macroAssembler_sparc.cpp revision 8413:92457dfb91bd
1114117Simp/*
250476Speter * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
31592Srgrimes * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
453909Speter *
553909Speter * This code is free software; you can redistribute it and/or modify it
653909Speter * under the terms of the GNU General Public License version 2 only, as
753909Speter * published by the Free Software Foundation.
853909Speter *
9126756Smlaier * This code is distributed in the hope that it will be useful, but WITHOUT
1053909Speter * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
1153909Speter * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12124587Sru * version 2 for more details (a copy is included in the LICENSE file that
13124587Sru * accompanied this code).
1453909Speter *
1553909Speter * You should have received a copy of the GNU General Public License version
16124587Sru * 2 along with this work; if not, write to the Free Software Foundation,
1753909Speter * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18108574Sjmallett *
1953909Speter * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
2053909Speter * or visit www.oracle.com if you need additional information or have any
2153909Speter * questions.
2253909Speter *
2353909Speter */
24104385Smike
2553909Speter#include "precompiled.hpp"
2653909Speter#include "asm/macroAssembler.inline.hpp"
2753909Speter#include "compiler/disassembler.hpp"
2853909Speter#include "gc/shared/cardTableModRefBS.hpp"
29124587Sru#include "gc/shared/collectedHeap.inline.hpp"
3070922Sdougb#include "interpreter/interpreter.hpp"
31124587Sru#include "memory/resourceArea.hpp"
3253909Speter#include "memory/universe.hpp"
33101808Sdwmalone#include "prims/methodHandles.hpp"
34117675Smarkm#include "runtime/biasedLocking.hpp"
3553909Speter#include "runtime/interfaceSupport.hpp"
3653909Speter#include "runtime/objectMonitor.hpp"
371592Srgrimes#include "runtime/os.inline.hpp"
38124587Sru#include "runtime/sharedRuntime.hpp"
39124587Sru#include "runtime/stubRoutines.hpp"
40114833Speter#include "utilities/macros.hpp"
41114833Speter#if INCLUDE_ALL_GCS
42126756Smlaier#include "gc/g1/g1CollectedHeap.inline.hpp"
43126756Smlaier#include "gc/g1/g1SATBCardTableModRefBS.hpp"
44126756Smlaier#include "gc/g1/heapRegion.hpp"
45126756Smlaier#endif // INCLUDE_ALL_GCS
46124587Sru
47124587Sru#ifdef PRODUCT
4853909Speter#define BLOCK_COMMENT(str) /* nothing */
4953909Speter#define STOP(error) stop(error)
5038101Speter#else
51124587Sru#define BLOCK_COMMENT(str) block_comment(str)
52124587Sru#define STOP(error) block_comment(error); stop(error)
5338101Speter#endif
5438101Speter
55106817Sobrien// Convert the raw encoding form into the form expected by the
56124587Sru// constructor for Address.
57106817SobrienAddress Address::make_raw(int base, int index, int scale, int disp, relocInfo::relocType disp_reloc) {
58106817Sobrien  assert(scale == 0, "not supported");
591592Srgrimes  RelocationHolder rspec;
60  if (disp_reloc != relocInfo::none) {
61    rspec = Relocation::spec_simple(disp_reloc);
62  }
63
64  Register rindex = as_Register(index);
65  if (rindex != G0) {
66    Address madr(as_Register(base), rindex);
67    madr._rspec = rspec;
68    return madr;
69  } else {
70    Address madr(as_Register(base), disp);
71    madr._rspec = rspec;
72    return madr;
73  }
74}
75
76Address Argument::address_in_frame() const {
77  // Warning: In LP64 mode disp will occupy more than 10 bits, but
78  //          op codes such as ld or ldx, only access disp() to get
79  //          their simm13 argument.
80  int disp = ((_number - Argument::n_register_parameters + frame::memory_parameter_word_sp_offset) * BytesPerWord) + STACK_BIAS;
81  if (is_in())
82    return Address(FP, disp); // In argument.
83  else
84    return Address(SP, disp); // Out argument.
85}
86
87static const char* argumentNames[][2] = {
88  {"A0","P0"}, {"A1","P1"}, {"A2","P2"}, {"A3","P3"}, {"A4","P4"},
89  {"A5","P5"}, {"A6","P6"}, {"A7","P7"}, {"A8","P8"}, {"A9","P9"},
90  {"A(n>9)","P(n>9)"}
91};
92
93const char* Argument::name() const {
94  int nofArgs = sizeof argumentNames / sizeof argumentNames[0];
95  int num = number();
96  if (num >= nofArgs)  num = nofArgs - 1;
97  return argumentNames[num][is_in() ? 1 : 0];
98}
99
100#ifdef ASSERT
101// On RISC, there's no benefit to verifying instruction boundaries.
102bool AbstractAssembler::pd_check_instruction_mark() { return false; }
103#endif
104
105// Patch instruction inst at offset inst_pos to refer to dest_pos
106// and return the resulting instruction.
107// We should have pcs, not offsets, but since all is relative, it will work out
108// OK.
109int MacroAssembler::patched_branch(int dest_pos, int inst, int inst_pos) {
110  int m; // mask for displacement field
111  int v; // new value for displacement field
112  const int word_aligned_ones = -4;
113  switch (inv_op(inst)) {
114  default: ShouldNotReachHere();
115  case call_op:    m = wdisp(word_aligned_ones, 0, 30);  v = wdisp(dest_pos, inst_pos, 30); break;
116  case branch_op:
117    switch (inv_op2(inst)) {
118      case fbp_op2:    m = wdisp(  word_aligned_ones, 0, 19);  v = wdisp(  dest_pos, inst_pos, 19); break;
119      case bp_op2:     m = wdisp(  word_aligned_ones, 0, 19);  v = wdisp(  dest_pos, inst_pos, 19); break;
120      case fb_op2:     m = wdisp(  word_aligned_ones, 0, 22);  v = wdisp(  dest_pos, inst_pos, 22); break;
121      case br_op2:     m = wdisp(  word_aligned_ones, 0, 22);  v = wdisp(  dest_pos, inst_pos, 22); break;
122      case bpr_op2: {
123        if (is_cbcond(inst)) {
124          m = wdisp10(word_aligned_ones, 0);
125          v = wdisp10(dest_pos, inst_pos);
126        } else {
127          m = wdisp16(word_aligned_ones, 0);
128          v = wdisp16(dest_pos, inst_pos);
129        }
130        break;
131      }
132      default: ShouldNotReachHere();
133    }
134  }
135  return  inst & ~m  |  v;
136}
137
138// Return the offset of the branch destionation of instruction inst
139// at offset pos.
140// Should have pcs, but since all is relative, it works out.
141int MacroAssembler::branch_destination(int inst, int pos) {
142  int r;
143  switch (inv_op(inst)) {
144  default: ShouldNotReachHere();
145  case call_op:        r = inv_wdisp(inst, pos, 30);  break;
146  case branch_op:
147    switch (inv_op2(inst)) {
148      case fbp_op2:    r = inv_wdisp(  inst, pos, 19);  break;
149      case bp_op2:     r = inv_wdisp(  inst, pos, 19);  break;
150      case fb_op2:     r = inv_wdisp(  inst, pos, 22);  break;
151      case br_op2:     r = inv_wdisp(  inst, pos, 22);  break;
152      case bpr_op2: {
153        if (is_cbcond(inst)) {
154          r = inv_wdisp10(inst, pos);
155        } else {
156          r = inv_wdisp16(inst, pos);
157        }
158        break;
159      }
160      default: ShouldNotReachHere();
161    }
162  }
163  return r;
164}
165
166void MacroAssembler::null_check(Register reg, int offset) {
167  if (needs_explicit_null_check((intptr_t)offset)) {
168    // provoke OS NULL exception if reg = NULL by
169    // accessing M[reg] w/o changing any registers
170    ld_ptr(reg, 0, G0);
171  }
172  else {
173    // nothing to do, (later) access of M[reg + offset]
174    // will provoke OS NULL exception if reg = NULL
175  }
176}
177
178// Ring buffer jumps
179
180#ifndef PRODUCT
181void MacroAssembler::ret(  bool trace )   { if (trace) {
182                                                    mov(I7, O7); // traceable register
183                                                    JMP(O7, 2 * BytesPerInstWord);
184                                                  } else {
185                                                    jmpl( I7, 2 * BytesPerInstWord, G0 );
186                                                  }
187                                                }
188
189void MacroAssembler::retl( bool trace )  { if (trace) JMP(O7, 2 * BytesPerInstWord);
190                                                 else jmpl( O7, 2 * BytesPerInstWord, G0 ); }
191#endif /* PRODUCT */
192
193
194void MacroAssembler::jmp2(Register r1, Register r2, const char* file, int line ) {
195  assert_not_delayed();
196  // This can only be traceable if r1 & r2 are visible after a window save
197  if (TraceJumps) {
198#ifndef PRODUCT
199    save_frame(0);
200    verify_thread();
201    ld(G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()), O0);
202    add(G2_thread, in_bytes(JavaThread::jmp_ring_offset()), O1);
203    sll(O0, exact_log2(4*sizeof(intptr_t)), O2);
204    add(O2, O1, O1);
205
206    add(r1->after_save(), r2->after_save(), O2);
207    set((intptr_t)file, O3);
208    set(line, O4);
209    Label L;
210    // get nearby pc, store jmp target
211    call(L, relocInfo::none);  // No relocation for call to pc+0x8
212    delayed()->st(O2, O1, 0);
213    bind(L);
214
215    // store nearby pc
216    st(O7, O1, sizeof(intptr_t));
217    // store file
218    st(O3, O1, 2*sizeof(intptr_t));
219    // store line
220    st(O4, O1, 3*sizeof(intptr_t));
221    add(O0, 1, O0);
222    and3(O0, JavaThread::jump_ring_buffer_size  - 1, O0);
223    st(O0, G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()));
224    restore();
225#endif /* PRODUCT */
226  }
227  jmpl(r1, r2, G0);
228}
229void MacroAssembler::jmp(Register r1, int offset, const char* file, int line ) {
230  assert_not_delayed();
231  // This can only be traceable if r1 is visible after a window save
232  if (TraceJumps) {
233#ifndef PRODUCT
234    save_frame(0);
235    verify_thread();
236    ld(G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()), O0);
237    add(G2_thread, in_bytes(JavaThread::jmp_ring_offset()), O1);
238    sll(O0, exact_log2(4*sizeof(intptr_t)), O2);
239    add(O2, O1, O1);
240
241    add(r1->after_save(), offset, O2);
242    set((intptr_t)file, O3);
243    set(line, O4);
244    Label L;
245    // get nearby pc, store jmp target
246    call(L, relocInfo::none);  // No relocation for call to pc+0x8
247    delayed()->st(O2, O1, 0);
248    bind(L);
249
250    // store nearby pc
251    st(O7, O1, sizeof(intptr_t));
252    // store file
253    st(O3, O1, 2*sizeof(intptr_t));
254    // store line
255    st(O4, O1, 3*sizeof(intptr_t));
256    add(O0, 1, O0);
257    and3(O0, JavaThread::jump_ring_buffer_size  - 1, O0);
258    st(O0, G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()));
259    restore();
260#endif /* PRODUCT */
261  }
262  jmp(r1, offset);
263}
264
265// This code sequence is relocatable to any address, even on LP64.
266void MacroAssembler::jumpl(const AddressLiteral& addrlit, Register temp, Register d, int offset, const char* file, int line) {
267  assert_not_delayed();
268  // Force fixed length sethi because NativeJump and NativeFarCall don't handle
269  // variable length instruction streams.
270  patchable_sethi(addrlit, temp);
271  Address a(temp, addrlit.low10() + offset);  // Add the offset to the displacement.
272  if (TraceJumps) {
273#ifndef PRODUCT
274    // Must do the add here so relocation can find the remainder of the
275    // value to be relocated.
276    add(a.base(), a.disp(), a.base(), addrlit.rspec(offset));
277    save_frame(0);
278    verify_thread();
279    ld(G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()), O0);
280    add(G2_thread, in_bytes(JavaThread::jmp_ring_offset()), O1);
281    sll(O0, exact_log2(4*sizeof(intptr_t)), O2);
282    add(O2, O1, O1);
283
284    set((intptr_t)file, O3);
285    set(line, O4);
286    Label L;
287
288    // get nearby pc, store jmp target
289    call(L, relocInfo::none);  // No relocation for call to pc+0x8
290    delayed()->st(a.base()->after_save(), O1, 0);
291    bind(L);
292
293    // store nearby pc
294    st(O7, O1, sizeof(intptr_t));
295    // store file
296    st(O3, O1, 2*sizeof(intptr_t));
297    // store line
298    st(O4, O1, 3*sizeof(intptr_t));
299    add(O0, 1, O0);
300    and3(O0, JavaThread::jump_ring_buffer_size  - 1, O0);
301    st(O0, G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()));
302    restore();
303    jmpl(a.base(), G0, d);
304#else
305    jmpl(a.base(), a.disp(), d);
306#endif /* PRODUCT */
307  } else {
308    jmpl(a.base(), a.disp(), d);
309  }
310}
311
312void MacroAssembler::jump(const AddressLiteral& addrlit, Register temp, int offset, const char* file, int line) {
313  jumpl(addrlit, temp, G0, offset, file, line);
314}
315
316
317// Conditional breakpoint (for assertion checks in assembly code)
318void MacroAssembler::breakpoint_trap(Condition c, CC cc) {
319  trap(c, cc, G0, ST_RESERVED_FOR_USER_0);
320}
321
322// We want to use ST_BREAKPOINT here, but the debugger is confused by it.
323void MacroAssembler::breakpoint_trap() {
324  trap(ST_RESERVED_FOR_USER_0);
325}
326
327// Write serialization page so VM thread can do a pseudo remote membar
328// We use the current thread pointer to calculate a thread specific
329// offset to write to within the page. This minimizes bus traffic
330// due to cache line collision.
331void MacroAssembler::serialize_memory(Register thread, Register tmp1, Register tmp2) {
332  srl(thread, os::get_serialize_page_shift_count(), tmp2);
333  if (Assembler::is_simm13(os::vm_page_size())) {
334    and3(tmp2, (os::vm_page_size() - sizeof(int)), tmp2);
335  }
336  else {
337    set((os::vm_page_size() - sizeof(int)), tmp1);
338    and3(tmp2, tmp1, tmp2);
339  }
340  set(os::get_memory_serialize_page(), tmp1);
341  st(G0, tmp1, tmp2);
342}
343
344
345
346void MacroAssembler::enter() {
347  Unimplemented();
348}
349
350void MacroAssembler::leave() {
351  Unimplemented();
352}
353
354// Calls to C land
355
356#ifdef ASSERT
357// a hook for debugging
358static Thread* reinitialize_thread() {
359  return ThreadLocalStorage::thread();
360}
361#else
362#define reinitialize_thread ThreadLocalStorage::thread
363#endif
364
365#ifdef ASSERT
366address last_get_thread = NULL;
367#endif
368
369// call this when G2_thread is not known to be valid
370void MacroAssembler::get_thread() {
371  save_frame(0);                // to avoid clobbering O0
372  mov(G1, L0);                  // avoid clobbering G1
373  mov(G5_method, L1);           // avoid clobbering G5
374  mov(G3, L2);                  // avoid clobbering G3 also
375  mov(G4, L5);                  // avoid clobbering G4
376#ifdef ASSERT
377  AddressLiteral last_get_thread_addrlit(&last_get_thread);
378  set(last_get_thread_addrlit, L3);
379  rdpc(L4);
380  inc(L4, 3 * BytesPerInstWord); // skip rdpc + inc + st_ptr to point L4 at call  st_ptr(L4, L3, 0);
381#endif
382  call(CAST_FROM_FN_PTR(address, reinitialize_thread), relocInfo::runtime_call_type);
383  delayed()->nop();
384  mov(L0, G1);
385  mov(L1, G5_method);
386  mov(L2, G3);
387  mov(L5, G4);
388  restore(O0, 0, G2_thread);
389}
390
391static Thread* verify_thread_subroutine(Thread* gthread_value) {
392  Thread* correct_value = ThreadLocalStorage::thread();
393  guarantee(gthread_value == correct_value, "G2_thread value must be the thread");
394  return correct_value;
395}
396
397void MacroAssembler::verify_thread() {
398  if (VerifyThread) {
399    // NOTE: this chops off the heads of the 64-bit O registers.
400#ifdef CC_INTERP
401    save_frame(0);
402#else
403    // make sure G2_thread contains the right value
404    save_frame_and_mov(0, Lmethod, Lmethod);   // to avoid clobbering O0 (and propagate Lmethod for -Xprof)
405    mov(G1, L1);                // avoid clobbering G1
406    // G2 saved below
407    mov(G3, L3);                // avoid clobbering G3
408    mov(G4, L4);                // avoid clobbering G4
409    mov(G5_method, L5);         // avoid clobbering G5_method
410#endif /* CC_INTERP */
411#if defined(COMPILER2) && !defined(_LP64)
412    // Save & restore possible 64-bit Long arguments in G-regs
413    srlx(G1,32,L0);
414    srlx(G4,32,L6);
415#endif
416    call(CAST_FROM_FN_PTR(address,verify_thread_subroutine), relocInfo::runtime_call_type);
417    delayed()->mov(G2_thread, O0);
418
419    mov(L1, G1);                // Restore G1
420    // G2 restored below
421    mov(L3, G3);                // restore G3
422    mov(L4, G4);                // restore G4
423    mov(L5, G5_method);         // restore G5_method
424#if defined(COMPILER2) && !defined(_LP64)
425    // Save & restore possible 64-bit Long arguments in G-regs
426    sllx(L0,32,G2);             // Move old high G1 bits high in G2
427    srl(G1, 0,G1);              // Clear current high G1 bits
428    or3 (G1,G2,G1);             // Recover 64-bit G1
429    sllx(L6,32,G2);             // Move old high G4 bits high in G2
430    srl(G4, 0,G4);              // Clear current high G4 bits
431    or3 (G4,G2,G4);             // Recover 64-bit G4
432#endif
433    restore(O0, 0, G2_thread);
434  }
435}
436
437
438void MacroAssembler::save_thread(const Register thread_cache) {
439  verify_thread();
440  if (thread_cache->is_valid()) {
441    assert(thread_cache->is_local() || thread_cache->is_in(), "bad volatile");
442    mov(G2_thread, thread_cache);
443  }
444  if (VerifyThread) {
445    // smash G2_thread, as if the VM were about to anyway
446    set(0x67676767, G2_thread);
447  }
448}
449
450
451void MacroAssembler::restore_thread(const Register thread_cache) {
452  if (thread_cache->is_valid()) {
453    assert(thread_cache->is_local() || thread_cache->is_in(), "bad volatile");
454    mov(thread_cache, G2_thread);
455    verify_thread();
456  } else {
457    // do it the slow way
458    get_thread();
459  }
460}
461
462
463// %%% maybe get rid of [re]set_last_Java_frame
464void MacroAssembler::set_last_Java_frame(Register last_java_sp, Register last_Java_pc) {
465  assert_not_delayed();
466  Address flags(G2_thread, JavaThread::frame_anchor_offset() +
467                           JavaFrameAnchor::flags_offset());
468  Address pc_addr(G2_thread, JavaThread::last_Java_pc_offset());
469
470  // Always set last_Java_pc and flags first because once last_Java_sp is visible
471  // has_last_Java_frame is true and users will look at the rest of the fields.
472  // (Note: flags should always be zero before we get here so doesn't need to be set.)
473
474#ifdef ASSERT
475  // Verify that flags was zeroed on return to Java
476  Label PcOk;
477  save_frame(0);                // to avoid clobbering O0
478  ld_ptr(pc_addr, L0);
479  br_null_short(L0, Assembler::pt, PcOk);
480  STOP("last_Java_pc not zeroed before leaving Java");
481  bind(PcOk);
482
483  // Verify that flags was zeroed on return to Java
484  Label FlagsOk;
485  ld(flags, L0);
486  tst(L0);
487  br(Assembler::zero, false, Assembler::pt, FlagsOk);
488  delayed() -> restore();
489  STOP("flags not zeroed before leaving Java");
490  bind(FlagsOk);
491#endif /* ASSERT */
492  //
493  // When returning from calling out from Java mode the frame anchor's last_Java_pc
494  // will always be set to NULL. It is set here so that if we are doing a call to
495  // native (not VM) that we capture the known pc and don't have to rely on the
496  // native call having a standard frame linkage where we can find the pc.
497
498  if (last_Java_pc->is_valid()) {
499    st_ptr(last_Java_pc, pc_addr);
500  }
501
502#ifdef _LP64
503#ifdef ASSERT
504  // Make sure that we have an odd stack
505  Label StackOk;
506  andcc(last_java_sp, 0x01, G0);
507  br(Assembler::notZero, false, Assembler::pt, StackOk);
508  delayed()->nop();
509  STOP("Stack Not Biased in set_last_Java_frame");
510  bind(StackOk);
511#endif // ASSERT
512  assert( last_java_sp != G4_scratch, "bad register usage in set_last_Java_frame");
513  add( last_java_sp, STACK_BIAS, G4_scratch );
514  st_ptr(G4_scratch, G2_thread, JavaThread::last_Java_sp_offset());
515#else
516  st_ptr(last_java_sp, G2_thread, JavaThread::last_Java_sp_offset());
517#endif // _LP64
518}
519
520void MacroAssembler::reset_last_Java_frame(void) {
521  assert_not_delayed();
522
523  Address sp_addr(G2_thread, JavaThread::last_Java_sp_offset());
524  Address pc_addr(G2_thread, JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset());
525  Address flags  (G2_thread, JavaThread::frame_anchor_offset() + JavaFrameAnchor::flags_offset());
526
527#ifdef ASSERT
528  // check that it WAS previously set
529#ifdef CC_INTERP
530    save_frame(0);
531#else
532    save_frame_and_mov(0, Lmethod, Lmethod);     // Propagate Lmethod to helper frame for -Xprof
533#endif /* CC_INTERP */
534    ld_ptr(sp_addr, L0);
535    tst(L0);
536    breakpoint_trap(Assembler::zero, Assembler::ptr_cc);
537    restore();
538#endif // ASSERT
539
540  st_ptr(G0, sp_addr);
541  // Always return last_Java_pc to zero
542  st_ptr(G0, pc_addr);
543  // Always null flags after return to Java
544  st(G0, flags);
545}
546
547
548void MacroAssembler::call_VM_base(
549  Register        oop_result,
550  Register        thread_cache,
551  Register        last_java_sp,
552  address         entry_point,
553  int             number_of_arguments,
554  bool            check_exceptions)
555{
556  assert_not_delayed();
557
558  // determine last_java_sp register
559  if (!last_java_sp->is_valid()) {
560    last_java_sp = SP;
561  }
562  // debugging support
563  assert(number_of_arguments >= 0   , "cannot have negative number of arguments");
564
565  // 64-bit last_java_sp is biased!
