1/*
2 * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "asm/macroAssembler.inline.hpp"
27#include "compiler/disassembler.hpp"
28#include "gc/shared/cardTableModRefBS.hpp"
29#include "gc/shared/collectedHeap.inline.hpp"
30#include "interpreter/interpreter.hpp"
31#include "memory/resourceArea.hpp"
32#include "memory/universe.hpp"
33#include "oops/klass.inline.hpp"
34#include "prims/jvm.h"
35#include "prims/methodHandles.hpp"
36#include "runtime/biasedLocking.hpp"
37#include "runtime/interfaceSupport.hpp"
38#include "runtime/objectMonitor.hpp"
39#include "runtime/os.inline.hpp"
40#include "runtime/sharedRuntime.hpp"
41#include "runtime/stubRoutines.hpp"
42#include "utilities/align.hpp"
43#include "utilities/macros.hpp"
44#if INCLUDE_ALL_GCS
45#include "gc/g1/g1CollectedHeap.inline.hpp"
46#include "gc/g1/g1SATBCardTableModRefBS.hpp"
47#include "gc/g1/heapRegion.hpp"
48#endif // INCLUDE_ALL_GCS
49#ifdef COMPILER2
50#include "opto/intrinsicnode.hpp"
51#endif
52
53#ifdef PRODUCT
54#define BLOCK_COMMENT(str) /* nothing */
55#define STOP(error) stop(error)
56#else
57#define BLOCK_COMMENT(str) block_comment(str)
58#define STOP(error) block_comment(error); stop(error)
59#endif
60
61// Convert the raw encoding form into the form expected by the
62// constructor for Address.
63Address Address::make_raw(int base, int index, int scale, int disp, relocInfo::relocType disp_reloc) {
64  assert(scale == 0, "not supported");
65  RelocationHolder rspec;
66  if (disp_reloc != relocInfo::none) {
67    rspec = Relocation::spec_simple(disp_reloc);
68  }
69
70  Register rindex = as_Register(index);
71  if (rindex != G0) {
72    Address madr(as_Register(base), rindex);
73    madr._rspec = rspec;
74    return madr;
75  } else {
76    Address madr(as_Register(base), disp);
77    madr._rspec = rspec;
78    return madr;
79  }
80}
81
82Address Argument::address_in_frame() const {
83  // Warning: In LP64 mode disp will occupy more than 10 bits, but
84  //          op codes such as ld or ldx, only access disp() to get
85  //          their simm13 argument.
86  int disp = ((_number - Argument::n_register_parameters + frame::memory_parameter_word_sp_offset) * BytesPerWord) + STACK_BIAS;
87  if (is_in())
88    return Address(FP, disp); // In argument.
89  else
90    return Address(SP, disp); // Out argument.
91}
92
93static const char* argumentNames[][2] = {
94  {"A0","P0"}, {"A1","P1"}, {"A2","P2"}, {"A3","P3"}, {"A4","P4"},
95  {"A5","P5"}, {"A6","P6"}, {"A7","P7"}, {"A8","P8"}, {"A9","P9"},
96  {"A(n>9)","P(n>9)"}
97};
98
99const char* Argument::name() const {
100  int nofArgs = sizeof argumentNames / sizeof argumentNames[0];
101  int num = number();
102  if (num >= nofArgs)  num = nofArgs - 1;
103  return argumentNames[num][is_in() ? 1 : 0];
104}
105
106#ifdef ASSERT
107// On RISC, there's no benefit to verifying instruction boundaries.
108bool AbstractAssembler::pd_check_instruction_mark() { return false; }
109#endif
110
111// Patch instruction inst at offset inst_pos to refer to dest_pos
112// and return the resulting instruction.
113// We should have pcs, not offsets, but since all is relative, it will work out
114// OK.
115int MacroAssembler::patched_branch(int dest_pos, int inst, int inst_pos) {
116  int m; // mask for displacement field
117  int v; // new value for displacement field
118  const int word_aligned_ones = -4;
119  switch (inv_op(inst)) {
120  default: ShouldNotReachHere();
121  case call_op:    m = wdisp(word_aligned_ones, 0, 30);  v = wdisp(dest_pos, inst_pos, 30); break;
122  case branch_op:
123    switch (inv_op2(inst)) {
124      case fbp_op2:    m = wdisp(  word_aligned_ones, 0, 19);  v = wdisp(  dest_pos, inst_pos, 19); break;
125      case bp_op2:     m = wdisp(  word_aligned_ones, 0, 19);  v = wdisp(  dest_pos, inst_pos, 19); break;
126      case fb_op2:     m = wdisp(  word_aligned_ones, 0, 22);  v = wdisp(  dest_pos, inst_pos, 22); break;
127      case br_op2:     m = wdisp(  word_aligned_ones, 0, 22);  v = wdisp(  dest_pos, inst_pos, 22); break;
128      case bpr_op2: {
129        if (is_cbcond(inst)) {
130          m = wdisp10(word_aligned_ones, 0);
131          v = wdisp10(dest_pos, inst_pos);
132        } else {
133          m = wdisp16(word_aligned_ones, 0);
134          v = wdisp16(dest_pos, inst_pos);
135        }
136        break;
137      }
138      default: ShouldNotReachHere();
139    }
140  }
141  return  inst & ~m  |  v;
142}
143
144// Return the offset of the branch destionation of instruction inst
145// at offset pos.
146// Should have pcs, but since all is relative, it works out.
147int MacroAssembler::branch_destination(int inst, int pos) {
148  int r;
149  switch (inv_op(inst)) {
150  default: ShouldNotReachHere();
151  case call_op:        r = inv_wdisp(inst, pos, 30);  break;
152  case branch_op:
153    switch (inv_op2(inst)) {
154      case fbp_op2:    r = inv_wdisp(  inst, pos, 19);  break;
155      case bp_op2:     r = inv_wdisp(  inst, pos, 19);  break;
156      case fb_op2:     r = inv_wdisp(  inst, pos, 22);  break;
157      case br_op2:     r = inv_wdisp(  inst, pos, 22);  break;
158      case bpr_op2: {
159        if (is_cbcond(inst)) {
160          r = inv_wdisp10(inst, pos);
161        } else {
162          r = inv_wdisp16(inst, pos);
163        }
164        break;
165      }
166      default: ShouldNotReachHere();
167    }
168  }
169  return r;
170}
171
172void MacroAssembler::null_check(Register reg, int offset) {
173  if (needs_explicit_null_check((intptr_t)offset)) {
174    // provoke OS NULL exception if reg = NULL by
175    // accessing M[reg] w/o changing any registers
176    ld_ptr(reg, 0, G0);
177  }
178  else {
179    // nothing to do, (later) access of M[reg + offset]
180    // will provoke OS NULL exception if reg = NULL
181  }
182}
183
184// Ring buffer jumps
185
186
187void MacroAssembler::jmp2(Register r1, Register r2, const char* file, int line ) {
188  assert_not_delayed();
189  jmpl(r1, r2, G0);
190}
191void MacroAssembler::jmp(Register r1, int offset, const char* file, int line ) {
192  assert_not_delayed();
193  jmp(r1, offset);
194}
195
196// This code sequence is relocatable to any address, even on LP64.
197void MacroAssembler::jumpl(const AddressLiteral& addrlit, Register temp, Register d, int offset, const char* file, int line) {
198  assert_not_delayed();
199  // Force fixed length sethi because NativeJump and NativeFarCall don't handle
200  // variable length instruction streams.
201  patchable_sethi(addrlit, temp);
202  Address a(temp, addrlit.low10() + offset);  // Add the offset to the displacement.
203  jmpl(a.base(), a.disp(), d);
204}
205
206void MacroAssembler::jump(const AddressLiteral& addrlit, Register temp, int offset, const char* file, int line) {
207  jumpl(addrlit, temp, G0, offset, file, line);
208}
209
210
211// Conditional breakpoint (for assertion checks in assembly code)
212void MacroAssembler::breakpoint_trap(Condition c, CC cc) {
213  trap(c, cc, G0, ST_RESERVED_FOR_USER_0);
214}
215
216// We want to use ST_BREAKPOINT here, but the debugger is confused by it.
217void MacroAssembler::breakpoint_trap() {
218  trap(ST_RESERVED_FOR_USER_0);
219}
220
221// Write serialization page so VM thread can do a pseudo remote membar
222// We use the current thread pointer to calculate a thread specific
223// offset to write to within the page. This minimizes bus traffic
224// due to cache line collision.
225void MacroAssembler::serialize_memory(Register thread, Register tmp1, Register tmp2) {
226  srl(thread, os::get_serialize_page_shift_count(), tmp2);
227  if (Assembler::is_simm13(os::vm_page_size())) {
228    and3(tmp2, (os::vm_page_size() - sizeof(int)), tmp2);
229  }
230  else {
231    set((os::vm_page_size() - sizeof(int)), tmp1);
232    and3(tmp2, tmp1, tmp2);
233  }
234  set(os::get_memory_serialize_page(), tmp1);
235  st(G0, tmp1, tmp2);
236}
237
238
239
240void MacroAssembler::enter() {
241  Unimplemented();
242}
243
244void MacroAssembler::leave() {
245  Unimplemented();
246}
247
248// Calls to C land
249
250#ifdef ASSERT
251// a hook for debugging
252static Thread* reinitialize_thread() {
253  return Thread::current();
254}
255#else
256#define reinitialize_thread Thread::current
257#endif
258
259#ifdef ASSERT
260address last_get_thread = NULL;
261#endif
262
263// call this when G2_thread is not known to be valid
264void MacroAssembler::get_thread() {
265  save_frame(0);                // to avoid clobbering O0
266  mov(G1, L0);                  // avoid clobbering G1
267  mov(G5_method, L1);           // avoid clobbering G5
268  mov(G3, L2);                  // avoid clobbering G3 also
269  mov(G4, L5);                  // avoid clobbering G4
270#ifdef ASSERT
271  AddressLiteral last_get_thread_addrlit(&last_get_thread);
272  set(last_get_thread_addrlit, L3);
273  rdpc(L4);
274  inc(L4, 3 * BytesPerInstWord); // skip rdpc + inc + st_ptr to point L4 at call  st_ptr(L4, L3, 0);
275#endif
276  call(CAST_FROM_FN_PTR(address, reinitialize_thread), relocInfo::runtime_call_type);
277  delayed()->nop();
278  mov(L0, G1);
279  mov(L1, G5_method);
280  mov(L2, G3);
281  mov(L5, G4);
282  restore(O0, 0, G2_thread);
283}
284
285static Thread* verify_thread_subroutine(Thread* gthread_value) {
286  Thread* correct_value = Thread::current();
287  guarantee(gthread_value == correct_value, "G2_thread value must be the thread");
288  return correct_value;
289}
290
291void MacroAssembler::verify_thread() {
292  if (VerifyThread) {
293    // NOTE: this chops off the heads of the 64-bit O registers.
294    // make sure G2_thread contains the right value
295    save_frame_and_mov(0, Lmethod, Lmethod);   // to avoid clobbering O0 (and propagate Lmethod)
296    mov(G1, L1);                // avoid clobbering G1
297    // G2 saved below
298    mov(G3, L3);                // avoid clobbering G3
299    mov(G4, L4);                // avoid clobbering G4
300    mov(G5_method, L5);         // avoid clobbering G5_method
301    call(CAST_FROM_FN_PTR(address,verify_thread_subroutine), relocInfo::runtime_call_type);
302    delayed()->mov(G2_thread, O0);
303
304    mov(L1, G1);                // Restore G1
305    // G2 restored below
306    mov(L3, G3);                // restore G3
307    mov(L4, G4);                // restore G4
308    mov(L5, G5_method);         // restore G5_method
309    restore(O0, 0, G2_thread);
310  }
311}
312
313
314void MacroAssembler::save_thread(const Register thread_cache) {
315  verify_thread();
316  if (thread_cache->is_valid()) {
317    assert(thread_cache->is_local() || thread_cache->is_in(), "bad volatile");
318    mov(G2_thread, thread_cache);
319  }
320  if (VerifyThread) {
321    // smash G2_thread, as if the VM were about to anyway
322    set(0x67676767, G2_thread);
323  }
324}
325
326
327void MacroAssembler::restore_thread(const Register thread_cache) {
328  if (thread_cache->is_valid()) {
329    assert(thread_cache->is_local() || thread_cache->is_in(), "bad volatile");
330    mov(thread_cache, G2_thread);
331    verify_thread();
332  } else {
333    // do it the slow way
334    get_thread();
335  }
336}
337
338
339// %%% maybe get rid of [re]set_last_Java_frame
340void MacroAssembler::set_last_Java_frame(Register last_java_sp, Register last_Java_pc) {
341  assert_not_delayed();
342  Address flags(G2_thread, JavaThread::frame_anchor_offset() +
343                           JavaFrameAnchor::flags_offset());
344  Address pc_addr(G2_thread, JavaThread::last_Java_pc_offset());
345
346  // Always set last_Java_pc and flags first because once last_Java_sp is visible
347  // has_last_Java_frame is true and users will look at the rest of the fields.
348  // (Note: flags should always be zero before we get here so doesn't need to be set.)
349
350#ifdef ASSERT
351  // Verify that flags was zeroed on return to Java
352  Label PcOk;
353  save_frame(0);                // to avoid clobbering O0
354  ld_ptr(pc_addr, L0);
355  br_null_short(L0, Assembler::pt, PcOk);
356  STOP("last_Java_pc not zeroed before leaving Java");
357  bind(PcOk);
358
359  // Verify that flags was zeroed on return to Java
360  Label FlagsOk;
361  ld(flags, L0);
362  tst(L0);
363  br(Assembler::zero, false, Assembler::pt, FlagsOk);
364  delayed() -> restore();
365  STOP("flags not zeroed before leaving Java");
366  bind(FlagsOk);
367#endif /* ASSERT */
368  //
369  // When returning from calling out from Java mode the frame anchor's last_Java_pc
370  // will always be set to NULL. It is set here so that if we are doing a call to
371  // native (not VM) that we capture the known pc and don't have to rely on the
372  // native call having a standard frame linkage where we can find the pc.
373
374  if (last_Java_pc->is_valid()) {
375    st_ptr(last_Java_pc, pc_addr);
376  }
377
378#ifdef ASSERT
379  // Make sure that we have an odd stack
380  Label StackOk;
381  andcc(last_java_sp, 0x01, G0);
382  br(Assembler::notZero, false, Assembler::pt, StackOk);
383  delayed()->nop();
384  STOP("Stack Not Biased in set_last_Java_frame");
385  bind(StackOk);
386#endif // ASSERT
387  assert( last_java_sp != G4_scratch, "bad register usage in set_last_Java_frame");
388  add( last_java_sp, STACK_BIAS, G4_scratch );
389  st_ptr(G4_scratch, G2_thread, JavaThread::last_Java_sp_offset());
390}
391
392void MacroAssembler::reset_last_Java_frame(void) {
393  assert_not_delayed();
394
395  Address sp_addr(G2_thread, JavaThread::last_Java_sp_offset());
396  Address pc_addr(G2_thread, JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset());
397  Address flags  (G2_thread, JavaThread::frame_anchor_offset() + JavaFrameAnchor::flags_offset());
398
399#ifdef ASSERT
400  // check that it WAS previously set
401    save_frame_and_mov(0, Lmethod, Lmethod);     // Propagate Lmethod to helper frame
402    ld_ptr(sp_addr, L0);
403    tst(L0);
404    breakpoint_trap(Assembler::zero, Assembler::ptr_cc);
405    restore();
406#endif // ASSERT
407
408  st_ptr(G0, sp_addr);
409  // Always return last_Java_pc to zero
410  st_ptr(G0, pc_addr);
411  // Always null flags after return to Java
412  st(G0, flags);
413}
414
415
416void MacroAssembler::call_VM_base(
417  Register        oop_result,
418  Register        thread_cache,
419  Register        last_java_sp,
420  address         entry_point,
421  int             number_of_arguments,
422  bool            check_exceptions)
423{
424  assert_not_delayed();
425
426  // determine last_java_sp register
427  if (!last_java_sp->is_valid()) {
428    last_java_sp = SP;
429  }
430  // debugging support
431  assert(number_of_arguments >= 0   , "cannot have negative number of arguments");
432
433  // 64-bit last_java_sp is biased!
434  set_last_Java_frame(last_java_sp, noreg);
435  if (VerifyThread)  mov(G2_thread, O0); // about to be smashed; pass early
436  save_thread(thread_cache);
437  // do the call
438  call(entry_point, relocInfo::runtime_call_type);
439  if (!VerifyThread)
440    delayed()->mov(G2_thread, O0);  // pass thread as first argument
441  else
442    delayed()->nop();             // (thread already passed)
443  restore_thread(thread_cache);
444  reset_last_Java_frame();
445
446  // check for pending exceptions. use Gtemp as scratch register.
447  if (check_exceptions) {
448    check_and_forward_exception(Gtemp);
449  }
450
451#ifdef ASSERT
452  set(badHeapWordVal, G3);
453  set(badHeapWordVal, G4);
454  set(badHeapWordVal, G5);
455#endif
456
457  // get oop result if there is one and reset the value in the thread
458  if (oop_result->is_valid()) {
459    get_vm_result(oop_result);
460  }
461}
462
463void MacroAssembler::check_and_forward_exception(Register scratch_reg)
464{
465  Label L;
466
467  check_and_handle_popframe(scratch_reg);
468  check_and_handle_earlyret(scratch_reg);
469
470  Address exception_addr(G2_thread, Thread::pending_exception_offset());
471  ld_ptr(exception_addr, scratch_reg);
472  br_null_short(scratch_reg, pt, L);
473  // we use O7 linkage so that forward_exception_entry has the issuing PC
474  call(StubRoutines::forward_exception_entry(), relocInfo::runtime_call_type);
475  delayed()->nop();
476  bind(L);
477}
478
479
480void MacroAssembler::check_and_handle_popframe(Register scratch_reg) {
481}
482
483
484void MacroAssembler::check_and_handle_earlyret(Register scratch_reg) {
485}
486
487
488void MacroAssembler::call_VM(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
489  call_VM_base(oop_result, noreg, noreg, entry_point, number_of_arguments, check_exceptions);
490}
491
492
493void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, bool check_exceptions) {
494  // O0 is reserved for the thread
495  mov(arg_1, O1);
496  call_VM(oop_result, entry_point, 1, check_exceptions);
497}
498
499
500void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, bool check_exceptions) {
501  // O0 is reserved for the thread
502  mov(arg_1, O1);
503  mov(arg_2, O2); assert(arg_2 != O1, "smashed argument");
504  call_VM(oop_result, entry_point, 2, check_exceptions);
505}
506
507
508void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions) {
509  // O0 is reserved for the thread
510  mov(arg_1, O1);
511  mov(arg_2, O2); assert(arg_2 != O1,                "smashed argument");
512  mov(arg_3, O3); assert(arg_3 != O1 && arg_3 != O2, "smashed argument");
513  call_VM(oop_result, entry_point, 3, check_exceptions);
514}
515
516
517
518// Note: The following call_VM overloadings are useful when a "save"
519// has already been performed by a stub, and the last Java frame is
520// the previous one.  In that case, last_java_sp must be passed as FP
521// instead of SP.
522
523
524void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments, bool check_exceptions) {
525  call_VM_base(oop_result, noreg, last_java_sp, entry_point, number_of_arguments, check_exceptions);
526}
527
528
529void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions) {
530  // O0 is reserved for the thread
531  mov(arg_1, O1);
532  call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
533}
534
535
536void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions) {
537  // O0 is reserved for the thread
538  mov(arg_1, O1);
539  mov(arg_2, O2); assert(arg_2 != O1, "smashed argument");
540  call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
541}
542
543
544void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions) {
545  // O0 is reserved for the thread
546  mov(arg_1, O1);
547  mov(arg_2, O2); assert(arg_2 != O1,                "smashed argument");
548  mov(arg_3, O3); assert(arg_3 != O1 && arg_3 != O2, "smashed argument");
549  call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
550}
551
552
553
554void MacroAssembler::call_VM_leaf_base(Register thread_cache, address entry_point, int number_of_arguments) {
555  assert_not_delayed();
556  save_thread(thread_cache);
557  // do the call
558  call(entry_point, relocInfo::runtime_call_type);
559  delayed()->nop();
560  restore_thread(thread_cache);
561#ifdef ASSERT
562  set(badHeapWordVal, G3);
563  set(badHeapWordVal, G4);
564  set(badHeapWordVal, G5);
565#endif
566}
567
568
569void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, int number_of_arguments) {
570  call_VM_leaf_base(thread_cache, entry_point, number_of_arguments);
571}
572
573
574void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, Register arg_1) {
575  mov(arg_1, O0);
576  call_VM_leaf(thread_cache, entry_point, 1);
577}
578
579
580void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2) {
581  mov(arg_1, O0);
582  mov(arg_2, O1); assert(arg_2 != O0, "smashed argument");
583  call_VM_leaf(thread_cache, entry_point, 2);
584}
585
586
587void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2, Register arg_3) {
588  mov(arg_1, O0);
589  mov(arg_2, O1); assert(arg_2 != O0,                "smashed argument");
590  mov(arg_3, O2); assert(arg_3 != O0 && arg_3 != O1, "smashed argument");
591  call_VM_leaf(thread_cache, entry_point, 3);
592}
593
594
595void MacroAssembler::get_vm_result(Register oop_result) {
596  verify_thread();
597  Address vm_result_addr(G2_thread, JavaThread::vm_result_offset());
598  ld_ptr(    vm_result_addr, oop_result);
599  st_ptr(G0, vm_result_addr);
600  verify_oop(oop_result);
601}
602
603
604void MacroAssembler::get_vm_result_2(Register metadata_result) {
605  verify_thread();
606  Address vm_result_addr_2(G2_thread, JavaThread::vm_result_2_offset());
607  ld_ptr(vm_result_addr_2, metadata_result);
608  st_ptr(G0, vm_result_addr_2);
609}
610
611
612// We require that C code which does not return a value in vm_result will
613// leave it undisturbed.
614void MacroAssembler::set_vm_result(Register oop_result) {
615  verify_thread();
616  Address vm_result_addr(G2_thread, JavaThread::vm_result_offset());
617  verify_oop(oop_result);
618
619# ifdef ASSERT
620    // Check that we are not overwriting any other oop.
621    save_frame_and_mov(0, Lmethod, Lmethod);     // Propagate Lmethod
622    ld_ptr(vm_result_addr, L0);
623    tst(L0);
624    restore();
625    breakpoint_trap(notZero, Assembler::ptr_cc);
626    // }
627# endif
628
629  st_ptr(oop_result, vm_result_addr);
630}
631
632
633void MacroAssembler::ic_call(address entry, bool emit_delay, jint method_index) {
634  RelocationHolder rspec = virtual_call_Relocation::spec(pc(), method_index);
635  patchable_set((intptr_t)Universe::non_oop_word(), G5_inline_cache_reg);
636  relocate(rspec);
637  call(entry, relocInfo::none);
638  if (emit_delay) {
639    delayed()->nop();
640  }
641}
642
643void MacroAssembler::card_table_write(jbyte* byte_map_base,
644                                      Register tmp, Register obj) {
645  srlx(obj, CardTableModRefBS::card_shift, obj);
646  assert(tmp != obj, "need separate temp reg");
647  set((address) byte_map_base, tmp);
648  stb(G0, tmp, obj);
649}
650
651
652void MacroAssembler::internal_sethi(const AddressLiteral& addrlit, Register d, bool ForceRelocatable) {
653  address save_pc;
654  int shiftcnt;
655#ifdef VALIDATE_PIPELINE
656  assert_no_delay("Cannot put two instructions in delay-slot.");
657#endif
658  v9_dep();
659  save_pc = pc();
660
661  int msb32 = (int) (addrlit.value() >> 32);
662  int lsb32 = (int) (addrlit.value());
663
664  if (msb32 == 0 && lsb32 >= 0) {
665    Assembler::sethi(lsb32, d, addrlit.rspec());
666  }
667  else if (msb32 == -1) {
668    Assembler::sethi(~lsb32, d, addrlit.rspec());
669    xor3(d, ~low10(~0), d);
670  }
671  else {
672    Assembler::sethi(msb32, d, addrlit.rspec());  // msb 22-bits
673    if (msb32 & 0x3ff)                            // Any bits?
674      or3(d, msb32 & 0x3ff, d);                   // msb 32-bits are now in lsb 32
675    if (lsb32 & 0xFFFFFC00) {                     // done?
676      if ((lsb32 >> 20) & 0xfff) {                // Any bits set?
677        sllx(d, 12, d);                           // Make room for next 12 bits
678        or3(d, (lsb32 >> 20) & 0xfff, d);         // Or in next 12
679        shiftcnt = 0;                             // We already shifted
680      }
681      else
682        shiftcnt = 12;
683      if ((lsb32 >> 10) & 0x3ff) {
684        sllx(d, shiftcnt + 10, d);                // Make room for last 10 bits
685        or3(d, (lsb32 >> 10) & 0x3ff, d);         // Or in next 10
686        shiftcnt = 0;
687      }
688      else
689        shiftcnt = 10;
690      sllx(d, shiftcnt + 10, d);                  // Shift leaving disp field 0'd
691    }
692    else
693      sllx(d, 32, d);
694  }
695  // Pad out the instruction sequence so it can be patched later.
696  if (ForceRelocatable || (addrlit.rtype() != relocInfo::none &&
697                           addrlit.rtype() != relocInfo::runtime_call_type)) {
698    while (pc() < (save_pc + (7 * BytesPerInstWord)))
699      nop();
700  }
701}
702
703
704void MacroAssembler::sethi(const AddressLiteral& addrlit, Register d) {
705  internal_sethi(addrlit, d, false);
706}
707
708
709void MacroAssembler::patchable_sethi(const AddressLiteral& addrlit, Register d) {
710  internal_sethi(addrlit, d, true);
711}
712
713
714int MacroAssembler::insts_for_sethi(address a, bool worst_case) {
715  if (worst_case)  return 7;
716  intptr_t iaddr = (intptr_t) a;
717  int msb32 = (int) (iaddr >> 32);
718  int lsb32 = (int) (iaddr);
719  int count;
720  if (msb32 == 0 && lsb32 >= 0)
721    count = 1;
722  else if (msb32 == -1)
723    count = 2;
724  else {
725    count = 2;
726    if (msb32 & 0x3ff)
727      count++;
728    if (lsb32 & 0xFFFFFC00 ) {
729      if ((lsb32 >> 20) & 0xfff)  count += 2;
730      if ((lsb32 >> 10) & 0x3ff)  count += 2;
731    }
732  }
733  return count;
734}
735
736int MacroAssembler::worst_case_insts_for_set() {
737  return insts_for_sethi(NULL, true) + 1;
738}
739
740
741// Keep in sync with MacroAssembler::insts_for_internal_set
742void MacroAssembler::internal_set(const AddressLiteral& addrlit, Register d, bool ForceRelocatable) {
743  intptr_t value = addrlit.value();
744
745  if (!ForceRelocatable && addrlit.rspec().type() == relocInfo::none) {
746    // can optimize
747    if (-4096 <= value && value <= 4095) {
748      or3(G0, value, d); // setsw (this leaves upper 32 bits sign-extended)
749      return;
750    }
751    if (inv_hi22(hi22(value)) == value) {
752      sethi(addrlit, d);
753      return;
754    }
755  }
756  assert_no_delay("Cannot put two instructions in delay-slot.");
757  internal_sethi(addrlit, d, ForceRelocatable);
758  if (ForceRelocatable || addrlit.rspec().type() != relocInfo::none || addrlit.low10() != 0) {
759    add(d, addrlit.low10(), d, addrlit.rspec());
760  }
761}
762
763// Keep in sync with MacroAssembler::internal_set
764int MacroAssembler::insts_for_internal_set(intptr_t value) {
765  // can optimize
766  if (-4096 <= value && value <= 4095) {
767    return 1;
768  }
769  if (inv_hi22(hi22(value)) == value) {
770    return insts_for_sethi((address) value);
771  }
772  int count = insts_for_sethi((address) value);
773  AddressLiteral al(value);
774  if (al.low10() != 0) {
775    count++;
776  }
777  return count;
778}
779
780void MacroAssembler::set(const AddressLiteral& al, Register d) {
781  internal_set(al, d, false);
782}
783
784void MacroAssembler::set(intptr_t value, Register d) {
785  AddressLiteral al(value);
786  internal_set(al, d, false);
787}
788
789void MacroAssembler::set(address addr, Register d, RelocationHolder const& rspec) {
790  AddressLiteral al(addr, rspec);
791  internal_set(al, d, false);
792}
793
794void MacroAssembler::patchable_set(const AddressLiteral& al, Register d) {
795  internal_set(al, d, true);
796}
797
798void MacroAssembler::patchable_set(intptr_t value, Register d) {
799  AddressLiteral al(value);
800  internal_set(al, d, true);
801}
802
803
804void MacroAssembler::set64(jlong value, Register d, Register tmp) {
805  assert_not_delayed();
806  v9_dep();
807
808  int hi = (int)(value >> 32);
809  int lo = (int)(value & ~0);
810  int bits_33to2 = (int)((value >> 2) & ~0);
811  // (Matcher::isSimpleConstant64 knows about the following optimizations.)
