c1_LIRAssembler_sparc.cpp revision 3729:d804e148cff8
1/*
2 * Copyright (c) 2000, 2012, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "c1/c1_Compilation.hpp"
27#include "c1/c1_LIRAssembler.hpp"
28#include "c1/c1_MacroAssembler.hpp"
29#include "c1/c1_Runtime1.hpp"
30#include "c1/c1_ValueStack.hpp"
31#include "ci/ciArrayKlass.hpp"
32#include "ci/ciInstance.hpp"
33#include "gc_interface/collectedHeap.hpp"
34#include "memory/barrierSet.hpp"
35#include "memory/cardTableModRefBS.hpp"
36#include "nativeInst_sparc.hpp"
37#include "oops/objArrayKlass.hpp"
38#include "runtime/sharedRuntime.hpp"
39
40#define __ _masm->
41
42
43//------------------------------------------------------------
44
45
46bool LIR_Assembler::is_small_constant(LIR_Opr opr) {
47  if (opr->is_constant()) {
48    LIR_Const* constant = opr->as_constant_ptr();
49    switch (constant->type()) {
50      case T_INT: {
51        jint value = constant->as_jint();
52        return Assembler::is_simm13(value);
53      }
54
55      default:
56        return false;
57    }
58  }
59  return false;
60}
61
62
63bool LIR_Assembler::is_single_instruction(LIR_Op* op) {
64  switch (op->code()) {
65    case lir_null_check:
66    return true;
67
68
69    case lir_add:
70    case lir_ushr:
71    case lir_shr:
72    case lir_shl:
73      // integer shifts and adds are always one instruction
74      return op->result_opr()->is_single_cpu();
75
76
77    case lir_move: {
78      LIR_Op1* op1 = op->as_Op1();
79      LIR_Opr src = op1->in_opr();
80      LIR_Opr dst = op1->result_opr();
81
82      if (src == dst) {
83        NEEDS_CLEANUP;
84        // this works around a problem where moves with the same src and dst
85        // end up in the delay slot and then the assembler swallows the mov
86        // since it has no effect and then it complains because the delay slot
87        // is empty.  returning false stops the optimizer from putting this in
88        // the delay slot
89        return false;
90      }
91
92      // don't put moves involving oops into the delay slot since the VerifyOops code
93      // will make it much larger than a single instruction.
94      if (VerifyOops) {
95        return false;
96      }
97
98      if (src->is_double_cpu() || dst->is_double_cpu() || op1->patch_code() != lir_patch_none ||
99          ((src->is_double_fpu() || dst->is_double_fpu()) && op1->move_kind() != lir_move_normal)) {
100        return false;
101      }
102
103      if (UseCompressedOops) {
104        if (dst->is_address() && !dst->is_stack() && (dst->type() == T_OBJECT || dst->type() == T_ARRAY)) return false;
105        if (src->is_address() && !src->is_stack() && (src->type() == T_OBJECT || src->type() == T_ARRAY)) return false;
106      }
107
108      if (UseCompressedKlassPointers) {
109        if (src->is_address() && !src->is_stack() && src->type() == T_ADDRESS &&
110            src->as_address_ptr()->disp() == oopDesc::klass_offset_in_bytes()) return false;
111      }
112
113      if (dst->is_register()) {
114        if (src->is_address() && Assembler::is_simm13(src->as_address_ptr()->disp())) {
115          return !PatchALot;
116        } else if (src->is_single_stack()) {
117          return true;
118        }
119      }
120
121      if (src->is_register()) {
122        if (dst->is_address() && Assembler::is_simm13(dst->as_address_ptr()->disp())) {
123          return !PatchALot;
124        } else if (dst->is_single_stack()) {
125          return true;
126        }
127      }
128
129      if (dst->is_register() &&
130          ((src->is_register() && src->is_single_word() && src->is_same_type(dst)) ||
131           (src->is_constant() && LIR_Assembler::is_small_constant(op->as_Op1()->in_opr())))) {
132        return true;
133      }
134
135      return false;
136    }
137
138    default:
139      return false;
140  }
141  ShouldNotReachHere();
142}
143
144
145LIR_Opr LIR_Assembler::receiverOpr() {
146  return FrameMap::O0_oop_opr;
147}
148
149
150LIR_Opr LIR_Assembler::osrBufferPointer() {
151  return FrameMap::I0_opr;
152}
153
154
155int LIR_Assembler::initial_frame_size_in_bytes() {
156  return in_bytes(frame_map()->framesize_in_bytes());
157}
158
159
160// inline cache check: the inline cached class is in G5_inline_cache_reg(G5);
161// we fetch the class of the receiver (O0) and compare it with the cached class.
162// If they do not match we jump to slow case.
163int LIR_Assembler::check_icache() {
164  int offset = __ offset();
165  __ inline_cache_check(O0, G5_inline_cache_reg);
166  return offset;
167}
168
169
170void LIR_Assembler::osr_entry() {
171  // On-stack-replacement entry sequence (interpreter frame layout described in interpreter_sparc.cpp):
172  //
173  //   1. Create a new compiled activation.
174  //   2. Initialize local variables in the compiled activation.  The expression stack must be empty
175  //      at the osr_bci; it is not initialized.
176  //   3. Jump to the continuation address in compiled code to resume execution.
177
178  // OSR entry point
179  offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
180  BlockBegin* osr_entry = compilation()->hir()->osr_entry();
181  ValueStack* entry_state = osr_entry->end()->state();
182  int number_of_locks = entry_state->locks_size();
183
184  // Create a frame for the compiled activation.
185  __ build_frame(initial_frame_size_in_bytes());
186
187  // OSR buffer is
188  //
189  // locals[nlocals-1..0]
190  // monitors[number_of_locks-1..0]
191  //
192  // locals is a direct copy of the interpreter frame so in the osr buffer
193  // so first slot in the local array is the last local from the interpreter
194  // and last slot is local[0] (receiver) from the interpreter
195  //
196  // Similarly with locks. The first lock slot in the osr buffer is the nth lock
197  // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
198  // in the interpreter frame (the method lock if a sync method)
199
200  // Initialize monitors in the compiled activation.
201  //   I0: pointer to osr buffer
202  //
203  // All other registers are dead at this point and the locals will be
204  // copied into place by code emitted in the IR.
205
206  Register OSR_buf = osrBufferPointer()->as_register();
207  { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
208    int monitor_offset = BytesPerWord * method()->max_locals() +
209      (2 * BytesPerWord) * (number_of_locks - 1);
210    // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in
211    // the OSR buffer using 2 word entries: first the lock and then
212    // the oop.
213    for (int i = 0; i < number_of_locks; i++) {
214      int slot_offset = monitor_offset - ((i * 2) * BytesPerWord);
215#ifdef ASSERT
216      // verify the interpreter's monitor has a non-null object
217      {
218        Label L;
219        __ ld_ptr(OSR_buf, slot_offset + 1*BytesPerWord, O7);
220        __ cmp_and_br_short(O7, G0, Assembler::notEqual, Assembler::pt, L);
221        __ stop("locked object is NULL");
222        __ bind(L);
223      }
224#endif // ASSERT
225      // Copy the lock field into the compiled activation.
226      __ ld_ptr(OSR_buf, slot_offset + 0, O7);
227      __ st_ptr(O7, frame_map()->address_for_monitor_lock(i));
228      __ ld_ptr(OSR_buf, slot_offset + 1*BytesPerWord, O7);
229      __ st_ptr(O7, frame_map()->address_for_monitor_object(i));
230    }
231  }
232}
233
234
235// Optimized Library calls
236// This is the fast version of java.lang.String.compare; it has not
237// OSR-entry and therefore, we generate a slow version for OSR's
238void LIR_Assembler::emit_string_compare(LIR_Opr left, LIR_Opr right, LIR_Opr dst, CodeEmitInfo* info) {
239  Register str0 = left->as_register();
240  Register str1 = right->as_register();
241
242  Label Ldone;
243
244  Register result = dst->as_register();
245  {
246    // Get a pointer to the first character of string0 in tmp0
247    //   and get string0.length() in str0
248    // Get a pointer to the first character of string1 in tmp1
249    //   and get string1.length() in str1
250    // Also, get string0.length()-string1.length() in
251    //   o7 and get the condition code set
252    // Note: some instructions have been hoisted for better instruction scheduling
253
254    Register tmp0 = L0;
255    Register tmp1 = L1;
256    Register tmp2 = L2;
257
258    int  value_offset = java_lang_String:: value_offset_in_bytes(); // char array
259    if (java_lang_String::has_offset_field()) {
260      int offset_offset = java_lang_String::offset_offset_in_bytes(); // first character position
261      int  count_offset = java_lang_String:: count_offset_in_bytes();
262      __ load_heap_oop(str0, value_offset, tmp0);
263      __ ld(str0, offset_offset, tmp2);
264      __ add(tmp0, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp0);
265      __ ld(str0, count_offset, str0);
266      __ sll(tmp2, exact_log2(sizeof(jchar)), tmp2);
267    } else {
268      __ load_heap_oop(str0, value_offset, tmp1);
269      __ add(tmp1, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp0);
270      __ ld(tmp1, arrayOopDesc::length_offset_in_bytes(), str0);
271    }
272
273    // str1 may be null
274    add_debug_info_for_null_check_here(info);
275
276    if (java_lang_String::has_offset_field()) {
277      int offset_offset = java_lang_String::offset_offset_in_bytes(); // first character position
278      int  count_offset = java_lang_String:: count_offset_in_bytes();
279      __ load_heap_oop(str1, value_offset, tmp1);
280      __ add(tmp0, tmp2, tmp0);
281
282      __ ld(str1, offset_offset, tmp2);
283      __ add(tmp1, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp1);
284      __ ld(str1, count_offset, str1);
285      __ sll(tmp2, exact_log2(sizeof(jchar)), tmp2);
286      __ add(tmp1, tmp2, tmp1);
287    } else {
288      __ load_heap_oop(str1, value_offset, tmp2);
289      __ add(tmp2, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp1);
290      __ ld(tmp2, arrayOopDesc::length_offset_in_bytes(), str1);
291    }
292    __ subcc(str0, str1, O7);
293  }
294
295  {
296    // Compute the minimum of the string lengths, scale it and store it in limit
297    Register count0 = I0;
298    Register count1 = I1;
299    Register limit  = L3;
300
301    Label Lskip;
302    __ sll(count0, exact_log2(sizeof(jchar)), limit);             // string0 is shorter
303    __ br(Assembler::greater, true, Assembler::pt, Lskip);
304    __ delayed()->sll(count1, exact_log2(sizeof(jchar)), limit);  // string1 is shorter
305    __ bind(Lskip);
306
307    // If either string is empty (or both of them) the result is the difference in lengths
308    __ cmp(limit, 0);
309    __ br(Assembler::equal, true, Assembler::pn, Ldone);
310    __ delayed()->mov(O7, result);  // result is difference in lengths
311  }
312
313  {
314    // Neither string is empty
315    Label Lloop;
316
317    Register base0 = L0;
318    Register base1 = L1;
319    Register chr0  = I0;
320    Register chr1  = I1;
321    Register limit = L3;
322
323    // Shift base0 and base1 to the end of the arrays, negate limit
324    __ add(base0, limit, base0);
325    __ add(base1, limit, base1);
326    __ neg(limit);  // limit = -min{string0.length(), string1.length()}
327
328    __ lduh(base0, limit, chr0);
329    __ bind(Lloop);
330    __ lduh(base1, limit, chr1);
331    __ subcc(chr0, chr1, chr0);
332    __ br(Assembler::notZero, false, Assembler::pn, Ldone);
333    assert(chr0 == result, "result must be pre-placed");
334    __ delayed()->inccc(limit, sizeof(jchar));
335    __ br(Assembler::notZero, true, Assembler::pt, Lloop);
336    __ delayed()->lduh(base0, limit, chr0);
337  }
338
339  // If strings are equal up to min length, return the length difference.