566  set_last_Java_frame(last_java_sp, noreg);
567  if (VerifyThread)  mov(G2_thread, O0); // about to be smashed; pass early
568  save_thread(thread_cache);
569  // do the call
570  call(entry_point, relocInfo::runtime_call_type);
571  if (!VerifyThread)
572    delayed()->mov(G2_thread, O0);  // pass thread as first argument
573  else
574    delayed()->nop();             // (thread already passed)
575  restore_thread(thread_cache);
576  reset_last_Java_frame();
577
578  // check for pending exceptions. use Gtemp as scratch register.
579  if (check_exceptions) {
580    check_and_forward_exception(Gtemp);
581  }
582
583#ifdef ASSERT
584  set(badHeapWordVal, G3);
585  set(badHeapWordVal, G4);
586  set(badHeapWordVal, G5);
587#endif
588
589  // get oop result if there is one and reset the value in the thread
590  if (oop_result->is_valid()) {
591    get_vm_result(oop_result);
592  }
593}
594
595void MacroAssembler::check_and_forward_exception(Register scratch_reg)
596{
597  Label L;
598
599  check_and_handle_popframe(scratch_reg);
600  check_and_handle_earlyret(scratch_reg);
601
602  Address exception_addr(G2_thread, Thread::pending_exception_offset());
603  ld_ptr(exception_addr, scratch_reg);
604  br_null_short(scratch_reg, pt, L);
605  // we use O7 linkage so that forward_exception_entry has the issuing PC
606  call(StubRoutines::forward_exception_entry(), relocInfo::runtime_call_type);
607  delayed()->nop();
608  bind(L);
609}
610
611
612void MacroAssembler::check_and_handle_popframe(Register scratch_reg) {
613}
614
615
616void MacroAssembler::check_and_handle_earlyret(Register scratch_reg) {
617}
618
619
620void MacroAssembler::call_VM(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
621  call_VM_base(oop_result, noreg, noreg, entry_point, number_of_arguments, check_exceptions);
622}
623
624
625void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, bool check_exceptions) {
626  // O0 is reserved for the thread
627  mov(arg_1, O1);
628  call_VM(oop_result, entry_point, 1, check_exceptions);
629}
630
631
632void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, bool check_exceptions) {
633  // O0 is reserved for the thread
634  mov(arg_1, O1);
635  mov(arg_2, O2); assert(arg_2 != O1, "smashed argument");
636  call_VM(oop_result, entry_point, 2, check_exceptions);
637}
638
639
640void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions) {
641  // O0 is reserved for the thread
642  mov(arg_1, O1);
643  mov(arg_2, O2); assert(arg_2 != O1,                "smashed argument");
644  mov(arg_3, O3); assert(arg_3 != O1 && arg_3 != O2, "smashed argument");
645  call_VM(oop_result, entry_point, 3, check_exceptions);
646}
647
648
649
650// Note: The following call_VM overloadings are useful when a "save"
651// has already been performed by a stub, and the last Java frame is
652// the previous one.  In that case, last_java_sp must be passed as FP
653// instead of SP.
654
655
656void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments, bool check_exceptions) {
657  call_VM_base(oop_result, noreg, last_java_sp, entry_point, number_of_arguments, check_exceptions);
658}
659
660
661void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions) {
662  // O0 is reserved for the thread
663  mov(arg_1, O1);
664  call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
665}
666
667
668void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions) {
669  // O0 is reserved for the thread
670  mov(arg_1, O1);
671  mov(arg_2, O2); assert(arg_2 != O1, "smashed argument");
672  call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
673}
674
675
676void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions) {
677  // O0 is reserved for the thread
678  mov(arg_1, O1);
679  mov(arg_2, O2); assert(arg_2 != O1,                "smashed argument");
680  mov(arg_3, O3); assert(arg_3 != O1 && arg_3 != O2, "smashed argument");
681  call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
682}
683
684
685
686void MacroAssembler::call_VM_leaf_base(Register thread_cache, address entry_point, int number_of_arguments) {
687  assert_not_delayed();
688  save_thread(thread_cache);
689  // do the call
690  call(entry_point, relocInfo::runtime_call_type);
691  delayed()->nop();
692  restore_thread(thread_cache);
693#ifdef ASSERT
694  set(badHeapWordVal, G3);
695  set(badHeapWordVal, G4);
696  set(badHeapWordVal, G5);
697#endif
698}
699
700
701void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, int number_of_arguments) {
702  call_VM_leaf_base(thread_cache, entry_point, number_of_arguments);
703}
704
705
706void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, Register arg_1) {
707  mov(arg_1, O0);
708  call_VM_leaf(thread_cache, entry_point, 1);
709}
710
711
712void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2) {
713  mov(arg_1, O0);
714  mov(arg_2, O1); assert(arg_2 != O0, "smashed argument");
715  call_VM_leaf(thread_cache, entry_point, 2);
716}
717
718
719void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2, Register arg_3) {
720  mov(arg_1, O0);
721  mov(arg_2, O1); assert(arg_2 != O0,                "smashed argument");
722  mov(arg_3, O2); assert(arg_3 != O0 && arg_3 != O1, "smashed argument");
723  call_VM_leaf(thread_cache, entry_point, 3);
724}
725
726
727void MacroAssembler::get_vm_result(Register oop_result) {
728  verify_thread();
729  Address vm_result_addr(G2_thread, JavaThread::vm_result_offset());
730  ld_ptr(    vm_result_addr, oop_result);
731  st_ptr(G0, vm_result_addr);
732  verify_oop(oop_result);
733}
734
735
736void MacroAssembler::get_vm_result_2(Register metadata_result) {
737  verify_thread();
738  Address vm_result_addr_2(G2_thread, JavaThread::vm_result_2_offset());
739  ld_ptr(vm_result_addr_2, metadata_result);
740  st_ptr(G0, vm_result_addr_2);
741}
742
743
744// We require that C code which does not return a value in vm_result will
745// leave it undisturbed.
746void MacroAssembler::set_vm_result(Register oop_result) {
747  verify_thread();
748  Address vm_result_addr(G2_thread, JavaThread::vm_result_offset());
749  verify_oop(oop_result);
750
751# ifdef ASSERT
752    // Check that we are not overwriting any other oop.
753#ifdef CC_INTERP
754    save_frame(0);
755#else
756    save_frame_and_mov(0, Lmethod, Lmethod);     // Propagate Lmethod for -Xprof
757#endif /* CC_INTERP */
758    ld_ptr(vm_result_addr, L0);
759    tst(L0);
760    restore();
761    breakpoint_trap(notZero, Assembler::ptr_cc);
762    // }
763# endif
764
765  st_ptr(oop_result, vm_result_addr);
766}
767
768
769void MacroAssembler::ic_call(address entry, bool emit_delay) {
770  RelocationHolder rspec = virtual_call_Relocation::spec(pc());
771  patchable_set((intptr_t)Universe::non_oop_word(), G5_inline_cache_reg);
772  relocate(rspec);
773  call(entry, relocInfo::none);
774  if (emit_delay) {
775    delayed()->nop();
776  }
777}
778
779
780void MacroAssembler::card_table_write(jbyte* byte_map_base,
781                                      Register tmp, Register obj) {
782#ifdef _LP64
783  srlx(obj, CardTableModRefBS::card_shift, obj);
784#else
785  srl(obj, CardTableModRefBS::card_shift, obj);
786#endif
787  assert(tmp != obj, "need separate temp reg");
788  set((address) byte_map_base, tmp);
789  stb(G0, tmp, obj);
790}
791
792
793void MacroAssembler::internal_sethi(const AddressLiteral& addrlit, Register d, bool ForceRelocatable) {
794  address save_pc;
795  int shiftcnt;
796#ifdef _LP64
797# ifdef CHECK_DELAY
798  assert_not_delayed((char*) "cannot put two instructions in delay slot");
799# endif
800  v9_dep();
801  save_pc = pc();
802
803  int msb32 = (int) (addrlit.value() >> 32);
804  int lsb32 = (int) (addrlit.value());
805
806  if (msb32 == 0 && lsb32 >= 0) {
807    Assembler::sethi(lsb32, d, addrlit.rspec());
808  }
809  else if (msb32 == -1) {
810    Assembler::sethi(~lsb32, d, addrlit.rspec());
811    xor3(d, ~low10(~0), d);
812  }
813  else {
814    Assembler::sethi(msb32, d, addrlit.rspec());  // msb 22-bits
815    if (msb32 & 0x3ff)                            // Any bits?
816      or3(d, msb32 & 0x3ff, d);                   // msb 32-bits are now in lsb 32
817    if (lsb32 & 0xFFFFFC00) {                     // done?
818      if ((lsb32 >> 20) & 0xfff) {                // Any bits set?
819        sllx(d, 12, d);                           // Make room for next 12 bits
820        or3(d, (lsb32 >> 20) & 0xfff, d);         // Or in next 12
821        shiftcnt = 0;                             // We already shifted
822      }
823      else
824        shiftcnt = 12;
825      if ((lsb32 >> 10) & 0x3ff) {
826        sllx(d, shiftcnt + 10, d);                // Make room for last 10 bits
827        or3(d, (lsb32 >> 10) & 0x3ff, d);         // Or in next 10
828        shiftcnt = 0;
829      }
830      else
831        shiftcnt = 10;
832      sllx(d, shiftcnt + 10, d);                  // Shift leaving disp field 0'd
833    }
834    else
835      sllx(d, 32, d);
836  }
837  // Pad out the instruction sequence so it can be patched later.
838  if (ForceRelocatable || (addrlit.rtype() != relocInfo::none &&
839                           addrlit.rtype() != relocInfo::runtime_call_type)) {
840    while (pc() < (save_pc + (7 * BytesPerInstWord)))
841      nop();
842  }
843#else
844  Assembler::sethi(addrlit.value(), d, addrlit.rspec());
845#endif
846}
847
848
849void MacroAssembler::sethi(const AddressLiteral& addrlit, Register d) {
850  internal_sethi(addrlit, d, false);
851}
852
853
854void MacroAssembler::patchable_sethi(const AddressLiteral& addrlit, Register d) {
855  internal_sethi(addrlit, d, true);
856}
857
858
859int MacroAssembler::insts_for_sethi(address a, bool worst_case) {
860#ifdef _LP64
861  if (worst_case)  return 7;
862  intptr_t iaddr = (intptr_t) a;
863  int msb32 = (int) (iaddr >> 32);
864  int lsb32 = (int) (iaddr);
865  int count;
866  if (msb32 == 0 && lsb32 >= 0)
867    count = 1;
868  else if (msb32 == -1)
869    count = 2;
870  else {
871    count = 2;
872    if (msb32 & 0x3ff)
873      count++;
874    if (lsb32 & 0xFFFFFC00 ) {
875      if ((lsb32 >> 20) & 0xfff)  count += 2;
876      if ((lsb32 >> 10) & 0x3ff)  count += 2;
877    }
878  }
879  return count;
880#else
881  return 1;
882#endif
883}
884
885int MacroAssembler::worst_case_insts_for_set() {
886  return insts_for_sethi(NULL, true) + 1;
887}
888
889
890// Keep in sync with MacroAssembler::insts_for_internal_set
891void MacroAssembler::internal_set(const AddressLiteral& addrlit, Register d, bool ForceRelocatable) {
892  intptr_t value = addrlit.value();
893
894  if (!ForceRelocatable && addrlit.rspec().type() == relocInfo::none) {
895    // can optimize
896    if (-4096 <= value && value <= 4095) {
897      or3(G0, value, d); // setsw (this leaves upper 32 bits sign-extended)
898      return;
899    }
900    if (inv_hi22(hi22(value)) == value) {
901      sethi(addrlit, d);
902      return;
903    }
904  }
905  assert_not_delayed((char*) "cannot put two instructions in delay slot");
906  internal_sethi(addrlit, d, ForceRelocatable);
907  if (ForceRelocatable || addrlit.rspec().type() != relocInfo::none || addrlit.low10() != 0) {
908    add(d, addrlit.low10(), d, addrlit.rspec());
909  }
910}
911
912// Keep in sync with MacroAssembler::internal_set
913int MacroAssembler::insts_for_internal_set(intptr_t value) {
914  // can optimize
915  if (-4096 <= value && value <= 4095) {
916    return 1;
917  }
918  if (inv_hi22(hi22(value)) == value) {
919    return insts_for_sethi((address) value);
920  }
921  int count = insts_for_sethi((address) value);
922  AddressLiteral al(value);
923  if (al.low10() != 0) {
924    count++;
925  }
926  return count;
927}
928
929void MacroAssembler::set(const AddressLiteral& al, Register d) {
930  internal_set(al, d, false);
931}
932
933void MacroAssembler::set(intptr_t value, Register d) {
934  AddressLiteral al(value);
935  internal_set(al, d, false);
936}
937
938void MacroAssembler::set(address addr, Register d, RelocationHolder const& rspec) {
939  AddressLiteral al(addr, rspec);
940  internal_set(al, d, false);
941}
942
943void MacroAssembler::patchable_set(const AddressLiteral& al, Register d) {
944  internal_set(al, d, true);
945}
946
947void MacroAssembler::patchable_set(intptr_t value, Register d) {
948  AddressLiteral al(value);
949  internal_set(al, d, true);
950}
951
952
953void MacroAssembler::set64(jlong value, Register d, Register tmp) {
954  assert_not_delayed();
955  v9_dep();
956
957  int hi = (int)(value >> 32);
958  int lo = (int)(value & ~0);
959  // (Matcher::isSimpleConstant64 knows about the following optimizations.)
960  if (Assembler::is_simm13(lo) && value == lo) {
961    or3(G0, lo, d);
962  } else if (hi == 0) {
963    Assembler::sethi(lo, d);   // hardware version zero-extends to upper 32
964    if (low10(lo) != 0)
965      or3(d, low10(lo), d);
966  }
967  else if (hi == -1) {
968    Assembler::sethi(~lo, d);  // hardware version zero-extends to upper 32
969    xor3(d, low10(lo) ^ ~low10(~0), d);
970  }
971  else if (lo == 0) {
972    if (Assembler::is_simm13(hi)) {
973      or3(G0, hi, d);
974    } else {
975      Assembler::sethi(hi, d);   // hardware version zero-extends to upper 32
976      if (low10(hi) != 0)
977        or3(d, low10(hi), d);
978    }
979    sllx(d, 32, d);
980  }
981  else {
982    Assembler::sethi(hi, tmp);
983    Assembler::sethi(lo,   d); // macro assembler version sign-extends
984    if (low10(hi) != 0)
985      or3 (tmp, low10(hi), tmp);
986    if (low10(lo) != 0)
987      or3 (  d, low10(lo),   d);
988    sllx(tmp, 32, tmp);
989    or3 (d, tmp, d);
990  }
991}
992
993int MacroAssembler::insts_for_set64(jlong value) {
994  v9_dep();
995
996  int hi = (int) (value >> 32);
997  int lo = (int) (value & ~0);
998  int count = 0;
999
1000  // (Matcher::isSimpleConstant64 knows about the following optimizations.)
1001  if (Assembler::is_simm13(lo) && value == lo) {
1002    count++;
1003  } else if (hi == 0) {
1004    count++;
1005    if (low10(lo) != 0)
1006      count++;
1007  }
1008  else if (hi == -1) {
1009    count += 2;
1010  }
1011  else if (lo == 0) {
1012    if (Assembler::is_simm13(hi)) {
1013      count++;
1014    } else {
1015      count++;
1016      if (low10(hi) != 0)
1017        count++;
1018    }
1019    count++;
1020  }
1021  else {
1022    count += 2;
1023    if (low10(hi) != 0)
1024      count++;
1025    if (low10(lo) != 0)
1026      count++;
1027    count += 2;
1028  }
1029  return count;
1030}
1031
1032// compute size in bytes of sparc frame, given
1033// number of extraWords
1034int MacroAssembler::total_frame_size_in_bytes(int extraWords) {
1035
1036  int nWords = frame::memory_parameter_word_sp_offset;
1037
1038  nWords += extraWords;
1039
1040  if (nWords & 1) ++nWords; // round up to double-word
1041
1042  return nWords * BytesPerWord;
1043}
1044
1045
1046// save_frame: given number of "extra" words in frame,
1047// issue approp. save instruction (p 200, v8 manual)
1048
1049void MacroAssembler::save_frame(int extraWords) {
1050  int delta = -total_frame_size_in_bytes(extraWords);
1051  if (is_simm13(delta)) {
1052    save(SP, delta, SP);
1053  } else {
1054    set(delta, G3_scratch);
1055    save(SP, G3_scratch, SP);
1056  }
1057}
1058
1059
1060void MacroAssembler::save_frame_c1(int size_in_bytes) {
1061  if (is_simm13(-size_in_bytes)) {
1062    save(SP, -size_in_bytes, SP);
1063  } else {
1064    set(-size_in_bytes, G3_scratch);
1065    save(SP, G3_scratch, SP);
1066  }
1067}
1068
1069
1070void MacroAssembler::save_frame_and_mov(int extraWords,
1071                                        Register s1, Register d1,
1072                                        Register s2, Register d2) {
1073  assert_not_delayed();
1074
1075  // The trick here is to use precisely the same memory word
1076  // that trap handlers also use to save the register.
1077  // This word cannot be used for any other purpose, but
1078  // it works fine to save the register's value, whether or not
1079  // an interrupt flushes register windows at any given moment!
1080  Address s1_addr;
1081  if (s1->is_valid() && (s1->is_in() || s1->is_local())) {
1082    s1_addr = s1->address_in_saved_window();
1083    st_ptr(s1, s1_addr);
1084  }
1085
1086  Address s2_addr;
1087  if (s2->is_valid() && (s2->is_in() || s2->is_local())) {
1088    s2_addr = s2->address_in_saved_window();
1089    st_ptr(s2, s2_addr);
1090  }
1091
1092  save_frame(extraWords);
1093
1094  if (s1_addr.base() == SP) {
1095    ld_ptr(s1_addr.after_save(), d1);
1096  } else if (s1->is_valid()) {
1097    mov(s1->after_save(), d1);
1098  }
1099
1100  if (s2_addr.base() == SP) {
1101    ld_ptr(s2_addr.after_save(), d2);
1102  } else if (s2->is_valid()) {
1103    mov(s2->after_save(), d2);
1104  }
1105}
1106
1107
1108AddressLiteral MacroAssembler::allocate_metadata_address(Metadata* obj) {
1109  assert(oop_recorder() != NULL, "this assembler needs a Recorder");
1110  int index = oop_recorder()->allocate_metadata_index(obj);
1111  RelocationHolder rspec = metadata_Relocation::spec(index);
1112  return AddressLiteral((address)obj, rspec);
1113}
1114
1115AddressLiteral MacroAssembler::constant_metadata_address(Metadata* obj) {
1116  assert(oop_recorder() != NULL, "this assembler needs a Recorder");
1117  int index = oop_recorder()->find_index(obj);
1118  RelocationHolder rspec = metadata_Relocation::spec(index);
1119  return AddressLiteral((address)obj, rspec);
1120}
1121
1122
1123AddressLiteral MacroAssembler::constant_oop_address(jobject obj) {
1124  assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
1125  assert(Universe::heap()->is_in_reserved(JNIHandles::resolve(obj)), "not an oop");
1126  int oop_index = oop_recorder()->find_index(obj);
1127  return AddressLiteral(obj, oop_Relocation::spec(oop_index));
1128}
1129
1130void  MacroAssembler::set_narrow_oop(jobject obj, Register d) {
1131  assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
1132  int oop_index = oop_recorder()->find_index(obj);
1133  RelocationHolder rspec = oop_Relocation::spec(oop_index);
1134
1135  assert_not_delayed();
1136  // Relocation with special format (see relocInfo_sparc.hpp).
1137  relocate(rspec, 1);
1138  // Assembler::sethi(0x3fffff, d);
1139  emit_int32( op(branch_op) | rd(d) | op2(sethi_op2) | hi22(0x3fffff) );
1140  // Don't add relocation for 'add'. Do patching during 'sethi' processing.
1141  add(d, 0x3ff, d);
1142
1143}
1144
1145void  MacroAssembler::set_narrow_klass(Klass* k, Register d) {
1146  assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
1147  int klass_index = oop_recorder()->find_index(k);
1148  RelocationHolder rspec = metadata_Relocation::spec(klass_index);
1149  narrowOop encoded_k = Klass::encode_klass(k);
1150
1151  assert_not_delayed();
1152  // Relocation with special format (see relocInfo_sparc.hpp).
1153  relocate(rspec, 1);
1154  // Assembler::sethi(encoded_k, d);
1155  emit_int32( op(branch_op) | rd(d) | op2(sethi_op2) | hi22(encoded_k) );
1156  // Don't add relocation for 'add'. Do patching during 'sethi' processing.