812  if (Assembler::is_simm13(lo) && value == lo) {
813    or3(G0, lo, d);
814  } else if (hi == 0) {
815    Assembler::sethi(lo, d);   // hardware version zero-extends to upper 32
816    if (low10(lo) != 0)
817      or3(d, low10(lo), d);
818  }
819  else if ((hi >> 2) == 0) {
820    Assembler::sethi(bits_33to2, d);  // hardware version zero-extends to upper 32
821    sllx(d, 2, d);
822    if (low12(lo) != 0)
823      or3(d, low12(lo), d);
824  }
825  else if (hi == -1) {
826    Assembler::sethi(~lo, d);  // hardware version zero-extends to upper 32
827    xor3(d, low10(lo) ^ ~low10(~0), d);
828  }
829  else if (lo == 0) {
830    if (Assembler::is_simm13(hi)) {
831      or3(G0, hi, d);
832    } else {
833      Assembler::sethi(hi, d);   // hardware version zero-extends to upper 32
834      if (low10(hi) != 0)
835        or3(d, low10(hi), d);
836    }
837    sllx(d, 32, d);
838  }
839  else {
840    Assembler::sethi(hi, tmp);
841    Assembler::sethi(lo,   d); // macro assembler version sign-extends
842    if (low10(hi) != 0)
843      or3 (tmp, low10(hi), tmp);
844    if (low10(lo) != 0)
845      or3 (  d, low10(lo),   d);
846    sllx(tmp, 32, tmp);
847    or3 (d, tmp, d);
848  }
849}
850
851int MacroAssembler::insts_for_set64(jlong value) {
852  v9_dep();
853
854  int hi = (int) (value >> 32);
855  int lo = (int) (value & ~0);
856  int count = 0;
857
858  // (Matcher::isSimpleConstant64 knows about the following optimizations.)
859  if (Assembler::is_simm13(lo) && value == lo) {
860    count++;
861  } else if (hi == 0) {
862    count++;
863    if (low10(lo) != 0)
864      count++;
865  }
866  else if (hi == -1) {
867    count += 2;
868  }
869  else if (lo == 0) {
870    if (Assembler::is_simm13(hi)) {
871      count++;
872    } else {
873      count++;
874      if (low10(hi) != 0)
875        count++;
876    }
877    count++;
878  }
879  else {
880    count += 2;
881    if (low10(hi) != 0)
882      count++;
883    if (low10(lo) != 0)
884      count++;
885    count += 2;
886  }
887  return count;
888}
889
890// compute size in bytes of sparc frame, given
891// number of extraWords
892int MacroAssembler::total_frame_size_in_bytes(int extraWords) {
893
894  int nWords = frame::memory_parameter_word_sp_offset;
895
896  nWords += extraWords;
897
898  if (nWords & 1) ++nWords; // round up to double-word
899
900  return nWords * BytesPerWord;
901}
902
903
904// save_frame: given number of "extra" words in frame,
905// issue approp. save instruction (p 200, v8 manual)
906
907void MacroAssembler::save_frame(int extraWords) {
908  int delta = -total_frame_size_in_bytes(extraWords);
909  if (is_simm13(delta)) {
910    save(SP, delta, SP);
911  } else {
912    set(delta, G3_scratch);
913    save(SP, G3_scratch, SP);
914  }
915}
916
917
918void MacroAssembler::save_frame_c1(int size_in_bytes) {
919  if (is_simm13(-size_in_bytes)) {
920    save(SP, -size_in_bytes, SP);
921  } else {
922    set(-size_in_bytes, G3_scratch);
923    save(SP, G3_scratch, SP);
924  }
925}
926
927
928void MacroAssembler::save_frame_and_mov(int extraWords,
929                                        Register s1, Register d1,
930                                        Register s2, Register d2) {
931  assert_not_delayed();
932
933  // The trick here is to use precisely the same memory word
934  // that trap handlers also use to save the register.
935  // This word cannot be used for any other purpose, but
936  // it works fine to save the register's value, whether or not
937  // an interrupt flushes register windows at any given moment!
938  Address s1_addr;
939  if (s1->is_valid() && (s1->is_in() || s1->is_local())) {
940    s1_addr = s1->address_in_saved_window();
941    st_ptr(s1, s1_addr);
942  }
943
944  Address s2_addr;
945  if (s2->is_valid() && (s2->is_in() || s2->is_local())) {
946    s2_addr = s2->address_in_saved_window();
947    st_ptr(s2, s2_addr);
948  }
949
950  save_frame(extraWords);
951
952  if (s1_addr.base() == SP) {
953    ld_ptr(s1_addr.after_save(), d1);
954  } else if (s1->is_valid()) {
955    mov(s1->after_save(), d1);
956  }
957
958  if (s2_addr.base() == SP) {
959    ld_ptr(s2_addr.after_save(), d2);
960  } else if (s2->is_valid()) {
961    mov(s2->after_save(), d2);
962  }
963}
964
965
966AddressLiteral MacroAssembler::allocate_metadata_address(Metadata* obj) {
967  assert(oop_recorder() != NULL, "this assembler needs a Recorder");
968  int index = oop_recorder()->allocate_metadata_index(obj);
969  RelocationHolder rspec = metadata_Relocation::spec(index);
970  return AddressLiteral((address)obj, rspec);
971}
972
973AddressLiteral MacroAssembler::constant_metadata_address(Metadata* obj) {
974  assert(oop_recorder() != NULL, "this assembler needs a Recorder");
975  int index = oop_recorder()->find_index(obj);
976  RelocationHolder rspec = metadata_Relocation::spec(index);
977  return AddressLiteral((address)obj, rspec);
978}
979
980
981AddressLiteral MacroAssembler::constant_oop_address(jobject obj) {
982  assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
983  assert(Universe::heap()->is_in_reserved(JNIHandles::resolve(obj)), "not an oop");
984  int oop_index = oop_recorder()->find_index(obj);
985  return AddressLiteral(obj, oop_Relocation::spec(oop_index));
986}
987
988void  MacroAssembler::set_narrow_oop(jobject obj, Register d) {
989  assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
990  int oop_index = oop_recorder()->find_index(obj);
991  RelocationHolder rspec = oop_Relocation::spec(oop_index);
992
993  assert_not_delayed();
994  // Relocation with special format (see relocInfo_sparc.hpp).
995  relocate(rspec, 1);
996  // Assembler::sethi(0x3fffff, d);
997  emit_int32( op(branch_op) | rd(d) | op2(sethi_op2) | hi22(0x3fffff) );
998  // Don't add relocation for 'add'. Do patching during 'sethi' processing.
999  add(d, 0x3ff, d);
1000
1001}
1002
1003void  MacroAssembler::set_narrow_klass(Klass* k, Register d) {
1004  assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
1005  int klass_index = oop_recorder()->find_index(k);
1006  RelocationHolder rspec = metadata_Relocation::spec(klass_index);
1007  narrowOop encoded_k = Klass::encode_klass(k);
1008
1009  assert_not_delayed();
1010  // Relocation with special format (see relocInfo_sparc.hpp).
1011  relocate(rspec, 1);
1012  // Assembler::sethi(encoded_k, d);
1013  emit_int32( op(branch_op) | rd(d) | op2(sethi_op2) | hi22(encoded_k) );
1014  // Don't add relocation for 'add'. Do patching during 'sethi' processing.
1015  add(d, low10(encoded_k), d);
1016
1017}
1018
1019void MacroAssembler::align(int modulus) {
1020  while (offset() % modulus != 0) nop();
1021}
1022
1023void RegistersForDebugging::print(outputStream* s) {
1024  FlagSetting fs(Debugging, true);
1025  int j;
1026  for (j = 0; j < 8; ++j) {
1027    if (j != 6) { s->print("i%d = ", j); os::print_location(s, i[j]); }
1028    else        { s->print( "fp = "   ); os::print_location(s, i[j]); }
1029  }
1030  s->cr();
1031
1032  for (j = 0;  j < 8;  ++j) {
1033    s->print("l%d = ", j); os::print_location(s, l[j]);
1034  }
1035  s->cr();
1036
1037  for (j = 0; j < 8; ++j) {
1038    if (j != 6) { s->print("o%d = ", j); os::print_location(s, o[j]); }
1039    else        { s->print( "sp = "   ); os::print_location(s, o[j]); }
1040  }
1041  s->cr();
1042
1043  for (j = 0; j < 8; ++j) {
1044    s->print("g%d = ", j); os::print_location(s, g[j]);
1045  }
1046  s->cr();
1047
1048  // print out floats with compression
1049  for (j = 0; j < 32; ) {
1050    jfloat val = f[j];
1051    int last = j;
1052    for ( ;  last+1 < 32;  ++last ) {
1053      char b1[1024], b2[1024];
1054      sprintf(b1, "%f", val);
1055      sprintf(b2, "%f", f[last+1]);
1056      if (strcmp(b1, b2))
1057        break;
1058    }
1059    s->print("f%d", j);
1060    if ( j != last )  s->print(" - f%d", last);
1061    s->print(" = %f", val);
1062    s->fill_to(25);
1063    s->print_cr(" (0x%x)", *(int*)&val);
1064    j = last + 1;
1065  }
1066  s->cr();
1067
1068  // and doubles (evens only)
1069  for (j = 0; j < 32; ) {
1070    jdouble val = d[j];
1071    int last = j;
1072    for ( ;  last+1 < 32;  ++last ) {
1073      char b1[1024], b2[1024];
1074      sprintf(b1, "%f", val);
1075      sprintf(b2, "%f", d[last+1]);
1076      if (strcmp(b1, b2))
1077        break;
1078    }
1079    s->print("d%d", 2 * j);
1080    if ( j != last )  s->print(" - d%d", last);
1081    s->print(" = %f", val);
1082    s->fill_to(30);
1083    s->print("(0x%x)", *(int*)&val);
1084    s->fill_to(42);
1085    s->print_cr("(0x%x)", *(1 + (int*)&val));
1086    j = last + 1;
1087  }
1088  s->cr();
1089}
1090
1091void RegistersForDebugging::save_registers(MacroAssembler* a) {
1092  a->sub(FP, align_up(sizeof(RegistersForDebugging), sizeof(jdouble)) - STACK_BIAS, O0);
1093  a->flushw();
1094  int i;
1095  for (i = 0; i < 8; ++i) {
1096    a->ld_ptr(as_iRegister(i)->address_in_saved_window().after_save(), L1);  a->st_ptr( L1, O0, i_offset(i));
1097    a->ld_ptr(as_lRegister(i)->address_in_saved_window().after_save(), L1);  a->st_ptr( L1, O0, l_offset(i));
1098    a->st_ptr(as_oRegister(i)->after_save(), O0, o_offset(i));
1099    a->st_ptr(as_gRegister(i)->after_save(), O0, g_offset(i));
1100  }
1101  for (i = 0;  i < 32; ++i) {
1102    a->stf(FloatRegisterImpl::S, as_FloatRegister(i), O0, f_offset(i));
1103  }
1104  for (i = 0; i < 64; i += 2) {
1105    a->stf(FloatRegisterImpl::D, as_FloatRegister(i), O0, d_offset(i));
1106  }
1107}
1108
1109void RegistersForDebugging::restore_registers(MacroAssembler* a, Register r) {
1110  for (int i = 1; i < 8;  ++i) {
1111    a->ld_ptr(r, g_offset(i), as_gRegister(i));
1112  }
1113  for (int j = 0; j < 32; ++j) {
1114    a->ldf(FloatRegisterImpl::S, O0, f_offset(j), as_FloatRegister(j));
1115  }
1116  for (int k = 0; k < 64; k += 2) {
1117    a->ldf(FloatRegisterImpl::D, O0, d_offset(k), as_FloatRegister(k));
1118  }
1119}
1120
1121
1122// pushes double TOS element of FPU stack on CPU stack; pops from FPU stack
1123void MacroAssembler::push_fTOS() {
1124  // %%%%%% need to implement this
1125}
1126
1127// pops double TOS element from CPU stack and pushes on FPU stack
1128void MacroAssembler::pop_fTOS() {
1129  // %%%%%% need to implement this
1130}
1131
1132void MacroAssembler::empty_FPU_stack() {
1133  // %%%%%% need to implement this
1134}
1135
1136void MacroAssembler::_verify_oop(Register reg, const char* msg, const char * file, int line) {
1137  // plausibility check for oops
1138  if (!VerifyOops) return;
1139
1140  if (reg == G0)  return;       // always NULL, which is always an oop
1141
1142  BLOCK_COMMENT("verify_oop {");
1143  char buffer[64];
1144#ifdef COMPILER1
1145  if (CommentedAssembly) {
1146    snprintf(buffer, sizeof(buffer), "verify_oop at %d", offset());
1147    block_comment(buffer);
1148  }
1149#endif
1150
1151  const char* real_msg = NULL;
1152  {
1153    ResourceMark rm;
1154    stringStream ss;
1155    ss.print("%s at offset %d (%s:%d)", msg, offset(), file, line);
1156    real_msg = code_string(ss.as_string());
1157  }
1158
1159  // Call indirectly to solve generation ordering problem
1160  AddressLiteral a(StubRoutines::verify_oop_subroutine_entry_address());
1161
1162  // Make some space on stack above the current register window.
1163  // Enough to hold 8 64-bit registers.
1164  add(SP,-8*8,SP);
1165
1166  // Save some 64-bit registers; a normal 'save' chops the heads off
1167  // of 64-bit longs in the 32-bit build.
1168  stx(O0,SP,frame::register_save_words*wordSize+STACK_BIAS+0*8);
1169  stx(O1,SP,frame::register_save_words*wordSize+STACK_BIAS+1*8);
1170  mov(reg,O0); // Move arg into O0; arg might be in O7 which is about to be crushed
1171  stx(O7,SP,frame::register_save_words*wordSize+STACK_BIAS+7*8);
1172
1173  // Size of set() should stay the same
1174  patchable_set((intptr_t)real_msg, O1);
1175  // Load address to call to into O7
1176  load_ptr_contents(a, O7);
1177  // Register call to verify_oop_subroutine
1178  callr(O7, G0);
1179  delayed()->nop();
1180  // recover frame size
1181  add(SP, 8*8,SP);
1182  BLOCK_COMMENT("} verify_oop");
1183}
1184
1185void MacroAssembler::_verify_oop_addr(Address addr, const char* msg, const char * file, int line) {
1186  // plausibility check for oops
1187  if (!VerifyOops) return;
1188
1189  const char* real_msg = NULL;
1190  {
1191    ResourceMark rm;
1192    stringStream ss;
1193    ss.print("%s at SP+%d (%s:%d)", msg, addr.disp(), file, line);
1194    real_msg = code_string(ss.as_string());
1195  }
1196
1197  // Call indirectly to solve generation ordering problem
1198  AddressLiteral a(StubRoutines::verify_oop_subroutine_entry_address());
1199
1200  // Make some space on stack above the current register window.
1201  // Enough to hold 8 64-bit registers.
1202  add(SP,-8*8,SP);
1203
1204  // Save some 64-bit registers; a normal 'save' chops the heads off
1205  // of 64-bit longs in the 32-bit build.
1206  stx(O0,SP,frame::register_save_words*wordSize+STACK_BIAS+0*8);
1207  stx(O1,SP,frame::register_save_words*wordSize+STACK_BIAS+1*8);
1208  ld_ptr(addr.base(), addr.disp() + 8*8, O0); // Load arg into O0; arg might be in O7 which is about to be crushed
1209  stx(O7,SP,frame::register_save_words*wordSize+STACK_BIAS+7*8);
1210
1211  // Size of set() should stay the same
1212  patchable_set((intptr_t)real_msg, O1);
1213  // Load address to call to into O7
1214  load_ptr_contents(a, O7);
1215  // Register call to verify_oop_subroutine
1216  callr(O7, G0);
1217  delayed()->nop();
1218  // recover frame size
1219  add(SP, 8*8,SP);
1220}
1221
1222// side-door communication with signalHandler in os_solaris.cpp
1223address MacroAssembler::_verify_oop_implicit_branch[3] = { NULL };
1224
1225// This macro is expanded just once; it creates shared code.  Contract:
1226// receives an oop in O0.  Must restore O0 & O7 from TLS.  Must not smash ANY
1227// registers, including flags.  May not use a register 'save', as this blows
1228// the high bits of the O-regs if they contain Long values.  Acts as a 'leaf'
1229// call.
1230void MacroAssembler::verify_oop_subroutine() {
1231  // Leaf call; no frame.
1232  Label succeed, fail, null_or_fail;
1233
1234  // O0 and O7 were saved already (O0 in O0's TLS home, O7 in O5's TLS home).
1235  // O0 is now the oop to be checked.  O7 is the return address.
1236  Register O0_obj = O0;
1237
1238  // Save some more registers for temps.
1239  stx(O2,SP,frame::register_save_words*wordSize+STACK_BIAS+2*8);
1240  stx(O3,SP,frame::register_save_words*wordSize+STACK_BIAS+3*8);
1241  stx(O4,SP,frame::register_save_words*wordSize+STACK_BIAS+4*8);
1242  stx(O5,SP,frame::register_save_words*wordSize+STACK_BIAS+5*8);
1243
1244  // Save flags
1245  Register O5_save_flags = O5;
1246  rdccr( O5_save_flags );
1247
1248  { // count number of verifies
1249    Register O2_adr   = O2;
1250    Register O3_accum = O3;
1251    inc_counter(StubRoutines::verify_oop_count_addr(), O2_adr, O3_accum);
1252  }
1253
1254  Register O2_mask = O2;
1255  Register O3_bits = O3;
1256  Register O4_temp = O4;
1257
1258  // mark lower end of faulting range
1259  assert(_verify_oop_implicit_branch[0] == NULL, "set once");
1260  _verify_oop_implicit_branch[0] = pc();
1261
1262  // We can't check the mark oop because it could be in the process of
1263  // locking or unlocking while this is running.
1264  set(Universe::verify_oop_mask (), O2_mask);
1265  set(Universe::verify_oop_bits (), O3_bits);
1266
1267  // assert((obj & oop_mask) == oop_bits);
1268  and3(O0_obj, O2_mask, O4_temp);
1269  cmp_and_brx_short(O4_temp, O3_bits, notEqual, pn, null_or_fail);
1270
1271  if ((NULL_WORD & Universe::verify_oop_mask()) == Universe::verify_oop_bits()) {
1272    // the null_or_fail case is useless; must test for null separately
1273    br_null_short(O0_obj, pn, succeed);
1274  }
1275
1276  // Check the Klass* of this object for being in the right area of memory.
1277  // Cannot do the load in the delay above slot in case O0 is null
1278  load_klass(O0_obj, O0_obj);
1279  // assert((klass != NULL)
1280  br_null_short(O0_obj, pn, fail);
1281
1282  wrccr( O5_save_flags ); // Restore CCR's
1283
1284  // mark upper end of faulting range
1285  _verify_oop_implicit_branch[1] = pc();
1286
1287  //-----------------------
1288  // all tests pass
1289  bind(succeed);
1290
1291  // Restore prior 64-bit registers
1292  ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+0*8,O0);
1293  ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+1*8,O1);
1294  ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+2*8,O2);
1295  ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+3*8,O3);
1296  ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+4*8,O4);
1297  ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+5*8,O5);
1298
1299  retl();                       // Leaf return; restore prior O7 in delay slot
1300  delayed()->ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+7*8,O7);
1301
1302  //-----------------------
1303  bind(null_or_fail);           // nulls are less common but OK
1304  br_null(O0_obj, false, pt, succeed);
1305  delayed()->wrccr( O5_save_flags ); // Restore CCR's
1306
1307  //-----------------------
1308  // report failure:
1309  bind(fail);
1310  _verify_oop_implicit_branch[2] = pc();
1311
1312  wrccr( O5_save_flags ); // Restore CCR's
1313
1314  save_frame(align_up(sizeof(RegistersForDebugging) / BytesPerWord, 2));
1315
1316  // stop_subroutine expects message pointer in I1.
1317  mov(I1, O1);
1318
1319  // Restore prior 64-bit registers
1320  ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+0*8,I0);
1321  ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+1*8,I1);
1322  ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+2*8,I2);
1323  ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+3*8,I3);
1324  ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+4*8,I4);
1325  ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+5*8,I5);
1326
1327  // factor long stop-sequence into subroutine to save space
1328  assert(StubRoutines::Sparc::stop_subroutine_entry_address(), "hasn't been generated yet");
1329
1330  // call indirectly to solve generation ordering problem
1331  AddressLiteral al(StubRoutines::Sparc::stop_subroutine_entry_address());
1332  load_ptr_contents(al, O5);
1333  jmpl(O5, 0, O7);
1334  delayed()->nop();
1335}
1336
1337
1338void MacroAssembler::stop(const char* msg) {
1339  // save frame first to get O7 for return address
1340  // add one word to size in case struct is odd number of words long
1341  // It must be doubleword-aligned for storing doubles into it.
1342
1343    save_frame(align_up(sizeof(RegistersForDebugging) / BytesPerWord, 2));
1344
1345    // stop_subroutine expects message pointer in I1.
1346    // Size of set() should stay the same
1347    patchable_set((intptr_t)msg, O1);
1348
1349    // factor long stop-sequence into subroutine to save space
1350    assert(StubRoutines::Sparc::stop_subroutine_entry_address(), "hasn't been generated yet");
1351
1352    // call indirectly to solve generation ordering problem
1353    AddressLiteral a(StubRoutines::Sparc::stop_subroutine_entry_address());
1354    load_ptr_contents(a, O5);
1355    jmpl(O5, 0, O7);
1356    delayed()->nop();
1357
1358    breakpoint_trap();   // make stop actually stop rather than writing
1359                         // unnoticeable results in the output files.
1360
1361    // restore(); done in callee to save space!
1362}
1363
1364
1365void MacroAssembler::warn(const char* msg) {
1366  save_frame(align_up(sizeof(RegistersForDebugging) / BytesPerWord, 2));
1367  RegistersForDebugging::save_registers(this);
1368  mov(O0, L0);
1369  // Size of set() should stay the same
1370  patchable_set((intptr_t)msg, O0);
1371  call( CAST_FROM_FN_PTR(address, warning) );
1372  delayed()->nop();
1373//  ret();
1374//  delayed()->restore();
1375  RegistersForDebugging::restore_registers(this, L0);
1376  restore();
1377}
1378
1379
1380void MacroAssembler::untested(const char* what) {
1381  // We must be able to turn interactive prompting off
1382  // in order to run automated test scripts on the VM
1383  // Use the flag ShowMessageBoxOnError
1384
1385  const char* b = NULL;
1386  {
1387    ResourceMark rm;
1388    stringStream ss;
1389    ss.print("untested: %s", what);
1390    b = code_string(ss.as_string());
1391  }
1392  if (ShowMessageBoxOnError) { STOP(b); }
1393  else                       { warn(b); }
1394}
1395
1396
1397void MacroAssembler::unimplemented(const char* what) {
1398  char* b = new char[1024];
1399  jio_snprintf(b, 1024, "unimplemented: %s", what);
1400  stop(b);
1401}
1402
1403
1404void MacroAssembler::stop_subroutine() {
1405  RegistersForDebugging::save_registers(this);
1406
1407  // for the sake of the debugger, stick a PC on the current frame
1408  // (this assumes that the caller has performed an extra "save")
1409  mov(I7, L7);
1410  add(O7, -7 * BytesPerInt, I7);
1411
1412  save_frame(); // one more save to free up another O7 register
1413  mov(I0, O1); // addr of reg save area
1414
1415  // We expect pointer to message in I1. Caller must set it up in O1
1416  mov(I1, O0); // get msg
1417  call (CAST_FROM_FN_PTR(address, MacroAssembler::debug), relocInfo::runtime_call_type);
1418  delayed()->nop();
1419
1420  restore();
1421
1422  RegistersForDebugging::restore_registers(this, O0);
1423
1424  save_frame(0);
1425  call(CAST_FROM_FN_PTR(address,breakpoint));
1426  delayed()->nop();
1427  restore();
1428
1429  mov(L7, I7);
1430  retl();
1431  delayed()->restore(); // see stop above
1432}
1433
1434
1435void MacroAssembler::debug(char* msg, RegistersForDebugging* regs) {
1436  if ( ShowMessageBoxOnError ) {
1437    JavaThread* thread = JavaThread::current();
1438    JavaThreadState saved_state = thread->thread_state();
1439    thread->set_thread_state(_thread_in_vm);
1440      {
1441        // In order to get locks work, we need to fake a in_VM state
1442        ttyLocker ttyl;
1443        ::tty->print_cr("EXECUTION STOPPED: %s\n", msg);
1444        if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
1445        BytecodeCounter::print();
1446        }
1447        if (os::message_box(msg, "Execution stopped, print registers?"))
1448          regs->print(::tty);
1449      }
1450    BREAKPOINT;
1451      ThreadStateTransition::transition(JavaThread::current(), _thread_in_vm, saved_state);
1452  }
1453  else {
1454     ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n", msg);
1455  }
1456  assert(false, "DEBUG MESSAGE: %s", msg);
1457}
1458
1459
1460void MacroAssembler::calc_mem_param_words(Register Rparam_words, Register Rresult) {
1461  subcc( Rparam_words, Argument::n_register_parameters, Rresult); // how many mem words?
