7165  format %{ "ADD    $src1,$src2,$dst" %}
7166  opcode(Assembler::add_op3, Assembler::arith_op);
7167  ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7168  ins_pipe(ialu_reg_imm);
7169%}
7170
7171// Pointer Register Addition
7172instruct addP_reg_reg(iRegP dst, iRegP src1, iRegX src2) %{
7173  match(Set dst (AddP src1 src2));
7174
7175  size(4);
7176  format %{ "ADD    $src1,$src2,$dst" %}
7177  opcode(Assembler::add_op3, Assembler::arith_op);
7178  ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7179  ins_pipe(ialu_reg_reg);
7180%}
7181
7182// Pointer Immediate Addition
7183instruct addP_reg_imm13(iRegP dst, iRegP src1, immX13 src2) %{
7184  match(Set dst (AddP src1 src2));
7185
7186  size(4);
7187  format %{ "ADD    $src1,$src2,$dst" %}
7188  opcode(Assembler::add_op3, Assembler::arith_op);
7189  ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7190  ins_pipe(ialu_reg_imm);
7191%}
7192
7193// Long Addition
7194instruct addL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7195  match(Set dst (AddL src1 src2));
7196
7197  size(4);
7198  format %{ "ADD    $src1,$src2,$dst\t! long" %}
7199  opcode(Assembler::add_op3, Assembler::arith_op);
7200  ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7201  ins_pipe(ialu_reg_reg);
7202%}
7203
7204instruct addL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
7205  match(Set dst (AddL src1 con));
7206
7207  size(4);
7208  format %{ "ADD    $src1,$con,$dst" %}
7209  opcode(Assembler::add_op3, Assembler::arith_op);
7210  ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
7211  ins_pipe(ialu_reg_imm);
7212%}
7213
7214//----------Conditional_store--------------------------------------------------
7215// Conditional-store of the updated heap-top.
7216// Used during allocation of the shared heap.
7217// Sets flags (EQ) on success.  Implemented with a CASA on Sparc.
7218
7219// LoadP-locked.  Same as a regular pointer load when used with a compare-swap
7220instruct loadPLocked(iRegP dst, memory mem) %{
7221  match(Set dst (LoadPLocked mem));
7222  ins_cost(MEMORY_REF_COST);
7223
7224#ifndef _LP64
7225  size(4);
7226  format %{ "LDUW   $mem,$dst\t! ptr" %}
7227  opcode(Assembler::lduw_op3, 0, REGP_OP);
7228#else
7229  format %{ "LDX    $mem,$dst\t! ptr" %}
7230  opcode(Assembler::ldx_op3, 0, REGP_OP);
7231#endif
7232  ins_encode( form3_mem_reg( mem, dst ) );
7233  ins_pipe(iload_mem);
7234%}
7235
7236// LoadL-locked.  Same as a regular long load when used with a compare-swap
7237instruct loadLLocked(iRegL dst, memory mem) %{
7238  match(Set dst (LoadLLocked mem));
7239  ins_cost(MEMORY_REF_COST);
7240  size(4);
7241  format %{ "LDX    $mem,$dst\t! long" %}
7242  opcode(Assembler::ldx_op3);
7243  ins_encode(simple_form3_mem_reg( mem, dst ) );
7244  ins_pipe(iload_mem);
7245%}
7246
7247instruct storePConditional( iRegP heap_top_ptr, iRegP oldval, g3RegP newval, flagsRegP pcc ) %{
7248  match(Set pcc (StorePConditional heap_top_ptr (Binary oldval newval)));
7249  effect( KILL newval );
7250  format %{ "CASA   [$heap_top_ptr],$oldval,R_G3\t! If $oldval==[$heap_top_ptr] Then store R_G3 into [$heap_top_ptr], set R_G3=[$heap_top_ptr] in any case\n\t"
7251            "CMP    R_G3,$oldval\t\t! See if we made progress"  %}
7252  ins_encode( enc_cas(heap_top_ptr,oldval,newval) );
7253  ins_pipe( long_memory_op );
7254%}
7255
7256// Conditional-store of an int value.
7257instruct storeIConditional( iRegP mem_ptr, iRegI oldval, g3RegI newval, flagsReg icc ) %{
7258  match(Set icc (StoreIConditional mem_ptr (Binary oldval newval)));
7259  effect( KILL newval );
7260  format %{ "CASA   [$mem_ptr],$oldval,$newval\t! If $oldval==[$mem_ptr] Then store $newval into [$mem_ptr], set $newval=[$mem_ptr] in any case\n\t"
7261            "CMP    $oldval,$newval\t\t! See if we made progress"  %}
7262  ins_encode( enc_cas(mem_ptr,oldval,newval) );
7263  ins_pipe( long_memory_op );
7264%}
7265
7266// Conditional-store of a long value.
7267instruct storeLConditional( iRegP mem_ptr, iRegL oldval, g3RegL newval, flagsRegL xcc ) %{
7268  match(Set xcc (StoreLConditional mem_ptr (Binary oldval newval)));
7269  effect( KILL newval );
7270  format %{ "CASXA  [$mem_ptr],$oldval,$newval\t! If $oldval==[$mem_ptr] Then store $newval into [$mem_ptr], set $newval=[$mem_ptr] in any case\n\t"
7271            "CMP    $oldval,$newval\t\t! See if we made progress"  %}
7272  ins_encode( enc_cas(mem_ptr,oldval,newval) );
7273  ins_pipe( long_memory_op );
7274%}
7275
7276// No flag versions for CompareAndSwap{P,I,L} because matcher can't match them
7277
7278instruct compareAndSwapL_bool(iRegP mem_ptr, iRegL oldval, iRegL newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
7279  match(Set res (CompareAndSwapL mem_ptr (Binary oldval newval)));
7280  effect( USE mem_ptr, KILL ccr, KILL tmp1);
7281  format %{
7282            "MOV    $newval,O7\n\t"
7283            "CASXA  [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
7284            "CMP    $oldval,O7\t\t! See if we made progress\n\t"
7285            "MOV    1,$res\n\t"
7286            "MOVne  xcc,R_G0,$res"
7287  %}
7288  ins_encode( enc_casx(mem_ptr, oldval, newval),
7289              enc_lflags_ne_to_boolean(res) );
7290  ins_pipe( long_memory_op );
7291%}
7292
7293
7294instruct compareAndSwapI_bool(iRegP mem_ptr, iRegI oldval, iRegI newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
7295  match(Set res (CompareAndSwapI mem_ptr (Binary oldval newval)));
7296  effect( USE mem_ptr, KILL ccr, KILL tmp1);
7297  format %{
7298            "MOV    $newval,O7\n\t"
7299            "CASA   [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
7300            "CMP    $oldval,O7\t\t! See if we made progress\n\t"
7301            "MOV    1,$res\n\t"
7302            "MOVne  icc,R_G0,$res"
7303  %}
7304  ins_encode( enc_casi(mem_ptr, oldval, newval),
7305              enc_iflags_ne_to_boolean(res) );
7306  ins_pipe( long_memory_op );
7307%}
7308
7309instruct compareAndSwapP_bool(iRegP mem_ptr, iRegP oldval, iRegP newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
7310  match(Set res (CompareAndSwapP mem_ptr (Binary oldval newval)));
7311  effect( USE mem_ptr, KILL ccr, KILL tmp1);
7312  format %{
7313            "MOV    $newval,O7\n\t"
7314            "CASA_PTR  [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
7315            "CMP    $oldval,O7\t\t! See if we made progress\n\t"
7316            "MOV    1,$res\n\t"
7317            "MOVne  xcc,R_G0,$res"
7318  %}
7319#ifdef _LP64
7320  ins_encode( enc_casx(mem_ptr, oldval, newval),
7321              enc_lflags_ne_to_boolean(res) );
7322#else
7323  ins_encode( enc_casi(mem_ptr, oldval, newval),
7324              enc_iflags_ne_to_boolean(res) );
7325#endif
7326  ins_pipe( long_memory_op );
7327%}
7328
7329instruct compareAndSwapN_bool(iRegP mem_ptr, iRegN oldval, iRegN newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
7330  match(Set res (CompareAndSwapN mem_ptr (Binary oldval newval)));
7331  effect( USE mem_ptr, KILL ccr, KILL tmp1);
7332  format %{
7333            "MOV    $newval,O7\n\t"
7334            "CASA   [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
7335            "CMP    $oldval,O7\t\t! See if we made progress\n\t"
7336            "MOV    1,$res\n\t"
7337            "MOVne  icc,R_G0,$res"
7338  %}
7339  ins_encode( enc_casi(mem_ptr, oldval, newval),
7340              enc_iflags_ne_to_boolean(res) );
7341  ins_pipe( long_memory_op );
7342%}
7343
7344//---------------------
7345// Subtraction Instructions
7346// Register Subtraction
7347instruct subI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7348  match(Set dst (SubI src1 src2));
7349
7350  size(4);
7351  format %{ "SUB    $src1,$src2,$dst" %}
7352  opcode(Assembler::sub_op3, Assembler::arith_op);
7353  ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7354  ins_pipe(ialu_reg_reg);
7355%}
7356
7357// Immediate Subtraction
7358instruct subI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
7359  match(Set dst (SubI src1 src2));
7360
7361  size(4);
7362  format %{ "SUB    $src1,$src2,$dst" %}
7363  opcode(Assembler::sub_op3, Assembler::arith_op);
7364  ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7365  ins_pipe(ialu_reg_imm);
7366%}
7367
7368instruct subI_zero_reg(iRegI dst, immI0 zero, iRegI src2) %{
7369  match(Set dst (SubI zero src2));
7370
7371  size(4);
7372  format %{ "NEG    $src2,$dst" %}
7373  opcode(Assembler::sub_op3, Assembler::arith_op);
7374  ins_encode( form3_rs1_rs2_rd( R_G0, src2, dst ) );
7375  ins_pipe(ialu_zero_reg);
7376%}
7377
7378// Long subtraction
7379instruct subL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7380  match(Set dst (SubL src1 src2));
7381
7382  size(4);
7383  format %{ "SUB    $src1,$src2,$dst\t! long" %}
7384  opcode(Assembler::sub_op3, Assembler::arith_op);
7385  ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7386  ins_pipe(ialu_reg_reg);
7387%}
7388
7389// Immediate Subtraction
7390instruct subL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
7391  match(Set dst (SubL src1 con));
7392
7393  size(4);
7394  format %{ "SUB    $src1,$con,$dst\t! long" %}
7395  opcode(Assembler::sub_op3, Assembler::arith_op);
7396  ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
7397  ins_pipe(ialu_reg_imm);
7398%}
7399
7400// Long negation
7401instruct negL_reg_reg(iRegL dst, immL0 zero, iRegL src2) %{
7402  match(Set dst (SubL zero src2));
7403
7404  size(4);
7405  format %{ "NEG    $src2,$dst\t! long" %}
7406  opcode(Assembler::sub_op3, Assembler::arith_op);
7407  ins_encode( form3_rs1_rs2_rd( R_G0, src2, dst ) );
7408  ins_pipe(ialu_zero_reg);
7409%}
7410
7411// Multiplication Instructions
7412// Integer Multiplication
7413// Register Multiplication
7414instruct mulI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7415  match(Set dst (MulI src1 src2));
7416
7417  size(4);
7418  format %{ "MULX   $src1,$src2,$dst" %}
7419  opcode(Assembler::mulx_op3, Assembler::arith_op);
7420  ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7421  ins_pipe(imul_reg_reg);
7422%}
7423
7424// Immediate Multiplication
7425instruct mulI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
7426  match(Set dst (MulI src1 src2));
7427
7428  size(4);
7429  format %{ "MULX   $src1,$src2,$dst" %}
7430  opcode(Assembler::mulx_op3, Assembler::arith_op);
7431  ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7432  ins_pipe(imul_reg_imm);
7433%}
7434
7435instruct mulL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7436  match(Set dst (MulL src1 src2));
7437  ins_cost(DEFAULT_COST * 5);
7438  size(4);
7439  format %{ "MULX   $src1,$src2,$dst\t! long" %}
7440  opcode(Assembler::mulx_op3, Assembler::arith_op);
7441  ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7442  ins_pipe(mulL_reg_reg);
7443%}
7444
7445// Immediate Multiplication
7446instruct mulL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
7447  match(Set dst (MulL src1 src2));
7448  ins_cost(DEFAULT_COST * 5);
7449  size(4);
7450  format %{ "MULX   $src1,$src2,$dst" %}
7451  opcode(Assembler::mulx_op3, Assembler::arith_op);
7452  ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7453  ins_pipe(mulL_reg_imm);
7454%}
7455
7456// Integer Division
7457// Register Division
7458instruct divI_reg_reg(iRegI dst, iRegIsafe src1, iRegIsafe src2) %{
7459  match(Set dst (DivI src1 src2));
7460  ins_cost((2+71)*DEFAULT_COST);
7461
7462  format %{ "SRA     $src2,0,$src2\n\t"
7463            "SRA     $src1,0,$src1\n\t"
7464            "SDIVX   $src1,$src2,$dst" %}
7465  ins_encode( idiv_reg( src1, src2, dst ) );
7466  ins_pipe(sdiv_reg_reg);
7467%}
7468
7469// Immediate Division
7470instruct divI_reg_imm13(iRegI dst, iRegIsafe src1, immI13 src2) %{
7471  match(Set dst (DivI src1 src2));
7472  ins_cost((2+71)*DEFAULT_COST);
7473
7474  format %{ "SRA     $src1,0,$src1\n\t"
7475            "SDIVX   $src1,$src2,$dst" %}
7476  ins_encode( idiv_imm( src1, src2, dst ) );
7477  ins_pipe(sdiv_reg_imm);
7478%}
7479
7480//----------Div-By-10-Expansion------------------------------------------------
7481// Extract hi bits of a 32x32->64 bit multiply.