1157  add(d, low10(encoded_k), d);
1158
1159}
1160
1161void MacroAssembler::align(int modulus) {
1162  while (offset() % modulus != 0) nop();
1163}
1164
1165void RegistersForDebugging::print(outputStream* s) {
1166  FlagSetting fs(Debugging, true);
1167  int j;
1168  for (j = 0; j < 8; ++j) {
1169    if (j != 6) { s->print("i%d = ", j); os::print_location(s, i[j]); }
1170    else        { s->print( "fp = "   ); os::print_location(s, i[j]); }
1171  }
1172  s->cr();
1173
1174  for (j = 0;  j < 8;  ++j) {
1175    s->print("l%d = ", j); os::print_location(s, l[j]);
1176  }
1177  s->cr();
1178
1179  for (j = 0; j < 8; ++j) {
1180    if (j != 6) { s->print("o%d = ", j); os::print_location(s, o[j]); }
1181    else        { s->print( "sp = "   ); os::print_location(s, o[j]); }
1182  }
1183  s->cr();
1184
1185  for (j = 0; j < 8; ++j) {
1186    s->print("g%d = ", j); os::print_location(s, g[j]);
1187  }
1188  s->cr();
1189
1190  // print out floats with compression
1191  for (j = 0; j < 32; ) {
1192    jfloat val = f[j];
1193    int last = j;
1194    for ( ;  last+1 < 32;  ++last ) {
1195      char b1[1024], b2[1024];
1196      sprintf(b1, "%f", val);
1197      sprintf(b2, "%f", f[last+1]);
1198      if (strcmp(b1, b2))
1199        break;
1200    }
1201    s->print("f%d", j);
1202    if ( j != last )  s->print(" - f%d", last);
1203    s->print(" = %f", val);
1204    s->fill_to(25);
1205    s->print_cr(" (0x%x)", *(int*)&val);
1206    j = last + 1;
1207  }
1208  s->cr();
1209
1210  // and doubles (evens only)
1211  for (j = 0; j < 32; ) {
1212    jdouble val = d[j];
1213    int last = j;
1214    for ( ;  last+1 < 32;  ++last ) {
1215      char b1[1024], b2[1024];
1216      sprintf(b1, "%f", val);
1217      sprintf(b2, "%f", d[last+1]);
1218      if (strcmp(b1, b2))
1219        break;
1220    }
1221    s->print("d%d", 2 * j);
1222    if ( j != last )  s->print(" - d%d", last);
1223    s->print(" = %f", val);
1224    s->fill_to(30);
1225    s->print("(0x%x)", *(int*)&val);
1226    s->fill_to(42);
1227    s->print_cr("(0x%x)", *(1 + (int*)&val));
1228    j = last + 1;
1229  }
1230  s->cr();
1231}
1232
1233void RegistersForDebugging::save_registers(MacroAssembler* a) {
1234  a->sub(FP, round_to(sizeof(RegistersForDebugging), sizeof(jdouble)) - STACK_BIAS, O0);
1235  a->flushw();
1236  int i;
1237  for (i = 0; i < 8; ++i) {
1238    a->ld_ptr(as_iRegister(i)->address_in_saved_window().after_save(), L1);  a->st_ptr( L1, O0, i_offset(i));
1239    a->ld_ptr(as_lRegister(i)->address_in_saved_window().after_save(), L1);  a->st_ptr( L1, O0, l_offset(i));
1240    a->st_ptr(as_oRegister(i)->after_save(), O0, o_offset(i));
1241    a->st_ptr(as_gRegister(i)->after_save(), O0, g_offset(i));
1242  }
1243  for (i = 0;  i < 32; ++i) {
1244    a->stf(FloatRegisterImpl::S, as_FloatRegister(i), O0, f_offset(i));
1245  }
1246  for (i = 0; i < 64; i += 2) {
1247    a->stf(FloatRegisterImpl::D, as_FloatRegister(i), O0, d_offset(i));
1248  }
1249}
1250
1251void RegistersForDebugging::restore_registers(MacroAssembler* a, Register r) {
1252  for (int i = 1; i < 8;  ++i) {
1253    a->ld_ptr(r, g_offset(i), as_gRegister(i));
1254  }
1255  for (int j = 0; j < 32; ++j) {
1256    a->ldf(FloatRegisterImpl::S, O0, f_offset(j), as_FloatRegister(j));
1257  }
1258  for (int k = 0; k < 64; k += 2) {
1259    a->ldf(FloatRegisterImpl::D, O0, d_offset(k), as_FloatRegister(k));
1260  }
1261}
1262
1263
1264// pushes double TOS element of FPU stack on CPU stack; pops from FPU stack
1265void MacroAssembler::push_fTOS() {
1266  // %%%%%% need to implement this
1267}
1268
1269// pops double TOS element from CPU stack and pushes on FPU stack
1270void MacroAssembler::pop_fTOS() {
1271  // %%%%%% need to implement this
1272}
1273
1274void MacroAssembler::empty_FPU_stack() {
1275  // %%%%%% need to implement this
1276}
1277
1278void MacroAssembler::_verify_oop(Register reg, const char* msg, const char * file, int line) {
1279  // plausibility check for oops
1280  if (!VerifyOops) return;
1281
1282  if (reg == G0)  return;       // always NULL, which is always an oop
1283
1284  BLOCK_COMMENT("verify_oop {");
1285  char buffer[64];
1286#ifdef COMPILER1
1287  if (CommentedAssembly) {
1288    snprintf(buffer, sizeof(buffer), "verify_oop at %d", offset());
1289    block_comment(buffer);
1290  }
1291#endif
1292
1293  const char* real_msg = NULL;
1294  {
1295    ResourceMark rm;
1296    stringStream ss;
1297    ss.print("%s at offset %d (%s:%d)", msg, offset(), file, line);
1298    real_msg = code_string(ss.as_string());
1299  }
1300
1301  // Call indirectly to solve generation ordering problem
1302  AddressLiteral a(StubRoutines::verify_oop_subroutine_entry_address());
1303
1304  // Make some space on stack above the current register window.
1305  // Enough to hold 8 64-bit registers.
1306  add(SP,-8*8,SP);
1307
1308  // Save some 64-bit registers; a normal 'save' chops the heads off
1309  // of 64-bit longs in the 32-bit build.
1310  stx(O0,SP,frame::register_save_words*wordSize+STACK_BIAS+0*8);
1311  stx(O1,SP,frame::register_save_words*wordSize+STACK_BIAS+1*8);
1312  mov(reg,O0); // Move arg into O0; arg might be in O7 which is about to be crushed
1313  stx(O7,SP,frame::register_save_words*wordSize+STACK_BIAS+7*8);
1314
1315  // Size of set() should stay the same
1316  patchable_set((intptr_t)real_msg, O1);
1317  // Load address to call to into O7
1318  load_ptr_contents(a, O7);
1319  // Register call to verify_oop_subroutine
1320  callr(O7, G0);
1321  delayed()->nop();
1322  // recover frame size
1323  add(SP, 8*8,SP);
1324  BLOCK_COMMENT("} verify_oop");
1325}
1326
1327void MacroAssembler::_verify_oop_addr(Address addr, const char* msg, const char * file, int line) {
1328  // plausibility check for oops
1329  if (!VerifyOops) return;
1330
1331  const char* real_msg = NULL;
1332  {
1333    ResourceMark rm;
1334    stringStream ss;
1335    ss.print("%s at SP+%d (%s:%d)", msg, addr.disp(), file, line);
1336    real_msg = code_string(ss.as_string());
1337  }
1338
1339  // Call indirectly to solve generation ordering problem
1340  AddressLiteral a(StubRoutines::verify_oop_subroutine_entry_address());
1341
1342  // Make some space on stack above the current register window.
1343  // Enough to hold 8 64-bit registers.
1344  add(SP,-8*8,SP);
1345
1346  // Save some 64-bit registers; a normal 'save' chops the heads off
1347  // of 64-bit longs in the 32-bit build.
1348  stx(O0,SP,frame::register_save_words*wordSize+STACK_BIAS+0*8);
1349  stx(O1,SP,frame::register_save_words*wordSize+STACK_BIAS+1*8);
1350  ld_ptr(addr.base(), addr.disp() + 8*8, O0); // Load arg into O0; arg might be in O7 which is about to be crushed
1351  stx(O7,SP,frame::register_save_words*wordSize+STACK_BIAS+7*8);
1352
1353  // Size of set() should stay the same
1354  patchable_set((intptr_t)real_msg, O1);
1355  // Load address to call to into O7
1356  load_ptr_contents(a, O7);
1357  // Register call to verify_oop_subroutine
1358  callr(O7, G0);
1359  delayed()->nop();
1360  // recover frame size
1361  add(SP, 8*8,SP);
1362}
1363
1364// side-door communication with signalHandler in os_solaris.cpp
1365address MacroAssembler::_verify_oop_implicit_branch[3] = { NULL };
1366
1367// This macro is expanded just once; it creates shared code.  Contract:
1368// receives an oop in O0.  Must restore O0 & O7 from TLS.  Must not smash ANY
1369// registers, including flags.  May not use a register 'save', as this blows
1370// the high bits of the O-regs if they contain Long values.  Acts as a 'leaf'
1371// call.
1372void MacroAssembler::verify_oop_subroutine() {
1373  // Leaf call; no frame.
1374  Label succeed, fail, null_or_fail;
1375
1376  // O0 and O7 were saved already (O0 in O0's TLS home, O7 in O5's TLS home).
1377  // O0 is now the oop to be checked.  O7 is the return address.
1378  Register O0_obj = O0;
1379
1380  // Save some more registers for temps.
1381  stx(O2,SP,frame::register_save_words*wordSize+STACK_BIAS+2*8);
1382  stx(O3,SP,frame::register_save_words*wordSize+STACK_BIAS+3*8);
1383  stx(O4,SP,frame::register_save_words*wordSize+STACK_BIAS+4*8);
1384  stx(O5,SP,frame::register_save_words*wordSize+STACK_BIAS+5*8);
1385
1386  // Save flags
1387  Register O5_save_flags = O5;
1388  rdccr( O5_save_flags );
1389
1390  { // count number of verifies
1391    Register O2_adr   = O2;
1392    Register O3_accum = O3;
1393    inc_counter(StubRoutines::verify_oop_count_addr(), O2_adr, O3_accum);
1394  }
1395
1396  Register O2_mask = O2;
1397  Register O3_bits = O3;
1398  Register O4_temp = O4;
1399
1400  // mark lower end of faulting range
1401  assert(_verify_oop_implicit_branch[0] == NULL, "set once");
1402  _verify_oop_implicit_branch[0] = pc();
1403
1404  // We can't check the mark oop because it could be in the process of
1405  // locking or unlocking while this is running.
1406  set(Universe::verify_oop_mask (), O2_mask);
1407  set(Universe::verify_oop_bits (), O3_bits);
1408
1409  // assert((obj & oop_mask) == oop_bits);
1410  and3(O0_obj, O2_mask, O4_temp);
1411  cmp_and_brx_short(O4_temp, O3_bits, notEqual, pn, null_or_fail);
1412
1413  if ((NULL_WORD & Universe::verify_oop_mask()) == Universe::verify_oop_bits()) {
1414    // the null_or_fail case is useless; must test for null separately
1415    br_null_short(O0_obj, pn, succeed);
1416  }
1417
1418  // Check the Klass* of this object for being in the right area of memory.
1419  // Cannot do the load in the delay above slot in case O0 is null
1420  load_klass(O0_obj, O0_obj);
1421  // assert((klass != NULL)
1422  br_null_short(O0_obj, pn, fail);
1423
1424  wrccr( O5_save_flags ); // Restore CCR's
1425
1426  // mark upper end of faulting range
1427  _verify_oop_implicit_branch[1] = pc();
1428
1429  //-----------------------
1430  // all tests pass
1431  bind(succeed);
1432
1433  // Restore prior 64-bit registers
1434  ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+0*8,O0);
1435  ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+1*8,O1);
1436  ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+2*8,O2);
1437  ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+3*8,O3);
1438  ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+4*8,O4);
1439  ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+5*8,O5);
1440
1441  retl();                       // Leaf return; restore prior O7 in delay slot
1442  delayed()->ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+7*8,O7);
1443
1444  //-----------------------
1445  bind(null_or_fail);           // nulls are less common but OK
1446  br_null(O0_obj, false, pt, succeed);
1447  delayed()->wrccr( O5_save_flags ); // Restore CCR's
1448
1449  //-----------------------
1450  // report failure:
1451  bind(fail);
1452  _verify_oop_implicit_branch[2] = pc();
1453
1454  wrccr( O5_save_flags ); // Restore CCR's
1455
1456  save_frame(::round_to(sizeof(RegistersForDebugging) / BytesPerWord, 2));
1457
1458  // stop_subroutine expects message pointer in I1.
1459  mov(I1, O1);
1460
1461  // Restore prior 64-bit registers
1462  ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+0*8,I0);
1463  ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+1*8,I1);
1464  ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+2*8,I2);
1465  ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+3*8,I3);
1466  ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+4*8,I4);
1467  ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+5*8,I5);
1468
1469  // factor long stop-sequence into subroutine to save space
1470  assert(StubRoutines::Sparc::stop_subroutine_entry_address(), "hasn't been generated yet");
1471
1472  // call indirectly to solve generation ordering problem
1473  AddressLiteral al(StubRoutines::Sparc::stop_subroutine_entry_address());
1474  load_ptr_contents(al, O5);
1475  jmpl(O5, 0, O7);
1476  delayed()->nop();
1477}
1478
1479
1480void MacroAssembler::stop(const char* msg) {
1481  // save frame first to get O7 for return address
1482  // add one word to size in case struct is odd number of words long
1483  // It must be doubleword-aligned for storing doubles into it.
1484
1485    save_frame(::round_to(sizeof(RegistersForDebugging) / BytesPerWord, 2));
1486
1487    // stop_subroutine expects message pointer in I1.
1488    // Size of set() should stay the same
1489    patchable_set((intptr_t)msg, O1);
1490
1491    // factor long stop-sequence into subroutine to save space
1492    assert(StubRoutines::Sparc::stop_subroutine_entry_address(), "hasn't been generated yet");
1493
1494    // call indirectly to solve generation ordering problem
1495    AddressLiteral a(StubRoutines::Sparc::stop_subroutine_entry_address());
1496    load_ptr_contents(a, O5);
1497    jmpl(O5, 0, O7);
1498    delayed()->nop();
1499
1500    breakpoint_trap();   // make stop actually stop rather than writing
1501                         // unnoticeable results in the output files.
1502
1503    // restore(); done in callee to save space!
1504}
1505
1506
1507void MacroAssembler::warn(const char* msg) {
1508  save_frame(::round_to(sizeof(RegistersForDebugging) / BytesPerWord, 2));
1509  RegistersForDebugging::save_registers(this);
1510  mov(O0, L0);
1511  // Size of set() should stay the same
1512  patchable_set((intptr_t)msg, O0);
1513  call( CAST_FROM_FN_PTR(address, warning) );
1514  delayed()->nop();
1515//  ret();
1516//  delayed()->restore();
1517  RegistersForDebugging::restore_registers(this, L0);
1518  restore();
1519}
1520
1521
1522void MacroAssembler::untested(const char* what) {
1523  // We must be able to turn interactive prompting off
1524  // in order to run automated test scripts on the VM
1525  // Use the flag ShowMessageBoxOnError
1526
1527  const char* b = NULL;
1528  {
1529    ResourceMark rm;
1530    stringStream ss;
1531    ss.print("untested: %s", what);
1532    b = code_string(ss.as_string());
1533  }
1534  if (ShowMessageBoxOnError) { STOP(b); }
1535  else                       { warn(b); }
1536}
1537
1538
1539void MacroAssembler::stop_subroutine() {
1540  RegistersForDebugging::save_registers(this);
1541
1542  // for the sake of the debugger, stick a PC on the current frame
1543  // (this assumes that the caller has performed an extra "save")
1544  mov(I7, L7);
1545  add(O7, -7 * BytesPerInt, I7);
1546
1547  save_frame(); // one more save to free up another O7 register
1548  mov(I0, O1); // addr of reg save area
1549
1550  // We expect pointer to message in I1. Caller must set it up in O1
1551  mov(I1, O0); // get msg
1552  call (CAST_FROM_FN_PTR(address, MacroAssembler::debug), relocInfo::runtime_call_type);
1553  delayed()->nop();
1554
1555  restore();
1556
1557  RegistersForDebugging::restore_registers(this, O0);
1558
1559  save_frame(0);
1560  call(CAST_FROM_FN_PTR(address,breakpoint));
1561  delayed()->nop();
1562  restore();
1563
1564  mov(L7, I7);
1565  retl();
1566  delayed()->restore(); // see stop above
1567}
1568
1569
1570void MacroAssembler::debug(char* msg, RegistersForDebugging* regs) {
1571  if ( ShowMessageBoxOnError ) {
1572    JavaThread* thread = JavaThread::current();
1573    JavaThreadState saved_state = thread->thread_state();
1574    thread->set_thread_state(_thread_in_vm);
1575      {
1576        // In order to get locks work, we need to fake a in_VM state
1577        ttyLocker ttyl;
1578        ::tty->print_cr("EXECUTION STOPPED: %s\n", msg);
1579        if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
1580        BytecodeCounter::print();
1581        }
1582        if (os::message_box(msg, "Execution stopped, print registers?"))
1583          regs->print(::tty);
1584      }
1585    BREAKPOINT;
1586      ThreadStateTransition::transition(JavaThread::current(), _thread_in_vm, saved_state);
1587  }
1588  else {
1589     ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n", msg);
1590  }
1591  assert(false, err_msg("DEBUG MESSAGE: %s", msg));
1592}
1593
1594
1595void MacroAssembler::calc_mem_param_words(Register Rparam_words, Register Rresult) {
1596  subcc( Rparam_words, Argument::n_register_parameters, Rresult); // how many mem words?
1597  Label no_extras;
1598  br( negative, true, pt, no_extras ); // if neg, clear reg
1599  delayed()->set(0, Rresult);          // annuled, so only if taken
1600  bind( no_extras );
1601}
1602
1603
1604void MacroAssembler::calc_frame_size(Register Rextra_words, Register Rresult) {
1605#ifdef _LP64
1606  add(Rextra_words, frame::memory_parameter_word_sp_offset, Rresult);
1607#else
1608  add(Rextra_words, frame::memory_parameter_word_sp_offset + 1, Rresult);
1609#endif
1610  bclr(1, Rresult);
1611  sll(Rresult, LogBytesPerWord, Rresult);  // Rresult has total frame bytes
1612}
1613
1614
1615void MacroAssembler::calc_frame_size_and_save(Register Rextra_words, Register Rresult) {
1616  calc_frame_size(Rextra_words, Rresult);
1617  neg(Rresult);
1618  save(SP, Rresult, SP);
1619}
1620
1621
1622// ---------------------------------------------------------
1623Assembler::RCondition cond2rcond(Assembler::Condition c) {
1624  switch (c) {
1625    /*case zero: */
1626    case Assembler::equal:        return Assembler::rc_z;
1627    case Assembler::lessEqual:    return Assembler::rc_lez;
1628    case Assembler::less:         return Assembler::rc_lz;
1629    /*case notZero:*/
1630    case Assembler::notEqual:     return Assembler::rc_nz;
1631    case Assembler::greater:      return Assembler::rc_gz;
1632    case Assembler::greaterEqual: return Assembler::rc_gez;
1633  }
1634  ShouldNotReachHere();
1635  return Assembler::rc_z;
1636}
1637
1638// compares (32 bit) register with zero and branches.  NOT FOR USE WITH 64-bit POINTERS
1639void MacroAssembler::cmp_zero_and_br(Condition c, Register s1, Label& L, bool a, Predict p) {
1640  tst(s1);
1641  br (c, a, p, L);
1642}
1643
1644// Compares a pointer register with zero and branches on null.
1645// Does a test & branch on 32-bit systems and a register-branch on 64-bit.
1646void MacroAssembler::br_null( Register s1, bool a, Predict p, Label& L ) {
1647  assert_not_delayed();
1648#ifdef _LP64
1649  bpr( rc_z, a, p, s1, L );
1650#else
1651  tst(s1);
1652  br ( zero, a, p, L );
1653#endif
1654}
1655
1656void MacroAssembler::br_notnull( Register s1, bool a, Predict p, Label& L ) {
1657  assert_not_delayed();
1658#ifdef _LP64
1659  bpr( rc_nz, a, p, s1, L );
1660#else
1661  tst(s1);
1662  br ( notZero, a, p, L );
1663#endif
1664}
1665
1666// Compare registers and branch with nop in delay slot or cbcond without delay slot.
1667
1668// Compare integer (32 bit) values (icc only).
1669void MacroAssembler::cmp_and_br_short(Register s1, Register s2, Condition c,
1670                                      Predict p, Label& L) {
1671  assert_not_delayed();
1672  if (use_cbcond(L)) {
1673    Assembler::cbcond(c, icc, s1, s2, L);
1674  } else {
1675    cmp(s1, s2);
1676    br(c, false, p, L);
1677    delayed()->nop();
1678  }
1679}
1680
1681// Compare integer (32 bit) values (icc only).
1682void MacroAssembler::cmp_and_br_short(Register s1, int simm13a, Condition c,
1683                                      Predict p, Label& L) {
1684  assert_not_delayed();
1685  if (is_simm(simm13a,5) && use_cbcond(L)) {
1686    Assembler::cbcond(c, icc, s1, simm13a, L);
1687  } else {
1688    cmp(s1, simm13a);
1689    br(c, false, p, L);
1690    delayed()->nop();
1691  }
1692}
1693
1694// Branch that tests xcc in LP64 and icc in !LP64
1695void MacroAssembler::cmp_and_brx_short(Register s1, Register s2, Condition c,
1696                                       Predict p, Label& L) {
1697  assert_not_delayed();
1698  if (use_cbcond(L)) {
1699    Assembler::cbcond(c, ptr_cc, s1, s2, L);
1700  } else {
1701    cmp(s1, s2);
1702    brx(c, false, p, L);
1703    delayed()->nop();
1704  }
1705}
1706
1707// Branch that tests xcc in LP64 and icc in !LP64
1708void MacroAssembler::cmp_and_brx_short(Register s1, int simm13a, Condition c,
1709                                       Predict p, Label& L) {
1710  assert_not_delayed();
1711  if (is_simm(simm13a,5) && use_cbcond(L)) {
1712    Assembler::cbcond(c, ptr_cc, s1, simm13a, L);
1713  } else {
1714    cmp(s1, simm13a);
1715    brx(c, false, p, L);
1716    delayed()->nop();
1717  }
1718}
1719
1720// Short branch version for compares a pointer with zero.
1721
1722void MacroAssembler::br_null_short(Register s1, Predict p, Label& L) {
1723  assert_not_delayed();
1724  if (use_cbcond(L)) {
1725    Assembler::cbcond(zero, ptr_cc, s1, 0, L);
1726    return;
1727  }
1728  br_null(s1, false, p, L);
1729  delayed()->nop();
1730}
1731
1732void MacroAssembler::br_notnull_short(Register s1, Predict p, Label& L) {
1733  assert_not_delayed();
1734  if (use_cbcond(L)) {
1735    Assembler::cbcond(notZero, ptr_cc, s1, 0, L);
1736    return;
1737  }
1738  br_notnull(s1, false, p, L);
1739  delayed()->nop();
1740}
1741
1742// Unconditional short branch
1743void MacroAssembler::ba_short(Label& L) {
1744  if (use_cbcond(L)) {
1745    Assembler::cbcond(equal, icc, G0, G0, L);
1746    return;
1747  }
1748  br(always, false, pt, L);
1749  delayed()->nop();
1750}
1751
1752// instruction sequences factored across compiler & interpreter
1753
1754
1755void MacroAssembler::lcmp( Register Ra_hi, Register Ra_low,
1756                           Register Rb_hi, Register Rb_low,
1757                           Register Rresult) {
1758
1759  Label check_low_parts, done;
1760
1761  cmp(Ra_hi, Rb_hi );  // compare hi parts
1762  br(equal, true, pt, check_low_parts);
1763  delayed()->cmp(Ra_low, Rb_low); // test low parts
1764
1765  // And, with an unsigned comparison, it does not matter if the numbers
1766  // are negative or not.