1462  Label no_extras;
1463  br( negative, true, pt, no_extras ); // if neg, clear reg
1464  delayed()->set(0, Rresult);          // annuled, so only if taken
1465  bind( no_extras );
1466}
1467
1468
1469void MacroAssembler::calc_frame_size(Register Rextra_words, Register Rresult) {
1470  add(Rextra_words, frame::memory_parameter_word_sp_offset, Rresult);
1471  bclr(1, Rresult);
1472  sll(Rresult, LogBytesPerWord, Rresult);  // Rresult has total frame bytes
1473}
1474
1475
1476void MacroAssembler::calc_frame_size_and_save(Register Rextra_words, Register Rresult) {
1477  calc_frame_size(Rextra_words, Rresult);
1478  neg(Rresult);
1479  save(SP, Rresult, SP);
1480}
1481
1482
1483// ---------------------------------------------------------
1484Assembler::RCondition cond2rcond(Assembler::Condition c) {
1485  switch (c) {
1486    /*case zero: */
1487    case Assembler::equal:        return Assembler::rc_z;
1488    case Assembler::lessEqual:    return Assembler::rc_lez;
1489    case Assembler::less:         return Assembler::rc_lz;
1490    /*case notZero:*/
1491    case Assembler::notEqual:     return Assembler::rc_nz;
1492    case Assembler::greater:      return Assembler::rc_gz;
1493    case Assembler::greaterEqual: return Assembler::rc_gez;
1494  }
1495  ShouldNotReachHere();
1496  return Assembler::rc_z;
1497}
1498
1499// compares (32 bit) register with zero and branches.  NOT FOR USE WITH 64-bit POINTERS
1500void MacroAssembler::cmp_zero_and_br(Condition c, Register s1, Label& L, bool a, Predict p) {
1501  tst(s1);
1502  br (c, a, p, L);
1503}
1504
1505// Compares a pointer register with zero and branches on null.
1506// Does a test & branch on 32-bit systems and a register-branch on 64-bit.
1507void MacroAssembler::br_null( Register s1, bool a, Predict p, Label& L ) {
1508  assert_not_delayed();
1509  bpr( rc_z, a, p, s1, L );
1510}
1511
1512void MacroAssembler::br_notnull( Register s1, bool a, Predict p, Label& L ) {
1513  assert_not_delayed();
1514  bpr( rc_nz, a, p, s1, L );
1515}
1516
1517// Compare registers and branch with nop in delay slot or cbcond without delay slot.
1518
1519// Compare integer (32 bit) values (icc only).
1520void MacroAssembler::cmp_and_br_short(Register s1, Register s2, Condition c,
1521                                      Predict p, Label& L) {
1522  assert_not_delayed();
1523  if (use_cbcond(L)) {
1524    Assembler::cbcond(c, icc, s1, s2, L);
1525  } else {
1526    cmp(s1, s2);
1527    br(c, false, p, L);
1528    delayed()->nop();
1529  }
1530}
1531
1532// Compare integer (32 bit) values (icc only).
1533void MacroAssembler::cmp_and_br_short(Register s1, int simm13a, Condition c,
1534                                      Predict p, Label& L) {
1535  assert_not_delayed();
1536  if (is_simm(simm13a,5) && use_cbcond(L)) {
1537    Assembler::cbcond(c, icc, s1, simm13a, L);
1538  } else {
1539    cmp(s1, simm13a);
1540    br(c, false, p, L);
1541    delayed()->nop();
1542  }
1543}
1544
1545// Branch that tests xcc in LP64 and icc in !LP64
1546void MacroAssembler::cmp_and_brx_short(Register s1, Register s2, Condition c,
1547                                       Predict p, Label& L) {
1548  assert_not_delayed();
1549  if (use_cbcond(L)) {
1550    Assembler::cbcond(c, ptr_cc, s1, s2, L);
1551  } else {
1552    cmp(s1, s2);
1553    brx(c, false, p, L);
1554    delayed()->nop();
1555  }
1556}
1557
1558// Branch that tests xcc in LP64 and icc in !LP64
1559void MacroAssembler::cmp_and_brx_short(Register s1, int simm13a, Condition c,
1560                                       Predict p, Label& L) {
1561  assert_not_delayed();
1562  if (is_simm(simm13a,5) && use_cbcond(L)) {
1563    Assembler::cbcond(c, ptr_cc, s1, simm13a, L);
1564  } else {
1565    cmp(s1, simm13a);
1566    brx(c, false, p, L);
1567    delayed()->nop();
1568  }
1569}
1570
1571// Short branch version for compares a pointer with zero.
1572
1573void MacroAssembler::br_null_short(Register s1, Predict p, Label& L) {
1574  assert_not_delayed();
1575  if (use_cbcond(L)) {
1576    Assembler::cbcond(zero, ptr_cc, s1, 0, L);
1577    return;
1578  }
1579  br_null(s1, false, p, L);
1580  delayed()->nop();
1581}
1582
1583void MacroAssembler::br_notnull_short(Register s1, Predict p, Label& L) {
1584  assert_not_delayed();
1585  if (use_cbcond(L)) {
1586    Assembler::cbcond(notZero, ptr_cc, s1, 0, L);
1587    return;
1588  }
1589  br_notnull(s1, false, p, L);
1590  delayed()->nop();
1591}
1592
1593// Unconditional short branch
1594void MacroAssembler::ba_short(Label& L) {
1595  if (use_cbcond(L)) {
1596    Assembler::cbcond(equal, icc, G0, G0, L);
1597    return;
1598  }
1599  br(always, false, pt, L);
1600  delayed()->nop();
1601}
1602
1603// instruction sequences factored across compiler & interpreter
1604
1605
1606void MacroAssembler::lcmp( Register Ra_hi, Register Ra_low,
1607                           Register Rb_hi, Register Rb_low,
1608                           Register Rresult) {
1609
1610  Label check_low_parts, done;
1611
1612  cmp(Ra_hi, Rb_hi );  // compare hi parts
1613  br(equal, true, pt, check_low_parts);
1614  delayed()->cmp(Ra_low, Rb_low); // test low parts
1615
1616  // And, with an unsigned comparison, it does not matter if the numbers
1617  // are negative or not.
1618  // E.g., -2 cmp -1: the low parts are 0xfffffffe and 0xffffffff.
1619  // The second one is bigger (unsignedly).
1620
1621  // Other notes:  The first move in each triplet can be unconditional
1622  // (and therefore probably prefetchable).
1623  // And the equals case for the high part does not need testing,
1624  // since that triplet is reached only after finding the high halves differ.
1625
1626  mov(-1, Rresult);
1627  ba(done);
1628  delayed()->movcc(greater, false, icc,  1, Rresult);
1629
1630  bind(check_low_parts);
1631
1632  mov(                               -1, Rresult);
1633  movcc(equal,           false, icc,  0, Rresult);
1634  movcc(greaterUnsigned, false, icc,  1, Rresult);
1635
1636  bind(done);
1637}
1638
1639void MacroAssembler::lneg( Register Rhi, Register Rlow ) {
1640  subcc(  G0, Rlow, Rlow );
1641  subc(   G0, Rhi,  Rhi  );
1642}
1643
1644void MacroAssembler::lshl( Register Rin_high,  Register Rin_low,
1645                           Register Rcount,
1646                           Register Rout_high, Register Rout_low,
1647                           Register Rtemp ) {
1648
1649
1650  Register Ralt_count = Rtemp;
1651  Register Rxfer_bits = Rtemp;
1652
1653  assert( Ralt_count != Rin_high
1654      &&  Ralt_count != Rin_low
1655      &&  Ralt_count != Rcount
1656      &&  Rxfer_bits != Rin_low
1657      &&  Rxfer_bits != Rin_high
1658      &&  Rxfer_bits != Rcount
1659      &&  Rxfer_bits != Rout_low
1660      &&  Rout_low   != Rin_high,
1661        "register alias checks");
1662
1663  Label big_shift, done;
1664
1665  // This code can be optimized to use the 64 bit shifts in V9.
1666  // Here we use the 32 bit shifts.
1667
1668  and3( Rcount, 0x3f, Rcount);     // take least significant 6 bits
1669  subcc(Rcount,   31, Ralt_count);
1670  br(greater, true, pn, big_shift);
1671  delayed()->dec(Ralt_count);
1672
1673  // shift < 32 bits, Ralt_count = Rcount-31
1674
1675  // We get the transfer bits by shifting right by 32-count the low
1676  // register. This is done by shifting right by 31-count and then by one
1677  // more to take care of the special (rare) case where count is zero
1678  // (shifting by 32 would not work).
1679
1680  neg(Ralt_count);
1681
1682  // The order of the next two instructions is critical in the case where
1683  // Rin and Rout are the same and should not be reversed.
1684
1685  srl(Rin_low, Ralt_count, Rxfer_bits); // shift right by 31-count
1686  if (Rcount != Rout_low) {
1687    sll(Rin_low, Rcount, Rout_low); // low half
1688  }
1689  sll(Rin_high, Rcount, Rout_high);
1690  if (Rcount == Rout_low) {
1691    sll(Rin_low, Rcount, Rout_low); // low half
1692  }
1693  srl(Rxfer_bits, 1, Rxfer_bits ); // shift right by one more
1694  ba(done);
1695  delayed()->or3(Rout_high, Rxfer_bits, Rout_high);   // new hi value: or in shifted old hi part and xfer from low
1696
1697  // shift >= 32 bits, Ralt_count = Rcount-32
1698  bind(big_shift);
1699  sll(Rin_low, Ralt_count, Rout_high  );
1700  clr(Rout_low);
1701
1702  bind(done);
1703}
1704
1705
1706void MacroAssembler::lshr( Register Rin_high,  Register Rin_low,
1707                           Register Rcount,
1708                           Register Rout_high, Register Rout_low,
1709                           Register Rtemp ) {
1710
1711  Register Ralt_count = Rtemp;
1712  Register Rxfer_bits = Rtemp;
1713
1714  assert( Ralt_count != Rin_high
1715      &&  Ralt_count != Rin_low
1716      &&  Ralt_count != Rcount
1717      &&  Rxfer_bits != Rin_low
1718      &&  Rxfer_bits != Rin_high
1719      &&  Rxfer_bits != Rcount
1720      &&  Rxfer_bits != Rout_high
1721      &&  Rout_high  != Rin_low,
1722        "register alias checks");
1723
1724  Label big_shift, done;
1725
1726  // This code can be optimized to use the 64 bit shifts in V9.
1727  // Here we use the 32 bit shifts.
1728
1729  and3( Rcount, 0x3f, Rcount);     // take least significant 6 bits
1730  subcc(Rcount,   31, Ralt_count);
1731  br(greater, true, pn, big_shift);
1732  delayed()->dec(Ralt_count);
1733
1734  // shift < 32 bits, Ralt_count = Rcount-31
1735
1736  // We get the transfer bits by shifting left by 32-count the high
1737  // register. This is done by shifting left by 31-count and then by one
1738  // more to take care of the special (rare) case where count is zero
1739  // (shifting by 32 would not work).
1740
1741  neg(Ralt_count);
1742  if (Rcount != Rout_low) {
1743    srl(Rin_low, Rcount, Rout_low);
1744  }
1745
1746  // The order of the next two instructions is critical in the case where
1747  // Rin and Rout are the same and should not be reversed.
1748
1749  sll(Rin_high, Ralt_count, Rxfer_bits); // shift left by 31-count
1750  sra(Rin_high,     Rcount, Rout_high ); // high half
1751  sll(Rxfer_bits,        1, Rxfer_bits); // shift left by one more
1752  if (Rcount == Rout_low) {
1753    srl(Rin_low, Rcount, Rout_low);
1754  }
1755  ba(done);
1756  delayed()->or3(Rout_low, Rxfer_bits, Rout_low); // new low value: or shifted old low part and xfer from high
1757
1758  // shift >= 32 bits, Ralt_count = Rcount-32
1759  bind(big_shift);
1760
1761  sra(Rin_high, Ralt_count, Rout_low);
1762  sra(Rin_high,         31, Rout_high); // sign into hi
1763
1764  bind( done );
1765}
1766
1767
1768
1769void MacroAssembler::lushr( Register Rin_high,  Register Rin_low,
1770                            Register Rcount,
1771                            Register Rout_high, Register Rout_low,
1772                            Register Rtemp ) {
1773
1774  Register Ralt_count = Rtemp;
1775  Register Rxfer_bits = Rtemp;
1776
1777  assert( Ralt_count != Rin_high
1778      &&  Ralt_count != Rin_low
1779      &&  Ralt_count != Rcount
1780      &&  Rxfer_bits != Rin_low
1781      &&  Rxfer_bits != Rin_high
1782      &&  Rxfer_bits != Rcount
1783      &&  Rxfer_bits != Rout_high
1784      &&  Rout_high  != Rin_low,
1785        "register alias checks");
1786
1787  Label big_shift, done;
1788
1789  // This code can be optimized to use the 64 bit shifts in V9.
1790  // Here we use the 32 bit shifts.
1791
1792  and3( Rcount, 0x3f, Rcount);     // take least significant 6 bits
1793  subcc(Rcount,   31, Ralt_count);
1794  br(greater, true, pn, big_shift);
1795  delayed()->dec(Ralt_count);
1796
1797  // shift < 32 bits, Ralt_count = Rcount-31
1798
1799  // We get the transfer bits by shifting left by 32-count the high
1800  // register. This is done by shifting left by 31-count and then by one
1801  // more to take care of the special (rare) case where count is zero
1802  // (shifting by 32 would not work).
1803
1804  neg(Ralt_count);
1805  if (Rcount != Rout_low) {
1806    srl(Rin_low, Rcount, Rout_low);
1807  }
1808
1809  // The order of the next two instructions is critical in the case where
1810  // Rin and Rout are the same and should not be reversed.
1811
1812  sll(Rin_high, Ralt_count, Rxfer_bits); // shift left by 31-count
1813  srl(Rin_high,     Rcount, Rout_high ); // high half
1814  sll(Rxfer_bits,        1, Rxfer_bits); // shift left by one more
1815  if (Rcount == Rout_low) {
1816    srl(Rin_low, Rcount, Rout_low);
1817  }
1818  ba(done);
1819  delayed()->or3(Rout_low, Rxfer_bits, Rout_low); // new low value: or shifted old low part and xfer from high
1820
1821  // shift >= 32 bits, Ralt_count = Rcount-32
1822  bind(big_shift);
1823
1824  srl(Rin_high, Ralt_count, Rout_low);
1825  clr(Rout_high);
1826
1827  bind( done );
1828}
1829
1830void MacroAssembler::lcmp( Register Ra, Register Rb, Register Rresult) {
1831  cmp(Ra, Rb);
1832  mov(-1, Rresult);
1833  movcc(equal,   false, xcc,  0, Rresult);
1834  movcc(greater, false, xcc,  1, Rresult);
1835}
1836
1837
1838void MacroAssembler::load_sized_value(Address src, Register dst, size_t size_in_bytes, bool is_signed) {
1839  switch (size_in_bytes) {
1840  case  8:  ld_long(src, dst); break;
1841  case  4:  ld(     src, dst); break;
1842  case  2:  is_signed ? ldsh(src, dst) : lduh(src, dst); break;
1843  case  1:  is_signed ? ldsb(src, dst) : ldub(src, dst); break;
1844  default:  ShouldNotReachHere();
1845  }
1846}
1847
1848void MacroAssembler::store_sized_value(Register src, Address dst, size_t size_in_bytes) {
1849  switch (size_in_bytes) {
1850  case  8:  st_long(src, dst); break;
1851  case  4:  st(     src, dst); break;
1852  case  2:  sth(    src, dst); break;
1853  case  1:  stb(    src, dst); break;
1854  default:  ShouldNotReachHere();
1855  }
1856}
1857
1858
1859void MacroAssembler::float_cmp( bool is_float, int unordered_result,
1860                                FloatRegister Fa, FloatRegister Fb,
1861                                Register Rresult) {
1862  if (is_float) {
1863    fcmp(FloatRegisterImpl::S, fcc0, Fa, Fb);
1864  } else {
1865    fcmp(FloatRegisterImpl::D, fcc0, Fa, Fb);
1866  }
1867
1868  if (unordered_result == 1) {
1869    mov(                                    -1, Rresult);
1870    movcc(f_equal,              true, fcc0,  0, Rresult);
1871    movcc(f_unorderedOrGreater, true, fcc0,  1, Rresult);
1872  } else {
1873    mov(                                    -1, Rresult);
1874    movcc(f_equal,              true, fcc0,  0, Rresult);
1875    movcc(f_greater,            true, fcc0,  1, Rresult);
1876  }
1877}
1878
1879
1880void MacroAssembler::save_all_globals_into_locals() {
1881  mov(G1,L1);
1882  mov(G2,L2);
1883  mov(G3,L3);
1884  mov(G4,L4);
1885  mov(G5,L5);
1886  mov(G6,L6);
1887  mov(G7,L7);
1888}
1889
1890void MacroAssembler::restore_globals_from_locals() {
1891  mov(L1,G1);
1892  mov(L2,G2);
1893  mov(L3,G3);
1894  mov(L4,G4);
1895  mov(L5,G5);
1896  mov(L6,G6);
1897  mov(L7,G7);
1898}
1899
1900RegisterOrConstant MacroAssembler::delayed_value_impl(intptr_t* delayed_value_addr,
1901                                                      Register tmp,
1902                                                      int offset) {
1903  intptr_t value = *delayed_value_addr;
1904  if (value != 0)
1905    return RegisterOrConstant(value + offset);
1906
1907  // load indirectly to solve generation ordering problem
1908  AddressLiteral a(delayed_value_addr);
1909  load_ptr_contents(a, tmp);
1910
1911#ifdef ASSERT
1912  tst(tmp);
1913  breakpoint_trap(zero, xcc);
1914#endif
1915
1916  if (offset != 0)
1917    add(tmp, offset, tmp);
1918
1919  return RegisterOrConstant(tmp);
1920}
1921
1922
1923RegisterOrConstant MacroAssembler::regcon_andn_ptr(RegisterOrConstant s1, RegisterOrConstant s2, RegisterOrConstant d, Register temp) {
1924  assert(d.register_or_noreg() != G0, "lost side effect");
1925  if ((s2.is_constant() && s2.as_constant() == 0) ||
1926      (s2.is_register() && s2.as_register() == G0)) {
1927    // Do nothing, just move value.
1928    if (s1.is_register()) {
1929      if (d.is_constant())  d = temp;
1930      mov(s1.as_register(), d.as_register());
1931      return d;
1932    } else {
1933      return s1;
1934    }
1935  }
1936
1937  if (s1.is_register()) {
1938    assert_different_registers(s1.as_register(), temp);
1939    if (d.is_constant())  d = temp;
1940    andn(s1.as_register(), ensure_simm13_or_reg(s2, temp), d.as_register());
1941    return d;
1942  } else {
1943    if (s2.is_register()) {
1944      assert_different_registers(s2.as_register(), temp);
1945      if (d.is_constant())  d = temp;
1946      set(s1.as_constant(), temp);
1947      andn(temp, s2.as_register(), d.as_register());
1948      return d;
1949    } else {
1950      intptr_t res = s1.as_constant() & ~s2.as_constant();
1951      return res;
1952    }
1953  }
1954}
1955
1956RegisterOrConstant MacroAssembler::regcon_inc_ptr(RegisterOrConstant s1, RegisterOrConstant s2, RegisterOrConstant d, Register temp) {
1957  assert(d.register_or_noreg() != G0, "lost side effect");
1958  if ((s2.is_constant() && s2.as_constant() == 0) ||
1959      (s2.is_register() && s2.as_register() == G0)) {
1960    // Do nothing, just move value.
1961    if (s1.is_register()) {
1962      if (d.is_constant())  d = temp;
1963      mov(s1.as_register(), d.as_register());
1964      return d;
1965    } else {
1966      return s1;
1967    }
1968  }
1969
1970  if (s1.is_register()) {
1971    assert_different_registers(s1.as_register(), temp);
1972    if (d.is_constant())  d = temp;
1973    add(s1.as_register(), ensure_simm13_or_reg(s2, temp), d.as_register());
1974    return d;
1975  } else {
1976    if (s2.is_register()) {
1977      assert_different_registers(s2.as_register(), temp);
1978      if (d.is_constant())  d = temp;
1979      add(s2.as_register(), ensure_simm13_or_reg(s1, temp), d.as_register());
1980      return d;
1981    } else {
1982      intptr_t res = s1.as_constant() + s2.as_constant();
1983      return res;
1984    }
1985  }
1986}
1987
1988RegisterOrConstant MacroAssembler::regcon_sll_ptr(RegisterOrConstant s1, RegisterOrConstant s2, RegisterOrConstant d, Register temp) {
1989  assert(d.register_or_noreg() != G0, "lost side effect");
1990  if (!is_simm13(s2.constant_or_zero()))
1991    s2 = (s2.as_constant() & 0xFF);
1992  if ((s2.is_constant() && s2.as_constant() == 0) ||
1993      (s2.is_register() && s2.as_register() == G0)) {
1994    // Do nothing, just move value.
1995    if (s1.is_register()) {
1996      if (d.is_constant())  d = temp;
1997      mov(s1.as_register(), d.as_register());
1998      return d;
1999    } else {
2000      return s1;
2001    }
2002  }
2003
2004  if (s1.is_register()) {
2005    assert_different_registers(s1.as_register(), temp);
2006    if (d.is_constant())  d = temp;
2007    sll_ptr(s1.as_register(), ensure_simm13_or_reg(s2, temp), d.as_register());
2008    return d;
2009  } else {
2010    if (s2.is_register()) {
2011      assert_different_registers(s2.as_register(), temp);
2012      if (d.is_constant())  d = temp;
2013      set(s1.as_constant(), temp);
2014      sll_ptr(temp, s2.as_register(), d.as_register());
2015      return d;
2016    } else {
2017      intptr_t res = s1.as_constant() << s2.as_constant();
2018      return res;
2019    }
2020  }
2021}
2022
2023
2024// Look up the method for a megamorphic invokeinterface call.
2025// The target method is determined by <intf_klass, itable_index>.
2026// The receiver klass is in recv_klass.
2027// On success, the result will be in method_result, and execution falls through.
2028// On failure, execution transfers to the given label.
2029void MacroAssembler::lookup_interface_method(Register recv_klass,
2030                                             Register intf_klass,
2031                                             RegisterOrConstant itable_index,
2032                                             Register method_result,
2033                                             Register scan_temp,
2034                                             Register sethi_temp,
2035                                             Label& L_no_such_interface) {
2036  assert_different_registers(recv_klass, intf_klass, method_result, scan_temp);
2037  assert(itable_index.is_constant() || itable_index.as_register() == method_result,
2038         "caller must use same register for non-constant itable index as for method");
2039
2040  Label L_no_such_interface_restore;
2041  bool did_save = false;
2042  if (scan_temp == noreg || sethi_temp == noreg) {
2043    Register recv_2 = recv_klass->is_global() ? recv_klass : L0;
2044    Register intf_2 = intf_klass->is_global() ? intf_klass : L1;
2045    assert(method_result->is_global(), "must be able to return value");
2046    scan_temp  = L2;
2047    sethi_temp = L3;
2048    save_frame_and_mov(0, recv_klass, recv_2, intf_klass, intf_2);
2049    recv_klass = recv_2;
2050    intf_klass = intf_2;
2051    did_save = true;
2052  }
2053
2054  // Compute start of first itableOffsetEntry (which is at the end of the vtable)
2055  int vtable_base = in_bytes(Klass::vtable_start_offset());
2056  int scan_step   = itableOffsetEntry::size() * wordSize;
2057  int vte_size    = vtableEntry::size_in_bytes();
2058
2059  lduw(recv_klass, in_bytes(Klass::vtable_length_offset()), scan_temp);
2060  // %%% We should store the aligned, prescaled offset in the klassoop.
2061  // Then the next several instructions would fold away.
2062
2063  int itb_offset = vtable_base;
2064  int itb_scale = exact_log2(vtableEntry::size_in_bytes());
2065  sll(scan_temp, itb_scale,  scan_temp);
2066  add(scan_temp, itb_offset, scan_temp);
2067  add(recv_klass, scan_temp, scan_temp);
2068
2069  // Adjust recv_klass by scaled itable_index, so we can free itable_index.
2070  RegisterOrConstant itable_offset = itable_index;
2071  itable_offset = regcon_sll_ptr(itable_index, exact_log2(itableMethodEntry::size() * wordSize), itable_offset);
2072  itable_offset = regcon_inc_ptr(itable_offset, itableMethodEntry::method_offset_in_bytes(), itable_offset);
2073  add(recv_klass, ensure_simm13_or_reg(itable_offset, sethi_temp), recv_klass);
2074
2075  // for (scan = klass->itable(); scan->interface() != NULL; scan += scan_step) {
2076  //   if (scan->interface() == intf) {
2077  //     result = (klass + scan->offset() + itable_index);
2078  //   }
2079  // }
2080  Label L_search, L_found_method;
2081
2082  for (int peel = 1; peel >= 0; peel--) {
2083    // %%%% Could load both offset and interface in one ldx, if they were
2084    // in the opposite order.  This would save a load.
2085    ld_ptr(scan_temp, itableOffsetEntry::interface_offset_in_bytes(), method_result);
2086
2087    // Check that this entry is non-null.  A null entry means that
2088    // the receiver class doesn't implement the interface, and wasn't the
2089    // same as when the caller was compiled.
2090    bpr(Assembler::rc_z, false, Assembler::pn, method_result, did_save ? L_no_such_interface_restore : L_no_such_interface);
2091    delayed()->cmp(method_result, intf_klass);
2092
2093    if (peel) {
2094      brx(Assembler::equal,    false, Assembler::pt, L_found_method);
2095    } else {
2096      brx(Assembler::notEqual, false, Assembler::pn, L_search);
2097      // (invert the test to fall through to found_method...)
2098    }
2099    delayed()->add(scan_temp, scan_step, scan_temp);
2100
2101    if (!peel)  break;
2102
2103    bind(L_search);
2104  }
2105
2106  bind(L_found_method);
2107
2108  // Got a hit.
2109  int ito_offset = itableOffsetEntry::offset_offset_in_bytes();
2110  // scan_temp[-scan_step] points to the vtable offset we need
2111  ito_offset -= scan_step;
2112  lduw(scan_temp, ito_offset, scan_temp);
2113  ld_ptr(recv_klass, scan_temp, method_result);
2114
2115  if (did_save) {
2116    Label L_done;
2117    ba(L_done);
2118    delayed()->restore();
2119
2120    bind(L_no_such_interface_restore);
2121    ba(L_no_such_interface);
2122    delayed()->restore();
2123
2124    bind(L_done);
2125  }
2126}
2127
2128
2129// virtual method calling
2130void MacroAssembler::lookup_virtual_method(Register recv_klass,
2131                                           RegisterOrConstant vtable_index,
2132                                           Register method_result) {
2133  assert_different_registers(recv_klass, method_result, vtable_index.register_or_noreg());
2134  Register sethi_temp = method_result;
2135  const int base = in_bytes(Klass::vtable_start_offset()) +
2136                   // method pointer offset within the vtable entry:
2137                   vtableEntry::method_offset_in_bytes();
2138  RegisterOrConstant vtable_offset = vtable_index;
2139  // Each of the following three lines potentially generates an instruction.
2140  // But the total number of address formation instructions will always be
2141  // at most two, and will often be zero.  In any case, it will be optimal.
2142  // If vtable_index is a register, we will have (sll_ptr N,x; inc_ptr B,x; ld_ptr k,x).
2143  // If vtable_index is a constant, we will have at most (set B+X<<N,t; ld_ptr k,t).