340  __ mov(O7, result);
341
342  // Otherwise, return the difference between the first mismatched chars.
343  __ bind(Ldone);
344}
345
346
347// --------------------------------------------------------------------------------------------
348
349void LIR_Assembler::monitorexit(LIR_Opr obj_opr, LIR_Opr lock_opr, Register hdr, int monitor_no) {
350  if (!GenerateSynchronizationCode) return;
351
352  Register obj_reg = obj_opr->as_register();
353  Register lock_reg = lock_opr->as_register();
354
355  Address mon_addr = frame_map()->address_for_monitor_lock(monitor_no);
356  Register reg = mon_addr.base();
357  int offset = mon_addr.disp();
358  // compute pointer to BasicLock
359  if (mon_addr.is_simm13()) {
360    __ add(reg, offset, lock_reg);
361  }
362  else {
363    __ set(offset, lock_reg);
364    __ add(reg, lock_reg, lock_reg);
365  }
366  // unlock object
367  MonitorAccessStub* slow_case = new MonitorExitStub(lock_opr, UseFastLocking, monitor_no);
368  // _slow_case_stubs->append(slow_case);
369  // temporary fix: must be created after exceptionhandler, therefore as call stub
370  _slow_case_stubs->append(slow_case);
371  if (UseFastLocking) {
372    // try inlined fast unlocking first, revert to slow locking if it fails
373    // note: lock_reg points to the displaced header since the displaced header offset is 0!
374    assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
375    __ unlock_object(hdr, obj_reg, lock_reg, *slow_case->entry());
376  } else {
377    // always do slow unlocking
378    // note: the slow unlocking code could be inlined here, however if we use
379    //       slow unlocking, speed doesn't matter anyway and this solution is
380    //       simpler and requires less duplicated code - additionally, the
381    //       slow unlocking code is the same in either case which simplifies
382    //       debugging
383    __ br(Assembler::always, false, Assembler::pt, *slow_case->entry());
384    __ delayed()->nop();
385  }
386  // done
387  __ bind(*slow_case->continuation());
388}
389
390
391int LIR_Assembler::emit_exception_handler() {
392  // if the last instruction is a call (typically to do a throw which
393  // is coming at the end after block reordering) the return address
394  // must still point into the code area in order to avoid assertion
395  // failures when searching for the corresponding bci => add a nop
396  // (was bug 5/14/1999 - gri)
397  __ nop();
398
399  // generate code for exception handler
400  ciMethod* method = compilation()->method();
401
402  address handler_base = __ start_a_stub(exception_handler_size);
403
404  if (handler_base == NULL) {
405    // not enough space left for the handler
406    bailout("exception handler overflow");
407    return -1;
408  }
409
410  int offset = code_offset();
411
412  __ call(Runtime1::entry_for(Runtime1::handle_exception_from_callee_id), relocInfo::runtime_call_type);
413  __ delayed()->nop();
414  __ should_not_reach_here();
415  guarantee(code_offset() - offset <= exception_handler_size, "overflow");
416  __ end_a_stub();
417
418  return offset;
419}
420
421
422// Emit the code to remove the frame from the stack in the exception
423// unwind path.
424int LIR_Assembler::emit_unwind_handler() {
425#ifndef PRODUCT
426  if (CommentedAssembly) {
427    _masm->block_comment("Unwind handler");
428  }
429#endif
430
431  int offset = code_offset();
432
433  // Fetch the exception from TLS and clear out exception related thread state
434  __ ld_ptr(G2_thread, in_bytes(JavaThread::exception_oop_offset()), O0);
435  __ st_ptr(G0, G2_thread, in_bytes(JavaThread::exception_oop_offset()));
436  __ st_ptr(G0, G2_thread, in_bytes(JavaThread::exception_pc_offset()));
437
438  __ bind(_unwind_handler_entry);
439  __ verify_not_null_oop(O0);
440  if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
441    __ mov(O0, I0);  // Preserve the exception
442  }
443
444  // Preform needed unlocking
445  MonitorExitStub* stub = NULL;
446  if (method()->is_synchronized()) {
447    monitor_address(0, FrameMap::I1_opr);
448    stub = new MonitorExitStub(FrameMap::I1_opr, true, 0);
449    __ unlock_object(I3, I2, I1, *stub->entry());
450    __ bind(*stub->continuation());
451  }
452
453  if (compilation()->env()->dtrace_method_probes()) {
454    __ mov(G2_thread, O0);
455    __ save_thread(I1); // need to preserve thread in G2 across
456                        // runtime call
457    metadata2reg(method()->constant_encoding(), O1);
458    __ call(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), relocInfo::runtime_call_type);
459    __ delayed()->nop();
460    __ restore_thread(I1);
461  }
462
463  if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
464    __ mov(I0, O0);  // Restore the exception
465  }
466
467  // dispatch to the unwind logic
468  __ call(Runtime1::entry_for(Runtime1::unwind_exception_id), relocInfo::runtime_call_type);
469  __ delayed()->nop();
470
471  // Emit the slow path assembly
472  if (stub != NULL) {
473    stub->emit_code(this);
474  }
475
476  return offset;
477}
478
479
480int LIR_Assembler::emit_deopt_handler() {
481  // if the last instruction is a call (typically to do a throw which
482  // is coming at the end after block reordering) the return address
483  // must still point into the code area in order to avoid assertion
484  // failures when searching for the corresponding bci => add a nop
485  // (was bug 5/14/1999 - gri)
486  __ nop();
487
488  // generate code for deopt handler
489  ciMethod* method = compilation()->method();
490  address handler_base = __ start_a_stub(deopt_handler_size);
491  if (handler_base == NULL) {
492    // not enough space left for the handler
493    bailout("deopt handler overflow");
494    return -1;
495  }
496
497  int offset = code_offset();
498  AddressLiteral deopt_blob(SharedRuntime::deopt_blob()->unpack());
499  __ JUMP(deopt_blob, G3_scratch, 0); // sethi;jmp
500  __ delayed()->nop();
501  guarantee(code_offset() - offset <= deopt_handler_size, "overflow");
502  __ end_a_stub();
503
504  return offset;
505}
506
507
508void LIR_Assembler::jobject2reg(jobject o, Register reg) {
509  if (o == NULL) {
510    __ set(NULL_WORD, reg);
511  } else {
512    int oop_index = __ oop_recorder()->find_index(o);
513    assert(Universe::heap()->is_in_reserved(JNIHandles::resolve(o)), "should be real oop");
514    RelocationHolder rspec = oop_Relocation::spec(oop_index);
515    __ set(NULL_WORD, reg, rspec); // Will be set when the nmethod is created
516  }
517}
518
519
520void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo *info) {
521  // Allocate a new index in table to hold the object once it's been patched
522  int oop_index = __ oop_recorder()->allocate_oop_index(NULL);
523  PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_mirror_id, oop_index);
524
525  AddressLiteral addrlit(NULL, oop_Relocation::spec(oop_index));
526  assert(addrlit.rspec().type() == relocInfo::oop_type, "must be an oop reloc");
527  // It may not seem necessary to use a sethi/add pair to load a NULL into dest, but the
528  // NULL will be dynamically patched later and the patched value may be large.  We must
529  // therefore generate the sethi/add as a placeholders
530  __ patchable_set(addrlit, reg);
531
532  patching_epilog(patch, lir_patch_normal, reg, info);
533}
534
535
536void LIR_Assembler::metadata2reg(Metadata* o, Register reg) {
537  __ set_metadata_constant(o, reg);
538}
539
540void LIR_Assembler::klass2reg_with_patching(Register reg, CodeEmitInfo *info) {
541  // Allocate a new index in table to hold the klass once it's been patched
542  int index = __ oop_recorder()->allocate_metadata_index(NULL);
543  PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id, index);
544  AddressLiteral addrlit(NULL, metadata_Relocation::spec(index));
545  assert(addrlit.rspec().type() == relocInfo::metadata_type, "must be an metadata reloc");
546  // It may not seem necessary to use a sethi/add pair to load a NULL into dest, but the
547  // NULL will be dynamically patched later and the patched value may be large.  We must
548  // therefore generate the sethi/add as a placeholders
549  __ patchable_set(addrlit, reg);
550
551  patching_epilog(patch, lir_patch_normal, reg, info);
552}
553
554void LIR_Assembler::emit_op3(LIR_Op3* op) {
555  Register Rdividend = op->in_opr1()->as_register();
556  Register Rdivisor  = noreg;
557  Register Rscratch  = op->in_opr3()->as_register();
558  Register Rresult   = op->result_opr()->as_register();
559  int divisor = -1;
560
561  if (op->in_opr2()->is_register()) {
562    Rdivisor = op->in_opr2()->as_register();
563  } else {
564    divisor = op->in_opr2()->as_constant_ptr()->as_jint();
565    assert(Assembler::is_simm13(divisor), "can only handle simm13");
566  }
567
568  assert(Rdividend != Rscratch, "");
569  assert(Rdivisor  != Rscratch, "");
570  assert(op->code() == lir_idiv || op->code() == lir_irem, "Must be irem or idiv");
571
572  if (Rdivisor == noreg && is_power_of_2(divisor)) {
573    // convert division by a power of two into some shifts and logical operations