1767  // E.g., -2 cmp -1: the low parts are 0xfffffffe and 0xffffffff.
1768  // The second one is bigger (unsignedly).
1769
1770  // Other notes:  The first move in each triplet can be unconditional
1771  // (and therefore probably prefetchable).
1772  // And the equals case for the high part does not need testing,
1773  // since that triplet is reached only after finding the high halves differ.
1774
1775  mov(-1, Rresult);
1776  ba(done);
1777  delayed()->movcc(greater, false, icc,  1, Rresult);
1778
1779  bind(check_low_parts);
1780
1781  mov(                               -1, Rresult);
1782  movcc(equal,           false, icc,  0, Rresult);
1783  movcc(greaterUnsigned, false, icc,  1, Rresult);
1784
1785  bind(done);
1786}
1787
1788void MacroAssembler::lneg( Register Rhi, Register Rlow ) {
1789  subcc(  G0, Rlow, Rlow );
1790  subc(   G0, Rhi,  Rhi  );
1791}
1792
1793void MacroAssembler::lshl( Register Rin_high,  Register Rin_low,
1794                           Register Rcount,
1795                           Register Rout_high, Register Rout_low,
1796                           Register Rtemp ) {
1797
1798
1799  Register Ralt_count = Rtemp;
1800  Register Rxfer_bits = Rtemp;
1801
1802  assert( Ralt_count != Rin_high
1803      &&  Ralt_count != Rin_low
1804      &&  Ralt_count != Rcount
1805      &&  Rxfer_bits != Rin_low
1806      &&  Rxfer_bits != Rin_high
1807      &&  Rxfer_bits != Rcount
1808      &&  Rxfer_bits != Rout_low
1809      &&  Rout_low   != Rin_high,
1810        "register alias checks");
1811
1812  Label big_shift, done;
1813
1814  // This code can be optimized to use the 64 bit shifts in V9.
1815  // Here we use the 32 bit shifts.
1816
1817  and3( Rcount, 0x3f, Rcount);     // take least significant 6 bits
1818  subcc(Rcount,   31, Ralt_count);
1819  br(greater, true, pn, big_shift);
1820  delayed()->dec(Ralt_count);
1821
1822  // shift < 32 bits, Ralt_count = Rcount-31
1823
1824  // We get the transfer bits by shifting right by 32-count the low
1825  // register. This is done by shifting right by 31-count and then by one
1826  // more to take care of the special (rare) case where count is zero
1827  // (shifting by 32 would not work).
1828
1829  neg(Ralt_count);
1830
1831  // The order of the next two instructions is critical in the case where
1832  // Rin and Rout are the same and should not be reversed.
1833
1834  srl(Rin_low, Ralt_count, Rxfer_bits); // shift right by 31-count
1835  if (Rcount != Rout_low) {
1836    sll(Rin_low, Rcount, Rout_low); // low half
1837  }
1838  sll(Rin_high, Rcount, Rout_high);
1839  if (Rcount == Rout_low) {
1840    sll(Rin_low, Rcount, Rout_low); // low half
1841  }
1842  srl(Rxfer_bits, 1, Rxfer_bits ); // shift right by one more
1843  ba(done);
1844  delayed()->or3(Rout_high, Rxfer_bits, Rout_high);   // new hi value: or in shifted old hi part and xfer from low
1845
1846  // shift >= 32 bits, Ralt_count = Rcount-32
1847  bind(big_shift);
1848  sll(Rin_low, Ralt_count, Rout_high  );
1849  clr(Rout_low);
1850
1851  bind(done);
1852}
1853
1854
1855void MacroAssembler::lshr( Register Rin_high,  Register Rin_low,
1856                           Register Rcount,
1857                           Register Rout_high, Register Rout_low,
1858                           Register Rtemp ) {
1859
1860  Register Ralt_count = Rtemp;
1861  Register Rxfer_bits = Rtemp;
1862
1863  assert( Ralt_count != Rin_high
1864      &&  Ralt_count != Rin_low
1865      &&  Ralt_count != Rcount
1866      &&  Rxfer_bits != Rin_low
1867      &&  Rxfer_bits != Rin_high
1868      &&  Rxfer_bits != Rcount
1869      &&  Rxfer_bits != Rout_high
1870      &&  Rout_high  != Rin_low,
1871        "register alias checks");
1872
1873  Label big_shift, done;
1874
1875  // This code can be optimized to use the 64 bit shifts in V9.
1876  // Here we use the 32 bit shifts.
1877
1878  and3( Rcount, 0x3f, Rcount);     // take least significant 6 bits
1879  subcc(Rcount,   31, Ralt_count);
1880  br(greater, true, pn, big_shift);
1881  delayed()->dec(Ralt_count);
1882
1883  // shift < 32 bits, Ralt_count = Rcount-31
1884
1885  // We get the transfer bits by shifting left by 32-count the high
1886  // register. This is done by shifting left by 31-count and then by one
1887  // more to take care of the special (rare) case where count is zero
1888  // (shifting by 32 would not work).
1889
1890  neg(Ralt_count);
1891  if (Rcount != Rout_low) {
1892    srl(Rin_low, Rcount, Rout_low);
1893  }
1894
1895  // The order of the next two instructions is critical in the case where
1896  // Rin and Rout are the same and should not be reversed.
1897
1898  sll(Rin_high, Ralt_count, Rxfer_bits); // shift left by 31-count
1899  sra(Rin_high,     Rcount, Rout_high ); // high half
1900  sll(Rxfer_bits,        1, Rxfer_bits); // shift left by one more
1901  if (Rcount == Rout_low) {
1902    srl(Rin_low, Rcount, Rout_low);
1903  }
1904  ba(done);
1905  delayed()->or3(Rout_low, Rxfer_bits, Rout_low); // new low value: or shifted old low part and xfer from high
1906
1907  // shift >= 32 bits, Ralt_count = Rcount-32
1908  bind(big_shift);
1909
1910  sra(Rin_high, Ralt_count, Rout_low);
1911  sra(Rin_high,         31, Rout_high); // sign into hi
1912
1913  bind( done );
1914}
1915
1916
1917
1918void MacroAssembler::lushr( Register Rin_high,  Register Rin_low,
1919                            Register Rcount,
1920                            Register Rout_high, Register Rout_low,
1921                            Register Rtemp ) {
1922
1923  Register Ralt_count = Rtemp;
1924  Register Rxfer_bits = Rtemp;
1925
1926  assert( Ralt_count != Rin_high
1927      &&  Ralt_count != Rin_low
1928      &&  Ralt_count != Rcount
1929      &&  Rxfer_bits != Rin_low
1930      &&  Rxfer_bits != Rin_high
1931      &&  Rxfer_bits != Rcount
1932      &&  Rxfer_bits != Rout_high
1933      &&  Rout_high  != Rin_low,
1934        "register alias checks");
1935
1936  Label big_shift, done;
1937
1938  // This code can be optimized to use the 64 bit shifts in V9.
1939  // Here we use the 32 bit shifts.
1940
1941  and3( Rcount, 0x3f, Rcount);     // take least significant 6 bits
1942  subcc(Rcount,   31, Ralt_count);
1943  br(greater, true, pn, big_shift);
1944  delayed()->dec(Ralt_count);
1945
1946  // shift < 32 bits, Ralt_count = Rcount-31
1947
1948  // We get the transfer bits by shifting left by 32-count the high
1949  // register. This is done by shifting left by 31-count and then by one
1950  // more to take care of the special (rare) case where count is zero
1951  // (shifting by 32 would not work).
1952
1953  neg(Ralt_count);
1954  if (Rcount != Rout_low) {
1955    srl(Rin_low, Rcount, Rout_low);
1956  }
1957
1958  // The order of the next two instructions is critical in the case where
1959  // Rin and Rout are the same and should not be reversed.
1960
1961  sll(Rin_high, Ralt_count, Rxfer_bits); // shift left by 31-count
1962  srl(Rin_high,     Rcount, Rout_high ); // high half
1963  sll(Rxfer_bits,        1, Rxfer_bits); // shift left by one more
1964  if (Rcount == Rout_low) {
1965    srl(Rin_low, Rcount, Rout_low);
1966  }
1967  ba(done);
1968  delayed()->or3(Rout_low, Rxfer_bits, Rout_low); // new low value: or shifted old low part and xfer from high
1969
1970  // shift >= 32 bits, Ralt_count = Rcount-32
1971  bind(big_shift);
1972
1973  srl(Rin_high, Ralt_count, Rout_low);
1974  clr(Rout_high);
1975
1976  bind( done );
1977}
1978
1979#ifdef _LP64
1980void MacroAssembler::lcmp( Register Ra, Register Rb, Register Rresult) {
1981  cmp(Ra, Rb);
1982  mov(-1, Rresult);
1983  movcc(equal,   false, xcc,  0, Rresult);
1984  movcc(greater, false, xcc,  1, Rresult);
1985}
1986#endif
1987
1988
1989void MacroAssembler::load_sized_value(Address src, Register dst, size_t size_in_bytes, bool is_signed) {
1990  switch (size_in_bytes) {
1991  case  8:  ld_long(src, dst); break;
1992  case  4:  ld(     src, dst); break;
1993  case  2:  is_signed ? ldsh(src, dst) : lduh(src, dst); break;
1994  case  1:  is_signed ? ldsb(src, dst) : ldub(src, dst); break;
1995  default:  ShouldNotReachHere();
1996  }
1997}
1998
1999void MacroAssembler::store_sized_value(Register src, Address dst, size_t size_in_bytes) {
2000  switch (size_in_bytes) {
2001  case  8:  st_long(src, dst); break;
2002  case  4:  st(     src, dst); break;
2003  case  2:  sth(    src, dst); break;
2004  case  1:  stb(    src, dst); break;
2005  default:  ShouldNotReachHere();
2006  }
2007}
2008
2009
2010void MacroAssembler::float_cmp( bool is_float, int unordered_result,
2011                                FloatRegister Fa, FloatRegister Fb,
2012                                Register Rresult) {
2013  if (is_float) {
2014    fcmp(FloatRegisterImpl::S, fcc0, Fa, Fb);
2015  } else {
2016    fcmp(FloatRegisterImpl::D, fcc0, Fa, Fb);
2017  }
2018
2019  if (unordered_result == 1) {
2020    mov(                                    -1, Rresult);
2021    movcc(f_equal,              true, fcc0,  0, Rresult);
2022    movcc(f_unorderedOrGreater, true, fcc0,  1, Rresult);
2023  } else {
2024    mov(                                    -1, Rresult);
2025    movcc(f_equal,              true, fcc0,  0, Rresult);
2026    movcc(f_greater,            true, fcc0,  1, Rresult);
2027  }
2028}
2029
2030
2031void MacroAssembler::save_all_globals_into_locals() {
2032  mov(G1,L1);
2033  mov(G2,L2);
2034  mov(G3,L3);
2035  mov(G4,L4);
2036  mov(G5,L5);
2037  mov(G6,L6);
2038  mov(G7,L7);
2039}
2040
2041void MacroAssembler::restore_globals_from_locals() {
2042  mov(L1,G1);
2043  mov(L2,G2);
2044  mov(L3,G3);
2045  mov(L4,G4);
2046  mov(L5,G5);
2047  mov(L6,G6);
2048  mov(L7,G7);
2049}
2050
2051RegisterOrConstant MacroAssembler::delayed_value_impl(intptr_t* delayed_value_addr,
2052                                                      Register tmp,
2053                                                      int offset) {
2054  intptr_t value = *delayed_value_addr;
2055  if (value != 0)
2056    return RegisterOrConstant(value + offset);
2057
2058  // load indirectly to solve generation ordering problem
2059  AddressLiteral a(delayed_value_addr);
2060  load_ptr_contents(a, tmp);
2061
2062#ifdef ASSERT
2063  tst(tmp);
2064  breakpoint_trap(zero, xcc);
2065#endif
2066
2067  if (offset != 0)
2068    add(tmp, offset, tmp);
2069
2070  return RegisterOrConstant(tmp);
2071}
2072
2073
2074RegisterOrConstant MacroAssembler::regcon_andn_ptr(RegisterOrConstant s1, RegisterOrConstant s2, RegisterOrConstant d, Register temp) {
2075  assert(d.register_or_noreg() != G0, "lost side effect");
2076  if ((s2.is_constant() && s2.as_constant() == 0) ||
2077      (s2.is_register() && s2.as_register() == G0)) {
2078    // Do nothing, just move value.
2079    if (s1.is_register()) {
2080      if (d.is_constant())  d = temp;
2081      mov(s1.as_register(), d.as_register());
2082      return d;
2083    } else {
2084      return s1;
2085    }
2086  }
2087
2088  if (s1.is_register()) {
2089    assert_different_registers(s1.as_register(), temp);
2090    if (d.is_constant())  d = temp;
2091    andn(s1.as_register(), ensure_simm13_or_reg(s2, temp), d.as_register());
2092    return d;
2093  } else {
2094    if (s2.is_register()) {
2095      assert_different_registers(s2.as_register(), temp);
2096      if (d.is_constant())  d = temp;
2097      set(s1.as_constant(), temp);
2098      andn(temp, s2.as_register(), d.as_register());
2099      return d;
2100    } else {
2101      intptr_t res = s1.as_constant() & ~s2.as_constant();
2102      return res;
2103    }
2104  }
2105}
2106
2107RegisterOrConstant MacroAssembler::regcon_inc_ptr(RegisterOrConstant s1, RegisterOrConstant s2, RegisterOrConstant d, Register temp) {
2108  assert(d.register_or_noreg() != G0, "lost side effect");
2109  if ((s2.is_constant() && s2.as_constant() == 0) ||
2110      (s2.is_register() && s2.as_register() == G0)) {
2111    // Do nothing, just move value.
2112    if (s1.is_register()) {
2113      if (d.is_constant())  d = temp;
2114      mov(s1.as_register(), d.as_register());
2115      return d;
2116    } else {
2117      return s1;
2118    }
2119  }
2120
2121  if (s1.is_register()) {
2122    assert_different_registers(s1.as_register(), temp);
2123    if (d.is_constant())  d = temp;
2124    add(s1.as_register(), ensure_simm13_or_reg(s2, temp), d.as_register());
2125    return d;
2126  } else {
2127    if (s2.is_register()) {
2128      assert_different_registers(s2.as_register(), temp);
2129      if (d.is_constant())  d = temp;
2130      add(s2.as_register(), ensure_simm13_or_reg(s1, temp), d.as_register());
2131      return d;
2132    } else {
2133      intptr_t res = s1.as_constant() + s2.as_constant();
2134      return res;
2135    }
2136  }
2137}
2138
2139RegisterOrConstant MacroAssembler::regcon_sll_ptr(RegisterOrConstant s1, RegisterOrConstant s2, RegisterOrConstant d, Register temp) {
2140  assert(d.register_or_noreg() != G0, "lost side effect");
2141  if (!is_simm13(s2.constant_or_zero()))
2142    s2 = (s2.as_constant() & 0xFF);
2143  if ((s2.is_constant() && s2.as_constant() == 0) ||
2144      (s2.is_register() && s2.as_register() == G0)) {
2145    // Do nothing, just move value.
2146    if (s1.is_register()) {
2147      if (d.is_constant())  d = temp;
2148      mov(s1.as_register(), d.as_register());
2149      return d;
2150    } else {
2151      return s1;
2152    }
2153  }
2154
2155  if (s1.is_register()) {
2156    assert_different_registers(s1.as_register(), temp);
2157    if (d.is_constant())  d = temp;
2158    sll_ptr(s1.as_register(), ensure_simm13_or_reg(s2, temp), d.as_register());
2159    return d;
2160  } else {
2161    if (s2.is_register()) {
2162      assert_different_registers(s2.as_register(), temp);
2163      if (d.is_constant())  d = temp;
2164      set(s1.as_constant(), temp);
2165      sll_ptr(temp, s2.as_register(), d.as_register());
2166      return d;
2167    } else {
2168      intptr_t res = s1.as_constant() << s2.as_constant();
2169      return res;
2170    }
2171  }
2172}
2173
2174
2175// Look up the method for a megamorphic invokeinterface call.
2176// The target method is determined by <intf_klass, itable_index>.
2177// The receiver klass is in recv_klass.
2178// On success, the result will be in method_result, and execution falls through.
2179// On failure, execution transfers to the given label.
2180void MacroAssembler::lookup_interface_method(Register recv_klass,
2181                                             Register intf_klass,
2182                                             RegisterOrConstant itable_index,
2183                                             Register method_result,
2184                                             Register scan_temp,
2185                                             Register sethi_temp,
2186                                             Label& L_no_such_interface) {
2187  assert_different_registers(recv_klass, intf_klass, method_result, scan_temp);
2188  assert(itable_index.is_constant() || itable_index.as_register() == method_result,
2189         "caller must use same register for non-constant itable index as for method");
2190
2191  Label L_no_such_interface_restore;
2192  bool did_save = false;
2193  if (scan_temp == noreg || sethi_temp == noreg) {
2194    Register recv_2 = recv_klass->is_global() ? recv_klass : L0;
2195    Register intf_2 = intf_klass->is_global() ? intf_klass : L1;
2196    assert(method_result->is_global(), "must be able to return value");
2197    scan_temp  = L2;
2198    sethi_temp = L3;
2199    save_frame_and_mov(0, recv_klass, recv_2, intf_klass, intf_2);
2200    recv_klass = recv_2;
2201    intf_klass = intf_2;
2202    did_save = true;
2203  }
2204
2205  // Compute start of first itableOffsetEntry (which is at the end of the vtable)
2206  int vtable_base = InstanceKlass::vtable_start_offset() * wordSize;
2207  int scan_step   = itableOffsetEntry::size() * wordSize;
2208  int vte_size    = vtableEntry::size() * wordSize;
2209
2210  lduw(recv_klass, InstanceKlass::vtable_length_offset() * wordSize, scan_temp);
2211  // %%% We should store the aligned, prescaled offset in the klassoop.
2212  // Then the next several instructions would fold away.
2213
2214  int round_to_unit = ((HeapWordsPerLong > 1) ? BytesPerLong : 0);
2215  int itb_offset = vtable_base;
2216  if (round_to_unit != 0) {
2217    // hoist first instruction of round_to(scan_temp, BytesPerLong):
2218    itb_offset += round_to_unit - wordSize;
2219  }
2220  int itb_scale = exact_log2(vtableEntry::size() * wordSize);
2221  sll(scan_temp, itb_scale,  scan_temp);
2222  add(scan_temp, itb_offset, scan_temp);
2223  if (round_to_unit != 0) {
2224    // Round up to align_object_offset boundary
2225    // see code for InstanceKlass::start_of_itable!
2226    // Was: round_to(scan_temp, BytesPerLong);
2227    // Hoisted: add(scan_temp, BytesPerLong-1, scan_temp);
2228    and3(scan_temp, -round_to_unit, scan_temp);
2229  }
2230  add(recv_klass, scan_temp, scan_temp);
2231
2232  // Adjust recv_klass by scaled itable_index, so we can free itable_index.
2233  RegisterOrConstant itable_offset = itable_index;
2234  itable_offset = regcon_sll_ptr(itable_index, exact_log2(itableMethodEntry::size() * wordSize), itable_offset);
2235  itable_offset = regcon_inc_ptr(itable_offset, itableMethodEntry::method_offset_in_bytes(), itable_offset);
2236  add(recv_klass, ensure_simm13_or_reg(itable_offset, sethi_temp), recv_klass);
2237
2238  // for (scan = klass->itable(); scan->interface() != NULL; scan += scan_step) {
2239  //   if (scan->interface() == intf) {
2240  //     result = (klass + scan->offset() + itable_index);
2241  //   }
2242  // }
2243  Label L_search, L_found_method;
2244
2245  for (int peel = 1; peel >= 0; peel--) {
2246    // %%%% Could load both offset and interface in one ldx, if they were
2247    // in the opposite order.  This would save a load.
2248    ld_ptr(scan_temp, itableOffsetEntry::interface_offset_in_bytes(), method_result);
2249
2250    // Check that this entry is non-null.  A null entry means that
2251    // the receiver class doesn't implement the interface, and wasn't the
2252    // same as when the caller was compiled.
2253    bpr(Assembler::rc_z, false, Assembler::pn, method_result, did_save ? L_no_such_interface_restore : L_no_such_interface);
2254    delayed()->cmp(method_result, intf_klass);
2255
2256    if (peel) {
2257      brx(Assembler::equal,    false, Assembler::pt, L_found_method);
2258    } else {
2259      brx(Assembler::notEqual, false, Assembler::pn, L_search);
2260      // (invert the test to fall through to found_method...)
2261    }
2262    delayed()->add(scan_temp, scan_step, scan_temp);
2263
2264    if (!peel)  break;
2265
2266    bind(L_search);
2267  }
2268
2269  bind(L_found_method);
2270
2271  // Got a hit.
2272  int ito_offset = itableOffsetEntry::offset_offset_in_bytes();
2273  // scan_temp[-scan_step] points to the vtable offset we need
2274  ito_offset -= scan_step;
2275  lduw(scan_temp, ito_offset, scan_temp);
2276  ld_ptr(recv_klass, scan_temp, method_result);
2277
2278  if (did_save) {
2279    Label L_done;
2280    ba(L_done);
2281    delayed()->restore();
2282
2283    bind(L_no_such_interface_restore);
2284    ba(L_no_such_interface);
2285    delayed()->restore();
2286
2287    bind(L_done);
2288  }
2289}
2290
2291
2292// virtual method calling
2293void MacroAssembler::lookup_virtual_method(Register recv_klass,
2294                                           RegisterOrConstant vtable_index,
2295                                           Register method_result) {
2296  assert_different_registers(recv_klass, method_result, vtable_index.register_or_noreg());
2297  Register sethi_temp = method_result;
2298  const int base = (InstanceKlass::vtable_start_offset() * wordSize +
2299                    // method pointer offset within the vtable entry:
2300                    vtableEntry::method_offset_in_bytes());
2301  RegisterOrConstant vtable_offset = vtable_index;
2302  // Each of the following three lines potentially generates an instruction.
2303  // But the total number of address formation instructions will always be
2304  // at most two, and will often be zero.  In any case, it will be optimal.
2305  // If vtable_index is a register, we will have (sll_ptr N,x; inc_ptr B,x; ld_ptr k,x).
2306  // If vtable_index is a constant, we will have at most (set B+X<<N,t; ld_ptr k,t).