2144  vtable_offset = regcon_sll_ptr(vtable_index, exact_log2(vtableEntry::size_in_bytes()), vtable_offset);
2145  vtable_offset = regcon_inc_ptr(vtable_offset, base, vtable_offset, sethi_temp);
2146  Address vtable_entry_addr(recv_klass, ensure_simm13_or_reg(vtable_offset, sethi_temp));
2147  ld_ptr(vtable_entry_addr, method_result);
2148}
2149
2150
2151void MacroAssembler::check_klass_subtype(Register sub_klass,
2152                                         Register super_klass,
2153                                         Register temp_reg,
2154                                         Register temp2_reg,
2155                                         Label& L_success) {
2156  Register sub_2 = sub_klass;
2157  Register sup_2 = super_klass;
2158  if (!sub_2->is_global())  sub_2 = L0;
2159  if (!sup_2->is_global())  sup_2 = L1;
2160  bool did_save = false;
2161  if (temp_reg == noreg || temp2_reg == noreg) {
2162    temp_reg = L2;
2163    temp2_reg = L3;
2164    save_frame_and_mov(0, sub_klass, sub_2, super_klass, sup_2);
2165    sub_klass = sub_2;
2166    super_klass = sup_2;
2167    did_save = true;
2168  }
2169  Label L_failure, L_pop_to_failure, L_pop_to_success;
2170  check_klass_subtype_fast_path(sub_klass, super_klass,
2171                                temp_reg, temp2_reg,
2172                                (did_save ? &L_pop_to_success : &L_success),
2173                                (did_save ? &L_pop_to_failure : &L_failure), NULL);
2174
2175  if (!did_save)
2176    save_frame_and_mov(0, sub_klass, sub_2, super_klass, sup_2);
2177  check_klass_subtype_slow_path(sub_2, sup_2,
2178                                L2, L3, L4, L5,
2179                                NULL, &L_pop_to_failure);
2180
2181  // on success:
2182  bind(L_pop_to_success);
2183  restore();
2184  ba_short(L_success);
2185
2186  // on failure:
2187  bind(L_pop_to_failure);
2188  restore();
2189  bind(L_failure);
2190}
2191
2192
2193void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass,
2194                                                   Register super_klass,
2195                                                   Register temp_reg,
2196                                                   Register temp2_reg,
2197                                                   Label* L_success,
2198                                                   Label* L_failure,
2199                                                   Label* L_slow_path,
2200                                        RegisterOrConstant super_check_offset) {
2201  int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
2202  int sco_offset = in_bytes(Klass::super_check_offset_offset());
2203
2204  bool must_load_sco  = (super_check_offset.constant_or_zero() == -1);
2205  bool need_slow_path = (must_load_sco ||
2206                         super_check_offset.constant_or_zero() == sco_offset);
2207
2208  assert_different_registers(sub_klass, super_klass, temp_reg);
2209  if (super_check_offset.is_register()) {
2210    assert_different_registers(sub_klass, super_klass, temp_reg,
2211                               super_check_offset.as_register());
2212  } else if (must_load_sco) {
2213    assert(temp2_reg != noreg, "supply either a temp or a register offset");
2214  }
2215
2216  Label L_fallthrough;
2217  int label_nulls = 0;
2218  if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
2219  if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
2220  if (L_slow_path == NULL) { L_slow_path = &L_fallthrough; label_nulls++; }
2221  assert(label_nulls <= 1 ||
2222         (L_slow_path == &L_fallthrough && label_nulls <= 2 && !need_slow_path),
2223         "at most one NULL in the batch, usually");
2224
2225  // If the pointers are equal, we are done (e.g., String[] elements).
2226  // This self-check enables sharing of secondary supertype arrays among
2227  // non-primary types such as array-of-interface.  Otherwise, each such
2228  // type would need its own customized SSA.
2229  // We move this check to the front of the fast path because many
2230  // type checks are in fact trivially successful in this manner,
2231  // so we get a nicely predicted branch right at the start of the check.
2232  cmp(super_klass, sub_klass);
2233  brx(Assembler::equal, false, Assembler::pn, *L_success);
2234  delayed()->nop();
2235
2236  // Check the supertype display:
2237  if (must_load_sco) {
2238    // The super check offset is always positive...
2239    lduw(super_klass, sco_offset, temp2_reg);
2240    super_check_offset = RegisterOrConstant(temp2_reg);
2241    // super_check_offset is register.
2242    assert_different_registers(sub_klass, super_klass, temp_reg, super_check_offset.as_register());
2243  }
2244  ld_ptr(sub_klass, super_check_offset, temp_reg);
2245  cmp(super_klass, temp_reg);
2246
2247  // This check has worked decisively for primary supers.
2248  // Secondary supers are sought in the super_cache ('super_cache_addr').
2249  // (Secondary supers are interfaces and very deeply nested subtypes.)
2250  // This works in the same check above because of a tricky aliasing
2251  // between the super_cache and the primary super display elements.
2252  // (The 'super_check_addr' can address either, as the case requires.)
2253  // Note that the cache is updated below if it does not help us find
2254  // what we need immediately.
2255  // So if it was a primary super, we can just fail immediately.
2256  // Otherwise, it's the slow path for us (no success at this point).
2257
2258  // Hacked ba(), which may only be used just before L_fallthrough.
2259#define FINAL_JUMP(label)            \
2260  if (&(label) != &L_fallthrough) {  \
2261    ba(label);  delayed()->nop();    \
2262  }
2263
2264  if (super_check_offset.is_register()) {
2265    brx(Assembler::equal, false, Assembler::pn, *L_success);
2266    delayed()->cmp(super_check_offset.as_register(), sc_offset);
2267
2268    if (L_failure == &L_fallthrough) {
2269      brx(Assembler::equal, false, Assembler::pt, *L_slow_path);
2270      delayed()->nop();
2271    } else {
2272      brx(Assembler::notEqual, false, Assembler::pn, *L_failure);
2273      delayed()->nop();
2274      FINAL_JUMP(*L_slow_path);
2275    }
2276  } else if (super_check_offset.as_constant() == sc_offset) {
2277    // Need a slow path; fast failure is impossible.
2278    if (L_slow_path == &L_fallthrough) {
2279      brx(Assembler::equal, false, Assembler::pt, *L_success);
2280      delayed()->nop();
2281    } else {
2282      brx(Assembler::notEqual, false, Assembler::pn, *L_slow_path);
2283      delayed()->nop();
2284      FINAL_JUMP(*L_success);
2285    }
2286  } else {
2287    // No slow path; it's a fast decision.
2288    if (L_failure == &L_fallthrough) {
2289      brx(Assembler::equal, false, Assembler::pt, *L_success);
2290      delayed()->nop();
2291    } else {
2292      brx(Assembler::notEqual, false, Assembler::pn, *L_failure);
2293      delayed()->nop();
2294      FINAL_JUMP(*L_success);
2295    }
2296  }
2297
2298  bind(L_fallthrough);
2299
2300#undef FINAL_JUMP
2301}
2302
2303
2304void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
2305                                                   Register super_klass,
2306                                                   Register count_temp,
2307                                                   Register scan_temp,
2308                                                   Register scratch_reg,
2309                                                   Register coop_reg,
2310                                                   Label* L_success,
2311                                                   Label* L_failure) {
2312  assert_different_registers(sub_klass, super_klass,
2313                             count_temp, scan_temp, scratch_reg, coop_reg);
2314
2315  Label L_fallthrough, L_loop;
2316  int label_nulls = 0;
2317  if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
2318  if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
2319  assert(label_nulls <= 1, "at most one NULL in the batch");
2320
2321  // a couple of useful fields in sub_klass:
2322  int ss_offset = in_bytes(Klass::secondary_supers_offset());
2323  int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
2324
2325  // Do a linear scan of the secondary super-klass chain.
2326  // This code is rarely used, so simplicity is a virtue here.
2327
2328#ifndef PRODUCT
2329  int* pst_counter = &SharedRuntime::_partial_subtype_ctr;
2330  inc_counter((address) pst_counter, count_temp, scan_temp);
2331#endif
2332
2333  // We will consult the secondary-super array.
2334  ld_ptr(sub_klass, ss_offset, scan_temp);
2335
2336  Register search_key = super_klass;
2337
2338  // Load the array length.  (Positive movl does right thing on LP64.)
2339  lduw(scan_temp, Array<Klass*>::length_offset_in_bytes(), count_temp);
2340
2341  // Check for empty secondary super list
2342  tst(count_temp);
2343
2344  // In the array of super classes elements are pointer sized.
2345  int element_size = wordSize;
2346
2347  // Top of search loop
2348  bind(L_loop);
2349  br(Assembler::equal, false, Assembler::pn, *L_failure);
2350  delayed()->add(scan_temp, element_size, scan_temp);
2351
2352  // Skip the array header in all array accesses.
2353  int elem_offset = Array<Klass*>::base_offset_in_bytes();
2354  elem_offset -= element_size;   // the scan pointer was pre-incremented also
2355
2356  // Load next super to check
2357    ld_ptr( scan_temp, elem_offset, scratch_reg );
2358
2359  // Look for Rsuper_klass on Rsub_klass's secondary super-class-overflow list
2360  cmp(scratch_reg, search_key);
2361
2362  // A miss means we are NOT a subtype and need to keep looping
2363  brx(Assembler::notEqual, false, Assembler::pn, L_loop);
2364  delayed()->deccc(count_temp); // decrement trip counter in delay slot
2365
2366  // Success.  Cache the super we found and proceed in triumph.
2367  st_ptr(super_klass, sub_klass, sc_offset);
2368
2369  if (L_success != &L_fallthrough) {
2370    ba(*L_success);
2371    delayed()->nop();
2372  }
2373
2374  bind(L_fallthrough);
2375}
2376
2377
2378RegisterOrConstant MacroAssembler::argument_offset(RegisterOrConstant arg_slot,
2379                                                   Register temp_reg,
2380                                                   int extra_slot_offset) {
2381  // cf. TemplateTable::prepare_invoke(), if (load_receiver).
2382  int stackElementSize = Interpreter::stackElementSize;
2383  int offset = extra_slot_offset * stackElementSize;
2384  if (arg_slot.is_constant()) {
2385    offset += arg_slot.as_constant() * stackElementSize;
2386    return offset;
2387  } else {
2388    assert(temp_reg != noreg, "must specify");
2389    sll_ptr(arg_slot.as_register(), exact_log2(stackElementSize), temp_reg);
2390    if (offset != 0)
2391      add(temp_reg, offset, temp_reg);
2392    return temp_reg;
2393  }
2394}
2395
2396
2397Address MacroAssembler::argument_address(RegisterOrConstant arg_slot,
2398                                         Register temp_reg,
2399                                         int extra_slot_offset) {
2400  return Address(Gargs, argument_offset(arg_slot, temp_reg, extra_slot_offset));
2401}
2402
2403
2404void MacroAssembler::biased_locking_enter(Register obj_reg, Register mark_reg,
2405                                          Register temp_reg,
2406                                          Label& done, Label* slow_case,
2407                                          BiasedLockingCounters* counters) {
2408  assert(UseBiasedLocking, "why call this otherwise?");
2409
2410  if (PrintBiasedLockingStatistics) {
2411    assert_different_registers(obj_reg, mark_reg, temp_reg, O7);
2412    if (counters == NULL)
2413      counters = BiasedLocking::counters();
2414  }
2415
2416  Label cas_label;
2417
2418  // Biased locking
2419  // See whether the lock is currently biased toward our thread and
2420  // whether the epoch is still valid
2421  // Note that the runtime guarantees sufficient alignment of JavaThread
2422  // pointers to allow age to be placed into low bits
2423  assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
2424  and3(mark_reg, markOopDesc::biased_lock_mask_in_place, temp_reg);
2425  cmp_and_brx_short(temp_reg, markOopDesc::biased_lock_pattern, Assembler::notEqual, Assembler::pn, cas_label);
2426
2427  load_klass(obj_reg, temp_reg);
2428  ld_ptr(Address(temp_reg, Klass::prototype_header_offset()), temp_reg);
2429  or3(G2_thread, temp_reg, temp_reg);
2430  xor3(mark_reg, temp_reg, temp_reg);
2431  andcc(temp_reg, ~((int) markOopDesc::age_mask_in_place), temp_reg);
2432  if (counters != NULL) {
2433    cond_inc(Assembler::equal, (address) counters->biased_lock_entry_count_addr(), mark_reg, temp_reg);
2434    // Reload mark_reg as we may need it later
2435    ld_ptr(Address(obj_reg, oopDesc::mark_offset_in_bytes()), mark_reg);
2436  }
2437  brx(Assembler::equal, true, Assembler::pt, done);
2438  delayed()->nop();
2439
2440  Label try_revoke_bias;
2441  Label try_rebias;
2442  Address mark_addr = Address(obj_reg, oopDesc::mark_offset_in_bytes());
2443  assert(mark_addr.disp() == 0, "cas must take a zero displacement");
2444
2445  // At this point we know that the header has the bias pattern and
2446  // that we are not the bias owner in the current epoch. We need to
2447  // figure out more details about the state of the header in order to
2448  // know what operations can be legally performed on the object's
2449  // header.
2450
2451  // If the low three bits in the xor result aren't clear, that means
2452  // the prototype header is no longer biased and we have to revoke
2453  // the bias on this object.
2454  btst(markOopDesc::biased_lock_mask_in_place, temp_reg);
2455  brx(Assembler::notZero, false, Assembler::pn, try_revoke_bias);
2456
2457  // Biasing is still enabled for this data type. See whether the
2458  // epoch of the current bias is still valid, meaning that the epoch
2459  // bits of the mark word are equal to the epoch bits of the
2460  // prototype header. (Note that the prototype header's epoch bits
2461  // only change at a safepoint.) If not, attempt to rebias the object
2462  // toward the current thread. Note that we must be absolutely sure
2463  // that the current epoch is invalid in order to do this because
2464  // otherwise the manipulations it performs on the mark word are
2465  // illegal.
2466  delayed()->btst(markOopDesc::epoch_mask_in_place, temp_reg);
2467  brx(Assembler::notZero, false, Assembler::pn, try_rebias);
2468
2469  // The epoch of the current bias is still valid but we know nothing
2470  // about the owner; it might be set or it might be clear. Try to
2471  // acquire the bias of the object using an atomic operation. If this
2472  // fails we will go in to the runtime to revoke the object's bias.
2473  // Note that we first construct the presumed unbiased header so we
2474  // don't accidentally blow away another thread's valid bias.
2475  delayed()->and3(mark_reg,
2476                  markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place,
2477                  mark_reg);
2478  or3(G2_thread, mark_reg, temp_reg);
2479  cas_ptr(mark_addr.base(), mark_reg, temp_reg);
2480  // If the biasing toward our thread failed, this means that
2481  // another thread succeeded in biasing it toward itself and we
2482  // need to revoke that bias. The revocation will occur in the
2483  // interpreter runtime in the slow case.
2484  cmp(mark_reg, temp_reg);
2485  if (counters != NULL) {
2486    cond_inc(Assembler::zero, (address) counters->anonymously_biased_lock_entry_count_addr(), mark_reg, temp_reg);
2487  }
2488  if (slow_case != NULL) {
2489    brx(Assembler::notEqual, true, Assembler::pn, *slow_case);
2490    delayed()->nop();
2491  }
2492  ba_short(done);
2493
2494  bind(try_rebias);
2495  // At this point we know the epoch has expired, meaning that the
2496  // current "bias owner", if any, is actually invalid. Under these
2497  // circumstances _only_, we are allowed to use the current header's
2498  // value as the comparison value when doing the cas to acquire the
2499  // bias in the current epoch. In other words, we allow transfer of
2500  // the bias from one thread to another directly in this situation.
2501  //
2502  // FIXME: due to a lack of registers we currently blow away the age
2503  // bits in this situation. Should attempt to preserve them.
2504  load_klass(obj_reg, temp_reg);
2505  ld_ptr(Address(temp_reg, Klass::prototype_header_offset()), temp_reg);
2506  or3(G2_thread, temp_reg, temp_reg);
2507  cas_ptr(mark_addr.base(), mark_reg, temp_reg);
2508  // If the biasing toward our thread failed, this means that
2509  // another thread succeeded in biasing it toward itself and we
2510  // need to revoke that bias. The revocation will occur in the
2511  // interpreter runtime in the slow case.
2512  cmp(mark_reg, temp_reg);
2513  if (counters != NULL) {
2514    cond_inc(Assembler::zero, (address) counters->rebiased_lock_entry_count_addr(), mark_reg, temp_reg);
2515  }
2516  if (slow_case != NULL) {
2517    brx(Assembler::notEqual, true, Assembler::pn, *slow_case);
2518    delayed()->nop();
2519  }
2520  ba_short(done);
2521
2522  bind(try_revoke_bias);
2523  // The prototype mark in the klass doesn't have the bias bit set any
2524  // more, indicating that objects of this data type are not supposed
2525  // to be biased any more. We are going to try to reset the mark of
2526  // this object to the prototype value and fall through to the
2527  // CAS-based locking scheme. Note that if our CAS fails, it means
2528  // that another thread raced us for the privilege of revoking the
2529  // bias of this particular object, so it's okay to continue in the
2530  // normal locking code.
2531  //
2532  // FIXME: due to a lack of registers we currently blow away the age
2533  // bits in this situation. Should attempt to preserve them.
2534  load_klass(obj_reg, temp_reg);
2535  ld_ptr(Address(temp_reg, Klass::prototype_header_offset()), temp_reg);
2536  cas_ptr(mark_addr.base(), mark_reg, temp_reg);
2537  // Fall through to the normal CAS-based lock, because no matter what
2538  // the result of the above CAS, some thread must have succeeded in
2539  // removing the bias bit from the object's header.
2540  if (counters != NULL) {
2541    cmp(mark_reg, temp_reg);
2542    cond_inc(Assembler::zero, (address) counters->revoked_lock_entry_count_addr(), mark_reg, temp_reg);
2543  }
2544
2545  bind(cas_label);
2546}
2547
2548void MacroAssembler::biased_locking_exit (Address mark_addr, Register temp_reg, Label& done,
2549                                          bool allow_delay_slot_filling) {
2550  // Check for biased locking unlock case, which is a no-op
2551  // Note: we do not have to check the thread ID for two reasons.
2552  // First, the interpreter checks for IllegalMonitorStateException at
2553  // a higher level. Second, if the bias was revoked while we held the
2554  // lock, the object could not be rebiased toward another thread, so
2555  // the bias bit would be clear.
2556  ld_ptr(mark_addr, temp_reg);
2557  and3(temp_reg, markOopDesc::biased_lock_mask_in_place, temp_reg);
2558  cmp(temp_reg, markOopDesc::biased_lock_pattern);
2559  brx(Assembler::equal, allow_delay_slot_filling, Assembler::pt, done);
2560  delayed();
2561  if (!allow_delay_slot_filling) {
2562    nop();
2563  }
2564}
2565
2566
2567// compiler_lock_object() and compiler_unlock_object() are direct transliterations
2568// of i486.ad fast_lock() and fast_unlock().  See those methods for detailed comments.
2569// The code could be tightened up considerably.
2570//
2571// box->dhw disposition - post-conditions at DONE_LABEL.
2572// -   Successful inflated lock:  box->dhw != 0.
2573//     Any non-zero value suffices.
2574//     Consider G2_thread, rsp, boxReg, or markOopDesc::unused_mark()
2575// -   Successful Stack-lock: box->dhw == mark.
2576//     box->dhw must contain the displaced mark word value
2577// -   Failure -- icc.ZFlag == 0 and box->dhw is undefined.
2578//     The slow-path fast_enter() and slow_enter() operators
2579//     are responsible for setting box->dhw = NonZero (typically markOopDesc::unused_mark()).
2580// -   Biased: box->dhw is undefined
2581//
2582// SPARC refworkload performance - specifically jetstream and scimark - are
2583// extremely sensitive to the size of the code emitted by compiler_lock_object
2584// and compiler_unlock_object.  Critically, the key factor is code size, not path
2585// length.  (Simply experiments to pad CLO with unexecuted NOPs demonstrte the
2586// effect).
2587
2588
2589void MacroAssembler::compiler_lock_object(Register Roop, Register Rmark,
2590                                          Register Rbox, Register Rscratch,
2591                                          BiasedLockingCounters* counters,
2592                                          bool try_bias) {
2593   Address mark_addr(Roop, oopDesc::mark_offset_in_bytes());
2594
2595   verify_oop(Roop);
2596   Label done ;
2597
2598   if (counters != NULL) {
2599     inc_counter((address) counters->total_entry_count_addr(), Rmark, Rscratch);
2600   }
2601
2602   if (EmitSync & 1) {
2603     mov(3, Rscratch);
2604     st_ptr(Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
2605     cmp(SP, G0);
2606     return ;
2607   }
2608
2609   if (EmitSync & 2) {
2610
2611     // Fetch object's markword
2612     ld_ptr(mark_addr, Rmark);
2613
2614     if (try_bias) {
2615        biased_locking_enter(Roop, Rmark, Rscratch, done, NULL, counters);
2616     }
2617
2618     // Save Rbox in Rscratch to be used for the cas operation
2619     mov(Rbox, Rscratch);
2620
2621     // set Rmark to markOop | markOopDesc::unlocked_value
2622     or3(Rmark, markOopDesc::unlocked_value, Rmark);
2623
2624     // Initialize the box.  (Must happen before we update the object mark!)
2625     st_ptr(Rmark, Rbox, BasicLock::displaced_header_offset_in_bytes());
2626
2627     // compare object markOop with Rmark and if equal exchange Rscratch with object markOop
2628     assert(mark_addr.disp() == 0, "cas must take a zero displacement");
2629     cas_ptr(mark_addr.base(), Rmark, Rscratch);
2630
2631     // if compare/exchange succeeded we found an unlocked object and we now have locked it
2632     // hence we are done
2633     cmp(Rmark, Rscratch);
2634     sub(Rscratch, STACK_BIAS, Rscratch);
2635     brx(Assembler::equal, false, Assembler::pt, done);
2636     delayed()->sub(Rscratch, SP, Rscratch);  //pull next instruction into delay slot
2637
2638     // we did not find an unlocked object so see if this is a recursive case
2639     // sub(Rscratch, SP, Rscratch);
2640     assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
2641     andcc(Rscratch, 0xfffff003, Rscratch);
2642     st_ptr(Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
2643     bind (done);
2644     return ;
2645   }
2646
2647   Label Egress ;
2648
2649   if (EmitSync & 256) {
2650      Label IsInflated ;
2651
2652      ld_ptr(mark_addr, Rmark);           // fetch obj->mark
2653      // Triage: biased, stack-locked, neutral, inflated
2654      if (try_bias) {
2655        biased_locking_enter(Roop, Rmark, Rscratch, done, NULL, counters);
2656        // Invariant: if control reaches this point in the emitted stream
2657        // then Rmark has not been modified.
2658      }
2659
2660      // Store mark into displaced mark field in the on-stack basic-lock "box"
2661      // Critically, this must happen before the CAS
2662      // Maximize the ST-CAS distance to minimize the ST-before-CAS penalty.
2663      st_ptr(Rmark, Rbox, BasicLock::displaced_header_offset_in_bytes());
2664      andcc(Rmark, 2, G0);
2665      brx(Assembler::notZero, false, Assembler::pn, IsInflated);
2666      delayed()->
2667
2668      // Try stack-lock acquisition.
2669      // Beware: the 1st instruction is in a delay slot
2670      mov(Rbox,  Rscratch);
2671      or3(Rmark, markOopDesc::unlocked_value, Rmark);
2672      assert(mark_addr.disp() == 0, "cas must take a zero displacement");
2673      cas_ptr(mark_addr.base(), Rmark, Rscratch);
2674      cmp(Rmark, Rscratch);
2675      brx(Assembler::equal, false, Assembler::pt, done);
2676      delayed()->sub(Rscratch, SP, Rscratch);
2677
2678      // Stack-lock attempt failed - check for recursive stack-lock.
2679      // See the comments below about how we might remove this case.
2680      sub(Rscratch, STACK_BIAS, Rscratch);
2681      assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
2682      andcc(Rscratch, 0xfffff003, Rscratch);
2683      br(Assembler::always, false, Assembler::pt, done);
2684      delayed()-> st_ptr(Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
2685
2686      bind(IsInflated);
2687      if (EmitSync & 64) {
2688         // If m->owner != null goto IsLocked
2689         // Pessimistic form: Test-and-CAS vs CAS
2690         // The optimistic form avoids RTS->RTO cache line upgrades.
2691         ld_ptr(Rmark, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner), Rscratch);
2692         andcc(Rscratch, Rscratch, G0);
2693         brx(Assembler::notZero, false, Assembler::pn, done);
2694         delayed()->nop();
2695         // m->owner == null : it's unlocked.
2696      }
2697
2698      // Try to CAS m->owner from null to Self
2699      // Invariant: if we acquire the lock then _recursions should be 0.
2700      add(Rmark, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner), Rmark);
2701      mov(G2_thread, Rscratch);
2702      cas_ptr(Rmark, G0, Rscratch);
2703      cmp(Rscratch, G0);
2704      // Intentional fall-through into done
2705   } else {
2706      // Aggressively avoid the Store-before-CAS penalty
2707      // Defer the store into box->dhw until after the CAS
2708      Label IsInflated, Recursive ;
2709
2710// Anticipate CAS -- Avoid RTS->RTO upgrade
2711// prefetch (mark_addr, Assembler::severalWritesAndPossiblyReads);
2712
2713      ld_ptr(mark_addr, Rmark);           // fetch obj->mark
2714      // Triage: biased, stack-locked, neutral, inflated
2715
2716      if (try_bias) {
2717        biased_locking_enter(Roop, Rmark, Rscratch, done, NULL, counters);
2718        // Invariant: if control reaches this point in the emitted stream
2719        // then Rmark has not been modified.
2720      }
2721      andcc(Rmark, 2, G0);
2722      brx(Assembler::notZero, false, Assembler::pn, IsInflated);
2723      delayed()->                         // Beware - dangling delay-slot
2724
2725      // Try stack-lock acquisition.
2726      // Transiently install BUSY (0) encoding in the mark word.
2727      // if the CAS of 0 into the mark was successful then we execute:
2728      //   ST box->dhw  = mark   -- save fetched mark in on-stack basiclock box
2729      //   ST obj->mark = box    -- overwrite transient 0 value
2730      // This presumes TSO, of course.
2731
2732      mov(0, Rscratch);
2733      or3(Rmark, markOopDesc::unlocked_value, Rmark);
2734      assert(mark_addr.disp() == 0, "cas must take a zero displacement");
2735      cas_ptr(mark_addr.base(), Rmark, Rscratch);
2736// prefetch (mark_addr, Assembler::severalWritesAndPossiblyReads);
2737      cmp(Rscratch, Rmark);
2738      brx(Assembler::notZero, false, Assembler::pn, Recursive);
2739      delayed()->st_ptr(Rmark, Rbox, BasicLock::displaced_header_offset_in_bytes());
2740      if (counters != NULL) {
2741        cond_inc(Assembler::equal, (address) counters->fast_path_entry_count_addr(), Rmark, Rscratch);
2742      }
2743      ba(done);
2744      delayed()->st_ptr(Rbox, mark_addr);
2745
2746      bind(Recursive);
2747      // Stack-lock attempt failed - check for recursive stack-lock.