7482// Expand rule only, not matched
7483instruct mul_hi(iRegIsafe dst, iRegIsafe src1, iRegIsafe src2 ) %{
7484  effect( DEF dst, USE src1, USE src2 );
7485  format %{ "MULX   $src1,$src2,$dst\t! Used in div-by-10\n\t"
7486            "SRLX   $dst,#32,$dst\t\t! Extract only hi word of result" %}
7487  ins_encode( enc_mul_hi(dst,src1,src2));
7488  ins_pipe(sdiv_reg_reg);
7489%}
7490
7491// Magic constant, reciprocal of 10
7492instruct loadConI_x66666667(iRegIsafe dst) %{
7493  effect( DEF dst );
7494
7495  size(8);
7496  format %{ "SET    0x66666667,$dst\t! Used in div-by-10" %}
7497  ins_encode( Set32(0x66666667, dst) );
7498  ins_pipe(ialu_hi_lo_reg);
7499%}
7500
7501// Register Shift Right Arithmetic Long by 32-63
7502instruct sra_31( iRegI dst, iRegI src ) %{
7503  effect( DEF dst, USE src );
7504  format %{ "SRA    $src,31,$dst\t! Used in div-by-10" %}
7505  ins_encode( form3_rs1_rd_copysign_hi(src,dst) );
7506  ins_pipe(ialu_reg_reg);
7507%}
7508
7509// Arithmetic Shift Right by 8-bit immediate
7510instruct sra_reg_2( iRegI dst, iRegI src ) %{
7511  effect( DEF dst, USE src );
7512  format %{ "SRA    $src,2,$dst\t! Used in div-by-10" %}
7513  opcode(Assembler::sra_op3, Assembler::arith_op);
7514  ins_encode( form3_rs1_simm13_rd( src, 0x2, dst ) );
7515  ins_pipe(ialu_reg_imm);
7516%}
7517
7518// Integer DIV with 10
7519instruct divI_10( iRegI dst, iRegIsafe src, immI10 div ) %{
7520  match(Set dst (DivI src div));
7521  ins_cost((6+6)*DEFAULT_COST);
7522  expand %{
7523    iRegIsafe tmp1;               // Killed temps;
7524    iRegIsafe tmp2;               // Killed temps;
7525    iRegI tmp3;                   // Killed temps;
7526    iRegI tmp4;                   // Killed temps;
7527    loadConI_x66666667( tmp1 );   // SET  0x66666667 -> tmp1
7528    mul_hi( tmp2, src, tmp1 );    // MUL  hibits(src * tmp1) -> tmp2
7529    sra_31( tmp3, src );          // SRA  src,31 -> tmp3
7530    sra_reg_2( tmp4, tmp2 );      // SRA  tmp2,2 -> tmp4
7531    subI_reg_reg( dst,tmp4,tmp3); // SUB  tmp4 - tmp3 -> dst
7532  %}
7533%}
7534
7535// Register Long Division
7536instruct divL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7537  match(Set dst (DivL src1 src2));
7538  ins_cost(DEFAULT_COST*71);
7539  size(4);
7540  format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
7541  opcode(Assembler::sdivx_op3, Assembler::arith_op);
7542  ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7543  ins_pipe(divL_reg_reg);
7544%}
7545
7546// Register Long Division
7547instruct divL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
7548  match(Set dst (DivL src1 src2));
7549  ins_cost(DEFAULT_COST*71);
7550  size(4);
7551  format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
7552  opcode(Assembler::sdivx_op3, Assembler::arith_op);
7553  ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7554  ins_pipe(divL_reg_imm);
7555%}
7556
7557// Integer Remainder
7558// Register Remainder
7559instruct modI_reg_reg(iRegI dst, iRegIsafe src1, iRegIsafe src2, o7RegP temp, flagsReg ccr ) %{
7560  match(Set dst (ModI src1 src2));
7561  effect( KILL ccr, KILL temp);
7562
7563  format %{ "SREM   $src1,$src2,$dst" %}
7564  ins_encode( irem_reg(src1, src2, dst, temp) );
7565  ins_pipe(sdiv_reg_reg);
7566%}
7567
7568// Immediate Remainder
7569instruct modI_reg_imm13(iRegI dst, iRegIsafe src1, immI13 src2, o7RegP temp, flagsReg ccr ) %{
7570  match(Set dst (ModI src1 src2));
7571  effect( KILL ccr, KILL temp);
7572
7573  format %{ "SREM   $src1,$src2,$dst" %}
7574  ins_encode( irem_imm(src1, src2, dst, temp) );
7575  ins_pipe(sdiv_reg_imm);
7576%}
7577
7578// Register Long Remainder
7579instruct divL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
7580  effect(DEF dst, USE src1, USE src2);
7581  size(4);
7582  format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
7583  opcode(Assembler::sdivx_op3, Assembler::arith_op);
7584  ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7585  ins_pipe(divL_reg_reg);
7586%}
7587
7588// Register Long Division
7589instruct divL_reg_imm13_1(iRegL dst, iRegL src1, immL13 src2) %{
7590  effect(DEF dst, USE src1, USE src2);
7591  size(4);
7592  format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
7593  opcode(Assembler::sdivx_op3, Assembler::arith_op);
7594  ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7595  ins_pipe(divL_reg_imm);
7596%}
7597
7598instruct mulL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
7599  effect(DEF dst, USE src1, USE src2);
7600  size(4);
7601  format %{ "MULX   $src1,$src2,$dst\t! long" %}
7602  opcode(Assembler::mulx_op3, Assembler::arith_op);
7603  ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7604  ins_pipe(mulL_reg_reg);
7605%}
7606
7607// Immediate Multiplication
7608instruct mulL_reg_imm13_1(iRegL dst, iRegL src1, immL13 src2) %{
7609  effect(DEF dst, USE src1, USE src2);
7610  size(4);
7611  format %{ "MULX   $src1,$src2,$dst" %}
7612  opcode(Assembler::mulx_op3, Assembler::arith_op);
7613  ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7614  ins_pipe(mulL_reg_imm);
7615%}
7616
7617instruct subL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
7618  effect(DEF dst, USE src1, USE src2);
7619  size(4);
7620  format %{ "SUB    $src1,$src2,$dst\t! long" %}
7621  opcode(Assembler::sub_op3, Assembler::arith_op);
7622  ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7623  ins_pipe(ialu_reg_reg);
7624%}
7625
7626instruct subL_reg_reg_2(iRegL dst, iRegL src1, iRegL src2) %{
7627  effect(DEF dst, USE src1, USE src2);
7628  size(4);
7629  format %{ "SUB    $src1,$src2,$dst\t! long" %}
7630  opcode(Assembler::sub_op3, Assembler::arith_op);
7631  ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7632  ins_pipe(ialu_reg_reg);
7633%}
7634
7635// Register Long Remainder
7636instruct modL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7637  match(Set dst (ModL src1 src2));
7638  ins_cost(DEFAULT_COST*(71 + 6 + 1));
7639  expand %{
7640    iRegL tmp1;
7641    iRegL tmp2;
7642    divL_reg_reg_1(tmp1, src1, src2);
7643    mulL_reg_reg_1(tmp2, tmp1, src2);
7644    subL_reg_reg_1(dst,  src1, tmp2);
7645  %}
7646%}
7647
7648// Register Long Remainder
7649instruct modL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
7650  match(Set dst (ModL src1 src2));
7651  ins_cost(DEFAULT_COST*(71 + 6 + 1));
7652  expand %{
7653    iRegL tmp1;
7654    iRegL tmp2;
7655    divL_reg_imm13_1(tmp1, src1, src2);
7656    mulL_reg_imm13_1(tmp2, tmp1, src2);
7657    subL_reg_reg_2  (dst,  src1, tmp2);
7658  %}
7659%}
7660
7661// Integer Shift Instructions
7662// Register Shift Left
7663instruct shlI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7664  match(Set dst (LShiftI src1 src2));
7665
7666  size(4);
7667  format %{ "SLL    $src1,$src2,$dst" %}
7668  opcode(Assembler::sll_op3, Assembler::arith_op);
7669  ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7670  ins_pipe(ialu_reg_reg);
7671%}
7672
7673// Register Shift Left Immediate
7674instruct shlI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
7675  match(Set dst (LShiftI src1 src2));
7676
7677  size(4);
7678  format %{ "SLL    $src1,$src2,$dst" %}
7679  opcode(Assembler::sll_op3, Assembler::arith_op);
7680  ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
7681  ins_pipe(ialu_reg_imm);
7682%}
7683
7684// Register Shift Left
7685instruct shlL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
7686  match(Set dst (LShiftL src1 src2));
7687
7688  size(4);
7689  format %{ "SLLX   $src1,$src2,$dst" %}
7690  opcode(Assembler::sllx_op3, Assembler::arith_op);
7691  ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
7692  ins_pipe(ialu_reg_reg);
7693%}
7694
7695// Register Shift Left Immediate
7696instruct shlL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
7697  match(Set dst (LShiftL src1 src2));
7698
7699  size(4);
7700  format %{ "SLLX   $src1,$src2,$dst" %}
7701  opcode(Assembler::sllx_op3, Assembler::arith_op);
7702  ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
7703  ins_pipe(ialu_reg_imm);
7704%}
7705
7706// Register Arithmetic Shift Right
7707instruct sarI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7708  match(Set dst (RShiftI src1 src2));
7709  size(4);
7710  format %{ "SRA    $src1,$src2,$dst" %}
7711  opcode(Assembler::sra_op3, Assembler::arith_op);
7712  ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7713  ins_pipe(ialu_reg_reg);
7714%}
7715
7716// Register Arithmetic Shift Right Immediate
7717instruct sarI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
7718  match(Set dst (RShiftI src1 src2));
7719
7720  size(4);
7721  format %{ "SRA    $src1,$src2,$dst" %}
7722  opcode(Assembler::sra_op3, Assembler::arith_op);
7723  ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
7724  ins_pipe(ialu_reg_imm);
7725%}
7726
7727// Register Shift Right Arithmatic Long
7728instruct sarL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
7729  match(Set dst (RShiftL src1 src2));
7730
7731  size(4);
7732  format %{ "SRAX   $src1,$src2,$dst" %}
7733  opcode(Assembler::srax_op3, Assembler::arith_op);
7734  ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
7735  ins_pipe(ialu_reg_reg);
7736%}
7737
7738// Register Shift Left Immediate
7739instruct sarL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
7740  match(Set dst (RShiftL src1 src2));
7741
7742  size(4);
7743  format %{ "SRAX   $src1,$src2,$dst" %}
7744  opcode(Assembler::srax_op3, Assembler::arith_op);
7745  ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
7746  ins_pipe(ialu_reg_imm);
7747%}
7748
7749// Register Shift Right
7750instruct shrI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7751  match(Set dst (URShiftI src1 src2));
7752
7753  size(4);
7754  format %{ "SRL    $src1,$src2,$dst" %}
7755  opcode(Assembler::srl_op3, Assembler::arith_op);
7756  ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7757  ins_pipe(ialu_reg_reg);
7758%}
7759
7760// Register Shift Right Immediate
7761instruct shrI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
7762  match(Set dst (URShiftI src1 src2));
7763
7764  size(4);
7765  format %{ "SRL    $src1,$src2,$dst" %}
7766  opcode(Assembler::srl_op3, Assembler::arith_op);
7767  ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
7768  ins_pipe(ialu_reg_imm);
7769%}
7770
7771// Register Shift Right
7772instruct shrL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
7773  match(Set dst (URShiftL src1 src2));
7774
7775  size(4);
7776  format %{ "SRLX   $src1,$src2,$dst" %}
7777  opcode(Assembler::srlx_op3, Assembler::arith_op);
7778  ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
7779  ins_pipe(ialu_reg_reg);
7780%}
7781
7782// Register Shift Right Immediate
7783instruct shrL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
7784  match(Set dst (URShiftL src1 src2));
7785
7786  size(4);
7787  format %{ "SRLX   $src1,$src2,$dst" %}
7788  opcode(Assembler::srlx_op3, Assembler::arith_op);
7789  ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
7790  ins_pipe(ialu_reg_imm);
7791%}
7792
7793// Register Shift Right Immediate with a CastP2X
7794#ifdef _LP64
7795instruct shrP_reg_imm6(iRegL dst, iRegP src1, immU6 src2) %{
7796  match(Set dst (URShiftL (CastP2X src1) src2));
7797  size(4);
7798  format %{ "SRLX   $src1,$src2,$dst\t! Cast ptr $src1 to long and shift" %}
7799  opcode(Assembler::srlx_op3, Assembler::arith_op);
7800  ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
7801  ins_pipe(ialu_reg_imm);
7802%}
7803#else
7804instruct shrP_reg_imm5(iRegI dst, iRegP src1, immU5 src2) %{
7805  match(Set dst (URShiftI (CastP2X src1) src2));
7806  size(4);
7807  format %{ "SRL    $src1,$src2,$dst\t! Cast ptr $src1 to int and shift" %}
7808  opcode(Assembler::srl_op3, Assembler::arith_op);
7809  ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
7810  ins_pipe(ialu_reg_imm);
7811%}
7812#endif
7813
7814
7815//----------Floating Point Arithmetic Instructions-----------------------------
7816
7817//  Add float single precision
7818instruct addF_reg_reg(regF dst, regF src1, regF src2) %{
7819  match(Set dst (AddF src1 src2));
7820
7821  size(4);
7822  format %{ "FADDS  $src1,$src2,$dst" %}
7823  opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fadds_opf);
7824  ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
7825  ins_pipe(faddF_reg_reg);
7826%}
7827
7828//  Add float double precision
7829instruct addD_reg_reg(regD dst, regD src1, regD src2) %{
7830  match(Set dst (AddD src1 src2));
7831
7832  size(4);
7833  format %{ "FADDD  $src1,$src2,$dst" %}
7834  opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::faddd_opf);
7835  ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
7836  ins_pipe(faddD_reg_reg);
7837%}
7838
7839//  Sub float single precision
7840instruct subF_reg_reg(regF dst, regF src1, regF src2) %{
7841  match(Set dst (SubF src1 src2));
7842
7843  size(4);
7844  format %{ "FSUBS  $src1,$src2,$dst" %}
7845  opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubs_opf);
7846  ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
7847  ins_pipe(faddF_reg_reg);
7848%}
7849
7850//  Sub float double precision
7851instruct subD_reg_reg(regD dst, regD src1, regD src2) %{
7852  match(Set dst (SubD src1 src2));
7853
7854  size(4);
7855  format %{ "FSUBD  $src1,$src2,$dst" %}
7856  opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubd_opf);
7857  ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
7858  ins_pipe(faddD_reg_reg);
7859%}
7860
7861//  Mul float single precision
7862instruct mulF_reg_reg(regF dst, regF src1, regF src2) %{
7863  match(Set dst (MulF src1 src2));
7864
7865  size(4);
7866  format %{ "FMULS  $src1,$src2,$dst" %}
7867  opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuls_opf);
7868  ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
7869  ins_pipe(fmulF_reg_reg);
7870%}
7871
7872//  Mul float double precision
7873instruct mulD_reg_reg(regD dst, regD src1, regD src2) %{
7874  match(Set dst (MulD src1 src2));
7875
7876  size(4);
7877  format %{ "FMULD  $src1,$src2,$dst" %}
7878  opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuld_opf);
7879  ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
7880  ins_pipe(fmulD_reg_reg);
7881%}
7882
7883//  Div float single precision
7884instruct divF_reg_reg(regF dst, regF src1, regF src2) %{
7885  match(Set dst (DivF src1 src2));
7886
7887  size(4);
7888  format %{ "FDIVS  $src1,$src2,$dst" %}
7889  opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdivs_opf);
7890  ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
7891  ins_pipe(fdivF_reg_reg);
7892%}
7893
7894//  Div float double precision
7895instruct divD_reg_reg(regD dst, regD src1, regD src2) %{
7896  match(Set dst (DivD src1 src2));
7897
7898  size(4);
7899  format %{ "FDIVD  $src1,$src2,$dst" %}
7900  opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdivd_opf);
7901  ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
7902  ins_pipe(fdivD_reg_reg);
7903%}
7904
7905//  Absolute float double precision
7906instruct absD_reg(regD dst, regD src) %{
7907  match(Set dst (AbsD src));
7908
7909  format %{ "FABSd  $src,$dst" %}
7910  ins_encode(fabsd(dst, src));
7911  ins_pipe(faddD_reg);
7912%}
7913
7914//  Absolute float single precision
7915instruct absF_reg(regF dst, regF src) %{
7916  match(Set dst (AbsF src));
7917
7918  format %{ "FABSs  $src,$dst" %}
7919  ins_encode(fabss(dst, src));
7920  ins_pipe(faddF_reg);
7921%}
7922
7923instruct negF_reg(regF dst, regF src) %{
7924  match(Set dst (NegF src));
7925
7926  size(4);
7927  format %{ "FNEGs  $src,$dst" %}
7928  opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fnegs_opf);
7929  ins_encode(form3_opf_rs2F_rdF(src, dst));
7930  ins_pipe(faddF_reg);
7931%}
7932
7933instruct negD_reg(regD dst, regD src) %{
7934  match(Set dst (NegD src));
7935
7936  format %{ "FNEGd  $src,$dst" %}
7937  ins_encode(fnegd(dst, src));
7938  ins_pipe(faddD_reg);
7939%}
7940
7941//  Sqrt float double precision
7942instruct sqrtF_reg_reg(regF dst, regF src) %{
7943  match(Set dst (ConvD2F (SqrtD (ConvF2D src))));
7944
7945  size(4);
7946  format %{ "FSQRTS $src,$dst" %}
7947  ins_encode(fsqrts(dst, src));
7948  ins_pipe(fdivF_reg_reg);
7949%}
7950
7951//  Sqrt float double precision
7952instruct sqrtD_reg_reg(regD dst, regD src) %{
7953  match(Set dst (SqrtD src));
7954
7955  size(4);
7956  format %{ "FSQRTD $src,$dst" %}
7957  ins_encode(fsqrtd(dst, src));
7958  ins_pipe(fdivD_reg_reg);
7959%}
7960
7961//----------Logical Instructions-----------------------------------------------
7962// And Instructions
7963// Register And
7964instruct andI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7965  match(Set dst (AndI src1 src2));
7966
7967  size(4);
7968  format %{ "AND    $src1,$src2,$dst" %}
7969  opcode(Assembler::and_op3, Assembler::arith_op);
7970  ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7971  ins_pipe(ialu_reg_reg);
7972%}
7973
7974// Immediate And
7975instruct andI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
7976  match(Set dst (AndI src1 src2));
7977
7978  size(4);
7979  format %{ "AND    $src1,$src2,$dst" %}
7980  opcode(Assembler::and_op3, Assembler::arith_op);
7981  ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7982  ins_pipe(ialu_reg_imm);
7983%}
7984
7985// Register And Long
7986instruct andL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7987  match(Set dst (AndL src1 src2));
7988
7989  ins_cost(DEFAULT_COST);
7990  size(4);
7991  format %{ "AND    $src1,$src2,$dst\t! long" %}
7992  opcode(Assembler::and_op3, Assembler::arith_op);
7993  ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7994  ins_pipe(ialu_reg_reg);
7995%}
7996
7997instruct andL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
7998  match(Set dst (AndL src1 con));
7999
8000  ins_cost(DEFAULT_COST);
8001  size(4);
8002  format %{ "AND    $src1,$con,$dst\t! long" %}
8003  opcode(Assembler::and_op3, Assembler::arith_op);
8004  ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
8005  ins_pipe(ialu_reg_imm);
8006%}
8007
8008// Or Instructions
8009// Register Or
8010instruct orI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
8011  match(Set dst (OrI src1 src2));
8012
8013  size(4);
8014  format %{ "OR     $src1,$src2,$dst" %}
8015  opcode(Assembler::or_op3, Assembler::arith_op);
8016  ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
8017  ins_pipe(ialu_reg_reg);
8018%}
8019
8020// Immediate Or
8021instruct orI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
8022  match(Set dst (OrI src1 src2));
8023
8024  size(4);
8025  format %{ "OR     $src1,$src2,$dst" %}
8026  opcode(Assembler::or_op3, Assembler::arith_op);
8027  ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
8028  ins_pipe(ialu_reg_imm);
8029%}
8030
8031// Register Or Long
8032instruct orL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
8033  match(Set dst (OrL src1 src2));
8034
8035  ins_cost(DEFAULT_COST);
8036  size(4);
8037  format %{ "OR     $src1,$src2,$dst\t! long" %}
8038  opcode(Assembler::or_op3, Assembler::arith_op);
8039  ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
8040  ins_pipe(ialu_reg_reg);
8041%}
8042
8043instruct orL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
8044  match(Set dst (OrL src1 con));
8045  ins_cost(DEFAULT_COST*2);
8046
8047  ins_cost(DEFAULT_COST);
8048  size(4);
8049  format %{ "OR     $src1,$con,$dst\t! long" %}
8050  opcode(Assembler::or_op3, Assembler::arith_op);
8051  ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
8052  ins_pipe(ialu_reg_imm);
8053%}
8054
8055#ifndef _LP64
8056
8057// Use sp_ptr_RegP to match G2 (TLS register) without spilling.