2307  vtable_offset = regcon_sll_ptr(vtable_index, exact_log2(vtableEntry::size() * wordSize), vtable_offset);
2308  vtable_offset = regcon_inc_ptr(vtable_offset, base, vtable_offset, sethi_temp);
2309  Address vtable_entry_addr(recv_klass, ensure_simm13_or_reg(vtable_offset, sethi_temp));
2310  ld_ptr(vtable_entry_addr, method_result);
2311}
2312
2313
2314void MacroAssembler::check_klass_subtype(Register sub_klass,
2315                                         Register super_klass,
2316                                         Register temp_reg,
2317                                         Register temp2_reg,
2318                                         Label& L_success) {
2319  Register sub_2 = sub_klass;
2320  Register sup_2 = super_klass;
2321  if (!sub_2->is_global())  sub_2 = L0;
2322  if (!sup_2->is_global())  sup_2 = L1;
2323  bool did_save = false;
2324  if (temp_reg == noreg || temp2_reg == noreg) {
2325    temp_reg = L2;
2326    temp2_reg = L3;
2327    save_frame_and_mov(0, sub_klass, sub_2, super_klass, sup_2);
2328    sub_klass = sub_2;
2329    super_klass = sup_2;
2330    did_save = true;
2331  }
2332  Label L_failure, L_pop_to_failure, L_pop_to_success;
2333  check_klass_subtype_fast_path(sub_klass, super_klass,
2334                                temp_reg, temp2_reg,
2335                                (did_save ? &L_pop_to_success : &L_success),
2336                                (did_save ? &L_pop_to_failure : &L_failure), NULL);
2337
2338  if (!did_save)
2339    save_frame_and_mov(0, sub_klass, sub_2, super_klass, sup_2);
2340  check_klass_subtype_slow_path(sub_2, sup_2,
2341                                L2, L3, L4, L5,
2342                                NULL, &L_pop_to_failure);
2343
2344  // on success:
2345  bind(L_pop_to_success);
2346  restore();
2347  ba_short(L_success);
2348
2349  // on failure:
2350  bind(L_pop_to_failure);
2351  restore();
2352  bind(L_failure);
2353}
2354
2355
2356void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass,
2357                                                   Register super_klass,
2358                                                   Register temp_reg,
2359                                                   Register temp2_reg,
2360                                                   Label* L_success,
2361                                                   Label* L_failure,
2362                                                   Label* L_slow_path,
2363                                        RegisterOrConstant super_check_offset) {
2364  int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
2365  int sco_offset = in_bytes(Klass::super_check_offset_offset());
2366
2367  bool must_load_sco  = (super_check_offset.constant_or_zero() == -1);
2368  bool need_slow_path = (must_load_sco ||
2369                         super_check_offset.constant_or_zero() == sco_offset);
2370
2371  assert_different_registers(sub_klass, super_klass, temp_reg);
2372  if (super_check_offset.is_register()) {
2373    assert_different_registers(sub_klass, super_klass, temp_reg,
2374                               super_check_offset.as_register());
2375  } else if (must_load_sco) {
2376    assert(temp2_reg != noreg, "supply either a temp or a register offset");
2377  }
2378
2379  Label L_fallthrough;
2380  int label_nulls = 0;
2381  if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
2382  if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
2383  if (L_slow_path == NULL) { L_slow_path = &L_fallthrough; label_nulls++; }
2384  assert(label_nulls <= 1 ||
2385         (L_slow_path == &L_fallthrough && label_nulls <= 2 && !need_slow_path),
2386         "at most one NULL in the batch, usually");
2387
2388  // If the pointers are equal, we are done (e.g., String[] elements).
2389  // This self-check enables sharing of secondary supertype arrays among
2390  // non-primary types such as array-of-interface.  Otherwise, each such
2391  // type would need its own customized SSA.
2392  // We move this check to the front of the fast path because many
2393  // type checks are in fact trivially successful in this manner,
2394  // so we get a nicely predicted branch right at the start of the check.
2395  cmp(super_klass, sub_klass);
2396  brx(Assembler::equal, false, Assembler::pn, *L_success);
2397  delayed()->nop();
2398
2399  // Check the supertype display:
2400  if (must_load_sco) {
2401    // The super check offset is always positive...
2402    lduw(super_klass, sco_offset, temp2_reg);
2403    super_check_offset = RegisterOrConstant(temp2_reg);
2404    // super_check_offset is register.
2405    assert_different_registers(sub_klass, super_klass, temp_reg, super_check_offset.as_register());
2406  }
2407  ld_ptr(sub_klass, super_check_offset, temp_reg);
2408  cmp(super_klass, temp_reg);
2409
2410  // This check has worked decisively for primary supers.
2411  // Secondary supers are sought in the super_cache ('super_cache_addr').
2412  // (Secondary supers are interfaces and very deeply nested subtypes.)
2413  // This works in the same check above because of a tricky aliasing
2414  // between the super_cache and the primary super display elements.
2415  // (The 'super_check_addr' can address either, as the case requires.)
2416  // Note that the cache is updated below if it does not help us find
2417  // what we need immediately.
2418  // So if it was a primary super, we can just fail immediately.
2419  // Otherwise, it's the slow path for us (no success at this point).
2420
2421  // Hacked ba(), which may only be used just before L_fallthrough.
2422#define FINAL_JUMP(label)            \
2423  if (&(label) != &L_fallthrough) {  \
2424    ba(label);  delayed()->nop();    \
2425  }
2426
2427  if (super_check_offset.is_register()) {
2428    brx(Assembler::equal, false, Assembler::pn, *L_success);
2429    delayed()->cmp(super_check_offset.as_register(), sc_offset);
2430
2431    if (L_failure == &L_fallthrough) {
2432      brx(Assembler::equal, false, Assembler::pt, *L_slow_path);
2433      delayed()->nop();
2434    } else {
2435      brx(Assembler::notEqual, false, Assembler::pn, *L_failure);
2436      delayed()->nop();
2437      FINAL_JUMP(*L_slow_path);
2438    }
2439  } else if (super_check_offset.as_constant() == sc_offset) {
2440    // Need a slow path; fast failure is impossible.
2441    if (L_slow_path == &L_fallthrough) {
2442      brx(Assembler::equal, false, Assembler::pt, *L_success);
2443      delayed()->nop();
2444    } else {
2445      brx(Assembler::notEqual, false, Assembler::pn, *L_slow_path);
2446      delayed()->nop();
2447      FINAL_JUMP(*L_success);
2448    }
2449  } else {
2450    // No slow path; it's a fast decision.
2451    if (L_failure == &L_fallthrough) {
2452      brx(Assembler::equal, false, Assembler::pt, *L_success);
2453      delayed()->nop();
2454    } else {
2455      brx(Assembler::notEqual, false, Assembler::pn, *L_failure);
2456      delayed()->nop();
2457      FINAL_JUMP(*L_success);
2458    }
2459  }
2460
2461  bind(L_fallthrough);
2462
2463#undef FINAL_JUMP
2464}
2465
2466
2467void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
2468                                                   Register super_klass,
2469                                                   Register count_temp,
2470                                                   Register scan_temp,
2471                                                   Register scratch_reg,
2472                                                   Register coop_reg,
2473                                                   Label* L_success,
2474                                                   Label* L_failure) {
2475  assert_different_registers(sub_klass, super_klass,
2476                             count_temp, scan_temp, scratch_reg, coop_reg);
2477
2478  Label L_fallthrough, L_loop;
2479  int label_nulls = 0;
2480  if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
2481  if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
2482  assert(label_nulls <= 1, "at most one NULL in the batch");
2483
2484  // a couple of useful fields in sub_klass:
2485  int ss_offset = in_bytes(Klass::secondary_supers_offset());
2486  int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
2487
2488  // Do a linear scan of the secondary super-klass chain.
2489  // This code is rarely used, so simplicity is a virtue here.
2490
2491#ifndef PRODUCT
2492  int* pst_counter = &SharedRuntime::_partial_subtype_ctr;
2493  inc_counter((address) pst_counter, count_temp, scan_temp);
2494#endif
2495
2496  // We will consult the secondary-super array.
2497  ld_ptr(sub_klass, ss_offset, scan_temp);
2498
2499  Register search_key = super_klass;
2500
2501  // Load the array length.  (Positive movl does right thing on LP64.)
2502  lduw(scan_temp, Array<Klass*>::length_offset_in_bytes(), count_temp);
2503
2504  // Check for empty secondary super list
2505  tst(count_temp);
2506
2507  // In the array of super classes elements are pointer sized.
2508  int element_size = wordSize;
2509
2510  // Top of search loop
2511  bind(L_loop);
2512  br(Assembler::equal, false, Assembler::pn, *L_failure);
2513  delayed()->add(scan_temp, element_size, scan_temp);
2514
2515  // Skip the array header in all array accesses.
2516  int elem_offset = Array<Klass*>::base_offset_in_bytes();
2517  elem_offset -= element_size;   // the scan pointer was pre-incremented also
2518
2519  // Load next super to check
2520    ld_ptr( scan_temp, elem_offset, scratch_reg );
2521
2522  // Look for Rsuper_klass on Rsub_klass's secondary super-class-overflow list
2523  cmp(scratch_reg, search_key);
2524
2525  // A miss means we are NOT a subtype and need to keep looping
2526  brx(Assembler::notEqual, false, Assembler::pn, L_loop);
2527  delayed()->deccc(count_temp); // decrement trip counter in delay slot
2528
2529  // Success.  Cache the super we found and proceed in triumph.
2530  st_ptr(super_klass, sub_klass, sc_offset);
2531
2532  if (L_success != &L_fallthrough) {
2533    ba(*L_success);
2534    delayed()->nop();
2535  }
2536
2537  bind(L_fallthrough);
2538}
2539
2540
2541RegisterOrConstant MacroAssembler::argument_offset(RegisterOrConstant arg_slot,
2542                                                   Register temp_reg,
2543                                                   int extra_slot_offset) {
2544  // cf. TemplateTable::prepare_invoke(), if (load_receiver).
2545  int stackElementSize = Interpreter::stackElementSize;
2546  int offset = extra_slot_offset * stackElementSize;
2547  if (arg_slot.is_constant()) {
2548    offset += arg_slot.as_constant() * stackElementSize;
2549    return offset;
2550  } else {
2551    assert(temp_reg != noreg, "must specify");
2552    sll_ptr(arg_slot.as_register(), exact_log2(stackElementSize), temp_reg);
2553    if (offset != 0)
2554      add(temp_reg, offset, temp_reg);
2555    return temp_reg;
2556  }
2557}
2558
2559
2560Address MacroAssembler::argument_address(RegisterOrConstant arg_slot,
2561                                         Register temp_reg,
2562                                         int extra_slot_offset) {
2563  return Address(Gargs, argument_offset(arg_slot, temp_reg, extra_slot_offset));
2564}
2565
2566
2567void MacroAssembler::biased_locking_enter(Register obj_reg, Register mark_reg,
2568                                          Register temp_reg,
2569                                          Label& done, Label* slow_case,
2570                                          BiasedLockingCounters* counters) {
2571  assert(UseBiasedLocking, "why call this otherwise?");
2572
2573  if (PrintBiasedLockingStatistics) {
2574    assert_different_registers(obj_reg, mark_reg, temp_reg, O7);
2575    if (counters == NULL)
2576      counters = BiasedLocking::counters();
2577  }
2578
2579  Label cas_label;
2580
2581  // Biased locking
2582  // See whether the lock is currently biased toward our thread and
2583  // whether the epoch is still valid
2584  // Note that the runtime guarantees sufficient alignment of JavaThread
2585  // pointers to allow age to be placed into low bits
2586  assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
2587  and3(mark_reg, markOopDesc::biased_lock_mask_in_place, temp_reg);
2588  cmp_and_brx_short(temp_reg, markOopDesc::biased_lock_pattern, Assembler::notEqual, Assembler::pn, cas_label);
2589
2590  load_klass(obj_reg, temp_reg);
2591  ld_ptr(Address(temp_reg, Klass::prototype_header_offset()), temp_reg);
2592  or3(G2_thread, temp_reg, temp_reg);
2593  xor3(mark_reg, temp_reg, temp_reg);
2594  andcc(temp_reg, ~((int) markOopDesc::age_mask_in_place), temp_reg);
2595  if (counters != NULL) {
2596    cond_inc(Assembler::equal, (address) counters->biased_lock_entry_count_addr(), mark_reg, temp_reg);
2597    // Reload mark_reg as we may need it later
2598    ld_ptr(Address(obj_reg, oopDesc::mark_offset_in_bytes()), mark_reg);
2599  }
2600  brx(Assembler::equal, true, Assembler::pt, done);
2601  delayed()->nop();
2602
2603  Label try_revoke_bias;
2604  Label try_rebias;
2605  Address mark_addr = Address(obj_reg, oopDesc::mark_offset_in_bytes());
2606  assert(mark_addr.disp() == 0, "cas must take a zero displacement");
2607
2608  // At this point we know that the header has the bias pattern and
2609  // that we are not the bias owner in the current epoch. We need to
2610  // figure out more details about the state of the header in order to
2611  // know what operations can be legally performed on the object's
2612  // header.
2613
2614  // If the low three bits in the xor result aren't clear, that means
2615  // the prototype header is no longer biased and we have to revoke
2616  // the bias on this object.
2617  btst(markOopDesc::biased_lock_mask_in_place, temp_reg);
2618  brx(Assembler::notZero, false, Assembler::pn, try_revoke_bias);
2619
2620  // Biasing is still enabled for this data type. See whether the
2621  // epoch of the current bias is still valid, meaning that the epoch
2622  // bits of the mark word are equal to the epoch bits of the
2623  // prototype header. (Note that the prototype header's epoch bits
2624  // only change at a safepoint.) If not, attempt to rebias the object
2625  // toward the current thread. Note that we must be absolutely sure
2626  // that the current epoch is invalid in order to do this because
2627  // otherwise the manipulations it performs on the mark word are
2628  // illegal.
2629  delayed()->btst(markOopDesc::epoch_mask_in_place, temp_reg);
2630  brx(Assembler::notZero, false, Assembler::pn, try_rebias);
2631
2632  // The epoch of the current bias is still valid but we know nothing
2633  // about the owner; it might be set or it might be clear. Try to
2634  // acquire the bias of the object using an atomic operation. If this
2635  // fails we will go in to the runtime to revoke the object's bias.
2636  // Note that we first construct the presumed unbiased header so we
2637  // don't accidentally blow away another thread's valid bias.
2638  delayed()->and3(mark_reg,
2639                  markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place,
2640                  mark_reg);
2641  or3(G2_thread, mark_reg, temp_reg);
2642  cas_ptr(mark_addr.base(), mark_reg, temp_reg);
2643  // If the biasing toward our thread failed, this means that
2644  // another thread succeeded in biasing it toward itself and we
2645  // need to revoke that bias. The revocation will occur in the
2646  // interpreter runtime in the slow case.
2647  cmp(mark_reg, temp_reg);
2648  if (counters != NULL) {
2649    cond_inc(Assembler::zero, (address) counters->anonymously_biased_lock_entry_count_addr(), mark_reg, temp_reg);
2650  }
2651  if (slow_case != NULL) {
2652    brx(Assembler::notEqual, true, Assembler::pn, *slow_case);
2653    delayed()->nop();
2654  }
2655  ba_short(done);
2656
2657  bind(try_rebias);
2658  // At this point we know the epoch has expired, meaning that the
2659  // current "bias owner", if any, is actually invalid. Under these
2660  // circumstances _only_, we are allowed to use the current header's
2661  // value as the comparison value when doing the cas to acquire the
2662  // bias in the current epoch. In other words, we allow transfer of
2663  // the bias from one thread to another directly in this situation.
2664  //
2665  // FIXME: due to a lack of registers we currently blow away the age
2666  // bits in this situation. Should attempt to preserve them.
2667  load_klass(obj_reg, temp_reg);
2668  ld_ptr(Address(temp_reg, Klass::prototype_header_offset()), temp_reg);
2669  or3(G2_thread, temp_reg, temp_reg);
2670  cas_ptr(mark_addr.base(), mark_reg, temp_reg);
2671  // If the biasing toward our thread failed, this means that
2672  // another thread succeeded in biasing it toward itself and we
2673  // need to revoke that bias. The revocation will occur in the
2674  // interpreter runtime in the slow case.
2675  cmp(mark_reg, temp_reg);
2676  if (counters != NULL) {
2677    cond_inc(Assembler::zero, (address) counters->rebiased_lock_entry_count_addr(), mark_reg, temp_reg);
2678  }
2679  if (slow_case != NULL) {
2680    brx(Assembler::notEqual, true, Assembler::pn, *slow_case);
2681    delayed()->nop();
2682  }
2683  ba_short(done);
2684
2685  bind(try_revoke_bias);
2686  // The prototype mark in the klass doesn't have the bias bit set any
2687  // more, indicating that objects of this data type are not supposed
2688  // to be biased any more. We are going to try to reset the mark of
2689  // this object to the prototype value and fall through to the
2690  // CAS-based locking scheme. Note that if our CAS fails, it means
2691  // that another thread raced us for the privilege of revoking the
2692  // bias of this particular object, so it's okay to continue in the
2693  // normal locking code.
2694  //
2695  // FIXME: due to a lack of registers we currently blow away the age
2696  // bits in this situation. Should attempt to preserve them.
2697  load_klass(obj_reg, temp_reg);
2698  ld_ptr(Address(temp_reg, Klass::prototype_header_offset()), temp_reg);
2699  cas_ptr(mark_addr.base(), mark_reg, temp_reg);
2700  // Fall through to the normal CAS-based lock, because no matter what
2701  // the result of the above CAS, some thread must have succeeded in
2702  // removing the bias bit from the object's header.
2703  if (counters != NULL) {
2704    cmp(mark_reg, temp_reg);
2705    cond_inc(Assembler::zero, (address) counters->revoked_lock_entry_count_addr(), mark_reg, temp_reg);
2706  }
2707
2708  bind(cas_label);
2709}
2710
2711void MacroAssembler::biased_locking_exit (Address mark_addr, Register temp_reg, Label& done,
2712                                          bool allow_delay_slot_filling) {
2713  // Check for biased locking unlock case, which is a no-op
2714  // Note: we do not have to check the thread ID for two reasons.
2715  // First, the interpreter checks for IllegalMonitorStateException at
2716  // a higher level. Second, if the bias was revoked while we held the
2717  // lock, the object could not be rebiased toward another thread, so
2718  // the bias bit would be clear.
2719  ld_ptr(mark_addr, temp_reg);
2720  and3(temp_reg, markOopDesc::biased_lock_mask_in_place, temp_reg);
2721  cmp(temp_reg, markOopDesc::biased_lock_pattern);
2722  brx(Assembler::equal, allow_delay_slot_filling, Assembler::pt, done);
2723  delayed();
2724  if (!allow_delay_slot_filling) {
2725    nop();
2726  }
2727}
2728
2729
2730// compiler_lock_object() and compiler_unlock_object() are direct transliterations
2731// of i486.ad fast_lock() and fast_unlock().  See those methods for detailed comments.
2732// The code could be tightened up considerably.
2733//
2734// box->dhw disposition - post-conditions at DONE_LABEL.
2735// -   Successful inflated lock:  box->dhw != 0.
2736//     Any non-zero value suffices.
2737//     Consider G2_thread, rsp, boxReg, or markOopDesc::unused_mark()
2738// -   Successful Stack-lock: box->dhw == mark.
2739//     box->dhw must contain the displaced mark word value
2740// -   Failure -- icc.ZFlag == 0 and box->dhw is undefined.
2741//     The slow-path fast_enter() and slow_enter() operators
2742//     are responsible for setting box->dhw = NonZero (typically markOopDesc::unused_mark()).
2743// -   Biased: box->dhw is undefined
2744//
2745// SPARC refworkload performance - specifically jetstream and scimark - are
2746// extremely sensitive to the size of the code emitted by compiler_lock_object
2747// and compiler_unlock_object.  Critically, the key factor is code size, not path
2748// length.  (Simply experiments to pad CLO with unexecuted NOPs demonstrte the
2749// effect).
2750
2751
2752void MacroAssembler::compiler_lock_object(Register Roop, Register Rmark,
2753                                          Register Rbox, Register Rscratch,
2754                                          BiasedLockingCounters* counters,
2755                                          bool try_bias) {
2756   Address mark_addr(Roop, oopDesc::mark_offset_in_bytes());
2757
2758   verify_oop(Roop);
2759   Label done ;
2760
2761   if (counters != NULL) {
2762     inc_counter((address) counters->total_entry_count_addr(), Rmark, Rscratch);
2763   }
2764
2765   if (EmitSync & 1) {
2766     mov(3, Rscratch);
2767     st_ptr(Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
2768     cmp(SP, G0);
2769     return ;
2770   }
2771
2772   if (EmitSync & 2) {
2773
2774     // Fetch object's markword
2775     ld_ptr(mark_addr, Rmark);
2776
2777     if (try_bias) {
2778        biased_locking_enter(Roop, Rmark, Rscratch, done, NULL, counters);
2779     }
2780
2781     // Save Rbox in Rscratch to be used for the cas operation
2782     mov(Rbox, Rscratch);
2783
2784     // set Rmark to markOop | markOopDesc::unlocked_value
2785     or3(Rmark, markOopDesc::unlocked_value, Rmark);
2786
2787     // Initialize the box.  (Must happen before we update the object mark!)
2788     st_ptr(Rmark, Rbox, BasicLock::displaced_header_offset_in_bytes());
2789
2790     // compare object markOop with Rmark and if equal exchange Rscratch with object markOop
2791     assert(mark_addr.disp() == 0, "cas must take a zero displacement");
2792     cas_ptr(mark_addr.base(), Rmark, Rscratch);
2793
2794     // if compare/exchange succeeded we found an unlocked object and we now have locked it
2795     // hence we are done
2796     cmp(Rmark, Rscratch);
2797#ifdef _LP64
2798     sub(Rscratch, STACK_BIAS, Rscratch);
2799#endif
2800     brx(Assembler::equal, false, Assembler::pt, done);
2801     delayed()->sub(Rscratch, SP, Rscratch);  //pull next instruction into delay slot
2802
2803     // we did not find an unlocked object so see if this is a recursive case
2804     // sub(Rscratch, SP, Rscratch);
2805     assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
2806     andcc(Rscratch, 0xfffff003, Rscratch);
2807     st_ptr(Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
2808     bind (done);
2809     return ;
2810   }
2811
2812   Label Egress ;
2813
2814   if (EmitSync & 256) {
2815      Label IsInflated ;
2816
2817      ld_ptr(mark_addr, Rmark);           // fetch obj->mark
2818      // Triage: biased, stack-locked, neutral, inflated
2819      if (try_bias) {
2820        biased_locking_enter(Roop, Rmark, Rscratch, done, NULL, counters);
2821        // Invariant: if control reaches this point in the emitted stream
2822        // then Rmark has not been modified.