2748      // Tests show that we can remove the recursive case with no impact
2749      // on refworkload 0.83.  If we need to reduce the size of the code
2750      // emitted by compiler_lock_object() the recursive case is perfect
2751      // candidate.
2752      //
2753      // A more extreme idea is to always inflate on stack-lock recursion.
2754      // This lets us eliminate the recursive checks in compiler_lock_object
2755      // and compiler_unlock_object and the (box->dhw == 0) encoding.
2756      // A brief experiment - requiring changes to synchronizer.cpp, interpreter,
2757      // and showed a performance *increase*.  In the same experiment I eliminated
2758      // the fast-path stack-lock code from the interpreter and always passed
2759      // control to the "slow" operators in synchronizer.cpp.
2760
2761      // RScratch contains the fetched obj->mark value from the failed CAS.
2762      sub(Rscratch, STACK_BIAS, Rscratch);
2763      sub(Rscratch, SP, Rscratch);
2764      assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
2765      andcc(Rscratch, 0xfffff003, Rscratch);
2766      if (counters != NULL) {
2767        // Accounting needs the Rscratch register
2768        st_ptr(Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
2769        cond_inc(Assembler::equal, (address) counters->fast_path_entry_count_addr(), Rmark, Rscratch);
2770        ba_short(done);
2771      } else {
2772        ba(done);
2773        delayed()->st_ptr(Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
2774      }
2775
2776      bind   (IsInflated);
2777
2778      // Try to CAS m->owner from null to Self
2779      // Invariant: if we acquire the lock then _recursions should be 0.
2780      add(Rmark, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner), Rmark);
2781      mov(G2_thread, Rscratch);
2782      cas_ptr(Rmark, G0, Rscratch);
2783      andcc(Rscratch, Rscratch, G0);             // set ICCs for done: icc.zf iff success
2784      // set icc.zf : 1=success 0=failure
2785      // ST box->displaced_header = NonZero.
2786      // Any non-zero value suffices:
2787      //    markOopDesc::unused_mark(), G2_thread, RBox, RScratch, rsp, etc.
2788      st_ptr(Rbox, Rbox, BasicLock::displaced_header_offset_in_bytes());
2789      // Intentional fall-through into done
2790   }
2791
2792   bind   (done);
2793}
2794
2795void MacroAssembler::compiler_unlock_object(Register Roop, Register Rmark,
2796                                            Register Rbox, Register Rscratch,
2797                                            bool try_bias) {
2798   Address mark_addr(Roop, oopDesc::mark_offset_in_bytes());
2799
2800   Label done ;
2801
2802   if (EmitSync & 4) {
2803     cmp(SP, G0);
2804     return ;
2805   }
2806
2807   if (EmitSync & 8) {
2808     if (try_bias) {
2809        biased_locking_exit(mark_addr, Rscratch, done);
2810     }
2811
2812     // Test first if it is a fast recursive unlock
2813     ld_ptr(Rbox, BasicLock::displaced_header_offset_in_bytes(), Rmark);
2814     br_null_short(Rmark, Assembler::pt, done);
2815
2816     // Check if it is still a light weight lock, this is is true if we see
2817     // the stack address of the basicLock in the markOop of the object
2818     assert(mark_addr.disp() == 0, "cas must take a zero displacement");
2819     cas_ptr(mark_addr.base(), Rbox, Rmark);
2820     ba(done);
2821     delayed()->cmp(Rbox, Rmark);
2822     bind(done);
2823     return ;
2824   }
2825
2826   // Beware ... If the aggregate size of the code emitted by CLO and CUO is
2827   // is too large performance rolls abruptly off a cliff.
2828   // This could be related to inlining policies, code cache management, or
2829   // I$ effects.
2830   Label LStacked ;
2831
2832   if (try_bias) {
2833      // TODO: eliminate redundant LDs of obj->mark
2834      biased_locking_exit(mark_addr, Rscratch, done);
2835   }
2836
2837   ld_ptr(Roop, oopDesc::mark_offset_in_bytes(), Rmark);
2838   ld_ptr(Rbox, BasicLock::displaced_header_offset_in_bytes(), Rscratch);
2839   andcc(Rscratch, Rscratch, G0);
2840   brx(Assembler::zero, false, Assembler::pn, done);
2841   delayed()->nop();      // consider: relocate fetch of mark, above, into this DS
2842   andcc(Rmark, 2, G0);
2843   brx(Assembler::zero, false, Assembler::pt, LStacked);
2844   delayed()->nop();
2845
2846   // It's inflated
2847   // Conceptually we need a #loadstore|#storestore "release" MEMBAR before
2848   // the ST of 0 into _owner which releases the lock.  This prevents loads
2849   // and stores within the critical section from reordering (floating)
2850   // past the store that releases the lock.  But TSO is a strong memory model
2851   // and that particular flavor of barrier is a noop, so we can safely elide it.
2852   // Note that we use 1-0 locking by default for the inflated case.  We
2853   // close the resultant (and rare) race by having contended threads in
2854   // monitorenter periodically poll _owner.
2855
2856   if (EmitSync & 1024) {
2857     // Emit code to check that _owner == Self
2858     // We could fold the _owner test into subsequent code more efficiently
2859     // than using a stand-alone check, but since _owner checking is off by
2860     // default we don't bother. We also might consider predicating the
2861     // _owner==Self check on Xcheck:jni or running on a debug build.
2862     ld_ptr(Address(Rmark, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), Rscratch);
2863     orcc(Rscratch, G0, G0);
2864     brx(Assembler::notZero, false, Assembler::pn, done);
2865     delayed()->nop();
2866   }
2867
2868   if (EmitSync & 512) {
2869     // classic lock release code absent 1-0 locking
2870     //   m->Owner = null;
2871     //   membar #storeload
2872     //   if (m->cxq|m->EntryList) == null goto Success
2873     //   if (m->succ != null) goto Success
2874     //   if CAS (&m->Owner,0,Self) != 0 goto Success
2875     //   goto SlowPath
2876     ld_ptr(Address(Rmark, OM_OFFSET_NO_MONITOR_VALUE_TAG(recursions)), Rbox);
2877     orcc(Rbox, G0, G0);
2878     brx(Assembler::notZero, false, Assembler::pn, done);
2879     delayed()->nop();
2880     st_ptr(G0, Address(Rmark, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
2881     if (os::is_MP()) { membar(StoreLoad); }
2882     ld_ptr(Address(Rmark, OM_OFFSET_NO_MONITOR_VALUE_TAG(EntryList)), Rscratch);
2883     ld_ptr(Address(Rmark, OM_OFFSET_NO_MONITOR_VALUE_TAG(cxq)), Rbox);
2884     orcc(Rbox, Rscratch, G0);
2885     brx(Assembler::zero, false, Assembler::pt, done);
2886     delayed()->
2887     ld_ptr(Address(Rmark, OM_OFFSET_NO_MONITOR_VALUE_TAG(succ)), Rscratch);
2888     andcc(Rscratch, Rscratch, G0);
2889     brx(Assembler::notZero, false, Assembler::pt, done);
2890     delayed()->andcc(G0, G0, G0);
2891     add(Rmark, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner), Rmark);
2892     mov(G2_thread, Rscratch);
2893     cas_ptr(Rmark, G0, Rscratch);
2894     cmp(Rscratch, G0);
2895     // invert icc.zf and goto done
2896     brx(Assembler::notZero, false, Assembler::pt, done);
2897     delayed()->cmp(G0, G0);
2898     br(Assembler::always, false, Assembler::pt, done);
2899     delayed()->cmp(G0, 1);
2900   } else {
2901     // 1-0 form : avoids CAS and MEMBAR in the common case
2902     // Do not bother to ratify that m->Owner == Self.
2903     ld_ptr(Address(Rmark, OM_OFFSET_NO_MONITOR_VALUE_TAG(recursions)), Rbox);
2904     orcc(Rbox, G0, G0);
2905     brx(Assembler::notZero, false, Assembler::pn, done);
2906     delayed()->
2907     ld_ptr(Address(Rmark, OM_OFFSET_NO_MONITOR_VALUE_TAG(EntryList)), Rscratch);
2908     ld_ptr(Address(Rmark, OM_OFFSET_NO_MONITOR_VALUE_TAG(cxq)), Rbox);
2909     orcc(Rbox, Rscratch, G0);
2910     if (EmitSync & 16384) {
2911       // As an optional optimization, if (EntryList|cxq) != null and _succ is null then
2912       // we should transfer control directly to the slow-path.
2913       // This test makes the reacquire operation below very infrequent.
2914       // The logic is equivalent to :
2915       //   if (cxq|EntryList) == null : Owner=null; goto Success
2916       //   if succ == null : goto SlowPath
2917       //   Owner=null; membar #storeload
2918       //   if succ != null : goto Success
2919       //   if CAS(&Owner,null,Self) != null goto Success
2920       //   goto SlowPath
2921       brx(Assembler::zero, true, Assembler::pt, done);
2922       delayed()->
2923       st_ptr(G0, Address(Rmark, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
2924       ld_ptr(Address(Rmark, OM_OFFSET_NO_MONITOR_VALUE_TAG(succ)), Rscratch);
2925       andcc(Rscratch, Rscratch, G0) ;
2926       brx(Assembler::zero, false, Assembler::pt, done);
2927       delayed()->orcc(G0, 1, G0);
2928       st_ptr(G0, Address(Rmark, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
2929     } else {
2930       brx(Assembler::zero, false, Assembler::pt, done);
2931       delayed()->
2932       st_ptr(G0, Address(Rmark, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
2933     }
2934     if (os::is_MP()) { membar(StoreLoad); }
2935     // Check that _succ is (or remains) non-zero
2936     ld_ptr(Address(Rmark, OM_OFFSET_NO_MONITOR_VALUE_TAG(succ)), Rscratch);
2937     andcc(Rscratch, Rscratch, G0);
2938     brx(Assembler::notZero, false, Assembler::pt, done);
2939     delayed()->andcc(G0, G0, G0);
2940     add(Rmark, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner), Rmark);
2941     mov(G2_thread, Rscratch);
2942     cas_ptr(Rmark, G0, Rscratch);
2943     cmp(Rscratch, G0);
2944     // invert icc.zf and goto done
2945     // A slightly better v8+/v9 idiom would be the following:
2946     //   movrnz Rscratch,1,Rscratch
2947     //   ba done
2948     //   xorcc Rscratch,1,G0
2949     // In v8+ mode the idiom would be valid IFF Rscratch was a G or O register
2950     brx(Assembler::notZero, false, Assembler::pt, done);
2951     delayed()->cmp(G0, G0);
2952     br(Assembler::always, false, Assembler::pt, done);
2953     delayed()->cmp(G0, 1);
2954   }
2955
2956   bind   (LStacked);
2957   // Consider: we could replace the expensive CAS in the exit
2958   // path with a simple ST of the displaced mark value fetched from
2959   // the on-stack basiclock box.  That admits a race where a thread T2
2960   // in the slow lock path -- inflating with monitor M -- could race a
2961   // thread T1 in the fast unlock path, resulting in a missed wakeup for T2.
2962   // More precisely T1 in the stack-lock unlock path could "stomp" the
2963   // inflated mark value M installed by T2, resulting in an orphan
2964   // object monitor M and T2 becoming stranded.  We can remedy that situation
2965   // by having T2 periodically poll the object's mark word using timed wait
2966   // operations.  If T2 discovers that a stomp has occurred it vacates
2967   // the monitor M and wakes any other threads stranded on the now-orphan M.
2968   // In addition the monitor scavenger, which performs deflation,
2969   // would also need to check for orpan monitors and stranded threads.
2970   //
2971   // Finally, inflation is also used when T2 needs to assign a hashCode
2972   // to O and O is stack-locked by T1.  The "stomp" race could cause
2973   // an assigned hashCode value to be lost.  We can avoid that condition
2974   // and provide the necessary hashCode stability invariants by ensuring
2975   // that hashCode generation is idempotent between copying GCs.
2976   // For example we could compute the hashCode of an object O as
2977   // O's heap address XOR some high quality RNG value that is refreshed
2978   // at GC-time.  The monitor scavenger would install the hashCode
2979   // found in any orphan monitors.  Again, the mechanism admits a
2980   // lost-update "stomp" WAW race but detects and recovers as needed.
2981   //
2982   // A prototype implementation showed excellent results, although
2983   // the scavenger and timeout code was rather involved.
2984
2985   cas_ptr(mark_addr.base(), Rbox, Rscratch);
2986   cmp(Rbox, Rscratch);
2987   // Intentional fall through into done ...
2988
2989   bind(done);
2990}
2991
2992
2993
2994void MacroAssembler::print_CPU_state() {
2995  // %%%%% need to implement this
2996}
2997
2998void MacroAssembler::verify_FPU(int stack_depth, const char* s) {
2999  // %%%%% need to implement this
3000}
3001
3002void MacroAssembler::push_IU_state() {
3003  // %%%%% need to implement this
3004}
3005
3006
3007void MacroAssembler::pop_IU_state() {
3008  // %%%%% need to implement this
3009}
3010
3011
3012void MacroAssembler::push_FPU_state() {
3013  // %%%%% need to implement this
3014}
3015
3016
3017void MacroAssembler::pop_FPU_state() {
3018  // %%%%% need to implement this
3019}
3020
3021
3022void MacroAssembler::push_CPU_state() {
3023  // %%%%% need to implement this
3024}
3025
3026
3027void MacroAssembler::pop_CPU_state() {
3028  // %%%%% need to implement this
3029}
3030
3031
3032
3033void MacroAssembler::verify_tlab() {
3034#ifdef ASSERT
3035  if (UseTLAB && VerifyOops) {
3036    Label next, next2, ok;
3037    Register t1 = L0;
3038    Register t2 = L1;
3039    Register t3 = L2;
3040
3041    save_frame(0);
3042    ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), t1);
3043    ld_ptr(G2_thread, in_bytes(JavaThread::tlab_start_offset()), t2);
3044    or3(t1, t2, t3);
3045    cmp_and_br_short(t1, t2, Assembler::greaterEqual, Assembler::pn, next);
3046    STOP("assert(top >= start)");
3047    should_not_reach_here();
3048
3049    bind(next);
3050    ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), t1);
3051    ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), t2);
3052    or3(t3, t2, t3);
3053    cmp_and_br_short(t1, t2, Assembler::lessEqual, Assembler::pn, next2);
3054    STOP("assert(top <= end)");
3055    should_not_reach_here();
3056
3057    bind(next2);
3058    and3(t3, MinObjAlignmentInBytesMask, t3);
3059    cmp_and_br_short(t3, 0, Assembler::lessEqual, Assembler::pn, ok);
3060    STOP("assert(aligned)");
3061    should_not_reach_here();
3062
3063    bind(ok);
3064    restore();
3065  }
3066#endif
3067}
3068
3069
3070void MacroAssembler::eden_allocate(
3071  Register obj,                        // result: pointer to object after successful allocation
3072  Register var_size_in_bytes,          // object size in bytes if unknown at compile time; invalid otherwise
3073  int      con_size_in_bytes,          // object size in bytes if   known at compile time
3074  Register t1,                         // temp register
3075  Register t2,                         // temp register
3076  Label&   slow_case                   // continuation point if fast allocation fails
3077){
3078  // make sure arguments make sense
3079  assert_different_registers(obj, var_size_in_bytes, t1, t2);
3080  assert(0 <= con_size_in_bytes && Assembler::is_simm13(con_size_in_bytes), "illegal object size");
3081  assert((con_size_in_bytes & MinObjAlignmentInBytesMask) == 0, "object size is not multiple of alignment");
3082
3083  if (!Universe::heap()->supports_inline_contig_alloc()) {
3084    // No allocation in the shared eden.
3085    ba(slow_case);
3086    delayed()->nop();
3087  } else {
3088    // get eden boundaries
3089    // note: we need both top & top_addr!
3090    const Register top_addr = t1;
3091    const Register end      = t2;
3092
3093    CollectedHeap* ch = Universe::heap();
3094    set((intx)ch->top_addr(), top_addr);
3095    intx delta = (intx)ch->end_addr() - (intx)ch->top_addr();
3096    ld_ptr(top_addr, delta, end);
3097    ld_ptr(top_addr, 0, obj);
3098
3099    // try to allocate
3100    Label retry;
3101    bind(retry);
3102#ifdef ASSERT
3103    // make sure eden top is properly aligned
3104    {
3105      Label L;
3106      btst(MinObjAlignmentInBytesMask, obj);
3107      br(Assembler::zero, false, Assembler::pt, L);
3108      delayed()->nop();
3109      STOP("eden top is not properly aligned");
3110      bind(L);
3111    }
3112#endif // ASSERT
3113    const Register free = end;
3114    sub(end, obj, free);                                   // compute amount of free space
3115    if (var_size_in_bytes->is_valid()) {
3116      // size is unknown at compile time
3117      cmp(free, var_size_in_bytes);
3118      brx(Assembler::lessUnsigned, false, Assembler::pn, slow_case); // if there is not enough space go the slow case
3119      delayed()->add(obj, var_size_in_bytes, end);
3120    } else {
3121      // size is known at compile time
3122      cmp(free, con_size_in_bytes);
3123      brx(Assembler::lessUnsigned, false, Assembler::pn, slow_case); // if there is not enough space go the slow case
3124      delayed()->add(obj, con_size_in_bytes, end);
3125    }
3126    // Compare obj with the value at top_addr; if still equal, swap the value of
3127    // end with the value at top_addr. If not equal, read the value at top_addr
3128    // into end.
3129    cas_ptr(top_addr, obj, end);
3130    // if someone beat us on the allocation, try again, otherwise continue
3131    cmp(obj, end);
3132    brx(Assembler::notEqual, false, Assembler::pn, retry);
3133    delayed()->mov(end, obj);                              // nop if successfull since obj == end
3134
3135#ifdef ASSERT
3136    // make sure eden top is properly aligned
3137    {
3138      Label L;
3139      const Register top_addr = t1;
3140
3141      set((intx)ch->top_addr(), top_addr);
3142      ld_ptr(top_addr, 0, top_addr);
3143      btst(MinObjAlignmentInBytesMask, top_addr);
3144      br(Assembler::zero, false, Assembler::pt, L);
3145      delayed()->nop();
3146      STOP("eden top is not properly aligned");
3147      bind(L);
3148    }
3149#endif // ASSERT
3150  }
3151}
3152
3153
3154void MacroAssembler::tlab_allocate(
3155  Register obj,                        // result: pointer to object after successful allocation
3156  Register var_size_in_bytes,          // object size in bytes if unknown at compile time; invalid otherwise
3157  int      con_size_in_bytes,          // object size in bytes if   known at compile time
3158  Register t1,                         // temp register
3159  Label&   slow_case                   // continuation point if fast allocation fails
3160){
3161  // make sure arguments make sense
3162  assert_different_registers(obj, var_size_in_bytes, t1);
3163  assert(0 <= con_size_in_bytes && is_simm13(con_size_in_bytes), "illegal object size");
3164  assert((con_size_in_bytes & MinObjAlignmentInBytesMask) == 0, "object size is not multiple of alignment");
3165
3166  const Register free  = t1;
3167
3168  verify_tlab();
3169
3170  ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), obj);
3171
3172  // calculate amount of free space
3173  ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), free);
3174  sub(free, obj, free);
3175
3176  Label done;
3177  if (var_size_in_bytes == noreg) {
3178    cmp(free, con_size_in_bytes);
3179  } else {
3180    cmp(free, var_size_in_bytes);
3181  }
3182  br(Assembler::less, false, Assembler::pn, slow_case);
3183  // calculate the new top pointer
3184  if (var_size_in_bytes == noreg) {
3185    delayed()->add(obj, con_size_in_bytes, free);
3186  } else {
3187    delayed()->add(obj, var_size_in_bytes, free);
3188  }
3189
3190  bind(done);
3191
3192#ifdef ASSERT
3193  // make sure new free pointer is properly aligned
3194  {
3195    Label L;
3196    btst(MinObjAlignmentInBytesMask, free);
3197    br(Assembler::zero, false, Assembler::pt, L);
3198    delayed()->nop();
3199    STOP("updated TLAB free is not properly aligned");
3200    bind(L);
3201  }
3202#endif // ASSERT
3203
3204  // update the tlab top pointer
3205  st_ptr(free, G2_thread, in_bytes(JavaThread::tlab_top_offset()));
3206  verify_tlab();
3207}
3208
3209
3210void MacroAssembler::tlab_refill(Label& retry, Label& try_eden, Label& slow_case) {
3211  Register top = O0;
3212  Register t1 = G1;
3213  Register t2 = G3;
3214  Register t3 = O1;
3215  assert_different_registers(top, t1, t2, t3, G4, G5 /* preserve G4 and G5 */);
3216  Label do_refill, discard_tlab;
3217
3218  if (!Universe::heap()->supports_inline_contig_alloc()) {
3219    // No allocation in the shared eden.
3220    ba(slow_case);
3221    delayed()->nop();
3222  }
3223
3224  ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), top);
3225  ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), t1);
3226  ld_ptr(G2_thread, in_bytes(JavaThread::tlab_refill_waste_limit_offset()), t2);
3227
3228  // calculate amount of free space
3229  sub(t1, top, t1);
3230  srl_ptr(t1, LogHeapWordSize, t1);
3231
3232  // Retain tlab and allocate object in shared space if
3233  // the amount free in the tlab is too large to discard.
3234  cmp(t1, t2);
3235
3236  brx(Assembler::lessEqual, false, Assembler::pt, discard_tlab);
3237  // increment waste limit to prevent getting stuck on this slow path
3238  if (Assembler::is_simm13(ThreadLocalAllocBuffer::refill_waste_limit_increment())) {
3239    delayed()->add(t2, ThreadLocalAllocBuffer::refill_waste_limit_increment(), t2);
3240  } else {
3241    delayed()->nop();
3242    // set64 does not use the temp register if the given constant is 32 bit. So
3243    // we can just use any register; using G0 results in ignoring of the upper 32 bit
3244    // of that value.
3245    set64(ThreadLocalAllocBuffer::refill_waste_limit_increment(), t3, G0);
3246    add(t2, t3, t2);
3247  }
3248
3249  st_ptr(t2, G2_thread, in_bytes(JavaThread::tlab_refill_waste_limit_offset()));
3250  if (TLABStats) {
3251    // increment number of slow_allocations
3252    ld(G2_thread, in_bytes(JavaThread::tlab_slow_allocations_offset()), t2);
3253    add(t2, 1, t2);
3254    stw(t2, G2_thread, in_bytes(JavaThread::tlab_slow_allocations_offset()));
3255  }
3256  ba(try_eden);
3257  delayed()->nop();
3258
3259  bind(discard_tlab);
3260  if (TLABStats) {
3261    // increment number of refills
3262    ld(G2_thread, in_bytes(JavaThread::tlab_number_of_refills_offset()), t2);
3263    add(t2, 1, t2);
3264    stw(t2, G2_thread, in_bytes(JavaThread::tlab_number_of_refills_offset()));
3265    // accumulate wastage
3266    ld(G2_thread, in_bytes(JavaThread::tlab_fast_refill_waste_offset()), t2);
3267    add(t2, t1, t2);
3268    stw(t2, G2_thread, in_bytes(JavaThread::tlab_fast_refill_waste_offset()));
3269  }
3270
3271  // if tlab is currently allocated (top or end != null) then
3272  // fill [top, end + alignment_reserve) with array object
3273  br_null_short(top, Assembler::pn, do_refill);
3274
3275  set((intptr_t)markOopDesc::prototype()->copy_set_hash(0x2), t2);
3276  st_ptr(t2, top, oopDesc::mark_offset_in_bytes()); // set up the mark word
3277  // set klass to intArrayKlass
3278  sub(t1, typeArrayOopDesc::header_size(T_INT), t1);
3279  add(t1, ThreadLocalAllocBuffer::alignment_reserve(), t1);
3280  sll_ptr(t1, log2_intptr(HeapWordSize/sizeof(jint)), t1);
3281  st(t1, top, arrayOopDesc::length_offset_in_bytes());
3282  set((intptr_t)Universe::intArrayKlassObj_addr(), t2);
3283  ld_ptr(t2, 0, t2);
3284  // store klass last.  concurrent gcs assumes klass length is valid if
3285  // klass field is not null.
3286  store_klass(t2, top);
3287  verify_oop(top);
3288
3289  ld_ptr(G2_thread, in_bytes(JavaThread::tlab_start_offset()), t1);
3290  sub(top, t1, t1); // size of tlab's allocated portion
3291  incr_allocated_bytes(t1, t2, t3);
3292
3293  // refill the tlab with an eden allocation
3294  bind(do_refill);
3295  ld_ptr(G2_thread, in_bytes(JavaThread::tlab_size_offset()), t1);
3296  sll_ptr(t1, LogHeapWordSize, t1);
3297  // allocate new tlab, address returned in top
3298  eden_allocate(top, t1, 0, t2, t3, slow_case);
3299
3300  st_ptr(top, G2_thread, in_bytes(JavaThread::tlab_start_offset()));
3301  st_ptr(top, G2_thread, in_bytes(JavaThread::tlab_top_offset()));
3302#ifdef ASSERT
3303  // check that tlab_size (t1) is still valid
3304  {
3305    Label ok;
3306    ld_ptr(G2_thread, in_bytes(JavaThread::tlab_size_offset()), t2);
3307    sll_ptr(t2, LogHeapWordSize, t2);
3308    cmp_and_br_short(t1, t2, Assembler::equal, Assembler::pt, ok);
3309    STOP("assert(t1 == tlab_size)");
3310    should_not_reach_here();
3311
3312    bind(ok);
3313  }
3314#endif // ASSERT
3315  add(top, t1, top); // t1 is tlab_size
3316  sub(top, ThreadLocalAllocBuffer::alignment_reserve_in_bytes(), top);
3317  st_ptr(top, G2_thread, in_bytes(JavaThread::tlab_end_offset()));
3318
3319  if (ZeroTLAB) {
3320    // This is a fast TLAB refill, therefore the GC is not notified of it.
3321    // So compiled code must fill the new TLAB with zeroes.