574    if (op->code() == lir_idiv) {
575      if (divisor == 2) {
576        __ srl(Rdividend, 31, Rscratch);
577      } else {
578        __ sra(Rdividend, 31, Rscratch);
579        __ and3(Rscratch, divisor - 1, Rscratch);
580      }
581      __ add(Rdividend, Rscratch, Rscratch);
582      __ sra(Rscratch, log2_intptr(divisor), Rresult);
583      return;
584    } else {
585      if (divisor == 2) {
586        __ srl(Rdividend, 31, Rscratch);
587      } else {
588        __ sra(Rdividend, 31, Rscratch);
589        __ and3(Rscratch, divisor - 1,Rscratch);
590      }
591      __ add(Rdividend, Rscratch, Rscratch);
592      __ andn(Rscratch, divisor - 1,Rscratch);
593      __ sub(Rdividend, Rscratch, Rresult);
594      return;
595    }
596  }
597
598  __ sra(Rdividend, 31, Rscratch);
599  __ wry(Rscratch);
600  if (!VM_Version::v9_instructions_work()) {
601    // v9 doesn't require these nops
602    __ nop();
603    __ nop();
604    __ nop();
605    __ nop();
606  }
607
608  add_debug_info_for_div0_here(op->info());
609
610  if (Rdivisor != noreg) {
611    __ sdivcc(Rdividend, Rdivisor, (op->code() == lir_idiv ? Rresult : Rscratch));
612  } else {
613    assert(Assembler::is_simm13(divisor), "can only handle simm13");
614    __ sdivcc(Rdividend, divisor, (op->code() == lir_idiv ? Rresult : Rscratch));
615  }
616
617  Label skip;
618  __ br(Assembler::overflowSet, true, Assembler::pn, skip);
619  __ delayed()->Assembler::sethi(0x80000000, (op->code() == lir_idiv ? Rresult : Rscratch));
620  __ bind(skip);
621
622  if (op->code() == lir_irem) {
623    if (Rdivisor != noreg) {
624      __ smul(Rscratch, Rdivisor, Rscratch);
625    } else {
626      __ smul(Rscratch, divisor, Rscratch);
627    }
628    __ sub(Rdividend, Rscratch, Rresult);
629  }
630}
631
632
633void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
634#ifdef ASSERT
635  assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label");
636  if (op->block() != NULL)  _branch_target_blocks.append(op->block());
637  if (op->ublock() != NULL) _branch_target_blocks.append(op->ublock());
638#endif
639  assert(op->info() == NULL, "shouldn't have CodeEmitInfo");
640
641  if (op->cond() == lir_cond_always) {
642    __ br(Assembler::always, false, Assembler::pt, *(op->label()));
643  } else if (op->code() == lir_cond_float_branch) {
644    assert(op->ublock() != NULL, "must have unordered successor");
645    bool is_unordered = (op->ublock() == op->block());
646    Assembler::Condition acond;
647    switch (op->cond()) {
648      case lir_cond_equal:         acond = Assembler::f_equal;    break;
649      case lir_cond_notEqual:      acond = Assembler::f_notEqual; break;
650      case lir_cond_less:          acond = (is_unordered ? Assembler::f_unorderedOrLess          : Assembler::f_less);           break;
651      case lir_cond_greater:       acond = (is_unordered ? Assembler::f_unorderedOrGreater       : Assembler::f_greater);        break;
652      case lir_cond_lessEqual:     acond = (is_unordered ? Assembler::f_unorderedOrLessOrEqual   : Assembler::f_lessOrEqual);    break;
653      case lir_cond_greaterEqual:  acond = (is_unordered ? Assembler::f_unorderedOrGreaterOrEqual: Assembler::f_greaterOrEqual); break;
654      default :                         ShouldNotReachHere();
655    };
656
657    if (!VM_Version::v9_instructions_work()) {
658      __ nop();
659    }
660    __ fb( acond, false, Assembler::pn, *(op->label()));
661  } else {
662    assert (op->code() == lir_branch, "just checking");
663
664    Assembler::Condition acond;
665    switch (op->cond()) {
666      case lir_cond_equal:        acond = Assembler::equal;                break;
667      case lir_cond_notEqual:     acond = Assembler::notEqual;             break;
668      case lir_cond_less:         acond = Assembler::less;                 break;
669      case lir_cond_lessEqual:    acond = Assembler::lessEqual;            break;
670      case lir_cond_greaterEqual: acond = Assembler::greaterEqual;         break;
671      case lir_cond_greater:      acond = Assembler::greater;              break;
672      case lir_cond_aboveEqual:   acond = Assembler::greaterEqualUnsigned; break;
673      case lir_cond_belowEqual:   acond = Assembler::lessEqualUnsigned;    break;
674      default:                         ShouldNotReachHere();
675    };
676
677    // sparc has different condition codes for testing 32-bit
678    // vs. 64-bit values.  We could always test xcc is we could
679    // guarantee that 32-bit loads always sign extended but that isn't
680    // true and since sign extension isn't free, it would impose a
681    // slight cost.
682#ifdef _LP64
683    if  (op->type() == T_INT) {
684      __ br(acond, false, Assembler::pn, *(op->label()));
685    } else
686#endif
687      __ brx(acond, false, Assembler::pn, *(op->label()));
688  }
689  // The peephole pass fills the delay slot
690}
691
692
693void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
694  Bytecodes::Code code = op->bytecode();
695  LIR_Opr dst = op->result_opr();
696
697  switch(code) {
698    case Bytecodes::_i2l: {
699      Register rlo  = dst->as_register_lo();
700      Register rhi  = dst->as_register_hi();
701      Register rval = op->in_opr()->as_register();
702#ifdef _LP64
703      __ sra(rval, 0, rlo);
704#else
705      __ mov(rval, rlo);
706      __ sra(rval, BitsPerInt-1, rhi);
707#endif
708      break;
709    }
710    case Bytecodes::_i2d:
711    case Bytecodes::_i2f: {
712      bool is_double = (code == Bytecodes::_i2d);
713      FloatRegister rdst = is_double ? dst->as_double_reg() : dst->as_float_reg();
714      FloatRegisterImpl::Width w = is_double ? FloatRegisterImpl::D : FloatRegisterImpl::S;
715      FloatRegister rsrc = op->in_opr()->as_float_reg();
716      if (rsrc != rdst) {
717        __ fmov(FloatRegisterImpl::S, rsrc, rdst);
718      }
719      __ fitof(w, rdst, rdst);
720      break;
721    }
722    case Bytecodes::_f2i:{
723      FloatRegister rsrc = op->in_opr()->as_float_reg();
724      Address       addr = frame_map()->address_for_slot(dst->single_stack_ix());
725      Label L;
726      // result must be 0 if value is NaN; test by comparing value to itself
727      __ fcmp(FloatRegisterImpl::S, Assembler::fcc0, rsrc, rsrc);
728      if (!VM_Version::v9_instructions_work()) {
729        __ nop();
730      }
731      __ fb(Assembler::f_unordered, true, Assembler::pn, L);
732      __ delayed()->st(G0, addr); // annuled if contents of rsrc is not NaN
733      __ ftoi(FloatRegisterImpl::S, rsrc, rsrc);
734      // move integer result from float register to int register
735      __ stf(FloatRegisterImpl::S, rsrc, addr.base(), addr.disp());
736      __ bind (L);
737      break;
738    }
739    case Bytecodes::_l2i: {
740      Register rlo  = op->in_opr()->as_register_lo();
741      Register rhi  = op->in_opr()->as_register_hi();
742      Register rdst = dst->as_register();
743#ifdef _LP64
744      __ sra(rlo, 0, rdst);
745#else
746      __ mov(rlo, rdst);
747#endif
748      break;
749    }
750    case Bytecodes::_d2f:
751    case Bytecodes::_f2d: {
752      bool is_double = (code == Bytecodes::_f2d);
753      assert((!is_double && dst->is_single_fpu()) || (is_double && dst->is_double_fpu()), "check");
754      LIR_Opr val = op->in_opr();
755      FloatRegister rval = (code == Bytecodes::_d2f) ? val->as_double_reg() : val->as_float_reg();
756      FloatRegister rdst = is_double ? dst->as_double_reg() : dst->as_float_reg();
757      FloatRegisterImpl::Width vw = is_double ? FloatRegisterImpl::S : FloatRegisterImpl::D;
758      FloatRegisterImpl::Width dw = is_double ? FloatRegisterImpl::D : FloatRegisterImpl::S;
759      __ ftof(vw, dw, rval, rdst);
760      break;
761    }
762    case Bytecodes::_i2s:
763    case Bytecodes::_i2b: {
764      Register rval = op->in_opr()->as_register();
765      Register rdst = dst->as_register();
766      int shift = (code == Bytecodes::_i2b) ? (BitsPerInt - T_BYTE_aelem_bytes * BitsPerByte) : (BitsPerInt - BitsPerShort);
767      __ sll (rval, shift, rdst);
768      __ sra (rdst, shift, rdst);
769      break;
770    }
771    case Bytecodes::_i2c: {
772      Register rval = op->in_opr()->as_register();
773      Register rdst = dst->as_register();
774      int shift = BitsPerInt - T_CHAR_aelem_bytes * BitsPerByte;
775      __ sll (rval, shift, rdst);
776      __ srl (rdst, shift, rdst);
777      break;
778    }
779
780    default: ShouldNotReachHere();
781  }
782}
783
784
785void LIR_Assembler::align_call(LIR_Code) {
786  // do nothing since all instructions are word aligned on sparc
787}
788
789
790void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) {
791  __ call(op->addr(), rtype);
792  // The peephole pass fills the delay slot, add_call_info is done in
793  // LIR_Assembler::emit_delay.
794}
795
796
797void LIR_Assembler::ic_call(LIR_OpJavaCall* op) {
798  __ ic_call(op->addr(), false);
799  // The peephole pass fills the delay slot, add_call_info is done in
800  // LIR_Assembler::emit_delay.