2823      }
2824
2825      // Store mark into displaced mark field in the on-stack basic-lock "box"
2826      // Critically, this must happen before the CAS
2827      // Maximize the ST-CAS distance to minimize the ST-before-CAS penalty.
2828      st_ptr(Rmark, Rbox, BasicLock::displaced_header_offset_in_bytes());
2829      andcc(Rmark, 2, G0);
2830      brx(Assembler::notZero, false, Assembler::pn, IsInflated);
2831      delayed()->
2832
2833      // Try stack-lock acquisition.
2834      // Beware: the 1st instruction is in a delay slot
2835      mov(Rbox,  Rscratch);
2836      or3(Rmark, markOopDesc::unlocked_value, Rmark);
2837      assert(mark_addr.disp() == 0, "cas must take a zero displacement");
2838      cas_ptr(mark_addr.base(), Rmark, Rscratch);
2839      cmp(Rmark, Rscratch);
2840      brx(Assembler::equal, false, Assembler::pt, done);
2841      delayed()->sub(Rscratch, SP, Rscratch);
2842
2843      // Stack-lock attempt failed - check for recursive stack-lock.
2844      // See the comments below about how we might remove this case.
2845#ifdef _LP64
2846      sub(Rscratch, STACK_BIAS, Rscratch);
2847#endif
2848      assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
2849      andcc(Rscratch, 0xfffff003, Rscratch);
2850      br(Assembler::always, false, Assembler::pt, done);
2851      delayed()-> st_ptr(Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
2852
2853      bind(IsInflated);
2854      if (EmitSync & 64) {
2855         // If m->owner != null goto IsLocked
2856         // Pessimistic form: Test-and-CAS vs CAS
2857         // The optimistic form avoids RTS->RTO cache line upgrades.
2858         ld_ptr(Rmark, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner), Rscratch);
2859         andcc(Rscratch, Rscratch, G0);
2860         brx(Assembler::notZero, false, Assembler::pn, done);
2861         delayed()->nop();
2862         // m->owner == null : it's unlocked.
2863      }
2864
2865      // Try to CAS m->owner from null to Self
2866      // Invariant: if we acquire the lock then _recursions should be 0.
2867      add(Rmark, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner), Rmark);
2868      mov(G2_thread, Rscratch);
2869      cas_ptr(Rmark, G0, Rscratch);
2870      cmp(Rscratch, G0);
2871      // Intentional fall-through into done
2872   } else {
2873      // Aggressively avoid the Store-before-CAS penalty
2874      // Defer the store into box->dhw until after the CAS
2875      Label IsInflated, Recursive ;
2876
2877// Anticipate CAS -- Avoid RTS->RTO upgrade
2878// prefetch (mark_addr, Assembler::severalWritesAndPossiblyReads);
2879
2880      ld_ptr(mark_addr, Rmark);           // fetch obj->mark
2881      // Triage: biased, stack-locked, neutral, inflated
2882
2883      if (try_bias) {
2884        biased_locking_enter(Roop, Rmark, Rscratch, done, NULL, counters);
2885        // Invariant: if control reaches this point in the emitted stream
2886        // then Rmark has not been modified.
2887      }
2888      andcc(Rmark, 2, G0);
2889      brx(Assembler::notZero, false, Assembler::pn, IsInflated);
2890      delayed()->                         // Beware - dangling delay-slot
2891
2892      // Try stack-lock acquisition.
2893      // Transiently install BUSY (0) encoding in the mark word.
2894      // if the CAS of 0 into the mark was successful then we execute:
2895      //   ST box->dhw  = mark   -- save fetched mark in on-stack basiclock box
2896      //   ST obj->mark = box    -- overwrite transient 0 value
2897      // This presumes TSO, of course.
2898
2899      mov(0, Rscratch);
2900      or3(Rmark, markOopDesc::unlocked_value, Rmark);
2901      assert(mark_addr.disp() == 0, "cas must take a zero displacement");
2902      cas_ptr(mark_addr.base(), Rmark, Rscratch);
2903// prefetch (mark_addr, Assembler::severalWritesAndPossiblyReads);
2904      cmp(Rscratch, Rmark);
2905      brx(Assembler::notZero, false, Assembler::pn, Recursive);
2906      delayed()->st_ptr(Rmark, Rbox, BasicLock::displaced_header_offset_in_bytes());
2907      if (counters != NULL) {
2908        cond_inc(Assembler::equal, (address) counters->fast_path_entry_count_addr(), Rmark, Rscratch);
2909      }
2910      ba(done);
2911      delayed()->st_ptr(Rbox, mark_addr);
2912
2913      bind(Recursive);
2914      // Stack-lock attempt failed - check for recursive stack-lock.
2915      // Tests show that we can remove the recursive case with no impact
2916      // on refworkload 0.83.  If we need to reduce the size of the code
2917      // emitted by compiler_lock_object() the recursive case is perfect
2918      // candidate.
2919      //
2920      // A more extreme idea is to always inflate on stack-lock recursion.
2921      // This lets us eliminate the recursive checks in compiler_lock_object
2922      // and compiler_unlock_object and the (box->dhw == 0) encoding.
2923      // A brief experiment - requiring changes to synchronizer.cpp, interpreter,
2924      // and showed a performance *increase*.  In the same experiment I eliminated
2925      // the fast-path stack-lock code from the interpreter and always passed
2926      // control to the "slow" operators in synchronizer.cpp.
2927
2928      // RScratch contains the fetched obj->mark value from the failed CAS.
2929#ifdef _LP64
2930      sub(Rscratch, STACK_BIAS, Rscratch);
2931#endif
2932      sub(Rscratch, SP, Rscratch);
2933      assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
2934      andcc(Rscratch, 0xfffff003, Rscratch);
2935      if (counters != NULL) {
2936        // Accounting needs the Rscratch register
2937        st_ptr(Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
2938        cond_inc(Assembler::equal, (address) counters->fast_path_entry_count_addr(), Rmark, Rscratch);
2939        ba_short(done);
2940      } else {
2941        ba(done);
2942        delayed()->st_ptr(Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
2943      }
2944
2945      bind   (IsInflated);
2946
2947      // Try to CAS m->owner from null to Self
2948      // Invariant: if we acquire the lock then _recursions should be 0.
2949      add(Rmark, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner), Rmark);
2950      mov(G2_thread, Rscratch);
2951      cas_ptr(Rmark, G0, Rscratch);
2952      andcc(Rscratch, Rscratch, G0);             // set ICCs for done: icc.zf iff success
2953      // set icc.zf : 1=success 0=failure
2954      // ST box->displaced_header = NonZero.
2955      // Any non-zero value suffices:
2956      //    markOopDesc::unused_mark(), G2_thread, RBox, RScratch, rsp, etc.
2957      st_ptr(Rbox, Rbox, BasicLock::displaced_header_offset_in_bytes());
2958      // Intentional fall-through into done
2959   }
2960
2961   bind   (done);
2962}
2963
2964void MacroAssembler::compiler_unlock_object(Register Roop, Register Rmark,
2965                                            Register Rbox, Register Rscratch,
2966                                            bool try_bias) {
2967   Address mark_addr(Roop, oopDesc::mark_offset_in_bytes());
2968
2969   Label done ;
2970
2971   if (EmitSync & 4) {
2972     cmp(SP, G0);
2973     return ;
2974   }
2975
2976   if (EmitSync & 8) {
2977     if (try_bias) {
2978        biased_locking_exit(mark_addr, Rscratch, done);
2979     }
2980
2981     // Test first if it is a fast recursive unlock
2982     ld_ptr(Rbox, BasicLock::displaced_header_offset_in_bytes(), Rmark);
2983     br_null_short(Rmark, Assembler::pt, done);
2984
2985     // Check if it is still a light weight lock, this is is true if we see
2986     // the stack address of the basicLock in the markOop of the object
2987     assert(mark_addr.disp() == 0, "cas must take a zero displacement");
2988     cas_ptr(mark_addr.base(), Rbox, Rmark);
2989     ba(done);
2990     delayed()->cmp(Rbox, Rmark);
2991     bind(done);
2992     return ;
2993   }
2994
2995   // Beware ... If the aggregate size of the code emitted by CLO and CUO is
2996   // is too large performance rolls abruptly off a cliff.
2997   // This could be related to inlining policies, code cache management, or
2998   // I$ effects.
2999   Label LStacked ;
3000
3001   if (try_bias) {
3002      // TODO: eliminate redundant LDs of obj->mark
3003      biased_locking_exit(mark_addr, Rscratch, done);
3004   }
3005
3006   ld_ptr(Roop, oopDesc::mark_offset_in_bytes(), Rmark);
3007   ld_ptr(Rbox, BasicLock::displaced_header_offset_in_bytes(), Rscratch);
3008   andcc(Rscratch, Rscratch, G0);
3009   brx(Assembler::zero, false, Assembler::pn, done);
3010   delayed()->nop();      // consider: relocate fetch of mark, above, into this DS
3011   andcc(Rmark, 2, G0);
3012   brx(Assembler::zero, false, Assembler::pt, LStacked);
3013   delayed()->nop();
3014
3015   // It's inflated
3016   // Conceptually we need a #loadstore|#storestore "release" MEMBAR before
3017   // the ST of 0 into _owner which releases the lock.  This prevents loads
3018   // and stores within the critical section from reordering (floating)
3019   // past the store that releases the lock.  But TSO is a strong memory model
3020   // and that particular flavor of barrier is a noop, so we can safely elide it.
3021   // Note that we use 1-0 locking by default for the inflated case.  We
3022   // close the resultant (and rare) race by having contended threads in
3023   // monitorenter periodically poll _owner.
3024
3025   if (EmitSync & 1024) {
3026     // Emit code to check that _owner == Self
3027     // We could fold the _owner test into subsequent code more efficiently
3028     // than using a stand-alone check, but since _owner checking is off by
3029     // default we don't bother. We also might consider predicating the
3030     // _owner==Self check on Xcheck:jni or running on a debug build.
3031     ld_ptr(Address(Rmark, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), Rscratch);
3032     orcc(Rscratch, G0, G0);
3033     brx(Assembler::notZero, false, Assembler::pn, done);
3034     delayed()->nop();
3035   }
3036
3037   if (EmitSync & 512) {
3038     // classic lock release code absent 1-0 locking
3039     //   m->Owner = null;
3040     //   membar #storeload
3041     //   if (m->cxq|m->EntryList) == null goto Success
3042     //   if (m->succ != null) goto Success
3043     //   if CAS (&m->Owner,0,Self) != 0 goto Success
3044     //   goto SlowPath
3045     ld_ptr(Address(Rmark, OM_OFFSET_NO_MONITOR_VALUE_TAG(recursions)), Rbox);
3046     orcc(Rbox, G0, G0);
3047     brx(Assembler::notZero, false, Assembler::pn, done);
3048     delayed()->nop();
3049     st_ptr(G0, Address(Rmark, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
3050     if (os::is_MP()) { membar(StoreLoad); }
3051     ld_ptr(Address(Rmark, OM_OFFSET_NO_MONITOR_VALUE_TAG(EntryList)), Rscratch);
3052     ld_ptr(Address(Rmark, OM_OFFSET_NO_MONITOR_VALUE_TAG(cxq)), Rbox);
3053     orcc(Rbox, Rscratch, G0);
3054     brx(Assembler::zero, false, Assembler::pt, done);
3055     delayed()->
3056     ld_ptr(Address(Rmark, OM_OFFSET_NO_MONITOR_VALUE_TAG(succ)), Rscratch);
3057     andcc(Rscratch, Rscratch, G0);
3058     brx(Assembler::notZero, false, Assembler::pt, done);
3059     delayed()->andcc(G0, G0, G0);
3060     add(Rmark, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner), Rmark);
3061     mov(G2_thread, Rscratch);
3062     cas_ptr(Rmark, G0, Rscratch);
3063     cmp(Rscratch, G0);
3064     // invert icc.zf and goto done
3065     brx(Assembler::notZero, false, Assembler::pt, done);
3066     delayed()->cmp(G0, G0);
3067     br(Assembler::always, false, Assembler::pt, done);
3068     delayed()->cmp(G0, 1);
3069   } else {
3070     // 1-0 form : avoids CAS and MEMBAR in the common case
3071     // Do not bother to ratify that m->Owner == Self.
3072     ld_ptr(Address(Rmark, OM_OFFSET_NO_MONITOR_VALUE_TAG(recursions)), Rbox);
3073     orcc(Rbox, G0, G0);
3074     brx(Assembler::notZero, false, Assembler::pn, done);
3075     delayed()->
3076     ld_ptr(Address(Rmark, OM_OFFSET_NO_MONITOR_VALUE_TAG(EntryList)), Rscratch);
3077     ld_ptr(Address(Rmark, OM_OFFSET_NO_MONITOR_VALUE_TAG(cxq)), Rbox);
3078     orcc(Rbox, Rscratch, G0);
3079     if (EmitSync & 16384) {
3080       // As an optional optimization, if (EntryList|cxq) != null and _succ is null then
3081       // we should transfer control directly to the slow-path.
3082       // This test makes the reacquire operation below very infrequent.
3083       // The logic is equivalent to :
3084       //   if (cxq|EntryList) == null : Owner=null; goto Success
3085       //   if succ == null : goto SlowPath
3086       //   Owner=null; membar #storeload
3087       //   if succ != null : goto Success
3088       //   if CAS(&Owner,null,Self) != null goto Success
3089       //   goto SlowPath
3090       brx(Assembler::zero, true, Assembler::pt, done);
3091       delayed()->
3092       st_ptr(G0, Address(Rmark, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
3093       ld_ptr(Address(Rmark, OM_OFFSET_NO_MONITOR_VALUE_TAG(succ)), Rscratch);
3094       andcc(Rscratch, Rscratch, G0) ;
3095       brx(Assembler::zero, false, Assembler::pt, done);
3096       delayed()->orcc(G0, 1, G0);
3097       st_ptr(G0, Address(Rmark, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
3098     } else {
3099       brx(Assembler::zero, false, Assembler::pt, done);
3100       delayed()->
3101       st_ptr(G0, Address(Rmark, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
3102     }
3103     if (os::is_MP()) { membar(StoreLoad); }
3104     // Check that _succ is (or remains) non-zero
3105     ld_ptr(Address(Rmark, OM_OFFSET_NO_MONITOR_VALUE_TAG(succ)), Rscratch);
3106     andcc(Rscratch, Rscratch, G0);
3107     brx(Assembler::notZero, false, Assembler::pt, done);
3108     delayed()->andcc(G0, G0, G0);
3109     add(Rmark, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner), Rmark);
3110     mov(G2_thread, Rscratch);
3111     cas_ptr(Rmark, G0, Rscratch);
3112     cmp(Rscratch, G0);
3113     // invert icc.zf and goto done
3114     // A slightly better v8+/v9 idiom would be the following:
3115     //   movrnz Rscratch,1,Rscratch
3116     //   ba done
3117     //   xorcc Rscratch,1,G0
3118     // In v8+ mode the idiom would be valid IFF Rscratch was a G or O register
3119     brx(Assembler::notZero, false, Assembler::pt, done);
3120     delayed()->cmp(G0, G0);
3121     br(Assembler::always, false, Assembler::pt, done);
3122     delayed()->cmp(G0, 1);
3123   }
3124
3125   bind   (LStacked);
3126   // Consider: we could replace the expensive CAS in the exit
3127   // path with a simple ST of the displaced mark value fetched from
3128   // the on-stack basiclock box.  That admits a race where a thread T2
3129   // in the slow lock path -- inflating with monitor M -- could race a
3130   // thread T1 in the fast unlock path, resulting in a missed wakeup for T2.
3131   // More precisely T1 in the stack-lock unlock path could "stomp" the
3132   // inflated mark value M installed by T2, resulting in an orphan
3133   // object monitor M and T2 becoming stranded.  We can remedy that situation
3134   // by having T2 periodically poll the object's mark word using timed wait
3135   // operations.  If T2 discovers that a stomp has occurred it vacates
3136   // the monitor M and wakes any other threads stranded on the now-orphan M.
3137   // In addition the monitor scavenger, which performs deflation,
3138   // would also need to check for orpan monitors and stranded threads.
3139   //
3140   // Finally, inflation is also used when T2 needs to assign a hashCode
3141   // to O and O is stack-locked by T1.  The "stomp" race could cause
3142   // an assigned hashCode value to be lost.  We can avoid that condition
3143   // and provide the necessary hashCode stability invariants by ensuring
3144   // that hashCode generation is idempotent between copying GCs.
3145   // For example we could compute the hashCode of an object O as
3146   // O's heap address XOR some high quality RNG value that is refreshed
3147   // at GC-time.  The monitor scavenger would install the hashCode
3148   // found in any orphan monitors.  Again, the mechanism admits a
3149   // lost-update "stomp" WAW race but detects and recovers as needed.
3150   //
3151   // A prototype implementation showed excellent results, although
3152   // the scavenger and timeout code was rather involved.
3153
3154   cas_ptr(mark_addr.base(), Rbox, Rscratch);
3155   cmp(Rbox, Rscratch);
3156   // Intentional fall through into done ...
3157
3158   bind(done);
3159}
3160
3161
3162
3163void MacroAssembler::print_CPU_state() {
3164  // %%%%% need to implement this
3165}
3166
3167void MacroAssembler::verify_FPU(int stack_depth, const char* s) {
3168  // %%%%% need to implement this
3169}
3170
3171void MacroAssembler::push_IU_state() {
3172  // %%%%% need to implement this
3173}
3174
3175
3176void MacroAssembler::pop_IU_state() {
3177  // %%%%% need to implement this
3178}
3179
3180
3181void MacroAssembler::push_FPU_state() {
3182  // %%%%% need to implement this
3183}
3184
3185
3186void MacroAssembler::pop_FPU_state() {
3187  // %%%%% need to implement this
3188}
3189
3190
3191void MacroAssembler::push_CPU_state() {
3192  // %%%%% need to implement this
3193}
3194
3195
3196void MacroAssembler::pop_CPU_state() {
3197  // %%%%% need to implement this
3198}
3199
3200
3201
3202void MacroAssembler::verify_tlab() {
3203#ifdef ASSERT
3204  if (UseTLAB && VerifyOops) {
3205    Label next, next2, ok;
3206    Register t1 = L0;
3207    Register t2 = L1;
3208    Register t3 = L2;
3209
3210    save_frame(0);
3211    ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), t1);
3212    ld_ptr(G2_thread, in_bytes(JavaThread::tlab_start_offset()), t2);
3213    or3(t1, t2, t3);
3214    cmp_and_br_short(t1, t2, Assembler::greaterEqual, Assembler::pn, next);
3215    STOP("assert(top >= start)");
3216    should_not_reach_here();
3217
3218    bind(next);
3219    ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), t1);
3220    ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), t2);
3221    or3(t3, t2, t3);
3222    cmp_and_br_short(t1, t2, Assembler::lessEqual, Assembler::pn, next2);
3223    STOP("assert(top <= end)");
3224    should_not_reach_here();
3225
3226    bind(next2);
3227    and3(t3, MinObjAlignmentInBytesMask, t3);
3228    cmp_and_br_short(t3, 0, Assembler::lessEqual, Assembler::pn, ok);
3229    STOP("assert(aligned)");
3230    should_not_reach_here();
3231
3232    bind(ok);
3233    restore();
3234  }
3235#endif
3236}
3237
3238
3239void MacroAssembler::eden_allocate(
3240  Register obj,                        // result: pointer to object after successful allocation
3241  Register var_size_in_bytes,          // object size in bytes if unknown at compile time; invalid otherwise
3242  int      con_size_in_bytes,          // object size in bytes if   known at compile time
3243  Register t1,                         // temp register
3244  Register t2,                         // temp register
3245  Label&   slow_case                   // continuation point if fast allocation fails
3246){
3247  // make sure arguments make sense
3248  assert_different_registers(obj, var_size_in_bytes, t1, t2);
3249  assert(0 <= con_size_in_bytes && Assembler::is_simm13(con_size_in_bytes), "illegal object size");
3250  assert((con_size_in_bytes & MinObjAlignmentInBytesMask) == 0, "object size is not multiple of alignment");
3251
3252  if (!Universe::heap()->supports_inline_contig_alloc()) {
3253    // No allocation in the shared eden.
3254    ba(slow_case);
3255    delayed()->nop();
3256  } else {
3257    // get eden boundaries
3258    // note: we need both top & top_addr!
3259    const Register top_addr = t1;
3260    const Register end      = t2;
3261
3262    CollectedHeap* ch = Universe::heap();
3263    set((intx)ch->top_addr(), top_addr);
3264    intx delta = (intx)ch->end_addr() - (intx)ch->top_addr();
3265    ld_ptr(top_addr, delta, end);
3266    ld_ptr(top_addr, 0, obj);
3267
3268    // try to allocate
3269    Label retry;
3270    bind(retry);
3271#ifdef ASSERT
3272    // make sure eden top is properly aligned
3273    {
3274      Label L;
3275      btst(MinObjAlignmentInBytesMask, obj);
3276      br(Assembler::zero, false, Assembler::pt, L);
3277      delayed()->nop();
3278      STOP("eden top is not properly aligned");
3279      bind(L);
3280    }
3281#endif // ASSERT
3282    const Register free = end;
3283    sub(end, obj, free);                                   // compute amount of free space
3284    if (var_size_in_bytes->is_valid()) {
3285      // size is unknown at compile time
3286      cmp(free, var_size_in_bytes);
3287      br(Assembler::lessUnsigned, false, Assembler::pn, slow_case); // if there is not enough space go the slow case
3288      delayed()->add(obj, var_size_in_bytes, end);
3289    } else {
3290      // size is known at compile time
3291      cmp(free, con_size_in_bytes);
3292      br(Assembler::lessUnsigned, false, Assembler::pn, slow_case); // if there is not enough space go the slow case
3293      delayed()->add(obj, con_size_in_bytes, end);
3294    }
3295    // Compare obj with the value at top_addr; if still equal, swap the value of
3296    // end with the value at top_addr. If not equal, read the value at top_addr
3297    // into end.