3322    ld_ptr(G2_thread, in_bytes(JavaThread::tlab_start_offset()), t2);
3323    zero_memory(t2, t1);
3324  }
3325  verify_tlab();
3326  ba(retry);
3327  delayed()->nop();
3328}
3329
3330void MacroAssembler::zero_memory(Register base, Register index) {
3331  assert_different_registers(base, index);
3332  Label loop;
3333  bind(loop);
3334  subcc(index, HeapWordSize, index);
3335  brx(Assembler::greaterEqual, true, Assembler::pt, loop);
3336  delayed()->st_ptr(G0, base, index);
3337}
3338
3339void MacroAssembler::incr_allocated_bytes(RegisterOrConstant size_in_bytes,
3340                                          Register t1, Register t2) {
3341  // Bump total bytes allocated by this thread
3342  assert(t1->is_global(), "must be global reg"); // so all 64 bits are saved on a context switch
3343  assert_different_registers(size_in_bytes.register_or_noreg(), t1, t2);
3344  // v8 support has gone the way of the dodo
3345  ldx(G2_thread, in_bytes(JavaThread::allocated_bytes_offset()), t1);
3346  add(t1, ensure_simm13_or_reg(size_in_bytes, t2), t1);
3347  stx(t1, G2_thread, in_bytes(JavaThread::allocated_bytes_offset()));
3348}
3349
3350Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) {
3351  switch (cond) {
3352    // Note some conditions are synonyms for others
3353    case Assembler::never:                return Assembler::always;
3354    case Assembler::zero:                 return Assembler::notZero;
3355    case Assembler::lessEqual:            return Assembler::greater;
3356    case Assembler::less:                 return Assembler::greaterEqual;
3357    case Assembler::lessEqualUnsigned:    return Assembler::greaterUnsigned;
3358    case Assembler::lessUnsigned:         return Assembler::greaterEqualUnsigned;
3359    case Assembler::negative:             return Assembler::positive;
3360    case Assembler::overflowSet:          return Assembler::overflowClear;
3361    case Assembler::always:               return Assembler::never;
3362    case Assembler::notZero:              return Assembler::zero;
3363    case Assembler::greater:              return Assembler::lessEqual;
3364    case Assembler::greaterEqual:         return Assembler::less;
3365    case Assembler::greaterUnsigned:      return Assembler::lessEqualUnsigned;
3366    case Assembler::greaterEqualUnsigned: return Assembler::lessUnsigned;
3367    case Assembler::positive:             return Assembler::negative;
3368    case Assembler::overflowClear:        return Assembler::overflowSet;
3369  }
3370
3371  ShouldNotReachHere(); return Assembler::overflowClear;
3372}
3373
3374void MacroAssembler::cond_inc(Assembler::Condition cond, address counter_ptr,
3375                              Register Rtmp1, Register Rtmp2 /*, Register Rtmp3, Register Rtmp4 */) {
3376  Condition negated_cond = negate_condition(cond);
3377  Label L;
3378  brx(negated_cond, false, Assembler::pt, L);
3379  delayed()->nop();
3380  inc_counter(counter_ptr, Rtmp1, Rtmp2);
3381  bind(L);
3382}
3383
3384void MacroAssembler::inc_counter(address counter_addr, Register Rtmp1, Register Rtmp2) {
3385  AddressLiteral addrlit(counter_addr);
3386  sethi(addrlit, Rtmp1);                 // Move hi22 bits into temporary register.
3387  Address addr(Rtmp1, addrlit.low10());  // Build an address with low10 bits.
3388  ld(addr, Rtmp2);
3389  inc(Rtmp2);
3390  st(Rtmp2, addr);
3391}
3392
3393void MacroAssembler::inc_counter(int* counter_addr, Register Rtmp1, Register Rtmp2) {
3394  inc_counter((address) counter_addr, Rtmp1, Rtmp2);
3395}
3396
3397SkipIfEqual::SkipIfEqual(
3398    MacroAssembler* masm, Register temp, const bool* flag_addr,
3399    Assembler::Condition condition) {
3400  _masm = masm;
3401  AddressLiteral flag(flag_addr);
3402  _masm->sethi(flag, temp);
3403  _masm->ldub(temp, flag.low10(), temp);
3404  _masm->tst(temp);
3405  _masm->br(condition, false, Assembler::pt, _label);
3406  _masm->delayed()->nop();
3407}
3408
3409SkipIfEqual::~SkipIfEqual() {
3410  _masm->bind(_label);
3411}
3412
3413
3414// Writes to stack successive pages until offset reached to check for
3415// stack overflow + shadow pages.  This clobbers tsp and scratch.
3416void MacroAssembler::bang_stack_size(Register Rsize, Register Rtsp,
3417                                     Register Rscratch) {
3418  // Use stack pointer in temp stack pointer
3419  mov(SP, Rtsp);
3420
3421  // Bang stack for total size given plus stack shadow page size.
3422  // Bang one page at a time because a large size can overflow yellow and
3423  // red zones (the bang will fail but stack overflow handling can't tell that
3424  // it was a stack overflow bang vs a regular segv).
3425  int offset = os::vm_page_size();
3426  Register Roffset = Rscratch;
3427
3428  Label loop;
3429  bind(loop);
3430  set((-offset)+STACK_BIAS, Rscratch);
3431  st(G0, Rtsp, Rscratch);
3432  set(offset, Roffset);
3433  sub(Rsize, Roffset, Rsize);
3434  cmp(Rsize, G0);
3435  br(Assembler::greater, false, Assembler::pn, loop);
3436  delayed()->sub(Rtsp, Roffset, Rtsp);
3437
3438  // Bang down shadow pages too.
3439  // At this point, (tmp-0) is the last address touched, so don't
3440  // touch it again.  (It was touched as (tmp-pagesize) but then tmp
3441  // was post-decremented.)  Skip this address by starting at i=1, and
3442  // touch a few more pages below.  N.B.  It is important to touch all
3443  // the way down to and including i=StackShadowPages.
3444  for (int i = 1; i < JavaThread::stack_shadow_zone_size() / os::vm_page_size(); i++) {
3445    set((-i*offset)+STACK_BIAS, Rscratch);
3446    st(G0, Rtsp, Rscratch);
3447  }
3448}
3449
3450void MacroAssembler::reserved_stack_check() {
3451  // testing if reserved zone needs to be enabled
3452  Label no_reserved_zone_enabling;
3453
3454  ld_ptr(G2_thread, JavaThread::reserved_stack_activation_offset(), G4_scratch);
3455  cmp_and_brx_short(SP, G4_scratch, Assembler::lessUnsigned, Assembler::pt, no_reserved_zone_enabling);
3456
3457  call_VM_leaf(L0, CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), G2_thread);
3458
3459  AddressLiteral stub(StubRoutines::throw_delayed_StackOverflowError_entry());
3460  jump_to(stub, G4_scratch);
3461  delayed()->restore();
3462
3463  should_not_reach_here();
3464
3465  bind(no_reserved_zone_enabling);
3466}
3467
3468///////////////////////////////////////////////////////////////////////////////////
3469#if INCLUDE_ALL_GCS
3470
3471static address satb_log_enqueue_with_frame = NULL;
3472static u_char* satb_log_enqueue_with_frame_end = NULL;
3473
3474static address satb_log_enqueue_frameless = NULL;
3475static u_char* satb_log_enqueue_frameless_end = NULL;
3476
3477static int EnqueueCodeSize = 128 DEBUG_ONLY( + 256); // Instructions?
3478
3479static void generate_satb_log_enqueue(bool with_frame) {
3480  BufferBlob* bb = BufferBlob::create("enqueue_with_frame", EnqueueCodeSize);
3481  CodeBuffer buf(bb);
3482  MacroAssembler masm(&buf);
3483
3484#define __ masm.
3485
3486  address start = __ pc();
3487  Register pre_val;
3488
3489  Label refill, restart;
3490  if (with_frame) {
3491    __ save_frame(0);
3492    pre_val = I0;  // Was O0 before the save.
3493  } else {
3494    pre_val = O0;
3495  }
3496
3497  int satb_q_index_byte_offset =
3498    in_bytes(JavaThread::satb_mark_queue_offset() +
3499             SATBMarkQueue::byte_offset_of_index());
3500
3501  int satb_q_buf_byte_offset =
3502    in_bytes(JavaThread::satb_mark_queue_offset() +
3503             SATBMarkQueue::byte_offset_of_buf());
3504
3505  assert(in_bytes(SATBMarkQueue::byte_width_of_index()) == sizeof(intptr_t) &&
3506         in_bytes(SATBMarkQueue::byte_width_of_buf()) == sizeof(intptr_t),
3507         "check sizes in assembly below");
3508
3509  __ bind(restart);
3510
3511  // Load the index into the SATB buffer. SATBMarkQueue::_index is a size_t
3512  // so ld_ptr is appropriate.
3513  __ ld_ptr(G2_thread, satb_q_index_byte_offset, L0);
3514
3515  // index == 0?
3516  __ cmp_and_brx_short(L0, G0, Assembler::equal, Assembler::pn, refill);
3517
3518  __ ld_ptr(G2_thread, satb_q_buf_byte_offset, L1);
3519  __ sub(L0, oopSize, L0);
3520
3521  __ st_ptr(pre_val, L1, L0);  // [_buf + index] := I0
3522  if (!with_frame) {
3523    // Use return-from-leaf
3524    __ retl();
3525    __ delayed()->st_ptr(L0, G2_thread, satb_q_index_byte_offset);
3526  } else {
3527    // Not delayed.
3528    __ st_ptr(L0, G2_thread, satb_q_index_byte_offset);
3529  }
3530  if (with_frame) {
3531    __ ret();
3532    __ delayed()->restore();
3533  }
3534  __ bind(refill);
3535
3536  address handle_zero =
3537    CAST_FROM_FN_PTR(address,
3538                     &SATBMarkQueueSet::handle_zero_index_for_thread);
3539  // This should be rare enough that we can afford to save all the
3540  // scratch registers that the calling context might be using.
3541  __ mov(G1_scratch, L0);
3542  __ mov(G3_scratch, L1);
3543  __ mov(G4, L2);
3544  // We need the value of O0 above (for the write into the buffer), so we
3545  // save and restore it.
3546  __ mov(O0, L3);
3547  // Since the call will overwrite O7, we save and restore that, as well.
3548  __ mov(O7, L4);
3549  __ call_VM_leaf(L5, handle_zero, G2_thread);
3550  __ mov(L0, G1_scratch);
3551  __ mov(L1, G3_scratch);
3552  __ mov(L2, G4);
3553  __ mov(L3, O0);
3554  __ br(Assembler::always, /*annul*/false, Assembler::pt, restart);
3555  __ delayed()->mov(L4, O7);
3556
3557  if (with_frame) {
3558    satb_log_enqueue_with_frame = start;
3559    satb_log_enqueue_with_frame_end = __ pc();
3560  } else {
3561    satb_log_enqueue_frameless = start;
3562    satb_log_enqueue_frameless_end = __ pc();
3563  }
3564
3565#undef __
3566}
3567
3568static inline void generate_satb_log_enqueue_if_necessary(bool with_frame) {
3569  if (with_frame) {
3570    if (satb_log_enqueue_with_frame == 0) {
3571      generate_satb_log_enqueue(with_frame);
3572      assert(satb_log_enqueue_with_frame != 0, "postcondition.");
3573    }
3574  } else {
3575    if (satb_log_enqueue_frameless == 0) {
3576      generate_satb_log_enqueue(with_frame);
3577      assert(satb_log_enqueue_frameless != 0, "postcondition.");
3578    }
3579  }
3580}
3581
3582void MacroAssembler::g1_write_barrier_pre(Register obj,
3583                                          Register index,
3584                                          int offset,
3585                                          Register pre_val,
3586                                          Register tmp,
3587                                          bool preserve_o_regs) {
3588  Label filtered;
3589
3590  if (obj == noreg) {
3591    // We are not loading the previous value so make
3592    // sure that we don't trash the value in pre_val
3593    // with the code below.
3594    assert_different_registers(pre_val, tmp);
3595  } else {
3596    // We will be loading the previous value
3597    // in this code so...
3598    assert(offset == 0 || index == noreg, "choose one");
3599    assert(pre_val == noreg, "check this code");
3600  }
3601
3602  // Is marking active?
3603  if (in_bytes(SATBMarkQueue::byte_width_of_active()) == 4) {
3604    ld(G2,
3605       in_bytes(JavaThread::satb_mark_queue_offset() +
3606                SATBMarkQueue::byte_offset_of_active()),
3607       tmp);
3608  } else {
3609    guarantee(in_bytes(SATBMarkQueue::byte_width_of_active()) == 1,
3610              "Assumption");
3611    ldsb(G2,
3612         in_bytes(JavaThread::satb_mark_queue_offset() +
3613                  SATBMarkQueue::byte_offset_of_active()),
3614         tmp);
3615  }
3616
3617  // Is marking active?
3618  cmp_and_br_short(tmp, G0, Assembler::equal, Assembler::pt, filtered);
3619
3620  // Do we need to load the previous value?
3621  if (obj != noreg) {
3622    // Load the previous value...
3623    if (index == noreg) {
3624      if (Assembler::is_simm13(offset)) {
3625        load_heap_oop(obj, offset, tmp);
3626      } else {
3627        set(offset, tmp);
3628        load_heap_oop(obj, tmp, tmp);
3629      }
3630    } else {
3631      load_heap_oop(obj, index, tmp);
3632    }
3633    // Previous value has been loaded into tmp
3634    pre_val = tmp;
3635  }
3636
3637  assert(pre_val != noreg, "must have a real register");
3638
3639  // Is the previous value null?
3640  cmp_and_brx_short(pre_val, G0, Assembler::equal, Assembler::pt, filtered);
3641
3642  // OK, it's not filtered, so we'll need to call enqueue.  In the normal
3643  // case, pre_val will be a scratch G-reg, but there are some cases in
3644  // which it's an O-reg.  In the first case, do a normal call.  In the
3645  // latter, do a save here and call the frameless version.
3646
3647  guarantee(pre_val->is_global() || pre_val->is_out(),
3648            "Or we need to think harder.");
3649
3650  if (pre_val->is_global() && !preserve_o_regs) {
3651    generate_satb_log_enqueue_if_necessary(true); // with frame
3652
3653    call(satb_log_enqueue_with_frame);
3654    delayed()->mov(pre_val, O0);
3655  } else {
3656    generate_satb_log_enqueue_if_necessary(false); // frameless
3657
3658    save_frame(0);
3659    call(satb_log_enqueue_frameless);
3660    delayed()->mov(pre_val->after_save(), O0);
3661    restore();
3662  }
3663
3664  bind(filtered);
3665}
3666
3667static address dirty_card_log_enqueue = 0;
3668static u_char* dirty_card_log_enqueue_end = 0;
3669
3670// This gets to assume that o0 contains the object address.
3671static void generate_dirty_card_log_enqueue(jbyte* byte_map_base) {
3672  BufferBlob* bb = BufferBlob::create("dirty_card_enqueue", EnqueueCodeSize*2);
3673  CodeBuffer buf(bb);
3674  MacroAssembler masm(&buf);
3675#define __ masm.
3676  address start = __ pc();
3677
3678  Label not_already_dirty, restart, refill, young_card;
3679
3680  __ srlx(O0, CardTableModRefBS::card_shift, O0);
3681  AddressLiteral addrlit(byte_map_base);
3682  __ set(addrlit, O1); // O1 := <card table base>
3683  __ ldub(O0, O1, O2); // O2 := [O0 + O1]
3684
3685  __ cmp_and_br_short(O2, G1SATBCardTableModRefBS::g1_young_card_val(), Assembler::equal, Assembler::pt, young_card);
3686
3687  __ membar(Assembler::Membar_mask_bits(Assembler::StoreLoad));
3688  __ ldub(O0, O1, O2); // O2 := [O0 + O1]
3689
3690  assert(CardTableModRefBS::dirty_card_val() == 0, "otherwise check this code");
3691  __ cmp_and_br_short(O2, G0, Assembler::notEqual, Assembler::pt, not_already_dirty);
3692
3693  __ bind(young_card);
3694  // We didn't take the branch, so we're already dirty: return.
3695  // Use return-from-leaf
3696  __ retl();
3697  __ delayed()->nop();
3698
3699  // Not dirty.
3700  __ bind(not_already_dirty);
3701
3702  // Get O0 + O1 into a reg by itself
3703  __ add(O0, O1, O3);
3704
3705  // First, dirty it.
3706  __ stb(G0, O3, G0);  // [cardPtr] := 0  (i.e., dirty).
3707
3708  int dirty_card_q_index_byte_offset =
3709    in_bytes(JavaThread::dirty_card_queue_offset() +
3710             DirtyCardQueue::byte_offset_of_index());
3711  int dirty_card_q_buf_byte_offset =
3712    in_bytes(JavaThread::dirty_card_queue_offset() +
3713             DirtyCardQueue::byte_offset_of_buf());
3714  __ bind(restart);
3715
3716  // Load the index into the update buffer. DirtyCardQueue::_index is
3717  // a size_t so ld_ptr is appropriate here.
3718  __ ld_ptr(G2_thread, dirty_card_q_index_byte_offset, L0);
3719
3720  // index == 0?
3721  __ cmp_and_brx_short(L0, G0, Assembler::equal, Assembler::pn, refill);
3722
3723  __ ld_ptr(G2_thread, dirty_card_q_buf_byte_offset, L1);
3724  __ sub(L0, oopSize, L0);
3725
3726  __ st_ptr(O3, L1, L0);  // [_buf + index] := I0
3727  // Use return-from-leaf
3728  __ retl();
3729  __ delayed()->st_ptr(L0, G2_thread, dirty_card_q_index_byte_offset);
3730
3731  __ bind(refill);
3732  address handle_zero =
3733    CAST_FROM_FN_PTR(address,
3734                     &DirtyCardQueueSet::handle_zero_index_for_thread);
3735  // This should be rare enough that we can afford to save all the
3736  // scratch registers that the calling context might be using.
3737  __ mov(G1_scratch, L3);
3738  __ mov(G3_scratch, L5);
3739  // We need the value of O3 above (for the write into the buffer), so we
3740  // save and restore it.
3741  __ mov(O3, L6);
3742  // Since the call will overwrite O7, we save and restore that, as well.
3743  __ mov(O7, L4);
3744
3745  __ call_VM_leaf(L7_thread_cache, handle_zero, G2_thread);
3746  __ mov(L3, G1_scratch);
3747  __ mov(L5, G3_scratch);
3748  __ mov(L6, O3);
3749  __ br(Assembler::always, /*annul*/false, Assembler::pt, restart);
3750  __ delayed()->mov(L4, O7);
3751
3752  dirty_card_log_enqueue = start;
3753  dirty_card_log_enqueue_end = __ pc();
3754  // XXX Should have a guarantee here about not going off the end!
3755  // Does it already do so?  Do an experiment...
3756
3757#undef __
3758
3759}
3760
3761static inline void
3762generate_dirty_card_log_enqueue_if_necessary(jbyte* byte_map_base) {
3763  if (dirty_card_log_enqueue == 0) {
3764    generate_dirty_card_log_enqueue(byte_map_base);
3765    assert(dirty_card_log_enqueue != 0, "postcondition.");
3766  }
3767}
3768
3769
3770void MacroAssembler::g1_write_barrier_post(Register store_addr, Register new_val, Register tmp) {
3771
3772  Label filtered;
3773  MacroAssembler* post_filter_masm = this;
3774
3775  if (new_val == G0) return;
3776
3777  G1SATBCardTableLoggingModRefBS* bs =
3778    barrier_set_cast<G1SATBCardTableLoggingModRefBS>(Universe::heap()->barrier_set());
3779
3780  if (G1RSBarrierRegionFilter) {
3781    xor3(store_addr, new_val, tmp);
3782    srlx(tmp, HeapRegion::LogOfHRGrainBytes, tmp);
3783
3784    // XXX Should I predict this taken or not?  Does it matter?
3785    cmp_and_brx_short(tmp, G0, Assembler::equal, Assembler::pt, filtered);
3786  }
3787
3788  // If the "store_addr" register is an "in" or "local" register, move it to
3789  // a scratch reg so we can pass it as an argument.
3790  bool use_scr = !(store_addr->is_global() || store_addr->is_out());
3791  // Pick a scratch register different from "tmp".
3792  Register scr = (tmp == G1_scratch ? G3_scratch : G1_scratch);
3793  // Make sure we use up the delay slot!
3794  if (use_scr) {
3795    post_filter_masm->mov(store_addr, scr);
3796  } else {
3797    post_filter_masm->nop();
3798  }
3799  generate_dirty_card_log_enqueue_if_necessary(bs->byte_map_base);
3800  save_frame(0);
3801  call(dirty_card_log_enqueue);
3802  if (use_scr) {
3803    delayed()->mov(scr, O0);
3804  } else {
3805    delayed()->mov(store_addr->after_save(), O0);
3806  }
3807  restore();
3808
3809  bind(filtered);
3810}
3811
3812#endif // INCLUDE_ALL_GCS
3813///////////////////////////////////////////////////////////////////////////////////
3814
3815void MacroAssembler::card_write_barrier_post(Register store_addr, Register new_val, Register tmp) {
3816  // If we're writing constant NULL, we can skip the write barrier.
3817  if (new_val == G0) return;
3818  CardTableModRefBS* bs =
3819    barrier_set_cast<CardTableModRefBS>(Universe::heap()->barrier_set());
3820  assert(bs->kind() == BarrierSet::CardTableForRS ||
3821         bs->kind() == BarrierSet::CardTableExtension, "wrong barrier");
3822  card_table_write(bs->byte_map_base, tmp, store_addr);
3823}
3824
3825// ((OopHandle)result).resolve();
3826void MacroAssembler::resolve_oop_handle(Register result) {
3827  // OopHandle::resolve is an indirection.
3828  ld_ptr(result, 0, result);
3829}
3830
3831void MacroAssembler::load_mirror(Register mirror, Register method) {
3832  const int mirror_offset = in_bytes(Klass::java_mirror_offset());
3833  ld_ptr(method, in_bytes(Method::const_offset()), mirror);
3834  ld_ptr(mirror, in_bytes(ConstMethod::constants_offset()), mirror);
3835  ld_ptr(mirror, ConstantPool::pool_holder_offset_in_bytes(), mirror);
3836  ld_ptr(mirror, mirror_offset, mirror);
3837}
3838
3839void MacroAssembler::load_klass(Register src_oop, Register klass) {
3840  // The number of bytes in this code is used by
3841  // MachCallDynamicJavaNode::ret_addr_offset()
3842  // if this changes, change that.
3843  if (UseCompressedClassPointers) {
3844    lduw(src_oop, oopDesc::klass_offset_in_bytes(), klass);
3845    decode_klass_not_null(klass);
3846  } else {
3847    ld_ptr(src_oop, oopDesc::klass_offset_in_bytes(), klass);
3848  }
3849}
3850
3851void MacroAssembler::store_klass(Register klass, Register dst_oop) {
3852  if (UseCompressedClassPointers) {
3853    assert(dst_oop != klass, "not enough registers");
3854    encode_klass_not_null(klass);
3855    st(klass, dst_oop, oopDesc::klass_offset_in_bytes());
3856  } else {
3857    st_ptr(klass, dst_oop, oopDesc::klass_offset_in_bytes());
3858  }
3859}
3860
3861void MacroAssembler::store_klass_gap(Register s, Register d) {
3862  if (UseCompressedClassPointers) {
3863    assert(s != d, "not enough registers");
3864    st(s, d, oopDesc::klass_gap_offset_in_bytes());
3865  }
3866}
3867
3868void MacroAssembler::load_heap_oop(const Address& s, Register d) {
3869  if (UseCompressedOops) {
3870    lduw(s, d);
3871    decode_heap_oop(d);
3872  } else {
3873    ld_ptr(s, d);
3874  }
3875}
3876
3877void MacroAssembler::load_heap_oop(Register s1, Register s2, Register d) {
3878   if (UseCompressedOops) {
3879    lduw(s1, s2, d);
3880    decode_heap_oop(d, d);
3881  } else {
3882    ld_ptr(s1, s2, d);
3883  }
3884}
3885
3886void MacroAssembler::load_heap_oop(Register s1, int simm13a, Register d) {
3887   if (UseCompressedOops) {
3888    lduw(s1, simm13a, d);
3889    decode_heap_oop(d, d);
3890  } else {
3891    ld_ptr(s1, simm13a, d);
3892  }
3893}
3894
3895void MacroAssembler::load_heap_oop(Register s1, RegisterOrConstant s2, Register d) {
3896  if (s2.is_constant())  load_heap_oop(s1, s2.as_constant(), d);
3897  else                   load_heap_oop(s1, s2.as_register(), d);
3898}
3899
3900void MacroAssembler::store_heap_oop(Register d, Register s1, Register s2) {
3901  if (UseCompressedOops) {
3902    assert(s1 != d && s2 != d, "not enough registers");
3903    encode_heap_oop(d);
3904    st(d, s1, s2);
3905  } else {
3906    st_ptr(d, s1, s2);
3907  }
3908}
3909
3910void MacroAssembler::store_heap_oop(Register d, Register s1, int simm13a) {
3911  if (UseCompressedOops) {
3912    assert(s1 != d, "not enough registers");
3913    encode_heap_oop(d);
3914    st(d, s1, simm13a);
3915  } else {
3916    st_ptr(d, s1, simm13a);
3917  }
3918}
3919
3920void MacroAssembler::store_heap_oop(Register d, const Address& a, int offset) {
3921  if (UseCompressedOops) {
3922    assert(a.base() != d, "not enough registers");
3923    encode_heap_oop(d);
3924    st(d, a, offset);
3925  } else {
3926    st_ptr(d, a, offset);
3927  }
3928}
3929
3930
3931void MacroAssembler::encode_heap_oop(Register src, Register dst) {
3932  assert (UseCompressedOops, "must be compressed");
3933  assert (Universe::heap() != NULL, "java heap should be initialized");
3934  assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
3935  verify_oop(src);
3936  if (Universe::narrow_oop_base() == NULL) {
3937    srlx(src, LogMinObjAlignmentInBytes, dst);
3938    return;
3939  }
3940  Label done;
3941  if (src == dst) {
3942    // optimize for frequent case src == dst
3943    bpr(rc_nz, true, Assembler::pt, src, done);
3944    delayed() -> sub(src, G6_heapbase, dst); // annuled if not taken
3945    bind(done);
3946    srlx(src, LogMinObjAlignmentInBytes, dst);
3947  } else {
3948    bpr(rc_z, false, Assembler::pn, src, done);
3949    delayed() -> mov(G0, dst);
3950    // could be moved before branch, and annulate delay,
3951    // but may add some unneeded work decoding null
3952    sub(src, G6_heapbase, dst);
3953    srlx(dst, LogMinObjAlignmentInBytes, dst);
3954    bind(done);
3955  }
3956}
3957
3958
3959void MacroAssembler::encode_heap_oop_not_null(Register r) {
3960  assert (UseCompressedOops, "must be compressed");
3961  assert (Universe::heap() != NULL, "java heap should be initialized");
3962  assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
3963  verify_oop(r);
3964  if (Universe::narrow_oop_base() != NULL)
3965    sub(r, G6_heapbase, r);
3966  srlx(r, LogMinObjAlignmentInBytes, r);
3967}
3968
3969void MacroAssembler::encode_heap_oop_not_null(Register src, Register dst) {
3970  assert (UseCompressedOops, "must be compressed");
3971  assert (Universe::heap() != NULL, "java heap should be initialized");
3972  assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
3973  verify_oop(src);
3974  if (Universe::narrow_oop_base() == NULL) {
3975    srlx(src, LogMinObjAlignmentInBytes, dst);
3976  } else {
3977    sub(src, G6_heapbase, dst);
3978    srlx(dst, LogMinObjAlignmentInBytes, dst);
3979  }
3980}
3981
3982// Same algorithm as oops.inline.hpp decode_heap_oop.
3983void  MacroAssembler::decode_heap_oop(Register src, Register dst) {
3984  assert (UseCompressedOops, "must be compressed");
3985  assert (Universe::heap() != NULL, "java heap should be initialized");
3986  assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
3987  sllx(src, LogMinObjAlignmentInBytes, dst);
3988  if (Universe::narrow_oop_base() != NULL) {
3989    Label done;
3990    bpr(rc_nz, true, Assembler::pt, dst, done);
3991    delayed() -> add(dst, G6_heapbase, dst); // annuled if not taken
3992    bind(done);
3993  }
3994  verify_oop(dst);
3995}
3996
3997void  MacroAssembler::decode_heap_oop_not_null(Register r) {
3998  // Do not add assert code to this unless you change vtableStubs_sparc.cpp
3999  // pd_code_size_limit.
