sparc.ad revision 113:ba764ed4b6f2
1//
2// Copyright 1998-2007 Sun Microsystems, Inc.  All Rights Reserved.
3// DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4//
5// This code is free software; you can redistribute it and/or modify it
6// under the terms of the GNU General Public License version 2 only, as
7// published by the Free Software Foundation.
8//
9// This code is distributed in the hope that it will be useful, but WITHOUT
10// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11// FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12// version 2 for more details (a copy is included in the LICENSE file that
13// accompanied this code).
14//
15// You should have received a copy of the GNU General Public License version
16// 2 along with this work; if not, write to the Free Software Foundation,
17// Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18//
19// Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20// CA 95054 USA or visit www.sun.com if you need additional information or
21// have any questions.
22//
23//
24
25// SPARC Architecture Description File
26
27//----------REGISTER DEFINITION BLOCK------------------------------------------
28// This information is used by the matcher and the register allocator to
29// describe individual registers and classes of registers within the target
30// archtecture.
31register %{
32//----------Architecture Description Register Definitions----------------------
33// General Registers
34// "reg_def"  name ( register save type, C convention save type,
35//                   ideal register type, encoding, vm name );
36// Register Save Types:
37//
38// NS  = No-Save:       The register allocator assumes that these registers
39//                      can be used without saving upon entry to the method, &
40//                      that they do not need to be saved at call sites.
41//
42// SOC = Save-On-Call:  The register allocator assumes that these registers
43//                      can be used without saving upon entry to the method,
44//                      but that they must be saved at call sites.
45//
46// SOE = Save-On-Entry: The register allocator assumes that these registers
47//                      must be saved before using them upon entry to the
48//                      method, but they do not need to be saved at call
49//                      sites.
50//
51// AS  = Always-Save:   The register allocator assumes that these registers
52//                      must be saved before using them upon entry to the
53//                      method, & that they must be saved at call sites.
54//
55// Ideal Register Type is used to determine how to save & restore a
56// register.  Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
57// spilled with LoadP/StoreP.  If the register supports both, use Op_RegI.
58//
59// The encoding number is the actual bit-pattern placed into the opcodes.
60
61
62// ----------------------------
63// Integer/Long Registers
64// ----------------------------
65
66// Need to expose the hi/lo aspect of 64-bit registers
67// This register set is used for both the 64-bit build and
68// the 32-bit build with 1-register longs.
69
70// Global Registers 0-7
71reg_def R_G0H( NS,  NS, Op_RegI,128, G0->as_VMReg()->next());
72reg_def R_G0 ( NS,  NS, Op_RegI,  0, G0->as_VMReg());
73reg_def R_G1H(SOC, SOC, Op_RegI,129, G1->as_VMReg()->next());
74reg_def R_G1 (SOC, SOC, Op_RegI,  1, G1->as_VMReg());
75reg_def R_G2H( NS,  NS, Op_RegI,130, G2->as_VMReg()->next());
76reg_def R_G2 ( NS,  NS, Op_RegI,  2, G2->as_VMReg());
77reg_def R_G3H(SOC, SOC, Op_RegI,131, G3->as_VMReg()->next());
78reg_def R_G3 (SOC, SOC, Op_RegI,  3, G3->as_VMReg());
79reg_def R_G4H(SOC, SOC, Op_RegI,132, G4->as_VMReg()->next());
80reg_def R_G4 (SOC, SOC, Op_RegI,  4, G4->as_VMReg());
81reg_def R_G5H(SOC, SOC, Op_RegI,133, G5->as_VMReg()->next());
82reg_def R_G5 (SOC, SOC, Op_RegI,  5, G5->as_VMReg());
83reg_def R_G6H( NS,  NS, Op_RegI,134, G6->as_VMReg()->next());
84reg_def R_G6 ( NS,  NS, Op_RegI,  6, G6->as_VMReg());
85reg_def R_G7H( NS,  NS, Op_RegI,135, G7->as_VMReg()->next());
86reg_def R_G7 ( NS,  NS, Op_RegI,  7, G7->as_VMReg());
87
88// Output Registers 0-7
89reg_def R_O0H(SOC, SOC, Op_RegI,136, O0->as_VMReg()->next());
90reg_def R_O0 (SOC, SOC, Op_RegI,  8, O0->as_VMReg());
91reg_def R_O1H(SOC, SOC, Op_RegI,137, O1->as_VMReg()->next());
92reg_def R_O1 (SOC, SOC, Op_RegI,  9, O1->as_VMReg());
93reg_def R_O2H(SOC, SOC, Op_RegI,138, O2->as_VMReg()->next());
94reg_def R_O2 (SOC, SOC, Op_RegI, 10, O2->as_VMReg());
95reg_def R_O3H(SOC, SOC, Op_RegI,139, O3->as_VMReg()->next());
96reg_def R_O3 (SOC, SOC, Op_RegI, 11, O3->as_VMReg());
97reg_def R_O4H(SOC, SOC, Op_RegI,140, O4->as_VMReg()->next());
98reg_def R_O4 (SOC, SOC, Op_RegI, 12, O4->as_VMReg());
99reg_def R_O5H(SOC, SOC, Op_RegI,141, O5->as_VMReg()->next());
100reg_def R_O5 (SOC, SOC, Op_RegI, 13, O5->as_VMReg());
101reg_def R_SPH( NS,  NS, Op_RegI,142, SP->as_VMReg()->next());
102reg_def R_SP ( NS,  NS, Op_RegI, 14, SP->as_VMReg());
103reg_def R_O7H(SOC, SOC, Op_RegI,143, O7->as_VMReg()->next());
104reg_def R_O7 (SOC, SOC, Op_RegI, 15, O7->as_VMReg());
105
106// Local Registers 0-7
107reg_def R_L0H( NS,  NS, Op_RegI,144, L0->as_VMReg()->next());
108reg_def R_L0 ( NS,  NS, Op_RegI, 16, L0->as_VMReg());
109reg_def R_L1H( NS,  NS, Op_RegI,145, L1->as_VMReg()->next());
110reg_def R_L1 ( NS,  NS, Op_RegI, 17, L1->as_VMReg());
111reg_def R_L2H( NS,  NS, Op_RegI,146, L2->as_VMReg()->next());
112reg_def R_L2 ( NS,  NS, Op_RegI, 18, L2->as_VMReg());
113reg_def R_L3H( NS,  NS, Op_RegI,147, L3->as_VMReg()->next());
114reg_def R_L3 ( NS,  NS, Op_RegI, 19, L3->as_VMReg());
115reg_def R_L4H( NS,  NS, Op_RegI,148, L4->as_VMReg()->next());
116reg_def R_L4 ( NS,  NS, Op_RegI, 20, L4->as_VMReg());
117reg_def R_L5H( NS,  NS, Op_RegI,149, L5->as_VMReg()->next());
118reg_def R_L5 ( NS,  NS, Op_RegI, 21, L5->as_VMReg());
119reg_def R_L6H( NS,  NS, Op_RegI,150, L6->as_VMReg()->next());
120reg_def R_L6 ( NS,  NS, Op_RegI, 22, L6->as_VMReg());
121reg_def R_L7H( NS,  NS, Op_RegI,151, L7->as_VMReg()->next());
122reg_def R_L7 ( NS,  NS, Op_RegI, 23, L7->as_VMReg());
123
124// Input Registers 0-7
125reg_def R_I0H( NS,  NS, Op_RegI,152, I0->as_VMReg()->next());
126reg_def R_I0 ( NS,  NS, Op_RegI, 24, I0->as_VMReg());
127reg_def R_I1H( NS,  NS, Op_RegI,153, I1->as_VMReg()->next());
128reg_def R_I1 ( NS,  NS, Op_RegI, 25, I1->as_VMReg());
129reg_def R_I2H( NS,  NS, Op_RegI,154, I2->as_VMReg()->next());
130reg_def R_I2 ( NS,  NS, Op_RegI, 26, I2->as_VMReg());
131reg_def R_I3H( NS,  NS, Op_RegI,155, I3->as_VMReg()->next());
132reg_def R_I3 ( NS,  NS, Op_RegI, 27, I3->as_VMReg());
133reg_def R_I4H( NS,  NS, Op_RegI,156, I4->as_VMReg()->next());
134reg_def R_I4 ( NS,  NS, Op_RegI, 28, I4->as_VMReg());
135reg_def R_I5H( NS,  NS, Op_RegI,157, I5->as_VMReg()->next());
136reg_def R_I5 ( NS,  NS, Op_RegI, 29, I5->as_VMReg());
137reg_def R_FPH( NS,  NS, Op_RegI,158, FP->as_VMReg()->next());
138reg_def R_FP ( NS,  NS, Op_RegI, 30, FP->as_VMReg());
139reg_def R_I7H( NS,  NS, Op_RegI,159, I7->as_VMReg()->next());
140reg_def R_I7 ( NS,  NS, Op_RegI, 31, I7->as_VMReg());
141
142// ----------------------------
143// Float/Double Registers
144// ----------------------------
145
146// Float Registers
147reg_def R_F0 ( SOC, SOC, Op_RegF,  0, F0->as_VMReg());
148reg_def R_F1 ( SOC, SOC, Op_RegF,  1, F1->as_VMReg());
149reg_def R_F2 ( SOC, SOC, Op_RegF,  2, F2->as_VMReg());
150reg_def R_F3 ( SOC, SOC, Op_RegF,  3, F3->as_VMReg());
151reg_def R_F4 ( SOC, SOC, Op_RegF,  4, F4->as_VMReg());
152reg_def R_F5 ( SOC, SOC, Op_RegF,  5, F5->as_VMReg());
153reg_def R_F6 ( SOC, SOC, Op_RegF,  6, F6->as_VMReg());
154reg_def R_F7 ( SOC, SOC, Op_RegF,  7, F7->as_VMReg());
155reg_def R_F8 ( SOC, SOC, Op_RegF,  8, F8->as_VMReg());
156reg_def R_F9 ( SOC, SOC, Op_RegF,  9, F9->as_VMReg());
157reg_def R_F10( SOC, SOC, Op_RegF, 10, F10->as_VMReg());
158reg_def R_F11( SOC, SOC, Op_RegF, 11, F11->as_VMReg());
159reg_def R_F12( SOC, SOC, Op_RegF, 12, F12->as_VMReg());
160reg_def R_F13( SOC, SOC, Op_RegF, 13, F13->as_VMReg());
161reg_def R_F14( SOC, SOC, Op_RegF, 14, F14->as_VMReg());
162reg_def R_F15( SOC, SOC, Op_RegF, 15, F15->as_VMReg());
163reg_def R_F16( SOC, SOC, Op_RegF, 16, F16->as_VMReg());
164reg_def R_F17( SOC, SOC, Op_RegF, 17, F17->as_VMReg());
165reg_def R_F18( SOC, SOC, Op_RegF, 18, F18->as_VMReg());
166reg_def R_F19( SOC, SOC, Op_RegF, 19, F19->as_VMReg());
167reg_def R_F20( SOC, SOC, Op_RegF, 20, F20->as_VMReg());
168reg_def R_F21( SOC, SOC, Op_RegF, 21, F21->as_VMReg());
169reg_def R_F22( SOC, SOC, Op_RegF, 22, F22->as_VMReg());
170reg_def R_F23( SOC, SOC, Op_RegF, 23, F23->as_VMReg());
171reg_def R_F24( SOC, SOC, Op_RegF, 24, F24->as_VMReg());
172reg_def R_F25( SOC, SOC, Op_RegF, 25, F25->as_VMReg());
173reg_def R_F26( SOC, SOC, Op_RegF, 26, F26->as_VMReg());
174reg_def R_F27( SOC, SOC, Op_RegF, 27, F27->as_VMReg());
175reg_def R_F28( SOC, SOC, Op_RegF, 28, F28->as_VMReg());
176reg_def R_F29( SOC, SOC, Op_RegF, 29, F29->as_VMReg());
177reg_def R_F30( SOC, SOC, Op_RegF, 30, F30->as_VMReg());
178reg_def R_F31( SOC, SOC, Op_RegF, 31, F31->as_VMReg());
179
180// Double Registers
181// The rules of ADL require that double registers be defined in pairs.
182// Each pair must be two 32-bit values, but not necessarily a pair of
183// single float registers.  In each pair, ADLC-assigned register numbers
184// must be adjacent, with the lower number even.  Finally, when the
185// CPU stores such a register pair to memory, the word associated with
186// the lower ADLC-assigned number must be stored to the lower address.
187
188// These definitions specify the actual bit encodings of the sparc
189// double fp register numbers.  FloatRegisterImpl in register_sparc.hpp
190// wants 0-63, so we have to convert every time we want to use fp regs
191// with the macroassembler, using reg_to_DoubleFloatRegister_object().
192// 255 is a flag meaning 'dont go here'.
193// I believe we can't handle callee-save doubles D32 and up until
194// the place in the sparc stack crawler that asserts on the 255 is
195// fixed up.
196reg_def R_D32x(SOC, SOC, Op_RegD,255, F32->as_VMReg());
197reg_def R_D32 (SOC, SOC, Op_RegD,  1, F32->as_VMReg()->next());
198reg_def R_D34x(SOC, SOC, Op_RegD,255, F34->as_VMReg());
199reg_def R_D34 (SOC, SOC, Op_RegD,  3, F34->as_VMReg()->next());
200reg_def R_D36x(SOC, SOC, Op_RegD,255, F36->as_VMReg());
201reg_def R_D36 (SOC, SOC, Op_RegD,  5, F36->as_VMReg()->next());
202reg_def R_D38x(SOC, SOC, Op_RegD,255, F38->as_VMReg());
203reg_def R_D38 (SOC, SOC, Op_RegD,  7, F38->as_VMReg()->next());
204reg_def R_D40x(SOC, SOC, Op_RegD,255, F40->as_VMReg());
205reg_def R_D40 (SOC, SOC, Op_RegD,  9, F40->as_VMReg()->next());
206reg_def R_D42x(SOC, SOC, Op_RegD,255, F42->as_VMReg());
207reg_def R_D42 (SOC, SOC, Op_RegD, 11, F42->as_VMReg()->next());
208reg_def R_D44x(SOC, SOC, Op_RegD,255, F44->as_VMReg());
209reg_def R_D44 (SOC, SOC, Op_RegD, 13, F44->as_VMReg()->next());
210reg_def R_D46x(SOC, SOC, Op_RegD,255, F46->as_VMReg());
211reg_def R_D46 (SOC, SOC, Op_RegD, 15, F46->as_VMReg()->next());
212reg_def R_D48x(SOC, SOC, Op_RegD,255, F48->as_VMReg());
213reg_def R_D48 (SOC, SOC, Op_RegD, 17, F48->as_VMReg()->next());
214reg_def R_D50x(SOC, SOC, Op_RegD,255, F50->as_VMReg());
215reg_def R_D50 (SOC, SOC, Op_RegD, 19, F50->as_VMReg()->next());
216reg_def R_D52x(SOC, SOC, Op_RegD,255, F52->as_VMReg());
217reg_def R_D52 (SOC, SOC, Op_RegD, 21, F52->as_VMReg()->next());
218reg_def R_D54x(SOC, SOC, Op_RegD,255, F54->as_VMReg());
219reg_def R_D54 (SOC, SOC, Op_RegD, 23, F54->as_VMReg()->next());
220reg_def R_D56x(SOC, SOC, Op_RegD,255, F56->as_VMReg());
221reg_def R_D56 (SOC, SOC, Op_RegD, 25, F56->as_VMReg()->next());
222reg_def R_D58x(SOC, SOC, Op_RegD,255, F58->as_VMReg());
223reg_def R_D58 (SOC, SOC, Op_RegD, 27, F58->as_VMReg()->next());
224reg_def R_D60x(SOC, SOC, Op_RegD,255, F60->as_VMReg());
225reg_def R_D60 (SOC, SOC, Op_RegD, 29, F60->as_VMReg()->next());
226reg_def R_D62x(SOC, SOC, Op_RegD,255, F62->as_VMReg());
227reg_def R_D62 (SOC, SOC, Op_RegD, 31, F62->as_VMReg()->next());
228
229
230// ----------------------------
231// Special Registers
232// Condition Codes Flag Registers
233// I tried to break out ICC and XCC but it's not very pretty.
234// Every Sparc instruction which defs/kills one also kills the other.
235// Hence every compare instruction which defs one kind of flags ends
236// up needing a kill of the other.
237reg_def CCR (SOC, SOC,  Op_RegFlags, 0, VMRegImpl::Bad());
238
239reg_def FCC0(SOC, SOC,  Op_RegFlags, 0, VMRegImpl::Bad());
240reg_def FCC1(SOC, SOC,  Op_RegFlags, 1, VMRegImpl::Bad());
241reg_def FCC2(SOC, SOC,  Op_RegFlags, 2, VMRegImpl::Bad());
242reg_def FCC3(SOC, SOC,  Op_RegFlags, 3, VMRegImpl::Bad());
243
244// ----------------------------
245// Specify the enum values for the registers.  These enums are only used by the
246// OptoReg "class". We can convert these enum values at will to VMReg when needed
247// for visibility to the rest of the vm. The order of this enum influences the
248// register allocator so having the freedom to set this order and not be stuck
249// with the order that is natural for the rest of the vm is worth it.
250alloc_class chunk0(
251  R_L0,R_L0H, R_L1,R_L1H, R_L2,R_L2H, R_L3,R_L3H, R_L4,R_L4H, R_L5,R_L5H, R_L6,R_L6H, R_L7,R_L7H,
252  R_G0,R_G0H, R_G1,R_G1H, R_G2,R_G2H, R_G3,R_G3H, R_G4,R_G4H, R_G5,R_G5H, R_G6,R_G6H, R_G7,R_G7H,
253  R_O7,R_O7H, R_SP,R_SPH, R_O0,R_O0H, R_O1,R_O1H, R_O2,R_O2H, R_O3,R_O3H, R_O4,R_O4H, R_O5,R_O5H,
254  R_I0,R_I0H, R_I1,R_I1H, R_I2,R_I2H, R_I3,R_I3H, R_I4,R_I4H, R_I5,R_I5H, R_FP,R_FPH, R_I7,R_I7H);
255
256// Note that a register is not allocatable unless it is also mentioned
257// in a widely-used reg_class below.  Thus, R_G7 and R_G0 are outside i_reg.
258
259alloc_class chunk1(
260  // The first registers listed here are those most likely to be used
261  // as temporaries.  We move F0..F7 away from the front of the list,
262  // to reduce the likelihood of interferences with parameters and
263  // return values.  Likewise, we avoid using F0/F1 for parameters,
264  // since they are used for return values.
265  // This FPU fine-tuning is worth about 1% on the SPEC geomean.
266  R_F8 ,R_F9 ,R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
267  R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,
268  R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,R_F30,R_F31,
269  R_F0 ,R_F1 ,R_F2 ,R_F3 ,R_F4 ,R_F5 ,R_F6 ,R_F7 , // used for arguments and return values
270  R_D32,R_D32x,R_D34,R_D34x,R_D36,R_D36x,R_D38,R_D38x,
271  R_D40,R_D40x,R_D42,R_D42x,R_D44,R_D44x,R_D46,R_D46x,
272  R_D48,R_D48x,R_D50,R_D50x,R_D52,R_D52x,R_D54,R_D54x,
273  R_D56,R_D56x,R_D58,R_D58x,R_D60,R_D60x,R_D62,R_D62x);
274
275alloc_class chunk2(CCR, FCC0, FCC1, FCC2, FCC3);
276
277//----------Architecture Description Register Classes--------------------------
278// Several register classes are automatically defined based upon information in
279// this architecture description.
280// 1) reg_class inline_cache_reg           ( as defined in frame section )
281// 2) reg_class interpreter_method_oop_reg ( as defined in frame section )
282// 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
283//
284
285// G0 is not included in integer class since it has special meaning.
286reg_class g0_reg(R_G0);
287
288// ----------------------------
289// Integer Register Classes
290// ----------------------------
291// Exclusions from i_reg:
292// R_G0: hardwired zero
293// R_G2: reserved by HotSpot to the TLS register (invariant within Java)
294// R_G6: reserved by Solaris ABI to tools
295// R_G7: reserved by Solaris ABI to libthread
296// R_O7: Used as a temp in many encodings
297reg_class int_reg(R_G1,R_G3,R_G4,R_G5,R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
298
299// Class for all integer registers, except the G registers.  This is used for
300// encodings which use G registers as temps.  The regular inputs to such
301// instructions use a "notemp_" prefix, as a hack to ensure that the allocator
302// will not put an input into a temp register.
303reg_class notemp_int_reg(R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
304
305reg_class g1_regI(R_G1);
306reg_class g3_regI(R_G3);
307reg_class g4_regI(R_G4);
308reg_class o0_regI(R_O0);
309reg_class o7_regI(R_O7);
310
311// ----------------------------
312// Pointer Register Classes
313// ----------------------------
314#ifdef _LP64
315// 64-bit build means 64-bit pointers means hi/lo pairs
316reg_class ptr_reg(            R_G1H,R_G1,             R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5,
317                  R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5,
318                  R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
319                  R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5 );
320// Lock encodings use G3 and G4 internally
321reg_class lock_ptr_reg(       R_G1H,R_G1,                                     R_G5H,R_G5,
322                  R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5,
323                  R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
324                  R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5 );
325// Special class for storeP instructions, which can store SP or RPC to TLS.
326// It is also used for memory addressing, allowing direct TLS addressing.
327reg_class sp_ptr_reg(         R_G1H,R_G1, R_G2H,R_G2, R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5,
328                  R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5, R_SPH,R_SP,
329                  R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
330                  R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5, R_FPH,R_FP );
331// R_L7 is the lowest-priority callee-save (i.e., NS) register
332// We use it to save R_G2 across calls out of Java.
333reg_class l7_regP(R_L7H,R_L7);
334
335// Other special pointer regs
336reg_class g1_regP(R_G1H,R_G1);
337reg_class g2_regP(R_G2H,R_G2);
338reg_class g3_regP(R_G3H,R_G3);
339reg_class g4_regP(R_G4H,R_G4);
340reg_class g5_regP(R_G5H,R_G5);
341reg_class i0_regP(R_I0H,R_I0);
342reg_class o0_regP(R_O0H,R_O0);
343reg_class o1_regP(R_O1H,R_O1);
344reg_class o2_regP(R_O2H,R_O2);
345reg_class o7_regP(R_O7H,R_O7);
346
347#else // _LP64
348// 32-bit build means 32-bit pointers means 1 register.
349reg_class ptr_reg(     R_G1,     R_G3,R_G4,R_G5,
350                  R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,
351                  R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
352                  R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
353// Lock encodings use G3 and G4 internally
354reg_class lock_ptr_reg(R_G1,               R_G5,
355                  R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,
356                  R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
357                  R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
358// Special class for storeP instructions, which can store SP or RPC to TLS.
359// It is also used for memory addressing, allowing direct TLS addressing.
360reg_class sp_ptr_reg(  R_G1,R_G2,R_G3,R_G4,R_G5,
361                  R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_SP,
362                  R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
363                  R_I0,R_I1,R_I2,R_I3,R_I4,R_I5,R_FP);
364// R_L7 is the lowest-priority callee-save (i.e., NS) register
365// We use it to save R_G2 across calls out of Java.
366reg_class l7_regP(R_L7);
367
368// Other special pointer regs
369reg_class g1_regP(R_G1);
370reg_class g2_regP(R_G2);
371reg_class g3_regP(R_G3);
372reg_class g4_regP(R_G4);
373reg_class g5_regP(R_G5);
374reg_class i0_regP(R_I0);
375reg_class o0_regP(R_O0);
376reg_class o1_regP(R_O1);
377reg_class o2_regP(R_O2);
378reg_class o7_regP(R_O7);
379#endif // _LP64
380
381
382// ----------------------------
383// Long Register Classes
384// ----------------------------
385// Longs in 1 register.  Aligned adjacent hi/lo pairs.
386// Note:  O7 is never in this class; it is sometimes used as an encoding temp.
387reg_class long_reg(             R_G1H,R_G1,             R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5
388                   ,R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5
389#ifdef _LP64
390// 64-bit, longs in 1 register: use all 64-bit integer registers
391// 32-bit, longs in 1 register: cannot use I's and L's.  Restrict to O's and G's.
392                   ,R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7
393                   ,R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5
394#endif // _LP64
395                  );
396
397reg_class g1_regL(R_G1H,R_G1);
398reg_class o2_regL(R_O2H,R_O2);
399reg_class o7_regL(R_O7H,R_O7);
400
401// ----------------------------
402// Special Class for Condition Code Flags Register
403reg_class int_flags(CCR);
404reg_class float_flags(FCC0,FCC1,FCC2,FCC3);
405reg_class float_flag0(FCC0);
406
407
408// ----------------------------
409// Float Point Register Classes
410// ----------------------------
411// Skip F30/F31, they are reserved for mem-mem copies
412reg_class sflt_reg(R_F0,R_F1,R_F2,R_F3,R_F4,R_F5,R_F6,R_F7,R_F8,R_F9,R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29);
413
414// Paired floating point registers--they show up in the same order as the floats,
415// but they are used with the "Op_RegD" type, and always occur in even/odd pairs.
416reg_class dflt_reg(R_F0, R_F1, R_F2, R_F3, R_F4, R_F5, R_F6, R_F7, R_F8, R_F9, R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
417                   R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,
418                   /* Use extra V9 double registers; this AD file does not support V8 */
419                   R_D32,R_D32x,R_D34,R_D34x,R_D36,R_D36x,R_D38,R_D38x,R_D40,R_D40x,R_D42,R_D42x,R_D44,R_D44x,R_D46,R_D46x,
420                   R_D48,R_D48x,R_D50,R_D50x,R_D52,R_D52x,R_D54,R_D54x,R_D56,R_D56x,R_D58,R_D58x,R_D60,R_D60x,R_D62,R_D62x
421                   );
422
423// Paired floating point registers--they show up in the same order as the floats,
424// but they are used with the "Op_RegD" type, and always occur in even/odd pairs.
425// This class is usable for mis-aligned loads as happen in I2C adapters.
426reg_class dflt_low_reg(R_F0, R_F1, R_F2, R_F3, R_F4, R_F5, R_F6, R_F7, R_F8, R_F9, R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
427                   R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,R_F30,R_F31 );
428%}
429
430//----------DEFINITION BLOCK---------------------------------------------------
431// Define name --> value mappings to inform the ADLC of an integer valued name
432// Current support includes integer values in the range [0, 0x7FFFFFFF]
433// Format:
434//        int_def  <name>         ( <int_value>, <expression>);
435// Generated Code in ad_<arch>.hpp
436//        #define  <name>   (<expression>)
437//        // value == <int_value>
438// Generated code in ad_<arch>.cpp adlc_verification()
439//        assert( <name> == <int_value>, "Expect (<expression>) to equal <int_value>");
440//
441definitions %{
442// The default cost (of an ALU instruction).
443  int_def DEFAULT_COST      (    100,     100);
444  int_def HUGE_COST         (1000000, 1000000);
445
446// Memory refs are twice as expensive as run-of-the-mill.
447  int_def MEMORY_REF_COST   (    200, DEFAULT_COST * 2);
448
449// Branches are even more expensive.
450  int_def BRANCH_COST       (    300, DEFAULT_COST * 3);
451  int_def CALL_COST         (    300, DEFAULT_COST * 3);
452%}
453
454
455//----------SOURCE BLOCK-------------------------------------------------------
456// This is a block of C++ code which provides values, functions, and
457// definitions necessary in the rest of the architecture description
458source_hpp %{
459// Must be visible to the DFA in dfa_sparc.cpp
460extern bool can_branch_register( Node *bol, Node *cmp );
461
462// Macros to extract hi & lo halves from a long pair.
463// G0 is not part of any long pair, so assert on that.
464// Prevents accidently using G1 instead of G0.
465#define LONG_HI_REG(x) (x)
466#define LONG_LO_REG(x) (x)
467
468%}
469
470source %{
471#define __ _masm.
472
473// tertiary op of a LoadP or StoreP encoding
474#define REGP_OP true
475
476static FloatRegister reg_to_SingleFloatRegister_object(int register_encoding);
477static FloatRegister reg_to_DoubleFloatRegister_object(int register_encoding);
478static Register reg_to_register_object(int register_encoding);
479
480// Used by the DFA in dfa_sparc.cpp.
481// Check for being able to use a V9 branch-on-register.  Requires a
482// compare-vs-zero, equal/not-equal, of a value which was zero- or sign-
483// extended.  Doesn't work following an integer ADD, for example, because of
484// overflow (-1 incremented yields 0 plus a carry in the high-order word).  On
485// 32-bit V9 systems, interrupts currently blow away the high-order 32 bits and
486// replace them with zero, which could become sign-extension in a different OS
487// release.  There's no obvious reason why an interrupt will ever fill these
488// bits with non-zero junk (the registers are reloaded with standard LD
489// instructions which either zero-fill or sign-fill).
490bool can_branch_register( Node *bol, Node *cmp ) {
491  if( !BranchOnRegister ) return false;
492#ifdef _LP64
493  if( cmp->Opcode() == Op_CmpP )
494    return true;  // No problems with pointer compares
495#endif
496  if( cmp->Opcode() == Op_CmpL )
497    return true;  // No problems with long compares
498
499  if( !SparcV9RegsHiBitsZero ) return false;
500  if( bol->as_Bool()->_test._test != BoolTest::ne &&
501      bol->as_Bool()->_test._test != BoolTest::eq )
502     return false;
503
504  // Check for comparing against a 'safe' value.  Any operation which
505  // clears out the high word is safe.  Thus, loads and certain shifts
506  // are safe, as are non-negative constants.  Any operation which
507  // preserves zero bits in the high word is safe as long as each of its
508  // inputs are safe.  Thus, phis and bitwise booleans are safe if their
509  // inputs are safe.  At present, the only important case to recognize
510  // seems to be loads.  Constants should fold away, and shifts &
511  // logicals can use the 'cc' forms.
512  Node *x = cmp->in(1);
513  if( x->is_Load() ) return true;
514  if( x->is_Phi() ) {
515    for( uint i = 1; i < x->req(); i++ )
516      if( !x->in(i)->is_Load() )
517        return false;
518    return true;
519  }
520  return false;
521}
522
523// ****************************************************************************
524
525// REQUIRED FUNCTIONALITY
526
527// !!!!! Special hack to get all type of calls to specify the byte offset
528//       from the start of the call to the point where the return address
529//       will point.
530//       The "return address" is the address of the call instruction, plus 8.
531
532int MachCallStaticJavaNode::ret_addr_offset() {
533  return NativeCall::instruction_size;  // call; delay slot
534}
535
536int MachCallDynamicJavaNode::ret_addr_offset() {
537  int vtable_index = this->_vtable_index;
538  if (vtable_index < 0) {
539    // must be invalid_vtable_index, not nonvirtual_vtable_index
540    assert(vtable_index == methodOopDesc::invalid_vtable_index, "correct sentinel value");
541    return (NativeMovConstReg::instruction_size +
542           NativeCall::instruction_size);  // sethi; setlo; call; delay slot
543  } else {
544    assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
545    int entry_offset = instanceKlass::vtable_start_offset() + vtable_index*vtableEntry::size();
546    int v_off = entry_offset*wordSize + vtableEntry::method_offset_in_bytes();
547    int klass_load_size;
548    if (UseCompressedOops) {
549      klass_load_size = 3*BytesPerInstWord; // see MacroAssembler::load_klass()
550    } else {
551      klass_load_size = 1*BytesPerInstWord;
552    }
553    if( Assembler::is_simm13(v_off) ) {
554      return klass_load_size +
555             (2*BytesPerInstWord +           // ld_ptr, ld_ptr
556             NativeCall::instruction_size);  // call; delay slot
557    } else {
558      return klass_load_size +
559             (4*BytesPerInstWord +           // set_hi, set, ld_ptr, ld_ptr
560             NativeCall::instruction_size);  // call; delay slot
561    }
562  }
563}
564
565int MachCallRuntimeNode::ret_addr_offset() {
566#ifdef _LP64
567  return NativeFarCall::instruction_size;  // farcall; delay slot
568#else
569  return NativeCall::instruction_size;  // call; delay slot
570#endif
571}
572
573// Indicate if the safepoint node needs the polling page as an input.
574// Since Sparc does not have absolute addressing, it does.
575bool SafePointNode::needs_polling_address_input() {
576  return true;
577}
578
579// emit an interrupt that is caught by the debugger (for debugging compiler)
580void emit_break(CodeBuffer &cbuf) {
581  MacroAssembler _masm(&cbuf);
582  __ breakpoint_trap();
583}
584
585#ifndef PRODUCT
586void MachBreakpointNode::format( PhaseRegAlloc *, outputStream *st ) const {
587  st->print("TA");
588}
589#endif
590
591void MachBreakpointNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
592  emit_break(cbuf);
593}
594
595uint MachBreakpointNode::size(PhaseRegAlloc *ra_) const {
596  return MachNode::size(ra_);
597}
598
599// Traceable jump
600void  emit_jmpl(CodeBuffer &cbuf, int jump_target) {
601  MacroAssembler _masm(&cbuf);
602  Register rdest = reg_to_register_object(jump_target);
603  __ JMP(rdest, 0);
604  __ delayed()->nop();
605}
606
607// Traceable jump and set exception pc
608void  emit_jmpl_set_exception_pc(CodeBuffer &cbuf, int jump_target) {
609  MacroAssembler _masm(&cbuf);
610  Register rdest = reg_to_register_object(jump_target);
611  __ JMP(rdest, 0);
612  __ delayed()->add(O7, frame::pc_return_offset, Oissuing_pc );
613}
614
615void emit_nop(CodeBuffer &cbuf) {
616  MacroAssembler _masm(&cbuf);
617  __ nop();
618}
619
620void emit_illtrap(CodeBuffer &cbuf) {
621  MacroAssembler _masm(&cbuf);
622  __ illtrap(0);
623}
624
625
626intptr_t get_offset_from_base(const MachNode* n, const TypePtr* atype, int disp32) {
627  assert(n->rule() != loadUB_rule, "");
628
629  intptr_t offset = 0;
630  const TypePtr *adr_type = TYPE_PTR_SENTINAL;  // Check for base==RegI, disp==immP
631  const Node* addr = n->get_base_and_disp(offset, adr_type);
632  assert(adr_type == (const TypePtr*)-1, "VerifyOops: no support for sparc operands with base==RegI, disp==immP");
633  assert(addr != NULL && addr != (Node*)-1, "invalid addr");
634  assert(addr->bottom_type()->isa_oopptr() == atype, "");
635  atype = atype->add_offset(offset);
636  assert(disp32 == offset, "wrong disp32");
637  return atype->_offset;
638}
639
640
641intptr_t get_offset_from_base_2(const MachNode* n, const TypePtr* atype, int disp32) {
642  assert(n->rule() != loadUB_rule, "");
643
644  intptr_t offset = 0;
645  Node* addr = n->in(2);
646  assert(addr->bottom_type()->isa_oopptr() == atype, "");
647  if (addr->is_Mach() && addr->as_Mach()->ideal_Opcode() == Op_AddP) {
648    Node* a = addr->in(2/*AddPNode::Address*/);
649    Node* o = addr->in(3/*AddPNode::Offset*/);
650    offset = o->is_Con() ? o->bottom_type()->is_intptr_t()->get_con() : Type::OffsetBot;
651    atype = a->bottom_type()->is_ptr()->add_offset(offset);
652    assert(atype->isa_oop_ptr(), "still an oop");
653  }
654  offset = atype->is_ptr()->_offset;
655  if (offset != Type::OffsetBot)  offset += disp32;
656  return offset;
657}
658
659// Standard Sparc opcode form2 field breakdown
660static inline void emit2_19(CodeBuffer &cbuf, int f30, int f29, int f25, int f22, int f20, int f19, int f0 ) {
661  f0 &= (1<<19)-1;     // Mask displacement to 19 bits
662  int op = (f30 << 30) |
663           (f29 << 29) |
664           (f25 << 25) |
665           (f22 << 22) |
666           (f20 << 20) |
667           (f19 << 19) |
668           (f0  <<  0);
669  *((int*)(cbuf.code_end())) = op;
670  cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
671}
672
673// Standard Sparc opcode form2 field breakdown
674static inline void emit2_22(CodeBuffer &cbuf, int f30, int f25, int f22, int f0 ) {
675  f0 >>= 10;           // Drop 10 bits
676  f0 &= (1<<22)-1;     // Mask displacement to 22 bits
677  int op = (f30 << 30) |
678           (f25 << 25) |
679           (f22 << 22) |
680           (f0  <<  0);
681  *((int*)(cbuf.code_end())) = op;
682  cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
683}
684
685// Standard Sparc opcode form3 field breakdown
686static inline void emit3(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int f5, int f0 ) {
687  int op = (f30 << 30) |
688           (f25 << 25) |
689           (f19 << 19) |
690           (f14 << 14) |
691           (f5  <<  5) |
692           (f0  <<  0);
693  *((int*)(cbuf.code_end())) = op;
694  cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
695}
696
697// Standard Sparc opcode form3 field breakdown
698static inline void emit3_simm13(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int simm13 ) {
699  simm13 &= (1<<13)-1; // Mask to 13 bits
700  int op = (f30 << 30) |
701           (f25 << 25) |
702           (f19 << 19) |
703           (f14 << 14) |
704           (1   << 13) | // bit to indicate immediate-mode
705           (simm13<<0);
706  *((int*)(cbuf.code_end())) = op;
707  cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
708}
709
710static inline void emit3_simm10(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int simm10 ) {
711  simm10 &= (1<<10)-1; // Mask to 10 bits
712  emit3_simm13(cbuf,f30,f25,f19,f14,simm10);
713}
714
715#ifdef ASSERT
716// Helper function for VerifyOops in emit_form3_mem_reg
717void verify_oops_warning(const MachNode *n, int ideal_op, int mem_op) {
718  warning("VerifyOops encountered unexpected instruction:");
719  n->dump(2);
720  warning("Instruction has ideal_Opcode==Op_%s and op_ld==Op_%s \n", NodeClassNames[ideal_op], NodeClassNames[mem_op]);
721}
722#endif
723
724
725void emit_form3_mem_reg(CodeBuffer &cbuf, const MachNode* n, int primary, int tertiary,
726                        int src1_enc, int disp32, int src2_enc, int dst_enc) {
727
728#ifdef ASSERT
729  // The following code implements the +VerifyOops feature.
730  // It verifies oop values which are loaded into or stored out of
731  // the current method activation.  +VerifyOops complements techniques
732  // like ScavengeALot, because it eagerly inspects oops in transit,
733  // as they enter or leave the stack, as opposed to ScavengeALot,
734  // which inspects oops "at rest", in the stack or heap, at safepoints.
735  // For this reason, +VerifyOops can sometimes detect bugs very close
736  // to their point of creation.  It can also serve as a cross-check
737  // on the validity of oop maps, when used toegether with ScavengeALot.
738
739  // It would be good to verify oops at other points, especially
740  // when an oop is used as a base pointer for a load or store.
741  // This is presently difficult, because it is hard to know when
742  // a base address is biased or not.  (If we had such information,
743  // it would be easy and useful to make a two-argument version of
744  // verify_oop which unbiases the base, and performs verification.)
745
746  assert((uint)tertiary == 0xFFFFFFFF || tertiary == REGP_OP, "valid tertiary");
747  bool is_verified_oop_base  = false;
748  bool is_verified_oop_load  = false;
749  bool is_verified_oop_store = false;
750  int tmp_enc = -1;
751  if (VerifyOops && src1_enc != R_SP_enc) {
752    // classify the op, mainly for an assert check
753    int st_op = 0, ld_op = 0;
754    switch (primary) {
755    case Assembler::stb_op3:  st_op = Op_StoreB; break;
756    case Assembler::sth_op3:  st_op = Op_StoreC; break;
757    case Assembler::stx_op3:  // may become StoreP or stay StoreI or StoreD0
758    case Assembler::stw_op3:  st_op = Op_StoreI; break;
759    case Assembler::std_op3:  st_op = Op_StoreL; break;
760    case Assembler::stf_op3:  st_op = Op_StoreF; break;
761    case Assembler::stdf_op3: st_op = Op_StoreD; break;
762
763    case Assembler::ldsb_op3: ld_op = Op_LoadB; break;
764    case Assembler::lduh_op3: ld_op = Op_LoadC; break;
765    case Assembler::ldsh_op3: ld_op = Op_LoadS; break;
766    case Assembler::ldx_op3:  // may become LoadP or stay LoadI
767    case Assembler::ldsw_op3: // may become LoadP or stay LoadI
768    case Assembler::lduw_op3: ld_op = Op_LoadI; break;
769    case Assembler::ldd_op3:  ld_op = Op_LoadL; break;
770    case Assembler::ldf_op3:  ld_op = Op_LoadF; break;
771    case Assembler::lddf_op3: ld_op = Op_LoadD; break;
772    case Assembler::ldub_op3: ld_op = Op_LoadB; break;
773    case Assembler::prefetch_op3: ld_op = Op_LoadI; break;
774
775    default: ShouldNotReachHere();
776    }
777    if (tertiary == REGP_OP) {
778      if      (st_op == Op_StoreI)  st_op = Op_StoreP;
779      else if (ld_op == Op_LoadI)   ld_op = Op_LoadP;
780      else                          ShouldNotReachHere();
781      if (st_op) {
782        // a store
783        // inputs are (0:control, 1:memory, 2:address, 3:value)
784        Node* n2 = n->in(3);
785        if (n2 != NULL) {
786          const Type* t = n2->bottom_type();
787          is_verified_oop_store = t->isa_oop_ptr() ? (t->is_ptr()->_offset==0) : false;
788        }
789      } else {
790        // a load
791        const Type* t = n->bottom_type();
792        is_verified_oop_load = t->isa_oop_ptr() ? (t->is_ptr()->_offset==0) : false;
793      }
794    }
795
796    if (ld_op) {
797      // a Load
798      // inputs are (0:control, 1:memory, 2:address)
799      if (!(n->ideal_Opcode()==ld_op)       && // Following are special cases
800          !(n->ideal_Opcode()==Op_LoadLLocked && ld_op==Op_LoadI) &&
801          !(n->ideal_Opcode()==Op_LoadPLocked && ld_op==Op_LoadP) &&
802          !(n->ideal_Opcode()==Op_LoadI     && ld_op==Op_LoadF) &&
803          !(n->ideal_Opcode()==Op_LoadF     && ld_op==Op_LoadI) &&
804          !(n->ideal_Opcode()==Op_LoadRange && ld_op==Op_LoadI) &&
805          !(n->ideal_Opcode()==Op_LoadKlass && ld_op==Op_LoadP) &&
806          !(n->ideal_Opcode()==Op_LoadL     && ld_op==Op_LoadI) &&
807          !(n->ideal_Opcode()==Op_LoadL_unaligned && ld_op==Op_LoadI) &&
808          !(n->ideal_Opcode()==Op_LoadD_unaligned && ld_op==Op_LoadF) &&
809          !(n->ideal_Opcode()==Op_ConvI2F   && ld_op==Op_LoadF) &&
810          !(n->ideal_Opcode()==Op_ConvI2D   && ld_op==Op_LoadF) &&
811          !(n->ideal_Opcode()==Op_PrefetchRead  && ld_op==Op_LoadI) &&
812          !(n->ideal_Opcode()==Op_PrefetchWrite && ld_op==Op_LoadI) &&
813          !(n->rule() == loadUB_rule)) {
814        verify_oops_warning(n, n->ideal_Opcode(), ld_op);
815      }
816    } else if (st_op) {
817      // a Store
818      // inputs are (0:control, 1:memory, 2:address, 3:value)
819      if (!(n->ideal_Opcode()==st_op)    && // Following are special cases
820          !(n->ideal_Opcode()==Op_StoreCM && st_op==Op_StoreB) &&
821          !(n->ideal_Opcode()==Op_StoreI && st_op==Op_StoreF) &&
822          !(n->ideal_Opcode()==Op_StoreF && st_op==Op_StoreI) &&
823          !(n->ideal_Opcode()==Op_StoreL && st_op==Op_StoreI) &&
824          !(n->ideal_Opcode()==Op_StoreD && st_op==Op_StoreI && n->rule() == storeD0_rule)) {
825        verify_oops_warning(n, n->ideal_Opcode(), st_op);
826      }
827    }
828
829    if (src2_enc == R_G0_enc && n->rule() != loadUB_rule && n->ideal_Opcode() != Op_StoreCM ) {
830      Node* addr = n->in(2);
831      if (!(addr->is_Mach() && addr->as_Mach()->ideal_Opcode() == Op_AddP)) {
832        const TypeOopPtr* atype = addr->bottom_type()->isa_instptr();  // %%% oopptr?
833        if (atype != NULL) {
834          intptr_t offset = get_offset_from_base(n, atype, disp32);
835          intptr_t offset_2 = get_offset_from_base_2(n, atype, disp32);
836          if (offset != offset_2) {
837            get_offset_from_base(n, atype, disp32);
838            get_offset_from_base_2(n, atype, disp32);
839          }
840          assert(offset == offset_2, "different offsets");
841          if (offset == disp32) {
842            // we now know that src1 is a true oop pointer
843            is_verified_oop_base = true;
844            if (ld_op && src1_enc == dst_enc && ld_op != Op_LoadF && ld_op != Op_LoadD) {
845              if( primary == Assembler::ldd_op3 ) {
846                is_verified_oop_base = false; // Cannot 'ldd' into O7
847              } else {
848                tmp_enc = dst_enc;
849                dst_enc = R_O7_enc; // Load into O7; preserve source oop
850                assert(src1_enc != dst_enc, "");
851              }
852            }
853          }
854          if (st_op && (( offset == oopDesc::klass_offset_in_bytes())
855                       || offset == oopDesc::mark_offset_in_bytes())) {
856                      // loading the mark should not be allowed either, but
857                      // we don't check this since it conflicts with InlineObjectHash
858                      // usage of LoadINode to get the mark. We could keep the
859                      // check if we create a new LoadMarkNode
860            // but do not verify the object before its header is initialized
861            ShouldNotReachHere();
862          }
863        }
864      }
865    }
866  }
867#endif
868
869  uint instr;
870  instr = (Assembler::ldst_op << 30)
871        | (dst_enc        << 25)
872        | (primary        << 19)
873        | (src1_enc       << 14);
874
875  uint index = src2_enc;
876  int disp = disp32;
877
878  if (src1_enc == R_SP_enc || src1_enc == R_FP_enc)
879    disp += STACK_BIAS;
880
881  // We should have a compiler bailout here rather than a guarantee.
882  // Better yet would be some mechanism to handle variable-size matches correctly.