8058instruct orI_reg_castP2X(iRegI dst, iRegI src1, sp_ptr_RegP src2) %{
8059  match(Set dst (OrI src1 (CastP2X src2)));
8060
8061  size(4);
8062  format %{ "OR     $src1,$src2,$dst" %}
8063  opcode(Assembler::or_op3, Assembler::arith_op);
8064  ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
8065  ins_pipe(ialu_reg_reg);
8066%}
8067
8068#else
8069
8070instruct orL_reg_castP2X(iRegL dst, iRegL src1, sp_ptr_RegP src2) %{
8071  match(Set dst (OrL src1 (CastP2X src2)));
8072
8073  ins_cost(DEFAULT_COST);
8074  size(4);
8075  format %{ "OR     $src1,$src2,$dst\t! long" %}
8076  opcode(Assembler::or_op3, Assembler::arith_op);
8077  ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
8078  ins_pipe(ialu_reg_reg);
8079%}
8080
8081#endif
8082
8083// Xor Instructions
8084// Register Xor
8085instruct xorI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
8086  match(Set dst (XorI src1 src2));
8087
8088  size(4);
8089  format %{ "XOR    $src1,$src2,$dst" %}
8090  opcode(Assembler::xor_op3, Assembler::arith_op);
8091  ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
8092  ins_pipe(ialu_reg_reg);
8093%}
8094
8095// Immediate Xor
8096instruct xorI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
8097  match(Set dst (XorI src1 src2));
8098
8099  size(4);
8100  format %{ "XOR    $src1,$src2,$dst" %}
8101  opcode(Assembler::xor_op3, Assembler::arith_op);
8102  ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
8103  ins_pipe(ialu_reg_imm);
8104%}
8105
8106// Register Xor Long
8107instruct xorL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
8108  match(Set dst (XorL src1 src2));
8109
8110  ins_cost(DEFAULT_COST);
8111  size(4);
8112  format %{ "XOR    $src1,$src2,$dst\t! long" %}
8113  opcode(Assembler::xor_op3, Assembler::arith_op);
8114  ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
8115  ins_pipe(ialu_reg_reg);
8116%}
8117
8118instruct xorL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
8119  match(Set dst (XorL src1 con));
8120
8121  ins_cost(DEFAULT_COST);
8122  size(4);
8123  format %{ "XOR    $src1,$con,$dst\t! long" %}
8124  opcode(Assembler::xor_op3, Assembler::arith_op);
8125  ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
8126  ins_pipe(ialu_reg_imm);
8127%}
8128
8129//----------Convert to Boolean-------------------------------------------------
8130// Nice hack for 32-bit tests but doesn't work for
8131// 64-bit pointers.
8132instruct convI2B( iRegI dst, iRegI src, flagsReg ccr ) %{
8133  match(Set dst (Conv2B src));
8134  effect( KILL ccr );
8135  ins_cost(DEFAULT_COST*2);
8136  format %{ "CMP    R_G0,$src\n\t"
8137            "ADDX   R_G0,0,$dst" %}
8138  ins_encode( enc_to_bool( src, dst ) );
8139  ins_pipe(ialu_reg_ialu);
8140%}
8141
8142#ifndef _LP64
8143instruct convP2B( iRegI dst, iRegP src, flagsReg ccr ) %{
8144  match(Set dst (Conv2B src));
8145  effect( KILL ccr );
8146  ins_cost(DEFAULT_COST*2);
8147  format %{ "CMP    R_G0,$src\n\t"
8148            "ADDX   R_G0,0,$dst" %}
8149  ins_encode( enc_to_bool( src, dst ) );
8150  ins_pipe(ialu_reg_ialu);
8151%}
8152#else
8153instruct convP2B( iRegI dst, iRegP src ) %{
8154  match(Set dst (Conv2B src));
8155  ins_cost(DEFAULT_COST*2);
8156  format %{ "MOV    $src,$dst\n\t"
8157            "MOVRNZ $src,1,$dst" %}
8158  ins_encode( form3_g0_rs2_rd_move( src, dst ), enc_convP2B( dst, src ) );
8159  ins_pipe(ialu_clr_and_mover);
8160%}
8161#endif
8162
8163instruct cmpLTMask0( iRegI dst, iRegI src, immI0 zero, flagsReg ccr ) %{
8164  match(Set dst (CmpLTMask src zero));
8165  effect(KILL ccr);
8166  size(4);
8167  format %{ "SRA    $src,#31,$dst\t# cmpLTMask0" %}
8168  ins_encode %{
8169    __ sra($src$$Register, 31, $dst$$Register);
8170  %}
8171  ins_pipe(ialu_reg_imm);
8172%}
8173
8174instruct cmpLTMask_reg_reg( iRegI dst, iRegI p, iRegI q, flagsReg ccr ) %{
8175  match(Set dst (CmpLTMask p q));
8176  effect( KILL ccr );
8177  ins_cost(DEFAULT_COST*4);
8178  format %{ "CMP    $p,$q\n\t"
8179            "MOV    #0,$dst\n\t"
8180            "BLT,a  .+8\n\t"
8181            "MOV    #-1,$dst" %}
8182  ins_encode( enc_ltmask(p,q,dst) );
8183  ins_pipe(ialu_reg_reg_ialu);
8184%}
8185
8186instruct cadd_cmpLTMask( iRegI p, iRegI q, iRegI y, iRegI tmp, flagsReg ccr ) %{
8187  match(Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)));
8188  effect(KILL ccr, TEMP tmp);
8189  ins_cost(DEFAULT_COST*3);
8190
8191  format %{ "SUBcc  $p,$q,$p\t! p' = p-q\n\t"
8192            "ADD    $p,$y,$tmp\t! g3=p-q+y\n\t"
8193            "MOVlt  $tmp,$p\t! p' < 0 ? p'+y : p'" %}
8194  ins_encode( enc_cadd_cmpLTMask(p, q, y, tmp) );
8195  ins_pipe( cadd_cmpltmask );
8196%}
8197
8198
8199//-----------------------------------------------------------------
8200// Direct raw moves between float and general registers using VIS3.
8201
8202//  ins_pipe(faddF_reg);
8203instruct MoveF2I_reg_reg(iRegI dst, regF src) %{
8204  predicate(UseVIS >= 3);
8205  match(Set dst (MoveF2I src));
8206
8207  format %{ "MOVSTOUW $src,$dst\t! MoveF2I" %}
8208  ins_encode %{
8209    __ movstouw($src$$FloatRegister, $dst$$Register);
8210  %}
8211  ins_pipe(ialu_reg_reg);
8212%}
8213
8214instruct MoveI2F_reg_reg(regF dst, iRegI src) %{
8215  predicate(UseVIS >= 3);
8216  match(Set dst (MoveI2F src));
8217
8218  format %{ "MOVWTOS $src,$dst\t! MoveI2F" %}
8219  ins_encode %{
8220    __ movwtos($src$$Register, $dst$$FloatRegister);
8221  %}
8222  ins_pipe(ialu_reg_reg);
8223%}
8224
8225instruct MoveD2L_reg_reg(iRegL dst, regD src) %{
8226  predicate(UseVIS >= 3);
8227  match(Set dst (MoveD2L src));
8228
8229  format %{ "MOVDTOX $src,$dst\t! MoveD2L" %}
8230  ins_encode %{
8231    __ movdtox(as_DoubleFloatRegister($src$$reg), $dst$$Register);
8232  %}
8233  ins_pipe(ialu_reg_reg);
8234%}
8235
8236instruct MoveL2D_reg_reg(regD dst, iRegL src) %{
8237  predicate(UseVIS >= 3);
8238  match(Set dst (MoveL2D src));
8239
8240  format %{ "MOVXTOD $src,$dst\t! MoveL2D" %}
8241  ins_encode %{
8242    __ movxtod($src$$Register, as_DoubleFloatRegister($dst$$reg));
8243  %}
8244  ins_pipe(ialu_reg_reg);
8245%}
8246
8247
8248// Raw moves between float and general registers using stack.
8249
8250instruct MoveF2I_stack_reg(iRegI dst, stackSlotF src) %{
8251  match(Set dst (MoveF2I src));
8252  effect(DEF dst, USE src);
8253  ins_cost(MEMORY_REF_COST);
8254
8255  size(4);
8256  format %{ "LDUW   $src,$dst\t! MoveF2I" %}
8257  opcode(Assembler::lduw_op3);
8258  ins_encode(simple_form3_mem_reg( src, dst ) );
8259  ins_pipe(iload_mem);
8260%}
8261
8262instruct MoveI2F_stack_reg(regF dst, stackSlotI src) %{
8263  match(Set dst (MoveI2F src));
8264  effect(DEF dst, USE src);
8265  ins_cost(MEMORY_REF_COST);
8266
8267  size(4);
8268  format %{ "LDF    $src,$dst\t! MoveI2F" %}
8269  opcode(Assembler::ldf_op3);
8270  ins_encode(simple_form3_mem_reg(src, dst));
8271  ins_pipe(floadF_stk);
8272%}
8273
8274instruct MoveD2L_stack_reg(iRegL dst, stackSlotD src) %{
8275  match(Set dst (MoveD2L src));
8276  effect(DEF dst, USE src);
8277  ins_cost(MEMORY_REF_COST);
8278
8279  size(4);
8280  format %{ "LDX    $src,$dst\t! MoveD2L" %}
8281  opcode(Assembler::ldx_op3);
8282  ins_encode(simple_form3_mem_reg( src, dst ) );
8283  ins_pipe(iload_mem);
8284%}
8285
8286instruct MoveL2D_stack_reg(regD dst, stackSlotL src) %{
8287  match(Set dst (MoveL2D src));
8288  effect(DEF dst, USE src);
8289  ins_cost(MEMORY_REF_COST);
8290
8291  size(4);
8292  format %{ "LDDF   $src,$dst\t! MoveL2D" %}
8293  opcode(Assembler::lddf_op3);
8294  ins_encode(simple_form3_mem_reg(src, dst));
8295  ins_pipe(floadD_stk);
8296%}
8297
8298instruct MoveF2I_reg_stack(stackSlotI dst, regF src) %{
8299  match(Set dst (MoveF2I src));
8300  effect(DEF dst, USE src);
8301  ins_cost(MEMORY_REF_COST);
8302
8303  size(4);
8304  format %{ "STF   $src,$dst\t! MoveF2I" %}
8305  opcode(Assembler::stf_op3);
8306  ins_encode(simple_form3_mem_reg(dst, src));
8307  ins_pipe(fstoreF_stk_reg);
8308%}
8309
8310instruct MoveI2F_reg_stack(stackSlotF dst, iRegI src) %{
8311  match(Set dst (MoveI2F src));
8312  effect(DEF dst, USE src);
8313  ins_cost(MEMORY_REF_COST);
8314
8315  size(4);
8316  format %{ "STW    $src,$dst\t! MoveI2F" %}
8317  opcode(Assembler::stw_op3);
8318  ins_encode(simple_form3_mem_reg( dst, src ) );
8319  ins_pipe(istore_mem_reg);
8320%}
8321
8322instruct MoveD2L_reg_stack(stackSlotL dst, regD src) %{
8323  match(Set dst (MoveD2L src));
8324  effect(DEF dst, USE src);
8325  ins_cost(MEMORY_REF_COST);
8326
8327  size(4);
8328  format %{ "STDF   $src,$dst\t! MoveD2L" %}
8329  opcode(Assembler::stdf_op3);
8330  ins_encode(simple_form3_mem_reg(dst, src));
8331  ins_pipe(fstoreD_stk_reg);
8332%}
8333
8334instruct MoveL2D_reg_stack(stackSlotD dst, iRegL src) %{
8335  match(Set dst (MoveL2D src));
8336  effect(DEF dst, USE src);
8337  ins_cost(MEMORY_REF_COST);
8338
8339  size(4);
8340  format %{ "STX    $src,$dst\t! MoveL2D" %}
8341  opcode(Assembler::stx_op3);
8342  ins_encode(simple_form3_mem_reg( dst, src ) );
8343  ins_pipe(istore_mem_reg);
8344%}
8345
8346
8347//----------Arithmetic Conversion Instructions---------------------------------
8348// The conversions operations are all Alpha sorted.  Please keep it that way!
8349
8350instruct convD2F_reg(regF dst, regD src) %{
8351  match(Set dst (ConvD2F src));
8352  size(4);
8353  format %{ "FDTOS  $src,$dst" %}
8354  opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdtos_opf);
8355  ins_encode(form3_opf_rs2D_rdF(src, dst));
8356  ins_pipe(fcvtD2F);
8357%}
8358
8359
8360// Convert a double to an int in a float register.
8361// If the double is a NAN, stuff a zero in instead.
8362instruct convD2I_helper(regF dst, regD src, flagsRegF0 fcc0) %{
8363  effect(DEF dst, USE src, KILL fcc0);
8364  format %{ "FCMPd  fcc0,$src,$src\t! check for NAN\n\t"
8365            "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
8366            "FDTOI  $src,$dst\t! convert in delay slot\n\t"
8367            "FITOS  $dst,$dst\t! change NaN/max-int to valid float\n\t"
8368            "FSUBs  $dst,$dst,$dst\t! cleared only if nan\n"
8369      "skip:" %}
8370  ins_encode(form_d2i_helper(src,dst));
8371  ins_pipe(fcvtD2I);
8372%}
8373
8374instruct convD2I_stk(stackSlotI dst, regD src) %{
8375  match(Set dst (ConvD2I src));
8376  ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
8377  expand %{
8378    regF tmp;
8379    convD2I_helper(tmp, src);
8380    regF_to_stkI(dst, tmp);
8381  %}
8382%}
8383
8384instruct convD2I_reg(iRegI dst, regD src) %{
8385  predicate(UseVIS >= 3);
8386  match(Set dst (ConvD2I src));
8387  ins_cost(DEFAULT_COST*2 + BRANCH_COST);
8388  expand %{
8389    regF tmp;
8390    convD2I_helper(tmp, src);
8391    MoveF2I_reg_reg(dst, tmp);
8392  %}
8393%}
8394
8395
8396// Convert a double to a long in a double register.
8397// If the double is a NAN, stuff a zero in instead.
8398instruct convD2L_helper(regD dst, regD src, flagsRegF0 fcc0) %{
8399  effect(DEF dst, USE src, KILL fcc0);
8400  format %{ "FCMPd  fcc0,$src,$src\t! check for NAN\n\t"
8401            "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
8402            "FDTOX  $src,$dst\t! convert in delay slot\n\t"
8403            "FXTOD  $dst,$dst\t! change NaN/max-long to valid double\n\t"
8404            "FSUBd  $dst,$dst,$dst\t! cleared only if nan\n"
8405      "skip:" %}
8406  ins_encode(form_d2l_helper(src,dst));
8407  ins_pipe(fcvtD2L);
8408%}
8409
8410instruct convD2L_stk(stackSlotL dst, regD src) %{
8411  match(Set dst (ConvD2L src));
8412  ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
8413  expand %{
8414    regD tmp;
8415    convD2L_helper(tmp, src);
8416    regD_to_stkL(dst, tmp);
8417  %}
8418%}
8419
8420instruct convD2L_reg(iRegL dst, regD src) %{
8421  predicate(UseVIS >= 3);
8422  match(Set dst (ConvD2L src));
8423  ins_cost(DEFAULT_COST*2 + BRANCH_COST);
8424  expand %{
8425    regD tmp;
8426    convD2L_helper(tmp, src);
8427    MoveD2L_reg_reg(dst, tmp);
8428  %}
8429%}
8430
8431
8432instruct convF2D_reg(regD dst, regF src) %{
8433  match(Set dst (ConvF2D src));
8434  format %{ "FSTOD  $src,$dst" %}
8435  opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fstod_opf);
8436  ins_encode(form3_opf_rs2F_rdD(src, dst));
8437  ins_pipe(fcvtF2D);
8438%}
8439
8440
8441// Convert a float to an int in a float register.
8442// If the float is a NAN, stuff a zero in instead.
8443instruct convF2I_helper(regF dst, regF src, flagsRegF0 fcc0) %{
8444  effect(DEF dst, USE src, KILL fcc0);
8445  format %{ "FCMPs  fcc0,$src,$src\t! check for NAN\n\t"
8446            "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
8447            "FSTOI  $src,$dst\t! convert in delay slot\n\t"
8448            "FITOS  $dst,$dst\t! change NaN/max-int to valid float\n\t"
8449            "FSUBs  $dst,$dst,$dst\t! cleared only if nan\n"
8450      "skip:" %}
8451  ins_encode(form_f2i_helper(src,dst));
8452  ins_pipe(fcvtF2I);
8453%}
8454
8455instruct convF2I_stk(stackSlotI dst, regF src) %{
8456  match(Set dst (ConvF2I src));
8457  ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
8458  expand %{
8459    regF tmp;
8460    convF2I_helper(tmp, src);
8461    regF_to_stkI(dst, tmp);
8462  %}
8463%}
8464
8465instruct convF2I_reg(iRegI dst, regF src) %{
8466  predicate(UseVIS >= 3);
8467  match(Set dst (ConvF2I src));
8468  ins_cost(DEFAULT_COST*2 + BRANCH_COST);
8469  expand %{
8470    regF tmp;
8471    convF2I_helper(tmp, src);
8472    MoveF2I_reg_reg(dst, tmp);
8473  %}
8474%}
8475
8476
8477// Convert a float to a long in a float register.
8478// If the float is a NAN, stuff a zero in instead.