801}
802
803
804void LIR_Assembler::vtable_call(LIR_OpJavaCall* op) {
805  add_debug_info_for_null_check_here(op->info());
806  __ load_klass(O0, G3_scratch);
807  if (Assembler::is_simm13(op->vtable_offset())) {
808    __ ld_ptr(G3_scratch, op->vtable_offset(), G5_method);
809  } else {
810    // This will generate 2 instructions
811    __ set(op->vtable_offset(), G5_method);
812    // ld_ptr, set_hi, set
813    __ ld_ptr(G3_scratch, G5_method, G5_method);
814  }
815  __ ld_ptr(G5_method, Method::from_compiled_offset(), G3_scratch);
816  __ callr(G3_scratch, G0);
817  // the peephole pass fills the delay slot
818}
819
820int LIR_Assembler::store(LIR_Opr from_reg, Register base, int offset, BasicType type, bool wide, bool unaligned) {
821  int store_offset;
822  if (!Assembler::is_simm13(offset + (type == T_LONG) ? wordSize : 0)) {
823    assert(!unaligned, "can't handle this");
824    // for offsets larger than a simm13 we setup the offset in O7
825    __ set(offset, O7);
826    store_offset = store(from_reg, base, O7, type, wide);
827  } else {
828    if (type == T_ARRAY || type == T_OBJECT) {
829      __ verify_oop(from_reg->as_register());
830    }
831    store_offset = code_offset();
832    switch (type) {
833      case T_BOOLEAN: // fall through
834      case T_BYTE  : __ stb(from_reg->as_register(), base, offset); break;
835      case T_CHAR  : __ sth(from_reg->as_register(), base, offset); break;
836      case T_SHORT : __ sth(from_reg->as_register(), base, offset); break;
837      case T_INT   : __ stw(from_reg->as_register(), base, offset); break;
838      case T_LONG  :
839#ifdef _LP64
840        if (unaligned || PatchALot) {
841          __ srax(from_reg->as_register_lo(), 32, O7);
842          __ stw(from_reg->as_register_lo(), base, offset + lo_word_offset_in_bytes);
843          __ stw(O7,                         base, offset + hi_word_offset_in_bytes);
844        } else {
845          __ stx(from_reg->as_register_lo(), base, offset);
846        }
847#else
848        assert(Assembler::is_simm13(offset + 4), "must be");
849        __ stw(from_reg->as_register_lo(), base, offset + lo_word_offset_in_bytes);
850        __ stw(from_reg->as_register_hi(), base, offset + hi_word_offset_in_bytes);
851#endif
852        break;
853      case T_ADDRESS:
854      case T_METADATA:
855        __ st_ptr(from_reg->as_register(), base, offset);
856        break;
857      case T_ARRAY : // fall through
858      case T_OBJECT:
859        {
860          if (UseCompressedOops && !wide) {
861            __ encode_heap_oop(from_reg->as_register(), G3_scratch);
862            store_offset = code_offset();
863            __ stw(G3_scratch, base, offset);
864          } else {
865            __ st_ptr(from_reg->as_register(), base, offset);
866          }
867          break;
868        }
869
870      case T_FLOAT : __ stf(FloatRegisterImpl::S, from_reg->as_float_reg(), base, offset); break;
871      case T_DOUBLE:
872        {
873          FloatRegister reg = from_reg->as_double_reg();
874          // split unaligned stores
875          if (unaligned || PatchALot) {
876            assert(Assembler::is_simm13(offset + 4), "must be");
877            __ stf(FloatRegisterImpl::S, reg->successor(), base, offset + 4);
878            __ stf(FloatRegisterImpl::S, reg,              base, offset);
879          } else {
880            __ stf(FloatRegisterImpl::D, reg, base, offset);
881          }
882          break;
883        }
884      default      : ShouldNotReachHere();
885    }
886  }
887  return store_offset;
888}
889
890
891int LIR_Assembler::store(LIR_Opr from_reg, Register base, Register disp, BasicType type, bool wide) {
892  if (type == T_ARRAY || type == T_OBJECT) {
893    __ verify_oop(from_reg->as_register());
894  }
895  int store_offset = code_offset();
896  switch (type) {
897    case T_BOOLEAN: // fall through
898    case T_BYTE  : __ stb(from_reg->as_register(), base, disp); break;
899    case T_CHAR  : __ sth(from_reg->as_register(), base, disp); break;
900    case T_SHORT : __ sth(from_reg->as_register(), base, disp); break;
901    case T_INT   : __ stw(from_reg->as_register(), base, disp); break;
902    case T_LONG  :
903#ifdef _LP64
904      __ stx(from_reg->as_register_lo(), base, disp);
905#else
906      assert(from_reg->as_register_hi()->successor() == from_reg->as_register_lo(), "must match");
907      __ std(from_reg->as_register_hi(), base, disp);
908#endif
909      break;
910    case T_ADDRESS:
911      __ st_ptr(from_reg->as_register(), base, disp);
912      break;
913    case T_ARRAY : // fall through
914    case T_OBJECT:
915      {
916        if (UseCompressedOops && !wide) {
917          __ encode_heap_oop(from_reg->as_register(), G3_scratch);
918          store_offset = code_offset();
919          __ stw(G3_scratch, base, disp);
920        } else {
921          __ st_ptr(from_reg->as_register(), base, disp);
922        }
923        break;
924      }
925    case T_FLOAT : __ stf(FloatRegisterImpl::S, from_reg->as_float_reg(), base, disp); break;
926    case T_DOUBLE: __ stf(FloatRegisterImpl::D, from_reg->as_double_reg(), base, disp); break;
927    default      : ShouldNotReachHere();
928  }
929  return store_offset;
930}
931
932
933int LIR_Assembler::load(Register base, int offset, LIR_Opr to_reg, BasicType type, bool wide, bool unaligned) {
934  int load_offset;
935  if (!Assembler::is_simm13(offset + (type == T_LONG) ? wordSize : 0)) {
936    assert(base != O7, "destroying register");
937    assert(!unaligned, "can't handle this");
938    // for offsets larger than a simm13 we setup the offset in O7
939    __ set(offset, O7);
940    load_offset = load(base, O7, to_reg, type, wide);
941  } else {
942    load_offset = code_offset();
943    switch(type) {
944      case T_BOOLEAN: // fall through
945      case T_BYTE  : __ ldsb(base, offset, to_reg->as_register()); break;
946      case T_CHAR  : __ lduh(base, offset, to_reg->as_register()); break;
947      case T_SHORT : __ ldsh(base, offset, to_reg->as_register()); break;
948      case T_INT   : __ ld(base, offset, to_reg->as_register()); break;
949      case T_LONG  :
950        if (!unaligned) {
951#ifdef _LP64
952          __ ldx(base, offset, to_reg->as_register_lo());
953#else
954          assert(to_reg->as_register_hi()->successor() == to_reg->as_register_lo(),
955                 "must be sequential");
956          __ ldd(base, offset, to_reg->as_register_hi());
957#endif
958        } else {
959#ifdef _LP64
960          assert(base != to_reg->as_register_lo(), "can't handle this");
961          assert(O7 != to_reg->as_register_lo(), "can't handle this");
962          __ ld(base, offset + hi_word_offset_in_bytes, to_reg->as_register_lo());
963          __ lduw(base, offset + lo_word_offset_in_bytes, O7); // in case O7 is base or offset, use it last
964          __ sllx(to_reg->as_register_lo(), 32, to_reg->as_register_lo());
965          __ or3(to_reg->as_register_lo(), O7, to_reg->as_register_lo());
966#else
967          if (base == to_reg->as_register_lo()) {
968            __ ld(base, offset + hi_word_offset_in_bytes, to_reg->as_register_hi());
969            __ ld(base, offset + lo_word_offset_in_bytes, to_reg->as_register_lo());
970          } else {
971            __ ld(base, offset + lo_word_offset_in_bytes, to_reg->as_register_lo());
972            __ ld(base, offset + hi_word_offset_in_bytes, to_reg->as_register_hi());
973          }
974#endif
975        }
976        break;
977      case T_METADATA:  __ ld_ptr(base, offset, to_reg->as_register()); break;
978      case T_ADDRESS:
979#ifdef _LP64
980        if (offset == oopDesc::klass_offset_in_bytes() && UseCompressedKlassPointers) {
981          __ lduw(base, offset, to_reg->as_register());
982          __ decode_klass_not_null(to_reg->as_register());
983        } else
984#endif
985        {
986          __ ld_ptr(base, offset, to_reg->as_register());
987        }
988        break;
989      case T_ARRAY : // fall through
990      case T_OBJECT:
991        {
992          if (UseCompressedOops && !wide) {
993            __ lduw(base, offset, to_reg->as_register());
994            __ decode_heap_oop(to_reg->as_register());
995          } else {
996            __ ld_ptr(base, offset, to_reg->as_register());
997          }
998          break;
999        }
1000      case T_FLOAT:  __ ldf(FloatRegisterImpl::S, base, offset, to_reg->as_float_reg()); break;
1001      case T_DOUBLE:
1002        {
1003          FloatRegister reg = to_reg->as_double_reg();
1004          // split unaligned loads
1005          if (unaligned || PatchALot) {
1006            __ ldf(FloatRegisterImpl::S, base, offset + 4, reg->successor());
1007            __ ldf(FloatRegisterImpl::S, base, offset,     reg);
1008          } else {
1009            __ ldf(FloatRegisterImpl::D, base, offset, to_reg->as_double_reg());
1010          }
1011          break;
1012        }
1013      default      : ShouldNotReachHere();
1014    }
1015    if (type == T_ARRAY || type == T_OBJECT) {
1016      __ verify_oop(to_reg->as_register());
1017    }
1018  }
1019  return load_offset;
1020}
1021
1022
1023int LIR_Assembler::load(Register base, Register disp, LIR_Opr to_reg, BasicType type, bool wide) {
1024  int load_offset = code_offset();
1025  switch(type) {
1026    case T_BOOLEAN: // fall through
1027    case T_BYTE  :  __ ldsb(base, disp, to_reg->as_register()); break;
1028    case T_CHAR  :  __ lduh(base, disp, to_reg->as_register()); break;
1029    case T_SHORT :  __ ldsh(base, disp, to_reg->as_register()); break;
1030    case T_INT   :  __ ld(base, disp, to_reg->as_register()); break;
1031    case T_ADDRESS: __ ld_ptr(base, disp, to_reg->as_register()); break;
1032    case T_ARRAY : // fall through
1033    case T_OBJECT:
1034      {
1035          if (UseCompressedOops && !wide) {
1036            __ lduw(base, disp, to_reg->as_register());
1037            __ decode_heap_oop(to_reg->as_register());
1038          } else {
1039            __ ld_ptr(base, disp, to_reg->as_register());
1040          }
1041          break;
1042      }
1043    case T_FLOAT:  __ ldf(FloatRegisterImpl::S, base, disp, to_reg->as_float_reg()); break;
1044    case T_DOUBLE: __ ldf(FloatRegisterImpl::D, base, disp, to_reg->as_double_reg()); break;
1045    case T_LONG  :
1046#ifdef _LP64
1047      __ ldx(base, disp, to_reg->as_register_lo());
1048#else
1049      assert(to_reg->as_register_hi()->successor() == to_reg->as_register_lo(),
1050             "must be sequential");
1051      __ ldd(base, disp, to_reg->as_register_hi());
1052#endif
1053      break;
1054    default      : ShouldNotReachHere();
1055  }
1056  if (type == T_ARRAY || type == T_OBJECT) {
1057    __ verify_oop(to_reg->as_register());
1058  }
1059  return load_offset;
1060}
1061
1062void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
1063  LIR_Const* c = src->as_constant_ptr();
1064  switch (c->type()) {
1065    case T_INT:
1066    case T_FLOAT: {
1067      Register src_reg = O7;
1068      int value = c->as_jint_bits();
1069      if (value == 0) {
1070        src_reg = G0;
1071      } else {
1072        __ set(value, O7);
1073      }
1074      Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
1075      __ stw(src_reg, addr.base(), addr.disp());
1076      break;
1077    }
1078    case T_ADDRESS: {
1079      Register src_reg = O7;
1080      int value = c->as_jint_bits();
1081      if (value == 0) {
1082        src_reg = G0;
1083      } else {
1084        __ set(value, O7);
1085      }
1086      Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
1087      __ st_ptr(src_reg, addr.base(), addr.disp());
1088      break;
1089    }
1090    case T_OBJECT: {
1091      Register src_reg = O7;
1092      jobject2reg(c->as_jobject(), src_reg);
1093      Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
1094      __ st_ptr(src_reg, addr.base(), addr.disp());
1095      break;
1096    }
1097    case T_LONG:
1098    case T_DOUBLE: {
1099      Address addr = frame_map()->address_for_double_slot(dest->double_stack_ix());
1100
1101      Register tmp = O7;
1102      int value_lo = c->as_jint_lo_bits();
1103      if (value_lo == 0) {
1104        tmp = G0;
1105      } else {
1106        __ set(value_lo, O7);
1107      }
1108      __ stw(tmp, addr.base(), addr.disp() + lo_word_offset_in_bytes);
1109      int value_hi = c->as_jint_hi_bits();
1110      if (value_hi == 0) {
1111        tmp = G0;
1112      } else {
1113        __ set(value_hi, O7);
1114      }
1115      __ stw(tmp, addr.base(), addr.disp() + hi_word_offset_in_bytes);
1116      break;
1117    }
1118    default:
1119      Unimplemented();
1120  }
1121}
1122
1123
1124void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info, bool wide) {
1125  LIR_Const* c = src->as_constant_ptr();
1126  LIR_Address* addr     = dest->as_address_ptr();
1127  Register base = addr->base()->as_pointer_register();
1128  int offset = -1;
1129
1130  switch (c->type()) {
1131    case T_INT:
1132    case T_FLOAT:
1133    case T_ADDRESS: {
1134      LIR_Opr tmp = FrameMap::O7_opr;
1135      int value = c->as_jint_bits();
1136      if (value == 0) {
1137        tmp = FrameMap::G0_opr;
1138      } else if (Assembler::is_simm13(value)) {
1139        __ set(value, O7);
1140      }
1141      if (addr->index()->is_valid()) {
1142        assert(addr->disp() == 0, "must be zero");
1143        offset = store(tmp, base, addr->index()->as_pointer_register(), type, wide);
1144      } else {
1145        assert(Assembler::is_simm13(addr->disp()), "can't handle larger addresses");
1146        offset = store(tmp, base, addr->disp(), type, wide, false);
1147      }
1148      break;
1149    }
1150    case T_LONG:
1151    case T_DOUBLE: {
1152      assert(!addr->index()->is_valid(), "can't handle reg reg address here");
1153      assert(Assembler::is_simm13(addr->disp()) &&
1154             Assembler::is_simm13(addr->disp() + 4), "can't handle larger addresses");
1155
1156      LIR_Opr tmp = FrameMap::O7_opr;
1157      int value_lo = c->as_jint_lo_bits();
1158      if (value_lo == 0) {
1159        tmp = FrameMap::G0_opr;
1160      } else {
1161        __ set(value_lo, O7);
1162      }
1163      offset = store(tmp, base, addr->disp() + lo_word_offset_in_bytes, T_INT, wide, false);
1164      int value_hi = c->as_jint_hi_bits();
1165      if (value_hi == 0) {
1166        tmp = FrameMap::G0_opr;
1167      } else {
1168        __ set(value_hi, O7);
1169      }
1170      store(tmp, base, addr->disp() + hi_word_offset_in_bytes, T_INT, wide, false);
1171      break;
1172    }
1173    case T_OBJECT: {
1174      jobject obj = c->as_jobject();
1175      LIR_Opr tmp;
1176      if (obj == NULL) {
1177        tmp = FrameMap::G0_opr;
1178      } else {
1179        tmp = FrameMap::O7_opr;
1180        jobject2reg(c->as_jobject(), O7);
1181      }
1182      // handle either reg+reg or reg+disp address
1183      if (addr->index()->is_valid()) {
1184        assert(addr->disp() == 0, "must be zero");
1185        offset = store(tmp, base, addr->index()->as_pointer_register(), type, wide);
1186      } else {
1187        assert(Assembler::is_simm13(addr->disp()), "can't handle larger addresses");
1188        offset = store(tmp, base, addr->disp(), type, wide, false);
1189      }
1190
1191      break;
1192    }
1193    default:
1194      Unimplemented();
1195  }
1196  if (info != NULL) {
1197    assert(offset != -1, "offset should've been set");
1198    add_debug_info_for_null_check(offset, info);
1199  }
1200}
1201
1202
1203void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
1204  LIR_Const* c = src->as_constant_ptr();
1205  LIR_Opr to_reg = dest;
1206
1207  switch (c->type()) {
1208    case T_INT:
1209    case T_ADDRESS:
1210      {
1211        jint con = c->as_jint();
1212        if (to_reg->is_single_cpu()) {
1213          assert(patch_code == lir_patch_none, "no patching handled here");
1214          __ set(con, to_reg->as_register());
1215        } else {
1216          ShouldNotReachHere();
1217          assert(to_reg->is_single_fpu(), "wrong register kind");
1218
1219          __ set(con, O7);
1220          Address temp_slot(SP, (frame::register_save_words * wordSize) + STACK_BIAS);
1221          __ st(O7, temp_slot);
1222          __ ldf(FloatRegisterImpl::S, temp_slot, to_reg->as_float_reg());
1223        }
1224      }
1225      break;
1226
1227    case T_LONG:
1228      {
1229        jlong con = c->as_jlong();
1230
1231        if (to_reg->is_double_cpu()) {
1232#ifdef _LP64
1233          __ set(con,  to_reg->as_register_lo());
1234#else
1235          __ set(low(con),  to_reg->as_register_lo());
1236          __ set(high(con), to_reg->as_register_hi());
1237#endif
1238#ifdef _LP64
1239        } else if (to_reg->is_single_cpu()) {
1240          __ set(con, to_reg->as_register());
1241#endif
1242        } else {
1243          ShouldNotReachHere();
1244          assert(to_reg->is_double_fpu(), "wrong register kind");
1245          Address temp_slot_lo(SP, ((frame::register_save_words  ) * wordSize) + STACK_BIAS);
1246          Address temp_slot_hi(SP, ((frame::register_save_words) * wordSize) + (longSize/2) + STACK_BIAS);
1247          __ set(low(con),  O7);
1248          __ st(O7, temp_slot_lo);
1249          __ set(high(con), O7);
1250          __ st(O7, temp_slot_hi);
1251          __ ldf(FloatRegisterImpl::D, temp_slot_lo, to_reg->as_double_reg());
1252        }
1253      }
1254      break;
1255
1256    case T_OBJECT:
1257      {
1258        if (patch_code == lir_patch_none) {
1259          jobject2reg(c->as_jobject(), to_reg->as_register());
1260        } else {
1261          jobject2reg_with_patching(to_reg->as_register(), info);
1262        }
1263      }
1264      break;
1265
1266    case T_METADATA:
1267      {
1268        if (patch_code == lir_patch_none) {
1269          metadata2reg(c->as_metadata(), to_reg->as_register());
1270        } else {
1271          klass2reg_with_patching(to_reg->as_register(), info);
1272        }
1273      }
1274      break;
1275
1276    case T_FLOAT:
1277      {
1278        address const_addr = __ float_constant(c->as_jfloat());
1279        if (const_addr == NULL) {
1280          bailout("const section overflow");
1281          break;
1282        }
1283        RelocationHolder rspec = internal_word_Relocation::spec(const_addr);
1284        AddressLiteral const_addrlit(const_addr, rspec);
1285        if (to_reg->is_single_fpu()) {
1286          __ patchable_sethi(const_addrlit, O7);
1287          __ relocate(rspec);
1288          __ ldf(FloatRegisterImpl::S, O7, const_addrlit.low10(), to_reg->as_float_reg());
1289
1290        } else {
1291          assert(to_reg->is_single_cpu(), "Must be a cpu register.");
1292
1293          __ set(const_addrlit, O7);
1294          __ ld(O7, 0, to_reg->as_register());
1295        }
1296      }
1297      break;
1298
1299    case T_DOUBLE:
1300      {
1301        address const_addr = __ double_constant(c->as_jdouble());
1302        if (const_addr == NULL) {
1303          bailout("const section overflow");
1304          break;
1305        }
1306        RelocationHolder rspec = internal_word_Relocation::spec(const_addr);
1307
1308        if (to_reg->is_double_fpu()) {
1309          AddressLiteral const_addrlit(const_addr, rspec);
1310          __ patchable_sethi(const_addrlit, O7);
1311          __ relocate(rspec);
1312          __ ldf (FloatRegisterImpl::D, O7, const_addrlit.low10(), to_reg->as_double_reg());
1313        } else {
1314          assert(to_reg->is_double_cpu(), "Must be a long register.");