883  guarantee(Assembler::is_simm13(disp), "Do not match large constant offsets" );
884
885  if( disp == 0 ) {
886    // use reg-reg form
887    // bit 13 is already zero
888    instr |= index;
889  } else {
890    // use reg-imm form
891    instr |= 0x00002000;          // set bit 13 to one
892    instr |= disp & 0x1FFF;
893  }
894
895  uint *code = (uint*)cbuf.code_end();
896  *code = instr;
897  cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
898
899#ifdef ASSERT
900  {
901    MacroAssembler _masm(&cbuf);
902    if (is_verified_oop_base) {
903      __ verify_oop(reg_to_register_object(src1_enc));
904    }
905    if (is_verified_oop_store) {
906      __ verify_oop(reg_to_register_object(dst_enc));
907    }
908    if (tmp_enc != -1) {
909      __ mov(O7, reg_to_register_object(tmp_enc));
910    }
911    if (is_verified_oop_load) {
912      __ verify_oop(reg_to_register_object(dst_enc));
913    }
914  }
915#endif
916}
917
918void emit_form3_mem_reg_asi(CodeBuffer &cbuf, const MachNode* n, int primary, int tertiary,
919                        int src1_enc, int disp32, int src2_enc, int dst_enc, int asi) {
920
921  uint instr;
922  instr = (Assembler::ldst_op << 30)
923        | (dst_enc        << 25)
924        | (primary        << 19)
925        | (src1_enc       << 14);
926
927  int disp = disp32;
928  int index    = src2_enc;
929
930  if (src1_enc == R_SP_enc || src1_enc == R_FP_enc)
931    disp += STACK_BIAS;
932
933  // We should have a compiler bailout here rather than a guarantee.
934  // Better yet would be some mechanism to handle variable-size matches correctly.
935  guarantee(Assembler::is_simm13(disp), "Do not match large constant offsets" );
936
937  if( disp != 0 ) {
938    // use reg-reg form
939    // set src2=R_O7 contains offset
940    index = R_O7_enc;
941    emit3_simm13( cbuf, Assembler::arith_op, index, Assembler::or_op3, 0, disp);
942  }
943  instr |= (asi << 5);
944  instr |= index;
945  uint *code = (uint*)cbuf.code_end();
946  *code = instr;
947  cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
948}
949
950void emit_call_reloc(CodeBuffer &cbuf, intptr_t entry_point, relocInfo::relocType rtype, bool preserve_g2 = false, bool force_far_call = false) {
951  // The method which records debug information at every safepoint
952  // expects the call to be the first instruction in the snippet as
953  // it creates a PcDesc structure which tracks the offset of a call
954  // from the start of the codeBlob. This offset is computed as
955  // code_end() - code_begin() of the code which has been emitted
956  // so far.
957  // In this particular case we have skirted around the problem by
958  // putting the "mov" instruction in the delay slot but the problem
959  // may bite us again at some other point and a cleaner/generic
960  // solution using relocations would be needed.
961  MacroAssembler _masm(&cbuf);
962  __ set_inst_mark();
963
964  // We flush the current window just so that there is a valid stack copy
965  // the fact that the current window becomes active again instantly is
966  // not a problem there is nothing live in it.
967
968#ifdef ASSERT
969  int startpos = __ offset();
970#endif /* ASSERT */
971
972#ifdef _LP64
973  // Calls to the runtime or native may not be reachable from compiled code,
974  // so we generate the far call sequence on 64 bit sparc.
975  // This code sequence is relocatable to any address, even on LP64.
976  if ( force_far_call ) {
977    __ relocate(rtype);
978    Address dest(O7, (address)entry_point);
979    __ jumpl_to(dest, O7);
980  }
981  else
982#endif
983  {
984     __ call((address)entry_point, rtype);
985  }
986
987  if (preserve_g2)   __ delayed()->mov(G2, L7);
988  else __ delayed()->nop();
989
990  if (preserve_g2)   __ mov(L7, G2);
991
992#ifdef ASSERT
993  if (preserve_g2 && (VerifyCompiledCode || VerifyOops)) {
994#ifdef _LP64
995    // Trash argument dump slots.
996    __ set(0xb0b8ac0db0b8ac0d, G1);
997    __ mov(G1, G5);
998    __ stx(G1, SP, STACK_BIAS + 0x80);
999    __ stx(G1, SP, STACK_BIAS + 0x88);
1000    __ stx(G1, SP, STACK_BIAS + 0x90);
1001    __ stx(G1, SP, STACK_BIAS + 0x98);
1002    __ stx(G1, SP, STACK_BIAS + 0xA0);
1003    __ stx(G1, SP, STACK_BIAS + 0xA8);
1004#else // _LP64
1005    // this is also a native call, so smash the first 7 stack locations,
1006    // and the various registers
1007
1008    // Note:  [SP+0x40] is sp[callee_aggregate_return_pointer_sp_offset],
1009    // while [SP+0x44..0x58] are the argument dump slots.
1010    __ set((intptr_t)0xbaadf00d, G1);
1011    __ mov(G1, G5);
1012    __ sllx(G1, 32, G1);
1013    __ or3(G1, G5, G1);
1014    __ mov(G1, G5);
1015    __ stx(G1, SP, 0x40);
1016    __ stx(G1, SP, 0x48);
1017    __ stx(G1, SP, 0x50);
1018    __ stw(G1, SP, 0x58); // Do not trash [SP+0x5C] which is a usable spill slot
1019#endif // _LP64
1020  }
1021#endif /*ASSERT*/
1022}
1023
1024//=============================================================================
1025// REQUIRED FUNCTIONALITY for encoding
1026void emit_lo(CodeBuffer &cbuf, int val) {  }
1027void emit_hi(CodeBuffer &cbuf, int val) {  }
1028
1029void emit_ptr(CodeBuffer &cbuf, intptr_t val, Register reg, bool ForceRelocatable) {
1030  MacroAssembler _masm(&cbuf);
1031  if (ForceRelocatable) {
1032    Address addr(reg, (address)val);
1033    __ sethi(addr, ForceRelocatable);
1034    __ add(addr, reg);
1035  } else {
1036    __ set(val, reg);
1037  }
1038}
1039
1040
1041//=============================================================================
1042
1043#ifndef PRODUCT
1044void MachPrologNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1045  Compile* C = ra_->C;
1046
1047  for (int i = 0; i < OptoPrologueNops; i++) {
1048    st->print_cr("NOP"); st->print("\t");
1049  }
1050
1051  if( VerifyThread ) {
1052    st->print_cr("Verify_Thread"); st->print("\t");
1053  }
1054
1055  size_t framesize = C->frame_slots() << LogBytesPerInt;
1056
1057  // Calls to C2R adapters often do not accept exceptional returns.
1058  // We require that their callers must bang for them.  But be careful, because
1059  // some VM calls (such as call site linkage) can use several kilobytes of
1060  // stack.  But the stack safety zone should account for that.
1061  // See bugs 4446381, 4468289, 4497237.
1062  if (C->need_stack_bang(framesize)) {
1063    st->print_cr("! stack bang"); st->print("\t");
1064  }
1065
1066  if (Assembler::is_simm13(-framesize)) {
1067    st->print   ("SAVE   R_SP,-%d,R_SP",framesize);
1068  } else {
1069    st->print_cr("SETHI  R_SP,hi%%(-%d),R_G3",framesize); st->print("\t");
1070    st->print_cr("ADD    R_G3,lo%%(-%d),R_G3",framesize); st->print("\t");
1071    st->print   ("SAVE   R_SP,R_G3,R_SP");
1072  }
1073
1074}
1075#endif
1076
1077void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1078  Compile* C = ra_->C;
1079  MacroAssembler _masm(&cbuf);
1080
1081  for (int i = 0; i < OptoPrologueNops; i++) {
1082    __ nop();
1083  }
1084
1085  __ verify_thread();
1086
1087  size_t framesize = C->frame_slots() << LogBytesPerInt;
1088  assert(framesize >= 16*wordSize, "must have room for reg. save area");
1089  assert(framesize%(2*wordSize) == 0, "must preserve 2*wordSize alignment");
1090
1091  // Calls to C2R adapters often do not accept exceptional returns.
1092  // We require that their callers must bang for them.  But be careful, because
1093  // some VM calls (such as call site linkage) can use several kilobytes of
1094  // stack.  But the stack safety zone should account for that.
1095  // See bugs 4446381, 4468289, 4497237.
1096  if (C->need_stack_bang(framesize)) {
1097    __ generate_stack_overflow_check(framesize);
1098  }
1099
1100  if (Assembler::is_simm13(-framesize)) {
1101    __ save(SP, -framesize, SP);
1102  } else {
1103    __ sethi(-framesize & ~0x3ff, G3);
1104    __ add(G3, -framesize & 0x3ff, G3);
1105    __ save(SP, G3, SP);
1106  }
1107  C->set_frame_complete( __ offset() );
1108}
1109
1110uint MachPrologNode::size(PhaseRegAlloc *ra_) const {
1111  return MachNode::size(ra_);
1112}
1113
1114int MachPrologNode::reloc() const {
1115  return 10; // a large enough number
1116}
1117
1118//=============================================================================
1119#ifndef PRODUCT
1120void MachEpilogNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1121  Compile* C = ra_->C;
1122
1123  if( do_polling() && ra_->C->is_method_compilation() ) {
1124    st->print("SETHI  #PollAddr,L0\t! Load Polling address\n\t");
1125#ifdef _LP64
1126    st->print("LDX    [L0],G0\t!Poll for Safepointing\n\t");
1127#else
1128    st->print("LDUW   [L0],G0\t!Poll for Safepointing\n\t");
1129#endif
1130  }
1131
1132  if( do_polling() )
1133    st->print("RET\n\t");
1134
1135  st->print("RESTORE");
1136}
1137#endif
1138
1139void MachEpilogNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1140  MacroAssembler _masm(&cbuf);
1141  Compile* C = ra_->C;
1142
1143  __ verify_thread();
1144
1145  // If this does safepoint polling, then do it here
1146  if( do_polling() && ra_->C->is_method_compilation() ) {
1147    Address polling_page(L0, (address)os::get_polling_page());
1148    __ sethi(polling_page, false);
1149    __ relocate(relocInfo::poll_return_type);
1150    __ ld_ptr( L0, 0, G0 );
1151  }
1152
1153  // If this is a return, then stuff the restore in the delay slot
1154  if( do_polling() ) {
1155    __ ret();
1156    __ delayed()->restore();
1157  } else {
1158    __ restore();
1159  }
1160}
1161
1162uint MachEpilogNode::size(PhaseRegAlloc *ra_) const {
1163  return MachNode::size(ra_);
1164}
1165
1166int MachEpilogNode::reloc() const {
1167  return 16; // a large enough number
1168}
1169
1170const Pipeline * MachEpilogNode::pipeline() const {
1171  return MachNode::pipeline_class();
1172}
1173
1174int MachEpilogNode::safepoint_offset() const {
1175  assert( do_polling(), "no return for this epilog node");
1176  return MacroAssembler::size_of_sethi(os::get_polling_page());
1177}
1178
1179//=============================================================================
1180
1181// Figure out which register class each belongs in: rc_int, rc_float, rc_stack
1182enum RC { rc_bad, rc_int, rc_float, rc_stack };
1183static enum RC rc_class( OptoReg::Name reg ) {
1184  if( !OptoReg::is_valid(reg)  ) return rc_bad;
1185  if (OptoReg::is_stack(reg)) return rc_stack;
1186  VMReg r = OptoReg::as_VMReg(reg);
1187  if (r->is_Register()) return rc_int;
1188  assert(r->is_FloatRegister(), "must be");
1189  return rc_float;
1190}
1191
1192static int impl_helper( const MachNode *mach, CodeBuffer *cbuf, PhaseRegAlloc *ra_, bool do_size, bool is_load, int offset, int reg, int opcode, const char *op_str, int size, outputStream* st ) {
1193  if( cbuf ) {
1194    // Better yet would be some mechanism to handle variable-size matches correctly
1195    if (!Assembler::is_simm13(offset + STACK_BIAS)) {
1196      ra_->C->record_method_not_compilable("unable to handle large constant offsets");
1197    } else {
1198      emit_form3_mem_reg(*cbuf, mach, opcode, -1, R_SP_enc, offset, 0, Matcher::_regEncode[reg]);
1199    }
1200  }
1201#ifndef PRODUCT
1202  else if( !do_size ) {
1203    if( size != 0 ) st->print("\n\t");
1204    if( is_load ) st->print("%s   [R_SP + #%d],R_%s\t! spill",op_str,offset,OptoReg::regname(reg));
1205    else          st->print("%s   R_%s,[R_SP + #%d]\t! spill",op_str,OptoReg::regname(reg),offset);
1206  }
1207#endif
1208  return size+4;
1209}
1210
1211static int impl_mov_helper( CodeBuffer *cbuf, bool do_size, int src, int dst, int op1, int op2, const char *op_str, int size, outputStream* st ) {
1212  if( cbuf ) emit3( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst], op1, 0, op2, Matcher::_regEncode[src] );
1213#ifndef PRODUCT
1214  else if( !do_size ) {
1215    if( size != 0 ) st->print("\n\t");
1216    st->print("%s  R_%s,R_%s\t! spill",op_str,OptoReg::regname(src),OptoReg::regname(dst));
1217  }
1218#endif
1219  return size+4;
1220}
1221
1222uint MachSpillCopyNode::implementation( CodeBuffer *cbuf,
1223                                        PhaseRegAlloc *ra_,
1224                                        bool do_size,
1225                                        outputStream* st ) const {
1226  // Get registers to move
1227  OptoReg::Name src_second = ra_->get_reg_second(in(1));
1228  OptoReg::Name src_first = ra_->get_reg_first(in(1));
1229  OptoReg::Name dst_second = ra_->get_reg_second(this );
1230  OptoReg::Name dst_first = ra_->get_reg_first(this );
1231
1232  enum RC src_second_rc = rc_class(src_second);
1233  enum RC src_first_rc = rc_class(src_first);
1234  enum RC dst_second_rc = rc_class(dst_second);
1235  enum RC dst_first_rc = rc_class(dst_first);
1236
1237  assert( OptoReg::is_valid(src_first) && OptoReg::is_valid(dst_first), "must move at least 1 register" );
1238
1239  // Generate spill code!
1240  int size = 0;
1241
1242  if( src_first == dst_first && src_second == dst_second )
1243    return size;            // Self copy, no move
1244
1245  // --------------------------------------
1246  // Check for mem-mem move.  Load into unused float registers and fall into
1247  // the float-store case.
1248  if( src_first_rc == rc_stack && dst_first_rc == rc_stack ) {
1249    int offset = ra_->reg2offset(src_first);
1250    // Further check for aligned-adjacent pair, so we can use a double load
1251    if( (src_first&1)==0 && src_first+1 == src_second ) {
1252      src_second    = OptoReg::Name(R_F31_num);
1253      src_second_rc = rc_float;
1254      size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F30_num,Assembler::lddf_op3,"LDDF",size, st);
1255    } else {
1256      size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F30_num,Assembler::ldf_op3 ,"LDF ",size, st);
1257    }
1258    src_first    = OptoReg::Name(R_F30_num);
1259    src_first_rc = rc_float;
1260  }
1261
1262  if( src_second_rc == rc_stack && dst_second_rc == rc_stack ) {
1263    int offset = ra_->reg2offset(src_second);
1264    size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F31_num,Assembler::ldf_op3,"LDF ",size, st);
1265    src_second    = OptoReg::Name(R_F31_num);
1266    src_second_rc = rc_float;
1267  }
1268
1269  // --------------------------------------
1270  // Check for float->int copy; requires a trip through memory
1271  if( src_first_rc == rc_float && dst_first_rc == rc_int ) {
1272    int offset = frame::register_save_words*wordSize;
1273    if( cbuf ) {
1274      emit3_simm13( *cbuf, Assembler::arith_op, R_SP_enc, Assembler::sub_op3, R_SP_enc, 16 );
1275      impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
1276      impl_helper(this,cbuf,ra_,do_size,true ,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
1277      emit3_simm13( *cbuf, Assembler::arith_op, R_SP_enc, Assembler::add_op3, R_SP_enc, 16 );
1278    }
1279#ifndef PRODUCT
1280    else if( !do_size ) {
1281      if( size != 0 ) st->print("\n\t");
1282      st->print(  "SUB    R_SP,16,R_SP\n");
1283      impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
1284      impl_helper(this,cbuf,ra_,do_size,true ,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
1285      st->print("\tADD    R_SP,16,R_SP\n");
1286    }
1287#endif
1288    size += 16;
1289  }
1290
1291  // --------------------------------------
1292  // In the 32-bit 1-reg-longs build ONLY, I see mis-aligned long destinations.
1293  // In such cases, I have to do the big-endian swap.  For aligned targets, the
1294  // hardware does the flop for me.  Doubles are always aligned, so no problem
1295  // there.  Misaligned sources only come from native-long-returns (handled
1296  // special below).
1297#ifndef _LP64
1298  if( src_first_rc == rc_int &&     // source is already big-endian
1299      src_second_rc != rc_bad &&    // 64-bit move
1300      ((dst_first&1)!=0 || dst_second != dst_first+1) ) { // misaligned dst
1301    assert( (src_first&1)==0 && src_second == src_first+1, "source must be aligned" );
1302    // Do the big-endian flop.
1303    OptoReg::Name tmp    = dst_first   ; dst_first    = dst_second   ; dst_second    = tmp   ;
1304    enum RC       tmp_rc = dst_first_rc; dst_first_rc = dst_second_rc; dst_second_rc = tmp_rc;
1305  }
1306#endif
1307
1308  // --------------------------------------
1309  // Check for integer reg-reg copy
1310  if( src_first_rc == rc_int && dst_first_rc == rc_int ) {
1311#ifndef _LP64
1312    if( src_first == R_O0_num && src_second == R_O1_num ) {  // Check for the evil O0/O1 native long-return case
1313      // Note: The _first and _second suffixes refer to the addresses of the the 2 halves of the 64-bit value
1314      //       as stored in memory.  On a big-endian machine like SPARC, this means that the _second
1315      //       operand contains the least significant word of the 64-bit value and vice versa.
1316      OptoReg::Name tmp = OptoReg::Name(R_O7_num);
1317      assert( (dst_first&1)==0 && dst_second == dst_first+1, "return a native O0/O1 long to an aligned-adjacent 64-bit reg" );
1318      // Shift O0 left in-place, zero-extend O1, then OR them into the dst
1319      if( cbuf ) {
1320        emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[tmp], Assembler::sllx_op3, Matcher::_regEncode[src_first], 0x1020 );
1321        emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[src_second], Assembler::srl_op3, Matcher::_regEncode[src_second], 0x0000 );
1322        emit3       ( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_first], Assembler:: or_op3, Matcher::_regEncode[tmp], 0, Matcher::_regEncode[src_second] );
1323#ifndef PRODUCT
1324      } else if( !do_size ) {
1325        if( size != 0 ) st->print("\n\t");
1326        st->print("SLLX   R_%s,32,R_%s\t! Move O0-first to O7-high\n\t", OptoReg::regname(src_first), OptoReg::regname(tmp));
1327        st->print("SRL    R_%s, 0,R_%s\t! Zero-extend O1\n\t", OptoReg::regname(src_second), OptoReg::regname(src_second));
1328        st->print("OR     R_%s,R_%s,R_%s\t! spill",OptoReg::regname(tmp), OptoReg::regname(src_second), OptoReg::regname(dst_first));
1329#endif
1330      }
1331      return size+12;
1332    }
1333    else if( dst_first == R_I0_num && dst_second == R_I1_num ) {
1334      // returning a long value in I0/I1
1335      // a SpillCopy must be able to target a return instruction's reg_class
1336      // Note: The _first and _second suffixes refer to the addresses of the the 2 halves of the 64-bit value
1337      //       as stored in memory.  On a big-endian machine like SPARC, this means that the _second
1338      //       operand contains the least significant word of the 64-bit value and vice versa.
1339      OptoReg::Name tdest = dst_first;
1340
1341      if (src_first == dst_first) {
1342        tdest = OptoReg::Name(R_O7_num);
1343        size += 4;
1344      }
1345
1346      if( cbuf ) {
1347        assert( (src_first&1) == 0 && (src_first+1) == src_second, "return value was in an aligned-adjacent 64-bit reg");
1348        // Shift value in upper 32-bits of src to lower 32-bits of I0; move lower 32-bits to I1
1349        // ShrL_reg_imm6
1350        emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[tdest], Assembler::srlx_op3, Matcher::_regEncode[src_second], 32 | 0x1000 );
1351        // ShrR_reg_imm6  src, 0, dst
1352        emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_second], Assembler::srl_op3, Matcher::_regEncode[src_first], 0x0000 );
1353        if (tdest != dst_first) {
1354          emit3     ( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_first], Assembler::or_op3, 0/*G0*/, 0/*op2*/, Matcher::_regEncode[tdest] );
1355        }
1356      }
1357#ifndef PRODUCT
1358      else if( !do_size ) {
1359        if( size != 0 ) st->print("\n\t");  // %%%%% !!!!!
1360        st->print("SRLX   R_%s,32,R_%s\t! Extract MSW\n\t",OptoReg::regname(src_second),OptoReg::regname(tdest));
1361        st->print("SRL    R_%s, 0,R_%s\t! Extract LSW\n\t",OptoReg::regname(src_first),OptoReg::regname(dst_second));
1362        if (tdest != dst_first) {
1363          st->print("MOV    R_%s,R_%s\t! spill\n\t", OptoReg::regname(tdest), OptoReg::regname(dst_first));
1364        }
1365      }
1366#endif // PRODUCT
1367      return size+8;
1368    }
1369#endif // !_LP64
1370    // Else normal reg-reg copy
1371    assert( src_second != dst_first, "smashed second before evacuating it" );
1372    size = impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::or_op3,0,"MOV  ",size, st);
1373    assert( (src_first&1) == 0 && (dst_first&1) == 0, "never move second-halves of int registers" );
1374    // This moves an aligned adjacent pair.
1375    // See if we are done.
1376    if( src_first+1 == src_second && dst_first+1 == dst_second )
1377      return size;
1378  }
1379
1380  // Check for integer store
1381  if( src_first_rc == rc_int && dst_first_rc == rc_stack ) {
1382    int offset = ra_->reg2offset(dst_first);
1383    // Further check for aligned-adjacent pair, so we can use a double store
1384    if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1385      return impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stx_op3,"STX ",size, st);
1386    size  =  impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stw_op3,"STW ",size, st);
1387  }
1388
1389  // Check for integer load
1390  if( dst_first_rc == rc_int && src_first_rc == rc_stack ) {
1391    int offset = ra_->reg2offset(src_first);
1392    // Further check for aligned-adjacent pair, so we can use a double load
1393    if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1394      return impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::ldx_op3 ,"LDX ",size, st);
1395    size  =  impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
1396  }
1397
1398  // Check for float reg-reg copy
1399  if( src_first_rc == rc_float && dst_first_rc == rc_float ) {
1400    // Further check for aligned-adjacent pair, so we can use a double move
1401    if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1402      return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::fpop1_op3,Assembler::fmovd_opf,"FMOVD",size, st);
1403    size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::fpop1_op3,Assembler::fmovs_opf,"FMOVS",size, st);
1404  }
1405
1406  // Check for float store
1407  if( src_first_rc == rc_float && dst_first_rc == rc_stack ) {
1408    int offset = ra_->reg2offset(dst_first);
1409    // Further check for aligned-adjacent pair, so we can use a double store
1410    if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1411      return impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stdf_op3,"STDF",size, st);
1412    size  =  impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
1413  }
1414
1415  // Check for float load
1416  if( dst_first_rc == rc_float && src_first_rc == rc_stack ) {
1417    int offset = ra_->reg2offset(src_first);
1418    // Further check for aligned-adjacent pair, so we can use a double load
1419    if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1420      return impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::lddf_op3,"LDDF",size, st);
1421    size  =  impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::ldf_op3 ,"LDF ",size, st);
1422  }
1423
1424  // --------------------------------------------------------------------
1425  // Check for hi bits still needing moving.  Only happens for misaligned
1426  // arguments to native calls.
1427  if( src_second == dst_second )
1428    return size;               // Self copy; no move
1429  assert( src_second_rc != rc_bad && dst_second_rc != rc_bad, "src_second & dst_second cannot be Bad" );
1430
1431#ifndef _LP64
1432  // In the LP64 build, all registers can be moved as aligned/adjacent
1433  // pairs, so there's never any need to move the high bits seperately.
1434  // The 32-bit builds have to deal with the 32-bit ABI which can force
1435  // all sorts of silly alignment problems.
1436
1437  // Check for integer reg-reg copy.  Hi bits are stuck up in the top
1438  // 32-bits of a 64-bit register, but are needed in low bits of another
1439  // register (else it's a hi-bits-to-hi-bits copy which should have
1440  // happened already as part of a 64-bit move)
1441  if( src_second_rc == rc_int && dst_second_rc == rc_int ) {
1442    assert( (src_second&1)==1, "its the evil O0/O1 native return case" );
1443    assert( (dst_second&1)==0, "should have moved with 1 64-bit move" );
1444    // Shift src_second down to dst_second's low bits.
1445    if( cbuf ) {
1446      emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_second], Assembler::srlx_op3, Matcher::_regEncode[src_second-1], 0x1020 );
1447#ifndef PRODUCT
1448    } else if( !do_size ) {
1449      if( size != 0 ) st->print("\n\t");
1450      st->print("SRLX   R_%s,32,R_%s\t! spill: Move high bits down low",OptoReg::regname(src_second-1),OptoReg::regname(dst_second));
1451#endif
1452    }
1453    return size+4;
1454  }
1455
1456  // Check for high word integer store.  Must down-shift the hi bits
1457  // into a temp register, then fall into the case of storing int bits.
1458  if( src_second_rc == rc_int && dst_second_rc == rc_stack && (src_second&1)==1 ) {
1459    // Shift src_second down to dst_second's low bits.
1460    if( cbuf ) {
1461      emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[R_O7_num], Assembler::srlx_op3, Matcher::_regEncode[src_second-1], 0x1020 );
1462#ifndef PRODUCT
1463    } else if( !do_size ) {
1464      if( size != 0 ) st->print("\n\t");
1465      st->print("SRLX   R_%s,32,R_%s\t! spill: Move high bits down low",OptoReg::regname(src_second-1),OptoReg::regname(R_O7_num));
1466#endif
1467    }
1468    size+=4;
1469    src_second = OptoReg::Name(R_O7_num); // Not R_O7H_num!
1470  }
1471
1472  // Check for high word integer load
1473  if( dst_second_rc == rc_int && src_second_rc == rc_stack )
1474    return impl_helper(this,cbuf,ra_,do_size,true ,ra_->reg2offset(src_second),dst_second,Assembler::lduw_op3,"LDUW",size, st);
1475
1476  // Check for high word integer store
1477  if( src_second_rc == rc_int && dst_second_rc == rc_stack )
1478    return impl_helper(this,cbuf,ra_,do_size,false,ra_->reg2offset(dst_second),src_second,Assembler::stw_op3 ,"STW ",size, st);
1479
1480  // Check for high word float store
1481  if( src_second_rc == rc_float && dst_second_rc == rc_stack )
1482    return impl_helper(this,cbuf,ra_,do_size,false,ra_->reg2offset(dst_second),src_second,Assembler::stf_op3 ,"STF ",size, st);
1483
1484#endif // !_LP64
1485
1486  Unimplemented();
1487}
1488
1489#ifndef PRODUCT
1490void MachSpillCopyNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1491  implementation( NULL, ra_, false, st );
1492}
1493#endif
1494
1495void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1496  implementation( &cbuf, ra_, false, NULL );
1497}
1498
1499uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
1500  return implementation( NULL, ra_, true, NULL );
1501}
1502
1503//=============================================================================
1504#ifndef PRODUCT
1505void MachNopNode::format( PhaseRegAlloc *, outputStream *st ) const {
1506  st->print("NOP \t# %d bytes pad for loops and calls", 4 * _count);
1507}
1508#endif
1509
1510void MachNopNode::emit(CodeBuffer &cbuf, PhaseRegAlloc * ) const {
1511  MacroAssembler _masm(&cbuf);
1512  for(int i = 0; i < _count; i += 1) {
1513    __ nop();
1514  }
1515}
1516
1517uint MachNopNode::size(PhaseRegAlloc *ra_) const {
1518  return 4 * _count;
1519}
1520
1521
1522//=============================================================================
1523#ifndef PRODUCT
1524void BoxLockNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1525  int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
1526  int reg = ra_->get_reg_first(this);
1527  st->print("LEA    [R_SP+#%d+BIAS],%s",offset,Matcher::regName[reg]);
1528}
1529#endif
1530
1531void BoxLockNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1532  MacroAssembler _masm(&cbuf);
1533  int offset = ra_->reg2offset(in_RegMask(0).find_first_elem()) + STACK_BIAS;
1534  int reg = ra_->get_encode(this);
1535
1536  if (Assembler::is_simm13(offset)) {
1537     __ add(SP, offset, reg_to_register_object(reg));
1538  } else {
1539     __ set(offset, O7);
1540     __ add(SP, O7, reg_to_register_object(reg));
1541  }
1542}
1543
1544uint BoxLockNode::size(PhaseRegAlloc *ra_) const {
1545  // BoxLockNode is not a MachNode, so we can't just call MachNode::size(ra_)
1546  assert(ra_ == ra_->C->regalloc(), "sanity");
1547  return ra_->C->scratch_emit_size(this);
1548}
1549
1550//=============================================================================
1551
1552// emit call stub, compiled java to interpretor
1553void emit_java_to_interp(CodeBuffer &cbuf ) {
1554
1555  // Stub is fixed up when the corresponding call is converted from calling
1556  // compiled code to calling interpreted code.
1557  // set (empty), G5
1558  // jmp -1
1559
1560  address mark = cbuf.inst_mark();  // get mark within main instrs section
1561
1562  MacroAssembler _masm(&cbuf);
1563
1564  address base =
1565  __ start_a_stub(Compile::MAX_stubs_size);
1566  if (base == NULL)  return;  // CodeBuffer::expand failed
1567
1568  // static stub relocation stores the instruction address of the call
1569  __ relocate(static_stub_Relocation::spec(mark));
1570
1571  __ set_oop(NULL, reg_to_register_object(Matcher::inline_cache_reg_encode()));
1572
1573  __ set_inst_mark();
1574  Address a(G3, (address)-1);
1575  __ JUMP(a, 0);
1576
1577  __ delayed()->nop();
1578
1579  // Update current stubs pointer and restore code_end.
1580  __ end_a_stub();
1581}
1582
1583// size of call stub, compiled java to interpretor
1584uint size_java_to_interp() {
1585  // This doesn't need to be accurate but it must be larger or equal to
1586  // the real size of the stub.
1587  return (NativeMovConstReg::instruction_size +  // sethi/setlo;
1588          NativeJump::instruction_size + // sethi; jmp; nop
1589          (TraceJumps ? 20 * BytesPerInstWord : 0) );
1590}
1591// relocation entries for call stub, compiled java to interpretor
1592uint reloc_java_to_interp() {
1593  return 10;  // 4 in emit_java_to_interp + 1 in Java_Static_Call
1594}
1595
1596
1597//=============================================================================
1598#ifndef PRODUCT
1599void MachUEPNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1600  st->print_cr("\nUEP:");
1601#ifdef    _LP64
1602  if (UseCompressedOops) {
1603    st->print_cr("\tLDUW   [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check - compressed klass");
1604    st->print_cr("\tSLL    R_G5,3,R_G5");
1605    st->print_cr("\tADD    R_G5,R_G6_heap_base,R_G5");
1606  } else {
1607    st->print_cr("\tLDX    [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check");
1608  }
1609  st->print_cr("\tCMP    R_G5,R_G3" );
1610  st->print   ("\tTne    xcc,R_G0+ST_RESERVED_FOR_USER_0+2");
1611#else  // _LP64
1612  st->print_cr("\tLDUW   [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check");
1613  st->print_cr("\tCMP    R_G5,R_G3" );
1614  st->print   ("\tTne    icc,R_G0+ST_RESERVED_FOR_USER_0+2");
1615#endif // _LP64
1616}
1617#endif
1618
1619void MachUEPNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1620  MacroAssembler _masm(&cbuf);
1621  Label L;
1622  Register G5_ic_reg  = reg_to_register_object(Matcher::inline_cache_reg_encode());
1623  Register temp_reg   = G3;
1624  assert( G5_ic_reg != temp_reg, "conflicting registers" );
1625
1626  // Load klass from reciever
1627  __ load_klass(O0, temp_reg);
1628  // Compare against expected klass
1629  __ cmp(temp_reg, G5_ic_reg);
1630  // Branch to miss code, checks xcc or icc depending
1631  __ trap(Assembler::notEqual, Assembler::ptr_cc, G0, ST_RESERVED_FOR_USER_0+2);
1632}
1633
1634uint MachUEPNode::size(PhaseRegAlloc *ra_) const {
1635  return MachNode::size(ra_);
1636}
1637
1638
1639//=============================================================================
1640
1641uint size_exception_handler() {
1642  if (TraceJumps) {
1643    return (400); // just a guess
1644  }
1645  return ( NativeJump::instruction_size ); // sethi;jmp;nop
1646}
1647
1648uint size_deopt_handler() {
1649  if (TraceJumps) {
1650    return (400); // just a guess
1651  }
1652  return ( 4+  NativeJump::instruction_size ); // save;sethi;jmp;restore
1653}
1654
1655// Emit exception handler code.
1656int emit_exception_handler(CodeBuffer& cbuf) {
1657  Register temp_reg = G3;
1658  Address exception_blob(temp_reg, OptoRuntime::exception_blob()->instructions_begin());
1659  MacroAssembler _masm(&cbuf);
1660
1661  address base =
1662  __ start_a_stub(size_exception_handler());
1663  if (base == NULL)  return 0;  // CodeBuffer::expand failed
1664
1665  int offset = __ offset();
1666
1667  __ JUMP(exception_blob, 0); // sethi;jmp
1668  __ delayed()->nop();
1669
1670  assert(__ offset() - offset <= (int) size_exception_handler(), "overflow");
1671
1672  __ end_a_stub();
1673
1674  return offset;
1675}
1676
1677int emit_deopt_handler(CodeBuffer& cbuf) {
1678  // Can't use any of the current frame's registers as we may have deopted
1679  // at a poll and everything (including G3) can be live.
1680  Register temp_reg = L0;
1681  Address deopt_blob(temp_reg, SharedRuntime::deopt_blob()->unpack());
1682  MacroAssembler _masm(&cbuf);
1683
1684  address base =
1685  __ start_a_stub(size_deopt_handler());
1686  if (base == NULL)  return 0;  // CodeBuffer::expand failed
1687
1688  int offset = __ offset();
1689  __ save_frame(0);
1690  __ JUMP(deopt_blob, 0); // sethi;jmp
1691  __ delayed()->restore();
1692
1693  assert(__ offset() - offset <= (int) size_deopt_handler(), "overflow");
1694
1695  __ end_a_stub();
1696  return offset;
1697
1698}
1699
1700// Given a register encoding, produce a Integer Register object
1701static Register reg_to_register_object(int register_encoding) {
1702  assert(L5->encoding() == R_L5_enc && G1->encoding() == R_G1_enc, "right coding");
1703  return as_Register(register_encoding);
1704}
1705
1706// Given a register encoding, produce a single-precision Float Register object
1707static FloatRegister reg_to_SingleFloatRegister_object(int register_encoding) {
1708  assert(F5->encoding(FloatRegisterImpl::S) == R_F5_enc && F12->encoding(FloatRegisterImpl::S) == R_F12_enc, "right coding");
1709  return as_SingleFloatRegister(register_encoding);
1710}
1711
1712// Given a register encoding, produce a double-precision Float Register object
1713static FloatRegister reg_to_DoubleFloatRegister_object(int register_encoding) {
1714  assert(F4->encoding(FloatRegisterImpl::D) == R_F4_enc, "right coding");
1715  assert(F32->encoding(FloatRegisterImpl::D) == R_D32_enc, "right coding");
1716  return as_DoubleFloatRegister(register_encoding);
1717}
1718
1719int Matcher::regnum_to_fpu_offset(int regnum) {
1720  return regnum - 32; // The FP registers are in the second chunk
1721}
1722
1723#ifdef ASSERT
1724address last_rethrow = NULL;  // debugging aid for Rethrow encoding
1725#endif
1726
1727// Vector width in bytes
1728const uint Matcher::vector_width_in_bytes(void) {
1729  return 8;
1730}
1731
1732// Vector ideal reg
1733const uint Matcher::vector_ideal_reg(void) {
1734  return Op_RegD;
1735}
1736
1737// USII supports fxtof through the whole range of number, USIII doesn't
1738const bool Matcher::convL2FSupported(void) {
1739  return VM_Version::has_fast_fxtof();
1740}
1741
1742// Is this branch offset short enough that a short branch can be used?
1743//
1744// NOTE: If the platform does not provide any short branch variants, then
1745//       this method should return false for offset 0.
1746bool Matcher::is_short_branch_offset(int offset) {
1747  return false;
1748}
1749
1750const bool Matcher::isSimpleConstant64(jlong value) {
1751  // Will one (StoreL ConL) be cheaper than two (StoreI ConI)?.
1752  // Depends on optimizations in MacroAssembler::setx.
1753  int hi = (int)(value >> 32);
1754  int lo = (int)(value & ~0);
1755  return (hi == 0) || (hi == -1) || (lo == 0);
1756}
1757
1758// No scaling for the parameter the ClearArray node.
1759const bool Matcher::init_array_count_is_in_bytes = true;
1760
1761// Threshold size for cleararray.
1762const int Matcher::init_array_short_size = 8 * BytesPerLong;
1763
1764// Should the Matcher clone shifts on addressing modes, expecting them to
1765// be subsumed into complex addressing expressions or compute them into
1766// registers?  True for Intel but false for most RISCs
1767const bool Matcher::clone_shift_expressions = false;
1768
1769// Is it better to copy float constants, or load them directly from memory?
1770// Intel can load a float constant from a direct address, requiring no
1771// extra registers.  Most RISCs will have to materialize an address into a
1772// register first, so they would do better to copy the constant from stack.
1773const bool Matcher::rematerialize_float_constants = false;
1774
1775// If CPU can load and store mis-aligned doubles directly then no fixup is
1776// needed.  Else we split the double into 2 integer pieces and move it
1777// piece-by-piece.  Only happens when passing doubles into C code as the
1778// Java calling convention forces doubles to be aligned.
1779#ifdef _LP64
1780const bool Matcher::misaligned_doubles_ok = true;
1781#else
1782const bool Matcher::misaligned_doubles_ok = false;
1783#endif
1784
1785// No-op on SPARC.
1786void Matcher::pd_implicit_null_fixup(MachNode *node, uint idx) {
1787}
1788
1789// Advertise here if the CPU requires explicit rounding operations
1790// to implement the UseStrictFP mode.
1791const bool Matcher::strict_fp_requires_explicit_rounding = false;
1792
1793// Do floats take an entire double register or just half?
1794const bool Matcher::float_in_double = false;
1795
1796// Do ints take an entire long register or just half?
1797// Note that we if-def off of _LP64.
1798// The relevant question is how the int is callee-saved.  In _LP64
1799// the whole long is written but de-opt'ing will have to extract
1800// the relevant 32 bits, in not-_LP64 only the low 32 bits is written.
1801#ifdef _LP64
1802const bool Matcher::int_in_long = true;
1803#else
1804const bool Matcher::int_in_long = false;
1805#endif
1806
1807// Return whether or not this register is ever used as an argument.  This
1808// function is used on startup to build the trampoline stubs in generateOptoStub.
1809// Registers not mentioned will be killed by the VM call in the trampoline, and
1810// arguments in those registers not be available to the callee.
1811bool Matcher::can_be_java_arg( int reg ) {
1812  // Standard sparc 6 args in registers
1813  if( reg == R_I0_num ||
1814      reg == R_I1_num ||
1815      reg == R_I2_num ||
1816      reg == R_I3_num ||
1817      reg == R_I4_num ||
1818      reg == R_I5_num ) return true;
1819#ifdef _LP64
1820  // 64-bit builds can pass 64-bit pointers and longs in
1821  // the high I registers
1822  if( reg == R_I0H_num ||
1823      reg == R_I1H_num ||
1824      reg == R_I2H_num ||
1825      reg == R_I3H_num ||
1826      reg == R_I4H_num ||
1827      reg == R_I5H_num ) return true;
1828
1829  if ((UseCompressedOops) && (reg == R_G6_num || reg == R_G6H_num)) {
1830    return true;
1831  }
1832
1833#else
1834  // 32-bit builds with longs-in-one-entry pass longs in G1 & G4.
1835  // Longs cannot be passed in O regs, because O regs become I regs
1836  // after a 'save' and I regs get their high bits chopped off on
1837  // interrupt.
1838  if( reg == R_G1H_num || reg == R_G1_num ) return true;
1839  if( reg == R_G4H_num || reg == R_G4_num ) return true;
1840#endif
1841  // A few float args in registers
1842  if( reg >= R_F0_num && reg <= R_F7_num ) return true;
1843
1844  return false;
1845}
1846
1847bool Matcher::is_spillable_arg( int reg ) {
1848  return can_be_java_arg(reg);
1849}
1850
1851// Register for DIVI projection of divmodI
1852RegMask Matcher::divI_proj_mask() {
1853  ShouldNotReachHere();
1854  return RegMask();
1855}
1856
1857// Register for MODI projection of divmodI
1858RegMask Matcher::modI_proj_mask() {
1859  ShouldNotReachHere();
1860  return RegMask();
1861}
1862
1863// Register for DIVL projection of divmodL
1864RegMask Matcher::divL_proj_mask() {
1865  ShouldNotReachHere();
1866  return RegMask();
1867}
1868
1869// Register for MODL projection of divmodL
1870RegMask Matcher::modL_proj_mask() {
1871  ShouldNotReachHere();
1872  return RegMask();
1873}
1874
1875%}
1876
1877
1878// The intptr_t operand types, defined by textual substitution.
1879// (Cf. opto/type.hpp.  This lets us avoid many, many other ifdefs.)
1880#ifdef _LP64
1881#define immX    immL
1882#define immX13  immL13
1883#define iRegX   iRegL
1884#define g1RegX  g1RegL
1885#else
1886#define immX    immI
1887#define immX13  immI13
1888#define iRegX   iRegI
1889#define g1RegX  g1RegI
1890#endif
1891
1892//----------ENCODING BLOCK-----------------------------------------------------
1893// This block specifies the encoding classes used by the compiler to output
1894// byte streams.  Encoding classes are parameterized macros used by
1895// Machine Instruction Nodes in order to generate the bit encoding of the
1896// instruction.  Operands specify their base encoding interface with the
1897// interface keyword.  There are currently supported four interfaces,
1898// REG_INTER, CONST_INTER, MEMORY_INTER, & COND_INTER.  REG_INTER causes an
1899// operand to generate a function which returns its register number when
1900// queried.   CONST_INTER causes an operand to generate a function which
1901// returns the value of the constant when queried.  MEMORY_INTER causes an
1902// operand to generate four functions which return the Base Register, the
1903// Index Register, the Scale Value, and the Offset Value of the operand when
1904// queried.  COND_INTER causes an operand to generate six functions which
1905// return the encoding code (ie - encoding bits for the instruction)
1906// associated with each basic boolean condition for a conditional instruction.
1907//
1908// Instructions specify two basic values for encoding.  Again, a function
1909// is available to check if the constant displacement is an oop. They use the
1910// ins_encode keyword to specify their encoding classes (which must be
1911// a sequence of enc_class names, and their parameters, specified in
1912// the encoding block), and they use the
1913// opcode keyword to specify, in order, their primary, secondary, and
1914// tertiary opcode.  Only the opcode sections which a particular instruction
1915// needs for encoding need to be specified.
1916encode %{
1917  enc_class enc_untested %{
1918#ifdef ASSERT
1919    MacroAssembler _masm(&cbuf);
1920    __ untested("encoding");
1921#endif
1922  %}
1923
1924  enc_class form3_mem_reg( memory mem, iRegI dst ) %{
1925    emit_form3_mem_reg(cbuf, this, $primary, $tertiary,
1926                       $mem$$base, $mem$$disp, $mem$$index, $dst$$reg);
1927  %}
1928
1929  enc_class form3_mem_reg_little( memory mem, iRegI dst) %{
1930    emit_form3_mem_reg_asi(cbuf, this, $primary, $tertiary,
1931                     $mem$$base, $mem$$disp, $mem$$index, $dst$$reg, Assembler::ASI_PRIMARY_LITTLE);
1932  %}
1933
1934  enc_class form3_mem_prefetch_read( memory mem ) %{
1935    emit_form3_mem_reg(cbuf, this, $primary, $tertiary,
1936                       $mem$$base, $mem$$disp, $mem$$index, 0/*prefetch function many-reads*/);
1937  %}
1938
1939  enc_class form3_mem_prefetch_write( memory mem ) %{
1940    emit_form3_mem_reg(cbuf, this, $primary, $tertiary,
1941                       $mem$$base, $mem$$disp, $mem$$index, 2/*prefetch function many-writes*/);
1942  %}
1943
1944  enc_class form3_mem_reg_long_unaligned_marshal( memory mem, iRegL reg ) %{
1945    assert( Assembler::is_simm13($mem$$disp  ), "need disp and disp+4" );
1946    assert( Assembler::is_simm13($mem$$disp+4), "need disp and disp+4" );
1947    guarantee($mem$$index == R_G0_enc, "double index?");
1948    emit_form3_mem_reg(cbuf, this, $primary, $tertiary, $mem$$base, $mem$$disp+4, R_G0_enc, R_O7_enc );
1949    emit_form3_mem_reg(cbuf, this, $primary, $tertiary, $mem$$base, $mem$$disp,   R_G0_enc, $reg$$reg );
1950    emit3_simm13( cbuf, Assembler::arith_op, $reg$$reg, Assembler::sllx_op3, $reg$$reg, 0x1020 );
1951    emit3( cbuf, Assembler::arith_op, $reg$$reg, Assembler::or_op3, $reg$$reg, 0, R_O7_enc );
1952  %}
1953
1954  enc_class form3_mem_reg_double_unaligned( memory mem, RegD_low reg ) %{
1955    assert( Assembler::is_simm13($mem$$disp  ), "need disp and disp+4" );
1956    assert( Assembler::is_simm13($mem$$disp+4), "need disp and disp+4" );
1957    guarantee($mem$$index == R_G0_enc, "double index?");
1958    // Load long with 2 instructions
1959    emit_form3_mem_reg(cbuf, this, $primary, $tertiary, $mem$$base, $mem$$disp,   R_G0_enc, $reg$$reg+0 );
1960    emit_form3_mem_reg(cbuf, this, $primary, $tertiary, $mem$$base, $mem$$disp+4, R_G0_enc, $reg$$reg+1 );
1961  %}
1962
1963  //%%% form3_mem_plus_4_reg is a hack--get rid of it
1964  enc_class form3_mem_plus_4_reg( memory mem, iRegI dst ) %{
1965    guarantee($mem$$disp, "cannot offset a reg-reg operand by 4");
1966    emit_form3_mem_reg(cbuf, this, $primary, $tertiary, $mem$$base, $mem$$disp + 4, $mem$$index, $dst$$reg);
1967  %}
1968
1969  enc_class form3_g0_rs2_rd_move( iRegI rs2, iRegI rd ) %{
1970    // Encode a reg-reg copy.  If it is useless, then empty encoding.