8479instruct convF2L_helper(regD dst, regF src, flagsRegF0 fcc0) %{
8480  effect(DEF dst, USE src, KILL fcc0);
8481  format %{ "FCMPs  fcc0,$src,$src\t! check for NAN\n\t"
8482            "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
8483            "FSTOX  $src,$dst\t! convert in delay slot\n\t"
8484            "FXTOD  $dst,$dst\t! change NaN/max-long to valid double\n\t"
8485            "FSUBd  $dst,$dst,$dst\t! cleared only if nan\n"
8486      "skip:" %}
8487  ins_encode(form_f2l_helper(src,dst));
8488  ins_pipe(fcvtF2L);
8489%}
8490
8491instruct convF2L_stk(stackSlotL dst, regF src) %{
8492  match(Set dst (ConvF2L src));
8493  ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
8494  expand %{
8495    regD tmp;
8496    convF2L_helper(tmp, src);
8497    regD_to_stkL(dst, tmp);
8498  %}
8499%}
8500
8501instruct convF2L_reg(iRegL dst, regF src) %{
8502  predicate(UseVIS >= 3);
8503  match(Set dst (ConvF2L src));
8504  ins_cost(DEFAULT_COST*2 + BRANCH_COST);
8505  expand %{
8506    regD tmp;
8507    convF2L_helper(tmp, src);
8508    MoveD2L_reg_reg(dst, tmp);
8509  %}
8510%}
8511
8512
8513instruct convI2D_helper(regD dst, regF tmp) %{
8514  effect(USE tmp, DEF dst);
8515  format %{ "FITOD  $tmp,$dst" %}
8516  opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitod_opf);
8517  ins_encode(form3_opf_rs2F_rdD(tmp, dst));
8518  ins_pipe(fcvtI2D);
8519%}
8520
8521instruct convI2D_stk(stackSlotI src, regD dst) %{
8522  match(Set dst (ConvI2D src));
8523  ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8524  expand %{
8525    regF tmp;
8526    stkI_to_regF(tmp, src);
8527    convI2D_helper(dst, tmp);
8528  %}
8529%}
8530
8531instruct convI2D_reg(regD_low dst, iRegI src) %{
8532  predicate(UseVIS >= 3);
8533  match(Set dst (ConvI2D src));
8534  expand %{
8535    regF tmp;
8536    MoveI2F_reg_reg(tmp, src);
8537    convI2D_helper(dst, tmp);
8538  %}
8539%}
8540
8541instruct convI2D_mem(regD_low dst, memory mem) %{
8542  match(Set dst (ConvI2D (LoadI mem)));
8543  ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8544  size(8);
8545  format %{ "LDF    $mem,$dst\n\t"
8546            "FITOD  $dst,$dst" %}
8547  opcode(Assembler::ldf_op3, Assembler::fitod_opf);
8548  ins_encode(simple_form3_mem_reg( mem, dst ), form3_convI2F(dst, dst));
8549  ins_pipe(floadF_mem);
8550%}
8551
8552
8553instruct convI2F_helper(regF dst, regF tmp) %{
8554  effect(DEF dst, USE tmp);
8555  format %{ "FITOS  $tmp,$dst" %}
8556  opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitos_opf);
8557  ins_encode(form3_opf_rs2F_rdF(tmp, dst));
8558  ins_pipe(fcvtI2F);
8559%}
8560
8561instruct convI2F_stk(regF dst, stackSlotI src) %{
8562  match(Set dst (ConvI2F src));
8563  ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8564  expand %{
8565    regF tmp;
8566    stkI_to_regF(tmp,src);
8567    convI2F_helper(dst, tmp);
8568  %}
8569%}
8570
8571instruct convI2F_reg(regF dst, iRegI src) %{
8572  predicate(UseVIS >= 3);
8573  match(Set dst (ConvI2F src));
8574  ins_cost(DEFAULT_COST);
8575  expand %{
8576    regF tmp;
8577    MoveI2F_reg_reg(tmp, src);
8578    convI2F_helper(dst, tmp);
8579  %}
8580%}
8581
8582instruct convI2F_mem( regF dst, memory mem ) %{
8583  match(Set dst (ConvI2F (LoadI mem)));
8584  ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8585  size(8);
8586  format %{ "LDF    $mem,$dst\n\t"
8587            "FITOS  $dst,$dst" %}
8588  opcode(Assembler::ldf_op3, Assembler::fitos_opf);
8589  ins_encode(simple_form3_mem_reg( mem, dst ), form3_convI2F(dst, dst));
8590  ins_pipe(floadF_mem);
8591%}
8592
8593
8594instruct convI2L_reg(iRegL dst, iRegI src) %{
8595  match(Set dst (ConvI2L src));
8596  size(4);
8597  format %{ "SRA    $src,0,$dst\t! int->long" %}
8598  opcode(Assembler::sra_op3, Assembler::arith_op);
8599  ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
8600  ins_pipe(ialu_reg_reg);
8601%}
8602
8603// Zero-extend convert int to long
8604instruct convI2L_reg_zex(iRegL dst, iRegI src, immL_32bits mask ) %{
8605  match(Set dst (AndL (ConvI2L src) mask) );
8606  size(4);
8607  format %{ "SRL    $src,0,$dst\t! zero-extend int to long" %}
8608  opcode(Assembler::srl_op3, Assembler::arith_op);
8609  ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
8610  ins_pipe(ialu_reg_reg);
8611%}
8612
8613// Zero-extend long
8614instruct zerox_long(iRegL dst, iRegL src, immL_32bits mask ) %{
8615  match(Set dst (AndL src mask) );
8616  size(4);
8617  format %{ "SRL    $src,0,$dst\t! zero-extend long" %}
8618  opcode(Assembler::srl_op3, Assembler::arith_op);
8619  ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
8620  ins_pipe(ialu_reg_reg);
8621%}
8622
8623
8624//-----------
8625// Long to Double conversion using V8 opcodes.
8626// Still useful because cheetah traps and becomes
8627// amazingly slow for some common numbers.
8628
8629// Magic constant, 0x43300000
8630instruct loadConI_x43300000(iRegI dst) %{
8631  effect(DEF dst);
8632  size(4);
8633  format %{ "SETHI  HI(0x43300000),$dst\t! 2^52" %}
8634  ins_encode(SetHi22(0x43300000, dst));
8635  ins_pipe(ialu_none);
8636%}
8637
8638// Magic constant, 0x41f00000
8639instruct loadConI_x41f00000(iRegI dst) %{
8640  effect(DEF dst);
8641  size(4);
8642  format %{ "SETHI  HI(0x41f00000),$dst\t! 2^32" %}
8643  ins_encode(SetHi22(0x41f00000, dst));
8644  ins_pipe(ialu_none);
8645%}
8646
8647// Construct a double from two float halves
8648instruct regDHi_regDLo_to_regD(regD_low dst, regD_low src1, regD_low src2) %{
8649  effect(DEF dst, USE src1, USE src2);
8650  size(8);
8651  format %{ "FMOVS  $src1.hi,$dst.hi\n\t"
8652            "FMOVS  $src2.lo,$dst.lo" %}
8653  opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmovs_opf);
8654  ins_encode(form3_opf_rs2D_hi_rdD_hi(src1, dst), form3_opf_rs2D_lo_rdD_lo(src2, dst));
8655  ins_pipe(faddD_reg_reg);
8656%}
8657
8658// Convert integer in high half of a double register (in the lower half of
8659// the double register file) to double
8660instruct convI2D_regDHi_regD(regD dst, regD_low src) %{
8661  effect(DEF dst, USE src);
8662  size(4);
8663  format %{ "FITOD  $src,$dst" %}
8664  opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitod_opf);
8665  ins_encode(form3_opf_rs2D_rdD(src, dst));
8666  ins_pipe(fcvtLHi2D);
8667%}
8668
8669// Add float double precision
8670instruct addD_regD_regD(regD dst, regD src1, regD src2) %{
8671  effect(DEF dst, USE src1, USE src2);
8672  size(4);
8673  format %{ "FADDD  $src1,$src2,$dst" %}
8674  opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::faddd_opf);
8675  ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
8676  ins_pipe(faddD_reg_reg);
8677%}
8678
8679// Sub float double precision
8680instruct subD_regD_regD(regD dst, regD src1, regD src2) %{
8681  effect(DEF dst, USE src1, USE src2);
8682  size(4);
8683  format %{ "FSUBD  $src1,$src2,$dst" %}
8684  opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubd_opf);
8685  ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
8686  ins_pipe(faddD_reg_reg);
8687%}
8688
8689// Mul float double precision
8690instruct mulD_regD_regD(regD dst, regD src1, regD src2) %{
8691  effect(DEF dst, USE src1, USE src2);
8692  size(4);
8693  format %{ "FMULD  $src1,$src2,$dst" %}
8694  opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuld_opf);
8695  ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
8696  ins_pipe(fmulD_reg_reg);
8697%}
8698
8699instruct convL2D_reg_slow_fxtof(regD dst, stackSlotL src) %{
8700  match(Set dst (ConvL2D src));
8701  ins_cost(DEFAULT_COST*8 + MEMORY_REF_COST*6);
8702
8703  expand %{
8704    regD_low   tmpsrc;
8705    iRegI      ix43300000;
8706    iRegI      ix41f00000;
8707    stackSlotL lx43300000;
8708    stackSlotL lx41f00000;
8709    regD_low   dx43300000;
8710    regD       dx41f00000;
8711    regD       tmp1;
8712    regD_low   tmp2;
8713    regD       tmp3;
8714    regD       tmp4;
8715
8716    stkL_to_regD(tmpsrc, src);
8717
8718    loadConI_x43300000(ix43300000);
8719    loadConI_x41f00000(ix41f00000);
8720    regI_to_stkLHi(lx43300000, ix43300000);
8721    regI_to_stkLHi(lx41f00000, ix41f00000);
8722    stkL_to_regD(dx43300000, lx43300000);
8723    stkL_to_regD(dx41f00000, lx41f00000);
8724
8725    convI2D_regDHi_regD(tmp1, tmpsrc);
8726    regDHi_regDLo_to_regD(tmp2, dx43300000, tmpsrc);
8727    subD_regD_regD(tmp3, tmp2, dx43300000);
8728    mulD_regD_regD(tmp4, tmp1, dx41f00000);
8729    addD_regD_regD(dst, tmp3, tmp4);
8730  %}
8731%}
8732
8733// Long to Double conversion using fast fxtof
8734instruct convL2D_helper(regD dst, regD tmp) %{
8735  effect(DEF dst, USE tmp);
8736  size(4);
8737  format %{ "FXTOD  $tmp,$dst" %}
8738  opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fxtod_opf);
8739  ins_encode(form3_opf_rs2D_rdD(tmp, dst));
8740  ins_pipe(fcvtL2D);
8741%}
8742
8743instruct convL2D_stk_fast_fxtof(regD dst, stackSlotL src) %{
8744  predicate(VM_Version::has_fast_fxtof());
8745  match(Set dst (ConvL2D src));
8746  ins_cost(DEFAULT_COST + 3 * MEMORY_REF_COST);
8747  expand %{
8748    regD tmp;
8749    stkL_to_regD(tmp, src);
8750    convL2D_helper(dst, tmp);
8751  %}
8752%}
8753
8754instruct convL2D_reg(regD dst, iRegL src) %{
8755  predicate(UseVIS >= 3);
8756  match(Set dst (ConvL2D src));
8757  expand %{
8758    regD tmp;
8759    MoveL2D_reg_reg(tmp, src);
8760    convL2D_helper(dst, tmp);
8761  %}
8762%}
8763
8764// Long to Float conversion using fast fxtof
8765instruct convL2F_helper(regF dst, regD tmp) %{
8766  effect(DEF dst, USE tmp);
8767  size(4);
8768  format %{ "FXTOS  $tmp,$dst" %}
8769  opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fxtos_opf);
8770  ins_encode(form3_opf_rs2D_rdF(tmp, dst));
8771  ins_pipe(fcvtL2F);
8772%}
8773
8774instruct convL2F_stk_fast_fxtof(regF dst, stackSlotL src) %{
8775  match(Set dst (ConvL2F src));
8776  ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8777  expand %{
8778    regD tmp;
8779    stkL_to_regD(tmp, src);
8780    convL2F_helper(dst, tmp);
8781  %}
8782%}
8783
8784instruct convL2F_reg(regF dst, iRegL src) %{
8785  predicate(UseVIS >= 3);
8786  match(Set dst (ConvL2F src));
8787  ins_cost(DEFAULT_COST);
8788  expand %{
8789    regD tmp;
8790    MoveL2D_reg_reg(tmp, src);
8791    convL2F_helper(dst, tmp);
8792  %}
8793%}
8794
8795//-----------
8796
8797instruct convL2I_reg(iRegI dst, iRegL src) %{
8798  match(Set dst (ConvL2I src));
8799#ifndef _LP64
8800  format %{ "MOV    $src.lo,$dst\t! long->int" %}
8801  ins_encode( form3_g0_rs2_rd_move_lo2( src, dst ) );
8802  ins_pipe(ialu_move_reg_I_to_L);
8803#else
8804  size(4);
8805  format %{ "SRA    $src,R_G0,$dst\t! long->int" %}
8806  ins_encode( form3_rs1_rd_signextend_lo1( src, dst ) );
8807  ins_pipe(ialu_reg);
8808#endif
8809%}
8810
8811// Register Shift Right Immediate
8812instruct shrL_reg_imm6_L2I(iRegI dst, iRegL src, immI_32_63 cnt) %{
8813  match(Set dst (ConvL2I (RShiftL src cnt)));
8814
8815  size(4);
8816  format %{ "SRAX   $src,$cnt,$dst" %}
8817  opcode(Assembler::srax_op3, Assembler::arith_op);
8818  ins_encode( form3_sd_rs1_imm6_rd( src, cnt, dst ) );
8819  ins_pipe(ialu_reg_imm);
8820%}
8821
8822// Replicate scalar to packed byte values in Double register
8823instruct Repl8B_reg_helper(iRegL dst, iRegI src) %{
8824  effect(DEF dst, USE src);
8825  format %{ "SLLX  $src,56,$dst\n\t"
8826            "SRLX  $dst, 8,O7\n\t"
8827            "OR    $dst,O7,$dst\n\t"
8828            "SRLX  $dst,16,O7\n\t"
8829            "OR    $dst,O7,$dst\n\t"
8830            "SRLX  $dst,32,O7\n\t"
8831            "OR    $dst,O7,$dst\t! replicate8B" %}
8832  ins_encode( enc_repl8b(src, dst));
8833  ins_pipe(ialu_reg);
8834%}
8835
8836// Replicate scalar to packed byte values in Double register
8837instruct Repl8B_reg(stackSlotD dst, iRegI src) %{
8838  match(Set dst (Replicate8B src));
8839  expand %{
8840    iRegL tmp;
8841    Repl8B_reg_helper(tmp, src);
8842    regL_to_stkD(dst, tmp);
8843  %}
8844%}
8845
8846// Replicate scalar constant to packed byte values in Double register
8847instruct Repl8B_immI(regD dst, immI13 con, o7RegI tmp) %{
8848  match(Set dst (Replicate8B con));
8849  effect(KILL tmp);
8850  format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl8B($con)" %}
8851  ins_encode %{
8852    // XXX This is a quick fix for 6833573.
8853    //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 8, 1)), $dst$$FloatRegister);
8854    RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 8, 1)), $tmp$$Register);
8855    __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
8856  %}
8857  ins_pipe(loadConFD);
8858%}
8859
8860// Replicate scalar to packed char values into stack slot
8861instruct Repl4C_reg_helper(iRegL dst, iRegI src) %{
8862  effect(DEF dst, USE src);
8863  format %{ "SLLX  $src,48,$dst\n\t"
8864            "SRLX  $dst,16,O7\n\t"
8865            "OR    $dst,O7,$dst\n\t"
8866            "SRLX  $dst,32,O7\n\t"
8867            "OR    $dst,O7,$dst\t! replicate4C" %}
8868  ins_encode( enc_repl4s(src, dst) );
8869  ins_pipe(ialu_reg);
8870%}
8871
8872// Replicate scalar to packed char values into stack slot
8873instruct Repl4C_reg(stackSlotD dst, iRegI src) %{
8874  match(Set dst (Replicate4C src));
8875  expand %{
8876    iRegL tmp;
8877    Repl4C_reg_helper(tmp, src);
8878    regL_to_stkD(dst, tmp);
8879  %}
8880%}
8881
8882// Replicate scalar constant to packed char values in Double register
8883instruct Repl4C_immI(regD dst, immI con, o7RegI tmp) %{
8884  match(Set dst (Replicate4C con));
8885  effect(KILL tmp);
8886  format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl4C($con)" %}
8887  ins_encode %{
8888    // XXX This is a quick fix for 6833573.
8889    //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 4, 2)), $dst$$FloatRegister);
8890    RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 4, 2)), $tmp$$Register);
8891    __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
8892  %}
8893  ins_pipe(loadConFD);
8894%}
8895
8896// Replicate scalar to packed short values into stack slot
8897instruct Repl4S_reg_helper(iRegL dst, iRegI src) %{
8898  effect(DEF dst, USE src);
8899  format %{ "SLLX  $src,48,$dst\n\t"
8900            "SRLX  $dst,16,O7\n\t"
8901            "OR    $dst,O7,$dst\n\t"
8902            "SRLX  $dst,32,O7\n\t"
8903            "OR    $dst,O7,$dst\t! replicate4S" %}
8904  ins_encode( enc_repl4s(src, dst) );
8905  ins_pipe(ialu_reg);
8906%}
8907
8908// Replicate scalar to packed short values into stack slot
8909instruct Repl4S_reg(stackSlotD dst, iRegI src) %{
8910  match(Set dst (Replicate4S src));
8911  expand %{
8912    iRegL tmp;
8913    Repl4S_reg_helper(tmp, src);
8914    regL_to_stkD(dst, tmp);
8915  %}
8916%}
8917
8918// Replicate scalar constant to packed short values in Double register
8919instruct Repl4S_immI(regD dst, immI con, o7RegI tmp) %{
8920  match(Set dst (Replicate4S con));
8921  effect(KILL tmp);
8922  format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl4S($con)" %}
8923  ins_encode %{
8924    // XXX This is a quick fix for 6833573.
8925    //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 4, 2)), $dst$$FloatRegister);
8926    RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 4, 2)), $tmp$$Register);
8927    __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
8928  %}
8929  ins_pipe(loadConFD);
8930%}
8931
8932// Replicate scalar to packed int values in Double register
8933instruct Repl2I_reg_helper(iRegL dst, iRegI src) %{
8934  effect(DEF dst, USE src);
8935  format %{ "SLLX  $src,32,$dst\n\t"
8936            "SRLX  $dst,32,O7\n\t"
8937            "OR    $dst,O7,$dst\t! replicate2I" %}
8938  ins_encode( enc_repl2i(src, dst));
8939  ins_pipe(ialu_reg);
8940%}
8941
8942// Replicate scalar to packed int values in Double register
8943instruct Repl2I_reg(stackSlotD dst, iRegI src) %{
8944  match(Set dst (Replicate2I src));
8945  expand %{
8946    iRegL tmp;
8947    Repl2I_reg_helper(tmp, src);
8948    regL_to_stkD(dst, tmp);
8949  %}
8950%}
8951
8952// Replicate scalar zero constant to packed int values in Double register
8953instruct Repl2I_immI(regD dst, immI con, o7RegI tmp) %{
8954  match(Set dst (Replicate2I con));
8955  effect(KILL tmp);
8956  format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl2I($con)" %}
8957  ins_encode %{
8958    // XXX This is a quick fix for 6833573.