4000  // Also do not verify_oop as this is called by verify_oop.
4001  assert (UseCompressedOops, "must be compressed");
4002  assert (Universe::heap() != NULL, "java heap should be initialized");
4003  assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
4004  sllx(r, LogMinObjAlignmentInBytes, r);
4005  if (Universe::narrow_oop_base() != NULL)
4006    add(r, G6_heapbase, r);
4007}
4008
4009void  MacroAssembler::decode_heap_oop_not_null(Register src, Register dst) {
4010  // Do not add assert code to this unless you change vtableStubs_sparc.cpp
4011  // pd_code_size_limit.
4012  // Also do not verify_oop as this is called by verify_oop.
4013  assert (UseCompressedOops, "must be compressed");
4014  assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
4015  sllx(src, LogMinObjAlignmentInBytes, dst);
4016  if (Universe::narrow_oop_base() != NULL)
4017    add(dst, G6_heapbase, dst);
4018}
4019
4020void MacroAssembler::encode_klass_not_null(Register r) {
4021  assert (UseCompressedClassPointers, "must be compressed");
4022  if (Universe::narrow_klass_base() != NULL) {
4023    assert(r != G6_heapbase, "bad register choice");
4024    set((intptr_t)Universe::narrow_klass_base(), G6_heapbase);
4025    sub(r, G6_heapbase, r);
4026    if (Universe::narrow_klass_shift() != 0) {
4027      assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
4028      srlx(r, LogKlassAlignmentInBytes, r);
4029    }
4030    reinit_heapbase();
4031  } else {
4032    assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift() || Universe::narrow_klass_shift() == 0, "decode alg wrong");
4033    srlx(r, Universe::narrow_klass_shift(), r);
4034  }
4035}
4036
4037void MacroAssembler::encode_klass_not_null(Register src, Register dst) {
4038  if (src == dst) {
4039    encode_klass_not_null(src);
4040  } else {
4041    assert (UseCompressedClassPointers, "must be compressed");
4042    if (Universe::narrow_klass_base() != NULL) {
4043      set((intptr_t)Universe::narrow_klass_base(), dst);
4044      sub(src, dst, dst);
4045      if (Universe::narrow_klass_shift() != 0) {
4046        srlx(dst, LogKlassAlignmentInBytes, dst);
4047      }
4048    } else {
4049      // shift src into dst
4050      assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift() || Universe::narrow_klass_shift() == 0, "decode alg wrong");
4051      srlx(src, Universe::narrow_klass_shift(), dst);
4052    }
4053  }
4054}
4055
4056// Function instr_size_for_decode_klass_not_null() counts the instructions
4057// generated by decode_klass_not_null() and reinit_heapbase().  Hence, if
4058// the instructions they generate change, then this method needs to be updated.
4059int MacroAssembler::instr_size_for_decode_klass_not_null() {
4060  assert (UseCompressedClassPointers, "only for compressed klass ptrs");
4061  int num_instrs = 1;  // shift src,dst or add
4062  if (Universe::narrow_klass_base() != NULL) {
4063    // set + add + set
4064    num_instrs += insts_for_internal_set((intptr_t)Universe::narrow_klass_base()) +
4065                  insts_for_internal_set((intptr_t)Universe::narrow_ptrs_base());
4066    if (Universe::narrow_klass_shift() != 0) {
4067      num_instrs += 1;  // sllx
4068    }
4069  }
4070  return num_instrs * BytesPerInstWord;
4071}
4072
4073// !!! If the instructions that get generated here change then function
4074// instr_size_for_decode_klass_not_null() needs to get updated.
4075void  MacroAssembler::decode_klass_not_null(Register r) {
4076  // Do not add assert code to this unless you change vtableStubs_sparc.cpp
4077  // pd_code_size_limit.
4078  assert (UseCompressedClassPointers, "must be compressed");
4079  if (Universe::narrow_klass_base() != NULL) {
4080    assert(r != G6_heapbase, "bad register choice");
4081    set((intptr_t)Universe::narrow_klass_base(), G6_heapbase);
4082    if (Universe::narrow_klass_shift() != 0)
4083      sllx(r, LogKlassAlignmentInBytes, r);
4084    add(r, G6_heapbase, r);
4085    reinit_heapbase();
4086  } else {
4087    assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift() || Universe::narrow_klass_shift() == 0, "decode alg wrong");
4088    sllx(r, Universe::narrow_klass_shift(), r);
4089  }
4090}
4091
4092void  MacroAssembler::decode_klass_not_null(Register src, Register dst) {
4093  if (src == dst) {
4094    decode_klass_not_null(src);
4095  } else {
4096    // Do not add assert code to this unless you change vtableStubs_sparc.cpp
4097    // pd_code_size_limit.
4098    assert (UseCompressedClassPointers, "must be compressed");
4099    if (Universe::narrow_klass_base() != NULL) {
4100      if (Universe::narrow_klass_shift() != 0) {
4101        assert((src != G6_heapbase) && (dst != G6_heapbase), "bad register choice");
4102        set((intptr_t)Universe::narrow_klass_base(), G6_heapbase);
4103        sllx(src, LogKlassAlignmentInBytes, dst);
4104        add(dst, G6_heapbase, dst);
4105        reinit_heapbase();
4106      } else {
4107        set((intptr_t)Universe::narrow_klass_base(), dst);
4108        add(src, dst, dst);
4109      }
4110    } else {
4111      // shift/mov src into dst.
4112      assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift() || Universe::narrow_klass_shift() == 0, "decode alg wrong");
4113      sllx(src, Universe::narrow_klass_shift(), dst);
4114    }
4115  }
4116}
4117
4118void MacroAssembler::reinit_heapbase() {
4119  if (UseCompressedOops || UseCompressedClassPointers) {
4120    if (Universe::heap() != NULL) {
4121      set((intptr_t)Universe::narrow_ptrs_base(), G6_heapbase);
4122    } else {
4123      AddressLiteral base(Universe::narrow_ptrs_base_addr());
4124      load_ptr_contents(base, G6_heapbase);
4125    }
4126  }
4127}
4128
4129#ifdef COMPILER2
4130
4131// Compress char[] to byte[] by compressing 16 bytes at once. Return 0 on failure.
4132void MacroAssembler::string_compress_16(Register src, Register dst, Register cnt, Register result,
4133                                        Register tmp1, Register tmp2, Register tmp3, Register tmp4,
4134                                        FloatRegister ftmp1, FloatRegister ftmp2, FloatRegister ftmp3, Label& Ldone) {
4135  Label Lloop, Lslow;
4136  assert(UseVIS >= 3, "VIS3 is required");
4137  assert_different_registers(src, dst, cnt, tmp1, tmp2, tmp3, tmp4, result);
4138  assert_different_registers(ftmp1, ftmp2, ftmp3);
4139
4140  // Check if cnt >= 8 (= 16 bytes)
4141  cmp(cnt, 8);
4142  br(Assembler::less, false, Assembler::pn, Lslow);
4143  delayed()->mov(cnt, result); // copy count
4144
4145  // Check for 8-byte alignment of src and dst
4146  or3(src, dst, tmp1);
4147  andcc(tmp1, 7, G0);
4148  br(Assembler::notZero, false, Assembler::pn, Lslow);
4149  delayed()->nop();
4150
4151  // Set mask for bshuffle instruction
4152  Register mask = tmp4;
4153  set(0x13579bdf, mask);
4154  bmask(mask, G0, G0);
4155
4156  // Set mask to 0xff00 ff00 ff00 ff00 to check for non-latin1 characters
4157  Assembler::sethi(0xff00fc00, mask); // mask = 0x0000 0000 ff00 fc00
4158  add(mask, 0x300, mask);             // mask = 0x0000 0000 ff00 ff00
4159  sllx(mask, 32, tmp1);               // tmp1 = 0xff00 ff00 0000 0000
4160  or3(mask, tmp1, mask);              // mask = 0xff00 ff00 ff00 ff00
4161
4162  // Load first 8 bytes
4163  ldx(src, 0, tmp1);
4164
4165  bind(Lloop);
4166  // Load next 8 bytes
4167  ldx(src, 8, tmp2);
4168
4169  // Check for non-latin1 character by testing if the most significant byte of a char is set.
4170  // Although we have to move the data between integer and floating point registers, this is
4171  // still faster than the corresponding VIS instructions (ford/fand/fcmpd).
4172  or3(tmp1, tmp2, tmp3);
4173  btst(tmp3, mask);
4174  // annul zeroing if branch is not taken to preserve original count
4175  brx(Assembler::notZero, true, Assembler::pn, Ldone);
4176  delayed()->mov(G0, result); // 0 - failed
4177
4178  // Move bytes into float register
4179  movxtod(tmp1, ftmp1);
4180  movxtod(tmp2, ftmp2);
4181
4182  // Compress by copying one byte per char from ftmp1 and ftmp2 to ftmp3
4183  bshuffle(ftmp1, ftmp2, ftmp3);
4184  stf(FloatRegisterImpl::D, ftmp3, dst, 0);
4185
4186  // Increment addresses and decrement count
4187  inc(src, 16);
4188  inc(dst, 8);
4189  dec(cnt, 8);
4190
4191  cmp(cnt, 8);
4192  // annul LDX if branch is not taken to prevent access past end of string
4193  br(Assembler::greaterEqual, true, Assembler::pt, Lloop);
4194  delayed()->ldx(src, 0, tmp1);
4195
4196  // Fallback to slow version
4197  bind(Lslow);
4198}
4199
4200// Compress char[] to byte[]. Return 0 on failure.
4201void MacroAssembler::string_compress(Register src, Register dst, Register cnt, Register result, Register tmp, Label& Ldone) {
4202  Label Lloop;
4203  assert_different_registers(src, dst, cnt, tmp, result);
4204
4205  lduh(src, 0, tmp);
4206
4207  bind(Lloop);
4208  inc(src, sizeof(jchar));
4209  cmp(tmp, 0xff);
4210  // annul zeroing if branch is not taken to preserve original count
4211  br(Assembler::greater, true, Assembler::pn, Ldone); // don't check xcc
4212  delayed()->mov(G0, result); // 0 - failed
4213  deccc(cnt);
4214  stb(tmp, dst, 0);
4215  inc(dst);
4216  // annul LDUH if branch is not taken to prevent access past end of string
4217  br(Assembler::notZero, true, Assembler::pt, Lloop);
4218  delayed()->lduh(src, 0, tmp); // hoisted
4219}
4220
4221// Inflate byte[] to char[] by inflating 16 bytes at once.
4222void MacroAssembler::string_inflate_16(Register src, Register dst, Register cnt, Register tmp,
4223                                       FloatRegister ftmp1, FloatRegister ftmp2, FloatRegister ftmp3, FloatRegister ftmp4, Label& Ldone) {
4224  Label Lloop, Lslow;
4225  assert(UseVIS >= 3, "VIS3 is required");
4226  assert_different_registers(src, dst, cnt, tmp);
4227  assert_different_registers(ftmp1, ftmp2, ftmp3, ftmp4);
4228
4229  // Check if cnt >= 8 (= 16 bytes)
4230  cmp(cnt, 8);
4231  br(Assembler::less, false, Assembler::pn, Lslow);
4232  delayed()->nop();
4233
4234  // Check for 8-byte alignment of src and dst
4235  or3(src, dst, tmp);
4236  andcc(tmp, 7, G0);
4237  br(Assembler::notZero, false, Assembler::pn, Lslow);
4238  // Initialize float register to zero
4239  FloatRegister zerof = ftmp4;
4240  delayed()->fzero(FloatRegisterImpl::D, zerof);
4241
4242  // Load first 8 bytes
4243  ldf(FloatRegisterImpl::D, src, 0, ftmp1);
4244
4245  bind(Lloop);
4246  inc(src, 8);
4247  dec(cnt, 8);
4248
4249  // Inflate the string by interleaving each byte from the source array
4250  // with a zero byte and storing the result in the destination array.
4251  fpmerge(zerof, ftmp1->successor(), ftmp2);
4252  stf(FloatRegisterImpl::D, ftmp2, dst, 8);
4253  fpmerge(zerof, ftmp1, ftmp3);
4254  stf(FloatRegisterImpl::D, ftmp3, dst, 0);
4255
4256  inc(dst, 16);
4257
4258  cmp(cnt, 8);
4259  // annul LDX if branch is not taken to prevent access past end of string
4260  br(Assembler::greaterEqual, true, Assembler::pt, Lloop);
4261  delayed()->ldf(FloatRegisterImpl::D, src, 0, ftmp1);
4262
4263  // Fallback to slow version
4264  bind(Lslow);
4265}
4266
4267// Inflate byte[] to char[].
4268void MacroAssembler::string_inflate(Register src, Register dst, Register cnt, Register tmp, Label& Ldone) {
4269  Label Loop;
4270  assert_different_registers(src, dst, cnt, tmp);
4271
4272  ldub(src, 0, tmp);
4273  bind(Loop);
4274  inc(src);
4275  deccc(cnt);
4276  sth(tmp, dst, 0);
4277  inc(dst, sizeof(jchar));
4278  // annul LDUB if branch is not taken to prevent access past end of string
4279  br(Assembler::notZero, true, Assembler::pt, Loop);
4280  delayed()->ldub(src, 0, tmp); // hoisted
4281}
4282
4283void MacroAssembler::string_compare(Register str1, Register str2,
4284                                    Register cnt1, Register cnt2,
4285                                    Register tmp1, Register tmp2,
4286                                    Register result, int ae) {
4287  Label Ldone, Lloop;
4288  assert_different_registers(str1, str2, cnt1, cnt2, tmp1, result);
4289  int stride1, stride2;
4290
4291  // Note: Making use of the fact that compareTo(a, b) == -compareTo(b, a)
4292  // we interchange str1 and str2 in the UL case and negate the result.
4293  // Like this, str1 is always latin1 encoded, expect for the UU case.
4294
4295  if (ae == StrIntrinsicNode::LU || ae == StrIntrinsicNode::UL) {
4296    srl(cnt2, 1, cnt2);
4297  }
4298
4299  // See if the lengths are different, and calculate min in cnt1.
4300  // Save diff in case we need it for a tie-breaker.
4301  Label Lskip;
4302  Register diff = tmp1;
4303  subcc(cnt1, cnt2, diff);
4304  br(Assembler::greater, true, Assembler::pt, Lskip);
4305  // cnt2 is shorter, so use its count:
4306  delayed()->mov(cnt2, cnt1);
4307  bind(Lskip);
4308
4309  // Rename registers
4310  Register limit1 = cnt1;
4311  Register limit2 = limit1;
4312  Register chr1   = result;
4313  Register chr2   = cnt2;
4314  if (ae == StrIntrinsicNode::LU || ae == StrIntrinsicNode::UL) {
4315    // We need an additional register to keep track of two limits
4316    assert_different_registers(str1, str2, cnt1, cnt2, tmp1, tmp2, result);
4317    limit2 = tmp2;
4318  }
4319
4320  // Is the minimum length zero?
4321  cmp(limit1, (int)0); // use cast to resolve overloading ambiguity
4322  br(Assembler::equal, true, Assembler::pn, Ldone);
4323  // result is difference in lengths
4324  if (ae == StrIntrinsicNode::UU) {
4325    delayed()->sra(diff, 1, result);  // Divide by 2 to get number of chars
4326  } else {
4327    delayed()->mov(diff, result);
4328  }
4329
4330  // Load first characters
4331  if (ae == StrIntrinsicNode::LL) {
4332    stride1 = stride2 = sizeof(jbyte);
4333    ldub(str1, 0, chr1);
4334    ldub(str2, 0, chr2);
4335  } else if (ae == StrIntrinsicNode::UU) {
4336    stride1 = stride2 = sizeof(jchar);
4337    lduh(str1, 0, chr1);
4338    lduh(str2, 0, chr2);
4339  } else {
4340    stride1 = sizeof(jbyte);
4341    stride2 = sizeof(jchar);
4342    ldub(str1, 0, chr1);
4343    lduh(str2, 0, chr2);
4344  }
4345
4346  // Compare first characters
4347  subcc(chr1, chr2, chr1);
4348  br(Assembler::notZero, false, Assembler::pt, Ldone);
4349  assert(chr1 == result, "result must be pre-placed");
4350  delayed()->nop();
4351
4352  // Check if the strings start at same location
4353  cmp(str1, str2);
4354  brx(Assembler::equal, true, Assembler::pn, Ldone);
4355  delayed()->mov(G0, result);  // result is zero
4356
4357  // We have no guarantee that on 64 bit the higher half of limit is 0
4358  signx(limit1);
4359
4360  // Get limit
4361  if (ae == StrIntrinsicNode::LU || ae == StrIntrinsicNode::UL) {
4362    sll(limit1, 1, limit2);
4363    subcc(limit2, stride2, chr2);
4364  }
4365  subcc(limit1, stride1, chr1);
4366  br(Assembler::zero, true, Assembler::pn, Ldone);
4367  // result is difference in lengths
4368  if (ae == StrIntrinsicNode::UU) {
4369    delayed()->sra(diff, 1, result);  // Divide by 2 to get number of chars
4370  } else {
4371    delayed()->mov(diff, result);
4372  }
4373
4374  // Shift str1 and str2 to the end of the arrays, negate limit
4375  add(str1, limit1, str1);
4376  add(str2, limit2, str2);
4377  neg(chr1, limit1);  // limit1 = -(limit1-stride1)
4378  if (ae == StrIntrinsicNode::LU || ae == StrIntrinsicNode::UL) {
4379    neg(chr2, limit2);  // limit2 = -(limit2-stride2)
4380  }
4381
4382  // Compare the rest of the characters
4383  load_sized_value(Address(str1, limit1), chr1, (ae == StrIntrinsicNode::UU) ? 2 : 1, false);
4384
4385  bind(Lloop);
4386  load_sized_value(Address(str2, limit2), chr2, (ae == StrIntrinsicNode::LL) ? 1 : 2, false);
4387
4388  subcc(chr1, chr2, chr1);
4389  br(Assembler::notZero, false, Assembler::pt, Ldone);
4390  assert(chr1 == result, "result must be pre-placed");
4391  delayed()->inccc(limit1, stride1);
4392  if (ae == StrIntrinsicNode::LU || ae == StrIntrinsicNode::UL) {
4393    inccc(limit2, stride2);
4394  }
4395
4396  // annul LDUB if branch is not taken to prevent access past end of string
4397  br(Assembler::notZero, true, Assembler::pt, Lloop);
4398  delayed()->load_sized_value(Address(str1, limit1), chr1, (ae == StrIntrinsicNode::UU) ? 2 : 1, false);
4399
4400  // If strings are equal up to min length, return the length difference.
4401  if (ae == StrIntrinsicNode::UU) {
4402    // Divide by 2 to get number of chars
4403    sra(diff, 1, result);
4404  } else {
4405    mov(diff, result);
4406  }
4407
4408  // Otherwise, return the difference between the first mismatched chars.
4409  bind(Ldone);
4410  if(ae == StrIntrinsicNode::UL) {
4411    // Negate result (see note above)
4412    neg(result);
4413  }
4414}
4415
4416void MacroAssembler::array_equals(bool is_array_equ, Register ary1, Register ary2,
4417                                  Register limit, Register tmp, Register result, bool is_byte) {
4418  Label Ldone, Lloop, Lremaining;
4419  assert_different_registers(ary1, ary2, limit, tmp, result);
4420
4421  int length_offset  = arrayOopDesc::length_offset_in_bytes();
4422  int base_offset    = arrayOopDesc::base_offset_in_bytes(is_byte ? T_BYTE : T_CHAR);
4423  assert(base_offset % 8 == 0, "Base offset must be 8-byte aligned");
4424
4425  if (is_array_equ) {
4426    // return true if the same array
4427    cmp(ary1, ary2);
4428    brx(Assembler::equal, true, Assembler::pn, Ldone);
4429    delayed()->mov(1, result);  // equal
4430
4431    br_null(ary1, true, Assembler::pn, Ldone);
4432    delayed()->clr(result);     // not equal
4433
4434    br_null(ary2, true, Assembler::pn, Ldone);
4435    delayed()->clr(result);     // not equal
4436
4437    // load the lengths of arrays
4438    ld(Address(ary1, length_offset), limit);
4439    ld(Address(ary2, length_offset), tmp);
4440
4441    // return false if the two arrays are not equal length
4442    cmp(limit, tmp);
4443    br(Assembler::notEqual, true, Assembler::pn, Ldone);
4444    delayed()->clr(result);     // not equal
4445  }
4446
4447  cmp_zero_and_br(Assembler::zero, limit, Ldone, true, Assembler::pn);
4448  delayed()->mov(1, result); // zero-length arrays are equal
4449
4450  if (is_array_equ) {
4451    // load array addresses
4452    add(ary1, base_offset, ary1);
4453    add(ary2, base_offset, ary2);
4454    // set byte count
4455    if (!is_byte) {
4456      sll(limit, exact_log2(sizeof(jchar)), limit);
4457    }
4458  } else {
4459    // We have no guarantee that on 64 bit the higher half of limit is 0
4460    signx(limit);
4461  }
4462
4463#ifdef ASSERT
4464  // Sanity check for doubleword (8-byte) alignment of ary1 and ary2.
4465  // Guaranteed on 64-bit systems (see arrayOopDesc::header_size_in_bytes()).
4466  Label Laligned;
4467  or3(ary1, ary2, tmp);
4468  andcc(tmp, 7, tmp);
4469  br_null_short(tmp, Assembler::pn, Laligned);
4470  STOP("First array element is not 8-byte aligned.");
4471  should_not_reach_here();
4472  bind(Laligned);
4473#endif
4474
4475  // Shift ary1 and ary2 to the end of the arrays, negate limit
4476  add(ary1, limit, ary1);
4477  add(ary2, limit, ary2);
4478  neg(limit, limit);
4479
4480  // MAIN LOOP
4481  // Load and compare array elements of size 'byte_width' until the elements are not
4482  // equal or we reached the end of the arrays. If the size of the arrays is not a
4483  // multiple of 'byte_width', we simply read over the end of the array, bail out and
4484  // compare the remaining bytes below by skipping the garbage bytes.
4485  ldx(ary1, limit, result);
4486  bind(Lloop);
4487  ldx(ary2, limit, tmp);
4488  inccc(limit, 8);
4489  // Bail out if we reached the end (but still do the comparison)
4490  br(Assembler::positive, false, Assembler::pn, Lremaining);
4491  delayed()->cmp(result, tmp);
4492  // Check equality of elements
4493  brx(Assembler::equal, false, Assembler::pt, target(Lloop));
4494  delayed()->ldx(ary1, limit, result);
4495
4496  ba(Ldone);
4497  delayed()->clr(result); // not equal
4498
4499  // TAIL COMPARISON
4500  // We got here because we reached the end of the arrays. 'limit' is the number of
4501  // garbage bytes we may have compared by reading over the end of the arrays. Shift
4502  // out the garbage and compare the remaining elements.
4503  bind(Lremaining);
4504  // Optimistic shortcut: elements potentially including garbage are equal
4505  brx(Assembler::equal, true, Assembler::pt, target(Ldone));
4506  delayed()->mov(1, result); // equal
4507  // Shift 'limit' bytes to the right and compare
4508  sll(limit, 3, limit); // bytes to bits
4509  srlx(result, limit, result);
4510  srlx(tmp, limit, tmp);
4511  cmp(result, tmp);
4512  clr(result);
4513  movcc(Assembler::equal, false, xcc, 1, result);
4514
4515  bind(Ldone);
4516}
4517
4518void MacroAssembler::has_negatives(Register inp, Register size, Register result, Register t2, Register t3, Register t4, Register t5) {
4519
4520  // test for negative bytes in input string of a given size
4521  // result 1 if found, 0 otherwise.
4522
4523  Label Lcore, Ltail, Lreturn, Lcore_rpt;
4524
4525  assert_different_registers(inp, size, t2, t3, t4, t5, result);
4526
4527  Register i     = result;  // result used as integer index i until very end
4528  Register lmask = t2;      // t2 is aliased to lmask
4529
4530  // INITIALIZATION
4531  // ===========================================================
4532  // initialize highbits mask -> lmask = 0x8080808080808080  (8B/64b)
4533  // compute unaligned offset -> i
4534  // compute core end index   -> t5
4535  Assembler::sethi(0x80808000, t2);   //! sethi macro fails to emit optimal
4536  add(t2, 0x80, t2);
4537  sllx(t2, 32, t3);
4538  or3(t3, t2, lmask);                 // 0x8080808080808080 -> lmask
4539  sra(size,0,size);
4540  andcc(inp, 0x7, i);                 // unaligned offset -> i
4541  br(Assembler::zero, true, Assembler::pn, Lcore); // starts 8B aligned?
4542  delayed()->add(size, -8, t5);       // (annuled) core end index -> t5
4543
4544  // ===========================================================
4545
4546  // UNALIGNED HEAD
4547  // ===========================================================
4548  // * unaligned head handling: grab aligned 8B containing unaligned inp(ut)
4549  // * obliterate (ignore) bytes outside string by shifting off reg ends
4550  // * compare with bitmask, short circuit return true if one or more high
4551  //   bits set.
4552  cmp(size, 0);
4553  br(Assembler::zero, true, Assembler::pn, Lreturn); // short-circuit?
4554  delayed()->mov(0,result);      // annuled so i not clobbered for following
4555  neg(i, t4);
4556  add(i, size, t5);
4557  ldx(inp, t4, t3);  // raw aligned 8B containing unaligned head -> t3
4558  mov(8, t4);
4559  sub(t4, t5, t4);
4560  sra(t4, 31, t5);
4561  andn(t4, t5, t5);
4562  add(i, t5, t4);
4563  sll(t5, 3, t5);
4564  sll(t4, 3, t4);   // # bits to shift right, left -> t5,t4
4565  srlx(t3, t5, t3);
4566  sllx(t3, t4, t3); // bytes outside string in 8B header obliterated -> t3
4567  andcc(lmask, t3, G0);
4568  brx(Assembler::notZero, true, Assembler::pn, Lreturn); // short circuit?
4569  delayed()->mov(1,result);      // annuled so i not clobbered for following
4570  add(size, -8, t5);             // core end index -> t5
4571  mov(8, t4);
4572  sub(t4, i, i);                 // # bytes examined in unalgn head (<8) -> i
4573  // ===========================================================
4574
4575  // ALIGNED CORE
4576  // ===========================================================
4577  // * iterate index i over aligned 8B sections of core, comparing with
4578  //   bitmask, short circuit return true if one or more high bits set
4579  // t5 contains core end index/loop limit which is the index
4580  //     of the MSB of last (unaligned) 8B fully contained in the string.