1971    if( $rs2$$reg != $rd$$reg )
1972      emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, $rs2$$reg );
1973  %}
1974
1975  // Target lo half of long
1976  enc_class form3_g0_rs2_rd_move_lo( iRegI rs2, iRegL rd ) %{
1977    // Encode a reg-reg copy.  If it is useless, then empty encoding.
1978    if( $rs2$$reg != LONG_LO_REG($rd$$reg) )
1979      emit3( cbuf, Assembler::arith_op, LONG_LO_REG($rd$$reg), Assembler::or_op3, 0, 0, $rs2$$reg );
1980  %}
1981
1982  // Source lo half of long
1983  enc_class form3_g0_rs2_rd_move_lo2( iRegL rs2, iRegI rd ) %{
1984    // Encode a reg-reg copy.  If it is useless, then empty encoding.
1985    if( LONG_LO_REG($rs2$$reg) != $rd$$reg )
1986      emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, LONG_LO_REG($rs2$$reg) );
1987  %}
1988
1989  // Target hi half of long
1990  enc_class form3_rs1_rd_copysign_hi( iRegI rs1, iRegL rd ) %{
1991    emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::sra_op3, $rs1$$reg, 31 );
1992  %}
1993
1994  // Source lo half of long, and leave it sign extended.
1995  enc_class form3_rs1_rd_signextend_lo1( iRegL rs1, iRegI rd ) %{
1996    // Sign extend low half
1997    emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::sra_op3, $rs1$$reg, 0, 0 );
1998  %}
1999
2000  // Source hi half of long, and leave it sign extended.
2001  enc_class form3_rs1_rd_copy_hi1( iRegL rs1, iRegI rd ) %{
2002    // Shift high half to low half
2003    emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::srlx_op3, $rs1$$reg, 32 );
2004  %}
2005
2006  // Source hi half of long
2007  enc_class form3_g0_rs2_rd_move_hi2( iRegL rs2, iRegI rd ) %{
2008    // Encode a reg-reg copy.  If it is useless, then empty encoding.
2009    if( LONG_HI_REG($rs2$$reg) != $rd$$reg )
2010      emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, LONG_HI_REG($rs2$$reg) );
2011  %}
2012
2013  enc_class form3_rs1_rs2_rd( iRegI rs1, iRegI rs2, iRegI rd ) %{
2014    emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, 0, $rs2$$reg );
2015  %}
2016
2017  enc_class enc_to_bool( iRegI src, iRegI dst ) %{
2018    emit3       ( cbuf, Assembler::arith_op,         0, Assembler::subcc_op3, 0, 0, $src$$reg );
2019    emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::addc_op3 , 0, 0 );
2020  %}
2021
2022  enc_class enc_ltmask( iRegI p, iRegI q, iRegI dst ) %{
2023    emit3       ( cbuf, Assembler::arith_op,         0, Assembler::subcc_op3, $p$$reg, 0, $q$$reg );
2024    // clear if nothing else is happening
2025    emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0,  0 );
2026    // blt,a,pn done
2027    emit2_19    ( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::less, Assembler::bp_op2, Assembler::icc, 0/*predict not taken*/, 2 );
2028    // mov dst,-1 in delay slot
2029    emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, -1 );
2030  %}
2031
2032  enc_class form3_rs1_imm5_rd( iRegI rs1, immU5 imm5, iRegI rd ) %{
2033    emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $imm5$$constant & 0x1F );
2034  %}
2035
2036  enc_class form3_sd_rs1_imm6_rd( iRegL rs1, immU6 imm6, iRegL rd ) %{
2037    emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, ($imm6$$constant & 0x3F) | 0x1000 );
2038  %}
2039
2040  enc_class form3_sd_rs1_rs2_rd( iRegL rs1, iRegI rs2, iRegL rd ) %{
2041    emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, 0x80, $rs2$$reg );
2042  %}
2043
2044  enc_class form3_rs1_simm13_rd( iRegI rs1, immI13 simm13, iRegI rd ) %{
2045    emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $simm13$$constant );
2046  %}
2047
2048  enc_class move_return_pc_to_o1() %{
2049    emit3_simm13( cbuf, Assembler::arith_op, R_O1_enc, Assembler::add_op3, R_O7_enc, frame::pc_return_offset );
2050  %}
2051
2052#ifdef _LP64
2053  /* %%% merge with enc_to_bool */
2054  enc_class enc_convP2B( iRegI dst, iRegP src ) %{
2055    MacroAssembler _masm(&cbuf);
2056
2057    Register   src_reg = reg_to_register_object($src$$reg);
2058    Register   dst_reg = reg_to_register_object($dst$$reg);
2059    __ movr(Assembler::rc_nz, src_reg, 1, dst_reg);
2060  %}
2061#endif
2062
2063  enc_class enc_cadd_cmpLTMask( iRegI p, iRegI q, iRegI y, iRegI tmp ) %{
2064    // (Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)))
2065    MacroAssembler _masm(&cbuf);
2066
2067    Register   p_reg = reg_to_register_object($p$$reg);
2068    Register   q_reg = reg_to_register_object($q$$reg);
2069    Register   y_reg = reg_to_register_object($y$$reg);
2070    Register tmp_reg = reg_to_register_object($tmp$$reg);
2071
2072    __ subcc( p_reg, q_reg,   p_reg );
2073    __ add  ( p_reg, y_reg, tmp_reg );
2074    __ movcc( Assembler::less, false, Assembler::icc, tmp_reg, p_reg );
2075  %}
2076
2077  enc_class form_d2i_helper(regD src, regF dst) %{
2078    // fcmp %fcc0,$src,$src
2079    emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmpd_opf, $src$$reg );
2080    // branch %fcc0 not-nan, predict taken
2081    emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
2082    // fdtoi $src,$dst
2083    emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fdtoi_opf, $src$$reg );
2084    // fitos $dst,$dst (if nan)
2085    emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fitos_opf, $dst$$reg );
2086    // clear $dst (if nan)
2087    emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubs_opf, $dst$$reg );
2088    // carry on here...
2089  %}
2090
2091  enc_class form_d2l_helper(regD src, regD dst) %{
2092    // fcmp %fcc0,$src,$src  check for NAN
2093    emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmpd_opf, $src$$reg );
2094    // branch %fcc0 not-nan, predict taken
2095    emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
2096    // fdtox $src,$dst   convert in delay slot
2097    emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fdtox_opf, $src$$reg );
2098    // fxtod $dst,$dst  (if nan)
2099    emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fxtod_opf, $dst$$reg );
2100    // clear $dst (if nan)
2101    emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubd_opf, $dst$$reg );
2102    // carry on here...
2103  %}
2104
2105  enc_class form_f2i_helper(regF src, regF dst) %{
2106    // fcmps %fcc0,$src,$src
2107    emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmps_opf, $src$$reg );
2108    // branch %fcc0 not-nan, predict taken
2109    emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
2110    // fstoi $src,$dst
2111    emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fstoi_opf, $src$$reg );
2112    // fitos $dst,$dst (if nan)
2113    emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fitos_opf, $dst$$reg );
2114    // clear $dst (if nan)
2115    emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubs_opf, $dst$$reg );
2116    // carry on here...
2117  %}
2118
2119  enc_class form_f2l_helper(regF src, regD dst) %{
2120    // fcmps %fcc0,$src,$src
2121    emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmps_opf, $src$$reg );
2122    // branch %fcc0 not-nan, predict taken
2123    emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
2124    // fstox $src,$dst
2125    emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fstox_opf, $src$$reg );
2126    // fxtod $dst,$dst (if nan)
2127    emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fxtod_opf, $dst$$reg );
2128    // clear $dst (if nan)
2129    emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubd_opf, $dst$$reg );
2130    // carry on here...
2131  %}
2132
2133  enc_class form3_opf_rs2F_rdF(regF rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2134  enc_class form3_opf_rs2F_rdD(regF rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2135  enc_class form3_opf_rs2D_rdF(regD rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2136  enc_class form3_opf_rs2D_rdD(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2137
2138  enc_class form3_opf_rs2D_lo_rdF(regD rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg+1); %}
2139
2140  enc_class form3_opf_rs2D_hi_rdD_hi(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2141  enc_class form3_opf_rs2D_lo_rdD_lo(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg+1,$primary,0,$tertiary,$rs2$$reg+1); %}
2142
2143  enc_class form3_opf_rs1F_rs2F_rdF( regF rs1, regF rs2, regF rd ) %{
2144    emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
2145  %}
2146
2147  enc_class form3_opf_rs1D_rs2D_rdD( regD rs1, regD rs2, regD rd ) %{
2148    emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
2149  %}
2150
2151  enc_class form3_opf_rs1F_rs2F_fcc( regF rs1, regF rs2, flagsRegF fcc ) %{
2152    emit3( cbuf, $secondary, $fcc$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
2153  %}
2154
2155  enc_class form3_opf_rs1D_rs2D_fcc( regD rs1, regD rs2, flagsRegF fcc ) %{
2156    emit3( cbuf, $secondary, $fcc$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
2157  %}
2158
2159  enc_class form3_convI2F(regF rs2, regF rd) %{
2160    emit3(cbuf,Assembler::arith_op,$rd$$reg,Assembler::fpop1_op3,0,$secondary,$rs2$$reg);
2161  %}
2162
2163  // Encloding class for traceable jumps
2164  enc_class form_jmpl(g3RegP dest) %{
2165    emit_jmpl(cbuf, $dest$$reg);
2166  %}
2167
2168  enc_class form_jmpl_set_exception_pc(g1RegP dest) %{
2169    emit_jmpl_set_exception_pc(cbuf, $dest$$reg);
2170  %}
2171
2172  enc_class form2_nop() %{
2173    emit_nop(cbuf);
2174  %}
2175
2176  enc_class form2_illtrap() %{
2177    emit_illtrap(cbuf);
2178  %}
2179
2180
2181  // Compare longs and convert into -1, 0, 1.
2182  enc_class cmpl_flag( iRegL src1, iRegL src2, iRegI dst ) %{
2183    // CMP $src1,$src2
2184    emit3( cbuf, Assembler::arith_op, 0, Assembler::subcc_op3, $src1$$reg, 0, $src2$$reg );
2185    // blt,a,pn done
2186    emit2_19( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::less   , Assembler::bp_op2, Assembler::xcc, 0/*predict not taken*/, 5 );
2187    // mov dst,-1 in delay slot
2188    emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, -1 );
2189    // bgt,a,pn done
2190    emit2_19( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::greater, Assembler::bp_op2, Assembler::xcc, 0/*predict not taken*/, 3 );
2191    // mov dst,1 in delay slot
2192    emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0,  1 );
2193    // CLR    $dst
2194    emit3( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3 , 0, 0, 0 );
2195  %}
2196
2197  enc_class enc_PartialSubtypeCheck() %{
2198    MacroAssembler _masm(&cbuf);
2199    __ call(StubRoutines::Sparc::partial_subtype_check(), relocInfo::runtime_call_type);
2200    __ delayed()->nop();
2201  %}
2202
2203  enc_class enc_bp( Label labl, cmpOp cmp, flagsReg cc ) %{
2204    MacroAssembler _masm(&cbuf);
2205    Label &L = *($labl$$label);
2206    Assembler::Predict predict_taken =
2207      cbuf.is_backward_branch(L) ? Assembler::pt : Assembler::pn;
2208
2209    __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, L);
2210    __ delayed()->nop();
2211  %}
2212
2213  enc_class enc_bpl( Label labl, cmpOp cmp, flagsRegL cc ) %{
2214    MacroAssembler _masm(&cbuf);
2215    Label &L = *($labl$$label);
2216    Assembler::Predict predict_taken =
2217      cbuf.is_backward_branch(L) ? Assembler::pt : Assembler::pn;
2218
2219    __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, L);
2220    __ delayed()->nop();
2221  %}
2222
2223  enc_class enc_bpx( Label labl, cmpOp cmp, flagsRegP cc ) %{
2224    MacroAssembler _masm(&cbuf);
2225    Label &L = *($labl$$label);
2226    Assembler::Predict predict_taken =
2227      cbuf.is_backward_branch(L) ? Assembler::pt : Assembler::pn;
2228
2229    __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, L);
2230    __ delayed()->nop();
2231  %}
2232
2233  enc_class enc_fbp( Label labl, cmpOpF cmp, flagsRegF cc ) %{
2234    MacroAssembler _masm(&cbuf);
2235    Label &L = *($labl$$label);
2236    Assembler::Predict predict_taken =
2237      cbuf.is_backward_branch(L) ? Assembler::pt : Assembler::pn;
2238
2239    __ fbp( (Assembler::Condition)($cmp$$cmpcode), false, (Assembler::CC)($cc$$reg), predict_taken, L);
2240    __ delayed()->nop();
2241  %}
2242
2243  enc_class jump_enc( iRegX switch_val, o7RegI table) %{
2244    MacroAssembler _masm(&cbuf);
2245
2246    Register switch_reg       = as_Register($switch_val$$reg);
2247    Register table_reg        = O7;
2248
2249    address table_base = __ address_table_constant(_index2label);
2250    RelocationHolder rspec = internal_word_Relocation::spec(table_base);
2251
2252    // Load table address
2253    Address the_pc(table_reg, table_base, rspec);
2254    __ load_address(the_pc);
2255
2256    // Jump to base address + switch value
2257    __ ld_ptr(table_reg, switch_reg, table_reg);
2258    __ jmp(table_reg, G0);
2259    __ delayed()->nop();
2260
2261  %}
2262
2263  enc_class enc_ba( Label labl ) %{
2264    MacroAssembler _masm(&cbuf);
2265    Label &L = *($labl$$label);
2266    __ ba(false, L);
2267    __ delayed()->nop();
2268  %}
2269
2270  enc_class enc_bpr( Label labl, cmpOp_reg cmp, iRegI op1 ) %{
2271    MacroAssembler _masm(&cbuf);
2272    Label &L = *$labl$$label;
2273    Assembler::Predict predict_taken =
2274      cbuf.is_backward_branch(L) ? Assembler::pt : Assembler::pn;
2275
2276    __ bpr( (Assembler::RCondition)($cmp$$cmpcode), false, predict_taken, as_Register($op1$$reg), L);
2277    __ delayed()->nop();
2278  %}
2279
2280  enc_class enc_cmov_reg( cmpOp cmp, iRegI dst, iRegI src, immI pcc) %{
2281    int op = (Assembler::arith_op << 30) |
2282             ($dst$$reg << 25) |
2283             (Assembler::movcc_op3 << 19) |
2284             (1 << 18) |                    // cc2 bit for 'icc'
2285             ($cmp$$cmpcode << 14) |
2286             (0 << 13) |                    // select register move
2287             ($pcc$$constant << 11) |       // cc1, cc0 bits for 'icc' or 'xcc'
2288             ($src$$reg << 0);
2289    *((int*)(cbuf.code_end())) = op;
2290    cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
2291  %}
2292
2293  enc_class enc_cmov_imm( cmpOp cmp, iRegI dst, immI11 src, immI pcc ) %{
2294    int simm11 = $src$$constant & ((1<<11)-1); // Mask to 11 bits
2295    int op = (Assembler::arith_op << 30) |
2296             ($dst$$reg << 25) |
2297             (Assembler::movcc_op3 << 19) |
2298             (1 << 18) |                    // cc2 bit for 'icc'
2299             ($cmp$$cmpcode << 14) |
2300             (1 << 13) |                    // select immediate move
2301             ($pcc$$constant << 11) |       // cc1, cc0 bits for 'icc'
2302             (simm11 << 0);
2303    *((int*)(cbuf.code_end())) = op;
2304    cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
2305  %}
2306
2307  enc_class enc_cmov_reg_f( cmpOpF cmp, iRegI dst, iRegI src, flagsRegF fcc ) %{
2308    int op = (Assembler::arith_op << 30) |
2309             ($dst$$reg << 25) |
2310             (Assembler::movcc_op3 << 19) |
2311             (0 << 18) |                    // cc2 bit for 'fccX'
2312             ($cmp$$cmpcode << 14) |
2313             (0 << 13) |                    // select register move
2314             ($fcc$$reg << 11) |            // cc1, cc0 bits for fcc0-fcc3
2315             ($src$$reg << 0);
2316    *((int*)(cbuf.code_end())) = op;
2317    cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
2318  %}
2319
2320  enc_class enc_cmov_imm_f( cmpOp cmp, iRegI dst, immI11 src, flagsRegF fcc ) %{
2321    int simm11 = $src$$constant & ((1<<11)-1); // Mask to 11 bits
2322    int op = (Assembler::arith_op << 30) |
2323             ($dst$$reg << 25) |
2324             (Assembler::movcc_op3 << 19) |
2325             (0 << 18) |                    // cc2 bit for 'fccX'
2326             ($cmp$$cmpcode << 14) |
2327             (1 << 13) |                    // select immediate move
2328             ($fcc$$reg << 11) |            // cc1, cc0 bits for fcc0-fcc3
2329             (simm11 << 0);
2330    *((int*)(cbuf.code_end())) = op;
2331    cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
2332  %}
2333
2334  enc_class enc_cmovf_reg( cmpOp cmp, regD dst, regD src, immI pcc ) %{
2335    int op = (Assembler::arith_op << 30) |
2336             ($dst$$reg << 25) |
2337             (Assembler::fpop2_op3 << 19) |
2338             (0 << 18) |
2339             ($cmp$$cmpcode << 14) |
2340             (1 << 13) |                    // select register move
2341             ($pcc$$constant << 11) |       // cc1-cc0 bits for 'icc' or 'xcc'
2342             ($primary << 5) |              // select single, double or quad
2343             ($src$$reg << 0);
2344    *((int*)(cbuf.code_end())) = op;
2345    cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
2346  %}
2347
2348  enc_class enc_cmovff_reg( cmpOpF cmp, flagsRegF fcc, regD dst, regD src ) %{
2349    int op = (Assembler::arith_op << 30) |
2350             ($dst$$reg << 25) |
2351             (Assembler::fpop2_op3 << 19) |
2352             (0 << 18) |
2353             ($cmp$$cmpcode << 14) |
2354             ($fcc$$reg << 11) |            // cc2-cc0 bits for 'fccX'
2355             ($primary << 5) |              // select single, double or quad
2356             ($src$$reg << 0);
2357    *((int*)(cbuf.code_end())) = op;
2358    cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
2359  %}
2360
2361  // Used by the MIN/MAX encodings.  Same as a CMOV, but
2362  // the condition comes from opcode-field instead of an argument.
2363  enc_class enc_cmov_reg_minmax( iRegI dst, iRegI src ) %{
2364    int op = (Assembler::arith_op << 30) |
2365             ($dst$$reg << 25) |
2366             (Assembler::movcc_op3 << 19) |
2367             (1 << 18) |                    // cc2 bit for 'icc'
2368             ($primary << 14) |
2369             (0 << 13) |                    // select register move
2370             (0 << 11) |                    // cc1, cc0 bits for 'icc'
2371             ($src$$reg << 0);
2372    *((int*)(cbuf.code_end())) = op;
2373    cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
2374  %}
2375
2376  enc_class enc_cmov_reg_minmax_long( iRegL dst, iRegL src ) %{
2377    int op = (Assembler::arith_op << 30) |
2378             ($dst$$reg << 25) |
2379             (Assembler::movcc_op3 << 19) |
2380             (6 << 16) |                    // cc2 bit for 'xcc'
2381             ($primary << 14) |
2382             (0 << 13) |                    // select register move
2383             (0 << 11) |                    // cc1, cc0 bits for 'icc'
2384             ($src$$reg << 0);
2385    *((int*)(cbuf.code_end())) = op;
2386    cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
2387  %}
2388
2389  // Utility encoding for loading a 64 bit Pointer into a register
2390  // The 64 bit pointer is stored in the generated code stream
2391  enc_class SetPtr( immP src, iRegP rd ) %{
2392    Register dest = reg_to_register_object($rd$$reg);
2393    // [RGV] This next line should be generated from ADLC
2394    if ( _opnds[1]->constant_is_oop() ) {
2395      intptr_t val = $src$$constant;
2396      MacroAssembler _masm(&cbuf);
2397      __ set_oop_constant((jobject)val, dest);
2398    } else {          // non-oop pointers, e.g. card mark base, heap top
2399      emit_ptr(cbuf, $src$$constant, dest, /*ForceRelocatable=*/ false);
2400    }
2401  %}
2402
2403  enc_class Set13( immI13 src, iRegI rd ) %{
2404    emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, $src$$constant );
2405  %}
2406
2407  enc_class SetHi22( immI src, iRegI rd ) %{
2408    emit2_22( cbuf, Assembler::branch_op, $rd$$reg, Assembler::sethi_op2, $src$$constant );
2409  %}
2410
2411  enc_class Set32( immI src, iRegI rd ) %{
2412    MacroAssembler _masm(&cbuf);
2413    __ set($src$$constant, reg_to_register_object($rd$$reg));
2414  %}
2415
2416  enc_class SetNull( iRegI rd ) %{
2417    emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0 );
2418  %}
2419
2420  enc_class call_epilog %{
2421    if( VerifyStackAtCalls ) {
2422      MacroAssembler _masm(&cbuf);
2423      int framesize = ra_->C->frame_slots() << LogBytesPerInt;
2424      Register temp_reg = G3;
2425      __ add(SP, framesize, temp_reg);
2426      __ cmp(temp_reg, FP);
2427      __ breakpoint_trap(Assembler::notEqual, Assembler::ptr_cc);
2428    }
2429  %}
2430
2431  // Long values come back from native calls in O0:O1 in the 32-bit VM, copy the value
2432  // to G1 so the register allocator will not have to deal with the misaligned register
2433  // pair.
2434  enc_class adjust_long_from_native_call %{
2435#ifndef _LP64
2436    if (returns_long()) {
2437      //    sllx  O0,32,O0
2438      emit3_simm13( cbuf, Assembler::arith_op, R_O0_enc, Assembler::sllx_op3, R_O0_enc, 0x1020 );
2439      //    srl   O1,0,O1
2440      emit3_simm13( cbuf, Assembler::arith_op, R_O1_enc, Assembler::srl_op3, R_O1_enc, 0x0000 );
2441      //    or    O0,O1,G1
2442      emit3       ( cbuf, Assembler::arith_op, R_G1_enc, Assembler:: or_op3, R_O0_enc, 0, R_O1_enc );
2443    }
2444#endif
2445  %}
2446
2447  enc_class Java_To_Runtime (method meth) %{    // CALL Java_To_Runtime
2448    // CALL directly to the runtime
2449    // The user of this is responsible for ensuring that R_L7 is empty (killed).
2450    emit_call_reloc(cbuf, $meth$$method, relocInfo::runtime_call_type,
2451                    /*preserve_g2=*/true, /*force far call*/true);
2452  %}
2453
2454  enc_class Java_Static_Call (method meth) %{    // JAVA STATIC CALL
2455    // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
2456    // who we intended to call.
2457    if ( !_method ) {
2458      emit_call_reloc(cbuf, $meth$$method, relocInfo::runtime_call_type);
2459    } else if (_optimized_virtual) {
2460      emit_call_reloc(cbuf, $meth$$method, relocInfo::opt_virtual_call_type);
2461    } else {
2462      emit_call_reloc(cbuf, $meth$$method, relocInfo::static_call_type);
2463    }
2464    if( _method ) {  // Emit stub for static call
2465      emit_java_to_interp(cbuf);
2466    }
2467  %}
2468
2469  enc_class Java_Dynamic_Call (method meth) %{    // JAVA DYNAMIC CALL
2470    MacroAssembler _masm(&cbuf);
2471    __ set_inst_mark();
2472    int vtable_index = this->_vtable_index;
2473    // MachCallDynamicJavaNode::ret_addr_offset uses this same test
2474    if (vtable_index < 0) {
2475      // must be invalid_vtable_index, not nonvirtual_vtable_index
2476      assert(vtable_index == methodOopDesc::invalid_vtable_index, "correct sentinel value");
2477      Register G5_ic_reg = reg_to_register_object(Matcher::inline_cache_reg_encode());
2478      assert(G5_ic_reg == G5_inline_cache_reg, "G5_inline_cache_reg used in assemble_ic_buffer_code()");
2479      assert(G5_ic_reg == G5_megamorphic_method, "G5_megamorphic_method used in megamorphic call stub");
2480      // !!!!!
2481      // Generate  "set 0x01, R_G5", placeholder instruction to load oop-info
2482      // emit_call_dynamic_prologue( cbuf );
2483      __ set_oop((jobject)Universe::non_oop_word(), G5_ic_reg);
2484
2485      address  virtual_call_oop_addr = __ inst_mark();
2486      // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
2487      // who we intended to call.
2488      __ relocate(virtual_call_Relocation::spec(virtual_call_oop_addr));
2489      emit_call_reloc(cbuf, $meth$$method, relocInfo::none);
2490    } else {
2491      assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
2492      // Just go thru the vtable
2493      // get receiver klass (receiver already checked for non-null)
2494      // If we end up going thru a c2i adapter interpreter expects method in G5
2495      int off = __ offset();
2496      __ load_klass(O0, G3_scratch);
2497      int klass_load_size;
2498      if (UseCompressedOops) {
2499        klass_load_size = 3*BytesPerInstWord;
2500      } else {
2501        klass_load_size = 1*BytesPerInstWord;
2502      }
2503      int entry_offset = instanceKlass::vtable_start_offset() + vtable_index*vtableEntry::size();
2504      int v_off = entry_offset*wordSize + vtableEntry::method_offset_in_bytes();
2505      if( __ is_simm13(v_off) ) {
2506        __ ld_ptr(G3, v_off, G5_method);
2507      } else {
2508        // Generate 2 instructions
2509        __ Assembler::sethi(v_off & ~0x3ff, G5_method);
2510        __ or3(G5_method, v_off & 0x3ff, G5_method);
2511        // ld_ptr, set_hi, set
2512        assert(__ offset() - off == klass_load_size + 2*BytesPerInstWord,
2513               "Unexpected instruction size(s)");
2514        __ ld_ptr(G3, G5_method, G5_method);
2515      }
2516      // NOTE: for vtable dispatches, the vtable entry will never be null.
2517      // However it may very well end up in handle_wrong_method if the
2518      // method is abstract for the particular class.
2519      __ ld_ptr(G5_method, in_bytes(methodOopDesc::from_compiled_offset()), G3_scratch);
2520      // jump to target (either compiled code or c2iadapter)
2521      __ jmpl(G3_scratch, G0, O7);
2522      __ delayed()->nop();
2523    }
2524  %}
2525
2526  enc_class Java_Compiled_Call (method meth) %{    // JAVA COMPILED CALL
2527    MacroAssembler _masm(&cbuf);
2528
2529    Register G5_ic_reg = reg_to_register_object(Matcher::inline_cache_reg_encode());
2530    Register temp_reg = G3;   // caller must kill G3!  We cannot reuse G5_ic_reg here because
2531                              // we might be calling a C2I adapter which needs it.
2532
2533    assert(temp_reg != G5_ic_reg, "conflicting registers");
2534    // Load nmethod
2535    __ ld_ptr(G5_ic_reg, in_bytes(methodOopDesc::from_compiled_offset()), temp_reg);
2536
2537    // CALL to compiled java, indirect the contents of G3
2538    __ set_inst_mark();
2539    __ callr(temp_reg, G0);
2540    __ delayed()->nop();
2541  %}
2542
2543enc_class idiv_reg(iRegIsafe src1, iRegIsafe src2, iRegIsafe dst) %{
2544    MacroAssembler _masm(&cbuf);
2545    Register Rdividend = reg_to_register_object($src1$$reg);
2546    Register Rdivisor = reg_to_register_object($src2$$reg);
2547    Register Rresult = reg_to_register_object($dst$$reg);
2548
2549    __ sra(Rdivisor, 0, Rdivisor);
2550    __ sra(Rdividend, 0, Rdividend);
2551    __ sdivx(Rdividend, Rdivisor, Rresult);
2552%}
2553
2554enc_class idiv_imm(iRegIsafe src1, immI13 imm, iRegIsafe dst) %{
2555    MacroAssembler _masm(&cbuf);
2556
2557    Register Rdividend = reg_to_register_object($src1$$reg);
2558    int divisor = $imm$$constant;
2559    Register Rresult = reg_to_register_object($dst$$reg);
2560
2561    __ sra(Rdividend, 0, Rdividend);
2562    __ sdivx(Rdividend, divisor, Rresult);
2563%}
2564
2565enc_class enc_mul_hi(iRegIsafe dst, iRegIsafe src1, iRegIsafe src2) %{
2566    MacroAssembler _masm(&cbuf);
2567    Register Rsrc1 = reg_to_register_object($src1$$reg);
2568    Register Rsrc2 = reg_to_register_object($src2$$reg);
2569    Register Rdst  = reg_to_register_object($dst$$reg);
2570
2571    __ sra( Rsrc1, 0, Rsrc1 );
2572    __ sra( Rsrc2, 0, Rsrc2 );
2573    __ mulx( Rsrc1, Rsrc2, Rdst );
2574    __ srlx( Rdst, 32, Rdst );
2575%}
2576
2577enc_class irem_reg(iRegIsafe src1, iRegIsafe src2, iRegIsafe dst, o7RegL scratch) %{
2578    MacroAssembler _masm(&cbuf);
2579    Register Rdividend = reg_to_register_object($src1$$reg);
2580    Register Rdivisor = reg_to_register_object($src2$$reg);
2581    Register Rresult = reg_to_register_object($dst$$reg);
2582    Register Rscratch = reg_to_register_object($scratch$$reg);
2583
2584    assert(Rdividend != Rscratch, "");
2585    assert(Rdivisor  != Rscratch, "");
2586
2587    __ sra(Rdividend, 0, Rdividend);
2588    __ sra(Rdivisor, 0, Rdivisor);
2589    __ sdivx(Rdividend, Rdivisor, Rscratch);
2590    __ mulx(Rscratch, Rdivisor, Rscratch);
2591    __ sub(Rdividend, Rscratch, Rresult);
2592%}
2593
2594enc_class irem_imm(iRegIsafe src1, immI13 imm, iRegIsafe dst, o7RegL scratch) %{
2595    MacroAssembler _masm(&cbuf);
2596
2597    Register Rdividend = reg_to_register_object($src1$$reg);
2598    int divisor = $imm$$constant;
2599    Register Rresult = reg_to_register_object($dst$$reg);
2600    Register Rscratch = reg_to_register_object($scratch$$reg);
2601
2602    assert(Rdividend != Rscratch, "");
2603
2604    __ sra(Rdividend, 0, Rdividend);
2605    __ sdivx(Rdividend, divisor, Rscratch);
2606    __ mulx(Rscratch, divisor, Rscratch);
2607    __ sub(Rdividend, Rscratch, Rresult);
2608%}
2609
2610enc_class fabss (sflt_reg dst, sflt_reg src) %{
2611    MacroAssembler _masm(&cbuf);
2612
2613    FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
2614    FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
2615
2616    __ fabs(FloatRegisterImpl::S, Fsrc, Fdst);
2617%}
2618
2619enc_class fabsd (dflt_reg dst, dflt_reg src) %{
2620    MacroAssembler _masm(&cbuf);
2621
2622    FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
2623    FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
2624
2625    __ fabs(FloatRegisterImpl::D, Fsrc, Fdst);
2626%}
2627
2628enc_class fnegd (dflt_reg dst, dflt_reg src) %{
2629    MacroAssembler _masm(&cbuf);
2630
2631    FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
2632    FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
2633
2634    __ fneg(FloatRegisterImpl::D, Fsrc, Fdst);
2635%}
2636
2637enc_class fsqrts (sflt_reg dst, sflt_reg src) %{
2638    MacroAssembler _masm(&cbuf);
2639
2640    FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
2641    FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
2642
2643    __ fsqrt(FloatRegisterImpl::S, Fsrc, Fdst);
2644%}
2645
2646enc_class fsqrtd (dflt_reg dst, dflt_reg src) %{
2647    MacroAssembler _masm(&cbuf);
2648
2649    FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
2650    FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
2651
2652    __ fsqrt(FloatRegisterImpl::D, Fsrc, Fdst);
2653%}
2654
2655enc_class fmovs (dflt_reg dst, dflt_reg src) %{
2656    MacroAssembler _masm(&cbuf);
2657
2658    FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
2659    FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
2660
2661    __ fmov(FloatRegisterImpl::S, Fsrc, Fdst);
2662%}
2663
2664enc_class fmovd (dflt_reg dst, dflt_reg src) %{
2665    MacroAssembler _masm(&cbuf);
2666
2667    FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
2668    FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
2669
2670    __ fmov(FloatRegisterImpl::D, Fsrc, Fdst);
2671%}
2672
2673enc_class Fast_Lock(iRegP oop, iRegP box, o7RegP scratch, iRegP scratch2) %{
2674    MacroAssembler _masm(&cbuf);
2675
2676    Register Roop  = reg_to_register_object($oop$$reg);
2677    Register Rbox  = reg_to_register_object($box$$reg);
2678    Register Rscratch = reg_to_register_object($scratch$$reg);
2679    Register Rmark =    reg_to_register_object($scratch2$$reg);
2680
2681    assert(Roop  != Rscratch, "");
2682    assert(Roop  != Rmark, "");
2683    assert(Rbox  != Rscratch, "");
2684    assert(Rbox  != Rmark, "");
2685
2686    __ compiler_lock_object(Roop, Rmark, Rbox, Rscratch, _counters);
2687%}
2688
2689enc_class Fast_Unlock(iRegP oop, iRegP box, o7RegP scratch, iRegP scratch2) %{
2690    MacroAssembler _masm(&cbuf);
2691
2692    Register Roop  = reg_to_register_object($oop$$reg);
2693    Register Rbox  = reg_to_register_object($box$$reg);
2694    Register Rscratch = reg_to_register_object($scratch$$reg);
2695    Register Rmark =    reg_to_register_object($scratch2$$reg);
2696
2697    assert(Roop  != Rscratch, "");
2698    assert(Roop  != Rmark, "");
2699    assert(Rbox  != Rscratch, "");
2700    assert(Rbox  != Rmark, "");
2701
2702    __ compiler_unlock_object(Roop, Rmark, Rbox, Rscratch);
2703  %}
2704
2705  enc_class enc_cas( iRegP mem, iRegP old, iRegP new ) %{
2706    MacroAssembler _masm(&cbuf);
2707    Register Rmem = reg_to_register_object($mem$$reg);
2708    Register Rold = reg_to_register_object($old$$reg);
2709    Register Rnew = reg_to_register_object($new$$reg);
2710
2711    // casx_under_lock picks 1 of 3 encodings:
2712    // For 32-bit pointers you get a 32-bit CAS
2713    // For 64-bit pointers you get a 64-bit CASX
2714    __ casx_under_lock(Rmem, Rold, Rnew, // Swap(*Rmem,Rnew) if *Rmem == Rold
2715                        (address) StubRoutines::Sparc::atomic_memory_operation_lock_addr());
2716    __ cmp( Rold, Rnew );
2717  %}
2718
2719  enc_class enc_casx( iRegP mem, iRegL old, iRegL new) %{
2720    Register Rmem = reg_to_register_object($mem$$reg);
2721    Register Rold = reg_to_register_object($old$$reg);
2722    Register Rnew = reg_to_register_object($new$$reg);
2723
2724    MacroAssembler _masm(&cbuf);
2725    __ mov(Rnew, O7);
2726    __ casx(Rmem, Rold, O7);
2727    __ cmp( Rold, O7 );
2728  %}
2729
2730  // raw int cas, used for compareAndSwap
2731  enc_class enc_casi( iRegP mem, iRegL old, iRegL new) %{
2732    Register Rmem = reg_to_register_object($mem$$reg);
2733    Register Rold = reg_to_register_object($old$$reg);
2734    Register Rnew = reg_to_register_object($new$$reg);
2735
2736    MacroAssembler _masm(&cbuf);
2737    __ mov(Rnew, O7);
2738    __ cas(Rmem, Rold, O7);
2739    __ cmp( Rold, O7 );
2740  %}
2741
2742  enc_class enc_lflags_ne_to_boolean( iRegI res ) %{
2743    Register Rres = reg_to_register_object($res$$reg);
2744
2745    MacroAssembler _masm(&cbuf);
2746    __ mov(1, Rres);
2747    __ movcc( Assembler::notEqual, false, Assembler::xcc, G0, Rres );
2748  %}
2749
2750  enc_class enc_iflags_ne_to_boolean( iRegI res ) %{
2751    Register Rres = reg_to_register_object($res$$reg);
2752
2753    MacroAssembler _masm(&cbuf);
2754    __ mov(1, Rres);
2755    __ movcc( Assembler::notEqual, false, Assembler::icc, G0, Rres );
2756  %}
2757
2758  enc_class floating_cmp ( iRegP dst, regF src1, regF src2 ) %{
2759    MacroAssembler _masm(&cbuf);
2760    Register Rdst = reg_to_register_object($dst$$reg);
2761    FloatRegister Fsrc1 = $primary ? reg_to_SingleFloatRegister_object($src1$$reg)
2762                                     : reg_to_DoubleFloatRegister_object($src1$$reg);
2763    FloatRegister Fsrc2 = $primary ? reg_to_SingleFloatRegister_object($src2$$reg)
2764                                     : reg_to_DoubleFloatRegister_object($src2$$reg);
2765
2766    // Convert condition code fcc0 into -1,0,1; unordered reports less-than (-1)
2767    __ float_cmp( $primary, -1, Fsrc1, Fsrc2, Rdst);
2768  %}
2769
2770  enc_class LdImmL (immL src, iRegL dst, o7RegL tmp) %{   // Load Immediate
2771    MacroAssembler _masm(&cbuf);
2772    Register dest = reg_to_register_object($dst$$reg);
2773    Register temp = reg_to_register_object($tmp$$reg);
2774    __ set64( $src$$constant, dest, temp );
2775  %}
2776
2777  enc_class LdImmF(immF src, regF dst, o7RegP tmp) %{    // Load Immediate
2778    address float_address = MacroAssembler(&cbuf).float_constant($src$$constant);
2779    RelocationHolder rspec = internal_word_Relocation::spec(float_address);
2780#ifdef _LP64
2781    Register   tmp_reg = reg_to_register_object($tmp$$reg);
2782    cbuf.relocate(cbuf.code_end(), rspec, 0);
2783    emit_ptr(cbuf, (intptr_t)float_address, tmp_reg, /*ForceRelocatable=*/ true);
2784    emit3_simm10( cbuf, Assembler::ldst_op, $dst$$reg, Assembler::ldf_op3, $tmp$$reg, 0 );
2785#else  // _LP64
2786    uint *code;
2787    int tmp_reg = $tmp$$reg;
2788
2789    cbuf.relocate(cbuf.code_end(), rspec, 0);
2790    emit2_22( cbuf, Assembler::branch_op, tmp_reg, Assembler::sethi_op2, (intptr_t) float_address );
2791
2792    cbuf.relocate(cbuf.code_end(), rspec, 0);
2793    emit3_simm10( cbuf, Assembler::ldst_op, $dst$$reg, Assembler::ldf_op3, tmp_reg, (intptr_t) float_address );
2794#endif // _LP64
2795  %}
2796
2797  enc_class LdImmD(immD src, regD dst, o7RegP tmp) %{    // Load Immediate
2798    address double_address = MacroAssembler(&cbuf).double_constant($src$$constant);
2799    RelocationHolder rspec = internal_word_Relocation::spec(double_address);
2800#ifdef _LP64
2801    Register   tmp_reg = reg_to_register_object($tmp$$reg);
2802    cbuf.relocate(cbuf.code_end(), rspec, 0);
2803    emit_ptr(cbuf, (intptr_t)double_address, tmp_reg, /*ForceRelocatable=*/ true);
2804    emit3_simm10( cbuf, Assembler::ldst_op, $dst$$reg, Assembler::lddf_op3, $tmp$$reg, 0 );
2805#else // _LP64
2806    uint *code;
2807    int tmp_reg = $tmp$$reg;
2808
2809    cbuf.relocate(cbuf.code_end(), rspec, 0);
2810    emit2_22( cbuf, Assembler::branch_op, tmp_reg, Assembler::sethi_op2, (intptr_t) double_address );
2811
2812    cbuf.relocate(cbuf.code_end(), rspec, 0);
2813    emit3_simm10( cbuf, Assembler::ldst_op, $dst$$reg, Assembler::lddf_op3, tmp_reg, (intptr_t) double_address );
2814#endif // _LP64
2815  %}
2816
2817  enc_class LdReplImmI(immI src, regD dst, o7RegP tmp, int count, int width) %{
2818    // Load a constant replicated "count" times with width "width"
2819    int bit_width = $width$$constant * 8;
2820    jlong elt_val = $src$$constant;
2821    elt_val  &= (((jlong)1) << bit_width) - 1; // mask off sign bits
2822    jlong val = elt_val;
2823    for (int i = 0; i < $count$$constant - 1; i++) {
2824        val <<= bit_width;
2825        val |= elt_val;
2826    }
2827    jdouble dval = *(jdouble*)&val; // coerce to double type
2828    address double_address = MacroAssembler(&cbuf).double_constant(dval);
2829    RelocationHolder rspec = internal_word_Relocation::spec(double_address);
2830#ifdef _LP64
2831    Register   tmp_reg = reg_to_register_object($tmp$$reg);
2832    cbuf.relocate(cbuf.code_end(), rspec, 0);
2833    emit_ptr(cbuf, (intptr_t)double_address, tmp_reg, /*ForceRelocatable=*/ true);
2834    emit3_simm10( cbuf, Assembler::ldst_op, $dst$$reg, Assembler::lddf_op3, $tmp$$reg, 0 );
2835#else // _LP64
2836    uint *code;
2837    int tmp_reg = $tmp$$reg;
2838
2839    cbuf.relocate(cbuf.code_end(), rspec, 0);
2840    emit2_22( cbuf, Assembler::branch_op, tmp_reg, Assembler::sethi_op2, (intptr_t) double_address );
2841
2842    cbuf.relocate(cbuf.code_end(), rspec, 0);
2843    emit3_simm10( cbuf, Assembler::ldst_op, $dst$$reg, Assembler::lddf_op3, tmp_reg, (intptr_t) double_address );
2844#endif // _LP64
2845  %}
2846
2847
2848  enc_class ShouldNotEncodeThis ( ) %{
2849    ShouldNotCallThis();
2850  %}
2851
2852  // Compiler ensures base is doubleword aligned and cnt is count of doublewords
2853  enc_class enc_Clear_Array(iRegX cnt, iRegP base, iRegX temp) %{
2854    MacroAssembler _masm(&cbuf);
2855    Register    nof_bytes_arg   = reg_to_register_object($cnt$$reg);
2856    Register    nof_bytes_tmp    = reg_to_register_object($temp$$reg);
2857    Register    base_pointer_arg = reg_to_register_object($base$$reg);
2858
2859    Label loop;
2860    __ mov(nof_bytes_arg, nof_bytes_tmp);
2861
2862    // Loop and clear, walking backwards through the array.
2863    // nof_bytes_tmp (if >0) is always the number of bytes to zero
2864    __ bind(loop);
2865    __ deccc(nof_bytes_tmp, 8);
2866    __ br(Assembler::greaterEqual, true, Assembler::pt, loop);
2867    __ delayed()-> stx(G0, base_pointer_arg, nof_bytes_tmp);
2868    // %%%% this mini-loop must not cross a cache boundary!
2869  %}
2870
2871
2872  enc_class enc_String_Compare(o0RegP str1, o1RegP str2, g3RegP tmp1, g4RegP tmp2, notemp_iRegI result) %{
2873    Label Ldone, Lloop;
2874    MacroAssembler _masm(&cbuf);
2875
2876    Register   str1_reg = reg_to_register_object($str1$$reg);
2877    Register   str2_reg = reg_to_register_object($str2$$reg);
2878    Register   tmp1_reg = reg_to_register_object($tmp1$$reg);
2879    Register   tmp2_reg = reg_to_register_object($tmp2$$reg);
2880    Register result_reg = reg_to_register_object($result$$reg);
2881
2882    // Get the first character position in both strings
2883    //         [8] char array, [12] offset, [16] count
2884    int  value_offset = java_lang_String:: value_offset_in_bytes();
2885    int offset_offset = java_lang_String::offset_offset_in_bytes();
2886    int  count_offset = java_lang_String:: count_offset_in_bytes();
2887
2888    // load str1 (jchar*) base address into tmp1_reg
2889    __ load_heap_oop(Address(str1_reg, 0,  value_offset), tmp1_reg);
2890    __ ld(Address(str1_reg, 0, offset_offset), result_reg);
2891    __ add(tmp1_reg, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp1_reg);
2892    __    ld(Address(str1_reg, 0, count_offset), str1_reg); // hoisted
2893    __ sll(result_reg, exact_log2(sizeof(jchar)), result_reg);
2894    __    load_heap_oop(Address(str2_reg, 0,  value_offset), tmp2_reg); // hoisted
2895    __ add(result_reg, tmp1_reg, tmp1_reg);
2896
2897    // load str2 (jchar*) base address into tmp2_reg
2898    // __ ld_ptr(Address(str2_reg, 0,  value_offset), tmp2_reg); // hoisted
2899    __ ld(Address(str2_reg, 0, offset_offset), result_reg);
2900    __ add(tmp2_reg, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp2_reg);
2901    __    ld(Address(str2_reg, 0, count_offset), str2_reg); // hoisted
2902    __ sll(result_reg, exact_log2(sizeof(jchar)), result_reg);
2903    __   subcc(str1_reg, str2_reg, O7); // hoisted
2904    __ add(result_reg, tmp2_reg, tmp2_reg);
2905
2906    // Compute the minimum of the string lengths(str1_reg) and the
2907    // difference of the string lengths (stack)
2908
2909    // discard string base pointers, after loading up the lengths
2910    // __ ld(Address(str1_reg, 0, count_offset), str1_reg); // hoisted
2911    // __ ld(Address(str2_reg, 0, count_offset), str2_reg); // hoisted
2912
2913    // See if the lengths are different, and calculate min in str1_reg.