8959    //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 2, 4)), $dst$$FloatRegister);
8960    RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 2, 4)), $tmp$$Register);
8961    __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
8962  %}
8963  ins_pipe(loadConFD);
8964%}
8965
8966//----------Control Flow Instructions------------------------------------------
8967// Compare Instructions
8968// Compare Integers
8969instruct compI_iReg(flagsReg icc, iRegI op1, iRegI op2) %{
8970  match(Set icc (CmpI op1 op2));
8971  effect( DEF icc, USE op1, USE op2 );
8972
8973  size(4);
8974  format %{ "CMP    $op1,$op2" %}
8975  opcode(Assembler::subcc_op3, Assembler::arith_op);
8976  ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8977  ins_pipe(ialu_cconly_reg_reg);
8978%}
8979
8980instruct compU_iReg(flagsRegU icc, iRegI op1, iRegI op2) %{
8981  match(Set icc (CmpU op1 op2));
8982
8983  size(4);
8984  format %{ "CMP    $op1,$op2\t! unsigned" %}
8985  opcode(Assembler::subcc_op3, Assembler::arith_op);
8986  ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8987  ins_pipe(ialu_cconly_reg_reg);
8988%}
8989
8990instruct compI_iReg_imm13(flagsReg icc, iRegI op1, immI13 op2) %{
8991  match(Set icc (CmpI op1 op2));
8992  effect( DEF icc, USE op1 );
8993
8994  size(4);
8995  format %{ "CMP    $op1,$op2" %}
8996  opcode(Assembler::subcc_op3, Assembler::arith_op);
8997  ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
8998  ins_pipe(ialu_cconly_reg_imm);
8999%}
9000
9001instruct testI_reg_reg( flagsReg icc, iRegI op1, iRegI op2, immI0 zero ) %{
9002  match(Set icc (CmpI (AndI op1 op2) zero));
9003
9004  size(4);
9005  format %{ "BTST   $op2,$op1" %}
9006  opcode(Assembler::andcc_op3, Assembler::arith_op);
9007  ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
9008  ins_pipe(ialu_cconly_reg_reg_zero);
9009%}
9010
9011instruct testI_reg_imm( flagsReg icc, iRegI op1, immI13 op2, immI0 zero ) %{
9012  match(Set icc (CmpI (AndI op1 op2) zero));
9013
9014  size(4);
9015  format %{ "BTST   $op2,$op1" %}
9016  opcode(Assembler::andcc_op3, Assembler::arith_op);
9017  ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
9018  ins_pipe(ialu_cconly_reg_imm_zero);
9019%}
9020
9021instruct compL_reg_reg(flagsRegL xcc, iRegL op1, iRegL op2 ) %{
9022  match(Set xcc (CmpL op1 op2));
9023  effect( DEF xcc, USE op1, USE op2 );
9024
9025  size(4);
9026  format %{ "CMP    $op1,$op2\t\t! long" %}
9027  opcode(Assembler::subcc_op3, Assembler::arith_op);
9028  ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
9029  ins_pipe(ialu_cconly_reg_reg);
9030%}
9031
9032instruct compL_reg_con(flagsRegL xcc, iRegL op1, immL13 con) %{
9033  match(Set xcc (CmpL op1 con));
9034  effect( DEF xcc, USE op1, USE con );
9035
9036  size(4);
9037  format %{ "CMP    $op1,$con\t\t! long" %}
9038  opcode(Assembler::subcc_op3, Assembler::arith_op);
9039  ins_encode( form3_rs1_simm13_rd( op1, con, R_G0 ) );
9040  ins_pipe(ialu_cconly_reg_reg);
9041%}
9042
9043instruct testL_reg_reg(flagsRegL xcc, iRegL op1, iRegL op2, immL0 zero) %{
9044  match(Set xcc (CmpL (AndL op1 op2) zero));
9045  effect( DEF xcc, USE op1, USE op2 );
9046
9047  size(4);
9048  format %{ "BTST   $op1,$op2\t\t! long" %}
9049  opcode(Assembler::andcc_op3, Assembler::arith_op);
9050  ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
9051  ins_pipe(ialu_cconly_reg_reg);
9052%}
9053
9054// useful for checking the alignment of a pointer:
9055instruct testL_reg_con(flagsRegL xcc, iRegL op1, immL13 con, immL0 zero) %{
9056  match(Set xcc (CmpL (AndL op1 con) zero));
9057  effect( DEF xcc, USE op1, USE con );
9058
9059  size(4);
9060  format %{ "BTST   $op1,$con\t\t! long" %}
9061  opcode(Assembler::andcc_op3, Assembler::arith_op);
9062  ins_encode( form3_rs1_simm13_rd( op1, con, R_G0 ) );
9063  ins_pipe(ialu_cconly_reg_reg);
9064%}
9065
9066instruct compU_iReg_imm13(flagsRegU icc, iRegI op1, immU13 op2 ) %{
9067  match(Set icc (CmpU op1 op2));
9068
9069  size(4);
9070  format %{ "CMP    $op1,$op2\t! unsigned" %}
9071  opcode(Assembler::subcc_op3, Assembler::arith_op);
9072  ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
9073  ins_pipe(ialu_cconly_reg_imm);
9074%}
9075
9076// Compare Pointers
9077instruct compP_iRegP(flagsRegP pcc, iRegP op1, iRegP op2 ) %{
9078  match(Set pcc (CmpP op1 op2));
9079
9080  size(4);
9081  format %{ "CMP    $op1,$op2\t! ptr" %}
9082  opcode(Assembler::subcc_op3, Assembler::arith_op);
9083  ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
9084  ins_pipe(ialu_cconly_reg_reg);
9085%}
9086
9087instruct compP_iRegP_imm13(flagsRegP pcc, iRegP op1, immP13 op2 ) %{
9088  match(Set pcc (CmpP op1 op2));
9089
9090  size(4);
9091  format %{ "CMP    $op1,$op2\t! ptr" %}
9092  opcode(Assembler::subcc_op3, Assembler::arith_op);
9093  ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
9094  ins_pipe(ialu_cconly_reg_imm);
9095%}
9096
9097// Compare Narrow oops
9098instruct compN_iRegN(flagsReg icc, iRegN op1, iRegN op2 ) %{
9099  match(Set icc (CmpN op1 op2));
9100
9101  size(4);
9102  format %{ "CMP    $op1,$op2\t! compressed ptr" %}
9103  opcode(Assembler::subcc_op3, Assembler::arith_op);
9104  ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
9105  ins_pipe(ialu_cconly_reg_reg);
9106%}
9107
9108instruct compN_iRegN_immN0(flagsReg icc, iRegN op1, immN0 op2 ) %{
9109  match(Set icc (CmpN op1 op2));
9110
9111  size(4);
9112  format %{ "CMP    $op1,$op2\t! compressed ptr" %}
9113  opcode(Assembler::subcc_op3, Assembler::arith_op);
9114  ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
9115  ins_pipe(ialu_cconly_reg_imm);
9116%}
9117
9118//----------Max and Min--------------------------------------------------------
9119// Min Instructions
9120// Conditional move for min
9121instruct cmovI_reg_lt( iRegI op2, iRegI op1, flagsReg icc ) %{
9122  effect( USE_DEF op2, USE op1, USE icc );
9123
9124  size(4);
9125  format %{ "MOVlt  icc,$op1,$op2\t! min" %}
9126  opcode(Assembler::less);
9127  ins_encode( enc_cmov_reg_minmax(op2,op1) );
9128  ins_pipe(ialu_reg_flags);
9129%}
9130
9131// Min Register with Register.
9132instruct minI_eReg(iRegI op1, iRegI op2) %{
9133  match(Set op2 (MinI op1 op2));
9134  ins_cost(DEFAULT_COST*2);
9135  expand %{
9136    flagsReg icc;
9137    compI_iReg(icc,op1,op2);
9138    cmovI_reg_lt(op2,op1,icc);
9139  %}
9140%}
9141
9142// Max Instructions
9143// Conditional move for max
9144instruct cmovI_reg_gt( iRegI op2, iRegI op1, flagsReg icc ) %{
9145  effect( USE_DEF op2, USE op1, USE icc );
9146  format %{ "MOVgt  icc,$op1,$op2\t! max" %}
9147  opcode(Assembler::greater);
9148  ins_encode( enc_cmov_reg_minmax(op2,op1) );
9149  ins_pipe(ialu_reg_flags);
9150%}
9151
9152// Max Register with Register
9153instruct maxI_eReg(iRegI op1, iRegI op2) %{
9154  match(Set op2 (MaxI op1 op2));
9155  ins_cost(DEFAULT_COST*2);
9156  expand %{
9157    flagsReg icc;
9158    compI_iReg(icc,op1,op2);
9159    cmovI_reg_gt(op2,op1,icc);
9160  %}
9161%}
9162
9163
9164//----------Float Compares----------------------------------------------------
9165// Compare floating, generate condition code
9166instruct cmpF_cc(flagsRegF fcc, regF src1, regF src2) %{
9167  match(Set fcc (CmpF src1 src2));
9168
9169  size(4);
9170  format %{ "FCMPs  $fcc,$src1,$src2" %}
9171  opcode(Assembler::fpop2_op3, Assembler::arith_op, Assembler::fcmps_opf);
9172  ins_encode( form3_opf_rs1F_rs2F_fcc( src1, src2, fcc ) );
9173  ins_pipe(faddF_fcc_reg_reg_zero);
9174%}
9175
9176instruct cmpD_cc(flagsRegF fcc, regD src1, regD src2) %{
9177  match(Set fcc (CmpD src1 src2));
9178
9179  size(4);
9180  format %{ "FCMPd  $fcc,$src1,$src2" %}
9181  opcode(Assembler::fpop2_op3, Assembler::arith_op, Assembler::fcmpd_opf);
9182  ins_encode( form3_opf_rs1D_rs2D_fcc( src1, src2, fcc ) );
9183  ins_pipe(faddD_fcc_reg_reg_zero);
9184%}
9185
9186
9187// Compare floating, generate -1,0,1
9188instruct cmpF_reg(iRegI dst, regF src1, regF src2, flagsRegF0 fcc0) %{
9189  match(Set dst (CmpF3 src1 src2));
9190  effect(KILL fcc0);
9191  ins_cost(DEFAULT_COST*3+BRANCH_COST*3);
9192  format %{ "fcmpl  $dst,$src1,$src2" %}
9193  // Primary = float
9194  opcode( true );
9195  ins_encode( floating_cmp( dst, src1, src2 ) );
9196  ins_pipe( floating_cmp );
9197%}
9198
9199instruct cmpD_reg(iRegI dst, regD src1, regD src2, flagsRegF0 fcc0) %{
9200  match(Set dst (CmpD3 src1 src2));
9201  effect(KILL fcc0);
9202  ins_cost(DEFAULT_COST*3+BRANCH_COST*3);
9203  format %{ "dcmpl  $dst,$src1,$src2" %}
9204  // Primary = double (not float)
9205  opcode( false );
9206  ins_encode( floating_cmp( dst, src1, src2 ) );
9207  ins_pipe( floating_cmp );
9208%}
9209
9210//----------Branches---------------------------------------------------------
9211// Jump
9212// (compare 'operand indIndex' and 'instruct addP_reg_reg' above)
9213instruct jumpXtnd(iRegX switch_val, o7RegI table) %{
9214  match(Jump switch_val);
9215
9216  ins_cost(350);
9217
9218  format %{  "ADD    $constanttablebase, $constantoffset, O7\n\t"
9219             "LD     [O7 + $switch_val], O7\n\t"
9220             "JUMP   O7"
9221         %}
9222  ins_encode %{
9223    // Calculate table address into a register.
9224    Register table_reg;
9225    Register label_reg = O7;
9226    if (constant_offset() == 0) {
9227      table_reg = $constanttablebase;
9228    } else {
9229      table_reg = O7;
9230      RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset, O7);
9231      __ add($constanttablebase, con_offset, table_reg);
9232    }
9233
9234    // Jump to base address + switch value
9235    __ ld_ptr(table_reg, $switch_val$$Register, label_reg);
9236    __ jmp(label_reg, G0);
9237    __ delayed()->nop();
9238  %}
9239  ins_pipe(ialu_reg_reg);
9240%}
9241
9242// Direct Branch.  Use V8 version with longer range.
9243instruct branch(label labl) %{
9244  match(Goto);
9245  effect(USE labl);
9246
9247  size(8);
9248  ins_cost(BRANCH_COST);
9249  format %{ "BA     $labl" %}
9250  ins_encode %{
9251    Label* L = $labl$$label;
9252    __ ba(*L);
9253    __ delayed()->nop();
9254  %}
9255  ins_pipe(br);
9256%}
9257
9258// Direct Branch, short with no delay slot
9259instruct branch_short(label labl) %{
9260  match(Goto);
9261  predicate(UseCBCond);
9262  effect(USE labl);
9263
9264  size(4);
9265  ins_cost(BRANCH_COST);
9266  format %{ "BA     $labl\t! short branch" %}
9267  ins_encode %{ 
9268    Label* L = $labl$$label;
9269    assert(__ use_cbcond(*L), "back to back cbcond");
9270    __ ba_short(*L);
9271  %}
9272  ins_short_branch(1);
9273  ins_avoid_back_to_back(1);
9274  ins_pipe(cbcond_reg_imm);
9275%}
9276
9277// Conditional Direct Branch
9278instruct branchCon(cmpOp cmp, flagsReg icc, label labl) %{
9279  match(If cmp icc);
9280  effect(USE labl);
9281
9282  size(8);
9283  ins_cost(BRANCH_COST);
9284  format %{ "BP$cmp   $icc,$labl" %}
9285  // Prim = bits 24-22, Secnd = bits 31-30
9286  ins_encode( enc_bp( labl, cmp, icc ) );
9287  ins_pipe(br_cc);
9288%}
9289
9290instruct branchConU(cmpOpU cmp, flagsRegU icc, label labl) %{
9291  match(If cmp icc);
9292  effect(USE labl);
9293
9294  ins_cost(BRANCH_COST);
9295  format %{ "BP$cmp  $icc,$labl" %}
9296  // Prim = bits 24-22, Secnd = bits 31-30
9297  ins_encode( enc_bp( labl, cmp, icc ) );
9298  ins_pipe(br_cc);
9299%}
9300
9301instruct branchConP(cmpOpP cmp, flagsRegP pcc, label labl) %{
9302  match(If cmp pcc);
9303  effect(USE labl);
9304
9305  size(8);
9306  ins_cost(BRANCH_COST);
9307  format %{ "BP$cmp  $pcc,$labl" %}
9308  ins_encode %{
9309    Label* L = $labl$$label;
9310    Assembler::Predict predict_taken =
9311      cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9312
9313    __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, *L);
9314    __ delayed()->nop();
9315  %}
9316  ins_pipe(br_cc);
9317%}
9318
9319instruct branchConF(cmpOpF cmp, flagsRegF fcc, label labl) %{
9320  match(If cmp fcc);
9321  effect(USE labl);
9322
9323  size(8);
9324  ins_cost(BRANCH_COST);
9325  format %{ "FBP$cmp $fcc,$labl" %}
9326  ins_encode %{
9327    Label* L = $labl$$label;
9328    Assembler::Predict predict_taken =
9329      cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9330
9331    __ fbp( (Assembler::Condition)($cmp$$cmpcode), false, (Assembler::CC)($fcc$$reg), predict_taken, *L);
9332    __ delayed()->nop();
9333  %}
9334  ins_pipe(br_fcc);
9335%}
9336
9337instruct branchLoopEnd(cmpOp cmp, flagsReg icc, label labl) %{
9338  match(CountedLoopEnd cmp icc);
9339  effect(USE labl);
9340
9341  size(8);
9342  ins_cost(BRANCH_COST);
9343  format %{ "BP$cmp   $icc,$labl\t! Loop end" %}
9344  // Prim = bits 24-22, Secnd = bits 31-30
9345  ins_encode( enc_bp( labl, cmp, icc ) );
9346  ins_pipe(br_cc);
9347%}
9348
9349instruct branchLoopEndU(cmpOpU cmp, flagsRegU icc, label labl) %{
9350  match(CountedLoopEnd cmp icc);
9351  effect(USE labl);
9352
9353  size(8);
9354  ins_cost(BRANCH_COST);
9355  format %{ "BP$cmp  $icc,$labl\t! Loop end" %}
9356  // Prim = bits 24-22, Secnd = bits 31-30
9357  ins_encode( enc_bp( labl, cmp, icc ) );
9358  ins_pipe(br_cc);
9359%}
9360
9361// Compare and branch instructions
9362instruct cmpI_reg_branch(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
9363  match(If cmp (CmpI op1 op2));
9364  effect(USE labl, KILL icc);
9365
9366  size(12);
9367  ins_cost(BRANCH_COST);
9368  format %{ "CMP    $op1,$op2\t! int\n\t"
9369            "BP$cmp   $labl" %}
9370  ins_encode %{
9371    Label* L = $labl$$label;
9372    Assembler::Predict predict_taken =
9373      cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9374    __ cmp($op1$$Register, $op2$$Register);
9375    __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9376    __ delayed()->nop();
9377  %}
9378  ins_pipe(cmp_br_reg_reg);
9379%}
9380
9381instruct cmpI_imm_branch(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
9382  match(If cmp (CmpI op1 op2));
9383  effect(USE labl, KILL icc);
9384
9385  size(12);
9386  ins_cost(BRANCH_COST);
9387  format %{ "CMP    $op1,$op2\t! int\n\t"
9388            "BP$cmp   $labl" %}
9389  ins_encode %{
9390    Label* L = $labl$$label;
9391    Assembler::Predict predict_taken =
9392      cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9393    __ cmp($op1$$Register, $op2$$constant);
9394    __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9395    __ delayed()->nop();
9396  %}
9397  ins_pipe(cmp_br_reg_imm);
9398%}
9399
9400instruct cmpU_reg_branch(cmpOpU cmp, iRegI op1, iRegI op2, label labl, flagsRegU icc) %{
9401  match(If cmp (CmpU op1 op2));
9402  effect(USE labl, KILL icc);
9403
9404  size(12);
9405  ins_cost(BRANCH_COST);
9406  format %{ "CMP    $op1,$op2\t! unsigned\n\t"
9407            "BP$cmp  $labl" %}
9408  ins_encode %{
9409    Label* L = $labl$$label;
9410    Assembler::Predict predict_taken =
9411      cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9412    __ cmp($op1$$Register, $op2$$Register);
9413    __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9414    __ delayed()->nop();
9415  %}
9416  ins_pipe(cmp_br_reg_reg);
9417%}
9418
9419instruct cmpU_imm_branch(cmpOpU cmp, iRegI op1, immI5 op2, label labl, flagsRegU icc) %{
9420  match(If cmp (CmpU op1 op2));
9421  effect(USE labl, KILL icc);
9422
9423  size(12);
9424  ins_cost(BRANCH_COST);
9425  format %{ "CMP    $op1,$op2\t! unsigned\n\t"
9426            "BP$cmp  $labl" %}
9427  ins_encode %{
9428    Label* L = $labl$$label;
9429    Assembler::Predict predict_taken =
9430      cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9431    __ cmp($op1$$Register, $op2$$constant);
9432    __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9433    __ delayed()->nop();
9434  %}
9435  ins_pipe(cmp_br_reg_imm);
9436%}
9437
9438instruct cmpL_reg_branch(cmpOp cmp, iRegL op1, iRegL op2, label labl, flagsRegL xcc) %{
9439  match(If cmp (CmpL op1 op2));
9440  effect(USE labl, KILL xcc);
9441
9442  size(12);
9443  ins_cost(BRANCH_COST);
9444  format %{ "CMP    $op1,$op2\t! long\n\t"
9445            "BP$cmp   $labl" %}
9446  ins_encode %{
9447    Label* L = $labl$$label;
9448    Assembler::Predict predict_taken =
9449      cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9450    __ cmp($op1$$Register, $op2$$Register);
9451    __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, *L);
9452    __ delayed()->nop();
9453  %}
9454  ins_pipe(cmp_br_reg_reg);
9455%}
9456
9457instruct cmpL_imm_branch(cmpOp cmp, iRegL op1, immL5 op2, label labl, flagsRegL xcc) %{
9458  match(If cmp (CmpL op1 op2));
9459  effect(USE labl, KILL xcc);
9460
9461  size(12);
9462  ins_cost(BRANCH_COST);
9463  format %{ "CMP    $op1,$op2\t! long\n\t"
9464            "BP$cmp   $labl" %}
9465  ins_encode %{
9466    Label* L = $labl$$label;
9467    Assembler::Predict predict_taken =
9468      cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9469    __ cmp($op1$$Register, $op2$$constant);
9470    __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, *L);
9471    __ delayed()->nop();
9472  %}
9473  ins_pipe(cmp_br_reg_imm);
9474%}
9475
9476// Compare Pointers and branch
9477instruct cmpP_reg_branch(cmpOpP cmp, iRegP op1, iRegP op2, label labl, flagsRegP pcc) %{
9478  match(If cmp (CmpP op1 op2));
9479  effect(USE labl, KILL pcc);
9480
9481  size(12);
9482  ins_cost(BRANCH_COST);
9483  format %{ "CMP    $op1,$op2\t! ptr\n\t"
9484            "B$cmp   $labl" %}
9485  ins_encode %{
9486    Label* L = $labl$$label;
9487    Assembler::Predict predict_taken =
9488      cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9489    __ cmp($op1$$Register, $op2$$Register);
9490    __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, *L);
9491    __ delayed()->nop();
9492  %}
9493  ins_pipe(cmp_br_reg_reg);
9494%}
9495
9496instruct cmpP_null_branch(cmpOpP cmp, iRegP op1, immP0 null, label labl, flagsRegP pcc) %{
9497  match(If cmp (CmpP op1 null));
9498  effect(USE labl, KILL pcc);
9499
9500  size(12);
9501  ins_cost(BRANCH_COST);
9502  format %{ "CMP    $op1,0\t! ptr\n\t"
9503            "B$cmp   $labl" %}
9504  ins_encode %{
9505    Label* L = $labl$$label;
9506    Assembler::Predict predict_taken =
9507      cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9508    __ cmp($op1$$Register, G0);
9509    // bpr() is not used here since it has shorter distance.