1315#ifdef _LP64
1316          __ set(jlong_cast(c->as_jdouble()), to_reg->as_register_lo());
1317#else
1318          __ set(low(jlong_cast(c->as_jdouble())), to_reg->as_register_lo());
1319          __ set(high(jlong_cast(c->as_jdouble())), to_reg->as_register_hi());
1320#endif
1321        }
1322
1323      }
1324      break;
1325
1326    default:
1327      ShouldNotReachHere();
1328  }
1329}
1330
1331Address LIR_Assembler::as_Address(LIR_Address* addr) {
1332  Register reg = addr->base()->as_register();
1333  LIR_Opr index = addr->index();
1334  if (index->is_illegal()) {
1335    return Address(reg, addr->disp());
1336  } else {
1337    assert (addr->disp() == 0, "unsupported address mode");
1338    return Address(reg, index->as_pointer_register());
1339  }
1340}
1341
1342
1343void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
1344  switch (type) {
1345    case T_INT:
1346    case T_FLOAT: {
1347      Register tmp = O7;
1348      Address from = frame_map()->address_for_slot(src->single_stack_ix());
1349      Address to   = frame_map()->address_for_slot(dest->single_stack_ix());
1350      __ lduw(from.base(), from.disp(), tmp);
1351      __ stw(tmp, to.base(), to.disp());
1352      break;
1353    }
1354    case T_OBJECT: {
1355      Register tmp = O7;
1356      Address from = frame_map()->address_for_slot(src->single_stack_ix());
1357      Address to   = frame_map()->address_for_slot(dest->single_stack_ix());
1358      __ ld_ptr(from.base(), from.disp(), tmp);
1359      __ st_ptr(tmp, to.base(), to.disp());
1360      break;
1361    }
1362    case T_LONG:
1363    case T_DOUBLE: {
1364      Register tmp = O7;
1365      Address from = frame_map()->address_for_double_slot(src->double_stack_ix());
1366      Address to   = frame_map()->address_for_double_slot(dest->double_stack_ix());
1367      __ lduw(from.base(), from.disp(), tmp);
1368      __ stw(tmp, to.base(), to.disp());
1369      __ lduw(from.base(), from.disp() + 4, tmp);
1370      __ stw(tmp, to.base(), to.disp() + 4);
1371      break;
1372    }
1373
1374    default:
1375      ShouldNotReachHere();
1376  }
1377}
1378
1379
1380Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
1381  Address base = as_Address(addr);
1382  return Address(base.base(), base.disp() + hi_word_offset_in_bytes);
1383}
1384
1385
1386Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
1387  Address base = as_Address(addr);
1388  return Address(base.base(), base.disp() + lo_word_offset_in_bytes);
1389}
1390
1391
1392void LIR_Assembler::mem2reg(LIR_Opr src_opr, LIR_Opr dest, BasicType type,
1393                            LIR_PatchCode patch_code, CodeEmitInfo* info, bool wide, bool unaligned) {
1394
1395  assert(type != T_METADATA, "load of metadata ptr not supported");
1396  LIR_Address* addr = src_opr->as_address_ptr();
1397  LIR_Opr to_reg = dest;
1398
1399  Register src = addr->base()->as_pointer_register();
1400  Register disp_reg = noreg;
1401  int disp_value = addr->disp();
1402  bool needs_patching = (patch_code != lir_patch_none);
1403
1404  if (addr->base()->type() == T_OBJECT) {
1405    __ verify_oop(src);
1406  }
1407
1408  PatchingStub* patch = NULL;
1409  if (needs_patching) {
1410    patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1411    assert(!to_reg->is_double_cpu() ||
1412           patch_code == lir_patch_none ||
1413           patch_code == lir_patch_normal, "patching doesn't match register");
1414  }
1415
1416  if (addr->index()->is_illegal()) {
1417    if (!Assembler::is_simm13(disp_value) && (!unaligned || Assembler::is_simm13(disp_value + 4))) {
1418      if (needs_patching) {
1419        __ patchable_set(0, O7);
1420      } else {
1421        __ set(disp_value, O7);
1422      }
1423      disp_reg = O7;
1424    }
1425  } else if (unaligned || PatchALot) {
1426    __ add(src, addr->index()->as_register(), O7);
1427    src = O7;
1428  } else {
1429    disp_reg = addr->index()->as_pointer_register();
1430    assert(disp_value == 0, "can't handle 3 operand addresses");
1431  }
1432
1433  // remember the offset of the load.  The patching_epilog must be done
1434  // before the call to add_debug_info, otherwise the PcDescs don't get
1435  // entered in increasing order.
1436  int offset = code_offset();
1437
1438  assert(disp_reg != noreg || Assembler::is_simm13(disp_value), "should have set this up");
1439  if (disp_reg == noreg) {
1440    offset = load(src, disp_value, to_reg, type, wide, unaligned);
1441  } else {
1442    assert(!unaligned, "can't handle this");
1443    offset = load(src, disp_reg, to_reg, type, wide);
1444  }
1445
1446  if (patch != NULL) {
1447    patching_epilog(patch, patch_code, src, info);
1448  }
1449  if (info != NULL) add_debug_info_for_null_check(offset, info);
1450}
1451
1452
1453void LIR_Assembler::prefetchr(LIR_Opr src) {
1454  LIR_Address* addr = src->as_address_ptr();
1455  Address from_addr = as_Address(addr);
1456
1457  if (VM_Version::has_v9()) {
1458    __ prefetch(from_addr, Assembler::severalReads);
1459  }
1460}
1461
1462
1463void LIR_Assembler::prefetchw(LIR_Opr src) {
1464  LIR_Address* addr = src->as_address_ptr();
1465  Address from_addr = as_Address(addr);
1466
1467  if (VM_Version::has_v9()) {
1468    __ prefetch(from_addr, Assembler::severalWritesAndPossiblyReads);
1469  }
1470}
1471
1472
1473void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
1474  Address addr;
1475  if (src->is_single_word()) {
1476    addr = frame_map()->address_for_slot(src->single_stack_ix());
1477  } else if (src->is_double_word())  {
1478    addr = frame_map()->address_for_double_slot(src->double_stack_ix());
1479  }
1480
1481  bool unaligned = (addr.disp() - STACK_BIAS) % 8 != 0;
1482  load(addr.base(), addr.disp(), dest, dest->type(), true /*wide*/, unaligned);
1483}
1484
1485
1486void LIR_Assembler::reg2stack(LIR_Opr from_reg, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
1487  Address addr;
1488  if (dest->is_single_word()) {
1489    addr = frame_map()->address_for_slot(dest->single_stack_ix());
1490  } else if (dest->is_double_word())  {
1491    addr = frame_map()->address_for_slot(dest->double_stack_ix());
1492  }
1493  bool unaligned = (addr.disp() - STACK_BIAS) % 8 != 0;
1494  store(from_reg, addr.base(), addr.disp(), from_reg->type(), true /*wide*/, unaligned);
1495}
1496
1497
1498void LIR_Assembler::reg2reg(LIR_Opr from_reg, LIR_Opr to_reg) {
1499  if (from_reg->is_float_kind() && to_reg->is_float_kind()) {
1500    if (from_reg->is_double_fpu()) {
1501      // double to double moves
1502      assert(to_reg->is_double_fpu(), "should match");
1503      __ fmov(FloatRegisterImpl::D, from_reg->as_double_reg(), to_reg->as_double_reg());
1504    } else {
1505      // float to float moves
1506      assert(to_reg->is_single_fpu(), "should match");
1507      __ fmov(FloatRegisterImpl::S, from_reg->as_float_reg(), to_reg->as_float_reg());
1508    }
1509  } else if (!from_reg->is_float_kind() && !to_reg->is_float_kind()) {
1510    if (from_reg->is_double_cpu()) {
1511#ifdef _LP64
1512      __ mov(from_reg->as_pointer_register(), to_reg->as_pointer_register());
1513#else
1514      assert(to_reg->is_double_cpu() &&
1515             from_reg->as_register_hi() != to_reg->as_register_lo() &&
1516             from_reg->as_register_lo() != to_reg->as_register_hi(),
1517             "should both be long and not overlap");
1518      // long to long moves
1519      __ mov(from_reg->as_register_hi(), to_reg->as_register_hi());
1520      __ mov(from_reg->as_register_lo(), to_reg->as_register_lo());
1521#endif
1522#ifdef _LP64
1523    } else if (to_reg->is_double_cpu()) {
1524      // int to int moves
1525      __ mov(from_reg->as_register(), to_reg->as_register_lo());
1526#endif
1527    } else {
1528      // int to int moves
1529      __ mov(from_reg->as_register(), to_reg->as_register());
1530    }
1531  } else {
1532    ShouldNotReachHere();
1533  }
1534  if (to_reg->type() == T_OBJECT || to_reg->type() == T_ARRAY) {
1535    __ verify_oop(to_reg->as_register());
1536  }
1537}
1538
1539
1540void LIR_Assembler::reg2mem(LIR_Opr from_reg, LIR_Opr dest, BasicType type,
1541                            LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack,
1542                            bool wide, bool unaligned) {
1543  assert(type != T_METADATA, "store of metadata ptr not supported");
1544  LIR_Address* addr = dest->as_address_ptr();
1545
1546  Register src = addr->base()->as_pointer_register();
1547  Register disp_reg = noreg;
1548  int disp_value = addr->disp();
1549  bool needs_patching = (patch_code != lir_patch_none);
1550
1551  if (addr->base()->is_oop_register()) {
1552    __ verify_oop(src);
1553  }
1554
1555  PatchingStub* patch = NULL;
1556  if (needs_patching) {
1557    patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1558    assert(!from_reg->is_double_cpu() ||
1559           patch_code == lir_patch_none ||
1560           patch_code == lir_patch_normal, "patching doesn't match register");
1561  }
1562
1563  if (addr->index()->is_illegal()) {
1564    if (!Assembler::is_simm13(disp_value) && (!unaligned || Assembler::is_simm13(disp_value + 4))) {
1565      if (needs_patching) {
1566        __ patchable_set(0, O7);
1567      } else {
1568        __ set(disp_value, O7);
1569      }
1570      disp_reg = O7;
1571    }
1572  } else if (unaligned || PatchALot) {
1573    __ add(src, addr->index()->as_register(), O7);
1574    src = O7;
1575  } else {
1576    disp_reg = addr->index()->as_pointer_register();
1577    assert(disp_value == 0, "can't handle 3 operand addresses");
1578  }
1579
1580  // remember the offset of the store.  The patching_epilog must be done
1581  // before the call to add_debug_info_for_null_check, otherwise the PcDescs don't get
1582  // entered in increasing order.