2914    // Stash diff in O7 in case we need it for a tie-breaker.
2915    Label Lskip;
2916    // __ subcc(str1_reg, str2_reg, O7); // hoisted
2917    __ sll(str1_reg, exact_log2(sizeof(jchar)), str1_reg); // scale the limit
2918    __ br(Assembler::greater, true, Assembler::pt, Lskip);
2919    // str2 is shorter, so use its count:
2920    __ delayed()->sll(str2_reg, exact_log2(sizeof(jchar)), str1_reg); // scale the limit
2921    __ bind(Lskip);
2922
2923    // reallocate str1_reg, str2_reg, result_reg
2924    // Note:  limit_reg holds the string length pre-scaled by 2
2925    Register limit_reg =   str1_reg;
2926    Register  chr2_reg =   str2_reg;
2927    Register  chr1_reg = result_reg;
2928    // tmp{12} are the base pointers
2929
2930    // Is the minimum length zero?
2931    __ cmp(limit_reg, (int)(0 * sizeof(jchar))); // use cast to resolve overloading ambiguity
2932    __ br(Assembler::equal, true, Assembler::pn, Ldone);
2933    __ delayed()->mov(O7, result_reg);  // result is difference in lengths
2934
2935    // Load first characters
2936    __ lduh(tmp1_reg, 0, chr1_reg);
2937    __ lduh(tmp2_reg, 0, chr2_reg);
2938
2939    // Compare first characters
2940    __ subcc(chr1_reg, chr2_reg, chr1_reg);
2941    __ br(Assembler::notZero, false, Assembler::pt,  Ldone);
2942    assert(chr1_reg == result_reg, "result must be pre-placed");
2943    __ delayed()->nop();
2944
2945    {
2946      // Check after comparing first character to see if strings are equivalent
2947      Label LSkip2;
2948      // Check if the strings start at same location
2949      __ cmp(tmp1_reg, tmp2_reg);
2950      __ brx(Assembler::notEqual, true, Assembler::pt, LSkip2);
2951      __ delayed()->nop();
2952
2953      // Check if the length difference is zero (in O7)
2954      __ cmp(G0, O7);
2955      __ br(Assembler::equal, true, Assembler::pn, Ldone);
2956      __ delayed()->mov(G0, result_reg);  // result is zero
2957
2958      // Strings might not be equal
2959      __ bind(LSkip2);
2960    }
2961
2962    __ subcc(limit_reg, 1 * sizeof(jchar), chr1_reg);
2963    __ br(Assembler::equal, true, Assembler::pn, Ldone);
2964    __ delayed()->mov(O7, result_reg);  // result is difference in lengths
2965
2966    // Shift tmp1_reg and tmp2_reg to the end of the arrays, negate limit
2967    __ add(tmp1_reg, limit_reg, tmp1_reg);
2968    __ add(tmp2_reg, limit_reg, tmp2_reg);
2969    __ neg(chr1_reg, limit_reg);  // limit = -(limit-2)
2970
2971    // Compare the rest of the characters
2972    __ lduh(tmp1_reg, limit_reg, chr1_reg);
2973    __ bind(Lloop);
2974    // __ lduh(tmp1_reg, limit_reg, chr1_reg); // hoisted
2975    __ lduh(tmp2_reg, limit_reg, chr2_reg);
2976    __ subcc(chr1_reg, chr2_reg, chr1_reg);
2977    __ br(Assembler::notZero, false, Assembler::pt, Ldone);
2978    assert(chr1_reg == result_reg, "result must be pre-placed");
2979    __ delayed()->inccc(limit_reg, sizeof(jchar));
2980    // annul LDUH if branch is not taken to prevent access past end of string
2981    __ br(Assembler::notZero, true, Assembler::pt, Lloop);
2982    __ delayed()->lduh(tmp1_reg, limit_reg, chr1_reg); // hoisted
2983
2984    // If strings are equal up to min length, return the length difference.
2985    __ mov(O7, result_reg);
2986
2987    // Otherwise, return the difference between the first mismatched chars.
2988    __ bind(Ldone);
2989  %}
2990
2991  enc_class enc_rethrow() %{
2992    cbuf.set_inst_mark();
2993    Register temp_reg = G3;
2994    Address rethrow_stub(temp_reg, OptoRuntime::rethrow_stub());
2995    assert(temp_reg != reg_to_register_object(R_I0_num), "temp must not break oop_reg");
2996    MacroAssembler _masm(&cbuf);
2997#ifdef ASSERT
2998    __ save_frame(0);
2999    Address last_rethrow_addr(L1, (address)&last_rethrow);
3000    __ sethi(last_rethrow_addr);
3001    __ get_pc(L2);
3002    __ inc(L2, 3 * BytesPerInstWord);  // skip this & 2 more insns to point at jump_to
3003    __ st_ptr(L2, last_rethrow_addr);
3004    __ restore();
3005#endif
3006    __ JUMP(rethrow_stub, 0); // sethi;jmp
3007    __ delayed()->nop();
3008  %}
3009
3010  enc_class emit_mem_nop() %{
3011    // Generates the instruction LDUXA [o6,g0],#0x82,g0
3012    unsigned int *code = (unsigned int*)cbuf.code_end();
3013    *code = (unsigned int)0xc0839040;
3014    cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
3015  %}
3016
3017  enc_class emit_fadd_nop() %{
3018    // Generates the instruction FMOVS f31,f31
3019    unsigned int *code = (unsigned int*)cbuf.code_end();
3020    *code = (unsigned int)0xbfa0003f;
3021    cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
3022  %}
3023
3024  enc_class emit_br_nop() %{
3025    // Generates the instruction BPN,PN .
3026    unsigned int *code = (unsigned int*)cbuf.code_end();
3027    *code = (unsigned int)0x00400000;
3028    cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
3029  %}
3030
3031  enc_class enc_membar_acquire %{
3032    MacroAssembler _masm(&cbuf);
3033    __ membar( Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::LoadLoad) );
3034  %}
3035
3036  enc_class enc_membar_release %{
3037    MacroAssembler _masm(&cbuf);
3038    __ membar( Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::StoreStore) );
3039  %}
3040
3041  enc_class enc_membar_volatile %{
3042    MacroAssembler _masm(&cbuf);
3043    __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad) );
3044  %}
3045
3046  enc_class enc_repl8b( iRegI src, iRegL dst ) %{
3047    MacroAssembler _masm(&cbuf);
3048    Register src_reg = reg_to_register_object($src$$reg);
3049    Register dst_reg = reg_to_register_object($dst$$reg);
3050    __ sllx(src_reg, 56, dst_reg);
3051    __ srlx(dst_reg,  8, O7);
3052    __ or3 (dst_reg, O7, dst_reg);
3053    __ srlx(dst_reg, 16, O7);
3054    __ or3 (dst_reg, O7, dst_reg);
3055    __ srlx(dst_reg, 32, O7);
3056    __ or3 (dst_reg, O7, dst_reg);
3057  %}
3058
3059  enc_class enc_repl4b( iRegI src, iRegL dst ) %{
3060    MacroAssembler _masm(&cbuf);
3061    Register src_reg = reg_to_register_object($src$$reg);
3062    Register dst_reg = reg_to_register_object($dst$$reg);
3063    __ sll(src_reg, 24, dst_reg);
3064    __ srl(dst_reg,  8, O7);
3065    __ or3(dst_reg, O7, dst_reg);
3066    __ srl(dst_reg, 16, O7);
3067    __ or3(dst_reg, O7, dst_reg);
3068  %}
3069
3070  enc_class enc_repl4s( iRegI src, iRegL dst ) %{
3071    MacroAssembler _masm(&cbuf);
3072    Register src_reg = reg_to_register_object($src$$reg);
3073    Register dst_reg = reg_to_register_object($dst$$reg);
3074    __ sllx(src_reg, 48, dst_reg);
3075    __ srlx(dst_reg, 16, O7);
3076    __ or3 (dst_reg, O7, dst_reg);
3077    __ srlx(dst_reg, 32, O7);
3078    __ or3 (dst_reg, O7, dst_reg);
3079  %}
3080
3081  enc_class enc_repl2i( iRegI src, iRegL dst ) %{
3082    MacroAssembler _masm(&cbuf);
3083    Register src_reg = reg_to_register_object($src$$reg);
3084    Register dst_reg = reg_to_register_object($dst$$reg);
3085    __ sllx(src_reg, 32, dst_reg);
3086    __ srlx(dst_reg, 32, O7);
3087    __ or3 (dst_reg, O7, dst_reg);
3088  %}
3089
3090%}
3091
3092//----------FRAME--------------------------------------------------------------
3093// Definition of frame structure and management information.
3094//
3095//  S T A C K   L A Y O U T    Allocators stack-slot number
3096//                             |   (to get allocators register number
3097//  G  Owned by    |        |  v    add VMRegImpl::stack0)
3098//  r   CALLER     |        |
3099//  o     |        +--------+      pad to even-align allocators stack-slot
3100//  w     V        |  pad0  |        numbers; owned by CALLER
3101//  t   -----------+--------+----> Matcher::_in_arg_limit, unaligned
3102//  h     ^        |   in   |  5
3103//        |        |  args  |  4   Holes in incoming args owned by SELF
3104//  |     |        |        |  3
3105//  |     |        +--------+
3106//  V     |        | old out|      Empty on Intel, window on Sparc
3107//        |    old |preserve|      Must be even aligned.
3108//        |     SP-+--------+----> Matcher::_old_SP, 8 (or 16 in LP64)-byte aligned
3109//        |        |   in   |  3   area for Intel ret address
3110//     Owned by    |preserve|      Empty on Sparc.
3111//       SELF      +--------+
3112//        |        |  pad2  |  2   pad to align old SP
3113//        |        +--------+  1
3114//        |        | locks  |  0
3115//        |        +--------+----> VMRegImpl::stack0, 8 (or 16 in LP64)-byte aligned
3116//        |        |  pad1  | 11   pad to align new SP
3117//        |        +--------+
3118//        |        |        | 10
3119//        |        | spills |  9   spills
3120//        V        |        |  8   (pad0 slot for callee)
3121//      -----------+--------+----> Matcher::_out_arg_limit, unaligned
3122//        ^        |  out   |  7
3123//        |        |  args  |  6   Holes in outgoing args owned by CALLEE
3124//     Owned by    +--------+
3125//      CALLEE     | new out|  6   Empty on Intel, window on Sparc
3126//        |    new |preserve|      Must be even-aligned.
3127//        |     SP-+--------+----> Matcher::_new_SP, even aligned
3128//        |        |        |
3129//
3130// Note 1: Only region 8-11 is determined by the allocator.  Region 0-5 is
3131//         known from SELF's arguments and the Java calling convention.
3132//         Region 6-7 is determined per call site.
3133// Note 2: If the calling convention leaves holes in the incoming argument
3134//         area, those holes are owned by SELF.  Holes in the outgoing area
3135//         are owned by the CALLEE.  Holes should not be nessecary in the
3136//         incoming area, as the Java calling convention is completely under
3137//         the control of the AD file.  Doubles can be sorted and packed to
3138//         avoid holes.  Holes in the outgoing arguments may be nessecary for
3139//         varargs C calling conventions.
3140// Note 3: Region 0-3 is even aligned, with pad2 as needed.  Region 3-5 is
3141//         even aligned with pad0 as needed.
3142//         Region 6 is even aligned.  Region 6-7 is NOT even aligned;
3143//         region 6-11 is even aligned; it may be padded out more so that
3144//         the region from SP to FP meets the minimum stack alignment.
3145
3146frame %{
3147  // What direction does stack grow in (assumed to be same for native & Java)
3148  stack_direction(TOWARDS_LOW);
3149
3150  // These two registers define part of the calling convention
3151  // between compiled code and the interpreter.
3152  inline_cache_reg(R_G5);                // Inline Cache Register or methodOop for I2C
3153  interpreter_method_oop_reg(R_G5);      // Method Oop Register when calling interpreter
3154
3155  // Optional: name the operand used by cisc-spilling to access [stack_pointer + offset]
3156  cisc_spilling_operand_name(indOffset);
3157
3158  // Number of stack slots consumed by a Monitor enter
3159#ifdef _LP64
3160  sync_stack_slots(2);
3161#else
3162  sync_stack_slots(1);
3163#endif
3164
3165  // Compiled code's Frame Pointer
3166  frame_pointer(R_SP);
3167
3168  // Stack alignment requirement
3169  stack_alignment(StackAlignmentInBytes);
3170  //  LP64: Alignment size in bytes (128-bit -> 16 bytes)
3171  // !LP64: Alignment size in bytes (64-bit  ->  8 bytes)
3172
3173  // Number of stack slots between incoming argument block and the start of
3174  // a new frame.  The PROLOG must add this many slots to the stack.  The
3175  // EPILOG must remove this many slots.
3176  in_preserve_stack_slots(0);
3177
3178  // Number of outgoing stack slots killed above the out_preserve_stack_slots
3179  // for calls to C.  Supports the var-args backing area for register parms.
3180  // ADLC doesn't support parsing expressions, so I folded the math by hand.
3181#ifdef _LP64
3182  // (callee_register_argument_save_area_words (6) + callee_aggregate_return_pointer_words (0)) * 2-stack-slots-per-word
3183  varargs_C_out_slots_killed(12);
3184#else
3185  // (callee_register_argument_save_area_words (6) + callee_aggregate_return_pointer_words (1)) * 1-stack-slots-per-word
3186  varargs_C_out_slots_killed( 7);
3187#endif
3188
3189  // The after-PROLOG location of the return address.  Location of
3190  // return address specifies a type (REG or STACK) and a number
3191  // representing the register number (i.e. - use a register name) or
3192  // stack slot.
3193  return_addr(REG R_I7);          // Ret Addr is in register I7
3194
3195  // Body of function which returns an OptoRegs array locating
3196  // arguments either in registers or in stack slots for calling
3197  // java
3198  calling_convention %{
3199    (void) SharedRuntime::java_calling_convention(sig_bt, regs, length, is_outgoing);
3200
3201  %}
3202
3203  // Body of function which returns an OptoRegs array locating
3204  // arguments either in registers or in stack slots for callin
3205  // C.
3206  c_calling_convention %{
3207    // This is obviously always outgoing
3208    (void) SharedRuntime::c_calling_convention(sig_bt, regs, length);
3209  %}
3210
3211  // Location of native (C/C++) and interpreter return values.  This is specified to
3212  // be the  same as Java.  In the 32-bit VM, long values are actually returned from
3213  // native calls in O0:O1 and returned to the interpreter in I0:I1.  The copying
3214  // to and from the register pairs is done by the appropriate call and epilog
3215  // opcodes.  This simplifies the register allocator.
3216  c_return_value %{
3217    assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
3218#ifdef     _LP64
3219    static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_O0_num };
3220    static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_O0H_num,    OptoReg::Bad, R_F1_num, R_O0H_num};
3221    static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_I0_num };
3222    static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_I0H_num,    OptoReg::Bad, R_F1_num, R_I0H_num};
3223#else  // !_LP64
3224    static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_G1_num };
3225    static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num };
3226    static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_G1_num };
3227    static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num };
3228#endif
3229    return OptoRegPair( (is_outgoing?hi_out:hi_in)[ideal_reg],
3230                        (is_outgoing?lo_out:lo_in)[ideal_reg] );
3231  %}
3232
3233  // Location of compiled Java return values.  Same as C
3234  return_value %{
3235    assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
3236#ifdef     _LP64
3237    static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_O0_num };
3238    static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_O0H_num,    OptoReg::Bad, R_F1_num, R_O0H_num};
3239    static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_I0_num };
3240    static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_I0H_num,    OptoReg::Bad, R_F1_num, R_I0H_num};
3241#else  // !_LP64
3242    static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_G1_num };
3243    static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num};
3244    static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_G1_num };
3245    static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num};
3246#endif
3247    return OptoRegPair( (is_outgoing?hi_out:hi_in)[ideal_reg],
3248                        (is_outgoing?lo_out:lo_in)[ideal_reg] );
3249  %}
3250
3251%}
3252
3253
3254//----------ATTRIBUTES---------------------------------------------------------
3255//----------Operand Attributes-------------------------------------------------
3256op_attrib op_cost(1);          // Required cost attribute
3257
3258//----------Instruction Attributes---------------------------------------------
3259ins_attrib ins_cost(DEFAULT_COST); // Required cost attribute
3260ins_attrib ins_size(32);       // Required size attribute (in bits)
3261ins_attrib ins_pc_relative(0); // Required PC Relative flag
3262ins_attrib ins_short_branch(0); // Required flag: is this instruction a
3263                                // non-matching short branch variant of some
3264                                                            // long branch?
3265
3266//----------OPERANDS-----------------------------------------------------------
3267// Operand definitions must precede instruction definitions for correct parsing
3268// in the ADLC because operands constitute user defined types which are used in
3269// instruction definitions.
3270
3271//----------Simple Operands----------------------------------------------------
3272// Immediate Operands
3273// Integer Immediate: 32-bit
3274operand immI() %{
3275  match(ConI);
3276
3277  op_cost(0);
3278  // formats are generated automatically for constants and base registers
3279  format %{ %}
3280  interface(CONST_INTER);
3281%}
3282
3283// Integer Immediate: 13-bit
3284operand immI13() %{
3285  predicate(Assembler::is_simm13(n->get_int()));
3286  match(ConI);
3287  op_cost(0);
3288
3289  format %{ %}
3290  interface(CONST_INTER);
3291%}
3292
3293// Unsigned (positive) Integer Immediate: 13-bit
3294operand immU13() %{
3295  predicate((0 <= n->get_int()) && Assembler::is_simm13(n->get_int()));
3296  match(ConI);
3297  op_cost(0);
3298
3299  format %{ %}
3300  interface(CONST_INTER);
3301%}
3302
3303// Integer Immediate: 6-bit
3304operand immU6() %{
3305  predicate(n->get_int() >= 0 && n->get_int() <= 63);
3306  match(ConI);
3307  op_cost(0);
3308  format %{ %}
3309  interface(CONST_INTER);
3310%}
3311
3312// Integer Immediate: 11-bit
3313operand immI11() %{
3314  predicate(Assembler::is_simm(n->get_int(),11));
3315  match(ConI);
3316  op_cost(0);
3317  format %{ %}
3318  interface(CONST_INTER);
3319%}
3320
3321// Integer Immediate: 0-bit
3322operand immI0() %{
3323  predicate(n->get_int() == 0);
3324  match(ConI);
3325  op_cost(0);
3326
3327  format %{ %}
3328  interface(CONST_INTER);
3329%}
3330
3331// Integer Immediate: the value 10
3332operand immI10() %{
3333  predicate(n->get_int() == 10);
3334  match(ConI);
3335  op_cost(0);
3336
3337  format %{ %}
3338  interface(CONST_INTER);
3339%}
3340
3341// Integer Immediate: the values 0-31
3342operand immU5() %{
3343  predicate(n->get_int() >= 0 && n->get_int() <= 31);
3344  match(ConI);
3345  op_cost(0);
3346
3347  format %{ %}
3348  interface(CONST_INTER);
3349%}
3350
3351// Integer Immediate: the values 1-31
3352operand immI_1_31() %{
3353  predicate(n->get_int() >= 1 && n->get_int() <= 31);
3354  match(ConI);
3355  op_cost(0);
3356
3357  format %{ %}
3358  interface(CONST_INTER);
3359%}
3360
3361// Integer Immediate: the values 32-63
3362operand immI_32_63() %{
3363  predicate(n->get_int() >= 32 && n->get_int() <= 63);
3364  match(ConI);
3365  op_cost(0);
3366
3367  format %{ %}
3368  interface(CONST_INTER);
3369%}
3370
3371// Integer Immediate: the value 255
3372operand immI_255() %{
3373  predicate( n->get_int() == 255 );
3374  match(ConI);
3375  op_cost(0);
3376
3377  format %{ %}
3378  interface(CONST_INTER);
3379%}
3380
3381// Long Immediate: the value FF
3382operand immL_FF() %{
3383  predicate( n->get_long() == 0xFFL );
3384  match(ConL);
3385  op_cost(0);
3386
3387  format %{ %}
3388  interface(CONST_INTER);
3389%}
3390
3391// Long Immediate: the value FFFF
3392operand immL_FFFF() %{
3393  predicate( n->get_long() == 0xFFFFL );
3394  match(ConL);
3395  op_cost(0);
3396
3397  format %{ %}
3398  interface(CONST_INTER);
3399%}
3400
3401// Pointer Immediate: 32 or 64-bit
3402operand immP() %{
3403  match(ConP);
3404
3405  op_cost(5);
3406  // formats are generated automatically for constants and base registers
3407  format %{ %}
3408  interface(CONST_INTER);
3409%}
3410
3411operand immP13() %{
3412  predicate((-4096 < n->get_ptr()) && (n->get_ptr() <= 4095));
3413  match(ConP);
3414  op_cost(0);
3415
3416  format %{ %}
3417  interface(CONST_INTER);
3418%}
3419
3420operand immP0() %{
3421  predicate(n->get_ptr() == 0);
3422  match(ConP);
3423  op_cost(0);
3424
3425  format %{ %}
3426  interface(CONST_INTER);
3427%}
3428
3429operand immP_poll() %{
3430  predicate(n->get_ptr() != 0 && n->get_ptr() == (intptr_t)os::get_polling_page());
3431  match(ConP);
3432
3433  // formats are generated automatically for constants and base registers
3434  format %{ %}
3435  interface(CONST_INTER);
3436%}
3437
3438// Pointer Immediate
3439operand immN()
3440%{
3441  match(ConN);
3442
3443  op_cost(10);
3444  format %{ %}
3445  interface(CONST_INTER);
3446%}
3447
3448// NULL Pointer Immediate
3449operand immN0()
3450%{
3451  predicate(n->get_narrowcon() == 0);
3452  match(ConN);
3453
3454  op_cost(0);
3455  format %{ %}
3456  interface(CONST_INTER);
3457%}
3458
3459operand immL() %{
3460  match(ConL);
3461  op_cost(40);
3462  // formats are generated automatically for constants and base registers
3463  format %{ %}
3464  interface(CONST_INTER);
3465%}
3466
3467operand immL0() %{
3468  predicate(n->get_long() == 0L);
3469  match(ConL);
3470  op_cost(0);
3471  // formats are generated automatically for constants and base registers
3472  format %{ %}
3473  interface(CONST_INTER);
3474%}
3475
3476// Long Immediate: 13-bit
3477operand immL13() %{
3478  predicate((-4096L < n->get_long()) && (n->get_long() <= 4095L));
3479  match(ConL);
3480  op_cost(0);
3481
3482  format %{ %}
3483  interface(CONST_INTER);
3484%}
3485
3486// Long Immediate: low 32-bit mask
3487operand immL_32bits() %{
3488  predicate(n->get_long() == 0xFFFFFFFFL);
3489  match(ConL);
3490  op_cost(0);
3491
3492  format %{ %}
3493  interface(CONST_INTER);
3494%}
3495
3496// Double Immediate
3497operand immD() %{
3498  match(ConD);
3499
3500  op_cost(40);
3501  format %{ %}
3502  interface(CONST_INTER);
3503%}
3504
3505operand immD0() %{
3506#ifdef _LP64
3507  // on 64-bit architectures this comparision is faster
3508  predicate(jlong_cast(n->getd()) == 0);
3509#else
3510  predicate((n->getd() == 0) && (fpclass(n->getd()) == FP_PZERO));
3511#endif
3512  match(ConD);
3513
3514  op_cost(0);
3515  format %{ %}
3516  interface(CONST_INTER);
3517%}
3518
3519// Float Immediate
3520operand immF() %{
3521  match(ConF);
3522
3523  op_cost(20);
3524  format %{ %}
3525  interface(CONST_INTER);
3526%}
3527
3528// Float Immediate: 0
3529operand immF0() %{
3530  predicate((n->getf() == 0) && (fpclass(n->getf()) == FP_PZERO));
3531  match(ConF);
3532
3533  op_cost(0);
3534  format %{ %}
3535  interface(CONST_INTER);
3536%}
3537
3538// Integer Register Operands
3539// Integer Register
3540operand iRegI() %{
3541  constraint(ALLOC_IN_RC(int_reg));
3542  match(RegI);
3543
3544  match(notemp_iRegI);
3545  match(g1RegI);
3546  match(o0RegI);
3547  match(iRegIsafe);
3548
3549  format %{ %}
3550  interface(REG_INTER);
3551%}
3552
3553operand notemp_iRegI() %{
3554  constraint(ALLOC_IN_RC(notemp_int_reg));
3555  match(RegI);
3556
3557  match(o0RegI);
3558
3559  format %{ %}
3560  interface(REG_INTER);
3561%}
3562
3563operand o0RegI() %{
3564  constraint(ALLOC_IN_RC(o0_regI));
3565  match(iRegI);
3566
3567  format %{ %}
3568  interface(REG_INTER);
3569%}
3570
3571// Pointer Register
3572operand iRegP() %{
3573  constraint(ALLOC_IN_RC(ptr_reg));
3574  match(RegP);
3575
3576  match(lock_ptr_RegP);
3577  match(g1RegP);
3578  match(g2RegP);
3579  match(g3RegP);
3580  match(g4RegP);
3581  match(i0RegP);
3582  match(o0RegP);
3583  match(o1RegP);
3584  match(l7RegP);
3585
3586  format %{ %}
3587  interface(REG_INTER);
3588%}
3589
3590operand sp_ptr_RegP() %{
3591  constraint(ALLOC_IN_RC(sp_ptr_reg));
3592  match(RegP);
3593  match(iRegP);
3594
3595  format %{ %}
3596  interface(REG_INTER);
3597%}
3598
3599operand lock_ptr_RegP() %{
3600  constraint(ALLOC_IN_RC(lock_ptr_reg));
3601  match(RegP);
3602  match(i0RegP);
3603  match(o0RegP);
3604  match(o1RegP);
3605  match(l7RegP);
3606
3607  format %{ %}
3608  interface(REG_INTER);
3609%}
3610
3611operand g1RegP() %{
3612  constraint(ALLOC_IN_RC(g1_regP));
3613  match(iRegP);
3614
3615  format %{ %}
3616  interface(REG_INTER);
3617%}
3618
3619operand g2RegP() %{
3620  constraint(ALLOC_IN_RC(g2_regP));
3621  match(iRegP);
3622
3623  format %{ %}
3624  interface(REG_INTER);
3625%}
3626
3627operand g3RegP() %{
3628  constraint(ALLOC_IN_RC(g3_regP));
3629  match(iRegP);
3630
3631  format %{ %}
3632  interface(REG_INTER);
3633%}
3634
3635operand g1RegI() %{
3636  constraint(ALLOC_IN_RC(g1_regI));
3637  match(iRegI);
3638
3639  format %{ %}
3640  interface(REG_INTER);
3641%}
3642
3643operand g3RegI() %{
3644  constraint(ALLOC_IN_RC(g3_regI));
3645  match(iRegI);
3646
3647  format %{ %}
3648  interface(REG_INTER);
3649%}
3650
3651operand g4RegI() %{
3652  constraint(ALLOC_IN_RC(g4_regI));
3653  match(iRegI);
3654
3655  format %{ %}
3656  interface(REG_INTER);
3657%}
3658
3659operand g4RegP() %{
3660  constraint(ALLOC_IN_RC(g4_regP));
3661  match(iRegP);
3662
3663  format %{ %}
3664  interface(REG_INTER);
3665%}
3666
3667operand i0RegP() %{
3668  constraint(ALLOC_IN_RC(i0_regP));
3669  match(iRegP);
3670
3671  format %{ %}
3672  interface(REG_INTER);
3673%}
3674
3675operand o0RegP() %{
3676  constraint(ALLOC_IN_RC(o0_regP));
3677  match(iRegP);
3678
3679  format %{ %}
3680  interface(REG_INTER);
3681%}
3682
3683operand o1RegP() %{
3684  constraint(ALLOC_IN_RC(o1_regP));
3685  match(iRegP);
3686
3687  format %{ %}
3688  interface(REG_INTER);
3689%}
3690
3691operand o2RegP() %{
3692  constraint(ALLOC_IN_RC(o2_regP));
3693  match(iRegP);
3694
3695  format %{ %}
3696  interface(REG_INTER);
3697%}
3698
3699operand o7RegP() %{
3700  constraint(ALLOC_IN_RC(o7_regP));
3701  match(iRegP);
3702
3703  format %{ %}
3704  interface(REG_INTER);
3705%}
3706
3707operand l7RegP() %{
3708  constraint(ALLOC_IN_RC(l7_regP));
3709  match(iRegP);
3710
3711  format %{ %}
3712  interface(REG_INTER);
3713%}
3714
3715operand o7RegI() %{
3716  constraint(ALLOC_IN_RC(o7_regI));
3717  match(iRegI);
3718
3719  format %{ %}
3720  interface(REG_INTER);
3721%}
3722
3723operand iRegN() %{
3724  constraint(ALLOC_IN_RC(int_reg));
3725  match(RegN);
3726
3727  format %{ %}
3728  interface(REG_INTER);
3729%}
3730
3731// Long Register
3732operand iRegL() %{
3733  constraint(ALLOC_IN_RC(long_reg));
3734  match(RegL);
3735
3736  format %{ %}
3737  interface(REG_INTER);
3738%}
3739
3740operand o2RegL() %{
3741  constraint(ALLOC_IN_RC(o2_regL));
3742  match(iRegL);
3743
3744  format %{ %}
3745  interface(REG_INTER);
3746%}
3747
3748operand o7RegL() %{
3749  constraint(ALLOC_IN_RC(o7_regL));
3750  match(iRegL);
3751
3752  format %{ %}
3753  interface(REG_INTER);
3754%}
3755
3756operand g1RegL() %{
3757  constraint(ALLOC_IN_RC(g1_regL));
3758  match(iRegL);
3759
3760  format %{ %}
3761  interface(REG_INTER);
3762%}
3763
3764// Int Register safe
3765// This is 64bit safe
3766operand iRegIsafe() %{
3767  constraint(ALLOC_IN_RC(long_reg));
3768
3769  match(iRegI);
3770
3771  format %{ %}
3772  interface(REG_INTER);
3773%}
3774
3775// Condition Code Flag Register
3776operand flagsReg() %{
3777  constraint(ALLOC_IN_RC(int_flags));
3778  match(RegFlags);
3779
3780  format %{ "ccr" %} // both ICC and XCC
3781  interface(REG_INTER);
3782%}
3783
3784// Condition Code Register, unsigned comparisons.
3785operand flagsRegU() %{
3786  constraint(ALLOC_IN_RC(int_flags));
3787  match(RegFlags);
3788
3789  format %{ "icc_U" %}
3790  interface(REG_INTER);
3791%}
3792
3793// Condition Code Register, pointer comparisons.
3794operand flagsRegP() %{
3795  constraint(ALLOC_IN_RC(int_flags));
3796  match(RegFlags);
3797
3798#ifdef _LP64
3799  format %{ "xcc_P" %}
3800#else
3801  format %{ "icc_P" %}
3802#endif
3803  interface(REG_INTER);
3804%}
3805
3806// Condition Code Register, long comparisons.
3807operand flagsRegL() %{
3808  constraint(ALLOC_IN_RC(int_flags));
3809  match(RegFlags);
3810
3811  format %{ "xcc_L" %}
3812  interface(REG_INTER);
3813%}
3814
3815// Condition Code Register, floating comparisons, unordered same as "less".
3816operand flagsRegF() %{
3817  constraint(ALLOC_IN_RC(float_flags));
3818  match(RegFlags);
3819  match(flagsRegF0);
3820
3821  format %{ %}
3822  interface(REG_INTER);
3823%}
3824
3825operand flagsRegF0() %{
3826  constraint(ALLOC_IN_RC(float_flag0));
3827  match(RegFlags);
3828
3829  format %{ %}
3830  interface(REG_INTER);
3831%}
3832
3833
3834// Condition Code Flag Register used by long compare
3835operand flagsReg_long_LTGE() %{
3836  constraint(ALLOC_IN_RC(int_flags));
3837  match(RegFlags);
3838  format %{ "icc_LTGE" %}
3839  interface(REG_INTER);
3840%}
3841operand flagsReg_long_EQNE() %{
3842  constraint(ALLOC_IN_RC(int_flags));
3843  match(RegFlags);
3844  format %{ "icc_EQNE" %}
3845  interface(REG_INTER);
3846%}
3847operand flagsReg_long_LEGT() %{
3848  constraint(ALLOC_IN_RC(int_flags));
3849  match(RegFlags);
3850  format %{ "icc_LEGT" %}
3851  interface(REG_INTER);
3852%}
3853
3854
3855operand regD() %{
3856  constraint(ALLOC_IN_RC(dflt_reg));
3857  match(RegD);
3858
3859  format %{ %}
3860  interface(REG_INTER);
3861%}
3862
3863operand regF() %{
3864  constraint(ALLOC_IN_RC(sflt_reg));
3865  match(RegF);
3866
3867  format %{ %}
3868  interface(REG_INTER);
3869%}
3870
3871operand regD_low() %{
3872  constraint(ALLOC_IN_RC(dflt_low_reg));
3873  match(RegD);
3874
3875  format %{ %}
3876  interface(REG_INTER);
3877%}
3878
3879// Special Registers
3880
3881// Method Register
3882operand inline_cache_regP(iRegP reg) %{
3883  constraint(ALLOC_IN_RC(g5_regP)); // G5=inline_cache_reg but uses 2 bits instead of 1
3884  match(reg);
3885  format %{ %}
3886  interface(REG_INTER);
3887%}
3888
3889operand interpreter_method_oop_regP(iRegP reg) %{
3890  constraint(ALLOC_IN_RC(g5_regP)); // G5=interpreter_method_oop_reg but uses 2 bits instead of 1
3891  match(reg);
3892  format %{ %}
3893  interface(REG_INTER);
3894%}
3895
3896
3897//----------Complex Operands---------------------------------------------------
3898// Indirect Memory Reference
3899operand indirect(sp_ptr_RegP reg) %{
3900  constraint(ALLOC_IN_RC(sp_ptr_reg));
3901  match(reg);
3902
3903  op_cost(100);
3904  format %{ "[$reg]" %}
3905  interface(MEMORY_INTER) %{
3906    base($reg);
3907    index(0x0);
3908    scale(0x0);
3909    disp(0x0);
3910  %}
3911%}
3912
3913// Indirect with Offset
3914operand indOffset13(sp_ptr_RegP reg, immX13 offset) %{
3915  constraint(ALLOC_IN_RC(sp_ptr_reg));
3916  match(AddP reg offset);
3917
3918  op_cost(100);
3919  format %{ "[$reg + $offset]" %}
3920  interface(MEMORY_INTER) %{
3921    base($reg);
3922    index(0x0);
3923    scale(0x0);
3924    disp($offset);
3925  %}
3926%}
3927
3928// Note:  Intel has a swapped version also, like this:
3929//operand indOffsetX(iRegI reg, immP offset) %{
3930//  constraint(ALLOC_IN_RC(int_reg));
3931//  match(AddP offset reg);
3932//
3933//  op_cost(100);
3934//  format %{ "[$reg + $offset]" %}
3935//  interface(MEMORY_INTER) %{
3936//    base($reg);
3937//    index(0x0);
3938//    scale(0x0);
3939//    disp($offset);
3940//  %}
3941//%}
3942//// However, it doesn't make sense for SPARC, since
3943// we have no particularly good way to embed oops in
3944// single instructions.
3945
3946// Indirect with Register Index
3947operand indIndex(iRegP addr, iRegX index) %{
3948  constraint(ALLOC_IN_RC(ptr_reg));
3949  match(AddP addr index);
3950
3951  op_cost(100);
3952  format %{ "[$addr + $index]" %}
3953  interface(MEMORY_INTER) %{
3954    base($addr);
3955    index($index);
3956    scale(0x0);
3957    disp(0x0);
3958  %}
3959%}
3960
3961//----------Special Memory Operands--------------------------------------------
3962// Stack Slot Operand - This operand is used for loading and storing temporary
3963//                      values on the stack where a match requires a value to
3964//                      flow through memory.
3965operand stackSlotI(sRegI reg) %{
3966  constraint(ALLOC_IN_RC(stack_slots));
3967  op_cost(100);
3968  //match(RegI);
3969  format %{ "[$reg]" %}
3970  interface(MEMORY_INTER) %{
3971    base(0xE);   // R_SP
3972    index(0x0);
3973    scale(0x0);
3974    disp($reg);  // Stack Offset
3975  %}
3976%}
3977
3978operand stackSlotP(sRegP reg) %{
3979  constraint(ALLOC_IN_RC(stack_slots));
3980  op_cost(100);
3981  //match(RegP);
3982  format %{ "[$reg]" %}
3983  interface(MEMORY_INTER) %{
3984    base(0xE);   // R_SP
3985    index(0x0);
3986    scale(0x0);
3987    disp($reg);  // Stack Offset
3988  %}
3989%}
3990
3991operand stackSlotF(sRegF reg) %{
3992  constraint(ALLOC_IN_RC(stack_slots));
3993  op_cost(100);
3994  //match(RegF);
3995  format %{ "[$reg]" %}
3996  interface(MEMORY_INTER) %{
3997    base(0xE);   // R_SP
3998    index(0x0);
3999    scale(0x0);
4000    disp($reg);  // Stack Offset
4001  %}
4002%}
4003operand stackSlotD(sRegD reg) %{
4004  constraint(ALLOC_IN_RC(stack_slots));
4005  op_cost(100);
4006  //match(RegD);
4007  format %{ "[$reg]" %}
4008  interface(MEMORY_INTER) %{
4009    base(0xE);   // R_SP
4010    index(0x0);
4011    scale(0x0);
4012    disp($reg);  // Stack Offset
4013  %}
4014%}
4015operand stackSlotL(sRegL reg) %{
4016  constraint(ALLOC_IN_RC(stack_slots));
4017  op_cost(100);
4018  //match(RegL);
4019  format %{ "[$reg]" %}
4020  interface(MEMORY_INTER) %{
4021    base(0xE);   // R_SP
4022    index(0x0);
4023    scale(0x0);
4024    disp($reg);  // Stack Offset
4025  %}
4026%}
4027
4028// Operands for expressing Control Flow
4029// NOTE:  Label is a predefined operand which should not be redefined in
4030//        the AD file.  It is generically handled within the ADLC.
4031
4032//----------Conditional Branch Operands----------------------------------------
4033// Comparison Op  - This is the operation of the comparison, and is limited to
4034//                  the following set of codes:
4035//                  L (<), LE (<=), G (>), GE (>=), E (==), NE (!=)
4036//
4037// Other attributes of the comparison, such as unsignedness, are specified
4038// by the comparison instruction that sets a condition code flags register.
4039// That result is represented by a flags operand whose subtype is appropriate
4040// to the unsignedness (etc.) of the comparison.
4041//
4042// Later, the instruction which matches both the Comparison Op (a Bool) and
4043// the flags (produced by the Cmp) specifies the coding of the comparison op
4044// by matching a specific subtype of Bool operand below, such as cmpOpU.
4045
4046operand cmpOp() %{
4047  match(Bool);
4048
4049  format %{ "" %}
4050  interface(COND_INTER) %{
4051    equal(0x1);
4052    not_equal(0x9);
4053    less(0x3);
4054    greater_equal(0xB);
4055    less_equal(0x2);
4056    greater(0xA);
4057  %}
4058%}
4059
4060// Comparison Op, unsigned
4061operand cmpOpU() %{
4062  match(Bool);
4063
4064  format %{ "u" %}
4065  interface(COND_INTER) %{
4066    equal(0x1);
4067    not_equal(0x9);
4068    less(0x5);
4069    greater_equal(0xD);
4070    less_equal(0x4);
4071    greater(0xC);
4072  %}
4073%}
4074
4075// Comparison Op, pointer (same as unsigned)
4076operand cmpOpP() %{
4077  match(Bool);
4078
4079  format %{ "p" %}
4080  interface(COND_INTER) %{
4081    equal(0x1);
4082    not_equal(0x9);
4083    less(0x5);
4084    greater_equal(0xD);
4085    less_equal(0x4);
4086    greater(0xC);
4087  %}
4088%}
4089
4090// Comparison Op, branch-register encoding
4091operand cmpOp_reg() %{
4092  match(Bool);
4093
4094  format %{ "" %}
4095  interface(COND_INTER) %{
4096    equal        (0x1);
4097    not_equal    (0x5);
4098    less         (0x3);
4099    greater_equal(0x7);
4100    less_equal   (0x2);
4101    greater      (0x6);
4102  %}
4103%}
4104
4105// Comparison Code, floating, unordered same as less
4106operand cmpOpF() %{
4107  match(Bool);
4108
4109  format %{ "fl" %}
4110  interface(COND_INTER) %{
4111    equal(0x9);
4112    not_equal(0x1);
4113    less(0x3);
4114    greater_equal(0xB);
4115    less_equal(0xE);
4116    greater(0x6);
4117  %}
4118%}
4119
4120// Used by long compare
4121operand cmpOp_commute() %{
4122  match(Bool);
4123
4124  format %{ "" %}
4125  interface(COND_INTER) %{
4126    equal(0x1);
4127    not_equal(0x9);
4128    less(0xA);
4129    greater_equal(0x2);
4130    less_equal(0xB);
4131    greater(0x3);
4132  %}
4133%}
4134
4135//----------OPERAND CLASSES----------------------------------------------------
4136// Operand Classes are groups of operands that are used to simplify
4137// instruction definitions by not requiring the AD writer to specify seperate
4138// instructions for every form of operand when the instruction accepts
4139// multiple operand types with the same basic encoding and format.  The classic
4140// case of this is memory operands.
4141// Indirect is not included since its use is limited to Compare & Swap
4142opclass memory( indirect, indOffset13, indIndex );
4143
4144//----------PIPELINE-----------------------------------------------------------
4145pipeline %{
4146
4147//----------ATTRIBUTES---------------------------------------------------------
4148attributes %{
4149  fixed_size_instructions;           // Fixed size instructions
4150  branch_has_delay_slot;             // Branch has delay slot following
4151  max_instructions_per_bundle = 4;   // Up to 4 instructions per bundle
4152  instruction_unit_size = 4;         // An instruction is 4 bytes long
4153  instruction_fetch_unit_size = 16;  // The processor fetches one line
4154  instruction_fetch_units = 1;       // of 16 bytes
4155
4156  // List of nop instructions
4157  nops( Nop_A0, Nop_A1, Nop_MS, Nop_FA, Nop_BR );
4158%}
4159
4160//----------RESOURCES----------------------------------------------------------
4161// Resources are the functional units available to the machine
4162resources(A0, A1, MS, BR, FA, FM, IDIV, FDIV, IALU = A0 | A1);
4163
4164//----------PIPELINE DESCRIPTION-----------------------------------------------
4165// Pipeline Description specifies the stages in the machine's pipeline
4166
4167pipe_desc(A, P, F, B, I, J, S, R, E, C, M, W, X, T, D);
4168
4169//----------PIPELINE CLASSES---------------------------------------------------
4170// Pipeline Classes describe the stages in which input and output are
4171// referenced by the hardware pipeline.
4172
4173// Integer ALU reg-reg operation
4174pipe_class ialu_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
4175    single_instruction;
4176    dst   : E(write);
4177    src1  : R(read);
4178    src2  : R(read);
4179    IALU  : R;
4180%}
4181
4182// Integer ALU reg-reg long operation
4183pipe_class ialu_reg_reg_2(iRegL dst, iRegL src1, iRegL src2) %{
4184    instruction_count(2);
4185    dst   : E(write);
4186    src1  : R(read);
4187    src2  : R(read);
4188    IALU  : R;
4189    IALU  : R;
4190%}
4191
4192// Integer ALU reg-reg long dependent operation
4193pipe_class ialu_reg_reg_2_dep(iRegL dst, iRegL src1, iRegL src2, flagsReg cr) %{
4194    instruction_count(1); multiple_bundles;
4195    dst   : E(write);
4196    src1  : R(read);
4197    src2  : R(read);
4198    cr    : E(write);
4199    IALU  : R(2);
4200%}
4201
4202// Integer ALU reg-imm operaion
4203pipe_class ialu_reg_imm(iRegI dst, iRegI src1, immI13 src2) %{
4204    single_instruction;
4205    dst   : E(write);
4206    src1  : R(read);
4207    IALU  : R;
4208%}
4209
4210// Integer ALU reg-reg operation with condition code
4211pipe_class ialu_cc_reg_reg(iRegI dst, iRegI src1, iRegI src2, flagsReg cr) %{
4212    single_instruction;
4213    dst   : E(write);
4214    cr    : E(write);
4215    src1  : R(read);
4216    src2  : R(read);
4217    IALU  : R;
4218%}
4219
4220// Integer ALU reg-imm operation with condition code
4221pipe_class ialu_cc_reg_imm(iRegI dst, iRegI src1, immI13 src2, flagsReg cr) %{
4222    single_instruction;
4223    dst   : E(write);
4224    cr    : E(write);
4225    src1  : R(read);
4226    IALU  : R;
4227%}
4228
4229// Integer ALU zero-reg operation
4230pipe_class ialu_zero_reg(iRegI dst, immI0 zero, iRegI src2) %{
4231    single_instruction;
4232    dst   : E(write);
4233    src2  : R(read);
4234    IALU  : R;
4235%}
4236
4237// Integer ALU zero-reg operation with condition code only
4238pipe_class ialu_cconly_zero_reg(flagsReg cr, iRegI src) %{
4239    single_instruction;
4240    cr    : E(write);
4241    src   : R(read);
4242    IALU  : R;
4243%}
4244
4245// Integer ALU reg-reg operation with condition code only
4246pipe_class ialu_cconly_reg_reg(flagsReg cr, iRegI src1, iRegI src2) %{
4247    single_instruction;
4248    cr    : E(write);
4249    src1  : R(read);
4250    src2  : R(read);
4251    IALU  : R;
4252%}
4253
4254// Integer ALU reg-imm operation with condition code only
4255pipe_class ialu_cconly_reg_imm(flagsReg cr, iRegI src1, immI13 src2) %{
4256    single_instruction;
4257    cr    : E(write);
4258    src1  : R(read);
4259    IALU  : R;
4260%}
4261
4262// Integer ALU reg-reg-zero operation with condition code only
4263pipe_class ialu_cconly_reg_reg_zero(flagsReg cr, iRegI src1, iRegI src2, immI0 zero) %{
4264    single_instruction;
4265    cr    : E(write);
4266    src1  : R(read);
4267    src2  : R(read);
4268    IALU  : R;
4269%}
4270
4271// Integer ALU reg-imm-zero operation with condition code only
4272pipe_class ialu_cconly_reg_imm_zero(flagsReg cr, iRegI src1, immI13 src2, immI0 zero) %{
4273    single_instruction;
4274    cr    : E(write);
4275    src1  : R(read);
4276    IALU  : R;
4277%}
4278
4279// Integer ALU reg-reg operation with condition code, src1 modified
4280pipe_class ialu_cc_rwreg_reg(flagsReg cr, iRegI src1, iRegI src2) %{
4281    single_instruction;
4282    cr    : E(write);
4283    src1  : E(write);
4284    src1  : R(read);
4285    src2  : R(read);
4286    IALU  : R;
4287%}
4288
4289// Integer ALU reg-imm operation with condition code, src1 modified
4290pipe_class ialu_cc_rwreg_imm(flagsReg cr, iRegI src1, immI13 src2) %{
4291    single_instruction;
4292    cr    : E(write);
4293    src1  : E(write);
4294    src1  : R(read);
4295    IALU  : R;
4296%}
4297
4298pipe_class cmpL_reg(iRegI dst, iRegL src1, iRegL src2, flagsReg cr ) %{
4299    multiple_bundles;
4300    dst   : E(write)+4;
4301    cr    : E(write);
4302    src1  : R(read);
4303    src2  : R(read);
4304    IALU  : R(3);
4305    BR    : R(2);
4306%}
4307
4308// Integer ALU operation
4309pipe_class ialu_none(iRegI dst) %{
4310    single_instruction;
4311    dst   : E(write);
4312    IALU  : R;
4313%}
4314
4315// Integer ALU reg operation
4316pipe_class ialu_reg(iRegI dst, iRegI src) %{
4317    single_instruction; may_have_no_code;
4318    dst   : E(write);
4319    src   : R(read);
4320    IALU  : R;
4321%}
4322
4323// Integer ALU reg conditional operation
4324// This instruction has a 1 cycle stall, and cannot execute
4325// in the same cycle as the instruction setting the condition
4326// code. We kludge this by pretending to read the condition code
4327// 1 cycle earlier, and by marking the functional units as busy
4328// for 2 cycles with the result available 1 cycle later than
4329// is really the case.