9510    __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, *L);
9511    __ delayed()->nop();
9512  %}
9513  ins_pipe(cmp_br_reg_reg);
9514%}
9515
9516instruct cmpN_reg_branch(cmpOp cmp, iRegN op1, iRegN op2, label labl, flagsReg icc) %{
9517  match(If cmp (CmpN op1 op2));
9518  effect(USE labl, KILL icc);
9519
9520  size(12);
9521  ins_cost(BRANCH_COST);
9522  format %{ "CMP    $op1,$op2\t! compressed ptr\n\t"
9523            "BP$cmp   $labl" %}
9524  ins_encode %{
9525    Label* L = $labl$$label;
9526    Assembler::Predict predict_taken =
9527      cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9528    __ cmp($op1$$Register, $op2$$Register);
9529    __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9530    __ delayed()->nop();
9531  %}
9532  ins_pipe(cmp_br_reg_reg);
9533%}
9534
9535instruct cmpN_null_branch(cmpOp cmp, iRegN op1, immN0 null, label labl, flagsReg icc) %{
9536  match(If cmp (CmpN op1 null));
9537  effect(USE labl, KILL icc);
9538
9539  size(12);
9540  ins_cost(BRANCH_COST);
9541  format %{ "CMP    $op1,0\t! compressed ptr\n\t"
9542            "BP$cmp   $labl" %}
9543  ins_encode %{
9544    Label* L = $labl$$label;
9545    Assembler::Predict predict_taken =
9546      cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9547    __ cmp($op1$$Register, G0);
9548    __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9549    __ delayed()->nop();
9550  %}
9551  ins_pipe(cmp_br_reg_reg);
9552%}
9553
9554// Loop back branch
9555instruct cmpI_reg_branchLoopEnd(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
9556  match(CountedLoopEnd cmp (CmpI op1 op2));
9557  effect(USE labl, KILL icc);
9558
9559  size(12);
9560  ins_cost(BRANCH_COST);
9561  format %{ "CMP    $op1,$op2\t! int\n\t"
9562            "BP$cmp   $labl\t! Loop end" %}
9563  ins_encode %{
9564    Label* L = $labl$$label;
9565    Assembler::Predict predict_taken =
9566      cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9567    __ cmp($op1$$Register, $op2$$Register);
9568    __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9569    __ delayed()->nop();
9570  %}
9571  ins_pipe(cmp_br_reg_reg);
9572%}
9573
9574instruct cmpI_imm_branchLoopEnd(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
9575  match(CountedLoopEnd cmp (CmpI op1 op2));
9576  effect(USE labl, KILL icc);
9577
9578  size(12);
9579  ins_cost(BRANCH_COST);
9580  format %{ "CMP    $op1,$op2\t! int\n\t"
9581            "BP$cmp   $labl\t! Loop end" %}
9582  ins_encode %{
9583    Label* L = $labl$$label;
9584    Assembler::Predict predict_taken =
9585      cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9586    __ cmp($op1$$Register, $op2$$constant);
9587    __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9588    __ delayed()->nop();
9589  %}
9590  ins_pipe(cmp_br_reg_imm);
9591%}
9592
9593// Short compare and branch instructions
9594instruct cmpI_reg_branch_short(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
9595  match(If cmp (CmpI op1 op2));
9596  predicate(UseCBCond);
9597  effect(USE labl, KILL icc);
9598
9599  size(4);
9600  ins_cost(BRANCH_COST);
9601  format %{ "CWB$cmp  $op1,$op2,$labl\t! int" %}
9602  ins_encode %{
9603    Label* L = $labl$$label;
9604    assert(__ use_cbcond(*L), "back to back cbcond");
9605    __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
9606  %}
9607  ins_short_branch(1);
9608  ins_avoid_back_to_back(1);
9609  ins_pipe(cbcond_reg_reg);
9610%}
9611
9612instruct cmpI_imm_branch_short(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
9613  match(If cmp (CmpI op1 op2));
9614  predicate(UseCBCond);
9615  effect(USE labl, KILL icc);
9616
9617  size(4);
9618  ins_cost(BRANCH_COST);
9619  format %{ "CWB$cmp  $op1,$op2,$labl\t! int" %}
9620  ins_encode %{
9621    Label* L = $labl$$label;
9622    assert(__ use_cbcond(*L), "back to back cbcond");
9623    __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$constant, *L);
9624  %}
9625  ins_short_branch(1);
9626  ins_avoid_back_to_back(1);
9627  ins_pipe(cbcond_reg_imm);
9628%}
9629
9630instruct cmpU_reg_branch_short(cmpOpU cmp, iRegI op1, iRegI op2, label labl, flagsRegU icc) %{
9631  match(If cmp (CmpU op1 op2));
9632  predicate(UseCBCond);
9633  effect(USE labl, KILL icc);
9634
9635  size(4);
9636  ins_cost(BRANCH_COST);
9637  format %{ "CWB$cmp $op1,$op2,$labl\t! unsigned" %}
9638  ins_encode %{
9639    Label* L = $labl$$label;
9640    assert(__ use_cbcond(*L), "back to back cbcond");
9641    __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
9642  %}
9643  ins_short_branch(1);
9644  ins_avoid_back_to_back(1);
9645  ins_pipe(cbcond_reg_reg);
9646%}
9647
9648instruct cmpU_imm_branch_short(cmpOpU cmp, iRegI op1, immI5 op2, label labl, flagsRegU icc) %{
9649  match(If cmp (CmpU op1 op2));
9650  predicate(UseCBCond);
9651  effect(USE labl, KILL icc);
9652
9653  size(4);
9654  ins_cost(BRANCH_COST);
9655  format %{ "CWB$cmp $op1,$op2,$labl\t! unsigned" %}
9656  ins_encode %{
9657    Label* L = $labl$$label;
9658    assert(__ use_cbcond(*L), "back to back cbcond");
9659    __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$constant, *L);
9660  %}
9661  ins_short_branch(1);
9662  ins_avoid_back_to_back(1);
9663  ins_pipe(cbcond_reg_imm);
9664%}
9665
9666instruct cmpL_reg_branch_short(cmpOp cmp, iRegL op1, iRegL op2, label labl, flagsRegL xcc) %{
9667  match(If cmp (CmpL op1 op2));
9668  predicate(UseCBCond);
9669  effect(USE labl, KILL xcc);
9670
9671  size(4);
9672  ins_cost(BRANCH_COST);
9673  format %{ "CXB$cmp  $op1,$op2,$labl\t! long" %}
9674  ins_encode %{
9675    Label* L = $labl$$label;
9676    assert(__ use_cbcond(*L), "back to back cbcond");
9677    __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::xcc, $op1$$Register, $op2$$Register, *L);
9678  %}
9679  ins_short_branch(1);
9680  ins_avoid_back_to_back(1);
9681  ins_pipe(cbcond_reg_reg);
9682%}
9683
9684instruct cmpL_imm_branch_short(cmpOp cmp, iRegL op1, immL5 op2, label labl, flagsRegL xcc) %{
9685  match(If cmp (CmpL op1 op2));
9686  predicate(UseCBCond);
9687  effect(USE labl, KILL xcc);
9688
9689  size(4);
9690  ins_cost(BRANCH_COST);
9691  format %{ "CXB$cmp  $op1,$op2,$labl\t! long" %}
9692  ins_encode %{
9693    Label* L = $labl$$label;
9694    assert(__ use_cbcond(*L), "back to back cbcond");
9695    __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::xcc, $op1$$Register, $op2$$constant, *L);
9696  %}
9697  ins_short_branch(1);
9698  ins_avoid_back_to_back(1);
9699  ins_pipe(cbcond_reg_imm);
9700%}
9701
9702// Compare Pointers and branch
9703instruct cmpP_reg_branch_short(cmpOpP cmp, iRegP op1, iRegP op2, label labl, flagsRegP pcc) %{
9704  match(If cmp (CmpP op1 op2));
9705  predicate(UseCBCond);
9706  effect(USE labl, KILL pcc);
9707
9708  size(4);
9709  ins_cost(BRANCH_COST);
9710#ifdef _LP64
9711  format %{ "CXB$cmp $op1,$op2,$labl\t! ptr" %}
9712#else
9713  format %{ "CWB$cmp $op1,$op2,$labl\t! ptr" %}
9714#endif
9715  ins_encode %{
9716    Label* L = $labl$$label;
9717    assert(__ use_cbcond(*L), "back to back cbcond");
9718    __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::ptr_cc, $op1$$Register, $op2$$Register, *L);
9719  %}
9720  ins_short_branch(1);
9721  ins_avoid_back_to_back(1);
9722  ins_pipe(cbcond_reg_reg);
9723%}
9724
9725instruct cmpP_null_branch_short(cmpOpP cmp, iRegP op1, immP0 null, label labl, flagsRegP pcc) %{
9726  match(If cmp (CmpP op1 null));
9727  predicate(UseCBCond);
9728  effect(USE labl, KILL pcc);
9729
9730  size(4);
9731  ins_cost(BRANCH_COST);
9732#ifdef _LP64
9733  format %{ "CXB$cmp $op1,0,$labl\t! ptr" %}
9734#else
9735  format %{ "CWB$cmp $op1,0,$labl\t! ptr" %}
9736#endif
9737  ins_encode %{
9738    Label* L = $labl$$label;
9739    assert(__ use_cbcond(*L), "back to back cbcond");
9740    __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::ptr_cc, $op1$$Register, G0, *L);
9741  %}
9742  ins_short_branch(1);
9743  ins_avoid_back_to_back(1);
9744  ins_pipe(cbcond_reg_reg);
9745%}
9746
9747instruct cmpN_reg_branch_short(cmpOp cmp, iRegN op1, iRegN op2, label labl, flagsReg icc) %{
9748  match(If cmp (CmpN op1 op2));
9749  predicate(UseCBCond);
9750  effect(USE labl, KILL icc);
9751
9752  size(4);
9753  ins_cost(BRANCH_COST);
9754  format %{ "CWB$cmp  $op1,op2,$labl\t! compressed ptr" %}
9755  ins_encode %{
9756    Label* L = $labl$$label;
9757    assert(__ use_cbcond(*L), "back to back cbcond");
9758    __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
9759  %}
9760  ins_short_branch(1);
9761  ins_avoid_back_to_back(1);
9762  ins_pipe(cbcond_reg_reg);
9763%}
9764
9765instruct cmpN_null_branch_short(cmpOp cmp, iRegN op1, immN0 null, label labl, flagsReg icc) %{
9766  match(If cmp (CmpN op1 null));
9767  predicate(UseCBCond);
9768  effect(USE labl, KILL icc);
9769
9770  size(4);
9771  ins_cost(BRANCH_COST);
9772  format %{ "CWB$cmp  $op1,0,$labl\t! compressed ptr" %}
9773  ins_encode %{
9774    Label* L = $labl$$label;
9775    assert(__ use_cbcond(*L), "back to back cbcond");
9776    __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, G0, *L);
9777  %}
9778  ins_short_branch(1);
9779  ins_avoid_back_to_back(1);
9780  ins_pipe(cbcond_reg_reg);
9781%}
9782
9783// Loop back branch
9784instruct cmpI_reg_branchLoopEnd_short(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
9785  match(CountedLoopEnd cmp (CmpI op1 op2));
9786  predicate(UseCBCond);
9787  effect(USE labl, KILL icc);
9788
9789  size(4);
9790  ins_cost(BRANCH_COST);
9791  format %{ "CWB$cmp  $op1,$op2,$labl\t! Loop end" %}
9792  ins_encode %{
9793    Label* L = $labl$$label;
9794    assert(__ use_cbcond(*L), "back to back cbcond");
9795    __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
9796  %}
9797  ins_short_branch(1);
9798  ins_avoid_back_to_back(1);
9799  ins_pipe(cbcond_reg_reg);
9800%}
9801
9802instruct cmpI_imm_branchLoopEnd_short(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
9803  match(CountedLoopEnd cmp (CmpI op1 op2));
9804  predicate(UseCBCond);
9805  effect(USE labl, KILL icc);
9806
9807  size(4);
9808  ins_cost(BRANCH_COST);
9809  format %{ "CWB$cmp  $op1,$op2,$labl\t! Loop end" %}
9810  ins_encode %{
9811    Label* L = $labl$$label;
9812    assert(__ use_cbcond(*L), "back to back cbcond");
9813    __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$constant, *L);
9814  %}
9815  ins_short_branch(1);
9816  ins_avoid_back_to_back(1);
9817  ins_pipe(cbcond_reg_imm);
9818%}
9819
9820// Branch-on-register tests all 64 bits.  We assume that values
9821// in 64-bit registers always remains zero or sign extended
9822// unless our code munges the high bits.  Interrupts can chop
9823// the high order bits to zero or sign at any time.
9824instruct branchCon_regI(cmpOp_reg cmp, iRegI op1, immI0 zero, label labl) %{
9825  match(If cmp (CmpI op1 zero));
9826  predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
9827  effect(USE labl);
9828
9829  size(8);
9830  ins_cost(BRANCH_COST);
9831  format %{ "BR$cmp   $op1,$labl" %}
9832  ins_encode( enc_bpr( labl, cmp, op1 ) );
9833  ins_pipe(br_reg);
9834%}
9835
9836instruct branchCon_regP(cmpOp_reg cmp, iRegP op1, immP0 null, label labl) %{
9837  match(If cmp (CmpP op1 null));
9838  predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
9839  effect(USE labl);
9840
9841  size(8);
9842  ins_cost(BRANCH_COST);
9843  format %{ "BR$cmp   $op1,$labl" %}
9844  ins_encode( enc_bpr( labl, cmp, op1 ) );
9845  ins_pipe(br_reg);
9846%}
9847
9848instruct branchCon_regL(cmpOp_reg cmp, iRegL op1, immL0 zero, label labl) %{
9849  match(If cmp (CmpL op1 zero));
9850  predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
9851  effect(USE labl);
9852
9853  size(8);
9854  ins_cost(BRANCH_COST);
9855  format %{ "BR$cmp   $op1,$labl" %}
9856  ins_encode( enc_bpr( labl, cmp, op1 ) );
9857  ins_pipe(br_reg);
9858%}
9859
9860
9861// ============================================================================
9862// Long Compare
9863//
9864// Currently we hold longs in 2 registers.  Comparing such values efficiently
9865// is tricky.  The flavor of compare used depends on whether we are testing
9866// for LT, LE, or EQ.  For a simple LT test we can check just the sign bit.