1583  int offset;
1584
1585  assert(disp_reg != noreg || Assembler::is_simm13(disp_value), "should have set this up");
1586  if (disp_reg == noreg) {
1587    offset = store(from_reg, src, disp_value, type, wide, unaligned);
1588  } else {
1589    assert(!unaligned, "can't handle this");
1590    offset = store(from_reg, src, disp_reg, type, wide);
1591  }
1592
1593  if (patch != NULL) {
1594    patching_epilog(patch, patch_code, src, info);
1595  }
1596
1597  if (info != NULL) add_debug_info_for_null_check(offset, info);
1598}
1599
1600
1601void LIR_Assembler::return_op(LIR_Opr result) {
1602  // the poll may need a register so just pick one that isn't the return register
1603#if defined(TIERED) && !defined(_LP64)
1604  if (result->type_field() == LIR_OprDesc::long_type) {
1605    // Must move the result to G1
1606    // Must leave proper result in O0,O1 and G1 (TIERED only)
1607    __ sllx(I0, 32, G1);          // Shift bits into high G1
1608    __ srl (I1, 0, I1);           // Zero extend O1 (harmless?)
1609    __ or3 (I1, G1, G1);          // OR 64 bits into G1
1610#ifdef ASSERT
1611    // mangle it so any problems will show up
1612    __ set(0xdeadbeef, I0);
1613    __ set(0xdeadbeef, I1);
1614#endif
1615  }
1616#endif // TIERED
1617  __ set((intptr_t)os::get_polling_page(), L0);
1618  __ relocate(relocInfo::poll_return_type);
1619  __ ld_ptr(L0, 0, G0);
1620  __ ret();
1621  __ delayed()->restore();
1622}
1623
1624
1625int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
1626  __ set((intptr_t)os::get_polling_page(), tmp->as_register());
1627  if (info != NULL) {
1628    add_debug_info_for_branch(info);
1629  } else {
1630    __ relocate(relocInfo::poll_type);
1631  }
1632
1633  int offset = __ offset();
1634  __ ld_ptr(tmp->as_register(), 0, G0);
1635
1636  return offset;
1637}
1638
1639
1640void LIR_Assembler::emit_static_call_stub() {
1641  address call_pc = __ pc();
1642  address stub = __ start_a_stub(call_stub_size);
1643  if (stub == NULL) {
1644    bailout("static call stub overflow");
1645    return;
1646  }
1647
1648  int start = __ offset();
1649  __ relocate(static_stub_Relocation::spec(call_pc));
1650
1651  __ set_metadata(NULL, G5);
1652  // must be set to -1 at code generation time
1653  AddressLiteral addrlit(-1);
1654  __ jump_to(addrlit, G3);
1655  __ delayed()->nop();
1656
1657  assert(__ offset() - start <= call_stub_size, "stub too big");
1658  __ end_a_stub();
1659}
1660
1661
1662void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
1663  if (opr1->is_single_fpu()) {
1664    __ fcmp(FloatRegisterImpl::S, Assembler::fcc0, opr1->as_float_reg(), opr2->as_float_reg());
1665  } else if (opr1->is_double_fpu()) {
1666    __ fcmp(FloatRegisterImpl::D, Assembler::fcc0, opr1->as_double_reg(), opr2->as_double_reg());
1667  } else if (opr1->is_single_cpu()) {
1668    if (opr2->is_constant()) {
1669      switch (opr2->as_constant_ptr()->type()) {
1670        case T_INT:
1671          { jint con = opr2->as_constant_ptr()->as_jint();
1672            if (Assembler::is_simm13(con)) {
1673              __ cmp(opr1->as_register(), con);
1674            } else {
1675              __ set(con, O7);
1676              __ cmp(opr1->as_register(), O7);
1677            }
1678          }
1679          break;
1680
1681        case T_OBJECT:
1682          // there are only equal/notequal comparisions on objects
1683          { jobject con = opr2->as_constant_ptr()->as_jobject();
1684            if (con == NULL) {
1685              __ cmp(opr1->as_register(), 0);
1686            } else {
1687              jobject2reg(con, O7);
1688              __ cmp(opr1->as_register(), O7);
1689            }
1690          }
1691          break;
1692
1693        default:
1694          ShouldNotReachHere();
1695          break;
1696      }
1697    } else {
1698      if (opr2->is_address()) {
1699        LIR_Address * addr = opr2->as_address_ptr();
1700        BasicType type = addr->type();
1701        if ( type == T_OBJECT ) __ ld_ptr(as_Address(addr), O7);
1702        else                    __ ld(as_Address(addr), O7);
1703        __ cmp(opr1->as_register(), O7);
1704      } else {
1705        __ cmp(opr1->as_register(), opr2->as_register());
1706      }
1707    }
1708  } else if (opr1->is_double_cpu()) {
1709    Register xlo = opr1->as_register_lo();
1710    Register xhi = opr1->as_register_hi();
1711    if (opr2->is_constant() && opr2->as_jlong() == 0) {
1712      assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "only handles these cases");
1713#ifdef _LP64
1714      __ orcc(xhi, G0, G0);
1715#else
1716      __ orcc(xhi, xlo, G0);
1717#endif
1718    } else if (opr2->is_register()) {
1719      Register ylo = opr2->as_register_lo();
1720      Register yhi = opr2->as_register_hi();
1721#ifdef _LP64
1722      __ cmp(xlo, ylo);
1723#else
1724      __ subcc(xlo, ylo, xlo);
1725      __ subccc(xhi, yhi, xhi);
1726      if (condition == lir_cond_equal || condition == lir_cond_notEqual) {
1727        __ orcc(xhi, xlo, G0);
1728      }
1729#endif
1730    } else {
1731      ShouldNotReachHere();
1732    }
1733  } else if (opr1->is_address()) {
1734    LIR_Address * addr = opr1->as_address_ptr();
1735    BasicType type = addr->type();
1736    assert (opr2->is_constant(), "Checking");
1737    if ( type == T_OBJECT ) __ ld_ptr(as_Address(addr), O7);
1738    else                    __ ld(as_Address(addr), O7);
1739    __ cmp(O7, opr2->as_constant_ptr()->as_jint());
1740  } else {
1741    ShouldNotReachHere();
1742  }
1743}
1744
1745
1746void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op){
1747  if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
1748    bool is_unordered_less = (code == lir_ucmp_fd2i);
1749    if (left->is_single_fpu()) {
1750      __ float_cmp(true, is_unordered_less ? -1 : 1, left->as_float_reg(), right->as_float_reg(), dst->as_register());
1751    } else if (left->is_double_fpu()) {
1752      __ float_cmp(false, is_unordered_less ? -1 : 1, left->as_double_reg(), right->as_double_reg(), dst->as_register());
1753    } else {
1754      ShouldNotReachHere();
1755    }
1756  } else if (code == lir_cmp_l2i) {
1757#ifdef _LP64
1758    __ lcmp(left->as_register_lo(), right->as_register_lo(), dst->as_register());
1759#else
1760    __ lcmp(left->as_register_hi(),  left->as_register_lo(),
1761            right->as_register_hi(), right->as_register_lo(),
1762            dst->as_register());
1763#endif
1764  } else {
1765    ShouldNotReachHere();
1766  }
1767}
1768
1769
1770void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type) {
1771  Assembler::Condition acond;
1772  switch (condition) {
1773    case lir_cond_equal:        acond = Assembler::equal;        break;
1774    case lir_cond_notEqual:     acond = Assembler::notEqual;     break;
1775    case lir_cond_less:         acond = Assembler::less;         break;
1776    case lir_cond_lessEqual:    acond = Assembler::lessEqual;    break;
1777    case lir_cond_greaterEqual: acond = Assembler::greaterEqual; break;
1778    case lir_cond_greater:      acond = Assembler::greater;      break;
1779    case lir_cond_aboveEqual:   acond = Assembler::greaterEqualUnsigned;      break;
1780    case lir_cond_belowEqual:   acond = Assembler::lessEqualUnsigned;      break;
1781    default:                         ShouldNotReachHere();
1782  };
1783
1784  if (opr1->is_constant() && opr1->type() == T_INT) {
1785    Register dest = result->as_register();
1786    // load up first part of constant before branch
1787    // and do the rest in the delay slot.