4330pipe_class ialu_reg_flags( iRegI op2_out, iRegI op2_in, iRegI op1, flagsReg cr ) %{
4331    single_instruction;
4332    op2_out : C(write);
4333    op1     : R(read);
4334    cr      : R(read);       // This is really E, with a 1 cycle stall
4335    BR      : R(2);
4336    MS      : R(2);
4337%}
4338
4339#ifdef _LP64
4340pipe_class ialu_clr_and_mover( iRegI dst, iRegP src ) %{
4341    instruction_count(1); multiple_bundles;
4342    dst     : C(write)+1;
4343    src     : R(read)+1;
4344    IALU    : R(1);
4345    BR      : E(2);
4346    MS      : E(2);
4347%}
4348#endif
4349
4350// Integer ALU reg operation
4351pipe_class ialu_move_reg_L_to_I(iRegI dst, iRegL src) %{
4352    single_instruction; may_have_no_code;
4353    dst   : E(write);
4354    src   : R(read);
4355    IALU  : R;
4356%}
4357pipe_class ialu_move_reg_I_to_L(iRegL dst, iRegI src) %{
4358    single_instruction; may_have_no_code;
4359    dst   : E(write);
4360    src   : R(read);
4361    IALU  : R;
4362%}
4363
4364// Two integer ALU reg operations
4365pipe_class ialu_reg_2(iRegL dst, iRegL src) %{
4366    instruction_count(2);
4367    dst   : E(write);
4368    src   : R(read);
4369    A0    : R;
4370    A1    : R;
4371%}
4372
4373// Two integer ALU reg operations
4374pipe_class ialu_move_reg_L_to_L(iRegL dst, iRegL src) %{
4375    instruction_count(2); may_have_no_code;
4376    dst   : E(write);
4377    src   : R(read);
4378    A0    : R;
4379    A1    : R;
4380%}
4381
4382// Integer ALU imm operation
4383pipe_class ialu_imm(iRegI dst, immI13 src) %{
4384    single_instruction;
4385    dst   : E(write);
4386    IALU  : R;
4387%}
4388
4389// Integer ALU reg-reg with carry operation
4390pipe_class ialu_reg_reg_cy(iRegI dst, iRegI src1, iRegI src2, iRegI cy) %{
4391    single_instruction;
4392    dst   : E(write);
4393    src1  : R(read);
4394    src2  : R(read);
4395    IALU  : R;
4396%}
4397
4398// Integer ALU cc operation
4399pipe_class ialu_cc(iRegI dst, flagsReg cc) %{
4400    single_instruction;
4401    dst   : E(write);
4402    cc    : R(read);
4403    IALU  : R;
4404%}
4405
4406// Integer ALU cc / second IALU operation
4407pipe_class ialu_reg_ialu( iRegI dst, iRegI src ) %{
4408    instruction_count(1); multiple_bundles;
4409    dst   : E(write)+1;
4410    src   : R(read);
4411    IALU  : R;
4412%}
4413
4414// Integer ALU cc / second IALU operation
4415pipe_class ialu_reg_reg_ialu( iRegI dst, iRegI p, iRegI q ) %{
4416    instruction_count(1); multiple_bundles;
4417    dst   : E(write)+1;
4418    p     : R(read);
4419    q     : R(read);
4420    IALU  : R;
4421%}
4422
4423// Integer ALU hi-lo-reg operation
4424pipe_class ialu_hi_lo_reg(iRegI dst, immI src) %{
4425    instruction_count(1); multiple_bundles;
4426    dst   : E(write)+1;
4427    IALU  : R(2);
4428%}
4429
4430// Float ALU hi-lo-reg operation (with temp)
4431pipe_class ialu_hi_lo_reg_temp(regF dst, immF src, g3RegP tmp) %{
4432    instruction_count(1); multiple_bundles;
4433    dst   : E(write)+1;
4434    IALU  : R(2);
4435%}
4436
4437// Long Constant
4438pipe_class loadConL( iRegL dst, immL src ) %{
4439    instruction_count(2); multiple_bundles;
4440    dst   : E(write)+1;
4441    IALU  : R(2);
4442    IALU  : R(2);
4443%}
4444
4445// Pointer Constant
4446pipe_class loadConP( iRegP dst, immP src ) %{
4447    instruction_count(0); multiple_bundles;
4448    fixed_latency(6);
4449%}
4450
4451// Polling Address
4452pipe_class loadConP_poll( iRegP dst, immP_poll src ) %{
4453#ifdef _LP64
4454    instruction_count(0); multiple_bundles;
4455    fixed_latency(6);
4456#else
4457    dst   : E(write);
4458    IALU  : R;
4459#endif
4460%}
4461
4462// Long Constant small
4463pipe_class loadConLlo( iRegL dst, immL src ) %{
4464    instruction_count(2);
4465    dst   : E(write);
4466    IALU  : R;
4467    IALU  : R;
4468%}
4469
4470// [PHH] This is wrong for 64-bit.  See LdImmF/D.
4471pipe_class loadConFD(regF dst, immF src, g3RegP tmp) %{
4472    instruction_count(1); multiple_bundles;
4473    src   : R(read);
4474    dst   : M(write)+1;
4475    IALU  : R;
4476    MS    : E;
4477%}
4478
4479// Integer ALU nop operation
4480pipe_class ialu_nop() %{
4481    single_instruction;
4482    IALU  : R;
4483%}
4484
4485// Integer ALU nop operation
4486pipe_class ialu_nop_A0() %{
4487    single_instruction;
4488    A0    : R;
4489%}
4490
4491// Integer ALU nop operation
4492pipe_class ialu_nop_A1() %{
4493    single_instruction;
4494    A1    : R;
4495%}
4496
4497// Integer Multiply reg-reg operation
4498pipe_class imul_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
4499    single_instruction;
4500    dst   : E(write);
4501    src1  : R(read);
4502    src2  : R(read);
4503    MS    : R(5);
4504%}
4505
4506// Integer Multiply reg-imm operation
4507pipe_class imul_reg_imm(iRegI dst, iRegI src1, immI13 src2) %{
4508    single_instruction;
4509    dst   : E(write);
4510    src1  : R(read);
4511    MS    : R(5);
4512%}
4513
4514pipe_class mulL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
4515    single_instruction;
4516    dst   : E(write)+4;
4517    src1  : R(read);
4518    src2  : R(read);
4519    MS    : R(6);
4520%}
4521
4522pipe_class mulL_reg_imm(iRegL dst, iRegL src1, immL13 src2) %{
4523    single_instruction;
4524    dst   : E(write)+4;
4525    src1  : R(read);
4526    MS    : R(6);
4527%}
4528
4529// Integer Divide reg-reg
4530pipe_class sdiv_reg_reg(iRegI dst, iRegI src1, iRegI src2, iRegI temp, flagsReg cr) %{
4531    instruction_count(1); multiple_bundles;
4532    dst   : E(write);
4533    temp  : E(write);
4534    src1  : R(read);
4535    src2  : R(read);
4536    temp  : R(read);
4537    MS    : R(38);
4538%}
4539
4540// Integer Divide reg-imm
4541pipe_class sdiv_reg_imm(iRegI dst, iRegI src1, immI13 src2, iRegI temp, flagsReg cr) %{
4542    instruction_count(1); multiple_bundles;
4543    dst   : E(write);
4544    temp  : E(write);
4545    src1  : R(read);
4546    temp  : R(read);
4547    MS    : R(38);
4548%}
4549
4550// Long Divide
4551pipe_class divL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
4552    dst  : E(write)+71;
4553    src1 : R(read);
4554    src2 : R(read)+1;
4555    MS   : R(70);
4556%}
4557
4558pipe_class divL_reg_imm(iRegL dst, iRegL src1, immL13 src2) %{
4559    dst  : E(write)+71;
4560    src1 : R(read);
4561    MS   : R(70);
4562%}
4563
4564// Floating Point Add Float
4565pipe_class faddF_reg_reg(regF dst, regF src1, regF src2) %{
4566    single_instruction;
4567    dst   : X(write);
4568    src1  : E(read);
4569    src2  : E(read);
4570    FA    : R;
4571%}
4572
4573// Floating Point Add Double
4574pipe_class faddD_reg_reg(regD dst, regD src1, regD src2) %{
4575    single_instruction;
4576    dst   : X(write);
4577    src1  : E(read);
4578    src2  : E(read);
4579    FA    : R;
4580%}
4581
4582// Floating Point Conditional Move based on integer flags
4583pipe_class int_conditional_float_move (cmpOp cmp, flagsReg cr, regF dst, regF src) %{
4584    single_instruction;
4585    dst   : X(write);
4586    src   : E(read);
4587    cr    : R(read);
4588    FA    : R(2);
4589    BR    : R(2);
4590%}
4591
4592// Floating Point Conditional Move based on integer flags
4593pipe_class int_conditional_double_move (cmpOp cmp, flagsReg cr, regD dst, regD src) %{
4594    single_instruction;
4595    dst   : X(write);
4596    src   : E(read);
4597    cr    : R(read);
4598    FA    : R(2);
4599    BR    : R(2);
4600%}
4601
4602// Floating Point Multiply Float
4603pipe_class fmulF_reg_reg(regF dst, regF src1, regF src2) %{
4604    single_instruction;
4605    dst   : X(write);
4606    src1  : E(read);
4607    src2  : E(read);
4608    FM    : R;
4609%}
4610
4611// Floating Point Multiply Double
4612pipe_class fmulD_reg_reg(regD dst, regD src1, regD src2) %{
4613    single_instruction;
4614    dst   : X(write);
4615    src1  : E(read);
4616    src2  : E(read);
4617    FM    : R;
4618%}
4619
4620// Floating Point Divide Float
4621pipe_class fdivF_reg_reg(regF dst, regF src1, regF src2) %{
4622    single_instruction;
4623    dst   : X(write);
4624    src1  : E(read);
4625    src2  : E(read);
4626    FM    : R;
4627    FDIV  : C(14);
4628%}
4629
4630// Floating Point Divide Double
4631pipe_class fdivD_reg_reg(regD dst, regD src1, regD src2) %{
4632    single_instruction;
4633    dst   : X(write);
4634    src1  : E(read);
4635    src2  : E(read);
4636    FM    : R;
4637    FDIV  : C(17);
4638%}
4639
4640// Floating Point Move/Negate/Abs Float
4641pipe_class faddF_reg(regF dst, regF src) %{
4642    single_instruction;
4643    dst   : W(write);
4644    src   : E(read);
4645    FA    : R(1);
4646%}
4647
4648// Floating Point Move/Negate/Abs Double
4649pipe_class faddD_reg(regD dst, regD src) %{
4650    single_instruction;
4651    dst   : W(write);
4652    src   : E(read);
4653    FA    : R;
4654%}
4655
4656// Floating Point Convert F->D
4657pipe_class fcvtF2D(regD dst, regF src) %{
4658    single_instruction;
4659    dst   : X(write);
4660    src   : E(read);
4661    FA    : R;
4662%}
4663
4664// Floating Point Convert I->D
4665pipe_class fcvtI2D(regD dst, regF src) %{
4666    single_instruction;
4667    dst   : X(write);
4668    src   : E(read);
4669    FA    : R;
4670%}
4671
4672// Floating Point Convert LHi->D
4673pipe_class fcvtLHi2D(regD dst, regD src) %{
4674    single_instruction;
4675    dst   : X(write);
4676    src   : E(read);
4677    FA    : R;
4678%}
4679
4680// Floating Point Convert L->D
4681pipe_class fcvtL2D(regD dst, regF src) %{
4682    single_instruction;
4683    dst   : X(write);
4684    src   : E(read);
4685    FA    : R;
4686%}
4687
4688// Floating Point Convert L->F
4689pipe_class fcvtL2F(regD dst, regF src) %{
4690    single_instruction;
4691    dst   : X(write);
4692    src   : E(read);
4693    FA    : R;
4694%}
4695
4696// Floating Point Convert D->F
4697pipe_class fcvtD2F(regD dst, regF src) %{
4698    single_instruction;
4699    dst   : X(write);
4700    src   : E(read);
4701    FA    : R;
4702%}
4703
4704// Floating Point Convert I->L
4705pipe_class fcvtI2L(regD dst, regF src) %{
4706    single_instruction;
4707    dst   : X(write);
4708    src   : E(read);
4709    FA    : R;
4710%}
4711
4712// Floating Point Convert D->F
4713pipe_class fcvtD2I(regF dst, regD src, flagsReg cr) %{
4714    instruction_count(1); multiple_bundles;
4715    dst   : X(write)+6;
4716    src   : E(read);
4717    FA    : R;
4718%}
4719
4720// Floating Point Convert D->L
4721pipe_class fcvtD2L(regD dst, regD src, flagsReg cr) %{
4722    instruction_count(1); multiple_bundles;
4723    dst   : X(write)+6;
4724    src   : E(read);
4725    FA    : R;
4726%}
4727
4728// Floating Point Convert F->I
4729pipe_class fcvtF2I(regF dst, regF src, flagsReg cr) %{
4730    instruction_count(1); multiple_bundles;
4731    dst   : X(write)+6;
4732    src   : E(read);
4733    FA    : R;
4734%}
4735
4736// Floating Point Convert F->L
4737pipe_class fcvtF2L(regD dst, regF src, flagsReg cr) %{
4738    instruction_count(1); multiple_bundles;
4739    dst   : X(write)+6;
4740    src   : E(read);
4741    FA    : R;
4742%}
4743
4744// Floating Point Convert I->F
4745pipe_class fcvtI2F(regF dst, regF src) %{
4746    single_instruction;
4747    dst   : X(write);
4748    src   : E(read);
4749    FA    : R;
4750%}
4751
4752// Floating Point Compare
4753pipe_class faddF_fcc_reg_reg_zero(flagsRegF cr, regF src1, regF src2, immI0 zero) %{
4754    single_instruction;
4755    cr    : X(write);
4756    src1  : E(read);
4757    src2  : E(read);
4758    FA    : R;
4759%}
4760
4761// Floating Point Compare
4762pipe_class faddD_fcc_reg_reg_zero(flagsRegF cr, regD src1, regD src2, immI0 zero) %{
4763    single_instruction;
4764    cr    : X(write);
4765    src1  : E(read);
4766    src2  : E(read);
4767    FA    : R;
4768%}
4769
4770// Floating Add Nop
4771pipe_class fadd_nop() %{
4772    single_instruction;
4773    FA  : R;
4774%}
4775
4776// Integer Store to Memory
4777pipe_class istore_mem_reg(memory mem, iRegI src) %{
4778    single_instruction;
4779    mem   : R(read);
4780    src   : C(read);
4781    MS    : R;
4782%}
4783
4784// Integer Store to Memory
4785pipe_class istore_mem_spORreg(memory mem, sp_ptr_RegP src) %{
4786    single_instruction;
4787    mem   : R(read);
4788    src   : C(read);
4789    MS    : R;
4790%}
4791
4792// Integer Store Zero to Memory
4793pipe_class istore_mem_zero(memory mem, immI0 src) %{
4794    single_instruction;
4795    mem   : R(read);
4796    MS    : R;
4797%}
4798
4799// Special Stack Slot Store
4800pipe_class istore_stk_reg(stackSlotI stkSlot, iRegI src) %{
4801    single_instruction;
4802    stkSlot : R(read);
4803    src     : C(read);
4804    MS      : R;
4805%}
4806
4807// Special Stack Slot Store
4808pipe_class lstoreI_stk_reg(stackSlotL stkSlot, iRegI src) %{
4809    instruction_count(2); multiple_bundles;
4810    stkSlot : R(read);
4811    src     : C(read);
4812    MS      : R(2);
4813%}
4814
4815// Float Store
4816pipe_class fstoreF_mem_reg(memory mem, RegF src) %{
4817    single_instruction;
4818    mem : R(read);
4819    src : C(read);
4820    MS  : R;
4821%}
4822
4823// Float Store
4824pipe_class fstoreF_mem_zero(memory mem, immF0 src) %{
4825    single_instruction;
4826    mem : R(read);
4827    MS  : R;
4828%}
4829
4830// Double Store
4831pipe_class fstoreD_mem_reg(memory mem, RegD src) %{
4832    instruction_count(1);
4833    mem : R(read);
4834    src : C(read);
4835    MS  : R;
4836%}
4837
4838// Double Store
4839pipe_class fstoreD_mem_zero(memory mem, immD0 src) %{
4840    single_instruction;
4841    mem : R(read);
4842    MS  : R;
4843%}
4844
4845// Special Stack Slot Float Store
4846pipe_class fstoreF_stk_reg(stackSlotI stkSlot, RegF src) %{
4847    single_instruction;
4848    stkSlot : R(read);
4849    src     : C(read);
4850    MS      : R;
4851%}
4852
4853// Special Stack Slot Double Store
4854pipe_class fstoreD_stk_reg(stackSlotI stkSlot, RegD src) %{
4855    single_instruction;
4856    stkSlot : R(read);
4857    src     : C(read);
4858    MS      : R;
4859%}
4860
4861// Integer Load (when sign bit propagation not needed)
4862pipe_class iload_mem(iRegI dst, memory mem) %{
4863    single_instruction;
4864    mem : R(read);
4865    dst : C(write);
4866    MS  : R;
4867%}
4868
4869// Integer Load from stack operand
4870pipe_class iload_stkD(iRegI dst, stackSlotD mem ) %{
4871    single_instruction;
4872    mem : R(read);
4873    dst : C(write);
4874    MS  : R;
4875%}
4876
4877// Integer Load (when sign bit propagation or masking is needed)
4878pipe_class iload_mask_mem(iRegI dst, memory mem) %{
4879    single_instruction;
4880    mem : R(read);
4881    dst : M(write);
4882    MS  : R;
4883%}
4884
4885// Float Load
4886pipe_class floadF_mem(regF dst, memory mem) %{
4887    single_instruction;
4888    mem : R(read);
4889    dst : M(write);
4890    MS  : R;
4891%}
4892
4893// Float Load
4894pipe_class floadD_mem(regD dst, memory mem) %{
4895    instruction_count(1); multiple_bundles; // Again, unaligned argument is only multiple case
4896    mem : R(read);
4897    dst : M(write);
4898    MS  : R;
4899%}
4900
4901// Float Load
4902pipe_class floadF_stk(regF dst, stackSlotI stkSlot) %{
4903    single_instruction;
4904    stkSlot : R(read);
4905    dst : M(write);
4906    MS  : R;
4907%}
4908
4909// Float Load
4910pipe_class floadD_stk(regD dst, stackSlotI stkSlot) %{
4911    single_instruction;
4912    stkSlot : R(read);
4913    dst : M(write);
4914    MS  : R;
4915%}
4916
4917// Memory Nop
4918pipe_class mem_nop() %{
4919    single_instruction;
4920    MS  : R;
4921%}
4922
4923pipe_class sethi(iRegP dst, immI src) %{
4924    single_instruction;
4925    dst  : E(write);
4926    IALU : R;
4927%}
4928
4929pipe_class loadPollP(iRegP poll) %{
4930    single_instruction;
4931    poll : R(read);
4932    MS   : R;
4933%}
4934
4935pipe_class br(Universe br, label labl) %{
4936    single_instruction_with_delay_slot;
4937    BR  : R;
4938%}
4939
4940pipe_class br_cc(Universe br, cmpOp cmp, flagsReg cr, label labl) %{
4941    single_instruction_with_delay_slot;
4942    cr    : E(read);
4943    BR    : R;
4944%}
4945
4946pipe_class br_reg(Universe br, cmpOp cmp, iRegI op1, label labl) %{
4947    single_instruction_with_delay_slot;
4948    op1 : E(read);
4949    BR  : R;
4950    MS  : R;
4951%}
4952
4953pipe_class br_fcc(Universe br, cmpOpF cc, flagsReg cr, label labl) %{
4954    single_instruction_with_delay_slot;
4955    cr    : E(read);
4956    BR    : R;
4957%}
4958
4959pipe_class br_nop() %{
4960    single_instruction;
4961    BR  : R;
4962%}
4963
4964pipe_class simple_call(method meth) %{
4965    instruction_count(2); multiple_bundles; force_serialization;
4966    fixed_latency(100);
4967    BR  : R(1);
4968    MS  : R(1);
4969    A0  : R(1);
4970%}
4971
4972pipe_class compiled_call(method meth) %{
4973    instruction_count(1); multiple_bundles; force_serialization;
4974    fixed_latency(100);
4975    MS  : R(1);
4976%}
4977
4978pipe_class call(method meth) %{
4979    instruction_count(0); multiple_bundles; force_serialization;
4980    fixed_latency(100);
4981%}
4982
4983pipe_class tail_call(Universe ignore, label labl) %{
4984    single_instruction; has_delay_slot;
4985    fixed_latency(100);
4986    BR  : R(1);
4987    MS  : R(1);
4988%}
4989
4990pipe_class ret(Universe ignore) %{
4991    single_instruction; has_delay_slot;
4992    BR  : R(1);
4993    MS  : R(1);
4994%}
4995
4996pipe_class ret_poll(g3RegP poll) %{
4997    instruction_count(3); has_delay_slot;
4998    poll : E(read);
4999    MS   : R;
5000%}
5001
5002// The real do-nothing guy
5003pipe_class empty( ) %{
5004    instruction_count(0);
5005%}
5006
5007pipe_class long_memory_op() %{
5008    instruction_count(0); multiple_bundles; force_serialization;
5009    fixed_latency(25);
5010    MS  : R(1);
5011%}
5012
5013// Check-cast
5014pipe_class partial_subtype_check_pipe(Universe ignore, iRegP array, iRegP match ) %{
5015    array : R(read);
5016    match  : R(read);
5017    IALU   : R(2);
5018    BR     : R(2);
5019    MS     : R;
5020%}
5021
5022// Convert FPU flags into +1,0,-1
5023pipe_class floating_cmp( iRegI dst, regF src1, regF src2 ) %{
5024    src1  : E(read);
5025    src2  : E(read);
5026    dst   : E(write);
5027    FA    : R;
5028    MS    : R(2);
5029    BR    : R(2);
5030%}
5031
5032// Compare for p < q, and conditionally add y
5033pipe_class cadd_cmpltmask( iRegI p, iRegI q, iRegI y ) %{
5034    p     : E(read);
5035    q     : E(read);
5036    y     : E(read);
5037    IALU  : R(3)
5038%}
5039
5040// Perform a compare, then move conditionally in a branch delay slot.
5041pipe_class min_max( iRegI src2, iRegI srcdst ) %{
5042    src2   : E(read);
5043    srcdst : E(read);
5044    IALU   : R;
5045    BR     : R;
5046%}
5047
5048// Define the class for the Nop node
5049define %{
5050   MachNop = ialu_nop;
5051%}
5052
5053%}
5054
5055//----------INSTRUCTIONS-------------------------------------------------------
5056
5057//------------Special Stack Slot instructions - no match rules-----------------
5058instruct stkI_to_regF(regF dst, stackSlotI src) %{
5059  // No match rule to avoid chain rule match.
5060  effect(DEF dst, USE src);
5061  ins_cost(MEMORY_REF_COST);
5062  size(4);
5063  format %{ "LDF    $src,$dst\t! stkI to regF" %}
5064  opcode(Assembler::ldf_op3);
5065  ins_encode(form3_mem_reg(src, dst));
5066  ins_pipe(floadF_stk);
5067%}
5068
5069instruct stkL_to_regD(regD dst, stackSlotL src) %{
5070  // No match rule to avoid chain rule match.
5071  effect(DEF dst, USE src);
5072  ins_cost(MEMORY_REF_COST);
5073  size(4);
5074  format %{ "LDDF   $src,$dst\t! stkL to regD" %}
5075  opcode(Assembler::lddf_op3);
5076  ins_encode(form3_mem_reg(src, dst));
5077  ins_pipe(floadD_stk);
5078%}
5079
5080instruct regF_to_stkI(stackSlotI dst, regF src) %{
5081  // No match rule to avoid chain rule match.
5082  effect(DEF dst, USE src);
5083  ins_cost(MEMORY_REF_COST);
5084  size(4);
5085  format %{ "STF    $src,$dst\t! regF to stkI" %}
5086  opcode(Assembler::stf_op3);
5087  ins_encode(form3_mem_reg(dst, src));
5088  ins_pipe(fstoreF_stk_reg);
5089%}
5090
5091instruct regD_to_stkL(stackSlotL dst, regD src) %{
5092  // No match rule to avoid chain rule match.
5093  effect(DEF dst, USE src);
5094  ins_cost(MEMORY_REF_COST);
5095  size(4);
5096  format %{ "STDF   $src,$dst\t! regD to stkL" %}
5097  opcode(Assembler::stdf_op3);
5098  ins_encode(form3_mem_reg(dst, src));
5099  ins_pipe(fstoreD_stk_reg);
5100%}
5101
5102instruct regI_to_stkLHi(stackSlotL dst, iRegI src) %{
5103  effect(DEF dst, USE src);
5104  ins_cost(MEMORY_REF_COST*2);
5105  size(8);
5106  format %{ "STW    $src,$dst.hi\t! long\n\t"
5107            "STW    R_G0,$dst.lo" %}
5108  opcode(Assembler::stw_op3);
5109  ins_encode(form3_mem_reg(dst, src), form3_mem_plus_4_reg(dst, R_G0));
5110  ins_pipe(lstoreI_stk_reg);
5111%}
5112
5113instruct regL_to_stkD(stackSlotD dst, iRegL src) %{
5114  // No match rule to avoid chain rule match.
5115  effect(DEF dst, USE src);
5116  ins_cost(MEMORY_REF_COST);
5117  size(4);
5118  format %{ "STX    $src,$dst\t! regL to stkD" %}
5119  opcode(Assembler::stx_op3);
5120  ins_encode( form3_mem_reg( dst, src ) );
5121  ins_pipe(istore_stk_reg);
5122%}
5123
5124//---------- Chain stack slots between similar types --------
5125
5126// Load integer from stack slot
5127instruct stkI_to_regI( iRegI dst, stackSlotI src ) %{
5128  match(Set dst src);
5129  ins_cost(MEMORY_REF_COST);
5130
5131  size(4);
5132  format %{ "LDUW   $src,$dst\t!stk" %}
5133  opcode(Assembler::lduw_op3);
5134  ins_encode( form3_mem_reg( src, dst ) );
5135  ins_pipe(iload_mem);
5136%}
5137
5138// Store integer to stack slot
5139instruct regI_to_stkI( stackSlotI dst, iRegI src ) %{
5140  match(Set dst src);
5141  ins_cost(MEMORY_REF_COST);
5142
5143  size(4);
5144  format %{ "STW    $src,$dst\t!stk" %}
5145  opcode(Assembler::stw_op3);
5146  ins_encode( form3_mem_reg( dst, src ) );
5147  ins_pipe(istore_mem_reg);
5148%}
5149
5150// Load long from stack slot
5151instruct stkL_to_regL( iRegL dst, stackSlotL src ) %{
5152  match(Set dst src);
5153
5154  ins_cost(MEMORY_REF_COST);
5155  size(4);
5156  format %{ "LDX    $src,$dst\t! long" %}
5157  opcode(Assembler::ldx_op3);
5158  ins_encode( form3_mem_reg( src, dst ) );
5159  ins_pipe(iload_mem);
5160%}
5161
5162// Store long to stack slot
5163instruct regL_to_stkL(stackSlotL dst, iRegL src) %{
5164  match(Set dst src);
5165
5166  ins_cost(MEMORY_REF_COST);
5167  size(4);
5168  format %{ "STX    $src,$dst\t! long" %}
5169  opcode(Assembler::stx_op3);
5170  ins_encode( form3_mem_reg( dst, src ) );
5171  ins_pipe(istore_mem_reg);
5172%}
5173
5174#ifdef _LP64
5175// Load pointer from stack slot, 64-bit encoding
5176instruct stkP_to_regP( iRegP dst, stackSlotP src ) %{
5177  match(Set dst src);
5178  ins_cost(MEMORY_REF_COST);
5179  size(4);
5180  format %{ "LDX    $src,$dst\t!ptr" %}
5181  opcode(Assembler::ldx_op3);
5182  ins_encode( form3_mem_reg( src, dst ) );
5183  ins_pipe(iload_mem);
5184%}
5185
5186// Store pointer to stack slot
5187instruct regP_to_stkP(stackSlotP dst, iRegP src) %{
5188  match(Set dst src);
5189  ins_cost(MEMORY_REF_COST);
5190  size(4);
5191  format %{ "STX    $src,$dst\t!ptr" %}
5192  opcode(Assembler::stx_op3);
5193  ins_encode( form3_mem_reg( dst, src ) );
5194  ins_pipe(istore_mem_reg);
5195%}
5196#else // _LP64
5197// Load pointer from stack slot, 32-bit encoding
5198instruct stkP_to_regP( iRegP dst, stackSlotP src ) %{
5199  match(Set dst src);
5200  ins_cost(MEMORY_REF_COST);
5201  format %{ "LDUW   $src,$dst\t!ptr" %}
5202  opcode(Assembler::lduw_op3, Assembler::ldst_op);
5203  ins_encode( form3_mem_reg( src, dst ) );
5204  ins_pipe(iload_mem);
5205%}
5206
5207// Store pointer to stack slot
5208instruct regP_to_stkP(stackSlotP dst, iRegP src) %{
5209  match(Set dst src);
5210  ins_cost(MEMORY_REF_COST);
5211  format %{ "STW    $src,$dst\t!ptr" %}
5212  opcode(Assembler::stw_op3, Assembler::ldst_op);
5213  ins_encode( form3_mem_reg( dst, src ) );
5214  ins_pipe(istore_mem_reg);
5215%}
5216#endif // _LP64
5217
5218//------------Special Nop instructions for bundling - no match rules-----------
5219// Nop using the A0 functional unit
5220instruct Nop_A0() %{
5221  ins_cost(0);
5222
5223  format %{ "NOP    ! Alu Pipeline" %}
5224  opcode(Assembler::or_op3, Assembler::arith_op);
5225  ins_encode( form2_nop() );
5226  ins_pipe(ialu_nop_A0);
5227%}
5228
5229// Nop using the A1 functional unit
5230instruct Nop_A1( ) %{
5231  ins_cost(0);
5232
5233  format %{ "NOP    ! Alu Pipeline" %}
5234  opcode(Assembler::or_op3, Assembler::arith_op);
5235  ins_encode( form2_nop() );
5236  ins_pipe(ialu_nop_A1);
5237%}
5238
5239// Nop using the memory functional unit
5240instruct Nop_MS( ) %{
5241  ins_cost(0);
5242
5243  format %{ "NOP    ! Memory Pipeline" %}
5244  ins_encode( emit_mem_nop );
5245  ins_pipe(mem_nop);
5246%}
5247
5248// Nop using the floating add functional unit
5249instruct Nop_FA( ) %{
5250  ins_cost(0);
5251
5252  format %{ "NOP    ! Floating Add Pipeline" %}
5253  ins_encode( emit_fadd_nop );
5254  ins_pipe(fadd_nop);
5255%}
5256
5257// Nop using the branch functional unit
5258instruct Nop_BR( ) %{
5259  ins_cost(0);
5260
5261  format %{ "NOP    ! Branch Pipeline" %}
5262  ins_encode( emit_br_nop );
5263  ins_pipe(br_nop);
5264%}
5265
5266//----------Load/Store/Move Instructions---------------------------------------
5267//----------Load Instructions--------------------------------------------------
5268// Load Byte (8bit signed)
5269instruct loadB(iRegI dst, memory mem) %{
5270  match(Set dst (LoadB mem));
5271  ins_cost(MEMORY_REF_COST);
5272
5273  size(4);
5274  format %{ "LDSB   $mem,$dst" %}
5275  opcode(Assembler::ldsb_op3);
5276  ins_encode( form3_mem_reg( mem, dst ) );
5277  ins_pipe(iload_mask_mem);
5278%}
5279
5280// Load Byte (8bit UNsigned) into an int reg
5281instruct loadUB(iRegI dst, memory mem, immI_255 bytemask) %{
5282  match(Set dst (AndI (LoadB mem) bytemask));
5283  ins_cost(MEMORY_REF_COST);
5284
5285  size(4);
5286  format %{ "LDUB   $mem,$dst" %}
5287  opcode(Assembler::ldub_op3);
5288  ins_encode( form3_mem_reg( mem, dst ) );
5289  ins_pipe(iload_mask_mem);
5290%}
5291
5292// Load Byte (8bit UNsigned) into a Long Register
5293instruct loadUBL(iRegL dst, memory mem, immL_FF bytemask) %{
5294  match(Set dst (AndL (ConvI2L (LoadB mem)) bytemask));
5295  ins_cost(MEMORY_REF_COST);
5296
5297  size(4);
5298  format %{ "LDUB   $mem,$dst" %}
5299  opcode(Assembler::ldub_op3);
5300  ins_encode( form3_mem_reg( mem, dst ) );
5301  ins_pipe(iload_mask_mem);
5302%}
5303
5304// Load Char (16bit UNsigned) into a Long Register
5305instruct loadUCL(iRegL dst, memory mem, immL_FFFF bytemask) %{
5306  match(Set dst (AndL (ConvI2L (LoadC mem)) bytemask));
5307  ins_cost(MEMORY_REF_COST);
5308
5309  size(4);
5310  format %{ "LDUH   $mem,$dst" %}
5311  opcode(Assembler::lduh_op3);
5312  ins_encode( form3_mem_reg( mem, dst ) );
5313  ins_pipe(iload_mask_mem);
5314%}
5315
5316// Load Char (16bit unsigned)
5317instruct loadC(iRegI dst, memory mem) %{
5318  match(Set dst (LoadC mem));
5319  ins_cost(MEMORY_REF_COST);
5320
5321  size(4);
5322  format %{ "LDUH   $mem,$dst" %}
5323  opcode(Assembler::lduh_op3);
5324  ins_encode( form3_mem_reg( mem, dst ) );
5325  ins_pipe(iload_mask_mem);
5326%}
5327
5328// Load Integer
5329instruct loadI(iRegI dst, memory mem) %{
5330  match(Set dst (LoadI mem));
5331  ins_cost(MEMORY_REF_COST);
5332  size(4);
5333
5334  format %{ "LDUW   $mem,$dst" %}
5335  opcode(Assembler::lduw_op3);
5336  ins_encode( form3_mem_reg( mem, dst ) );
5337  ins_pipe(iload_mem);
5338%}
5339
5340// Load Long - aligned
5341instruct loadL(iRegL dst, memory mem ) %{
5342  match(Set dst (LoadL mem));
5343  ins_cost(MEMORY_REF_COST);
5344  size(4);
5345  format %{ "LDX    $mem,$dst\t! long" %}
5346  opcode(Assembler::ldx_op3);
5347  ins_encode( form3_mem_reg( mem, dst ) );
5348  ins_pipe(iload_mem);
5349%}
5350
5351// Load Long - UNaligned
5352instruct loadL_unaligned(iRegL dst, memory mem, o7RegI tmp) %{
5353  match(Set dst (LoadL_unaligned mem));
5354  effect(KILL tmp);
5355  ins_cost(MEMORY_REF_COST*2+DEFAULT_COST);
5356  size(16);
5357  format %{ "LDUW   $mem+4,R_O7\t! misaligned long\n"
5358          "\tLDUW   $mem  ,$dst\n"
5359          "\tSLLX   #32, $dst, $dst\n"
5360          "\tOR     $dst, R_O7, $dst" %}
5361  opcode(Assembler::lduw_op3);
5362  ins_encode( form3_mem_reg_long_unaligned_marshal( mem, dst ));
5363  ins_pipe(iload_mem);
5364%}
5365
5366// Load Aligned Packed Byte into a Double Register
5367instruct loadA8B(regD dst, memory mem) %{
5368  match(Set dst (Load8B mem));
5369  ins_cost(MEMORY_REF_COST);
5370  size(4);
5371  format %{ "LDDF   $mem,$dst\t! packed8B" %}
5372  opcode(Assembler::lddf_op3);
5373  ins_encode( form3_mem_reg( mem, dst ) );
5374  ins_pipe(floadD_mem);
5375%}
5376
5377// Load Aligned Packed Char into a Double Register
5378instruct loadA4C(regD dst, memory mem) %{
5379  match(Set dst (Load4C mem));
5380  ins_cost(MEMORY_REF_COST);
5381  size(4);
5382  format %{ "LDDF   $mem,$dst\t! packed4C" %}
5383  opcode(Assembler::lddf_op3);
5384  ins_encode( form3_mem_reg( mem, dst ) );
5385  ins_pipe(floadD_mem);
5386%}
5387
5388// Load Aligned Packed Short into a Double Register
5389instruct loadA4S(regD dst, memory mem) %{
5390  match(Set dst (Load4S mem));
5391  ins_cost(MEMORY_REF_COST);
5392  size(4);
5393  format %{ "LDDF   $mem,$dst\t! packed4S" %}
5394  opcode(Assembler::lddf_op3);
5395  ins_encode( form3_mem_reg( mem, dst ) );
5396  ins_pipe(floadD_mem);
5397%}
5398
5399// Load Aligned Packed Int into a Double Register
5400instruct loadA2I(regD dst, memory mem) %{
5401  match(Set dst (Load2I mem));
5402  ins_cost(MEMORY_REF_COST);
5403  size(4);
5404  format %{ "LDDF   $mem,$dst\t! packed2I" %}
5405  opcode(Assembler::lddf_op3);
5406  ins_encode( form3_mem_reg( mem, dst ) );
5407  ins_pipe(floadD_mem);
5408%}
5409
5410// Load Range
5411instruct loadRange(iRegI dst, memory mem) %{
5412  match(Set dst (LoadRange mem));
5413  ins_cost(MEMORY_REF_COST);
5414
5415  size(4);
5416  format %{ "LDUW   $mem,$dst\t! range" %}
5417  opcode(Assembler::lduw_op3);
5418  ins_encode( form3_mem_reg( mem, dst ) );
5419  ins_pipe(iload_mem);
5420%}
5421
5422// Load Integer into %f register (for fitos/fitod)
5423instruct loadI_freg(regF dst, memory mem) %{
5424  match(Set dst (LoadI mem));
5425  ins_cost(MEMORY_REF_COST);
5426  size(4);
5427
5428  format %{ "LDF    $mem,$dst\t! for fitos/fitod" %}
5429  opcode(Assembler::ldf_op3);
5430  ins_encode( form3_mem_reg( mem, dst ) );
5431  ins_pipe(floadF_mem);
5432%}
5433
5434// Load Pointer
5435instruct loadP(iRegP dst, memory mem) %{
5436  match(Set dst (LoadP mem));
5437  ins_cost(MEMORY_REF_COST);
5438  size(4);
5439
5440#ifndef _LP64
5441  format %{ "LDUW   $mem,$dst\t! ptr" %}
5442  opcode(Assembler::lduw_op3, 0, REGP_OP);
5443#else
5444  format %{ "LDX    $mem,$dst\t! ptr" %}
5445  opcode(Assembler::ldx_op3, 0, REGP_OP);
5446#endif
5447  ins_encode( form3_mem_reg( mem, dst ) );
5448  ins_pipe(iload_mem);
5449%}
5450
5451// Load Compressed Pointer
5452instruct loadN(iRegN dst, memory mem) %{
5453   match(Set dst (LoadN mem));
5454   ins_cost(MEMORY_REF_COST);
5455   size(4);
5456
5457   format %{ "LDUW   $mem,$dst\t! compressed ptr" %}
5458   ins_encode %{
5459     Register base = as_Register($mem$$base);
5460     Register index = as_Register($mem$$index);
5461     Register dst = $dst$$Register;
5462     if (index != G0) {
5463       __ lduw(base, index, dst);
5464     } else {
5465       __ lduw(base, $mem$$disp, dst);
5466     }
5467   %}
5468   ins_pipe(iload_mem);
5469%}
5470
5471// Load Klass Pointer
5472instruct loadKlass(iRegP dst, memory mem) %{
5473  match(Set dst (LoadKlass mem));
5474  predicate(!n->in(MemNode::Address)->bottom_type()->is_narrow());
5475  ins_cost(MEMORY_REF_COST);
5476  size(4);
5477
5478#ifndef _LP64
5479  format %{ "LDUW   $mem,$dst\t! klass ptr" %}
5480  opcode(Assembler::lduw_op3, 0, REGP_OP);
5481#else
5482  format %{ "LDX    $mem,$dst\t! klass ptr" %}
5483  opcode(Assembler::ldx_op3, 0, REGP_OP);
5484#endif
5485  ins_encode( form3_mem_reg( mem, dst ) );
5486  ins_pipe(iload_mem);
5487%}
5488
5489// Load Klass Pointer
5490instruct loadKlassComp(iRegP dst, memory mem) %{
5491  match(Set dst (LoadKlass mem));
5492  predicate(n->in(MemNode::Address)->bottom_type()->is_narrow());
5493  ins_cost(MEMORY_REF_COST);
5494
5495  format %{ "LDUW   $mem,$dst\t! compressed klass ptr" %}
5496
5497  ins_encode %{
5498     Register base = as_Register($mem$$base);
5499     Register index = as_Register($mem$$index);
5500     Register dst = $dst$$Register;
5501     if (index != G0) {
5502       __ lduw(base, index, dst);
5503     } else {
5504       __ lduw(base, $mem$$disp, dst);
5505     }
5506     // klass oop never null but this is generated for nonheader klass loads
5507     // too which can be null.
5508     __ decode_heap_oop(dst);
5509  %}
5510  ins_pipe(iload_mem);
5511%}
5512
5513// Load Short (16bit signed)
5514instruct loadS(iRegI dst, memory mem) %{
5515  match(Set dst (LoadS mem));
5516  ins_cost(MEMORY_REF_COST);
5517
5518  size(4);
5519  format %{ "LDSH   $mem,$dst" %}
5520  opcode(Assembler::ldsh_op3);
5521  ins_encode( form3_mem_reg( mem, dst ) );
5522  ins_pipe(iload_mask_mem);
5523%}
5524
5525// Load Double
5526instruct loadD(regD dst, memory mem) %{
5527  match(Set dst (LoadD mem));
5528  ins_cost(MEMORY_REF_COST);
5529
5530  size(4);
5531  format %{ "LDDF   $mem,$dst" %}
5532  opcode(Assembler::lddf_op3);
5533  ins_encode( form3_mem_reg( mem, dst ) );
5534  ins_pipe(floadD_mem);
5535%}
5536
5537// Load Double - UNaligned
5538instruct loadD_unaligned(regD_low dst, memory mem ) %{
5539  match(Set dst (LoadD_unaligned mem));
5540  ins_cost(MEMORY_REF_COST*2+DEFAULT_COST);
5541  size(8);
5542  format %{ "LDF    $mem  ,$dst.hi\t! misaligned double\n"
5543          "\tLDF    $mem+4,$dst.lo\t!" %}
5544  opcode(Assembler::ldf_op3);
5545  ins_encode( form3_mem_reg_double_unaligned( mem, dst ));
5546  ins_pipe(iload_mem);
5547%}
5548
5549// Load Float
5550instruct loadF(regF dst, memory mem) %{
5551  match(Set dst (LoadF mem));
5552  ins_cost(MEMORY_REF_COST);
5553
5554  size(4);
5555  format %{ "LDF    $mem,$dst" %}
5556  opcode(Assembler::ldf_op3);
5557  ins_encode( form3_mem_reg( mem, dst ) );
5558  ins_pipe(floadF_mem);
5559%}
5560
5561// Load Constant
5562instruct loadConI( iRegI dst, immI src ) %{
5563  match(Set dst src);
5564  ins_cost(DEFAULT_COST * 3/2);
5565  format %{ "SET    $src,$dst" %}
5566  ins_encode( Set32(src, dst) );
5567  ins_pipe(ialu_hi_lo_reg);
5568%}
5569
5570instruct loadConI13( iRegI dst, immI13 src ) %{
5571  match(Set dst src);
5572
5573  size(4);
5574  format %{ "MOV    $src,$dst" %}
5575  ins_encode( Set13( src, dst ) );
5576  ins_pipe(ialu_imm);
5577%}
5578
5579instruct loadConP(iRegP dst, immP src) %{
5580  match(Set dst src);
5581  ins_cost(DEFAULT_COST * 3/2);
5582  format %{ "SET    $src,$dst\t!ptr" %}
5583  // This rule does not use "expand" unlike loadConI because then
5584  // the result type is not known to be an Oop.  An ADLC
5585  // enhancement will be needed to make that work - not worth it!