9867// The GE test is the negated LT test.  The LE test can be had by commuting
9868// the operands (yielding a GE test) and then negating; negate again for the
9869// GT test.  The EQ test is done by ORcc'ing the high and low halves, and the
9870// NE test is negated from that.
9871
9872// Due to a shortcoming in the ADLC, it mixes up expressions like:
9873// (foo (CmpI (CmpL X Y) 0)) and (bar (CmpI (CmpL X 0L) 0)).  Note the
9874// difference between 'Y' and '0L'.  The tree-matches for the CmpI sections
9875// are collapsed internally in the ADLC's dfa-gen code.  The match for
9876// (CmpI (CmpL X Y) 0) is silently replaced with (CmpI (CmpL X 0L) 0) and the
9877// foo match ends up with the wrong leaf.  One fix is to not match both
9878// reg-reg and reg-zero forms of long-compare.  This is unfortunate because
9879// both forms beat the trinary form of long-compare and both are very useful
9880// on Intel which has so few registers.
9881
9882instruct branchCon_long(cmpOp cmp, flagsRegL xcc, label labl) %{
9883  match(If cmp xcc);
9884  effect(USE labl);
9885
9886  size(8);
9887  ins_cost(BRANCH_COST);
9888  format %{ "BP$cmp   $xcc,$labl" %}
9889  ins_encode %{
9890    Label* L = $labl$$label;
9891    Assembler::Predict predict_taken =
9892      cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9893
9894    __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, *L);
9895    __ delayed()->nop();
9896  %}
9897  ins_pipe(br_cc);
9898%}
9899
9900// Manifest a CmpL3 result in an integer register.  Very painful.
9901// This is the test to avoid.
9902instruct cmpL3_reg_reg(iRegI dst, iRegL src1, iRegL src2, flagsReg ccr ) %{
9903  match(Set dst (CmpL3 src1 src2) );
9904  effect( KILL ccr );
9905  ins_cost(6*DEFAULT_COST);
9906  size(24);
9907  format %{ "CMP    $src1,$src2\t\t! long\n"
9908          "\tBLT,a,pn done\n"
9909          "\tMOV    -1,$dst\t! delay slot\n"
9910          "\tBGT,a,pn done\n"
9911          "\tMOV    1,$dst\t! delay slot\n"
9912          "\tCLR    $dst\n"
9913    "done:"     %}
9914  ins_encode( cmpl_flag(src1,src2,dst) );
9915  ins_pipe(cmpL_reg);
9916%}
9917
9918// Conditional move
9919instruct cmovLL_reg(cmpOp cmp, flagsRegL xcc, iRegL dst, iRegL src) %{
9920  match(Set dst (CMoveL (Binary cmp xcc) (Binary dst src)));
9921  ins_cost(150);
9922  format %{ "MOV$cmp  $xcc,$src,$dst\t! long" %}
9923  ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
9924  ins_pipe(ialu_reg);
9925%}
9926
9927instruct cmovLL_imm(cmpOp cmp, flagsRegL xcc, iRegL dst, immL0 src) %{
9928  match(Set dst (CMoveL (Binary cmp xcc) (Binary dst src)));
9929  ins_cost(140);
9930  format %{ "MOV$cmp  $xcc,$src,$dst\t! long" %}
9931  ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
9932  ins_pipe(ialu_imm);
9933%}
9934
9935instruct cmovIL_reg(cmpOp cmp, flagsRegL xcc, iRegI dst, iRegI src) %{
9936  match(Set dst (CMoveI (Binary cmp xcc) (Binary dst src)));
9937  ins_cost(150);
9938  format %{ "MOV$cmp  $xcc,$src,$dst" %}
9939  ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
9940  ins_pipe(ialu_reg);
9941%}
9942
9943instruct cmovIL_imm(cmpOp cmp, flagsRegL xcc, iRegI dst, immI11 src) %{
9944  match(Set dst (CMoveI (Binary cmp xcc) (Binary dst src)));
9945  ins_cost(140);
9946  format %{ "MOV$cmp  $xcc,$src,$dst" %}
9947  ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
9948  ins_pipe(ialu_imm);
9949%}
9950
9951instruct cmovNL_reg(cmpOp cmp, flagsRegL xcc, iRegN dst, iRegN src) %{
9952  match(Set dst (CMoveN (Binary cmp xcc) (Binary dst src)));
9953  ins_cost(150);
9954  format %{ "MOV$cmp  $xcc,$src,$dst" %}
9955  ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
9956  ins_pipe(ialu_reg);
9957%}
9958
9959instruct cmovPL_reg(cmpOp cmp, flagsRegL xcc, iRegP dst, iRegP src) %{
9960  match(Set dst (CMoveP (Binary cmp xcc) (Binary dst src)));
9961  ins_cost(150);
9962  format %{ "MOV$cmp  $xcc,$src,$dst" %}
9963  ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
9964  ins_pipe(ialu_reg);
9965%}
9966
9967instruct cmovPL_imm(cmpOp cmp, flagsRegL xcc, iRegP dst, immP0 src) %{
9968  match(Set dst (CMoveP (Binary cmp xcc) (Binary dst src)));
9969  ins_cost(140);
9970  format %{ "MOV$cmp  $xcc,$src,$dst" %}
9971  ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
9972  ins_pipe(ialu_imm);
9973%}
9974
9975instruct cmovFL_reg(cmpOp cmp, flagsRegL xcc, regF dst, regF src) %{
9976  match(Set dst (CMoveF (Binary cmp xcc) (Binary dst src)));
9977  ins_cost(150);
9978  opcode(0x101);
9979  format %{ "FMOVS$cmp $xcc,$src,$dst" %}
9980  ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::xcc)) );
9981  ins_pipe(int_conditional_float_move);
9982%}
9983
9984instruct cmovDL_reg(cmpOp cmp, flagsRegL xcc, regD dst, regD src) %{
9985  match(Set dst (CMoveD (Binary cmp xcc) (Binary dst src)));
9986  ins_cost(150);
9987  opcode(0x102);
9988  format %{ "FMOVD$cmp $xcc,$src,$dst" %}
9989  ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::xcc)) );
9990  ins_pipe(int_conditional_float_move);
9991%}
9992
9993// ============================================================================
9994// Safepoint Instruction
9995instruct safePoint_poll(iRegP poll) %{
9996  match(SafePoint poll);
9997  effect(USE poll);
9998
9999  size(4);
10000#ifdef _LP64
10001  format %{ "LDX    [$poll],R_G0\t! Safepoint: poll for GC" %}
10002#else
10003  format %{ "LDUW   [$poll],R_G0\t! Safepoint: poll for GC" %}
10004#endif
10005  ins_encode %{
10006    __ relocate(relocInfo::poll_type);
10007    __ ld_ptr($poll$$Register, 0, G0);
10008  %}
10009  ins_pipe(loadPollP);
10010%}
10011
10012// ============================================================================
10013// Call Instructions
10014// Call Java Static Instruction
10015instruct CallStaticJavaDirect( method meth ) %{
10016  match(CallStaticJava);
10017  predicate(! ((CallStaticJavaNode*)n)->is_method_handle_invoke());
10018  effect(USE meth);
10019
10020  size(8);
10021  ins_cost(CALL_COST);
10022  format %{ "CALL,static  ; NOP ==> " %}
10023  ins_encode( Java_Static_Call( meth ), call_epilog );
10024  ins_pipe(simple_call);
10025%}
10026
10027// Call Java Static Instruction (method handle version)
10028instruct CallStaticJavaHandle(method meth, l7RegP l7_mh_SP_save) %{
10029  match(CallStaticJava);
10030  predicate(((CallStaticJavaNode*)n)->is_method_handle_invoke());
10031  effect(USE meth, KILL l7_mh_SP_save);
10032
10033  size(8);
10034  ins_cost(CALL_COST);
10035  format %{ "CALL,static/MethodHandle" %}
10036  ins_encode(preserve_SP, Java_Static_Call(meth), restore_SP, call_epilog);
10037  ins_pipe(simple_call);
10038%}
10039
10040// Call Java Dynamic Instruction
10041instruct CallDynamicJavaDirect( method meth ) %{
10042  match(CallDynamicJava);
10043  effect(USE meth);
10044
10045  ins_cost(CALL_COST);
10046  format %{ "SET    (empty),R_G5\n\t"
10047            "CALL,dynamic  ; NOP ==> " %}
10048  ins_encode( Java_Dynamic_Call( meth ), call_epilog );
10049  ins_pipe(call);
10050%}
10051
10052// Call Runtime Instruction
10053instruct CallRuntimeDirect(method meth, l7RegP l7) %{
10054  match(CallRuntime);
10055  effect(USE meth, KILL l7);
10056  ins_cost(CALL_COST);
10057  format %{ "CALL,runtime" %}
10058  ins_encode( Java_To_Runtime( meth ),
10059              call_epilog, adjust_long_from_native_call );
10060  ins_pipe(simple_call);
10061%}
10062
10063// Call runtime without safepoint - same as CallRuntime
10064instruct CallLeafDirect(method meth, l7RegP l7) %{
10065  match(CallLeaf);
10066  effect(USE meth, KILL l7);
10067  ins_cost(CALL_COST);
10068  format %{ "CALL,runtime leaf" %}
10069  ins_encode( Java_To_Runtime( meth ),
10070              call_epilog,
10071              adjust_long_from_native_call );
10072  ins_pipe(simple_call);
10073%}
10074
10075// Call runtime without safepoint - same as CallLeaf
10076instruct CallLeafNoFPDirect(method meth, l7RegP l7) %{
10077  match(CallLeafNoFP);
10078  effect(USE meth, KILL l7);
10079  ins_cost(CALL_COST);
10080  format %{ "CALL,runtime leaf nofp" %}
10081  ins_encode( Java_To_Runtime( meth ),
10082              call_epilog,
10083              adjust_long_from_native_call );
10084  ins_pipe(simple_call);
10085%}
10086
10087// Tail Call; Jump from runtime stub to Java code.
10088// Also known as an 'interprocedural jump'.
10089// Target of jump will eventually return to caller.
10090// TailJump below removes the return address.
10091instruct TailCalljmpInd(g3RegP jump_target, inline_cache_regP method_oop) %{
10092  match(TailCall jump_target method_oop );
10093
10094  ins_cost(CALL_COST);
10095  format %{ "Jmp     $jump_target  ; NOP \t! $method_oop holds method oop" %}
10096  ins_encode(form_jmpl(jump_target));
10097  ins_pipe(tail_call);
10098%}
10099
10100
10101// Return Instruction
10102instruct Ret() %{
10103  match(Return);
10104
10105  // The epilogue node did the ret already.
10106  size(0);
10107  format %{ "! return" %}
10108  ins_encode();
10109  ins_pipe(empty);
10110%}
10111
10112
10113// Tail Jump; remove the return address; jump to target.
10114// TailCall above leaves the return address around.
10115// TailJump is used in only one place, the rethrow_Java stub (fancy_jump=2).
10116// ex_oop (Exception Oop) is needed in %o0 at the jump. As there would be a
10117// "restore" before this instruction (in Epilogue), we need to materialize it
10118// in %i0.
10119instruct tailjmpInd(g1RegP jump_target, i0RegP ex_oop) %{
10120  match( TailJump jump_target ex_oop );
10121  ins_cost(CALL_COST);
10122  format %{ "! discard R_O7\n\t"
10123            "Jmp     $jump_target  ; ADD O7,8,O1 \t! $ex_oop holds exc. oop" %}
10124  ins_encode(form_jmpl_set_exception_pc(jump_target));
10125  // opcode(Assembler::jmpl_op3, Assembler::arith_op);
10126  // The hack duplicates the exception oop into G3, so that CreateEx can use it there.
10127  // ins_encode( form3_rs1_simm13_rd( jump_target, 0x00, R_G0 ), move_return_pc_to_o1() );
10128  ins_pipe(tail_call);
10129%}
10130
10131// Create exception oop: created by stack-crawling runtime code.
10132// Created exception is now available to this handler, and is setup
10133// just prior to jumping to this handler.  No code emitted.
10134instruct CreateException( o0RegP ex_oop )
10135%{
10136  match(Set ex_oop (CreateEx));
10137  ins_cost(0);
10138
10139  size(0);
10140  // use the following format syntax
10141  format %{ "! exception oop is in R_O0; no code emitted" %}
10142  ins_encode();
10143  ins_pipe(empty);
10144%}
10145
10146
10147// Rethrow exception:
10148// The exception oop will come in the first argument position.
10149// Then JUMP (not call) to the rethrow stub code.
10150instruct RethrowException()
10151%{
10152  match(Rethrow);
10153  ins_cost(CALL_COST);
10154
10155  // use the following format syntax
10156  format %{ "Jmp    rethrow_stub" %}
10157  ins_encode(enc_rethrow);
10158  ins_pipe(tail_call);
10159%}
10160
10161
10162// Die now
10163instruct ShouldNotReachHere( )
10164%{
10165  match(Halt);
10166  ins_cost(CALL_COST);
10167
10168  size(4);
10169  // Use the following format syntax
10170  format %{ "ILLTRAP   ; ShouldNotReachHere" %}
10171  ins_encode( form2_illtrap() );
10172  ins_pipe(tail_call);
10173%}
10174
10175// ============================================================================
10176// The 2nd slow-half of a subtype check.  Scan the subklass's 2ndary superklass
10177// array for an instance of the superklass.  Set a hidden internal cache on a
10178// hit (cache is checked with exposed code in gen_subtype_check()).  Return
10179// not zero for a miss or zero for a hit.  The encoding ALSO sets flags.
10180instruct partialSubtypeCheck( o0RegP index, o1RegP sub, o2RegP super, flagsRegP pcc, o7RegP o7 ) %{
10181  match(Set index (PartialSubtypeCheck sub super));
10182  effect( KILL pcc, KILL o7 );
10183  ins_cost(DEFAULT_COST*10);
10184  format %{ "CALL   PartialSubtypeCheck\n\tNOP" %}
10185  ins_encode( enc_PartialSubtypeCheck() );
10186  ins_pipe(partial_subtype_check_pipe);
10187%}
10188
10189instruct partialSubtypeCheck_vs_zero( flagsRegP pcc, o1RegP sub, o2RegP super, immP0 zero, o0RegP idx, o7RegP o7 ) %{
10190  match(Set pcc (CmpP (PartialSubtypeCheck sub super) zero));
10191  effect( KILL idx, KILL o7 );
10192  ins_cost(DEFAULT_COST*10);
10193  format %{ "CALL   PartialSubtypeCheck\n\tNOP\t# (sets condition codes)" %}
10194  ins_encode( enc_PartialSubtypeCheck() );
10195  ins_pipe(partial_subtype_check_pipe);
10196%}
10197
10198
10199// ============================================================================
10200// inlined locking and unlocking
10201
10202instruct cmpFastLock(flagsRegP pcc, iRegP object, iRegP box, iRegP scratch2, o7RegP scratch ) %{
10203  match(Set pcc (FastLock object box));
10204
10205  effect(KILL scratch, TEMP scratch2);
10206  ins_cost(100);
10207
10208  format %{ "FASTLOCK  $object, $box; KILL $scratch, $scratch2, $box" %}
10209  ins_encode( Fast_Lock(object, box, scratch, scratch2) );
10210  ins_pipe(long_memory_op);
10211%}
10212
10213
10214instruct cmpFastUnlock(flagsRegP pcc, iRegP object, iRegP box, iRegP scratch2, o7RegP scratch ) %{
10215  match(Set pcc (FastUnlock object box));
10216  effect(KILL scratch, TEMP scratch2);
10217  ins_cost(100);
10218
10219  format %{ "FASTUNLOCK  $object, $box; KILL $scratch, $scratch2, $box" %}
10220  ins_encode( Fast_Unlock(object, box, scratch, scratch2) );
10221  ins_pipe(long_memory_op);
10222%}
10223
10224// Count and Base registers are fixed because the allocator cannot
10225// kill unknown registers.  The encodings are generic.