4581  // inp   contains address of first byte in string/array
4582  // lmask contains 8B high bit mask for comparison
4583  // i     contains next index to be processed (adr. inp+i is on 8B boundary)
4584  bind(Lcore);
4585  cmp_and_br_short(i, t5, Assembler::greater, Assembler::pn, Ltail);
4586  bind(Lcore_rpt);
4587  ldx(inp, i, t3);
4588  andcc(t3, lmask, G0);
4589  brx(Assembler::notZero, true, Assembler::pn, Lreturn);
4590  delayed()->mov(1, result);    // annuled so i not clobbered for following
4591  add(i, 8, i);
4592  cmp_and_br_short(i, t5, Assembler::lessEqual, Assembler::pn, Lcore_rpt);
4593  // ===========================================================
4594
4595  // ALIGNED TAIL (<8B)
4596  // ===========================================================
4597  // handle aligned tail of 7B or less as complete 8B, obliterating end of
4598  // string bytes by shifting them off end, compare what's left with bitmask
4599  // inp   contains address of first byte in string/array
4600  // lmask contains 8B high bit mask for comparison
4601  // i     contains next index to be processed (adr. inp+i is on 8B boundary)
4602  bind(Ltail);
4603  subcc(size, i, t4);   // # of remaining bytes in string -> t4
4604  // return 0 if no more remaining bytes
4605  br(Assembler::lessEqual, true, Assembler::pn, Lreturn);
4606  delayed()->mov(0, result); // annuled so i not clobbered for following
4607  ldx(inp, i, t3);       // load final 8B (aligned) containing tail -> t3
4608  mov(8, t5);
4609  sub(t5, t4, t4);
4610  mov(0, result);        // ** i clobbered at this point
4611  sll(t4, 3, t4);        // bits beyond end of string          -> t4
4612  srlx(t3, t4, t3);      // bytes beyond end now obliterated   -> t3
4613  andcc(lmask, t3, G0);
4614  movcc(Assembler::notZero, false, xcc,  1, result);
4615  bind(Lreturn);
4616}
4617
4618#endif
4619
4620
4621// Use BIS for zeroing (count is in bytes).
4622void MacroAssembler::bis_zeroing(Register to, Register count, Register temp, Label& Ldone) {
4623  assert(UseBlockZeroing && VM_Version::has_blk_zeroing(), "only works with BIS zeroing");
4624  Register end = count;
4625  int cache_line_size = VM_Version::prefetch_data_size();
4626  assert(cache_line_size > 0, "cache line size should be known for this code");
4627  // Minimum count when BIS zeroing can be used since
4628  // it needs membar which is expensive.
4629  int block_zero_size  = MAX2(cache_line_size*3, (int)BlockZeroingLowLimit);
4630
4631  Label small_loop;
4632  // Check if count is negative (dead code) or zero.
4633  // Note, count uses 64bit in 64 bit VM.
4634  cmp_and_brx_short(count, 0, Assembler::lessEqual, Assembler::pn, Ldone);
4635
4636  // Use BIS zeroing only for big arrays since it requires membar.
4637  if (Assembler::is_simm13(block_zero_size)) { // < 4096
4638    cmp(count, block_zero_size);
4639  } else {
4640    set(block_zero_size, temp);
4641    cmp(count, temp);
4642  }
4643  br(Assembler::lessUnsigned, false, Assembler::pt, small_loop);
4644  delayed()->add(to, count, end);
4645
4646  // Note: size is >= three (32 bytes) cache lines.
4647
4648  // Clean the beginning of space up to next cache line.
4649  for (int offs = 0; offs < cache_line_size; offs += 8) {
4650    stx(G0, to, offs);
4651  }
4652
4653  // align to next cache line
4654  add(to, cache_line_size, to);
4655  and3(to, -cache_line_size, to);
4656
4657  // Note: size left >= two (32 bytes) cache lines.
4658
4659  // BIS should not be used to zero tail (64 bytes)
4660  // to avoid zeroing a header of the following object.
4661  sub(end, (cache_line_size*2)-8, end);
4662
4663  Label bis_loop;
4664  bind(bis_loop);
4665  stxa(G0, to, G0, Assembler::ASI_ST_BLKINIT_PRIMARY);
4666  add(to, cache_line_size, to);
4667  cmp_and_brx_short(to, end, Assembler::lessUnsigned, Assembler::pt, bis_loop);
4668
4669  // BIS needs membar.
4670  membar(Assembler::StoreLoad);
4671
4672  add(end, (cache_line_size*2)-8, end); // restore end
4673  cmp_and_brx_short(to, end, Assembler::greaterEqualUnsigned, Assembler::pn, Ldone);
4674
4675  // Clean the tail.
4676  bind(small_loop);
4677  stx(G0, to, 0);
4678  add(to, 8, to);
4679  cmp_and_brx_short(to, end, Assembler::lessUnsigned, Assembler::pt, small_loop);
4680  nop(); // Separate short branches
4681}
4682
4683/**
4684 * Update CRC-32[C] with a byte value according to constants in table
4685 *
4686 * @param [in,out]crc   Register containing the crc.
4687 * @param [in]val       Register containing the byte to fold into the CRC.
4688 * @param [in]table     Register containing the table of crc constants.
4689 *
4690 * uint32_t crc;
4691 * val = crc_table[(val ^ crc) & 0xFF];
4692 * crc = val ^ (crc >> 8);
4693 */
4694void MacroAssembler::update_byte_crc32(Register crc, Register val, Register table) {
4695  xor3(val, crc, val);
4696  and3(val, 0xFF, val);
4697  sllx(val, 2, val);
4698  lduw(table, val, val);
4699  srlx(crc, 8, crc);
4700  xor3(val, crc, crc);
4701}
4702
4703// Reverse byte order of lower 32 bits, assuming upper 32 bits all zeros
4704void MacroAssembler::reverse_bytes_32(Register src, Register dst, Register tmp) {
4705    srlx(src, 24, dst);
4706
4707    sllx(src, 32+8, tmp);
4708    srlx(tmp, 32+24, tmp);
4709    sllx(tmp, 8, tmp);
4710    or3(dst, tmp, dst);
4711
4712    sllx(src, 32+16, tmp);
4713    srlx(tmp, 32+24, tmp);
4714    sllx(tmp, 16, tmp);
4715    or3(dst, tmp, dst);
4716
4717    sllx(src, 32+24, tmp);
4718    srlx(tmp, 32, tmp);
4719    or3(dst, tmp, dst);
4720}
4721
4722void MacroAssembler::movitof_revbytes(Register src, FloatRegister dst, Register tmp1, Register tmp2) {
4723  reverse_bytes_32(src, tmp1, tmp2);
4724  movxtod(tmp1, dst);
4725}
4726
4727void MacroAssembler::movftoi_revbytes(FloatRegister src, Register dst, Register tmp1, Register tmp2) {
4728  movdtox(src, tmp1);
4729  reverse_bytes_32(tmp1, dst, tmp2);
4730}
4731
4732void MacroAssembler::fold_128bit_crc32(Register xcrc_hi, Register xcrc_lo, Register xK_hi, Register xK_lo, Register xtmp_hi, Register xtmp_lo, Register buf, int offset) {
4733  xmulx(xcrc_hi, xK_hi, xtmp_lo);
4734  xmulxhi(xcrc_hi, xK_hi, xtmp_hi);
4735  xmulxhi(xcrc_lo, xK_lo, xcrc_hi);
4736  xmulx(xcrc_lo, xK_lo, xcrc_lo);
4737  xor3(xcrc_lo, xtmp_lo, xcrc_lo);
4738  xor3(xcrc_hi, xtmp_hi, xcrc_hi);
4739  ldxl(buf, G0, xtmp_lo);
4740  inc(buf, 8);
4741  ldxl(buf, G0, xtmp_hi);
4742  inc(buf, 8);
4743  xor3(xcrc_lo, xtmp_lo, xcrc_lo);
4744  xor3(xcrc_hi, xtmp_hi, xcrc_hi);
4745}
4746
4747void MacroAssembler::fold_128bit_crc32(Register xcrc_hi, Register xcrc_lo, Register xK_hi, Register xK_lo, Register xtmp_hi, Register xtmp_lo, Register xbuf_hi, Register xbuf_lo) {
4748  mov(xcrc_lo, xtmp_lo);
4749  mov(xcrc_hi, xtmp_hi);
4750  xmulx(xtmp_hi, xK_hi, xtmp_lo);
4751  xmulxhi(xtmp_hi, xK_hi, xtmp_hi);
4752  xmulxhi(xcrc_lo, xK_lo, xcrc_hi);
4753  xmulx(xcrc_lo, xK_lo, xcrc_lo);
4754  xor3(xcrc_lo, xbuf_lo, xcrc_lo);
4755  xor3(xcrc_hi, xbuf_hi, xcrc_hi);
4756  xor3(xcrc_lo, xtmp_lo, xcrc_lo);
4757  xor3(xcrc_hi, xtmp_hi, xcrc_hi);
4758}
4759
4760void MacroAssembler::fold_8bit_crc32(Register xcrc, Register table, Register xtmp, Register tmp) {
4761  and3(xcrc, 0xFF, tmp);
4762  sllx(tmp, 2, tmp);
4763  lduw(table, tmp, xtmp);
4764  srlx(xcrc, 8, xcrc);
4765  xor3(xtmp, xcrc, xcrc);
4766}
4767
4768void MacroAssembler::fold_8bit_crc32(Register crc, Register table, Register tmp) {
4769  and3(crc, 0xFF, tmp);
4770  srlx(crc, 8, crc);
4771  sllx(tmp, 2, tmp);
4772  lduw(table, tmp, tmp);
4773  xor3(tmp, crc, crc);
4774}
4775
4776#define CRC32_TMP_REG_NUM 18
4777
4778#define CRC32_CONST_64  0x163cd6124
4779#define CRC32_CONST_96  0x0ccaa009e
4780#define CRC32_CONST_160 0x1751997d0
4781#define CRC32_CONST_480 0x1c6e41596
4782#define CRC32_CONST_544 0x154442bd4
4783
4784void MacroAssembler::kernel_crc32(Register crc, Register buf, Register len, Register table) {
4785
4786  Label L_cleanup_loop, L_cleanup_check, L_align_loop, L_align_check;
4787  Label L_main_loop_prologue;
4788  Label L_fold_512b, L_fold_512b_loop, L_fold_128b;
4789  Label L_fold_tail, L_fold_tail_loop;
4790  Label L_8byte_fold_loop, L_8byte_fold_check;
4791
4792  const Register tmp[CRC32_TMP_REG_NUM] = {L0, L1, L2, L3, L4, L5, L6, G1, I0, I1, I2, I3, I4, I5, I7, O4, O5, G3};
4793
4794  Register const_64  = tmp[CRC32_TMP_REG_NUM-1];
4795  Register const_96  = tmp[CRC32_TMP_REG_NUM-1];
4796  Register const_160 = tmp[CRC32_TMP_REG_NUM-2];
4797  Register const_480 = tmp[CRC32_TMP_REG_NUM-1];
4798  Register const_544 = tmp[CRC32_TMP_REG_NUM-2];
4799
4800  set(ExternalAddress(StubRoutines::crc_table_addr()), table);
4801
4802  not1(crc); // ~c
4803  clruwu(crc); // clear upper 32 bits of crc
4804
4805  // Check if below cutoff, proceed directly to cleanup code
4806  mov(31, G4);
4807  cmp_and_br_short(len, G4, Assembler::lessEqualUnsigned, Assembler::pt, L_cleanup_check);
4808
4809  // Align buffer to 8 byte boundry
4810  mov(8, O5);
4811  and3(buf, 0x7, O4);
4812  sub(O5, O4, O5);
4813  and3(O5, 0x7, O5);
4814  sub(len, O5, len);
4815  ba(L_align_check);
4816  delayed()->nop();
4817
4818  // Alignment loop, table look up method for up to 7 bytes
4819  bind(L_align_loop);
4820  ldub(buf, 0, O4);
4821  inc(buf);
4822  dec(O5);
4823  xor3(O4, crc, O4);
4824  and3(O4, 0xFF, O4);
4825  sllx(O4, 2, O4);
4826  lduw(table, O4, O4);
4827  srlx(crc, 8, crc);
4828  xor3(O4, crc, crc);
4829  bind(L_align_check);
4830  nop();
4831  cmp_and_br_short(O5, 0, Assembler::notEqual, Assembler::pt, L_align_loop);
4832
4833  // Aligned on 64-bit (8-byte) boundry at this point
4834  // Check if still above cutoff (31-bytes)
4835  mov(31, G4);
4836  cmp_and_br_short(len, G4, Assembler::lessEqualUnsigned, Assembler::pt, L_cleanup_check);
4837  // At least 32 bytes left to process
4838
4839  // Free up registers by storing them to FP registers
4840  for (int i = 0; i < CRC32_TMP_REG_NUM; i++) {
4841    movxtod(tmp[i], as_FloatRegister(2*i));
4842  }
4843
4844  // Determine which loop to enter
4845  // Shared prologue
4846  ldxl(buf, G0, tmp[0]);
4847  inc(buf, 8);
4848  ldxl(buf, G0, tmp[1]);
4849  inc(buf, 8);
4850  xor3(tmp[0], crc, tmp[0]); // Fold CRC into first few bytes
4851  and3(crc, 0, crc); // Clear out the crc register
4852  // Main loop needs 128-bytes at least
4853  mov(128, G4);
4854  mov(64, tmp[2]);
4855  cmp_and_br_short(len, G4, Assembler::greaterEqualUnsigned, Assembler::pt, L_main_loop_prologue);
4856  // Less than 64 bytes
4857  nop();
4858  cmp_and_br_short(len, tmp[2], Assembler::lessUnsigned, Assembler::pt, L_fold_tail);
4859  // Between 64 and 127 bytes
4860  set64(CRC32_CONST_96,  const_96,  tmp[8]);
4861  set64(CRC32_CONST_160, const_160, tmp[9]);
4862  fold_128bit_crc32(tmp[1], tmp[0], const_96, const_160, tmp[2], tmp[3], buf, 0);
4863  fold_128bit_crc32(tmp[1], tmp[0], const_96, const_160, tmp[4], tmp[5], buf, 16);
4864  fold_128bit_crc32(tmp[1], tmp[0], const_96, const_160, tmp[6], tmp[7], buf, 32);
4865  dec(len, 48);
4866  ba(L_fold_tail);
4867  delayed()->nop();
4868
4869  bind(L_main_loop_prologue);
4870  for (int i = 2; i < 8; i++) {
4871    ldxl(buf, G0, tmp[i]);
4872    inc(buf, 8);
4873  }
4874
4875  // Fold total 512 bits of polynomial on each iteration,
4876  // 128 bits per each of 4 parallel streams
4877  set64(CRC32_CONST_480, const_480, tmp[8]);
4878  set64(CRC32_CONST_544, const_544, tmp[9]);
4879
4880  mov(128, G4);
4881  bind(L_fold_512b_loop);
4882  fold_128bit_crc32(tmp[1], tmp[0], const_480, const_544, tmp[9],  tmp[8],  buf,  0);
4883  fold_128bit_crc32(tmp[3], tmp[2], const_480, const_544, tmp[11], tmp[10], buf, 16);
4884  fold_128bit_crc32(tmp[5], tmp[4], const_480, const_544, tmp[13], tmp[12], buf, 32);
4885  fold_128bit_crc32(tmp[7], tmp[6], const_480, const_544, tmp[15], tmp[14], buf, 64);
4886  dec(len, 64);
4887  cmp_and_br_short(len, G4, Assembler::greaterEqualUnsigned, Assembler::pt, L_fold_512b_loop);
4888
4889  // Fold 512 bits to 128 bits
4890  bind(L_fold_512b);
4891  set64(CRC32_CONST_96,  const_96,  tmp[8]);
4892  set64(CRC32_CONST_160, const_160, tmp[9]);
4893
4894  fold_128bit_crc32(tmp[1], tmp[0], const_96, const_160, tmp[8], tmp[9], tmp[3], tmp[2]);
4895  fold_128bit_crc32(tmp[1], tmp[0], const_96, const_160, tmp[8], tmp[9], tmp[5], tmp[4]);
4896  fold_128bit_crc32(tmp[1], tmp[0], const_96, const_160, tmp[8], tmp[9], tmp[7], tmp[6]);
4897  dec(len, 48);
4898
4899  // Fold the rest of 128 bits data chunks
4900  bind(L_fold_tail);
4901  mov(32, G4);
4902  cmp_and_br_short(len, G4, Assembler::lessEqualUnsigned, Assembler::pt, L_fold_128b);
4903
4904  set64(CRC32_CONST_96,  const_96,  tmp[8]);
4905  set64(CRC32_CONST_160, const_160, tmp[9]);
4906
4907  bind(L_fold_tail_loop);
4908  fold_128bit_crc32(tmp[1], tmp[0], const_96, const_160, tmp[2], tmp[3], buf, 0);
4909  sub(len, 16, len);
4910  cmp_and_br_short(len, G4, Assembler::greaterEqualUnsigned, Assembler::pt, L_fold_tail_loop);
4911
4912  // Fold the 128 bits in tmps 0 - 1 into tmp 1
4913  bind(L_fold_128b);
4914
4915  set64(CRC32_CONST_64, const_64, tmp[4]);
4916
4917  xmulx(const_64, tmp[0], tmp[2]);
4918  xmulxhi(const_64, tmp[0], tmp[3]);
4919
4920  srl(tmp[2], G0, tmp[4]);
4921  xmulx(const_64, tmp[4], tmp[4]);
4922
4923  srlx(tmp[2], 32, tmp[2]);
4924  sllx(tmp[3], 32, tmp[3]);
4925  or3(tmp[2], tmp[3], tmp[2]);
4926
4927  xor3(tmp[4], tmp[1], tmp[4]);
4928  xor3(tmp[4], tmp[2], tmp[1]);
4929  dec(len, 8);
4930
4931  // Use table lookup for the 8 bytes left in tmp[1]
4932  dec(len, 8);
4933
4934  // 8 8-bit folds to compute 32-bit CRC.
4935  for (int j = 0; j < 4; j++) {
4936    fold_8bit_crc32(tmp[1], table, tmp[2], tmp[3]);
4937  }
4938  srl(tmp[1], G0, crc); // move 32 bits to general register
4939  for (int j = 0; j < 4; j++) {
4940    fold_8bit_crc32(crc, table, tmp[3]);
4941  }
4942
4943  bind(L_8byte_fold_check);
4944
4945  // Restore int registers saved in FP registers
4946  for (int i = 0; i < CRC32_TMP_REG_NUM; i++) {
4947    movdtox(as_FloatRegister(2*i), tmp[i]);
4948  }
4949
4950  ba(L_cleanup_check);
4951  delayed()->nop();
4952
4953  // Table look-up method for the remaining few bytes
4954  bind(L_cleanup_loop);
4955  ldub(buf, 0, O4);
4956  inc(buf);
4957  dec(len);
4958  xor3(O4, crc, O4);
4959  and3(O4, 0xFF, O4);
4960  sllx(O4, 2, O4);
4961  lduw(table, O4, O4);
4962  srlx(crc, 8, crc);
4963  xor3(O4, crc, crc);
4964  bind(L_cleanup_check);
4965  nop();
4966  cmp_and_br_short(len, 0, Assembler::greaterUnsigned, Assembler::pt, L_cleanup_loop);
4967
4968  not1(crc);
4969}
4970
4971#define CHUNK_LEN   128          /* 128 x 8B = 1KB */
4972#define CHUNK_K1    0x1307a0206  /* reverseBits(pow(x, CHUNK_LEN*8*8*3 - 32) mod P(x)) << 1 */
4973#define CHUNK_K2    0x1a0f717c4  /* reverseBits(pow(x, CHUNK_LEN*8*8*2 - 32) mod P(x)) << 1 */
4974#define CHUNK_K3    0x0170076fa  /* reverseBits(pow(x, CHUNK_LEN*8*8*1 - 32) mod P(x)) << 1 */
4975
4976void MacroAssembler::kernel_crc32c(Register crc, Register buf, Register len, Register table) {
4977
4978  Label L_crc32c_head, L_crc32c_aligned;
4979  Label L_crc32c_parallel, L_crc32c_parallel_loop;
4980  Label L_crc32c_serial, L_crc32c_x32_loop, L_crc32c_x8, L_crc32c_x8_loop;
4981  Label L_crc32c_done, L_crc32c_tail, L_crc32c_return;
4982
4983  set(ExternalAddress(StubRoutines::crc32c_table_addr()), table);
4984
4985  cmp_and_br_short(len, 0, Assembler::lessEqual, Assembler::pn, L_crc32c_return);
4986
4987  // clear upper 32 bits of crc
4988  clruwu(crc);
4989
4990  and3(buf, 7, G4);
4991  cmp_and_brx_short(G4, 0, Assembler::equal, Assembler::pt, L_crc32c_aligned);
4992
4993  mov(8, G1);
4994  sub(G1, G4, G4);
4995
4996  // ------ process the misaligned head (7 bytes or less) ------
4997  bind(L_crc32c_head);
4998
4999  // crc = (crc >>> 8) ^ byteTable[(crc ^ b) & 0xFF];
5000  ldub(buf, 0, G1);
5001  update_byte_crc32(crc, G1, table);
5002
5003  inc(buf);
5004  dec(len);
5005  cmp_and_br_short(len, 0, Assembler::equal, Assembler::pn, L_crc32c_return);
5006  dec(G4);
5007  cmp_and_br_short(G4, 0, Assembler::greater, Assembler::pt, L_crc32c_head);
5008
5009  // ------ process the 8-byte-aligned body ------
5010  bind(L_crc32c_aligned);
5011  nop();
5012  cmp_and_br_short(len, 8, Assembler::less, Assembler::pn, L_crc32c_tail);
5013
5014  // reverse the byte order of lower 32 bits to big endian, and move to FP side
5015  movitof_revbytes(crc, F0, G1, G3);
5016
5017  set(CHUNK_LEN*8*4, G4);
5018  cmp_and_br_short(len, G4, Assembler::less, Assembler::pt, L_crc32c_serial);
5019
5020  // ------ process four 1KB chunks in parallel ------
5021  bind(L_crc32c_parallel);
5022
5023  fzero(FloatRegisterImpl::D, F2);
5024  fzero(FloatRegisterImpl::D, F4);
5025  fzero(FloatRegisterImpl::D, F6);
5026
5027  mov(CHUNK_LEN - 1, G4);
5028  bind(L_crc32c_parallel_loop);
5029  // schedule ldf's ahead of crc32c's to hide the load-use latency
5030  ldf(FloatRegisterImpl::D, buf, 0,            F8);
5031  ldf(FloatRegisterImpl::D, buf, CHUNK_LEN*8,  F10);
5032  ldf(FloatRegisterImpl::D, buf, CHUNK_LEN*16, F12);
5033  ldf(FloatRegisterImpl::D, buf, CHUNK_LEN*24, F14);
5034  crc32c(F0, F8,  F0);
5035  crc32c(F2, F10, F2);
5036  crc32c(F4, F12, F4);
5037  crc32c(F6, F14, F6);
5038  inc(buf, 8);
5039  dec(G4);
5040  cmp_and_br_short(G4, 0, Assembler::greater, Assembler::pt, L_crc32c_parallel_loop);
5041
5042  ldf(FloatRegisterImpl::D, buf, 0,            F8);
5043  ldf(FloatRegisterImpl::D, buf, CHUNK_LEN*8,  F10);
5044  ldf(FloatRegisterImpl::D, buf, CHUNK_LEN*16, F12);
5045  crc32c(F0, F8,  F0);
5046  crc32c(F2, F10, F2);
5047  crc32c(F4, F12, F4);
5048
5049  inc(buf, CHUNK_LEN*24);
5050  ldfl(FloatRegisterImpl::D, buf, G0, F14);  // load in little endian
5051  inc(buf, 8);
5052
5053  prefetch(buf, 0,            Assembler::severalReads);
5054  prefetch(buf, CHUNK_LEN*8,  Assembler::severalReads);
5055  prefetch(buf, CHUNK_LEN*16, Assembler::severalReads);
5056  prefetch(buf, CHUNK_LEN*24, Assembler::severalReads);
5057
5058  // move to INT side, and reverse the byte order of lower 32 bits to little endian
5059  movftoi_revbytes(F0, O4, G1, G4);
5060  movftoi_revbytes(F2, O5, G1, G4);
5061  movftoi_revbytes(F4, G5, G1, G4);
5062
5063  // combine the results of 4 chunks
5064  set64(CHUNK_K1, G3, G1);
5065  xmulx(O4, G3, O4);
5066  set64(CHUNK_K2, G3, G1);
5067  xmulx(O5, G3, O5);
5068  set64(CHUNK_K3, G3, G1);
5069  xmulx(G5, G3, G5);
5070
5071  movdtox(F14, G4);
5072  xor3(O4, O5, O5);
5073  xor3(G5, O5, O5);
5074  xor3(G4, O5, O5);
5075
5076  // reverse the byte order to big endian, via stack, and move to FP side
5077  // TODO: use new revb instruction
5078  add(SP, -8, G1);
5079  srlx(G1, 3, G1);
5080  sllx(G1, 3, G1);
5081  stx(O5, G1, G0);
5082  ldfl(FloatRegisterImpl::D, G1, G0, F2);  // load in little endian
5083
5084  crc32c(F6, F2, F0);
5085
5086  set(CHUNK_LEN*8*4, G4);
5087  sub(len, G4, len);
5088  cmp_and_br_short(len, G4, Assembler::greaterEqual, Assembler::pt, L_crc32c_parallel);
5089  nop();
5090  cmp_and_br_short(len, 0, Assembler::equal, Assembler::pt, L_crc32c_done);
5091
5092  bind(L_crc32c_serial);
5093
5094  mov(32, G4);
5095  cmp_and_br_short(len, G4, Assembler::less, Assembler::pn, L_crc32c_x8);
5096
5097  // ------ process 32B chunks ------
5098  bind(L_crc32c_x32_loop);
5099  ldf(FloatRegisterImpl::D, buf, 0, F2);
5100  crc32c(F0, F2, F0);
5101  ldf(FloatRegisterImpl::D, buf, 8, F2);
5102  crc32c(F0, F2, F0);
5103  ldf(FloatRegisterImpl::D, buf, 16, F2);
5104  crc32c(F0, F2, F0);
5105  ldf(FloatRegisterImpl::D, buf, 24, F2);
5106  inc(buf, 32);
5107  crc32c(F0, F2, F0);
5108  dec(len, 32);
5109  cmp_and_br_short(len, G4, Assembler::greaterEqual, Assembler::pt, L_crc32c_x32_loop);
5110
5111  bind(L_crc32c_x8);
5112  nop();
5113  cmp_and_br_short(len, 8, Assembler::less, Assembler::pt, L_crc32c_done);
5114
5115  // ------ process 8B chunks ------
5116  bind(L_crc32c_x8_loop);
5117  ldf(FloatRegisterImpl::D, buf, 0, F2);
5118  inc(buf, 8);
5119  crc32c(F0, F2, F0);
5120  dec(len, 8);
5121  cmp_and_br_short(len, 8, Assembler::greaterEqual, Assembler::pt, L_crc32c_x8_loop);
5122
5123  bind(L_crc32c_done);
5124
5125  // move to INT side, and reverse the byte order of lower 32 bits to little endian
5126  movftoi_revbytes(F0, crc, G1, G3);
5127
5128  cmp_and_br_short(len, 0, Assembler::equal, Assembler::pt, L_crc32c_return);
5129
5130  // ------ process the misaligned tail (7 bytes or less) ------
5131  bind(L_crc32c_tail);
5132
5133  // crc = (crc >>> 8) ^ byteTable[(crc ^ b) & 0xFF];
5134  ldub(buf, 0, G1);
5135  update_byte_crc32(crc, G1, table);
5136
5137  inc(buf);
5138  dec(len);
5139  cmp_and_br_short(len, 0, Assembler::greater, Assembler::pt, L_crc32c_tail);
5140
5141  bind(L_crc32c_return);
5142  nop();
5143}
5144