5586
5587  ins_encode( SetPtr( src, dst ) );
5588  ins_pipe(loadConP);
5589
5590%}
5591
5592instruct loadConP0(iRegP dst, immP0 src) %{
5593  match(Set dst src);
5594
5595  size(4);
5596  format %{ "CLR    $dst\t!ptr" %}
5597  ins_encode( SetNull( dst ) );
5598  ins_pipe(ialu_imm);
5599%}
5600
5601instruct loadConP_poll(iRegP dst, immP_poll src) %{
5602  match(Set dst src);
5603  ins_cost(DEFAULT_COST);
5604  format %{ "SET    $src,$dst\t!ptr" %}
5605  ins_encode %{
5606    Address polling_page(reg_to_register_object($dst$$reg), (address)os::get_polling_page());
5607    __ sethi(polling_page, false );
5608  %}
5609  ins_pipe(loadConP_poll);
5610%}
5611
5612instruct loadConN(iRegN dst, immN src) %{
5613  match(Set dst src);
5614  ins_cost(DEFAULT_COST * 2);
5615  format %{ "SET    $src,$dst\t!ptr" %}
5616  ins_encode %{
5617    address con = (address)$src$$constant;
5618    Register dst = $dst$$Register;
5619    if (con == NULL) {
5620      __ mov(G0, dst);
5621    } else {
5622      __ set_oop((jobject)$src$$constant, dst);
5623      __ encode_heap_oop(dst);
5624    }
5625  %}
5626  ins_pipe(loadConP);
5627
5628%}
5629
5630instruct loadConL(iRegL dst, immL src, o7RegL tmp) %{
5631  // %%% maybe this should work like loadConD
5632  match(Set dst src);
5633  effect(KILL tmp);
5634  ins_cost(DEFAULT_COST * 4);
5635  format %{ "SET64   $src,$dst KILL $tmp\t! long" %}
5636  ins_encode( LdImmL(src, dst, tmp) );
5637  ins_pipe(loadConL);
5638%}
5639
5640instruct loadConL0( iRegL dst, immL0 src ) %{
5641  match(Set dst src);
5642  ins_cost(DEFAULT_COST);
5643  size(4);
5644  format %{ "CLR    $dst\t! long" %}
5645  ins_encode( Set13( src, dst ) );
5646  ins_pipe(ialu_imm);
5647%}
5648
5649instruct loadConL13( iRegL dst, immL13 src ) %{
5650  match(Set dst src);
5651  ins_cost(DEFAULT_COST * 2);
5652
5653  size(4);
5654  format %{ "MOV    $src,$dst\t! long" %}
5655  ins_encode( Set13( src, dst ) );
5656  ins_pipe(ialu_imm);
5657%}
5658
5659instruct loadConF(regF dst, immF src, o7RegP tmp) %{
5660  match(Set dst src);
5661  effect(KILL tmp);
5662
5663#ifdef _LP64
5664  size(36);
5665#else
5666  size(8);
5667#endif
5668
5669  format %{ "SETHI  hi(&$src),$tmp\t!get float $src from table\n\t"
5670            "LDF    [$tmp+lo(&$src)],$dst" %}
5671  ins_encode( LdImmF(src, dst, tmp) );
5672  ins_pipe(loadConFD);
5673%}
5674
5675instruct loadConD(regD dst, immD src, o7RegP tmp) %{
5676  match(Set dst src);
5677  effect(KILL tmp);
5678
5679#ifdef _LP64
5680  size(36);
5681#else
5682  size(8);
5683#endif
5684
5685  format %{ "SETHI  hi(&$src),$tmp\t!get double $src from table\n\t"
5686            "LDDF   [$tmp+lo(&$src)],$dst" %}
5687  ins_encode( LdImmD(src, dst, tmp) );
5688  ins_pipe(loadConFD);
5689%}
5690
5691// Prefetch instructions.
5692// Must be safe to execute with invalid address (cannot fault).
5693
5694instruct prefetchr( memory mem ) %{
5695  match( PrefetchRead mem );
5696  ins_cost(MEMORY_REF_COST);
5697
5698  format %{ "PREFETCH $mem,0\t! Prefetch read-many" %}
5699  opcode(Assembler::prefetch_op3);
5700  ins_encode( form3_mem_prefetch_read( mem ) );
5701  ins_pipe(iload_mem);
5702%}
5703
5704instruct prefetchw( memory mem ) %{
5705  match( PrefetchWrite mem );
5706  ins_cost(MEMORY_REF_COST);
5707
5708  format %{ "PREFETCH $mem,2\t! Prefetch write-many (and read)" %}
5709  opcode(Assembler::prefetch_op3);
5710  ins_encode( form3_mem_prefetch_write( mem ) );
5711  ins_pipe(iload_mem);
5712%}
5713
5714
5715//----------Store Instructions-------------------------------------------------
5716// Store Byte
5717instruct storeB(memory mem, iRegI src) %{
5718  match(Set mem (StoreB mem src));
5719  ins_cost(MEMORY_REF_COST);
5720
5721  size(4);
5722  format %{ "STB    $src,$mem\t! byte" %}
5723  opcode(Assembler::stb_op3);
5724  ins_encode( form3_mem_reg( mem, src ) );
5725  ins_pipe(istore_mem_reg);
5726%}
5727
5728instruct storeB0(memory mem, immI0 src) %{
5729  match(Set mem (StoreB mem src));
5730  ins_cost(MEMORY_REF_COST);
5731
5732  size(4);
5733  format %{ "STB    $src,$mem\t! byte" %}
5734  opcode(Assembler::stb_op3);
5735  ins_encode( form3_mem_reg( mem, R_G0 ) );
5736  ins_pipe(istore_mem_zero);
5737%}
5738
5739instruct storeCM0(memory mem, immI0 src) %{
5740  match(Set mem (StoreCM mem src));
5741  ins_cost(MEMORY_REF_COST);
5742
5743  size(4);
5744  format %{ "STB    $src,$mem\t! CMS card-mark byte 0" %}
5745  opcode(Assembler::stb_op3);
5746  ins_encode( form3_mem_reg( mem, R_G0 ) );
5747  ins_pipe(istore_mem_zero);
5748%}
5749
5750// Store Char/Short
5751instruct storeC(memory mem, iRegI src) %{
5752  match(Set mem (StoreC mem src));
5753  ins_cost(MEMORY_REF_COST);
5754
5755  size(4);
5756  format %{ "STH    $src,$mem\t! short" %}
5757  opcode(Assembler::sth_op3);
5758  ins_encode( form3_mem_reg( mem, src ) );
5759  ins_pipe(istore_mem_reg);
5760%}
5761
5762instruct storeC0(memory mem, immI0 src) %{
5763  match(Set mem (StoreC mem src));
5764  ins_cost(MEMORY_REF_COST);
5765
5766  size(4);
5767  format %{ "STH    $src,$mem\t! short" %}
5768  opcode(Assembler::sth_op3);
5769  ins_encode( form3_mem_reg( mem, R_G0 ) );
5770  ins_pipe(istore_mem_zero);
5771%}
5772
5773// Store Integer
5774instruct storeI(memory mem, iRegI src) %{
5775  match(Set mem (StoreI mem src));
5776  ins_cost(MEMORY_REF_COST);
5777
5778  size(4);
5779  format %{ "STW    $src,$mem" %}
5780  opcode(Assembler::stw_op3);
5781  ins_encode( form3_mem_reg( mem, src ) );
5782  ins_pipe(istore_mem_reg);
5783%}
5784
5785// Store Long
5786instruct storeL(memory mem, iRegL src) %{
5787  match(Set mem (StoreL mem src));
5788  ins_cost(MEMORY_REF_COST);
5789  size(4);
5790  format %{ "STX    $src,$mem\t! long" %}
5791  opcode(Assembler::stx_op3);
5792  ins_encode( form3_mem_reg( mem, src ) );
5793  ins_pipe(istore_mem_reg);
5794%}
5795
5796instruct storeI0(memory mem, immI0 src) %{
5797  match(Set mem (StoreI mem src));
5798  ins_cost(MEMORY_REF_COST);
5799
5800  size(4);
5801  format %{ "STW    $src,$mem" %}
5802  opcode(Assembler::stw_op3);
5803  ins_encode( form3_mem_reg( mem, R_G0 ) );
5804  ins_pipe(istore_mem_zero);
5805%}
5806
5807instruct storeL0(memory mem, immL0 src) %{
5808  match(Set mem (StoreL mem src));
5809  ins_cost(MEMORY_REF_COST);
5810
5811  size(4);
5812  format %{ "STX    $src,$mem" %}
5813  opcode(Assembler::stx_op3);
5814  ins_encode( form3_mem_reg( mem, R_G0 ) );
5815  ins_pipe(istore_mem_zero);
5816%}
5817
5818// Store Integer from float register (used after fstoi)
5819instruct storeI_Freg(memory mem, regF src) %{
5820  match(Set mem (StoreI mem src));
5821  ins_cost(MEMORY_REF_COST);
5822
5823  size(4);
5824  format %{ "STF    $src,$mem\t! after fstoi/fdtoi" %}
5825  opcode(Assembler::stf_op3);
5826  ins_encode( form3_mem_reg( mem, src ) );
5827  ins_pipe(fstoreF_mem_reg);
5828%}
5829
5830// Store Pointer
5831instruct storeP(memory dst, sp_ptr_RegP src) %{
5832  match(Set dst (StoreP dst src));
5833  ins_cost(MEMORY_REF_COST);
5834  size(4);
5835
5836#ifndef _LP64
5837  format %{ "STW    $src,$dst\t! ptr" %}
5838  opcode(Assembler::stw_op3, 0, REGP_OP);
5839#else
5840  format %{ "STX    $src,$dst\t! ptr" %}
5841  opcode(Assembler::stx_op3, 0, REGP_OP);
5842#endif
5843  ins_encode( form3_mem_reg( dst, src ) );
5844  ins_pipe(istore_mem_spORreg);
5845%}
5846
5847instruct storeP0(memory dst, immP0 src) %{
5848  match(Set dst (StoreP dst src));
5849  ins_cost(MEMORY_REF_COST);
5850  size(4);
5851
5852#ifndef _LP64
5853  format %{ "STW    $src,$dst\t! ptr" %}
5854  opcode(Assembler::stw_op3, 0, REGP_OP);
5855#else
5856  format %{ "STX    $src,$dst\t! ptr" %}
5857  opcode(Assembler::stx_op3, 0, REGP_OP);
5858#endif
5859  ins_encode( form3_mem_reg( dst, R_G0 ) );
5860  ins_pipe(istore_mem_zero);
5861%}
5862
5863// Store Compressed Pointer
5864instruct storeN(memory dst, iRegN src) %{
5865   match(Set dst (StoreN dst src));
5866   ins_cost(MEMORY_REF_COST);
5867   size(4);
5868
5869   format %{ "STW    $src,$dst\t! compressed ptr" %}
5870   ins_encode %{
5871     Register base = as_Register($dst$$base);
5872     Register index = as_Register($dst$$index);
5873     Register src = $src$$Register;
5874     if (index != G0) {
5875       __ stw(src, base, index);
5876     } else {
5877       __ stw(src, base, $dst$$disp);
5878     }
5879   %}
5880   ins_pipe(istore_mem_spORreg);
5881%}
5882
5883instruct storeN0(memory dst, immN0 src) %{
5884   match(Set dst (StoreN dst src));
5885   ins_cost(MEMORY_REF_COST);
5886   size(4);
5887
5888   format %{ "STW    $src,$dst\t! compressed ptr" %}
5889   ins_encode %{
5890     Register base = as_Register($dst$$base);
5891     Register index = as_Register($dst$$index);
5892     if (index != G0) {
5893       __ stw(0, base, index);
5894     } else {
5895       __ stw(0, base, $dst$$disp);
5896     }
5897   %}
5898   ins_pipe(istore_mem_zero);
5899%}
5900
5901// Store Double
5902instruct storeD( memory mem, regD src) %{
5903  match(Set mem (StoreD mem src));
5904  ins_cost(MEMORY_REF_COST);
5905
5906  size(4);
5907  format %{ "STDF   $src,$mem" %}
5908  opcode(Assembler::stdf_op3);
5909  ins_encode( form3_mem_reg( mem, src ) );
5910  ins_pipe(fstoreD_mem_reg);
5911%}
5912
5913instruct storeD0( memory mem, immD0 src) %{
5914  match(Set mem (StoreD mem src));
5915  ins_cost(MEMORY_REF_COST);
5916
5917  size(4);
5918  format %{ "STX    $src,$mem" %}
5919  opcode(Assembler::stx_op3);
5920  ins_encode( form3_mem_reg( mem, R_G0 ) );
5921  ins_pipe(fstoreD_mem_zero);
5922%}
5923
5924// Store Float
5925instruct storeF( memory mem, regF src) %{
5926  match(Set mem (StoreF mem src));
5927  ins_cost(MEMORY_REF_COST);
5928
5929  size(4);
5930  format %{ "STF    $src,$mem" %}
5931  opcode(Assembler::stf_op3);
5932  ins_encode( form3_mem_reg( mem, src ) );
5933  ins_pipe(fstoreF_mem_reg);
5934%}
5935
5936instruct storeF0( memory mem, immF0 src) %{
5937  match(Set mem (StoreF mem src));
5938  ins_cost(MEMORY_REF_COST);
5939
5940  size(4);
5941  format %{ "STW    $src,$mem\t! storeF0" %}
5942  opcode(Assembler::stw_op3);
5943  ins_encode( form3_mem_reg( mem, R_G0 ) );
5944  ins_pipe(fstoreF_mem_zero);
5945%}
5946
5947// Store Aligned Packed Bytes in Double register to memory
5948instruct storeA8B(memory mem, regD src) %{
5949  match(Set mem (Store8B mem src));
5950  ins_cost(MEMORY_REF_COST);
5951  size(4);
5952  format %{ "STDF   $src,$mem\t! packed8B" %}
5953  opcode(Assembler::stdf_op3);
5954  ins_encode( form3_mem_reg( mem, src ) );
5955  ins_pipe(fstoreD_mem_reg);
5956%}
5957
5958// Convert oop pointer into compressed form
5959instruct encodeHeapOop(iRegN dst, iRegP src) %{
5960  match(Set dst (EncodeP src));
5961  format %{ "SRL    $src,3,$dst\t encodeHeapOop" %}
5962  ins_encode %{
5963    __ encode_heap_oop($src$$Register, $dst$$Register);
5964  %}
5965  ins_pipe(ialu_reg);
5966%}
5967
5968instruct decodeHeapOop(iRegP dst, iRegN src) %{
5969  match(Set dst (DecodeN src));
5970  format %{ "decode_heap_oop $src, $dst" %}
5971  ins_encode %{
5972    __ decode_heap_oop($src$$Register, $dst$$Register);
5973  %}
5974  ins_pipe(ialu_reg);
5975%}
5976
5977
5978// Store Zero into Aligned Packed Bytes
5979instruct storeA8B0(memory mem, immI0 zero) %{
5980  match(Set mem (Store8B mem zero));
5981  ins_cost(MEMORY_REF_COST);
5982  size(4);
5983  format %{ "STX    $zero,$mem\t! packed8B" %}
5984  opcode(Assembler::stx_op3);
5985  ins_encode( form3_mem_reg( mem, R_G0 ) );
5986  ins_pipe(fstoreD_mem_zero);
5987%}
5988
5989// Store Aligned Packed Chars/Shorts in Double register to memory
5990instruct storeA4C(memory mem, regD src) %{
5991  match(Set mem (Store4C mem src));
5992  ins_cost(MEMORY_REF_COST);
5993  size(4);
5994  format %{ "STDF   $src,$mem\t! packed4C" %}
5995  opcode(Assembler::stdf_op3);
5996  ins_encode( form3_mem_reg( mem, src ) );
5997  ins_pipe(fstoreD_mem_reg);
5998%}
5999
6000// Store Zero into Aligned Packed Chars/Shorts
6001instruct storeA4C0(memory mem, immI0 zero) %{
6002  match(Set mem (Store4C mem (Replicate4C zero)));
6003  ins_cost(MEMORY_REF_COST);
6004  size(4);
6005  format %{ "STX    $zero,$mem\t! packed4C" %}
6006  opcode(Assembler::stx_op3);
6007  ins_encode( form3_mem_reg( mem, R_G0 ) );
6008  ins_pipe(fstoreD_mem_zero);
6009%}
6010
6011// Store Aligned Packed Ints in Double register to memory
6012instruct storeA2I(memory mem, regD src) %{
6013  match(Set mem (Store2I mem src));
6014  ins_cost(MEMORY_REF_COST);
6015  size(4);
6016  format %{ "STDF   $src,$mem\t! packed2I" %}
6017  opcode(Assembler::stdf_op3);
6018  ins_encode( form3_mem_reg( mem, src ) );
6019  ins_pipe(fstoreD_mem_reg);
6020%}
6021
6022// Store Zero into Aligned Packed Ints
6023instruct storeA2I0(memory mem, immI0 zero) %{
6024  match(Set mem (Store2I mem zero));
6025  ins_cost(MEMORY_REF_COST);
6026  size(4);
6027  format %{ "STX    $zero,$mem\t! packed2I" %}
6028  opcode(Assembler::stx_op3);
6029  ins_encode( form3_mem_reg( mem, R_G0 ) );
6030  ins_pipe(fstoreD_mem_zero);
6031%}
6032
6033
6034//----------MemBar Instructions-----------------------------------------------
6035// Memory barrier flavors
6036
6037instruct membar_acquire() %{
6038  match(MemBarAcquire);
6039  ins_cost(4*MEMORY_REF_COST);
6040
6041  size(0);
6042  format %{ "MEMBAR-acquire" %}
6043  ins_encode( enc_membar_acquire );
6044  ins_pipe(long_memory_op);
6045%}
6046
6047instruct membar_acquire_lock() %{
6048  match(MemBarAcquire);
6049  predicate(Matcher::prior_fast_lock(n));
6050  ins_cost(0);
6051
6052  size(0);
6053  format %{ "!MEMBAR-acquire (CAS in prior FastLock so empty encoding)" %}
6054  ins_encode( );
6055  ins_pipe(empty);
6056%}
6057
6058instruct membar_release() %{
6059  match(MemBarRelease);
6060  ins_cost(4*MEMORY_REF_COST);
6061
6062  size(0);
6063  format %{ "MEMBAR-release" %}
6064  ins_encode( enc_membar_release );
6065  ins_pipe(long_memory_op);
6066%}
6067
6068instruct membar_release_lock() %{
6069  match(MemBarRelease);
6070  predicate(Matcher::post_fast_unlock(n));
6071  ins_cost(0);
6072
6073  size(0);
6074  format %{ "!MEMBAR-release (CAS in succeeding FastUnlock so empty encoding)" %}
6075  ins_encode( );
6076  ins_pipe(empty);
6077%}
6078
6079instruct membar_volatile() %{
6080  match(MemBarVolatile);
6081  ins_cost(4*MEMORY_REF_COST);
6082
6083  size(4);
6084  format %{ "MEMBAR-volatile" %}
6085  ins_encode( enc_membar_volatile );
6086  ins_pipe(long_memory_op);
6087%}
6088
6089instruct unnecessary_membar_volatile() %{
6090  match(MemBarVolatile);
6091  predicate(Matcher::post_store_load_barrier(n));
6092  ins_cost(0);
6093
6094  size(0);
6095  format %{ "!MEMBAR-volatile (unnecessary so empty encoding)" %}
6096  ins_encode( );
6097  ins_pipe(empty);
6098%}
6099
6100//----------Register Move Instructions-----------------------------------------
6101instruct roundDouble_nop(regD dst) %{
6102  match(Set dst (RoundDouble dst));
6103  ins_cost(0);
6104  // SPARC results are already "rounded" (i.e., normal-format IEEE)
6105  ins_encode( );
6106  ins_pipe(empty);
6107%}
6108
6109
6110instruct roundFloat_nop(regF dst) %{
6111  match(Set dst (RoundFloat dst));
6112  ins_cost(0);
6113  // SPARC results are already "rounded" (i.e., normal-format IEEE)
6114  ins_encode( );
6115  ins_pipe(empty);
6116%}
6117
6118
6119// Cast Index to Pointer for unsafe natives
6120instruct castX2P(iRegX src, iRegP dst) %{
6121  match(Set dst (CastX2P src));
6122
6123  format %{ "MOV    $src,$dst\t! IntX->Ptr" %}
6124  ins_encode( form3_g0_rs2_rd_move( src, dst ) );
6125  ins_pipe(ialu_reg);
6126%}
6127
6128// Cast Pointer to Index for unsafe natives
6129instruct castP2X(iRegP src, iRegX dst) %{
6130  match(Set dst (CastP2X src));
6131
6132  format %{ "MOV    $src,$dst\t! Ptr->IntX" %}
6133  ins_encode( form3_g0_rs2_rd_move( src, dst ) );
6134  ins_pipe(ialu_reg);
6135%}
6136
6137instruct stfSSD(stackSlotD stkSlot, regD src) %{
6138  // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
6139  match(Set stkSlot src);   // chain rule
6140  ins_cost(MEMORY_REF_COST);
6141  format %{ "STDF   $src,$stkSlot\t!stk" %}
6142  opcode(Assembler::stdf_op3);
6143  ins_encode(form3_mem_reg(stkSlot, src));
6144  ins_pipe(fstoreD_stk_reg);
6145%}
6146
6147instruct ldfSSD(regD dst, stackSlotD stkSlot) %{
6148  // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
6149  match(Set dst stkSlot);   // chain rule
6150  ins_cost(MEMORY_REF_COST);
6151  format %{ "LDDF   $stkSlot,$dst\t!stk" %}
6152  opcode(Assembler::lddf_op3);
6153  ins_encode(form3_mem_reg(stkSlot, dst));
6154  ins_pipe(floadD_stk);
6155%}
6156
6157instruct stfSSF(stackSlotF stkSlot, regF src) %{
6158  // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
6159  match(Set stkSlot src);   // chain rule
6160  ins_cost(MEMORY_REF_COST);
6161  format %{ "STF   $src,$stkSlot\t!stk" %}
6162  opcode(Assembler::stf_op3);
6163  ins_encode(form3_mem_reg(stkSlot, src));
6164  ins_pipe(fstoreF_stk_reg);
6165%}
6166
6167//----------Conditional Move---------------------------------------------------
6168// Conditional move
6169instruct cmovIP_reg(cmpOpP cmp, flagsRegP pcc, iRegI dst, iRegI src) %{
6170  match(Set dst (CMoveI (Binary cmp pcc) (Binary dst src)));
6171  ins_cost(150);
6172  format %{ "MOV$cmp $pcc,$src,$dst" %}
6173  ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6174  ins_pipe(ialu_reg);
6175%}
6176
6177instruct cmovIP_imm(cmpOpP cmp, flagsRegP pcc, iRegI dst, immI11 src) %{
6178  match(Set dst (CMoveI (Binary cmp pcc) (Binary dst src)));
6179  ins_cost(140);
6180  format %{ "MOV$cmp $pcc,$src,$dst" %}
6181  ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
6182  ins_pipe(ialu_imm);
6183%}
6184
6185instruct cmovII_reg(cmpOp cmp, flagsReg icc, iRegI dst, iRegI src) %{
6186  match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
6187  ins_cost(150);
6188  size(4);
6189  format %{ "MOV$cmp  $icc,$src,$dst" %}
6190  ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6191  ins_pipe(ialu_reg);
6192%}
6193
6194instruct cmovII_imm(cmpOp cmp, flagsReg icc, iRegI dst, immI11 src) %{
6195  match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
6196  ins_cost(140);
6197  size(4);
6198  format %{ "MOV$cmp  $icc,$src,$dst" %}
6199  ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
6200  ins_pipe(ialu_imm);
6201%}
6202
6203instruct cmovII_U_reg(cmpOpU cmp, flagsRegU icc, iRegI dst, iRegI src) %{
6204  match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
6205  ins_cost(150);
6206  size(4);
6207  format %{ "MOV$cmp  $icc,$src,$dst" %}
6208  ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6209  ins_pipe(ialu_reg);
6210%}
6211
6212instruct cmovII_U_imm(cmpOpU cmp, flagsRegU icc, iRegI dst, immI11 src) %{
6213  match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
6214  ins_cost(140);
6215  size(4);
6216  format %{ "MOV$cmp  $icc,$src,$dst" %}
6217  ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
6218  ins_pipe(ialu_imm);
6219%}
6220
6221instruct cmovIF_reg(cmpOpF cmp, flagsRegF fcc, iRegI dst, iRegI src) %{
6222  match(Set dst (CMoveI (Binary cmp fcc) (Binary dst src)));
6223  ins_cost(150);
6224  size(4);
6225  format %{ "MOV$cmp $fcc,$src,$dst" %}
6226  ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
6227  ins_pipe(ialu_reg);
6228%}
6229
6230instruct cmovIF_imm(cmpOpF cmp, flagsRegF fcc, iRegI dst, immI11 src) %{
6231  match(Set dst (CMoveI (Binary cmp fcc) (Binary dst src)));
6232  ins_cost(140);
6233  size(4);
6234  format %{ "MOV$cmp $fcc,$src,$dst" %}
6235  ins_encode( enc_cmov_imm_f(cmp,dst,src, fcc) );
6236  ins_pipe(ialu_imm);
6237%}
6238
6239// Conditional move
6240instruct cmovPP_reg(cmpOpP cmp, flagsRegP pcc, iRegP dst, iRegP src) %{
6241  match(Set dst (CMoveP (Binary cmp pcc) (Binary dst src)));
6242  ins_cost(150);
6243  format %{ "MOV$cmp $pcc,$src,$dst\t! ptr" %}
6244  ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6245  ins_pipe(ialu_reg);
6246%}
6247
6248instruct cmovPP_imm(cmpOpP cmp, flagsRegP pcc, iRegP dst, immP0 src) %{
6249  match(Set dst (CMoveP (Binary cmp pcc) (Binary dst src)));
6250  ins_cost(140);
6251  format %{ "MOV$cmp $pcc,$src,$dst\t! ptr" %}
6252  ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
6253  ins_pipe(ialu_imm);
6254%}
6255
6256instruct cmovPI_reg(cmpOp cmp, flagsReg icc, iRegP dst, iRegP src) %{
6257  match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
6258  ins_cost(150);
6259
6260  size(4);
6261  format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
6262  ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6263  ins_pipe(ialu_reg);
6264%}
6265
6266instruct cmovPI_imm(cmpOp cmp, flagsReg icc, iRegP dst, immP0 src) %{
6267  match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
6268  ins_cost(140);
6269
6270  size(4);
6271  format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
6272  ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
6273  ins_pipe(ialu_imm);
6274%}
6275
6276instruct cmovPF_reg(cmpOpF cmp, flagsRegF fcc, iRegP dst, iRegP src) %{
6277  match(Set dst (CMoveP (Binary cmp fcc) (Binary dst src)));
6278  ins_cost(150);
6279  size(4);
6280  format %{ "MOV$cmp $fcc,$src,$dst" %}
6281  ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
6282  ins_pipe(ialu_imm);
6283%}
6284
6285instruct cmovPF_imm(cmpOpF cmp, flagsRegF fcc, iRegP dst, immP0 src) %{
6286  match(Set dst (CMoveP (Binary cmp fcc) (Binary dst src)));
6287  ins_cost(140);
6288  size(4);
6289  format %{ "MOV$cmp $fcc,$src,$dst" %}
6290  ins_encode( enc_cmov_imm_f(cmp,dst,src, fcc) );
6291  ins_pipe(ialu_imm);
6292%}
6293
6294// Conditional move
6295instruct cmovFP_reg(cmpOpP cmp, flagsRegP pcc, regF dst, regF src) %{
6296  match(Set dst (CMoveF (Binary cmp pcc) (Binary dst src)));
6297  ins_cost(150);
6298  opcode(0x101);
6299  format %{ "FMOVD$cmp $pcc,$src,$dst" %}
6300  ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6301  ins_pipe(int_conditional_float_move);
6302%}
6303
6304instruct cmovFI_reg(cmpOp cmp, flagsReg icc, regF dst, regF src) %{
6305  match(Set dst (CMoveF (Binary cmp icc) (Binary dst src)));
6306  ins_cost(150);
6307
6308  size(4);
6309  format %{ "FMOVS$cmp $icc,$src,$dst" %}
6310  opcode(0x101);
6311  ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
6312  ins_pipe(int_conditional_float_move);
6313%}
6314
6315// Conditional move,
6316instruct cmovFF_reg(cmpOpF cmp, flagsRegF fcc, regF dst, regF src) %{
6317  match(Set dst (CMoveF (Binary cmp fcc) (Binary dst src)));
6318  ins_cost(150);
6319  size(4);
6320  format %{ "FMOVF$cmp $fcc,$src,$dst" %}
6321  opcode(0x1);
6322  ins_encode( enc_cmovff_reg(cmp,fcc,dst,src) );
6323  ins_pipe(int_conditional_double_move);
6324%}
6325
6326// Conditional move
6327instruct cmovDP_reg(cmpOpP cmp, flagsRegP pcc, regD dst, regD src) %{
6328  match(Set dst (CMoveD (Binary cmp pcc) (Binary dst src)));
6329  ins_cost(150);
6330  size(4);
6331  opcode(0x102);
6332  format %{ "FMOVD$cmp $pcc,$src,$dst" %}
6333  ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6334  ins_pipe(int_conditional_double_move);
6335%}
6336
6337instruct cmovDI_reg(cmpOp cmp, flagsReg icc, regD dst, regD src) %{
6338  match(Set dst (CMoveD (Binary cmp icc) (Binary dst src)));
6339  ins_cost(150);
6340
6341  size(4);
6342  format %{ "FMOVD$cmp $icc,$src,$dst" %}
6343  opcode(0x102);
6344  ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
6345  ins_pipe(int_conditional_double_move);
6346%}
6347
6348// Conditional move,
6349instruct cmovDF_reg(cmpOpF cmp, flagsRegF fcc, regD dst, regD src) %{
6350  match(Set dst (CMoveD (Binary cmp fcc) (Binary dst src)));
6351  ins_cost(150);
6352  size(4);
6353  format %{ "FMOVD$cmp $fcc,$src,$dst" %}
6354  opcode(0x2);
6355  ins_encode( enc_cmovff_reg(cmp,fcc,dst,src) );
6356  ins_pipe(int_conditional_double_move);
6357%}
6358
6359// Conditional move
6360instruct cmovLP_reg(cmpOpP cmp, flagsRegP pcc, iRegL dst, iRegL src) %{
6361  match(Set dst (CMoveL (Binary cmp pcc) (Binary dst src)));
6362  ins_cost(150);
6363  format %{ "MOV$cmp $pcc,$src,$dst\t! long" %}
6364  ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6365  ins_pipe(ialu_reg);
6366%}
6367
6368instruct cmovLP_imm(cmpOpP cmp, flagsRegP pcc, iRegL dst, immI11 src) %{
6369  match(Set dst (CMoveL (Binary cmp pcc) (Binary dst src)));
6370  ins_cost(140);
6371  format %{ "MOV$cmp $pcc,$src,$dst\t! long" %}
6372  ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
6373  ins_pipe(ialu_imm);
6374%}
6375
6376instruct cmovLI_reg(cmpOp cmp, flagsReg icc, iRegL dst, iRegL src) %{
6377  match(Set dst (CMoveL (Binary cmp icc) (Binary dst src)));
6378  ins_cost(150);
6379
6380  size(4);
6381  format %{ "MOV$cmp  $icc,$src,$dst\t! long" %}
6382  ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6383  ins_pipe(ialu_reg);
6384%}
6385
6386
6387instruct cmovLF_reg(cmpOpF cmp, flagsRegF fcc, iRegL dst, iRegL src) %{
6388  match(Set dst (CMoveL (Binary cmp fcc) (Binary dst src)));
6389  ins_cost(150);
6390
6391  size(4);
6392  format %{ "MOV$cmp  $fcc,$src,$dst\t! long" %}
6393  ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
6394  ins_pipe(ialu_reg);
6395%}
6396
6397
6398
6399//----------OS and Locking Instructions----------------------------------------
6400
6401// This name is KNOWN by the ADLC and cannot be changed.
6402// The ADLC forces a 'TypeRawPtr::BOTTOM' output type
6403// for this guy.
6404instruct tlsLoadP(g2RegP dst) %{
6405  match(Set dst (ThreadLocal));
6406
6407  size(0);
6408  ins_cost(0);
6409  format %{ "# TLS is in G2" %}
6410  ins_encode( /*empty encoding*/ );
6411  ins_pipe(ialu_none);
6412%}
6413
6414instruct checkCastPP( iRegP dst ) %{
6415  match(Set dst (CheckCastPP dst));
6416
6417  size(0);
6418  format %{ "# checkcastPP of $dst" %}
6419  ins_encode( /*empty encoding*/ );
6420  ins_pipe(empty);
6421%}
6422
6423
6424instruct castPP( iRegP dst ) %{
6425  match(Set dst (CastPP dst));
6426  format %{ "# castPP of $dst" %}
6427  ins_encode( /*empty encoding*/ );
6428  ins_pipe(empty);
6429%}
6430
6431instruct castII( iRegI dst ) %{
6432  match(Set dst (CastII dst));
6433  format %{ "# castII of $dst" %}
6434  ins_encode( /*empty encoding*/ );
6435  ins_cost(0);
6436  ins_pipe(empty);
6437%}
6438
6439//----------Arithmetic Instructions--------------------------------------------
6440// Addition Instructions
6441// Register Addition
6442instruct addI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
6443  match(Set dst (AddI src1 src2));
6444
6445  size(4);
6446  format %{ "ADD    $src1,$src2,$dst" %}
6447  ins_encode %{
6448    __ add($src1$$Register, $src2$$Register, $dst$$Register);
6449  %}
6450  ins_pipe(ialu_reg_reg);
6451%}
6452
6453// Immediate Addition
6454instruct addI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
6455  match(Set dst (AddI src1 src2));
6456
6457  size(4);
6458  format %{ "ADD    $src1,$src2,$dst" %}
6459  opcode(Assembler::add_op3, Assembler::arith_op);
6460  ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
6461  ins_pipe(ialu_reg_imm);
6462%}
6463
6464// Pointer Register Addition
6465instruct addP_reg_reg(iRegP dst, iRegP src1, iRegX src2) %{
6466  match(Set dst (AddP src1 src2));
6467
6468  size(4);
6469  format %{ "ADD    $src1,$src2,$dst" %}
6470  opcode(Assembler::add_op3, Assembler::arith_op);
6471  ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
6472  ins_pipe(ialu_reg_reg);
6473%}
6474
6475// Pointer Immediate Addition
6476instruct addP_reg_imm13(iRegP dst, iRegP src1, immX13 src2) %{
6477  match(Set dst (AddP src1 src2));
6478
6479  size(4);
6480  format %{ "ADD    $src1,$src2,$dst" %}
6481  opcode(Assembler::add_op3, Assembler::arith_op);
6482  ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
6483  ins_pipe(ialu_reg_imm);
6484%}
6485
6486// Long Addition
6487instruct addL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
6488  match(Set dst (AddL src1 src2));
6489
6490  size(4);
6491  format %{ "ADD    $src1,$src2,$dst\t! long" %}
6492  opcode(Assembler::add_op3, Assembler::arith_op);
6493  ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
6494  ins_pipe(ialu_reg_reg);
6495%}
6496
6497instruct addL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
6498  match(Set dst (AddL src1 con));
6499
6500  size(4);
6501  format %{ "ADD    $src1,$con,$dst" %}
6502  opcode(Assembler::add_op3, Assembler::arith_op);
6503  ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
6504  ins_pipe(ialu_reg_imm);
6505%}
6506
6507//----------Conditional_store--------------------------------------------------
6508// Conditional-store of the updated heap-top.
6509// Used during allocation of the shared heap.
6510// Sets flags (EQ) on success.  Implemented with a CASA on Sparc.
6511
6512// LoadP-locked.  Same as a regular pointer load when used with a compare-swap
6513instruct loadPLocked(iRegP dst, memory mem) %{
6514  match(Set dst (LoadPLocked mem));
6515  ins_cost(MEMORY_REF_COST);
6516
6517#ifndef _LP64
6518  size(4);
6519  format %{ "LDUW   $mem,$dst\t! ptr" %}
6520  opcode(Assembler::lduw_op3, 0, REGP_OP);
6521#else
6522  format %{ "LDX    $mem,$dst\t! ptr" %}
6523  opcode(Assembler::ldx_op3, 0, REGP_OP);
6524#endif
6525  ins_encode( form3_mem_reg( mem, dst ) );
6526  ins_pipe(iload_mem);
6527%}
6528
6529// LoadL-locked.  Same as a regular long load when used with a compare-swap
6530instruct loadLLocked(iRegL dst, memory mem) %{
6531  match(Set dst (LoadLLocked mem));
6532  ins_cost(MEMORY_REF_COST);
6533  size(4);
6534  format %{ "LDX    $mem,$dst\t! long" %}
6535  opcode(Assembler::ldx_op3);
6536  ins_encode( form3_mem_reg( mem, dst ) );
6537  ins_pipe(iload_mem);
6538%}
6539
6540instruct storePConditional( iRegP heap_top_ptr, iRegP oldval, g3RegP newval, flagsRegP pcc ) %{
6541  match(Set pcc (StorePConditional heap_top_ptr (Binary oldval newval)));
6542  effect( KILL newval );
6543  format %{ "CASA   [$heap_top_ptr],$oldval,R_G3\t! If $oldval==[$heap_top_ptr] Then store R_G3 into [$heap_top_ptr], set R_G3=[$heap_top_ptr] in any case\n\t"
6544            "CMP    R_G3,$oldval\t\t! See if we made progress"  %}
6545  ins_encode( enc_cas(heap_top_ptr,oldval,newval) );
6546  ins_pipe( long_memory_op );
6547%}
6548
6549instruct storeLConditional_bool(iRegP mem_ptr, iRegL oldval, iRegL newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
6550  match(Set res (StoreLConditional mem_ptr (Binary oldval newval)));
6551  effect( USE mem_ptr, KILL ccr, KILL tmp1);
6552  // Marshal the register pairs into V9 64-bit registers, then do the compare-and-swap
6553  format %{
6554            "MOV    $newval,R_O7\n\t"
6555            "CASXA  [$mem_ptr],$oldval,R_O7\t! If $oldval==[$mem_ptr] Then store R_O7 into [$mem_ptr], set R_O7=[$mem_ptr] in any case\n\t"
6556            "CMP    $oldval,R_O7\t\t! See if we made progress\n\t"
6557            "MOV    1,$res\n\t"
6558            "MOVne  xcc,R_G0,$res"
6559  %}
6560  ins_encode( enc_casx(mem_ptr, oldval, newval),
6561              enc_lflags_ne_to_boolean(res) );
6562  ins_pipe( long_memory_op );
6563%}
6564
6565instruct storeLConditional_flags(iRegP mem_ptr, iRegL oldval, iRegL newval, flagsRegL xcc, o7RegI tmp1, immI0 zero) %{
6566  match(Set xcc (CmpI (StoreLConditional mem_ptr (Binary oldval newval)) zero));
6567  effect( USE mem_ptr, KILL tmp1);
6568  // Marshal the register pairs into V9 64-bit registers, then do the compare-and-swap
6569  format %{
6570            "MOV    $newval,R_O7\n\t"
6571            "CASXA  [$mem_ptr],$oldval,R_O7\t! If $oldval==[$mem_ptr] Then store R_O7 into [$mem_ptr], set R_O7=[$mem_ptr] in any case\n\t"
6572            "CMP    $oldval,R_O7\t\t! See if we made progress"
6573  %}
6574  ins_encode( enc_casx(mem_ptr, oldval, newval));
6575  ins_pipe( long_memory_op );
6576%}
6577
6578// No flag versions for CompareAndSwap{P,I,L} because matcher can't match them
6579
6580instruct compareAndSwapL_bool(iRegP mem_ptr, iRegL oldval, iRegL newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
6581  match(Set res (CompareAndSwapL mem_ptr (Binary oldval newval)));
6582  effect( USE mem_ptr, KILL ccr, KILL tmp1);
6583  format %{
6584            "MOV    $newval,O7\n\t"
6585            "CASXA  [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
6586            "CMP    $oldval,O7\t\t! See if we made progress\n\t"
6587            "MOV    1,$res\n\t"
6588            "MOVne  xcc,R_G0,$res"
6589  %}
6590  ins_encode( enc_casx(mem_ptr, oldval, newval),
6591              enc_lflags_ne_to_boolean(res) );
6592  ins_pipe( long_memory_op );
6593%}
6594
6595
6596instruct compareAndSwapI_bool(iRegP mem_ptr, iRegI oldval, iRegI newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
6597  match(Set res (CompareAndSwapI mem_ptr (Binary oldval newval)));
6598  effect( USE mem_ptr, KILL ccr, KILL tmp1);
6599  format %{
6600            "MOV    $newval,O7\n\t"
6601            "CASA   [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
6602            "CMP    $oldval,O7\t\t! See if we made progress\n\t"
6603            "MOV    1,$res\n\t"
6604            "MOVne  icc,R_G0,$res"
6605  %}
6606  ins_encode( enc_casi(mem_ptr, oldval, newval),
6607              enc_iflags_ne_to_boolean(res) );
6608  ins_pipe( long_memory_op );
6609%}
6610
6611instruct compareAndSwapP_bool(iRegP mem_ptr, iRegP oldval, iRegP newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
6612  match(Set res (CompareAndSwapP mem_ptr (Binary oldval newval)));
6613  effect( USE mem_ptr, KILL ccr, KILL tmp1);
6614  format %{
6615            "MOV    $newval,O7\n\t"
6616            "CASA_PTR  [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
6617            "CMP    $oldval,O7\t\t! See if we made progress\n\t"
6618            "MOV    1,$res\n\t"
6619            "MOVne  xcc,R_G0,$res"
6620  %}
6621#ifdef _LP64
6622  ins_encode( enc_casx(mem_ptr, oldval, newval),
6623              enc_lflags_ne_to_boolean(res) );
6624#else
6625  ins_encode( enc_casi(mem_ptr, oldval, newval),
6626              enc_iflags_ne_to_boolean(res) );
6627#endif
6628  ins_pipe( long_memory_op );
6629%}
6630
6631instruct compareAndSwapN_bool_comp(iRegP mem_ptr, iRegN oldval, iRegN newval, iRegI res, o7RegI tmp, flagsReg ccr ) %{
6632  match(Set res (CompareAndSwapN mem_ptr (Binary oldval newval)));
6633  effect( USE mem_ptr, KILL ccr, KILL tmp);
6634
6635  format %{
6636            "MOV    $newval,O7\n\t"
6637            "CASA   [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
6638            "CMP    $oldval,O7\t\t! See if we made progress\n\t"
6639            "MOV    1,$res\n\t"
6640            "MOVne  icc,R_G0,$res"
6641  %}
6642  ins_encode %{
6643    Register Rmem = reg_to_register_object($mem_ptr$$reg);
6644    Register Rold = reg_to_register_object($oldval$$reg);
6645    Register Rnew = reg_to_register_object($newval$$reg);
6646    Register Rres = reg_to_register_object($res$$reg);
6647
6648    __ cas(Rmem, Rold, Rnew);
6649    __ cmp( Rold, Rnew );
6650    __ mov(1, Rres);
6651    __ movcc( Assembler::notEqual, false, Assembler::icc, G0, Rres );
6652  %}
6653
6654  ins_pipe( long_memory_op );
6655%}
6656
6657//---------------------
6658// Subtraction Instructions
6659// Register Subtraction
6660instruct subI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
6661  match(Set dst (SubI src1 src2));
6662
6663  size(4);
6664  format %{ "SUB    $src1,$src2,$dst" %}
6665  opcode(Assembler::sub_op3, Assembler::arith_op);
6666  ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
6667  ins_pipe(ialu_reg_reg);
6668%}
6669
6670// Immediate Subtraction
6671instruct subI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
6672  match(Set dst (SubI src1 src2));
6673
6674  size(4);
6675  format %{ "SUB    $src1,$src2,$dst" %}
6676  opcode(Assembler::sub_op3, Assembler::arith_op);
6677  ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
6678  ins_pipe(ialu_reg_imm);
6679%}
6680
6681instruct subI_zero_reg(iRegI dst, immI0 zero, iRegI src2) %{
6682  match(Set dst (SubI zero src2));
6683
6684  size(4);
6685  format %{ "NEG    $src2,$dst" %}
6686  opcode(Assembler::sub_op3, Assembler::arith_op);
6687  ins_encode( form3_rs1_rs2_rd( R_G0, src2, dst ) );
6688  ins_pipe(ialu_zero_reg);
6689%}
6690
6691// Long subtraction
6692instruct subL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
6693  match(Set dst (SubL src1 src2));
6694
6695  size(4);
6696  format %{ "SUB    $src1,$src2,$dst\t! long" %}
6697  opcode(Assembler::sub_op3, Assembler::arith_op);
6698  ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
6699  ins_pipe(ialu_reg_reg);
6700%}
6701
6702// Immediate Subtraction
6703instruct subL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
6704  match(Set dst (SubL src1 con));
6705
6706  size(4);
6707  format %{ "SUB    $src1,$con,$dst\t! long" %}
6708  opcode(Assembler::sub_op3, Assembler::arith_op);
6709  ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
6710  ins_pipe(ialu_reg_imm);
6711%}
6712
6713// Long negation
6714instruct negL_reg_reg(iRegL dst, immL0 zero, iRegL src2) %{
6715  match(Set dst (SubL zero src2));
6716
6717  size(4);
6718  format %{ "NEG    $src2,$dst\t! long" %}
6719  opcode(Assembler::sub_op3, Assembler::arith_op);
6720  ins_encode( form3_rs1_rs2_rd( R_G0, src2, dst ) );
6721  ins_pipe(ialu_zero_reg);
6722%}
6723
6724// Multiplication Instructions
6725// Integer Multiplication
6726// Register Multiplication
6727instruct mulI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
6728  match(Set dst (MulI src1 src2));
6729
6730  size(4);
6731  format %{ "MULX   $src1,$src2,$dst" %}
6732  opcode(Assembler::mulx_op3, Assembler::arith_op);
6733  ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
6734  ins_pipe(imul_reg_reg);
6735%}
6736
6737// Immediate Multiplication
6738instruct mulI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
6739  match(Set dst (MulI src1 src2));
6740
6741  size(4);
6742  format %{ "MULX   $src1,$src2,$dst" %}
6743  opcode(Assembler::mulx_op3, Assembler::arith_op);
6744  ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
6745  ins_pipe(imul_reg_imm);
6746%}
6747
6748instruct mulL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
6749  match(Set dst (MulL src1 src2));
6750  ins_cost(DEFAULT_COST * 5);
6751  size(4);
6752  format %{ "MULX   $src1,$src2,$dst\t! long" %}
6753  opcode(Assembler::mulx_op3, Assembler::arith_op);
6754  ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
6755  ins_pipe(mulL_reg_reg);
6756%}
6757
6758// Immediate Multiplication
6759instruct mulL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
6760  match(Set dst (MulL src1 src2));
6761  ins_cost(DEFAULT_COST * 5);
6762  size(4);
6763  format %{ "MULX   $src1,$src2,$dst" %}
6764  opcode(Assembler::mulx_op3, Assembler::arith_op);
6765  ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
6766  ins_pipe(mulL_reg_imm);
6767%}
6768
6769// Integer Division
6770// Register Division
6771instruct divI_reg_reg(iRegI dst, iRegIsafe src1, iRegIsafe src2) %{
6772  match(Set dst (DivI src1 src2));
6773  ins_cost((2+71)*DEFAULT_COST);
6774
6775  format %{ "SRA     $src2,0,$src2\n\t"
6776            "SRA     $src1,0,$src1\n\t"
6777            "SDIVX   $src1,$src2,$dst" %}
6778  ins_encode( idiv_reg( src1, src2, dst ) );
6779  ins_pipe(sdiv_reg_reg);
6780%}
6781
6782// Immediate Division
6783instruct divI_reg_imm13(iRegI dst, iRegIsafe src1, immI13 src2) %{
6784  match(Set dst (DivI src1 src2));
6785  ins_cost((2+71)*DEFAULT_COST);
6786
6787  format %{ "SRA     $src1,0,$src1\n\t"
6788            "SDIVX   $src1,$src2,$dst" %}
6789  ins_encode( idiv_imm( src1, src2, dst ) );
6790  ins_pipe(sdiv_reg_imm);
6791%}
6792
6793//----------Div-By-10-Expansion------------------------------------------------
6794// Extract hi bits of a 32x32->64 bit multiply.