3298    cas_ptr(top_addr, obj, end);
3299    // if someone beat us on the allocation, try again, otherwise continue
3300    cmp(obj, end);
3301    brx(Assembler::notEqual, false, Assembler::pn, retry);
3302    delayed()->mov(end, obj);                              // nop if successfull since obj == end
3303
3304#ifdef ASSERT
3305    // make sure eden top is properly aligned
3306    {
3307      Label L;
3308      const Register top_addr = t1;
3309
3310      set((intx)ch->top_addr(), top_addr);
3311      ld_ptr(top_addr, 0, top_addr);
3312      btst(MinObjAlignmentInBytesMask, top_addr);
3313      br(Assembler::zero, false, Assembler::pt, L);
3314      delayed()->nop();
3315      STOP("eden top is not properly aligned");
3316      bind(L);
3317    }
3318#endif // ASSERT
3319  }
3320}
3321
3322
3323void MacroAssembler::tlab_allocate(
3324  Register obj,                        // result: pointer to object after successful allocation
3325  Register var_size_in_bytes,          // object size in bytes if unknown at compile time; invalid otherwise
3326  int      con_size_in_bytes,          // object size in bytes if   known at compile time
3327  Register t1,                         // temp register
3328  Label&   slow_case                   // continuation point if fast allocation fails
3329){
3330  // make sure arguments make sense
3331  assert_different_registers(obj, var_size_in_bytes, t1);
3332  assert(0 <= con_size_in_bytes && is_simm13(con_size_in_bytes), "illegal object size");
3333  assert((con_size_in_bytes & MinObjAlignmentInBytesMask) == 0, "object size is not multiple of alignment");
3334
3335  const Register free  = t1;
3336
3337  verify_tlab();
3338
3339  ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), obj);
3340
3341  // calculate amount of free space
3342  ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), free);
3343  sub(free, obj, free);
3344
3345  Label done;
3346  if (var_size_in_bytes == noreg) {
3347    cmp(free, con_size_in_bytes);
3348  } else {
3349    cmp(free, var_size_in_bytes);
3350  }
3351  br(Assembler::less, false, Assembler::pn, slow_case);
3352  // calculate the new top pointer
3353  if (var_size_in_bytes == noreg) {
3354    delayed()->add(obj, con_size_in_bytes, free);
3355  } else {
3356    delayed()->add(obj, var_size_in_bytes, free);
3357  }
3358
3359  bind(done);
3360
3361#ifdef ASSERT
3362  // make sure new free pointer is properly aligned
3363  {
3364    Label L;
3365    btst(MinObjAlignmentInBytesMask, free);
3366    br(Assembler::zero, false, Assembler::pt, L);
3367    delayed()->nop();
3368    STOP("updated TLAB free is not properly aligned");
3369    bind(L);
3370  }
3371#endif // ASSERT
3372
3373  // update the tlab top pointer
3374  st_ptr(free, G2_thread, in_bytes(JavaThread::tlab_top_offset()));
3375  verify_tlab();
3376}
3377
3378
3379void MacroAssembler::tlab_refill(Label& retry, Label& try_eden, Label& slow_case) {
3380  Register top = O0;
3381  Register t1 = G1;
3382  Register t2 = G3;
3383  Register t3 = O1;
3384  assert_different_registers(top, t1, t2, t3, G4, G5 /* preserve G4 and G5 */);
3385  Label do_refill, discard_tlab;
3386
3387  if (!Universe::heap()->supports_inline_contig_alloc()) {
3388    // No allocation in the shared eden.
3389    ba(slow_case);
3390    delayed()->nop();
3391  }
3392
3393  ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), top);
3394  ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), t1);
3395  ld_ptr(G2_thread, in_bytes(JavaThread::tlab_refill_waste_limit_offset()), t2);
3396
3397  // calculate amount of free space
3398  sub(t1, top, t1);
3399  srl_ptr(t1, LogHeapWordSize, t1);
3400
3401  // Retain tlab and allocate object in shared space if
3402  // the amount free in the tlab is too large to discard.
3403  cmp(t1, t2);
3404  brx(Assembler::lessEqual, false, Assembler::pt, discard_tlab);
3405
3406  // increment waste limit to prevent getting stuck on this slow path
3407  delayed()->add(t2, ThreadLocalAllocBuffer::refill_waste_limit_increment(), t2);
3408  st_ptr(t2, G2_thread, in_bytes(JavaThread::tlab_refill_waste_limit_offset()));
3409  if (TLABStats) {
3410    // increment number of slow_allocations
3411    ld(G2_thread, in_bytes(JavaThread::tlab_slow_allocations_offset()), t2);
3412    add(t2, 1, t2);
3413    stw(t2, G2_thread, in_bytes(JavaThread::tlab_slow_allocations_offset()));
3414  }
3415  ba(try_eden);
3416  delayed()->nop();
3417
3418  bind(discard_tlab);
3419  if (TLABStats) {
3420    // increment number of refills
3421    ld(G2_thread, in_bytes(JavaThread::tlab_number_of_refills_offset()), t2);
3422    add(t2, 1, t2);
3423    stw(t2, G2_thread, in_bytes(JavaThread::tlab_number_of_refills_offset()));
3424    // accumulate wastage
3425    ld(G2_thread, in_bytes(JavaThread::tlab_fast_refill_waste_offset()), t2);
3426    add(t2, t1, t2);
3427    stw(t2, G2_thread, in_bytes(JavaThread::tlab_fast_refill_waste_offset()));
3428  }
3429
3430  // if tlab is currently allocated (top or end != null) then
3431  // fill [top, end + alignment_reserve) with array object
3432  br_null_short(top, Assembler::pn, do_refill);
3433
3434  set((intptr_t)markOopDesc::prototype()->copy_set_hash(0x2), t2);
3435  st_ptr(t2, top, oopDesc::mark_offset_in_bytes()); // set up the mark word
3436  // set klass to intArrayKlass
3437  sub(t1, typeArrayOopDesc::header_size(T_INT), t1);
3438  add(t1, ThreadLocalAllocBuffer::alignment_reserve(), t1);
3439  sll_ptr(t1, log2_intptr(HeapWordSize/sizeof(jint)), t1);
3440  st(t1, top, arrayOopDesc::length_offset_in_bytes());
3441  set((intptr_t)Universe::intArrayKlassObj_addr(), t2);
3442  ld_ptr(t2, 0, t2);
3443  // store klass last.  concurrent gcs assumes klass length is valid if
3444  // klass field is not null.
3445  store_klass(t2, top);
3446  verify_oop(top);
3447
3448  ld_ptr(G2_thread, in_bytes(JavaThread::tlab_start_offset()), t1);
3449  sub(top, t1, t1); // size of tlab's allocated portion
3450  incr_allocated_bytes(t1, t2, t3);
3451
3452  // refill the tlab with an eden allocation
3453  bind(do_refill);
3454  ld_ptr(G2_thread, in_bytes(JavaThread::tlab_size_offset()), t1);
3455  sll_ptr(t1, LogHeapWordSize, t1);
3456  // allocate new tlab, address returned in top
3457  eden_allocate(top, t1, 0, t2, t3, slow_case);
3458
3459  st_ptr(top, G2_thread, in_bytes(JavaThread::tlab_start_offset()));
3460  st_ptr(top, G2_thread, in_bytes(JavaThread::tlab_top_offset()));
3461#ifdef ASSERT
3462  // check that tlab_size (t1) is still valid
3463  {
3464    Label ok;
3465    ld_ptr(G2_thread, in_bytes(JavaThread::tlab_size_offset()), t2);
3466    sll_ptr(t2, LogHeapWordSize, t2);
3467    cmp_and_br_short(t1, t2, Assembler::equal, Assembler::pt, ok);
3468    STOP("assert(t1 == tlab_size)");
3469    should_not_reach_here();
3470
3471    bind(ok);
3472  }
3473#endif // ASSERT
3474  add(top, t1, top); // t1 is tlab_size
3475  sub(top, ThreadLocalAllocBuffer::alignment_reserve_in_bytes(), top);
3476  st_ptr(top, G2_thread, in_bytes(JavaThread::tlab_end_offset()));
3477  verify_tlab();
3478  ba(retry);
3479  delayed()->nop();
3480}
3481
3482void MacroAssembler::incr_allocated_bytes(RegisterOrConstant size_in_bytes,
3483                                          Register t1, Register t2) {
3484  // Bump total bytes allocated by this thread
3485  assert(t1->is_global(), "must be global reg"); // so all 64 bits are saved on a context switch
3486  assert_different_registers(size_in_bytes.register_or_noreg(), t1, t2);
3487  // v8 support has gone the way of the dodo
3488  ldx(G2_thread, in_bytes(JavaThread::allocated_bytes_offset()), t1);
3489  add(t1, ensure_simm13_or_reg(size_in_bytes, t2), t1);
3490  stx(t1, G2_thread, in_bytes(JavaThread::allocated_bytes_offset()));
3491}
3492
3493Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) {
3494  switch (cond) {
3495    // Note some conditions are synonyms for others
3496    case Assembler::never:                return Assembler::always;
3497    case Assembler::zero:                 return Assembler::notZero;
3498    case Assembler::lessEqual:            return Assembler::greater;
3499    case Assembler::less:                 return Assembler::greaterEqual;
3500    case Assembler::lessEqualUnsigned:    return Assembler::greaterUnsigned;
3501    case Assembler::lessUnsigned:         return Assembler::greaterEqualUnsigned;
3502    case Assembler::negative:             return Assembler::positive;
3503    case Assembler::overflowSet:          return Assembler::overflowClear;
3504    case Assembler::always:               return Assembler::never;
3505    case Assembler::notZero:              return Assembler::zero;
3506    case Assembler::greater:              return Assembler::lessEqual;
3507    case Assembler::greaterEqual:         return Assembler::less;
3508    case Assembler::greaterUnsigned:      return Assembler::lessEqualUnsigned;
3509    case Assembler::greaterEqualUnsigned: return Assembler::lessUnsigned;
3510    case Assembler::positive:             return Assembler::negative;
3511    case Assembler::overflowClear:        return Assembler::overflowSet;
3512  }
3513
3514  ShouldNotReachHere(); return Assembler::overflowClear;
3515}
3516
3517void MacroAssembler::cond_inc(Assembler::Condition cond, address counter_ptr,
3518                              Register Rtmp1, Register Rtmp2 /*, Register Rtmp3, Register Rtmp4 */) {
3519  Condition negated_cond = negate_condition(cond);
3520  Label L;
3521  brx(negated_cond, false, Assembler::pt, L);
3522  delayed()->nop();
3523  inc_counter(counter_ptr, Rtmp1, Rtmp2);
3524  bind(L);
3525}
3526
3527void MacroAssembler::inc_counter(address counter_addr, Register Rtmp1, Register Rtmp2) {
3528  AddressLiteral addrlit(counter_addr);
3529  sethi(addrlit, Rtmp1);                 // Move hi22 bits into temporary register.
3530  Address addr(Rtmp1, addrlit.low10());  // Build an address with low10 bits.
3531  ld(addr, Rtmp2);
3532  inc(Rtmp2);
3533  st(Rtmp2, addr);
3534}
3535
3536void MacroAssembler::inc_counter(int* counter_addr, Register Rtmp1, Register Rtmp2) {
3537  inc_counter((address) counter_addr, Rtmp1, Rtmp2);
3538}
3539
3540SkipIfEqual::SkipIfEqual(
3541    MacroAssembler* masm, Register temp, const bool* flag_addr,
3542    Assembler::Condition condition) {
3543  _masm = masm;
3544  AddressLiteral flag(flag_addr);
3545  _masm->sethi(flag, temp);
3546  _masm->ldub(temp, flag.low10(), temp);
3547  _masm->tst(temp);
3548  _masm->br(condition, false, Assembler::pt, _label);
3549  _masm->delayed()->nop();
3550}
3551
3552SkipIfEqual::~SkipIfEqual() {
3553  _masm->bind(_label);
3554}
3555
3556
3557// Writes to stack successive pages until offset reached to check for
3558// stack overflow + shadow pages.  This clobbers tsp and scratch.
3559void MacroAssembler::bang_stack_size(Register Rsize, Register Rtsp,
3560                                     Register Rscratch) {
3561  // Use stack pointer in temp stack pointer
3562  mov(SP, Rtsp);
3563
3564  // Bang stack for total size given plus stack shadow page size.
3565  // Bang one page at a time because a large size can overflow yellow and
3566  // red zones (the bang will fail but stack overflow handling can't tell that
3567  // it was a stack overflow bang vs a regular segv).
3568  int offset = os::vm_page_size();
3569  Register Roffset = Rscratch;
3570
3571  Label loop;
3572  bind(loop);
3573  set((-offset)+STACK_BIAS, Rscratch);
3574  st(G0, Rtsp, Rscratch);
3575  set(offset, Roffset);
3576  sub(Rsize, Roffset, Rsize);
3577  cmp(Rsize, G0);
3578  br(Assembler::greater, false, Assembler::pn, loop);
3579  delayed()->sub(Rtsp, Roffset, Rtsp);
3580
3581  // Bang down shadow pages too.
3582  // At this point, (tmp-0) is the last address touched, so don't
3583  // touch it again.  (It was touched as (tmp-pagesize) but then tmp
3584  // was post-decremented.)  Skip this address by starting at i=1, and
3585  // touch a few more pages below.  N.B.  It is important to touch all
3586  // the way down to and including i=StackShadowPages.
3587  for (int i = 1; i < StackShadowPages; i++) {
3588    set((-i*offset)+STACK_BIAS, Rscratch);
3589    st(G0, Rtsp, Rscratch);
3590  }
3591}
3592
3593///////////////////////////////////////////////////////////////////////////////////
3594#if INCLUDE_ALL_GCS
3595
3596static address satb_log_enqueue_with_frame = NULL;
3597static u_char* satb_log_enqueue_with_frame_end = NULL;
3598
3599static address satb_log_enqueue_frameless = NULL;
3600static u_char* satb_log_enqueue_frameless_end = NULL;
3601
3602static int EnqueueCodeSize = 128 DEBUG_ONLY( + 256); // Instructions?
3603
3604static void generate_satb_log_enqueue(bool with_frame) {
3605  BufferBlob* bb = BufferBlob::create("enqueue_with_frame", EnqueueCodeSize);
3606  CodeBuffer buf(bb);
3607  MacroAssembler masm(&buf);
3608
3609#define __ masm.
3610
3611  address start = __ pc();
3612  Register pre_val;
3613
3614  Label refill, restart;
3615  if (with_frame) {
3616    __ save_frame(0);
3617    pre_val = I0;  // Was O0 before the save.
3618  } else {
3619    pre_val = O0;
3620  }
3621
3622  int satb_q_index_byte_offset =
3623    in_bytes(JavaThread::satb_mark_queue_offset() +
3624             PtrQueue::byte_offset_of_index());
3625
3626  int satb_q_buf_byte_offset =
3627    in_bytes(JavaThread::satb_mark_queue_offset() +
3628             PtrQueue::byte_offset_of_buf());
3629
3630  assert(in_bytes(PtrQueue::byte_width_of_index()) == sizeof(intptr_t) &&
3631         in_bytes(PtrQueue::byte_width_of_buf()) == sizeof(intptr_t),
3632         "check sizes in assembly below");
3633
3634  __ bind(restart);
3635
3636  // Load the index into the SATB buffer. PtrQueue::_index is a size_t
3637  // so ld_ptr is appropriate.
3638  __ ld_ptr(G2_thread, satb_q_index_byte_offset, L0);
3639
3640  // index == 0?
3641  __ cmp_and_brx_short(L0, G0, Assembler::equal, Assembler::pn, refill);
3642
3643  __ ld_ptr(G2_thread, satb_q_buf_byte_offset, L1);
3644  __ sub(L0, oopSize, L0);
3645
3646  __ st_ptr(pre_val, L1, L0);  // [_buf + index] := I0
3647  if (!with_frame) {
3648    // Use return-from-leaf
3649    __ retl();
3650    __ delayed()->st_ptr(L0, G2_thread, satb_q_index_byte_offset);
3651  } else {
3652    // Not delayed.
3653    __ st_ptr(L0, G2_thread, satb_q_index_byte_offset);
3654  }
3655  if (with_frame) {
3656    __ ret();
3657    __ delayed()->restore();
3658  }
3659  __ bind(refill);
3660
3661  address handle_zero =
3662    CAST_FROM_FN_PTR(address,
3663                     &SATBMarkQueueSet::handle_zero_index_for_thread);
3664  // This should be rare enough that we can afford to save all the
3665  // scratch registers that the calling context might be using.
3666  __ mov(G1_scratch, L0);
3667  __ mov(G3_scratch, L1);
3668  __ mov(G4, L2);
3669  // We need the value of O0 above (for the write into the buffer), so we
3670  // save and restore it.
3671  __ mov(O0, L3);
3672  // Since the call will overwrite O7, we save and restore that, as well.
3673  __ mov(O7, L4);
3674  __ call_VM_leaf(L5, handle_zero, G2_thread);
3675  __ mov(L0, G1_scratch);
3676  __ mov(L1, G3_scratch);
3677  __ mov(L2, G4);
3678  __ mov(L3, O0);
3679  __ br(Assembler::always, /*annul*/false, Assembler::pt, restart);
3680  __ delayed()->mov(L4, O7);
3681
3682  if (with_frame) {
3683    satb_log_enqueue_with_frame = start;
3684    satb_log_enqueue_with_frame_end = __ pc();
3685  } else {
3686    satb_log_enqueue_frameless = start;
3687    satb_log_enqueue_frameless_end = __ pc();
3688  }
3689
3690#undef __
3691}
3692
3693static inline void generate_satb_log_enqueue_if_necessary(bool with_frame) {
3694  if (with_frame) {
3695    if (satb_log_enqueue_with_frame == 0) {
3696      generate_satb_log_enqueue(with_frame);
3697      assert(satb_log_enqueue_with_frame != 0, "postcondition.");
3698    }
3699  } else {
3700    if (satb_log_enqueue_frameless == 0) {
3701      generate_satb_log_enqueue(with_frame);
3702      assert(satb_log_enqueue_frameless != 0, "postcondition.");
3703    }
3704  }
3705}
3706
3707void MacroAssembler::g1_write_barrier_pre(Register obj,
3708                                          Register index,
3709                                          int offset,
3710                                          Register pre_val,
3711                                          Register tmp,
3712                                          bool preserve_o_regs) {
3713  Label filtered;
3714
3715  if (obj == noreg) {
3716    // We are not loading the previous value so make
3717    // sure that we don't trash the value in pre_val
3718    // with the code below.
3719    assert_different_registers(pre_val, tmp);
3720  } else {
3721    // We will be loading the previous value
3722    // in this code so...
3723    assert(offset == 0 || index == noreg, "choose one");
3724    assert(pre_val == noreg, "check this code");
3725  }
3726
3727  // Is marking active?
3728  if (in_bytes(PtrQueue::byte_width_of_active()) == 4) {
3729    ld(G2,
3730       in_bytes(JavaThread::satb_mark_queue_offset() +
3731                PtrQueue::byte_offset_of_active()),
3732       tmp);
3733  } else {
3734    guarantee(in_bytes(PtrQueue::byte_width_of_active()) == 1,
3735              "Assumption");
3736    ldsb(G2,
3737         in_bytes(JavaThread::satb_mark_queue_offset() +
3738                  PtrQueue::byte_offset_of_active()),
3739         tmp);
3740  }
3741
3742  // Is marking active?
3743  cmp_and_br_short(tmp, G0, Assembler::equal, Assembler::pt, filtered);
3744
3745  // Do we need to load the previous value?
3746  if (obj != noreg) {
3747    // Load the previous value...
3748    if (index == noreg) {
3749      if (Assembler::is_simm13(offset)) {
3750        load_heap_oop(obj, offset, tmp);
3751      } else {
3752        set(offset, tmp);
3753        load_heap_oop(obj, tmp, tmp);
3754      }
3755    } else {
3756      load_heap_oop(obj, index, tmp);
3757    }
3758    // Previous value has been loaded into tmp
3759    pre_val = tmp;
3760  }
3761
3762  assert(pre_val != noreg, "must have a real register");
3763
3764  // Is the previous value null?
3765  cmp_and_brx_short(pre_val, G0, Assembler::equal, Assembler::pt, filtered);
3766
3767  // OK, it's not filtered, so we'll need to call enqueue.  In the normal
3768  // case, pre_val will be a scratch G-reg, but there are some cases in
3769  // which it's an O-reg.  In the first case, do a normal call.  In the
3770  // latter, do a save here and call the frameless version.
3771
3772  guarantee(pre_val->is_global() || pre_val->is_out(),
3773            "Or we need to think harder.");
3774
3775  if (pre_val->is_global() && !preserve_o_regs) {
3776    generate_satb_log_enqueue_if_necessary(true); // with frame
3777
3778    call(satb_log_enqueue_with_frame);
3779    delayed()->mov(pre_val, O0);
3780  } else {
3781    generate_satb_log_enqueue_if_necessary(false); // frameless
3782
3783    save_frame(0);
3784    call(satb_log_enqueue_frameless);
3785    delayed()->mov(pre_val->after_save(), O0);
3786    restore();
3787  }
3788
3789  bind(filtered);
3790}
3791
3792static address dirty_card_log_enqueue = 0;
3793static u_char* dirty_card_log_enqueue_end = 0;
3794
3795// This gets to assume that o0 contains the object address.
3796static void generate_dirty_card_log_enqueue(jbyte* byte_map_base) {
3797  BufferBlob* bb = BufferBlob::create("dirty_card_enqueue", EnqueueCodeSize*2);
3798  CodeBuffer buf(bb);
3799  MacroAssembler masm(&buf);
3800#define __ masm.
3801  address start = __ pc();
3802
3803  Label not_already_dirty, restart, refill, young_card;
3804
3805#ifdef _LP64
3806  __ srlx(O0, CardTableModRefBS::card_shift, O0);
3807#else
3808  __ srl(O0, CardTableModRefBS::card_shift, O0);
3809#endif
3810  AddressLiteral addrlit(byte_map_base);
3811  __ set(addrlit, O1); // O1 := <card table base>
3812  __ ldub(O0, O1, O2); // O2 := [O0 + O1]
3813
3814  __ cmp_and_br_short(O2, G1SATBCardTableModRefBS::g1_young_card_val(), Assembler::equal, Assembler::pt, young_card);
3815
3816  __ membar(Assembler::Membar_mask_bits(Assembler::StoreLoad));
3817  __ ldub(O0, O1, O2); // O2 := [O0 + O1]
3818
3819  assert(CardTableModRefBS::dirty_card_val() == 0, "otherwise check this code");
3820  __ cmp_and_br_short(O2, G0, Assembler::notEqual, Assembler::pt, not_already_dirty);
3821
3822  __ bind(young_card);
3823  // We didn't take the branch, so we're already dirty: return.
3824  // Use return-from-leaf
3825  __ retl();
3826  __ delayed()->nop();
3827
3828  // Not dirty.