10226instruct clear_array(iRegX cnt, iRegP base, iRegX temp, Universe dummy, flagsReg ccr) %{
10227  match(Set dummy (ClearArray cnt base));
10228  effect(TEMP temp, KILL ccr);
10229  ins_cost(300);
10230  format %{ "MOV    $cnt,$temp\n"
10231    "loop:   SUBcc  $temp,8,$temp\t! Count down a dword of bytes\n"
10232    "        BRge   loop\t\t! Clearing loop\n"
10233    "        STX    G0,[$base+$temp]\t! delay slot" %}
10234  ins_encode( enc_Clear_Array(cnt, base, temp) );
10235  ins_pipe(long_memory_op);
10236%}
10237
10238instruct string_compare(o0RegP str1, o1RegP str2, g3RegI cnt1, g4RegI cnt2, notemp_iRegI result,
10239                        o7RegI tmp, flagsReg ccr) %{
10240  match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
10241  effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL ccr, KILL tmp);
10242  ins_cost(300);
10243  format %{ "String Compare $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp" %}
10244  ins_encode( enc_String_Compare(str1, str2, cnt1, cnt2, result) );
10245  ins_pipe(long_memory_op);
10246%}
10247
10248instruct string_equals(o0RegP str1, o1RegP str2, g3RegI cnt, notemp_iRegI result,
10249                       o7RegI tmp, flagsReg ccr) %{
10250  match(Set result (StrEquals (Binary str1 str2) cnt));
10251  effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt, KILL tmp, KILL ccr);
10252  ins_cost(300);
10253  format %{ "String Equals $str1,$str2,$cnt -> $result   // KILL $tmp" %}
10254  ins_encode( enc_String_Equals(str1, str2, cnt, result) );
10255  ins_pipe(long_memory_op);
10256%}
10257
10258instruct array_equals(o0RegP ary1, o1RegP ary2, g3RegI tmp1, notemp_iRegI result,
10259                      o7RegI tmp2, flagsReg ccr) %{
10260  match(Set result (AryEq ary1 ary2));
10261  effect(USE_KILL ary1, USE_KILL ary2, KILL tmp1, KILL tmp2, KILL ccr);
10262  ins_cost(300);
10263  format %{ "Array Equals $ary1,$ary2 -> $result   // KILL $tmp1,$tmp2" %}
10264  ins_encode( enc_Array_Equals(ary1, ary2, tmp1, result));
10265  ins_pipe(long_memory_op);
10266%}
10267
10268
10269//---------- Zeros Count Instructions ------------------------------------------
10270
10271instruct countLeadingZerosI(iRegI dst, iRegI src, iRegI tmp, flagsReg cr) %{
10272  predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
10273  match(Set dst (CountLeadingZerosI src));
10274  effect(TEMP dst, TEMP tmp, KILL cr);
10275
10276  // x |= (x >> 1);
10277  // x |= (x >> 2);
10278  // x |= (x >> 4);
10279  // x |= (x >> 8);
10280  // x |= (x >> 16);
10281  // return (WORDBITS - popc(x));
10282  format %{ "SRL     $src,1,$tmp\t! count leading zeros (int)\n\t"
10283            "SRL     $src,0,$dst\t! 32-bit zero extend\n\t"
10284            "OR      $dst,$tmp,$dst\n\t"
10285            "SRL     $dst,2,$tmp\n\t"
10286            "OR      $dst,$tmp,$dst\n\t"
10287            "SRL     $dst,4,$tmp\n\t"
10288            "OR      $dst,$tmp,$dst\n\t"
10289            "SRL     $dst,8,$tmp\n\t"
10290            "OR      $dst,$tmp,$dst\n\t"
10291            "SRL     $dst,16,$tmp\n\t"
10292            "OR      $dst,$tmp,$dst\n\t"
10293            "POPC    $dst,$dst\n\t"
10294            "MOV     32,$tmp\n\t"
10295            "SUB     $tmp,$dst,$dst" %}
10296  ins_encode %{
10297    Register Rdst = $dst$$Register;
10298    Register Rsrc = $src$$Register;
10299    Register Rtmp = $tmp$$Register;
10300    __ srl(Rsrc, 1,    Rtmp);
10301    __ srl(Rsrc, 0,    Rdst);
10302    __ or3(Rdst, Rtmp, Rdst);
10303    __ srl(Rdst, 2,    Rtmp);
10304    __ or3(Rdst, Rtmp, Rdst);
10305    __ srl(Rdst, 4,    Rtmp);
10306    __ or3(Rdst, Rtmp, Rdst);
10307    __ srl(Rdst, 8,    Rtmp);
10308    __ or3(Rdst, Rtmp, Rdst);
10309    __ srl(Rdst, 16,   Rtmp);
10310    __ or3(Rdst, Rtmp, Rdst);
10311    __ popc(Rdst, Rdst);
10312    __ mov(BitsPerInt, Rtmp);
10313    __ sub(Rtmp, Rdst, Rdst);
10314  %}
10315  ins_pipe(ialu_reg);
10316%}
10317
10318instruct countLeadingZerosL(iRegIsafe dst, iRegL src, iRegL tmp, flagsReg cr) %{
10319  predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
10320  match(Set dst (CountLeadingZerosL src));
10321  effect(TEMP dst, TEMP tmp, KILL cr);
10322
10323  // x |= (x >> 1);
10324  // x |= (x >> 2);
10325  // x |= (x >> 4);
10326  // x |= (x >> 8);
10327  // x |= (x >> 16);
10328  // x |= (x >> 32);
10329  // return (WORDBITS - popc(x));
10330  format %{ "SRLX    $src,1,$tmp\t! count leading zeros (long)\n\t"
10331            "OR      $src,$tmp,$dst\n\t"
10332            "SRLX    $dst,2,$tmp\n\t"
10333            "OR      $dst,$tmp,$dst\n\t"
10334            "SRLX    $dst,4,$tmp\n\t"
10335            "OR      $dst,$tmp,$dst\n\t"
10336            "SRLX    $dst,8,$tmp\n\t"
10337            "OR      $dst,$tmp,$dst\n\t"
10338            "SRLX    $dst,16,$tmp\n\t"
10339            "OR      $dst,$tmp,$dst\n\t"
10340            "SRLX    $dst,32,$tmp\n\t"
10341            "OR      $dst,$tmp,$dst\n\t"
10342            "POPC    $dst,$dst\n\t"
10343            "MOV     64,$tmp\n\t"
10344            "SUB     $tmp,$dst,$dst" %}
10345  ins_encode %{
10346    Register Rdst = $dst$$Register;
10347    Register Rsrc = $src$$Register;
10348    Register Rtmp = $tmp$$Register;
10349    __ srlx(Rsrc, 1,    Rtmp);
10350    __ or3( Rsrc, Rtmp, Rdst);
10351    __ srlx(Rdst, 2,    Rtmp);
10352    __ or3( Rdst, Rtmp, Rdst);
10353    __ srlx(Rdst, 4,    Rtmp);
10354    __ or3( Rdst, Rtmp, Rdst);
10355    __ srlx(Rdst, 8,    Rtmp);
10356    __ or3( Rdst, Rtmp, Rdst);
10357    __ srlx(Rdst, 16,   Rtmp);
10358    __ or3( Rdst, Rtmp, Rdst);
10359    __ srlx(Rdst, 32,   Rtmp);
10360    __ or3( Rdst, Rtmp, Rdst);
10361    __ popc(Rdst, Rdst);
10362    __ mov(BitsPerLong, Rtmp);
10363    __ sub(Rtmp, Rdst, Rdst);
10364  %}
10365  ins_pipe(ialu_reg);
10366%}
10367
10368instruct countTrailingZerosI(iRegI dst, iRegI src, flagsReg cr) %{
10369  predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
10370  match(Set dst (CountTrailingZerosI src));
10371  effect(TEMP dst, KILL cr);
10372
10373  // return popc(~x & (x - 1));
10374  format %{ "SUB     $src,1,$dst\t! count trailing zeros (int)\n\t"
10375            "ANDN    $dst,$src,$dst\n\t"
10376            "SRL     $dst,R_G0,$dst\n\t"
10377            "POPC    $dst,$dst" %}
10378  ins_encode %{
10379    Register Rdst = $dst$$Register;
10380    Register Rsrc = $src$$Register;
10381    __ sub(Rsrc, 1, Rdst);
10382    __ andn(Rdst, Rsrc, Rdst);
10383    __ srl(Rdst, G0, Rdst);
10384    __ popc(Rdst, Rdst);
10385  %}
10386  ins_pipe(ialu_reg);
10387%}
10388
10389instruct countTrailingZerosL(iRegI dst, iRegL src, flagsReg cr) %{
10390  predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
10391  match(Set dst (CountTrailingZerosL src));
10392  effect(TEMP dst, KILL cr);
10393
10394  // return popc(~x & (x - 1));
10395  format %{ "SUB     $src,1,$dst\t! count trailing zeros (long)\n\t"
10396            "ANDN    $dst,$src,$dst\n\t"
10397            "POPC    $dst,$dst" %}
10398  ins_encode %{
10399    Register Rdst = $dst$$Register;
10400    Register Rsrc = $src$$Register;
10401    __ sub(Rsrc, 1, Rdst);
10402    __ andn(Rdst, Rsrc, Rdst);
10403    __ popc(Rdst, Rdst);
10404  %}
10405  ins_pipe(ialu_reg);
10406%}
10407
10408
10409//---------- Population Count Instructions -------------------------------------
10410
10411instruct popCountI(iRegI dst, iRegI src) %{
10412  predicate(UsePopCountInstruction);
10413  match(Set dst (PopCountI src));
10414
10415  format %{ "POPC   $src, $dst" %}
10416  ins_encode %{
10417    __ popc($src$$Register, $dst$$Register);
10418  %}
10419  ins_pipe(ialu_reg);
10420%}
10421
10422// Note: Long.bitCount(long) returns an int.
10423instruct popCountL(iRegI dst, iRegL src) %{
10424  predicate(UsePopCountInstruction);
10425  match(Set dst (PopCountL src));
10426
10427  format %{ "POPC   $src, $dst" %}
10428  ins_encode %{
10429    __ popc($src$$Register, $dst$$Register);
10430  %}
10431  ins_pipe(ialu_reg);
10432%}
10433
10434
10435// ============================================================================
10436//------------Bytes reverse--------------------------------------------------
10437
10438instruct bytes_reverse_int(iRegI dst, stackSlotI src) %{
10439  match(Set dst (ReverseBytesI src));
10440
10441  // Op cost is artificially doubled to make sure that load or store
10442  // instructions are preferred over this one which requires a spill
10443  // onto a stack slot.
10444  ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
10445  format %{ "LDUWA  $src, $dst\t!asi=primary_little" %}
10446
10447  ins_encode %{
10448    __ set($src$$disp + STACK_BIAS, O7);
10449    __ lduwa($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10450  %}
10451  ins_pipe( iload_mem );
10452%}
10453
10454instruct bytes_reverse_long(iRegL dst, stackSlotL src) %{
10455  match(Set dst (ReverseBytesL src));
10456
10457  // Op cost is artificially doubled to make sure that load or store
10458  // instructions are preferred over this one which requires a spill
10459  // onto a stack slot.
10460  ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
10461  format %{ "LDXA   $src, $dst\t!asi=primary_little" %}
10462
10463  ins_encode %{
10464    __ set($src$$disp + STACK_BIAS, O7);
10465    __ ldxa($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10466  %}
10467  ins_pipe( iload_mem );
10468%}
10469
10470instruct bytes_reverse_unsigned_short(iRegI dst, stackSlotI src) %{
10471  match(Set dst (ReverseBytesUS src));
10472
10473  // Op cost is artificially doubled to make sure that load or store
10474  // instructions are preferred over this one which requires a spill
10475  // onto a stack slot.
10476  ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
10477  format %{ "LDUHA  $src, $dst\t!asi=primary_little\n\t" %}
10478
10479  ins_encode %{
10480    // the value was spilled as an int so bias the load
10481    __ set($src$$disp + STACK_BIAS + 2, O7);
10482    __ lduha($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10483  %}
10484  ins_pipe( iload_mem );
10485%}
10486
10487instruct bytes_reverse_short(iRegI dst, stackSlotI src) %{
10488  match(Set dst (ReverseBytesS src));
10489
10490  // Op cost is artificially doubled to make sure that load or store
10491  // instructions are preferred over this one which requires a spill
10492  // onto a stack slot.
10493  ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
10494  format %{ "LDSHA  $src, $dst\t!asi=primary_little\n\t" %}
10495
10496  ins_encode %{
10497    // the value was spilled as an int so bias the load
10498    __ set($src$$disp + STACK_BIAS + 2, O7);
10499    __ ldsha($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10500  %}
10501  ins_pipe( iload_mem );
10502%}
10503
10504// Load Integer reversed byte order
10505instruct loadI_reversed(iRegI dst, indIndexMemory src) %{
10506  match(Set dst (ReverseBytesI (LoadI src)));
10507
10508  ins_cost(DEFAULT_COST + MEMORY_REF_COST);
10509  size(4);
10510  format %{ "LDUWA  $src, $dst\t!asi=primary_little" %}
10511
10512  ins_encode %{
10513    __ lduwa($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10514  %}
10515  ins_pipe(iload_mem);
10516%}
10517
10518// Load Long - aligned and reversed
10519instruct loadL_reversed(iRegL dst, indIndexMemory src) %{
10520  match(Set dst (ReverseBytesL (LoadL src)));
10521
10522  ins_cost(MEMORY_REF_COST);
10523  size(4);
10524  format %{ "LDXA   $src, $dst\t!asi=primary_little" %}
10525
10526  ins_encode %{
10527    __ ldxa($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10528  %}
10529  ins_pipe(iload_mem);
10530%}
10531
10532// Load unsigned short / char reversed byte order
10533instruct loadUS_reversed(iRegI dst, indIndexMemory src) %{
10534  match(Set dst (ReverseBytesUS (LoadUS src)));
10535
10536  ins_cost(MEMORY_REF_COST);
10537  size(4);
10538  format %{ "LDUHA  $src, $dst\t!asi=primary_little" %}
10539
10540  ins_encode %{
10541    __ lduha($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10542  %}
10543  ins_pipe(iload_mem);
10544%}
10545
10546// Load short reversed byte order
10547instruct loadS_reversed(iRegI dst, indIndexMemory src) %{
10548  match(Set dst (ReverseBytesS (LoadS src)));
10549
10550  ins_cost(MEMORY_REF_COST);
10551  size(4);
10552  format %{ "LDSHA  $src, $dst\t!asi=primary_little" %}
10553
10554  ins_encode %{
10555    __ ldsha($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10556  %}
10557  ins_pipe(iload_mem);
10558%}
10559
10560// Store Integer reversed byte order
10561instruct storeI_reversed(indIndexMemory dst, iRegI src) %{
10562  match(Set dst (StoreI dst (ReverseBytesI src)));
10563
10564  ins_cost(MEMORY_REF_COST);
10565  size(4);
10566  format %{ "STWA   $src, $dst\t!asi=primary_little" %}
10567
10568  ins_encode %{
10569    __ stwa($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
10570  %}
10571  ins_pipe(istore_mem_reg);
10572%}
10573
10574// Store Long reversed byte order
10575instruct storeL_reversed(indIndexMemory dst, iRegL src) %{
10576  match(Set dst (StoreL dst (ReverseBytesL src)));
10577
10578  ins_cost(MEMORY_REF_COST);
10579  size(4);
10580  format %{ "STXA   $src, $dst\t!asi=primary_little" %}
10581
10582  ins_encode %{
10583    __ stxa($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
10584  %}
10585  ins_pipe(istore_mem_reg);
10586%}
10587
10588// Store unsighed short/char reversed byte order
10589instruct storeUS_reversed(indIndexMemory dst, iRegI src) %{
10590  match(Set dst (StoreC dst (ReverseBytesUS src)));
10591
10592  ins_cost(MEMORY_REF_COST);
10593  size(4);
10594  format %{ "STHA   $src, $dst\t!asi=primary_little" %}
10595
10596  ins_encode %{
10597    __ stha($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
10598  %}
10599  ins_pipe(istore_mem_reg);
10600%}
10601
10602// Store short reversed byte order
10603instruct storeS_reversed(indIndexMemory dst, iRegI src) %{
10604  match(Set dst (StoreC dst (ReverseBytesS src)));
10605
10606  ins_cost(MEMORY_REF_COST);
10607  size(4);
10608  format %{ "STHA   $src, $dst\t!asi=primary_little" %}
10609
10610  ins_encode %{
10611    __ stha($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
10612  %}
10613  ins_pipe(istore_mem_reg);
10614%}
10615
10616//----------PEEPHOLE RULES-----------------------------------------------------
10617// These must follow all instruction definitions as they use the names
10618// defined in the instructions definitions.
10619//
10620// peepmatch ( root_instr_name [preceding_instruction]* );
10621//
10622// peepconstraint %{
10623// (instruction_number.operand_name relational_op instruction_number.operand_name
10624//  [, ...] );
10625// // instruction numbers are zero-based using left to right order in peepmatch
10626//
10627// peepreplace ( instr_name  ( [instruction_number.operand_name]* ) );
10628// // provide an instruction_number.operand_name for each operand that appears
10629// // in the replacement instruction's match rule
10630//
10631// ---------VM FLAGS---------------------------------------------------------
10632//
10633// All peephole optimizations can be turned off using -XX:-OptoPeephole
10634//
10635// Each peephole rule is given an identifying number starting with zero and
10636// increasing by one in the order seen by the parser.  An individual peephole
10637// can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
10638// on the command-line.
10639//
10640// ---------CURRENT LIMITATIONS----------------------------------------------
10641//
10642// Only match adjacent instructions in same basic block
10643// Only equality constraints
10644// Only constraints between operands, not (0.dest_reg == EAX_enc)
10645// Only one replacement instruction
10646//
10647// ---------EXAMPLE----------------------------------------------------------
10648//
10649// // pertinent parts of existing instructions in architecture description
10650// instruct movI(eRegI dst, eRegI src) %{
10651//   match(Set dst (CopyI src));
10652// %}
10653//
10654// instruct incI_eReg(eRegI dst, immI1 src, eFlagsReg cr) %{
10655//   match(Set dst (AddI dst src));
10656//   effect(KILL cr);
10657// %}
10658//
10659// // Change (inc mov) to lea
10660// peephole %{
10661//   // increment preceeded by register-register move
10662//   peepmatch ( incI_eReg movI );
10663//   // require that the destination register of the increment
10664//   // match the destination register of the move
10665//   peepconstraint ( 0.dst == 1.dst );
10666//   // construct a replacement instruction that sets
10667//   // the destination to ( move's source register + one )
10668//   peepreplace ( incI_eReg_immI1( 0.dst 1.src 0.src ) );
10669// %}
10670//
10671
10672// // Change load of spilled value to only a spill
10673// instruct storeI(memory mem, eRegI src) %{
10674//   match(Set mem (StoreI mem src));
10675// %}
10676//
10677// instruct loadI(eRegI dst, memory mem) %{
10678//   match(Set dst (LoadI mem));
10679// %}
10680//
10681// peephole %{
10682//   peepmatch ( loadI storeI );
10683//   peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem );
10684//   peepreplace ( storeI( 1.mem 1.mem 1.src ) );
10685// %}
10686
10687//----------SMARTSPILL RULES---------------------------------------------------
10688// These must follow all instruction definitions as they use the names
10689// defined in the instructions definitions.
10690//
10691// SPARC will probably not have any of these rules due to RISC instruction set.
10692
10693//----------PIPELINE-----------------------------------------------------------
10694// Rules which define the behavior of the target architectures pipeline.
10695