6795// Expand rule only, not matched
6796instruct mul_hi(iRegIsafe dst, iRegIsafe src1, iRegIsafe src2 ) %{
6797  effect( DEF dst, USE src1, USE src2 );
6798  format %{ "MULX   $src1,$src2,$dst\t! Used in div-by-10\n\t"
6799            "SRLX   $dst,#32,$dst\t\t! Extract only hi word of result" %}
6800  ins_encode( enc_mul_hi(dst,src1,src2));
6801  ins_pipe(sdiv_reg_reg);
6802%}
6803
6804// Magic constant, reciprical of 10
6805instruct loadConI_x66666667(iRegIsafe dst) %{
6806  effect( DEF dst );
6807
6808  size(8);
6809  format %{ "SET    0x66666667,$dst\t! Used in div-by-10" %}
6810  ins_encode( Set32(0x66666667, dst) );
6811  ins_pipe(ialu_hi_lo_reg);
6812%}
6813
6814// Register Shift Right Arithmatic Long by 32-63
6815instruct sra_31( iRegI dst, iRegI src ) %{
6816  effect( DEF dst, USE src );
6817  format %{ "SRA    $src,31,$dst\t! Used in div-by-10" %}
6818  ins_encode( form3_rs1_rd_copysign_hi(src,dst) );
6819  ins_pipe(ialu_reg_reg);
6820%}
6821
6822// Arithmetic Shift Right by 8-bit immediate
6823instruct sra_reg_2( iRegI dst, iRegI src ) %{
6824  effect( DEF dst, USE src );
6825  format %{ "SRA    $src,2,$dst\t! Used in div-by-10" %}
6826  opcode(Assembler::sra_op3, Assembler::arith_op);
6827  ins_encode( form3_rs1_simm13_rd( src, 0x2, dst ) );
6828  ins_pipe(ialu_reg_imm);
6829%}
6830
6831// Integer DIV with 10
6832instruct divI_10( iRegI dst, iRegIsafe src, immI10 div ) %{
6833  match(Set dst (DivI src div));
6834  ins_cost((6+6)*DEFAULT_COST);
6835  expand %{
6836    iRegIsafe tmp1;               // Killed temps;
6837    iRegIsafe tmp2;               // Killed temps;
6838    iRegI tmp3;                   // Killed temps;
6839    iRegI tmp4;                   // Killed temps;
6840    loadConI_x66666667( tmp1 );   // SET  0x66666667 -> tmp1
6841    mul_hi( tmp2, src, tmp1 );    // MUL  hibits(src * tmp1) -> tmp2
6842    sra_31( tmp3, src );          // SRA  src,31 -> tmp3
6843    sra_reg_2( tmp4, tmp2 );      // SRA  tmp2,2 -> tmp4
6844    subI_reg_reg( dst,tmp4,tmp3); // SUB  tmp4 - tmp3 -> dst
6845  %}
6846%}
6847
6848// Register Long Division
6849instruct divL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
6850  match(Set dst (DivL src1 src2));
6851  ins_cost(DEFAULT_COST*71);
6852  size(4);
6853  format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
6854  opcode(Assembler::sdivx_op3, Assembler::arith_op);
6855  ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
6856  ins_pipe(divL_reg_reg);
6857%}
6858
6859// Register Long Division
6860instruct divL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
6861  match(Set dst (DivL src1 src2));
6862  ins_cost(DEFAULT_COST*71);
6863  size(4);
6864  format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
6865  opcode(Assembler::sdivx_op3, Assembler::arith_op);
6866  ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
6867  ins_pipe(divL_reg_imm);
6868%}
6869
6870// Integer Remainder
6871// Register Remainder
6872instruct modI_reg_reg(iRegI dst, iRegIsafe src1, iRegIsafe src2, o7RegP temp, flagsReg ccr ) %{
6873  match(Set dst (ModI src1 src2));
6874  effect( KILL ccr, KILL temp);
6875
6876  format %{ "SREM   $src1,$src2,$dst" %}
6877  ins_encode( irem_reg(src1, src2, dst, temp) );
6878  ins_pipe(sdiv_reg_reg);
6879%}
6880
6881// Immediate Remainder
6882instruct modI_reg_imm13(iRegI dst, iRegIsafe src1, immI13 src2, o7RegP temp, flagsReg ccr ) %{
6883  match(Set dst (ModI src1 src2));
6884  effect( KILL ccr, KILL temp);
6885
6886  format %{ "SREM   $src1,$src2,$dst" %}
6887  ins_encode( irem_imm(src1, src2, dst, temp) );
6888  ins_pipe(sdiv_reg_imm);
6889%}
6890
6891// Register Long Remainder
6892instruct divL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
6893  effect(DEF dst, USE src1, USE src2);
6894  size(4);
6895  format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
6896  opcode(Assembler::sdivx_op3, Assembler::arith_op);
6897  ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
6898  ins_pipe(divL_reg_reg);
6899%}
6900
6901// Register Long Division
6902instruct divL_reg_imm13_1(iRegL dst, iRegL src1, immL13 src2) %{
6903  effect(DEF dst, USE src1, USE src2);
6904  size(4);
6905  format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
6906  opcode(Assembler::sdivx_op3, Assembler::arith_op);
6907  ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
6908  ins_pipe(divL_reg_imm);
6909%}
6910
6911instruct mulL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
6912  effect(DEF dst, USE src1, USE src2);
6913  size(4);
6914  format %{ "MULX   $src1,$src2,$dst\t! long" %}
6915  opcode(Assembler::mulx_op3, Assembler::arith_op);
6916  ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
6917  ins_pipe(mulL_reg_reg);
6918%}
6919
6920// Immediate Multiplication
6921instruct mulL_reg_imm13_1(iRegL dst, iRegL src1, immL13 src2) %{
6922  effect(DEF dst, USE src1, USE src2);
6923  size(4);
6924  format %{ "MULX   $src1,$src2,$dst" %}
6925  opcode(Assembler::mulx_op3, Assembler::arith_op);
6926  ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
6927  ins_pipe(mulL_reg_imm);
6928%}
6929
6930instruct subL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
6931  effect(DEF dst, USE src1, USE src2);
6932  size(4);
6933  format %{ "SUB    $src1,$src2,$dst\t! long" %}
6934  opcode(Assembler::sub_op3, Assembler::arith_op);
6935  ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
6936  ins_pipe(ialu_reg_reg);
6937%}
6938
6939instruct subL_reg_reg_2(iRegL dst, iRegL src1, iRegL src2) %{
6940  effect(DEF dst, USE src1, USE src2);
6941  size(4);
6942  format %{ "SUB    $src1,$src2,$dst\t! long" %}
6943  opcode(Assembler::sub_op3, Assembler::arith_op);
6944  ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
6945  ins_pipe(ialu_reg_reg);
6946%}
6947
6948// Register Long Remainder
6949instruct modL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
6950  match(Set dst (ModL src1 src2));
6951  ins_cost(DEFAULT_COST*(71 + 6 + 1));
6952  expand %{
6953    iRegL tmp1;
6954    iRegL tmp2;
6955    divL_reg_reg_1(tmp1, src1, src2);
6956    mulL_reg_reg_1(tmp2, tmp1, src2);
6957    subL_reg_reg_1(dst,  src1, tmp2);
6958  %}
6959%}
6960
6961// Register Long Remainder
6962instruct modL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
6963  match(Set dst (ModL src1 src2));
6964  ins_cost(DEFAULT_COST*(71 + 6 + 1));
6965  expand %{
6966    iRegL tmp1;
6967    iRegL tmp2;
6968    divL_reg_imm13_1(tmp1, src1, src2);
6969    mulL_reg_imm13_1(tmp2, tmp1, src2);
6970    subL_reg_reg_2  (dst,  src1, tmp2);
6971  %}
6972%}
6973
6974// Integer Shift Instructions
6975// Register Shift Left
6976instruct shlI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
6977  match(Set dst (LShiftI src1 src2));
6978
6979  size(4);
6980  format %{ "SLL    $src1,$src2,$dst" %}
6981  opcode(Assembler::sll_op3, Assembler::arith_op);
6982  ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
6983  ins_pipe(ialu_reg_reg);
6984%}
6985
6986// Register Shift Left Immediate
6987instruct shlI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
6988  match(Set dst (LShiftI src1 src2));
6989
6990  size(4);
6991  format %{ "SLL    $src1,$src2,$dst" %}
6992  opcode(Assembler::sll_op3, Assembler::arith_op);
6993  ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
6994  ins_pipe(ialu_reg_imm);
6995%}
6996
6997// Register Shift Left
6998instruct shlL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
6999  match(Set dst (LShiftL src1 src2));
7000
7001  size(4);
7002  format %{ "SLLX   $src1,$src2,$dst" %}
7003  opcode(Assembler::sllx_op3, Assembler::arith_op);
7004  ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
7005  ins_pipe(ialu_reg_reg);
7006%}
7007
7008// Register Shift Left Immediate
7009instruct shlL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
7010  match(Set dst (LShiftL src1 src2));
7011
7012  size(4);
7013  format %{ "SLLX   $src1,$src2,$dst" %}
7014  opcode(Assembler::sllx_op3, Assembler::arith_op);
7015  ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
7016  ins_pipe(ialu_reg_imm);
7017%}
7018
7019// Register Arithmetic Shift Right
7020instruct sarI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7021  match(Set dst (RShiftI src1 src2));
7022  size(4);
7023  format %{ "SRA    $src1,$src2,$dst" %}
7024  opcode(Assembler::sra_op3, Assembler::arith_op);
7025  ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7026  ins_pipe(ialu_reg_reg);
7027%}
7028
7029// Register Arithmetic Shift Right Immediate
7030instruct sarI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
7031  match(Set dst (RShiftI src1 src2));
7032
7033  size(4);
7034  format %{ "SRA    $src1,$src2,$dst" %}
7035  opcode(Assembler::sra_op3, Assembler::arith_op);
7036  ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
7037  ins_pipe(ialu_reg_imm);
7038%}
7039
7040// Register Shift Right Arithmatic Long
7041instruct sarL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
7042  match(Set dst (RShiftL src1 src2));
7043
7044  size(4);
7045  format %{ "SRAX   $src1,$src2,$dst" %}
7046  opcode(Assembler::srax_op3, Assembler::arith_op);
7047  ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
7048  ins_pipe(ialu_reg_reg);
7049%}
7050
7051// Register Shift Left Immediate
7052instruct sarL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
7053  match(Set dst (RShiftL src1 src2));
7054
7055  size(4);
7056  format %{ "SRAX   $src1,$src2,$dst" %}
7057  opcode(Assembler::srax_op3, Assembler::arith_op);
7058  ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
7059  ins_pipe(ialu_reg_imm);
7060%}
7061
7062// Register Shift Right
7063instruct shrI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7064  match(Set dst (URShiftI src1 src2));
7065
7066  size(4);
7067  format %{ "SRL    $src1,$src2,$dst" %}
7068  opcode(Assembler::srl_op3, Assembler::arith_op);
7069  ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7070  ins_pipe(ialu_reg_reg);
7071%}
7072
7073// Register Shift Right Immediate
7074instruct shrI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
7075  match(Set dst (URShiftI src1 src2));
7076
7077  size(4);
7078  format %{ "SRL    $src1,$src2,$dst" %}
7079  opcode(Assembler::srl_op3, Assembler::arith_op);
7080  ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
7081  ins_pipe(ialu_reg_imm);
7082%}
7083
7084// Register Shift Right
7085instruct shrL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
7086  match(Set dst (URShiftL src1 src2));
7087
7088  size(4);
7089  format %{ "SRLX   $src1,$src2,$dst" %}
7090  opcode(Assembler::srlx_op3, Assembler::arith_op);
7091  ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
7092  ins_pipe(ialu_reg_reg);
7093%}
7094
7095// Register Shift Right Immediate
7096instruct shrL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
7097  match(Set dst (URShiftL src1 src2));
7098
7099  size(4);
7100  format %{ "SRLX   $src1,$src2,$dst" %}
7101  opcode(Assembler::srlx_op3, Assembler::arith_op);
7102  ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
7103  ins_pipe(ialu_reg_imm);
7104%}
7105
7106// Register Shift Right Immediate with a CastP2X
7107#ifdef _LP64
7108instruct shrP_reg_imm6(iRegL dst, iRegP src1, immU6 src2) %{
7109  match(Set dst (URShiftL (CastP2X src1) src2));
7110  size(4);
7111  format %{ "SRLX   $src1,$src2,$dst\t! Cast ptr $src1 to long and shift" %}
7112  opcode(Assembler::srlx_op3, Assembler::arith_op);
7113  ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
7114  ins_pipe(ialu_reg_imm);
7115%}
7116#else
7117instruct shrP_reg_imm5(iRegI dst, iRegP src1, immU5 src2) %{
7118  match(Set dst (URShiftI (CastP2X src1) src2));
7119  size(4);
7120  format %{ "SRL    $src1,$src2,$dst\t! Cast ptr $src1 to int and shift" %}
7121  opcode(Assembler::srl_op3, Assembler::arith_op);
7122  ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
7123  ins_pipe(ialu_reg_imm);
7124%}
7125#endif
7126
7127
7128//----------Floating Point Arithmetic Instructions-----------------------------
7129
7130//  Add float single precision
7131instruct addF_reg_reg(regF dst, regF src1, regF src2) %{
7132  match(Set dst (AddF src1 src2));
7133
7134  size(4);
7135  format %{ "FADDS  $src1,$src2,$dst" %}
7136  opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fadds_opf);
7137  ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
7138  ins_pipe(faddF_reg_reg);
7139%}
7140
7141//  Add float double precision
7142instruct addD_reg_reg(regD dst, regD src1, regD src2) %{
7143  match(Set dst (AddD src1 src2));
7144
7145  size(4);
7146  format %{ "FADDD  $src1,$src2,$dst" %}
7147  opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::faddd_opf);
7148  ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
7149  ins_pipe(faddD_reg_reg);
7150%}
7151
7152//  Sub float single precision
7153instruct subF_reg_reg(regF dst, regF src1, regF src2) %{
7154  match(Set dst (SubF src1 src2));
7155
7156  size(4);
7157  format %{ "FSUBS  $src1,$src2,$dst" %}
7158  opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubs_opf);
7159  ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
7160  ins_pipe(faddF_reg_reg);
7161%}
7162
7163//  Sub float double precision
7164instruct subD_reg_reg(regD dst, regD src1, regD src2) %{
7165  match(Set dst (SubD src1 src2));
7166
7167  size(4);
7168  format %{ "FSUBD  $src1,$src2,$dst" %}
7169  opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubd_opf);
7170  ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
7171  ins_pipe(faddD_reg_reg);
7172%}
7173
7174//  Mul float single precision
7175instruct mulF_reg_reg(regF dst, regF src1, regF src2) %{
7176  match(Set dst (MulF src1 src2));
7177
7178  size(4);
7179  format %{ "FMULS  $src1,$src2,$dst" %}
7180  opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuls_opf);
7181  ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
7182  ins_pipe(fmulF_reg_reg);
7183%}
7184
7185//  Mul float double precision
7186instruct mulD_reg_reg(regD dst, regD src1, regD src2) %{
7187  match(Set dst (MulD src1 src2));
7188
7189  size(4);
7190  format %{ "FMULD  $src1,$src2,$dst" %}
7191  opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuld_opf);
7192  ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
7193  ins_pipe(fmulD_reg_reg);
7194%}
7195
7196//  Div float single precision
7197instruct divF_reg_reg(regF dst, regF src1, regF src2) %{
7198  match(Set dst (DivF src1 src2));
7199
7200  size(4);
7201  format %{ "FDIVS  $src1,$src2,$dst" %}
7202  opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdivs_opf);
7203  ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
7204  ins_pipe(fdivF_reg_reg);
7205%}
7206
7207//  Div float double precision
7208instruct divD_reg_reg(regD dst, regD src1, regD src2) %{
7209  match(Set dst (DivD src1 src2));
7210
7211  size(4);
7212  format %{ "FDIVD  $src1,$src2,$dst" %}
7213  opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdivd_opf);
7214  ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
7215  ins_pipe(fdivD_reg_reg);
7216%}
7217
7218//  Absolute float double precision
7219instruct absD_reg(regD dst, regD src) %{
7220  match(Set dst (AbsD src));
7221
7222  format %{ "FABSd  $src,$dst" %}
7223  ins_encode(fabsd(dst, src));
7224  ins_pipe(faddD_reg);
7225%}
7226
7227//  Absolute float single precision
7228instruct absF_reg(regF dst, regF src) %{
7229  match(Set dst (AbsF src));
7230
7231  format %{ "FABSs  $src,$dst" %}
7232  ins_encode(fabss(dst, src));
7233  ins_pipe(faddF_reg);
7234%}
7235
7236instruct negF_reg(regF dst, regF src) %{
7237  match(Set dst (NegF src));
7238
7239  size(4);
7240  format %{ "FNEGs  $src,$dst" %}
7241  opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fnegs_opf);
7242  ins_encode(form3_opf_rs2F_rdF(src, dst));
7243  ins_pipe(faddF_reg);
7244%}
7245
7246instruct negD_reg(regD dst, regD src) %{
7247  match(Set dst (NegD src));
7248
7249  format %{ "FNEGd  $src,$dst" %}
7250  ins_encode(fnegd(dst, src));
7251  ins_pipe(faddD_reg);
7252%}
7253
7254//  Sqrt float double precision
7255instruct sqrtF_reg_reg(regF dst, regF src) %{
7256  match(Set dst (ConvD2F (SqrtD (ConvF2D src))));
7257
7258  size(4);
7259  format %{ "FSQRTS $src,$dst" %}
7260  ins_encode(fsqrts(dst, src));
7261  ins_pipe(fdivF_reg_reg);
7262%}
7263
7264//  Sqrt float double precision
7265instruct sqrtD_reg_reg(regD dst, regD src) %{
7266  match(Set dst (SqrtD src));
7267
7268  size(4);
7269  format %{ "FSQRTD $src,$dst" %}
7270  ins_encode(fsqrtd(dst, src));
7271  ins_pipe(fdivD_reg_reg);
7272%}
7273
7274//----------Logical Instructions-----------------------------------------------
7275// And Instructions
7276// Register And
7277instruct andI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7278  match(Set dst (AndI src1 src2));
7279
7280  size(4);
7281  format %{ "AND    $src1,$src2,$dst" %}
7282  opcode(Assembler::and_op3, Assembler::arith_op);
7283  ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7284  ins_pipe(ialu_reg_reg);
7285%}
7286
7287// Immediate And
7288instruct andI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
7289  match(Set dst (AndI src1 src2));
7290
7291  size(4);
7292  format %{ "AND    $src1,$src2,$dst" %}
7293  opcode(Assembler::and_op3, Assembler::arith_op);
7294  ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7295  ins_pipe(ialu_reg_imm);
7296%}
7297
7298// Register And Long
7299instruct andL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7300  match(Set dst (AndL src1 src2));
7301
7302  ins_cost(DEFAULT_COST);
7303  size(4);
7304  format %{ "AND    $src1,$src2,$dst\t! long" %}
7305  opcode(Assembler::and_op3, Assembler::arith_op);
7306  ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7307  ins_pipe(ialu_reg_reg);
7308%}
7309
7310instruct andL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
7311  match(Set dst (AndL src1 con));
7312
7313  ins_cost(DEFAULT_COST);
7314  size(4);
7315  format %{ "AND    $src1,$con,$dst\t! long" %}
7316  opcode(Assembler::and_op3, Assembler::arith_op);
7317  ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
7318  ins_pipe(ialu_reg_imm);
7319%}
7320
7321// Or Instructions
7322// Register Or
7323instruct orI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7324  match(Set dst (OrI src1 src2));
7325
7326  size(4);
7327  format %{ "OR     $src1,$src2,$dst" %}
7328  opcode(Assembler::or_op3, Assembler::arith_op);
7329  ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7330  ins_pipe(ialu_reg_reg);
7331%}
7332
7333// Immediate Or
7334instruct orI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
7335  match(Set dst (OrI src1 src2));
7336
7337  size(4);
7338  format %{ "OR     $src1,$src2,$dst" %}
7339  opcode(Assembler::or_op3, Assembler::arith_op);
7340  ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7341  ins_pipe(ialu_reg_imm);
7342%}
7343
7344// Register Or Long
7345instruct orL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7346  match(Set dst (OrL src1 src2));
7347
7348  ins_cost(DEFAULT_COST);
7349  size(4);
7350  format %{ "OR     $src1,$src2,$dst\t! long" %}
7351  opcode(Assembler::or_op3, Assembler::arith_op);
7352  ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7353  ins_pipe(ialu_reg_reg);
7354%}
7355
7356instruct orL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
7357  match(Set dst (OrL src1 con));
7358  ins_cost(DEFAULT_COST*2);
7359
7360  ins_cost(DEFAULT_COST);
7361  size(4);
7362  format %{ "OR     $src1,$con,$dst\t! long" %}
7363  opcode(Assembler::or_op3, Assembler::arith_op);
7364  ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
7365  ins_pipe(ialu_reg_imm);
7366%}
7367
7368// Xor Instructions
7369// Register Xor
7370instruct xorI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7371  match(Set dst (XorI src1 src2));
7372
7373  size(4);
7374  format %{ "XOR    $src1,$src2,$dst" %}
7375  opcode(Assembler::xor_op3, Assembler::arith_op);
7376  ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7377  ins_pipe(ialu_reg_reg);
7378%}
7379
7380// Immediate Xor
7381instruct xorI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
7382  match(Set dst (XorI src1 src2));
7383
7384  size(4);
7385  format %{ "XOR    $src1,$src2,$dst" %}
7386  opcode(Assembler::xor_op3, Assembler::arith_op);
7387  ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7388  ins_pipe(ialu_reg_imm);
7389%}
7390
7391// Register Xor Long
7392instruct xorL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7393  match(Set dst (XorL src1 src2));
7394
7395  ins_cost(DEFAULT_COST);
7396  size(4);
7397  format %{ "XOR    $src1,$src2,$dst\t! long" %}
7398  opcode(Assembler::xor_op3, Assembler::arith_op);
7399  ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7400  ins_pipe(ialu_reg_reg);
7401%}
7402
7403instruct xorL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
7404  match(Set dst (XorL src1 con));
7405
7406  ins_cost(DEFAULT_COST);
7407  size(4);
7408  format %{ "XOR    $src1,$con,$dst\t! long" %}
7409  opcode(Assembler::xor_op3, Assembler::arith_op);
7410  ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
7411  ins_pipe(ialu_reg_imm);
7412%}
7413
7414//----------Convert to Boolean-------------------------------------------------
7415// Nice hack for 32-bit tests but doesn't work for
7416// 64-bit pointers.
7417instruct convI2B( iRegI dst, iRegI src, flagsReg ccr ) %{
7418  match(Set dst (Conv2B src));
7419  effect( KILL ccr );
7420  ins_cost(DEFAULT_COST*2);
7421  format %{ "CMP    R_G0,$src\n\t"
7422            "ADDX   R_G0,0,$dst" %}
7423  ins_encode( enc_to_bool( src, dst ) );
7424  ins_pipe(ialu_reg_ialu);
7425%}
7426
7427#ifndef _LP64
7428instruct convP2B( iRegI dst, iRegP src, flagsReg ccr ) %{
7429  match(Set dst (Conv2B src));
7430  effect( KILL ccr );
7431  ins_cost(DEFAULT_COST*2);
7432  format %{ "CMP    R_G0,$src\n\t"
7433            "ADDX   R_G0,0,$dst" %}
7434  ins_encode( enc_to_bool( src, dst ) );
7435  ins_pipe(ialu_reg_ialu);
7436%}
7437#else
7438instruct convP2B( iRegI dst, iRegP src ) %{
7439  match(Set dst (Conv2B src));
7440  ins_cost(DEFAULT_COST*2);
7441  format %{ "MOV    $src,$dst\n\t"
7442            "MOVRNZ $src,1,$dst" %}
7443  ins_encode( form3_g0_rs2_rd_move( src, dst ), enc_convP2B( dst, src ) );
7444  ins_pipe(ialu_clr_and_mover);
7445%}
7446#endif
7447
7448instruct cmpLTMask_reg_reg( iRegI dst, iRegI p, iRegI q, flagsReg ccr ) %{
7449  match(Set dst (CmpLTMask p q));
7450  effect( KILL ccr );
7451  ins_cost(DEFAULT_COST*4);
7452  format %{ "CMP    $p,$q\n\t"
7453            "MOV    #0,$dst\n\t"
7454            "BLT,a  .+8\n\t"
7455            "MOV    #-1,$dst" %}
7456  ins_encode( enc_ltmask(p,q,dst) );
7457  ins_pipe(ialu_reg_reg_ialu);
7458%}
7459
7460instruct cadd_cmpLTMask( iRegI p, iRegI q, iRegI y, iRegI tmp, flagsReg ccr ) %{
7461  match(Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)));
7462  effect(KILL ccr, TEMP tmp);
7463  ins_cost(DEFAULT_COST*3);
7464
7465  format %{ "SUBcc  $p,$q,$p\t! p' = p-q\n\t"
7466            "ADD    $p,$y,$tmp\t! g3=p-q+y\n\t"
7467            "MOVl   $tmp,$p\t! p' < 0 ? p'+y : p'" %}
7468  ins_encode( enc_cadd_cmpLTMask(p, q, y, tmp) );
7469  ins_pipe( cadd_cmpltmask );
7470%}
7471
7472instruct cadd_cmpLTMask2( iRegI p, iRegI q, iRegI y, iRegI tmp, flagsReg ccr ) %{
7473  match(Set p (AddI (SubI p q) (AndI (CmpLTMask p q) y)));
7474  effect( KILL ccr, TEMP tmp);
7475  ins_cost(DEFAULT_COST*3);
7476
7477  format %{ "SUBcc  $p,$q,$p\t! p' = p-q\n\t"
7478            "ADD    $p,$y,$tmp\t! g3=p-q+y\n\t"
7479            "MOVl   $tmp,$p\t! p' < 0 ? p'+y : p'" %}
7480  ins_encode( enc_cadd_cmpLTMask(p, q, y, tmp) );
7481  ins_pipe( cadd_cmpltmask );
7482%}
7483
7484//----------Arithmetic Conversion Instructions---------------------------------
7485// The conversions operations are all Alpha sorted.  Please keep it that way!
7486
7487instruct convD2F_reg(regF dst, regD src) %{
7488  match(Set dst (ConvD2F src));
7489  size(4);
7490  format %{ "FDTOS  $src,$dst" %}
7491  opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdtos_opf);
7492  ins_encode(form3_opf_rs2D_rdF(src, dst));
7493  ins_pipe(fcvtD2F);
7494%}
7495
7496
7497// Convert a double to an int in a float register.
7498// If the double is a NAN, stuff a zero in instead.
7499instruct convD2I_helper(regF dst, regD src, flagsRegF0 fcc0) %{
7500  effect(DEF dst, USE src, KILL fcc0);
7501  format %{ "FCMPd  fcc0,$src,$src\t! check for NAN\n\t"
7502            "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
7503            "FDTOI  $src,$dst\t! convert in delay slot\n\t"
7504            "FITOS  $dst,$dst\t! change NaN/max-int to valid float\n\t"
7505            "FSUBs  $dst,$dst,$dst\t! cleared only if nan\n"
7506      "skip:" %}
7507  ins_encode(form_d2i_helper(src,dst));
7508  ins_pipe(fcvtD2I);
7509%}
7510
7511instruct convD2I_reg(stackSlotI dst, regD src) %{
7512  match(Set dst (ConvD2I src));
7513  ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
7514  expand %{
7515    regF tmp;
7516    convD2I_helper(tmp, src);
7517    regF_to_stkI(dst, tmp);
7518  %}
7519%}
7520
7521// Convert a double to a long in a double register.
7522// If the double is a NAN, stuff a zero in instead.
7523instruct convD2L_helper(regD dst, regD src, flagsRegF0 fcc0) %{
7524  effect(DEF dst, USE src, KILL fcc0);
7525  format %{ "FCMPd  fcc0,$src,$src\t! check for NAN\n\t"
7526            "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
7527            "FDTOX  $src,$dst\t! convert in delay slot\n\t"
7528            "FXTOD  $dst,$dst\t! change NaN/max-long to valid double\n\t"
7529            "FSUBd  $dst,$dst,$dst\t! cleared only if nan\n"
7530      "skip:" %}
7531  ins_encode(form_d2l_helper(src,dst));
7532  ins_pipe(fcvtD2L);
7533%}
7534
7535
7536// Double to Long conversion
7537instruct convD2L_reg(stackSlotL dst, regD src) %{
7538  match(Set dst (ConvD2L src));
7539  ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
7540  expand %{
7541    regD tmp;
7542    convD2L_helper(tmp, src);
7543    regD_to_stkL(dst, tmp);
7544  %}
7545%}
7546
7547
7548instruct convF2D_reg(regD dst, regF src) %{
7549  match(Set dst (ConvF2D src));
7550  format %{ "FSTOD  $src,$dst" %}
7551  opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fstod_opf);
7552  ins_encode(form3_opf_rs2F_rdD(src, dst));
7553  ins_pipe(fcvtF2D);
7554%}
7555
7556
7557instruct convF2I_helper(regF dst, regF src, flagsRegF0 fcc0) %{
7558  effect(DEF dst, USE src, KILL fcc0);
7559  format %{ "FCMPs  fcc0,$src,$src\t! check for NAN\n\t"
7560            "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
7561            "FSTOI  $src,$dst\t! convert in delay slot\n\t"
7562            "FITOS  $dst,$dst\t! change NaN/max-int to valid float\n\t"
7563            "FSUBs  $dst,$dst,$dst\t! cleared only if nan\n"
7564      "skip:" %}
7565  ins_encode(form_f2i_helper(src,dst));
7566  ins_pipe(fcvtF2I);
7567%}
7568
7569instruct convF2I_reg(stackSlotI dst, regF src) %{
7570  match(Set dst (ConvF2I src));
7571  ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
7572  expand %{
7573    regF tmp;
7574    convF2I_helper(tmp, src);
7575    regF_to_stkI(dst, tmp);
7576  %}
7577%}
7578
7579
7580instruct convF2L_helper(regD dst, regF src, flagsRegF0 fcc0) %{
7581  effect(DEF dst, USE src, KILL fcc0);
7582  format %{ "FCMPs  fcc0,$src,$src\t! check for NAN\n\t"
7583            "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
7584            "FSTOX  $src,$dst\t! convert in delay slot\n\t"
7585            "FXTOD  $dst,$dst\t! change NaN/max-long to valid double\n\t"
7586            "FSUBd  $dst,$dst,$dst\t! cleared only if nan\n"
7587      "skip:" %}
7588  ins_encode(form_f2l_helper(src,dst));
7589  ins_pipe(fcvtF2L);
7590%}
7591
7592// Float to Long conversion
7593instruct convF2L_reg(stackSlotL dst, regF src) %{
7594  match(Set dst (ConvF2L src));
7595  ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
7596  expand %{
7597    regD tmp;
7598    convF2L_helper(tmp, src);
7599    regD_to_stkL(dst, tmp);
7600  %}
7601%}
7602
7603
7604instruct convI2D_helper(regD dst, regF tmp) %{
7605  effect(USE tmp, DEF dst);
7606  format %{ "FITOD  $tmp,$dst" %}
7607  opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitod_opf);
7608  ins_encode(form3_opf_rs2F_rdD(tmp, dst));
7609  ins_pipe(fcvtI2D);
7610%}
7611
7612instruct convI2D_reg(stackSlotI src, regD dst) %{
7613  match(Set dst (ConvI2D src));
7614  ins_cost(DEFAULT_COST + MEMORY_REF_COST);
7615  expand %{
7616    regF tmp;
7617    stkI_to_regF( tmp, src);
7618    convI2D_helper( dst, tmp);
7619  %}
7620%}
7621
7622instruct convI2D_mem( regD_low dst, memory mem ) %{
7623  match(Set dst (ConvI2D (LoadI mem)));
7624  ins_cost(DEFAULT_COST + MEMORY_REF_COST);
7625  size(8);
7626  format %{ "LDF    $mem,$dst\n\t"
7627            "FITOD  $dst,$dst" %}
7628  opcode(Assembler::ldf_op3, Assembler::fitod_opf);
7629  ins_encode( form3_mem_reg( mem, dst ), form3_convI2F(dst, dst));
7630  ins_pipe(floadF_mem);
7631%}
7632
7633
7634instruct convI2F_helper(regF dst, regF tmp) %{
7635  effect(DEF dst, USE tmp);
7636  format %{ "FITOS  $tmp,$dst" %}
7637  opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitos_opf);
7638  ins_encode(form3_opf_rs2F_rdF(tmp, dst));
7639  ins_pipe(fcvtI2F);
7640%}
7641
7642instruct convI2F_reg( regF dst, stackSlotI src ) %{
7643  match(Set dst (ConvI2F src));
7644  ins_cost(DEFAULT_COST + MEMORY_REF_COST);
7645  expand %{
7646    regF tmp;
7647    stkI_to_regF(tmp,src);
7648    convI2F_helper(dst, tmp);
7649  %}
7650%}
7651
7652instruct convI2F_mem( regF dst, memory mem ) %{
7653  match(Set dst (ConvI2F (LoadI mem)));
7654  ins_cost(DEFAULT_COST + MEMORY_REF_COST);
7655  size(8);
7656  format %{ "LDF    $mem,$dst\n\t"
7657            "FITOS  $dst,$dst" %}
7658  opcode(Assembler::ldf_op3, Assembler::fitos_opf);
7659  ins_encode( form3_mem_reg( mem, dst ), form3_convI2F(dst, dst));
7660  ins_pipe(floadF_mem);
7661%}
7662
7663
7664instruct convI2L_reg(iRegL dst, iRegI src) %{
7665  match(Set dst (ConvI2L src));
7666  size(4);
7667  format %{ "SRA    $src,0,$dst\t! int->long" %}
7668  opcode(Assembler::sra_op3, Assembler::arith_op);
7669  ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
7670  ins_pipe(ialu_reg_reg);
7671%}
7672
7673// Zero-extend convert int to long
7674instruct convI2L_reg_zex(iRegL dst, iRegI src, immL_32bits mask ) %{
7675  match(Set dst (AndL (ConvI2L src) mask) );
7676  size(4);
7677  format %{ "SRL    $src,0,$dst\t! zero-extend int to long" %}
7678  opcode(Assembler::srl_op3, Assembler::arith_op);
7679  ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
7680  ins_pipe(ialu_reg_reg);
7681%}
7682
7683// Zero-extend long
7684instruct zerox_long(iRegL dst, iRegL src, immL_32bits mask ) %{
7685  match(Set dst (AndL src mask) );
7686  size(4);
7687  format %{ "SRL    $src,0,$dst\t! zero-extend long" %}
7688  opcode(Assembler::srl_op3, Assembler::arith_op);
7689  ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
7690  ins_pipe(ialu_reg_reg);
7691%}
7692
7693instruct MoveF2I_stack_reg(iRegI dst, stackSlotF src) %{
7694  match(Set dst (MoveF2I src));
7695  effect(DEF dst, USE src);
7696  ins_cost(MEMORY_REF_COST);
7697
7698  size(4);
7699  format %{ "LDUW   $src,$dst\t! MoveF2I" %}
7700  opcode(Assembler::lduw_op3);
7701  ins_encode( form3_mem_reg( src, dst ) );
7702  ins_pipe(iload_mem);
7703%}
7704
7705instruct MoveI2F_stack_reg(regF dst, stackSlotI src) %{
7706  match(Set dst (MoveI2F src));
7707  effect(DEF dst, USE src);
7708  ins_cost(MEMORY_REF_COST);
7709
7710  size(4);
7711  format %{ "LDF    $src,$dst\t! MoveI2F" %}
7712  opcode(Assembler::ldf_op3);
7713  ins_encode(form3_mem_reg(src, dst));
7714  ins_pipe(floadF_stk);
7715%}
7716
7717instruct MoveD2L_stack_reg(iRegL dst, stackSlotD src) %{
7718  match(Set dst (MoveD2L src));
7719  effect(DEF dst, USE src);
7720  ins_cost(MEMORY_REF_COST);
7721
7722  size(4);
7723  format %{ "LDX    $src,$dst\t! MoveD2L" %}
7724  opcode(Assembler::ldx_op3);
7725  ins_encode( form3_mem_reg( src, dst ) );
7726  ins_pipe(iload_mem);
7727%}
7728
7729instruct MoveL2D_stack_reg(regD dst, stackSlotL src) %{
7730  match(Set dst (MoveL2D src));
7731  effect(DEF dst, USE src);
7732  ins_cost(MEMORY_REF_COST);
7733
7734  size(4);
7735  format %{ "LDDF   $src,$dst\t! MoveL2D" %}
7736  opcode(Assembler::lddf_op3);
7737  ins_encode(form3_mem_reg(src, dst));
7738  ins_pipe(floadD_stk);
7739%}
7740
7741instruct MoveF2I_reg_stack(stackSlotI dst, regF src) %{
7742  match(Set dst (MoveF2I src));
7743  effect(DEF dst, USE src);
7744  ins_cost(MEMORY_REF_COST);
7745
7746  size(4);
7747  format %{ "STF   $src,$dst\t!MoveF2I" %}
7748  opcode(Assembler::stf_op3);
7749  ins_encode(form3_mem_reg(dst, src));
7750  ins_pipe(fstoreF_stk_reg);
7751%}
7752
7753instruct MoveI2F_reg_stack(stackSlotF dst, iRegI src) %{
7754  match(Set dst (MoveI2F src));
7755  effect(DEF dst, USE src);
7756  ins_cost(MEMORY_REF_COST);
7757
7758  size(4);
7759  format %{ "STW    $src,$dst\t!MoveI2F" %}
7760  opcode(Assembler::stw_op3);
7761  ins_encode( form3_mem_reg( dst, src ) );
7762  ins_pipe(istore_mem_reg);
7763%}
7764
7765instruct MoveD2L_reg_stack(stackSlotL dst, regD src) %{
7766  match(Set dst (MoveD2L src));
7767  effect(DEF dst, USE src);
7768  ins_cost(MEMORY_REF_COST);
7769
7770  size(4);
7771  format %{ "STDF   $src,$dst\t!MoveD2L" %}
7772  opcode(Assembler::stdf_op3);
7773  ins_encode(form3_mem_reg(dst, src));
7774  ins_pipe(fstoreD_stk_reg);
7775%}
7776
7777instruct MoveL2D_reg_stack(stackSlotD dst, iRegL src) %{
7778  match(Set dst (MoveL2D src));
7779  effect(DEF dst, USE src);
7780  ins_cost(MEMORY_REF_COST);
7781
7782  size(4);
7783  format %{ "STX    $src,$dst\t!MoveL2D" %}
7784  opcode(Assembler::stx_op3);
7785  ins_encode( form3_mem_reg( dst, src ) );
7786  ins_pipe(istore_mem_reg);
7787%}
7788
7789
7790//-----------
7791// Long to Double conversion using V8 opcodes.
7792// Still useful because cheetah traps and becomes
7793// amazingly slow for some common numbers.
7794
7795// Magic constant, 0x43300000
7796instruct loadConI_x43300000(iRegI dst) %{
7797  effect(DEF dst);
7798  size(4);
7799  format %{ "SETHI  HI(0x43300000),$dst\t! 2^52" %}
7800  ins_encode(SetHi22(0x43300000, dst));
7801  ins_pipe(ialu_none);
7802%}
7803
7804// Magic constant, 0x41f00000
7805instruct loadConI_x41f00000(iRegI dst) %{
7806  effect(DEF dst);
7807  size(4);
7808  format %{ "SETHI  HI(0x41f00000),$dst\t! 2^32" %}
7809  ins_encode(SetHi22(0x41f00000, dst));
7810  ins_pipe(ialu_none);
7811%}
7812
7813// Construct a double from two float halves
7814instruct regDHi_regDLo_to_regD(regD_low dst, regD_low src1, regD_low src2) %{
7815  effect(DEF dst, USE src1, USE src2);
7816  size(8);
7817  format %{ "FMOVS  $src1.hi,$dst.hi\n\t"
7818            "FMOVS  $src2.lo,$dst.lo" %}
7819  opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmovs_opf);
7820  ins_encode(form3_opf_rs2D_hi_rdD_hi(src1, dst), form3_opf_rs2D_lo_rdD_lo(src2, dst));
7821  ins_pipe(faddD_reg_reg);
7822%}
7823
7824// Convert integer in high half of a double register (in the lower half of
7825// the double register file) to double
7826instruct convI2D_regDHi_regD(regD dst, regD_low src) %{
7827  effect(DEF dst, USE src);
7828  size(4);
7829  format %{ "FITOD  $src,$dst" %}
7830  opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitod_opf);
7831  ins_encode(form3_opf_rs2D_rdD(src, dst));
7832  ins_pipe(fcvtLHi2D);
7833%}
7834
7835// Add float double precision
7836instruct addD_regD_regD(regD dst, regD src1, regD src2) %{
7837  effect(DEF dst, USE src1, USE src2);
7838  size(4);
7839  format %{ "FADDD  $src1,$src2,$dst" %}
7840  opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::faddd_opf);
7841  ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
7842  ins_pipe(faddD_reg_reg);
7843%}
7844
7845// Sub float double precision
7846instruct subD_regD_regD(regD dst, regD src1, regD src2) %{
7847  effect(DEF dst, USE src1, USE src2);
7848  size(4);
7849  format %{ "FSUBD  $src1,$src2,$dst" %}
7850  opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubd_opf);
7851  ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
7852  ins_pipe(faddD_reg_reg);
7853%}
7854
7855// Mul float double precision
7856instruct mulD_regD_regD(regD dst, regD src1, regD src2) %{
7857  effect(DEF dst, USE src1, USE src2);
7858  size(4);
7859  format %{ "FMULD  $src1,$src2,$dst" %}
7860  opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuld_opf);
7861  ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
7862  ins_pipe(fmulD_reg_reg);
7863%}
7864
7865instruct convL2D_reg_slow_fxtof(regD dst, stackSlotL src) %{
7866  match(Set dst (ConvL2D src));
7867  ins_cost(DEFAULT_COST*8 + MEMORY_REF_COST*6);
7868
7869  expand %{
7870    regD_low   tmpsrc;
7871    iRegI      ix43300000;
7872    iRegI      ix41f00000;
7873    stackSlotL lx43300000;
7874    stackSlotL lx41f00000;
7875    regD_low   dx43300000;
7876    regD       dx41f00000;
7877    regD       tmp1;
7878    regD_low   tmp2;
7879    regD       tmp3;
7880    regD       tmp4;
7881
7882    stkL_to_regD(tmpsrc, src);
7883
7884    loadConI_x43300000(ix43300000);
7885    loadConI_x41f00000(ix41f00000);
7886    regI_to_stkLHi(lx43300000, ix43300000);
7887    regI_to_stkLHi(lx41f00000, ix41f00000);
7888    stkL_to_regD(dx43300000, lx43300000);
7889    stkL_to_regD(dx41f00000, lx41f00000);
7890
7891    convI2D_regDHi_regD(tmp1, tmpsrc);
7892    regDHi_regDLo_to_regD(tmp2, dx43300000, tmpsrc);
7893    subD_regD_regD(tmp3, tmp2, dx43300000);
7894    mulD_regD_regD(tmp4, tmp1, dx41f00000);
7895    addD_regD_regD(dst, tmp3, tmp4);
7896  %}
7897%}
7898
7899// Long to Double conversion using fast fxtof
7900instruct convL2D_helper(regD dst, regD tmp) %{
7901  effect(DEF dst, USE tmp);
7902  size(4);
7903  format %{ "FXTOD  $tmp,$dst" %}
7904  opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fxtod_opf);
7905  ins_encode(form3_opf_rs2D_rdD(tmp, dst));
7906  ins_pipe(fcvtL2D);
7907%}
7908
7909instruct convL2D_reg_fast_fxtof(regD dst, stackSlotL src) %{
7910  predicate(VM_Version::has_fast_fxtof());
7911  match(Set dst (ConvL2D src));
7912  ins_cost(DEFAULT_COST + 3 * MEMORY_REF_COST);
7913  expand %{
7914    regD tmp;
7915    stkL_to_regD(tmp, src);
7916    convL2D_helper(dst, tmp);
7917  %}
7918%}
7919
7920//-----------
7921// Long to Float conversion using V8 opcodes.
7922// Still useful because cheetah traps and becomes
7923// amazingly slow for some common numbers.