3829  __ bind(not_already_dirty);
3830
3831  // Get O0 + O1 into a reg by itself
3832  __ add(O0, O1, O3);
3833
3834  // First, dirty it.
3835  __ stb(G0, O3, G0);  // [cardPtr] := 0  (i.e., dirty).
3836
3837  int dirty_card_q_index_byte_offset =
3838    in_bytes(JavaThread::dirty_card_queue_offset() +
3839             PtrQueue::byte_offset_of_index());
3840  int dirty_card_q_buf_byte_offset =
3841    in_bytes(JavaThread::dirty_card_queue_offset() +
3842             PtrQueue::byte_offset_of_buf());
3843  __ bind(restart);
3844
3845  // Load the index into the update buffer. PtrQueue::_index is
3846  // a size_t so ld_ptr is appropriate here.
3847  __ ld_ptr(G2_thread, dirty_card_q_index_byte_offset, L0);
3848
3849  // index == 0?
3850  __ cmp_and_brx_short(L0, G0, Assembler::equal, Assembler::pn, refill);
3851
3852  __ ld_ptr(G2_thread, dirty_card_q_buf_byte_offset, L1);
3853  __ sub(L0, oopSize, L0);
3854
3855  __ st_ptr(O3, L1, L0);  // [_buf + index] := I0
3856  // Use return-from-leaf
3857  __ retl();
3858  __ delayed()->st_ptr(L0, G2_thread, dirty_card_q_index_byte_offset);
3859
3860  __ bind(refill);
3861  address handle_zero =
3862    CAST_FROM_FN_PTR(address,
3863                     &DirtyCardQueueSet::handle_zero_index_for_thread);
3864  // This should be rare enough that we can afford to save all the
3865  // scratch registers that the calling context might be using.
3866  __ mov(G1_scratch, L3);
3867  __ mov(G3_scratch, L5);
3868  // We need the value of O3 above (for the write into the buffer), so we
3869  // save and restore it.
3870  __ mov(O3, L6);
3871  // Since the call will overwrite O7, we save and restore that, as well.
3872  __ mov(O7, L4);
3873
3874  __ call_VM_leaf(L7_thread_cache, handle_zero, G2_thread);
3875  __ mov(L3, G1_scratch);
3876  __ mov(L5, G3_scratch);
3877  __ mov(L6, O3);
3878  __ br(Assembler::always, /*annul*/false, Assembler::pt, restart);
3879  __ delayed()->mov(L4, O7);
3880
3881  dirty_card_log_enqueue = start;
3882  dirty_card_log_enqueue_end = __ pc();
3883  // XXX Should have a guarantee here about not going off the end!
3884  // Does it already do so?  Do an experiment...
3885
3886#undef __
3887
3888}
3889
3890static inline void
3891generate_dirty_card_log_enqueue_if_necessary(jbyte* byte_map_base) {
3892  if (dirty_card_log_enqueue == 0) {
3893    generate_dirty_card_log_enqueue(byte_map_base);
3894    assert(dirty_card_log_enqueue != 0, "postcondition.");
3895  }
3896}
3897
3898
3899void MacroAssembler::g1_write_barrier_post(Register store_addr, Register new_val, Register tmp) {
3900
3901  Label filtered;
3902  MacroAssembler* post_filter_masm = this;
3903
3904  if (new_val == G0) return;
3905
3906  G1SATBCardTableLoggingModRefBS* bs =
3907    barrier_set_cast<G1SATBCardTableLoggingModRefBS>(Universe::heap()->barrier_set());
3908
3909  if (G1RSBarrierRegionFilter) {
3910    xor3(store_addr, new_val, tmp);
3911#ifdef _LP64
3912    srlx(tmp, HeapRegion::LogOfHRGrainBytes, tmp);
3913#else
3914    srl(tmp, HeapRegion::LogOfHRGrainBytes, tmp);
3915#endif
3916
3917    // XXX Should I predict this taken or not?  Does it matter?
3918    cmp_and_brx_short(tmp, G0, Assembler::equal, Assembler::pt, filtered);
3919  }
3920
3921  // If the "store_addr" register is an "in" or "local" register, move it to
3922  // a scratch reg so we can pass it as an argument.
3923  bool use_scr = !(store_addr->is_global() || store_addr->is_out());
3924  // Pick a scratch register different from "tmp".
3925  Register scr = (tmp == G1_scratch ? G3_scratch : G1_scratch);
3926  // Make sure we use up the delay slot!
3927  if (use_scr) {
3928    post_filter_masm->mov(store_addr, scr);
3929  } else {
3930    post_filter_masm->nop();
3931  }
3932  generate_dirty_card_log_enqueue_if_necessary(bs->byte_map_base);
3933  save_frame(0);
3934  call(dirty_card_log_enqueue);
3935  if (use_scr) {
3936    delayed()->mov(scr, O0);
3937  } else {
3938    delayed()->mov(store_addr->after_save(), O0);
3939  }
3940  restore();
3941
3942  bind(filtered);
3943}
3944
3945#endif // INCLUDE_ALL_GCS
3946///////////////////////////////////////////////////////////////////////////////////
3947
3948void MacroAssembler::card_write_barrier_post(Register store_addr, Register new_val, Register tmp) {
3949  // If we're writing constant NULL, we can skip the write barrier.
3950  if (new_val == G0) return;
3951  CardTableModRefBS* bs =
3952    barrier_set_cast<CardTableModRefBS>(Universe::heap()->barrier_set());
3953  assert(bs->kind() == BarrierSet::CardTableModRef ||
3954         bs->kind() == BarrierSet::CardTableExtension, "wrong barrier");
3955  card_table_write(bs->byte_map_base, tmp, store_addr);
3956}
3957
3958void MacroAssembler::load_klass(Register src_oop, Register klass) {
3959  // The number of bytes in this code is used by
3960  // MachCallDynamicJavaNode::ret_addr_offset()
3961  // if this changes, change that.
3962  if (UseCompressedClassPointers) {
3963    lduw(src_oop, oopDesc::klass_offset_in_bytes(), klass);
3964    decode_klass_not_null(klass);
3965  } else {
3966    ld_ptr(src_oop, oopDesc::klass_offset_in_bytes(), klass);
3967  }
3968}
3969
3970void MacroAssembler::store_klass(Register klass, Register dst_oop) {
3971  if (UseCompressedClassPointers) {
3972    assert(dst_oop != klass, "not enough registers");
3973    encode_klass_not_null(klass);
3974    st(klass, dst_oop, oopDesc::klass_offset_in_bytes());
3975  } else {
3976    st_ptr(klass, dst_oop, oopDesc::klass_offset_in_bytes());
3977  }
3978}
3979
3980void MacroAssembler::store_klass_gap(Register s, Register d) {
3981  if (UseCompressedClassPointers) {
3982    assert(s != d, "not enough registers");
3983    st(s, d, oopDesc::klass_gap_offset_in_bytes());
3984  }
3985}
3986
3987void MacroAssembler::load_heap_oop(const Address& s, Register d) {
3988  if (UseCompressedOops) {
3989    lduw(s, d);
3990    decode_heap_oop(d);
3991  } else {
3992    ld_ptr(s, d);
3993  }
3994}
3995
3996void MacroAssembler::load_heap_oop(Register s1, Register s2, Register d) {
3997   if (UseCompressedOops) {
3998    lduw(s1, s2, d);
3999    decode_heap_oop(d, d);
4000  } else {
4001    ld_ptr(s1, s2, d);
4002  }
4003}
4004
4005void MacroAssembler::load_heap_oop(Register s1, int simm13a, Register d) {
4006   if (UseCompressedOops) {
4007    lduw(s1, simm13a, d);
4008    decode_heap_oop(d, d);
4009  } else {
4010    ld_ptr(s1, simm13a, d);
4011  }
4012}
4013
4014void MacroAssembler::load_heap_oop(Register s1, RegisterOrConstant s2, Register d) {
4015  if (s2.is_constant())  load_heap_oop(s1, s2.as_constant(), d);
4016  else                   load_heap_oop(s1, s2.as_register(), d);
4017}
4018
4019void MacroAssembler::store_heap_oop(Register d, Register s1, Register s2) {
4020  if (UseCompressedOops) {
4021    assert(s1 != d && s2 != d, "not enough registers");
4022    encode_heap_oop(d);
4023    st(d, s1, s2);
4024  } else {
4025    st_ptr(d, s1, s2);
4026  }
4027}
4028
4029void MacroAssembler::store_heap_oop(Register d, Register s1, int simm13a) {
4030  if (UseCompressedOops) {
4031    assert(s1 != d, "not enough registers");
4032    encode_heap_oop(d);
4033    st(d, s1, simm13a);
4034  } else {
4035    st_ptr(d, s1, simm13a);
4036  }
4037}
4038
4039void MacroAssembler::store_heap_oop(Register d, const Address& a, int offset) {
4040  if (UseCompressedOops) {
4041    assert(a.base() != d, "not enough registers");
4042    encode_heap_oop(d);
4043    st(d, a, offset);
4044  } else {
4045    st_ptr(d, a, offset);
4046  }
4047}
4048
4049
4050void MacroAssembler::encode_heap_oop(Register src, Register dst) {
4051  assert (UseCompressedOops, "must be compressed");
4052  assert (Universe::heap() != NULL, "java heap should be initialized");
4053  assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
4054  verify_oop(src);
4055  if (Universe::narrow_oop_base() == NULL) {
4056    srlx(src, LogMinObjAlignmentInBytes, dst);
4057    return;
4058  }
4059  Label done;
4060  if (src == dst) {
4061    // optimize for frequent case src == dst
4062    bpr(rc_nz, true, Assembler::pt, src, done);
4063    delayed() -> sub(src, G6_heapbase, dst); // annuled if not taken
4064    bind(done);
4065    srlx(src, LogMinObjAlignmentInBytes, dst);
4066  } else {
4067    bpr(rc_z, false, Assembler::pn, src, done);
4068    delayed() -> mov(G0, dst);
4069    // could be moved before branch, and annulate delay,
4070    // but may add some unneeded work decoding null
4071    sub(src, G6_heapbase, dst);
4072    srlx(dst, LogMinObjAlignmentInBytes, dst);
4073    bind(done);
4074  }
4075}
4076
4077
4078void MacroAssembler::encode_heap_oop_not_null(Register r) {
4079  assert (UseCompressedOops, "must be compressed");
4080  assert (Universe::heap() != NULL, "java heap should be initialized");
4081  assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
4082  verify_oop(r);
4083  if (Universe::narrow_oop_base() != NULL)
4084    sub(r, G6_heapbase, r);
4085  srlx(r, LogMinObjAlignmentInBytes, r);
4086}
4087
4088void MacroAssembler::encode_heap_oop_not_null(Register src, Register dst) {
4089  assert (UseCompressedOops, "must be compressed");
4090  assert (Universe::heap() != NULL, "java heap should be initialized");
4091  assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
4092  verify_oop(src);
4093  if (Universe::narrow_oop_base() == NULL) {
4094    srlx(src, LogMinObjAlignmentInBytes, dst);
4095  } else {
4096    sub(src, G6_heapbase, dst);
4097    srlx(dst, LogMinObjAlignmentInBytes, dst);
4098  }
4099}
4100
4101// Same algorithm as oops.inline.hpp decode_heap_oop.
4102void  MacroAssembler::decode_heap_oop(Register src, Register dst) {
4103  assert (UseCompressedOops, "must be compressed");
4104  assert (Universe::heap() != NULL, "java heap should be initialized");
4105  assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
4106  sllx(src, LogMinObjAlignmentInBytes, dst);
4107  if (Universe::narrow_oop_base() != NULL) {
4108    Label done;
4109    bpr(rc_nz, true, Assembler::pt, dst, done);
4110    delayed() -> add(dst, G6_heapbase, dst); // annuled if not taken
4111    bind(done);
4112  }
4113  verify_oop(dst);
4114}
4115
4116void  MacroAssembler::decode_heap_oop_not_null(Register r) {
4117  // Do not add assert code to this unless you change vtableStubs_sparc.cpp
4118  // pd_code_size_limit.
4119  // Also do not verify_oop as this is called by verify_oop.
4120  assert (UseCompressedOops, "must be compressed");
4121  assert (Universe::heap() != NULL, "java heap should be initialized");
4122  assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
4123  sllx(r, LogMinObjAlignmentInBytes, r);
4124  if (Universe::narrow_oop_base() != NULL)
4125    add(r, G6_heapbase, r);
4126}
4127
4128void  MacroAssembler::decode_heap_oop_not_null(Register src, Register dst) {
4129  // Do not add assert code to this unless you change vtableStubs_sparc.cpp
4130  // pd_code_size_limit.
4131  // Also do not verify_oop as this is called by verify_oop.
4132  assert (UseCompressedOops, "must be compressed");
4133  assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
4134  sllx(src, LogMinObjAlignmentInBytes, dst);
4135  if (Universe::narrow_oop_base() != NULL)
4136    add(dst, G6_heapbase, dst);
4137}
4138
4139void MacroAssembler::encode_klass_not_null(Register r) {
4140  assert (UseCompressedClassPointers, "must be compressed");
4141  if (Universe::narrow_klass_base() != NULL) {
4142    assert(r != G6_heapbase, "bad register choice");
4143    set((intptr_t)Universe::narrow_klass_base(), G6_heapbase);
4144    sub(r, G6_heapbase, r);
4145    if (Universe::narrow_klass_shift() != 0) {
4146      assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
4147      srlx(r, LogKlassAlignmentInBytes, r);
4148    }
4149    reinit_heapbase();
4150  } else {
4151    assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift() || Universe::narrow_klass_shift() == 0, "decode alg wrong");
4152    srlx(r, Universe::narrow_klass_shift(), r);
4153  }
4154}
4155
4156void MacroAssembler::encode_klass_not_null(Register src, Register dst) {
4157  if (src == dst) {
4158    encode_klass_not_null(src);
4159  } else {
4160    assert (UseCompressedClassPointers, "must be compressed");
4161    if (Universe::narrow_klass_base() != NULL) {
4162      set((intptr_t)Universe::narrow_klass_base(), dst);
4163      sub(src, dst, dst);
4164      if (Universe::narrow_klass_shift() != 0) {
4165        srlx(dst, LogKlassAlignmentInBytes, dst);
4166      }
4167    } else {
4168      // shift src into dst
4169      assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift() || Universe::narrow_klass_shift() == 0, "decode alg wrong");
4170      srlx(src, Universe::narrow_klass_shift(), dst);
4171    }
4172  }
4173}
4174
4175// Function instr_size_for_decode_klass_not_null() counts the instructions
4176// generated by decode_klass_not_null() and reinit_heapbase().  Hence, if
4177// the instructions they generate change, then this method needs to be updated.
4178int MacroAssembler::instr_size_for_decode_klass_not_null() {
4179  assert (UseCompressedClassPointers, "only for compressed klass ptrs");
4180  int num_instrs = 1;  // shift src,dst or add
4181  if (Universe::narrow_klass_base() != NULL) {
4182    // set + add + set
4183    num_instrs += insts_for_internal_set((intptr_t)Universe::narrow_klass_base()) +
4184                  insts_for_internal_set((intptr_t)Universe::narrow_ptrs_base());
4185    if (Universe::narrow_klass_shift() != 0) {
4186      num_instrs += 1;  // sllx
4187    }
4188  }
4189  return num_instrs * BytesPerInstWord;
4190}
4191
4192// !!! If the instructions that get generated here change then function
4193// instr_size_for_decode_klass_not_null() needs to get updated.
4194void  MacroAssembler::decode_klass_not_null(Register r) {
4195  // Do not add assert code to this unless you change vtableStubs_sparc.cpp
4196  // pd_code_size_limit.
4197  assert (UseCompressedClassPointers, "must be compressed");
4198  if (Universe::narrow_klass_base() != NULL) {
4199    assert(r != G6_heapbase, "bad register choice");
4200    set((intptr_t)Universe::narrow_klass_base(), G6_heapbase);
4201    if (Universe::narrow_klass_shift() != 0)
4202      sllx(r, LogKlassAlignmentInBytes, r);
4203    add(r, G6_heapbase, r);
4204    reinit_heapbase();
4205  } else {
4206    assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift() || Universe::narrow_klass_shift() == 0, "decode alg wrong");
4207    sllx(r, Universe::narrow_klass_shift(), r);
4208  }
4209}
4210
4211void  MacroAssembler::decode_klass_not_null(Register src, Register dst) {
4212  if (src == dst) {
4213    decode_klass_not_null(src);
4214  } else {
4215    // Do not add assert code to this unless you change vtableStubs_sparc.cpp
4216    // pd_code_size_limit.
4217    assert (UseCompressedClassPointers, "must be compressed");
4218    if (Universe::narrow_klass_base() != NULL) {
4219      if (Universe::narrow_klass_shift() != 0) {
4220        assert((src != G6_heapbase) && (dst != G6_heapbase), "bad register choice");
4221        set((intptr_t)Universe::narrow_klass_base(), G6_heapbase);
4222        sllx(src, LogKlassAlignmentInBytes, dst);
4223        add(dst, G6_heapbase, dst);
4224        reinit_heapbase();
4225      } else {
4226        set((intptr_t)Universe::narrow_klass_base(), dst);
4227        add(src, dst, dst);
4228      }
4229    } else {
4230      // shift/mov src into dst.
4231      assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift() || Universe::narrow_klass_shift() == 0, "decode alg wrong");
4232      sllx(src, Universe::narrow_klass_shift(), dst);
4233    }
4234  }
4235}
4236
4237void MacroAssembler::reinit_heapbase() {
4238  if (UseCompressedOops || UseCompressedClassPointers) {
4239    if (Universe::heap() != NULL) {
4240      set((intptr_t)Universe::narrow_ptrs_base(), G6_heapbase);
4241    } else {
4242      AddressLiteral base(Universe::narrow_ptrs_base_addr());
4243      load_ptr_contents(base, G6_heapbase);
4244    }
4245  }
4246}
4247
4248// Compare char[] arrays aligned to 4 bytes.
4249void MacroAssembler::char_arrays_equals(Register ary1, Register ary2,
4250                                        Register limit, Register result,
4251                                        Register chr1, Register chr2, Label& Ldone) {
4252  Label Lvector, Lloop;
4253  assert(chr1 == result, "should be the same");
4254
4255  // Note: limit contains number of bytes (2*char_elements) != 0.
4256  andcc(limit, 0x2, chr1); // trailing character ?
4257  br(Assembler::zero, false, Assembler::pt, Lvector);
4258  delayed()->nop();
4259
4260  // compare the trailing char
4261  sub(limit, sizeof(jchar), limit);
4262  lduh(ary1, limit, chr1);
4263  lduh(ary2, limit, chr2);
4264  cmp(chr1, chr2);
4265  br(Assembler::notEqual, true, Assembler::pt, Ldone);
4266  delayed()->mov(G0, result);     // not equal
4267
4268  // only one char ?
4269  cmp_zero_and_br(zero, limit, Ldone, true, Assembler::pn);
4270  delayed()->add(G0, 1, result); // zero-length arrays are equal
4271
4272  // word by word compare, dont't need alignment check
4273  bind(Lvector);
4274  // Shift ary1 and ary2 to the end of the arrays, negate limit
4275  add(ary1, limit, ary1);
4276  add(ary2, limit, ary2);
4277  neg(limit, limit);
4278
4279  lduw(ary1, limit, chr1);
4280  bind(Lloop);
4281  lduw(ary2, limit, chr2);
4282  cmp(chr1, chr2);
4283  br(Assembler::notEqual, true, Assembler::pt, Ldone);
4284  delayed()->mov(G0, result);     // not equal
4285  inccc(limit, 2*sizeof(jchar));
4286  // annul LDUW if branch is not taken to prevent access past end of array
4287  br(Assembler::notZero, true, Assembler::pt, Lloop);
4288  delayed()->lduw(ary1, limit, chr1); // hoisted
4289
4290  // Caller should set it:
4291  // add(G0, 1, result); // equals
4292}
4293
4294// Use BIS for zeroing (count is in bytes).
4295void MacroAssembler::bis_zeroing(Register to, Register count, Register temp, Label& Ldone) {
4296  assert(UseBlockZeroing && VM_Version::has_block_zeroing(), "only works with BIS zeroing");
4297  Register end = count;
4298  int cache_line_size = VM_Version::prefetch_data_size();
4299  // Minimum count when BIS zeroing can be used since
4300  // it needs membar which is expensive.
4301  int block_zero_size  = MAX2(cache_line_size*3, (int)BlockZeroingLowLimit);
4302
4303  Label small_loop;
4304  // Check if count is negative (dead code) or zero.
4305  // Note, count uses 64bit in 64 bit VM.
4306  cmp_and_brx_short(count, 0, Assembler::lessEqual, Assembler::pn, Ldone);
4307
4308  // Use BIS zeroing only for big arrays since it requires membar.
4309  if (Assembler::is_simm13(block_zero_size)) { // < 4096
4310    cmp(count, block_zero_size);
4311  } else {
4312    set(block_zero_size, temp);
4313    cmp(count, temp);
4314  }
4315  br(Assembler::lessUnsigned, false, Assembler::pt, small_loop);
4316  delayed()->add(to, count, end);
4317
4318  // Note: size is >= three (32 bytes) cache lines.
4319
4320  // Clean the beginning of space up to next cache line.
4321  for (int offs = 0; offs < cache_line_size; offs += 8) {
4322    stx(G0, to, offs);
4323  }
4324
4325  // align to next cache line
4326  add(to, cache_line_size, to);
4327  and3(to, -cache_line_size, to);
4328
4329  // Note: size left >= two (32 bytes) cache lines.
4330
4331  // BIS should not be used to zero tail (64 bytes)
4332  // to avoid zeroing a header of the following object.
4333  sub(end, (cache_line_size*2)-8, end);
4334
4335  Label bis_loop;
4336  bind(bis_loop);
4337  stxa(G0, to, G0, Assembler::ASI_ST_BLKINIT_PRIMARY);
4338  add(to, cache_line_size, to);
4339  cmp_and_brx_short(to, end, Assembler::lessUnsigned, Assembler::pt, bis_loop);
4340
4341  // BIS needs membar.
4342  membar(Assembler::StoreLoad);
4343
4344  add(end, (cache_line_size*2)-8, end); // restore end
4345  cmp_and_brx_short(to, end, Assembler::greaterEqualUnsigned, Assembler::pn, Ldone);
4346
4347  // Clean the tail.
4348  bind(small_loop);
4349  stx(G0, to, 0);
4350  add(to, 8, to);
4351  cmp_and_brx_short(to, end, Assembler::lessUnsigned, Assembler::pt, small_loop);
4352  nop(); // Separate short branches
4353}
4354