7924
7925// Long to Float conversion using fast fxtof
7926instruct convL2F_helper(regF dst, regD tmp) %{
7927  effect(DEF dst, USE tmp);
7928  size(4);
7929  format %{ "FXTOS  $tmp,$dst" %}
7930  opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fxtos_opf);
7931  ins_encode(form3_opf_rs2D_rdF(tmp, dst));
7932  ins_pipe(fcvtL2F);
7933%}
7934
7935instruct convL2F_reg_fast_fxtof(regF dst, stackSlotL src) %{
7936  match(Set dst (ConvL2F src));
7937  ins_cost(DEFAULT_COST + MEMORY_REF_COST);
7938  expand %{
7939    regD tmp;
7940    stkL_to_regD(tmp, src);
7941    convL2F_helper(dst, tmp);
7942  %}
7943%}
7944//-----------
7945
7946instruct convL2I_reg(iRegI dst, iRegL src) %{
7947  match(Set dst (ConvL2I src));
7948#ifndef _LP64
7949  format %{ "MOV    $src.lo,$dst\t! long->int" %}
7950  ins_encode( form3_g0_rs2_rd_move_lo2( src, dst ) );
7951  ins_pipe(ialu_move_reg_I_to_L);
7952#else
7953  size(4);
7954  format %{ "SRA    $src,R_G0,$dst\t! long->int" %}
7955  ins_encode( form3_rs1_rd_signextend_lo1( src, dst ) );
7956  ins_pipe(ialu_reg);
7957#endif
7958%}
7959
7960// Register Shift Right Immediate
7961instruct shrL_reg_imm6_L2I(iRegI dst, iRegL src, immI_32_63 cnt) %{
7962  match(Set dst (ConvL2I (RShiftL src cnt)));
7963
7964  size(4);
7965  format %{ "SRAX   $src,$cnt,$dst" %}
7966  opcode(Assembler::srax_op3, Assembler::arith_op);
7967  ins_encode( form3_sd_rs1_imm6_rd( src, cnt, dst ) );
7968  ins_pipe(ialu_reg_imm);
7969%}
7970
7971// Replicate scalar to packed byte values in Double register
7972instruct Repl8B_reg_helper(iRegL dst, iRegI src) %{
7973  effect(DEF dst, USE src);
7974  format %{ "SLLX  $src,56,$dst\n\t"
7975            "SRLX  $dst, 8,O7\n\t"
7976            "OR    $dst,O7,$dst\n\t"
7977            "SRLX  $dst,16,O7\n\t"
7978            "OR    $dst,O7,$dst\n\t"
7979            "SRLX  $dst,32,O7\n\t"
7980            "OR    $dst,O7,$dst\t! replicate8B" %}
7981  ins_encode( enc_repl8b(src, dst));
7982  ins_pipe(ialu_reg);
7983%}
7984
7985// Replicate scalar to packed byte values in Double register
7986instruct Repl8B_reg(stackSlotD dst, iRegI src) %{
7987  match(Set dst (Replicate8B src));
7988  expand %{
7989    iRegL tmp;
7990    Repl8B_reg_helper(tmp, src);
7991    regL_to_stkD(dst, tmp);
7992  %}
7993%}
7994
7995// Replicate scalar constant to packed byte values in Double register
7996instruct Repl8B_immI(regD dst, immI13 src, o7RegP tmp) %{
7997  match(Set dst (Replicate8B src));
7998#ifdef _LP64
7999  size(36);
8000#else
8001  size(8);
8002#endif
8003  format %{ "SETHI  hi(&Repl8($src)),$tmp\t!get Repl8B($src) from table\n\t"
8004            "LDDF   [$tmp+lo(&Repl8($src))],$dst" %}
8005  ins_encode( LdReplImmI(src, dst, tmp, (8), (1)) );
8006  ins_pipe(loadConFD);
8007%}
8008
8009// Replicate scalar to packed char values into stack slot
8010instruct Repl4C_reg_helper(iRegL dst, iRegI src) %{
8011  effect(DEF dst, USE src);
8012  format %{ "SLLX  $src,48,$dst\n\t"
8013            "SRLX  $dst,16,O7\n\t"
8014            "OR    $dst,O7,$dst\n\t"
8015            "SRLX  $dst,32,O7\n\t"
8016            "OR    $dst,O7,$dst\t! replicate4C" %}
8017  ins_encode( enc_repl4s(src, dst) );
8018  ins_pipe(ialu_reg);
8019%}
8020
8021// Replicate scalar to packed char values into stack slot
8022instruct Repl4C_reg(stackSlotD dst, iRegI src) %{
8023  match(Set dst (Replicate4C src));
8024  expand %{
8025    iRegL tmp;
8026    Repl4C_reg_helper(tmp, src);
8027    regL_to_stkD(dst, tmp);
8028  %}
8029%}
8030
8031// Replicate scalar constant to packed char values in Double register
8032instruct Repl4C_immI(regD dst, immI src, o7RegP tmp) %{
8033  match(Set dst (Replicate4C src));
8034#ifdef _LP64
8035  size(36);
8036#else
8037  size(8);
8038#endif
8039  format %{ "SETHI  hi(&Repl4($src)),$tmp\t!get Repl4C($src) from table\n\t"
8040            "LDDF   [$tmp+lo(&Repl4($src))],$dst" %}
8041  ins_encode( LdReplImmI(src, dst, tmp, (4), (2)) );
8042  ins_pipe(loadConFD);
8043%}
8044
8045// Replicate scalar to packed short values into stack slot
8046instruct Repl4S_reg_helper(iRegL dst, iRegI src) %{
8047  effect(DEF dst, USE src);
8048  format %{ "SLLX  $src,48,$dst\n\t"
8049            "SRLX  $dst,16,O7\n\t"
8050            "OR    $dst,O7,$dst\n\t"
8051            "SRLX  $dst,32,O7\n\t"
8052            "OR    $dst,O7,$dst\t! replicate4S" %}
8053  ins_encode( enc_repl4s(src, dst) );
8054  ins_pipe(ialu_reg);
8055%}
8056
8057// Replicate scalar to packed short values into stack slot
8058instruct Repl4S_reg(stackSlotD dst, iRegI src) %{
8059  match(Set dst (Replicate4S src));
8060  expand %{
8061    iRegL tmp;
8062    Repl4S_reg_helper(tmp, src);
8063    regL_to_stkD(dst, tmp);
8064  %}
8065%}
8066
8067// Replicate scalar constant to packed short values in Double register
8068instruct Repl4S_immI(regD dst, immI src, o7RegP tmp) %{
8069  match(Set dst (Replicate4S src));
8070#ifdef _LP64
8071  size(36);
8072#else
8073  size(8);
8074#endif
8075  format %{ "SETHI  hi(&Repl4($src)),$tmp\t!get Repl4S($src) from table\n\t"
8076            "LDDF   [$tmp+lo(&Repl4($src))],$dst" %}
8077  ins_encode( LdReplImmI(src, dst, tmp, (4), (2)) );
8078  ins_pipe(loadConFD);
8079%}
8080
8081// Replicate scalar to packed int values in Double register
8082instruct Repl2I_reg_helper(iRegL dst, iRegI src) %{
8083  effect(DEF dst, USE src);
8084  format %{ "SLLX  $src,32,$dst\n\t"
8085            "SRLX  $dst,32,O7\n\t"
8086            "OR    $dst,O7,$dst\t! replicate2I" %}
8087  ins_encode( enc_repl2i(src, dst));
8088  ins_pipe(ialu_reg);
8089%}
8090
8091// Replicate scalar to packed int values in Double register
8092instruct Repl2I_reg(stackSlotD dst, iRegI src) %{
8093  match(Set dst (Replicate2I src));
8094  expand %{
8095    iRegL tmp;
8096    Repl2I_reg_helper(tmp, src);
8097    regL_to_stkD(dst, tmp);
8098  %}
8099%}
8100
8101// Replicate scalar zero constant to packed int values in Double register
8102instruct Repl2I_immI(regD dst, immI src, o7RegP tmp) %{
8103  match(Set dst (Replicate2I src));
8104#ifdef _LP64
8105  size(36);
8106#else
8107  size(8);
8108#endif
8109  format %{ "SETHI  hi(&Repl2($src)),$tmp\t!get Repl2I($src) from table\n\t"
8110            "LDDF   [$tmp+lo(&Repl2($src))],$dst" %}
8111  ins_encode( LdReplImmI(src, dst, tmp, (2), (4)) );
8112  ins_pipe(loadConFD);
8113%}
8114
8115//----------Control Flow Instructions------------------------------------------
8116// Compare Instructions
8117// Compare Integers
8118instruct compI_iReg(flagsReg icc, iRegI op1, iRegI op2) %{
8119  match(Set icc (CmpI op1 op2));
8120  effect( DEF icc, USE op1, USE op2 );
8121
8122  size(4);
8123  format %{ "CMP    $op1,$op2" %}
8124  opcode(Assembler::subcc_op3, Assembler::arith_op);
8125  ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8126  ins_pipe(ialu_cconly_reg_reg);
8127%}
8128
8129instruct compU_iReg(flagsRegU icc, iRegI op1, iRegI op2) %{
8130  match(Set icc (CmpU op1 op2));
8131
8132  size(4);
8133  format %{ "CMP    $op1,$op2\t! unsigned" %}
8134  opcode(Assembler::subcc_op3, Assembler::arith_op);
8135  ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8136  ins_pipe(ialu_cconly_reg_reg);
8137%}
8138
8139instruct compI_iReg_imm13(flagsReg icc, iRegI op1, immI13 op2) %{
8140  match(Set icc (CmpI op1 op2));
8141  effect( DEF icc, USE op1 );
8142
8143  size(4);
8144  format %{ "CMP    $op1,$op2" %}
8145  opcode(Assembler::subcc_op3, Assembler::arith_op);
8146  ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
8147  ins_pipe(ialu_cconly_reg_imm);
8148%}
8149
8150instruct testI_reg_reg( flagsReg icc, iRegI op1, iRegI op2, immI0 zero ) %{
8151  match(Set icc (CmpI (AndI op1 op2) zero));
8152
8153  size(4);
8154  format %{ "BTST   $op2,$op1" %}
8155  opcode(Assembler::andcc_op3, Assembler::arith_op);
8156  ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8157  ins_pipe(ialu_cconly_reg_reg_zero);
8158%}
8159
8160instruct testI_reg_imm( flagsReg icc, iRegI op1, immI13 op2, immI0 zero ) %{
8161  match(Set icc (CmpI (AndI op1 op2) zero));
8162
8163  size(4);
8164  format %{ "BTST   $op2,$op1" %}
8165  opcode(Assembler::andcc_op3, Assembler::arith_op);
8166  ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
8167  ins_pipe(ialu_cconly_reg_imm_zero);
8168%}
8169
8170instruct compL_reg_reg(flagsRegL xcc, iRegL op1, iRegL op2 ) %{
8171  match(Set xcc (CmpL op1 op2));
8172  effect( DEF xcc, USE op1, USE op2 );
8173
8174  size(4);
8175  format %{ "CMP    $op1,$op2\t\t! long" %}
8176  opcode(Assembler::subcc_op3, Assembler::arith_op);
8177  ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8178  ins_pipe(ialu_cconly_reg_reg);
8179%}
8180
8181instruct compL_reg_con(flagsRegL xcc, iRegL op1, immL13 con) %{
8182  match(Set xcc (CmpL op1 con));
8183  effect( DEF xcc, USE op1, USE con );
8184
8185  size(4);
8186  format %{ "CMP    $op1,$con\t\t! long" %}
8187  opcode(Assembler::subcc_op3, Assembler::arith_op);
8188  ins_encode( form3_rs1_simm13_rd( op1, con, R_G0 ) );
8189  ins_pipe(ialu_cconly_reg_reg);
8190%}
8191
8192instruct testL_reg_reg(flagsRegL xcc, iRegL op1, iRegL op2, immL0 zero) %{
8193  match(Set xcc (CmpL (AndL op1 op2) zero));
8194  effect( DEF xcc, USE op1, USE op2 );
8195
8196  size(4);
8197  format %{ "BTST   $op1,$op2\t\t! long" %}
8198  opcode(Assembler::andcc_op3, Assembler::arith_op);
8199  ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8200  ins_pipe(ialu_cconly_reg_reg);
8201%}
8202
8203// useful for checking the alignment of a pointer:
8204instruct testL_reg_con(flagsRegL xcc, iRegL op1, immL13 con, immL0 zero) %{
8205  match(Set xcc (CmpL (AndL op1 con) zero));
8206  effect( DEF xcc, USE op1, USE con );
8207
8208  size(4);
8209  format %{ "BTST   $op1,$con\t\t! long" %}
8210  opcode(Assembler::andcc_op3, Assembler::arith_op);
8211  ins_encode( form3_rs1_simm13_rd( op1, con, R_G0 ) );
8212  ins_pipe(ialu_cconly_reg_reg);
8213%}
8214
8215instruct compU_iReg_imm13(flagsRegU icc, iRegI op1, immU13 op2 ) %{
8216  match(Set icc (CmpU op1 op2));
8217
8218  size(4);
8219  format %{ "CMP    $op1,$op2\t! unsigned" %}
8220  opcode(Assembler::subcc_op3, Assembler::arith_op);
8221  ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
8222  ins_pipe(ialu_cconly_reg_imm);
8223%}
8224
8225// Compare Pointers
8226instruct compP_iRegP(flagsRegP pcc, iRegP op1, iRegP op2 ) %{
8227  match(Set pcc (CmpP op1 op2));
8228
8229  size(4);
8230  format %{ "CMP    $op1,$op2\t! ptr" %}
8231  opcode(Assembler::subcc_op3, Assembler::arith_op);
8232  ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8233  ins_pipe(ialu_cconly_reg_reg);
8234%}
8235
8236instruct compP_iRegP_imm13(flagsRegP pcc, iRegP op1, immP13 op2 ) %{
8237  match(Set pcc (CmpP op1 op2));
8238
8239  size(4);
8240  format %{ "CMP    $op1,$op2\t! ptr" %}
8241  opcode(Assembler::subcc_op3, Assembler::arith_op);
8242  ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
8243  ins_pipe(ialu_cconly_reg_imm);
8244%}
8245
8246//----------Max and Min--------------------------------------------------------
8247// Min Instructions
8248// Conditional move for min
8249instruct cmovI_reg_lt( iRegI op2, iRegI op1, flagsReg icc ) %{
8250  effect( USE_DEF op2, USE op1, USE icc );
8251
8252  size(4);
8253  format %{ "MOVlt  icc,$op1,$op2\t! min" %}
8254  opcode(Assembler::less);
8255  ins_encode( enc_cmov_reg_minmax(op2,op1) );
8256  ins_pipe(ialu_reg_flags);
8257%}
8258
8259// Min Register with Register.
8260instruct minI_eReg(iRegI op1, iRegI op2) %{
8261  match(Set op2 (MinI op1 op2));
8262  ins_cost(DEFAULT_COST*2);
8263  expand %{
8264    flagsReg icc;
8265    compI_iReg(icc,op1,op2);
8266    cmovI_reg_lt(op2,op1,icc);
8267  %}
8268%}
8269
8270// Max Instructions
8271// Conditional move for max
8272instruct cmovI_reg_gt( iRegI op2, iRegI op1, flagsReg icc ) %{
8273  effect( USE_DEF op2, USE op1, USE icc );
8274  format %{ "MOVgt  icc,$op1,$op2\t! max" %}
8275  opcode(Assembler::greater);
8276  ins_encode( enc_cmov_reg_minmax(op2,op1) );
8277  ins_pipe(ialu_reg_flags);
8278%}
8279
8280// Max Register with Register
8281instruct maxI_eReg(iRegI op1, iRegI op2) %{
8282  match(Set op2 (MaxI op1 op2));
8283  ins_cost(DEFAULT_COST*2);
8284  expand %{
8285    flagsReg icc;
8286    compI_iReg(icc,op1,op2);
8287    cmovI_reg_gt(op2,op1,icc);
8288  %}
8289%}
8290
8291
8292//----------Float Compares----------------------------------------------------
8293// Compare floating, generate condition code
8294instruct cmpF_cc(flagsRegF fcc, regF src1, regF src2) %{
8295  match(Set fcc (CmpF src1 src2));
8296
8297  size(4);
8298  format %{ "FCMPs  $fcc,$src1,$src2" %}
8299  opcode(Assembler::fpop2_op3, Assembler::arith_op, Assembler::fcmps_opf);
8300  ins_encode( form3_opf_rs1F_rs2F_fcc( src1, src2, fcc ) );
8301  ins_pipe(faddF_fcc_reg_reg_zero);
8302%}
8303
8304instruct cmpD_cc(flagsRegF fcc, regD src1, regD src2) %{
8305  match(Set fcc (CmpD src1 src2));
8306
8307  size(4);
8308  format %{ "FCMPd  $fcc,$src1,$src2" %}
8309  opcode(Assembler::fpop2_op3, Assembler::arith_op, Assembler::fcmpd_opf);
8310  ins_encode( form3_opf_rs1D_rs2D_fcc( src1, src2, fcc ) );
8311  ins_pipe(faddD_fcc_reg_reg_zero);
8312%}
8313
8314
8315// Compare floating, generate -1,0,1
8316instruct cmpF_reg(iRegI dst, regF src1, regF src2, flagsRegF0 fcc0) %{
8317  match(Set dst (CmpF3 src1 src2));
8318  effect(KILL fcc0);
8319  ins_cost(DEFAULT_COST*3+BRANCH_COST*3);
8320  format %{ "fcmpl  $dst,$src1,$src2" %}
8321  // Primary = float
8322  opcode( true );
8323  ins_encode( floating_cmp( dst, src1, src2 ) );
8324  ins_pipe( floating_cmp );
8325%}
8326
8327instruct cmpD_reg(iRegI dst, regD src1, regD src2, flagsRegF0 fcc0) %{
8328  match(Set dst (CmpD3 src1 src2));
8329  effect(KILL fcc0);
8330  ins_cost(DEFAULT_COST*3+BRANCH_COST*3);
8331  format %{ "dcmpl  $dst,$src1,$src2" %}
8332  // Primary = double (not float)
8333  opcode( false );
8334  ins_encode( floating_cmp( dst, src1, src2 ) );
8335  ins_pipe( floating_cmp );
8336%}
8337
8338//----------Branches---------------------------------------------------------
8339// Jump
8340// (compare 'operand indIndex' and 'instruct addP_reg_reg' above)
8341instruct jumpXtnd(iRegX switch_val, o7RegI table) %{
8342  match(Jump switch_val);
8343
8344  ins_cost(350);
8345
8346  format %{  "SETHI  [hi(table_base)],O7\n\t"
8347             "ADD    O7, lo(table_base), O7\n\t"
8348             "LD     [O7+$switch_val], O7\n\t"
8349             "JUMP   O7"
8350         %}
8351  ins_encode( jump_enc( switch_val, table) );
8352  ins_pc_relative(1);
8353  ins_pipe(ialu_reg_reg);
8354%}
8355
8356// Direct Branch.  Use V8 version with longer range.
8357instruct branch(label labl) %{
8358  match(Goto);
8359  effect(USE labl);
8360
8361  size(8);
8362  ins_cost(BRANCH_COST);
8363  format %{ "BA     $labl" %}
8364  // Prim = bits 24-22, Secnd = bits 31-30, Tert = cond
8365  opcode(Assembler::br_op2, Assembler::branch_op, Assembler::always);
8366  ins_encode( enc_ba( labl ) );
8367  ins_pc_relative(1);
8368  ins_pipe(br);
8369%}
8370
8371// Conditional Direct Branch
8372instruct branchCon(cmpOp cmp, flagsReg icc, label labl) %{
8373  match(If cmp icc);
8374  effect(USE labl);
8375
8376  size(8);
8377  ins_cost(BRANCH_COST);
8378  format %{ "BP$cmp   $icc,$labl" %}
8379  // Prim = bits 24-22, Secnd = bits 31-30
8380  ins_encode( enc_bp( labl, cmp, icc ) );
8381  ins_pc_relative(1);
8382  ins_pipe(br_cc);
8383%}
8384
8385// Branch-on-register tests all 64 bits.  We assume that values
8386// in 64-bit registers always remains zero or sign extended
8387// unless our code munges the high bits.  Interrupts can chop
8388// the high order bits to zero or sign at any time.
8389instruct branchCon_regI(cmpOp_reg cmp, iRegI op1, immI0 zero, label labl) %{
8390  match(If cmp (CmpI op1 zero));
8391  predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
8392  effect(USE labl);
8393
8394  size(8);
8395  ins_cost(BRANCH_COST);
8396  format %{ "BR$cmp   $op1,$labl" %}
8397  ins_encode( enc_bpr( labl, cmp, op1 ) );
8398  ins_pc_relative(1);
8399  ins_pipe(br_reg);
8400%}
8401
8402instruct branchCon_regP(cmpOp_reg cmp, iRegP op1, immP0 null, label labl) %{
8403  match(If cmp (CmpP op1 null));
8404  predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
8405  effect(USE labl);
8406
8407  size(8);
8408  ins_cost(BRANCH_COST);
8409  format %{ "BR$cmp   $op1,$labl" %}
8410  ins_encode( enc_bpr( labl, cmp, op1 ) );
8411  ins_pc_relative(1);
8412  ins_pipe(br_reg);
8413%}
8414
8415instruct branchCon_regL(cmpOp_reg cmp, iRegL op1, immL0 zero, label labl) %{
8416  match(If cmp (CmpL op1 zero));
8417  predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
8418  effect(USE labl);
8419
8420  size(8);
8421  ins_cost(BRANCH_COST);
8422  format %{ "BR$cmp   $op1,$labl" %}
8423  ins_encode( enc_bpr( labl, cmp, op1 ) );
8424  ins_pc_relative(1);
8425  ins_pipe(br_reg);
8426%}
8427
8428instruct branchConU(cmpOpU cmp, flagsRegU icc, label labl) %{
8429  match(If cmp icc);
8430  effect(USE labl);
8431
8432  format %{ "BP$cmp  $icc,$labl" %}
8433  // Prim = bits 24-22, Secnd = bits 31-30
8434  ins_encode( enc_bp( labl, cmp, icc ) );
8435  ins_pc_relative(1);
8436  ins_pipe(br_cc);
8437%}
8438
8439instruct branchConP(cmpOpP cmp, flagsRegP pcc, label labl) %{
8440  match(If cmp pcc);
8441  effect(USE labl);
8442
8443  size(8);
8444  ins_cost(BRANCH_COST);
8445  format %{ "BP$cmp  $pcc,$labl" %}
8446  // Prim = bits 24-22, Secnd = bits 31-30
8447  ins_encode( enc_bpx( labl, cmp, pcc ) );
8448  ins_pc_relative(1);
8449  ins_pipe(br_cc);
8450%}
8451
8452instruct branchConF(cmpOpF cmp, flagsRegF fcc, label labl) %{
8453  match(If cmp fcc);
8454  effect(USE labl);
8455
8456  size(8);
8457  ins_cost(BRANCH_COST);
8458  format %{ "FBP$cmp $fcc,$labl" %}
8459  // Prim = bits 24-22, Secnd = bits 31-30
8460  ins_encode( enc_fbp( labl, cmp, fcc ) );
8461  ins_pc_relative(1);
8462  ins_pipe(br_fcc);
8463%}
8464
8465instruct branchLoopEnd(cmpOp cmp, flagsReg icc, label labl) %{
8466  match(CountedLoopEnd cmp icc);
8467  effect(USE labl);
8468
8469  size(8);
8470  ins_cost(BRANCH_COST);
8471  format %{ "BP$cmp   $icc,$labl\t! Loop end" %}
8472  // Prim = bits 24-22, Secnd = bits 31-30
8473  ins_encode( enc_bp( labl, cmp, icc ) );
8474  ins_pc_relative(1);
8475  ins_pipe(br_cc);
8476%}
8477
8478instruct branchLoopEndU(cmpOpU cmp, flagsRegU icc, label labl) %{
8479  match(CountedLoopEnd cmp icc);
8480  effect(USE labl);
8481
8482  size(8);
8483  ins_cost(BRANCH_COST);
8484  format %{ "BP$cmp  $icc,$labl\t! Loop end" %}
8485  // Prim = bits 24-22, Secnd = bits 31-30
8486  ins_encode( enc_bp( labl, cmp, icc ) );
8487  ins_pc_relative(1);
8488  ins_pipe(br_cc);
8489%}
8490
8491// ============================================================================
8492// Long Compare
8493//
8494// Currently we hold longs in 2 registers.  Comparing such values efficiently
8495// is tricky.  The flavor of compare used depends on whether we are testing
8496// for LT, LE, or EQ.  For a simple LT test we can check just the sign bit.
8497// The GE test is the negated LT test.  The LE test can be had by commuting
8498// the operands (yielding a GE test) and then negating; negate again for the
8499// GT test.  The EQ test is done by ORcc'ing the high and low halves, and the
8500// NE test is negated from that.
8501
8502// Due to a shortcoming in the ADLC, it mixes up expressions like:
8503// (foo (CmpI (CmpL X Y) 0)) and (bar (CmpI (CmpL X 0L) 0)).  Note the
8504// difference between 'Y' and '0L'.  The tree-matches for the CmpI sections
8505// are collapsed internally in the ADLC's dfa-gen code.  The match for
8506// (CmpI (CmpL X Y) 0) is silently replaced with (CmpI (CmpL X 0L) 0) and the
8507// foo match ends up with the wrong leaf.  One fix is to not match both
8508// reg-reg and reg-zero forms of long-compare.  This is unfortunate because
8509// both forms beat the trinary form of long-compare and both are very useful
8510// on Intel which has so few registers.
8511
8512instruct branchCon_long(cmpOp cmp, flagsRegL xcc, label labl) %{
8513  match(If cmp xcc);
8514  effect(USE labl);
8515
8516  size(8);
8517  ins_cost(BRANCH_COST);
8518  format %{ "BP$cmp   $xcc,$labl" %}
8519  // Prim = bits 24-22, Secnd = bits 31-30
8520  ins_encode( enc_bpl( labl, cmp, xcc ) );
8521  ins_pc_relative(1);
8522  ins_pipe(br_cc);
8523%}
8524
8525// Manifest a CmpL3 result in an integer register.  Very painful.
8526// This is the test to avoid.
8527instruct cmpL3_reg_reg(iRegI dst, iRegL src1, iRegL src2, flagsReg ccr ) %{
8528  match(Set dst (CmpL3 src1 src2) );
8529  effect( KILL ccr );
8530  ins_cost(6*DEFAULT_COST);
8531  size(24);
8532  format %{ "CMP    $src1,$src2\t\t! long\n"
8533          "\tBLT,a,pn done\n"
8534          "\tMOV    -1,$dst\t! delay slot\n"
8535          "\tBGT,a,pn done\n"
8536          "\tMOV    1,$dst\t! delay slot\n"
8537          "\tCLR    $dst\n"
8538    "done:"     %}
8539  ins_encode( cmpl_flag(src1,src2,dst) );
8540  ins_pipe(cmpL_reg);
8541%}
8542
8543// Conditional move
8544instruct cmovLL_reg(cmpOp cmp, flagsRegL xcc, iRegL dst, iRegL src) %{
8545  match(Set dst (CMoveL (Binary cmp xcc) (Binary dst src)));
8546  ins_cost(150);
8547  format %{ "MOV$cmp  $xcc,$src,$dst\t! long" %}
8548  ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
8549  ins_pipe(ialu_reg);
8550%}
8551
8552instruct cmovLL_imm(cmpOp cmp, flagsRegL xcc, iRegL dst, immL0 src) %{
8553  match(Set dst (CMoveL (Binary cmp xcc) (Binary dst src)));
8554  ins_cost(140);
8555  format %{ "MOV$cmp  $xcc,$src,$dst\t! long" %}
8556  ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
8557  ins_pipe(ialu_imm);
8558%}
8559
8560instruct cmovIL_reg(cmpOp cmp, flagsRegL xcc, iRegI dst, iRegI src) %{
8561  match(Set dst (CMoveI (Binary cmp xcc) (Binary dst src)));
8562  ins_cost(150);
8563  format %{ "MOV$cmp  $xcc,$src,$dst" %}
8564  ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
8565  ins_pipe(ialu_reg);
8566%}
8567
8568instruct cmovIL_imm(cmpOp cmp, flagsRegL xcc, iRegI dst, immI11 src) %{
8569  match(Set dst (CMoveI (Binary cmp xcc) (Binary dst src)));
8570  ins_cost(140);
8571  format %{ "MOV$cmp  $xcc,$src,$dst" %}
8572  ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
8573  ins_pipe(ialu_imm);
8574%}
8575
8576instruct cmovPL_reg(cmpOp cmp, flagsRegL xcc, iRegP dst, iRegP src) %{
8577  match(Set dst (CMoveP (Binary cmp xcc) (Binary dst src)));
8578  ins_cost(150);
8579  format %{ "MOV$cmp  $xcc,$src,$dst" %}
8580  ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
8581  ins_pipe(ialu_reg);
8582%}
8583
8584instruct cmovPL_imm(cmpOp cmp, flagsRegL xcc, iRegP dst, immP0 src) %{
8585  match(Set dst (CMoveP (Binary cmp xcc) (Binary dst src)));
8586  ins_cost(140);
8587  format %{ "MOV$cmp  $xcc,$src,$dst" %}
8588  ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
8589  ins_pipe(ialu_imm);
8590%}
8591
8592instruct cmovFL_reg(cmpOp cmp, flagsRegL xcc, regF dst, regF src) %{
8593  match(Set dst (CMoveF (Binary cmp xcc) (Binary dst src)));
8594  ins_cost(150);
8595  opcode(0x101);
8596  format %{ "FMOVS$cmp $xcc,$src,$dst" %}
8597  ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::xcc)) );
8598  ins_pipe(int_conditional_float_move);
8599%}
8600
8601instruct cmovDL_reg(cmpOp cmp, flagsRegL xcc, regD dst, regD src) %{
8602  match(Set dst (CMoveD (Binary cmp xcc) (Binary dst src)));
8603  ins_cost(150);
8604  opcode(0x102);
8605  format %{ "FMOVD$cmp $xcc,$src,$dst" %}
8606  ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::xcc)) );
8607  ins_pipe(int_conditional_float_move);
8608%}
8609
8610// ============================================================================
8611// Safepoint Instruction
8612instruct safePoint_poll(iRegP poll) %{
8613  match(SafePoint poll);
8614  effect(USE poll);
8615
8616  size(4);
8617#ifdef _LP64
8618  format %{ "LDX    [$poll],R_G0\t! Safepoint: poll for GC" %}
8619#else
8620  format %{ "LDUW   [$poll],R_G0\t! Safepoint: poll for GC" %}
8621#endif
8622  ins_encode %{
8623    __ relocate(relocInfo::poll_type);
8624    __ ld_ptr($poll$$Register, 0, G0);
8625  %}
8626  ins_pipe(loadPollP);
8627%}
8628
8629// ============================================================================
8630// Call Instructions
8631// Call Java Static Instruction
8632instruct CallStaticJavaDirect( method meth ) %{
8633  match(CallStaticJava);
8634  effect(USE meth);
8635
8636  size(8);
8637  ins_cost(CALL_COST);
8638  format %{ "CALL,static  ; NOP ==> " %}
8639  ins_encode( Java_Static_Call( meth ), call_epilog );
8640  ins_pc_relative(1);
8641  ins_pipe(simple_call);
8642%}
8643
8644// Call Java Dynamic Instruction
8645instruct CallDynamicJavaDirect( method meth ) %{
8646  match(CallDynamicJava);
8647  effect(USE meth);
8648
8649  ins_cost(CALL_COST);
8650  format %{ "SET    (empty),R_G5\n\t"
8651            "CALL,dynamic  ; NOP ==> " %}
8652  ins_encode( Java_Dynamic_Call( meth ), call_epilog );
8653  ins_pc_relative(1);
8654  ins_pipe(call);
8655%}
8656
8657// Call Runtime Instruction
8658instruct CallRuntimeDirect(method meth, l7RegP l7) %{
8659  match(CallRuntime);
8660  effect(USE meth, KILL l7);
8661  ins_cost(CALL_COST);
8662  format %{ "CALL,runtime" %}
8663  ins_encode( Java_To_Runtime( meth ),
8664              call_epilog, adjust_long_from_native_call );
8665  ins_pc_relative(1);
8666  ins_pipe(simple_call);
8667%}
8668
8669// Call runtime without safepoint - same as CallRuntime
8670instruct CallLeafDirect(method meth, l7RegP l7) %{
8671  match(CallLeaf);
8672  effect(USE meth, KILL l7);
8673  ins_cost(CALL_COST);
8674  format %{ "CALL,runtime leaf" %}
8675  ins_encode( Java_To_Runtime( meth ),
8676              call_epilog,
8677              adjust_long_from_native_call );
8678  ins_pc_relative(1);
8679  ins_pipe(simple_call);
8680%}
8681
8682// Call runtime without safepoint - same as CallLeaf
8683instruct CallLeafNoFPDirect(method meth, l7RegP l7) %{
8684  match(CallLeafNoFP);
8685  effect(USE meth, KILL l7);
8686  ins_cost(CALL_COST);
8687  format %{ "CALL,runtime leaf nofp" %}
8688  ins_encode( Java_To_Runtime( meth ),
8689              call_epilog,
8690              adjust_long_from_native_call );
8691  ins_pc_relative(1);
8692  ins_pipe(simple_call);
8693%}
8694
8695// Tail Call; Jump from runtime stub to Java code.
8696// Also known as an 'interprocedural jump'.
8697// Target of jump will eventually return to caller.
8698// TailJump below removes the return address.
8699instruct TailCalljmpInd(g3RegP jump_target, inline_cache_regP method_oop) %{
8700  match(TailCall jump_target method_oop );
8701
8702  ins_cost(CALL_COST);
8703  format %{ "Jmp     $jump_target  ; NOP \t! $method_oop holds method oop" %}
8704  ins_encode(form_jmpl(jump_target));
8705  ins_pipe(tail_call);
8706%}
8707
8708
8709// Return Instruction
8710instruct Ret() %{
8711  match(Return);
8712
8713  // The epilogue node did the ret already.
8714  size(0);
8715  format %{ "! return" %}
8716  ins_encode();
8717  ins_pipe(empty);
8718%}
8719
8720
8721// Tail Jump; remove the return address; jump to target.
8722// TailCall above leaves the return address around.
8723// TailJump is used in only one place, the rethrow_Java stub (fancy_jump=2).
8724// ex_oop (Exception Oop) is needed in %o0 at the jump. As there would be a
8725// "restore" before this instruction (in Epilogue), we need to materialize it
8726// in %i0.
8727instruct tailjmpInd(g1RegP jump_target, i0RegP ex_oop) %{
8728  match( TailJump jump_target ex_oop );
8729  ins_cost(CALL_COST);
8730  format %{ "! discard R_O7\n\t"
8731            "Jmp     $jump_target  ; ADD O7,8,O1 \t! $ex_oop holds exc. oop" %}
8732  ins_encode(form_jmpl_set_exception_pc(jump_target));
8733  // opcode(Assembler::jmpl_op3, Assembler::arith_op);
8734  // The hack duplicates the exception oop into G3, so that CreateEx can use it there.
8735  // ins_encode( form3_rs1_simm13_rd( jump_target, 0x00, R_G0 ), move_return_pc_to_o1() );
8736  ins_pipe(tail_call);
8737%}
8738
8739// Create exception oop: created by stack-crawling runtime code.
8740// Created exception is now available to this handler, and is setup
8741// just prior to jumping to this handler.  No code emitted.
8742instruct CreateException( o0RegP ex_oop )
8743%{
8744  match(Set ex_oop (CreateEx));
8745  ins_cost(0);
8746
8747  size(0);
8748  // use the following format syntax
8749  format %{ "! exception oop is in R_O0; no code emitted" %}
8750  ins_encode();
8751  ins_pipe(empty);
8752%}
8753
8754
8755// Rethrow exception:
8756// The exception oop will come in the first argument position.
8757// Then JUMP (not call) to the rethrow stub code.
8758instruct RethrowException()
8759%{
8760  match(Rethrow);
8761  ins_cost(CALL_COST);
8762
8763  // use the following format syntax
8764  format %{ "Jmp    rethrow_stub" %}
8765  ins_encode(enc_rethrow);
8766  ins_pipe(tail_call);
8767%}
8768
8769
8770// Die now
8771instruct ShouldNotReachHere( )
8772%{
8773  match(Halt);
8774  ins_cost(CALL_COST);
8775
8776  size(4);
8777  // Use the following format syntax
8778  format %{ "ILLTRAP   ; ShouldNotReachHere" %}
8779  ins_encode( form2_illtrap() );
8780  ins_pipe(tail_call);
8781%}
8782
8783// ============================================================================
8784// The 2nd slow-half of a subtype check.  Scan the subklass's 2ndary superklass
8785// array for an instance of the superklass.  Set a hidden internal cache on a
8786// hit (cache is checked with exposed code in gen_subtype_check()).  Return
8787// not zero for a miss or zero for a hit.  The encoding ALSO sets flags.
8788instruct partialSubtypeCheck( o0RegP index, o1RegP sub, o2RegP super, flagsRegP pcc, o7RegP o7 ) %{
8789  match(Set index (PartialSubtypeCheck sub super));
8790  effect( KILL pcc, KILL o7 );
8791  ins_cost(DEFAULT_COST*10);
8792  format %{ "CALL   PartialSubtypeCheck\n\tNOP" %}
8793  ins_encode( enc_PartialSubtypeCheck() );
8794  ins_pipe(partial_subtype_check_pipe);
8795%}
8796
8797instruct partialSubtypeCheck_vs_zero( flagsRegP pcc, o1RegP sub, o2RegP super, immP0 zero, o0RegP idx, o7RegP o7 ) %{
8798  match(Set pcc (CmpP (PartialSubtypeCheck sub super) zero));
8799  effect( KILL idx, KILL o7 );
8800  ins_cost(DEFAULT_COST*10);
8801  format %{ "CALL   PartialSubtypeCheck\n\tNOP\t# (sets condition codes)" %}
8802  ins_encode( enc_PartialSubtypeCheck() );
8803  ins_pipe(partial_subtype_check_pipe);
8804%}
8805
8806
8807instruct compP_iRegN_immN0(flagsRegP pcc, iRegN op1, immN0 op2 ) %{
8808  match(Set pcc (CmpN op1 op2));
8809
8810  size(4);
8811  format %{ "CMP    $op1,$op2\t! ptr" %}
8812  opcode(Assembler::subcc_op3, Assembler::arith_op);
8813  ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
8814  ins_pipe(ialu_cconly_reg_imm);
8815%}
8816
8817// ============================================================================
8818// inlined locking and unlocking
8819
8820instruct cmpFastLock(flagsRegP pcc, iRegP object, iRegP box, iRegP scratch2, o7RegP scratch ) %{
8821  match(Set pcc (FastLock object box));
8822
8823  effect(KILL scratch, TEMP scratch2);
8824  ins_cost(100);
8825
8826  size(4*112);       // conservative overestimation ...
8827  format %{ "FASTLOCK  $object, $box; KILL $scratch, $scratch2, $box" %}
8828  ins_encode( Fast_Lock(object, box, scratch, scratch2) );
8829  ins_pipe(long_memory_op);
8830%}
8831
8832
8833instruct cmpFastUnlock(flagsRegP pcc, iRegP object, iRegP box, iRegP scratch2, o7RegP scratch ) %{
8834  match(Set pcc (FastUnlock object box));
8835  effect(KILL scratch, TEMP scratch2);
8836  ins_cost(100);
8837
8838  size(4*120);       // conservative overestimation ...
8839  format %{ "FASTUNLOCK  $object, $box; KILL $scratch, $scratch2, $box" %}
8840  ins_encode( Fast_Unlock(object, box, scratch, scratch2) );
8841  ins_pipe(long_memory_op);
8842%}
8843
8844// Count and Base registers are fixed because the allocator cannot
8845// kill unknown registers.  The encodings are generic.
8846instruct clear_array(iRegX cnt, iRegP base, iRegX temp, Universe dummy, flagsReg ccr) %{
8847  match(Set dummy (ClearArray cnt base));
8848  effect(TEMP temp, KILL ccr);
8849  ins_cost(300);
8850  format %{ "MOV    $cnt,$temp\n"
8851    "loop:   SUBcc  $temp,8,$temp\t! Count down a dword of bytes\n"
8852    "        BRge   loop\t\t! Clearing loop\n"
8853    "        STX    G0,[$base+$temp]\t! delay slot" %}
8854  ins_encode( enc_Clear_Array(cnt, base, temp) );
8855  ins_pipe(long_memory_op);
8856%}
8857
8858instruct string_compare(o0RegP str1, o1RegP str2, g3RegP tmp1, g4RegP tmp2, notemp_iRegI result,
8859                        o7RegI tmp3, flagsReg ccr) %{
8860  match(Set result (StrComp str1 str2));
8861  effect(USE_KILL str1, USE_KILL str2, KILL tmp1, KILL tmp2, KILL ccr, KILL tmp3);
8862  ins_cost(300);
8863  format %{ "String Compare $str1,$str2 -> $result" %}
8864  ins_encode( enc_String_Compare(str1, str2, tmp1, tmp2, result) );
8865  ins_pipe(long_memory_op);
8866%}
8867
8868// ============================================================================
8869//------------Bytes reverse--------------------------------------------------
8870
8871instruct bytes_reverse_int(iRegI dst, stackSlotI src) %{
8872  match(Set dst (ReverseBytesI src));
8873  effect(DEF dst, USE src);
8874
8875  // Op cost is artificially doubled to make sure that load or store
8876  // instructions are preferred over this one which requires a spill
8877  // onto a stack slot.
8878  ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
8879  size(8);
8880  format %{ "LDUWA  $src, $dst\t!asi=primary_little" %}
8881  opcode(Assembler::lduwa_op3);
8882  ins_encode( form3_mem_reg_little(src, dst) );
8883  ins_pipe( iload_mem );
8884%}
8885
8886instruct bytes_reverse_long(iRegL dst, stackSlotL src) %{
8887  match(Set dst (ReverseBytesL src));
8888  effect(DEF dst, USE src);
8889
8890  // Op cost is artificially doubled to make sure that load or store
8891  // instructions are preferred over this one which requires a spill
8892  // onto a stack slot.
8893  ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
8894  size(8);
8895  format %{ "LDXA   $src, $dst\t!asi=primary_little" %}
8896
8897  opcode(Assembler::ldxa_op3);
8898  ins_encode( form3_mem_reg_little(src, dst) );
8899  ins_pipe( iload_mem );
8900%}
8901
8902// Load Integer reversed byte order
8903instruct loadI_reversed(iRegI dst, memory src) %{
8904  match(Set dst (ReverseBytesI (LoadI src)));
8905
8906  ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8907  size(8);
8908  format %{ "LDUWA  $src, $dst\t!asi=primary_little" %}
8909
8910  opcode(Assembler::lduwa_op3);
8911  ins_encode( form3_mem_reg_little( src, dst) );
8912  ins_pipe(iload_mem);
8913%}
8914
8915// Load Long - aligned and reversed
8916instruct loadL_reversed(iRegL dst, memory src) %{
8917  match(Set dst (ReverseBytesL (LoadL src)));
8918
8919  ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8920  size(8);
8921  format %{ "LDXA   $src, $dst\t!asi=primary_little" %}
8922
8923  opcode(Assembler::ldxa_op3);
8924  ins_encode( form3_mem_reg_little( src, dst ) );
8925  ins_pipe(iload_mem);
8926%}
8927
8928// Store Integer reversed byte order
8929instruct storeI_reversed(memory dst, iRegI src) %{
8930  match(Set dst (StoreI dst (ReverseBytesI src)));
8931
8932  ins_cost(MEMORY_REF_COST);
8933  size(8);
8934  format %{ "STWA   $src, $dst\t!asi=primary_little" %}
8935
8936  opcode(Assembler::stwa_op3);
8937  ins_encode( form3_mem_reg_little( dst, src) );
8938  ins_pipe(istore_mem_reg);
8939%}
8940
8941// Store Long reversed byte order
8942instruct storeL_reversed(memory dst, iRegL src) %{
8943  match(Set dst (StoreL dst (ReverseBytesL src)));
8944
8945  ins_cost(MEMORY_REF_COST);
8946  size(8);
8947  format %{ "STXA   $src, $dst\t!asi=primary_little" %}
8948
8949  opcode(Assembler::stxa_op3);
8950  ins_encode( form3_mem_reg_little( dst, src) );
8951  ins_pipe(istore_mem_reg);
8952%}
8953
8954//----------PEEPHOLE RULES-----------------------------------------------------
8955// These must follow all instruction definitions as they use the names
8956// defined in the instructions definitions.
8957//
8958// peepmatch ( root_instr_name [preceeding_instruction]* );
8959//
8960// peepconstraint %{
8961// (instruction_number.operand_name relational_op instruction_number.operand_name
8962//  [, ...] );
8963// // instruction numbers are zero-based using left to right order in peepmatch
8964//
8965// peepreplace ( instr_name  ( [instruction_number.operand_name]* ) );
8966// // provide an instruction_number.operand_name for each operand that appears
8967// // in the replacement instruction's match rule
8968//
8969// ---------VM FLAGS---------------------------------------------------------
8970//
8971// All peephole optimizations can be turned off using -XX:-OptoPeephole
8972//
8973// Each peephole rule is given an identifying number starting with zero and
8974// increasing by one in the order seen by the parser.  An individual peephole
8975// can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
8976// on the command-line.
8977//
8978// ---------CURRENT LIMITATIONS----------------------------------------------
8979//
8980// Only match adjacent instructions in same basic block
8981// Only equality constraints
8982// Only constraints between operands, not (0.dest_reg == EAX_enc)
8983// Only one replacement instruction
8984//
8985// ---------EXAMPLE----------------------------------------------------------
8986//
8987// // pertinent parts of existing instructions in architecture description
8988// instruct movI(eRegI dst, eRegI src) %{
8989//   match(Set dst (CopyI src));
8990// %}
8991//
8992// instruct incI_eReg(eRegI dst, immI1 src, eFlagsReg cr) %{
8993//   match(Set dst (AddI dst src));
8994//   effect(KILL cr);
8995// %}
8996//
8997// // Change (inc mov) to lea
8998// peephole %{
8999//   // increment preceeded by register-register move
9000//   peepmatch ( incI_eReg movI );
9001//   // require that the destination register of the increment
9002//   // match the destination register of the move
9003//   peepconstraint ( 0.dst == 1.dst );
9004//   // construct a replacement instruction that sets
9005//   // the destination to ( move's source register + one )
9006//   peepreplace ( incI_eReg_immI1( 0.dst 1.src 0.src ) );
9007// %}
9008//
9009
9010// // Change load of spilled value to only a spill
9011// instruct storeI(memory mem, eRegI src) %{
9012//   match(Set mem (StoreI mem src));
9013// %}
9014//
9015// instruct loadI(eRegI dst, memory mem) %{
9016//   match(Set dst (LoadI mem));
9017// %}
9018//
9019// peephole %{
9020//   peepmatch ( loadI storeI );
9021//   peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem );
9022//   peepreplace ( storeI( 1.mem 1.mem 1.src ) );
9023// %}
9024
9025//----------SMARTSPILL RULES---------------------------------------------------
9026// These must follow all instruction definitions as they use the names
9027// defined in the instructions definitions.
9028//
9029// SPARC will probably not have any of these rules due to RISC instruction set.
9030
9031//----------PIPELINE-----------------------------------------------------------
9032// Rules which define the behavior of the target architectures pipeline.
9033