1788    if (!Assembler::is_simm13(opr1->as_jint())) {
1789      __ sethi(opr1->as_jint(), dest);
1790    }
1791  } else if (opr1->is_constant()) {
1792    const2reg(opr1, result, lir_patch_none, NULL);
1793  } else if (opr1->is_register()) {
1794    reg2reg(opr1, result);
1795  } else if (opr1->is_stack()) {
1796    stack2reg(opr1, result, result->type());
1797  } else {
1798    ShouldNotReachHere();
1799  }
1800  Label skip;
1801#ifdef _LP64
1802    if  (type == T_INT) {
1803      __ br(acond, false, Assembler::pt, skip);
1804    } else
1805#endif
1806      __ brx(acond, false, Assembler::pt, skip); // checks icc on 32bit and xcc on 64bit
1807  if (opr1->is_constant() && opr1->type() == T_INT) {
1808    Register dest = result->as_register();
1809    if (Assembler::is_simm13(opr1->as_jint())) {
1810      __ delayed()->or3(G0, opr1->as_jint(), dest);
1811    } else {
1812      // the sethi has been done above, so just put in the low 10 bits
1813      __ delayed()->or3(dest, opr1->as_jint() & 0x3ff, dest);
1814    }
1815  } else {
1816    // can't do anything useful in the delay slot
1817    __ delayed()->nop();
1818  }
1819  if (opr2->is_constant()) {
1820    const2reg(opr2, result, lir_patch_none, NULL);
1821  } else if (opr2->is_register()) {
1822    reg2reg(opr2, result);
1823  } else if (opr2->is_stack()) {
1824    stack2reg(opr2, result, result->type());
1825  } else {
1826    ShouldNotReachHere();
1827  }
1828  __ bind(skip);
1829}
1830
1831
1832void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) {
1833  assert(info == NULL, "unused on this code path");
1834  assert(left->is_register(), "wrong items state");
1835  assert(dest->is_register(), "wrong items state");
1836
1837  if (right->is_register()) {
1838    if (dest->is_float_kind()) {
1839
1840      FloatRegister lreg, rreg, res;
1841      FloatRegisterImpl::Width w;
1842      if (right->is_single_fpu()) {
1843        w = FloatRegisterImpl::S;
1844        lreg = left->as_float_reg();
1845        rreg = right->as_float_reg();
1846        res  = dest->as_float_reg();
1847      } else {
1848        w = FloatRegisterImpl::D;
1849        lreg = left->as_double_reg();
1850        rreg = right->as_double_reg();
1851        res  = dest->as_double_reg();
1852      }
1853
1854      switch (code) {
1855        case lir_add: __ fadd(w, lreg, rreg, res); break;
1856        case lir_sub: __ fsub(w, lreg, rreg, res); break;
1857        case lir_mul: // fall through
1858        case lir_mul_strictfp: __ fmul(w, lreg, rreg, res); break;
1859        case lir_div: // fall through
1860        case lir_div_strictfp: __ fdiv(w, lreg, rreg, res); break;
1861        default: ShouldNotReachHere();
1862      }
1863
1864    } else if (dest->is_double_cpu()) {
1865#ifdef _LP64
1866      Register dst_lo = dest->as_register_lo();
1867      Register op1_lo = left->as_pointer_register();
1868      Register op2_lo = right->as_pointer_register();
1869
1870      switch (code) {
1871        case lir_add:
1872          __ add(op1_lo, op2_lo, dst_lo);
1873          break;
1874
1875        case lir_sub:
1876          __ sub(op1_lo, op2_lo, dst_lo);
1877          break;
1878
1879        default: ShouldNotReachHere();
1880      }
1881#else
1882      Register op1_lo = left->as_register_lo();
1883      Register op1_hi = left->as_register_hi();
1884      Register op2_lo = right->as_register_lo();
1885      Register op2_hi = right->as_register_hi();
1886      Register dst_lo = dest->as_register_lo();
1887      Register dst_hi = dest->as_register_hi();
1888
1889      switch (code) {
1890        case lir_add:
1891          __ addcc(op1_lo, op2_lo, dst_lo);
1892          __ addc (op1_hi, op2_hi, dst_hi);
1893          break;
1894
1895        case lir_sub:
1896          __ subcc(op1_lo, op2_lo, dst_lo);
1897          __ subc (op1_hi, op2_hi, dst_hi);
1898          break;
1899
1900        default: ShouldNotReachHere();
1901      }
1902#endif
1903    } else {
1904      assert (right->is_single_cpu(), "Just Checking");
1905
1906      Register lreg = left->as_register();
1907      Register res  = dest->as_register();
1908      Register rreg = right->as_register();
1909      switch (code) {
1910        case lir_add:  __ add  (lreg, rreg, res); break;
1911        case lir_sub:  __ sub  (lreg, rreg, res); break;
1912        case lir_mul:  __ mult (lreg, rreg, res); break;
1913        default: ShouldNotReachHere();
1914      }
1915    }
1916  } else {
1917    assert (right->is_constant(), "must be constant");
1918
1919    if (dest->is_single_cpu()) {
1920      Register lreg = left->as_register();
1921      Register res  = dest->as_register();
1922      int    simm13 = right->as_constant_ptr()->as_jint();
1923
1924      switch (code) {
1925        case lir_add:  __ add  (lreg, simm13, res); break;
1926        case lir_sub:  __ sub  (lreg, simm13, res); break;
1927        case lir_mul:  __ mult (lreg, simm13, res); break;
1928        default: ShouldNotReachHere();
1929      }
1930    } else {
1931      Register lreg = left->as_pointer_register();
1932      Register res  = dest->as_register_lo();
1933      long con = right->as_constant_ptr()->as_jlong();
1934      assert(Assembler::is_simm13(con), "must be simm13");
1935
1936      switch (code) {
1937        case lir_add:  __ add  (lreg, (int)con, res); break;
1938        case lir_sub:  __ sub  (lreg, (int)con, res); break;
1939        case lir_mul:  __ mult (lreg, (int)con, res); break;
1940        default: ShouldNotReachHere();
1941      }
1942    }
1943  }
1944}
1945
1946
1947void LIR_Assembler::fpop() {
1948  // do nothing
1949}
1950
1951
1952void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr thread, LIR_Opr dest, LIR_Op* op) {
1953  switch (code) {
1954    case lir_sin:
1955    case lir_tan:
1956    case lir_cos: {
1957      assert(thread->is_valid(), "preserve the thread object for performance reasons");
1958      assert(dest->as_double_reg() == F0, "the result will be in f0/f1");
1959      break;
1960    }
1961    case lir_sqrt: {
1962      assert(!thread->is_valid(), "there is no need for a thread_reg for dsqrt");
1963      FloatRegister src_reg = value->as_double_reg();
1964      FloatRegister dst_reg = dest->as_double_reg();
1965      __ fsqrt(FloatRegisterImpl::D, src_reg, dst_reg);
1966      break;
1967    }
1968    case lir_abs: {
1969      assert(!thread->is_valid(), "there is no need for a thread_reg for fabs");
1970      FloatRegister src_reg = value->as_double_reg();
1971      FloatRegister dst_reg = dest->as_double_reg();
1972      __ fabs(FloatRegisterImpl::D, src_reg, dst_reg);
1973      break;
1974    }
1975    default: {
1976      ShouldNotReachHere();
1977      break;
1978    }
1979  }
1980}
1981
1982
1983void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest) {
1984  if (right->is_constant()) {
1985    if (dest->is_single_cpu()) {
1986      int simm13 = right->as_constant_ptr()->as_jint();
1987      switch (code) {
1988        case lir_logic_and:   __ and3 (left->as_register(), simm13, dest->as_register()); break;
1989        case lir_logic_or:    __ or3  (left->as_register(), simm13, dest->as_register()); break;
1990        case lir_logic_xor:   __ xor3 (left->as_register(), simm13, dest->as_register()); break;
1991        default: ShouldNotReachHere();
1992      }
1993    } else {
1994      long c = right->as_constant_ptr()->as_jlong();
1995      assert(c == (int)c && Assembler::is_simm13(c), "out of range");
1996      int simm13 = (int)c;
1997      switch (code) {
1998        case lir_logic_and:
1999#ifndef _LP64
2000          __ and3 (left->as_register_hi(), 0,      dest->as_register_hi());
2001#endif
2002          __ and3 (left->as_register_lo(), simm13, dest->as_register_lo());
2003          break;
2004
2005        case lir_logic_or:
2006#ifndef _LP64
2007          __ or3 (left->as_register_hi(), 0,      dest->as_register_hi());
2008#endif
2009          __ or3 (left->as_register_lo(), simm13, dest->as_register_lo());
2010          break;
2011
2012        case lir_logic_xor:
2013#ifndef _LP64
2014          __ xor3 (left->as_register_hi(), 0,      dest->as_register_hi());
2015#endif
2016          __ xor3 (left->as_register_lo(), simm13, dest->as_register_lo());
2017          break;
2018
2019        default: ShouldNotReachHere();
2020      }
2021    }
2022  } else {
2023    assert(right->is_register(), "right should be in register");
2024
2025    if (dest->is_single_cpu()) {
2026      switch (code) {
2027        case lir_logic_and:   __ and3 (left->as_register(), right->as_register(), dest->as_register()); break;
2028        case lir_logic_or:    __ or3  (left->as_register(), right->as_register(), dest->as_register()); break;
2029        case lir_logic_xor:   __ xor3 (left->as_register(), right->as_register(), dest->as_register()); break;
2030        default: ShouldNotReachHere();
2031      }
2032    } else {
2033#ifdef _LP64
2034      Register l = (left->is_single_cpu() && left->is_oop_register()) ? left->as_register() :
2035                                                                        left->as_register_lo();
2036      Register r = (right->is_single_cpu() && right->is_oop_register()) ? right->as_register() :
2037                                                                          right->as_register_lo();
2038
2039      switch (code) {
2040        case lir_logic_and: __ and3 (l, r, dest->as_register_lo()); break;
2041        case lir_logic_or:  __ or3  (l, r, dest->as_register_lo()); break;
2042        case lir_logic_xor: __ xor3 (l, r, dest->as_register_lo()); break;
2043        default: ShouldNotReachHere();
2044      }
2045#else
2046      switch (code) {
2047        case lir_logic_and:
2048          __ and3 (left->as_register_hi(), right->as_register_hi(), dest->as_register_hi());
2049          __ and3 (left->as_register_lo(), right->as_register_lo(), dest->as_register_lo());
2050          break;
2051
2052        case lir_logic_or:
2053          __ or3 (left->as_register_hi(), right->as_register_hi(), dest->as_register_hi());
2054          __ or3 (left->as_register_lo(), right->as_register_lo(), dest->as_register_lo());
2055          break;
2056
2057        case lir_logic_xor:
2058          __ xor3 (left->as_register_hi(), right->as_register_hi(), dest->as_register_hi());
2059          __ xor3 (left->as_register_lo(), right->as_register_lo(), dest->as_register_lo());
2060          break;
2061
2062        default: ShouldNotReachHere();
2063      }
2064#endif
2065    }
2066  }
2067}
2068
2069
2070int LIR_Assembler::shift_amount(BasicType t) {
2071  int elem_size = type2aelembytes(t);
2072  switch (elem_size) {
2073    case 1 : return 0;
2074    case 2 : return 1;
2075    case 4 : return 2;
2076    case 8 : return 3;
2077  }
2078  ShouldNotReachHere();
2079  return -1;
2080}
2081
2082
2083void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
2084  assert(exceptionOop->as_register() == Oexception, "should match");
2085  assert(exceptionPC->as_register() == Oissuing_pc, "should match");
2086
2087  info->add_register_oop(exceptionOop);
2088
2089  // reuse the debug info from the safepoint poll for the throw op itself
2090  address pc_for_athrow  = __ pc();
2091  int pc_for_athrow_offset = __ offset();
2092  RelocationHolder rspec = internal_word_Relocation::spec(pc_for_athrow);
2093  __ set(pc_for_athrow, Oissuing_pc, rspec);
2094  add_call_info(pc_for_athrow_offset, info); // for exception handler
2095
2096  __ call(Runtime1::entry_for(Runtime1::handle_exception_id), relocInfo::runtime_call_type);
2097  __ delayed()->nop();
2098}
2099
2100
2101void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) {
2102  assert(exceptionOop->as_register() == Oexception, "should match");
2103
2104  __ br(Assembler::always, false, Assembler::pt, _unwind_handler_entry);
2105  __ delayed()->nop();
2106}
2107
2108void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
2109  Register src = op->src()->as_register();
2110  Register dst = op->dst()->as_register();
2111  Register src_pos = op->src_pos()->as_register();
2112  Register dst_pos = op->dst_pos()->as_register();
2113  Register length  = op->length()->as_register();
2114  Register tmp = op->tmp()->as_register();
2115  Register tmp2 = O7;
2116
2117  int flags = op->flags();
2118  ciArrayKlass* default_type = op->expected_type();
2119  BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL;
2120  if (basic_type == T_ARRAY) basic_type = T_OBJECT;
2121
2122#ifdef _LP64
2123  // higher 32bits must be null
2124  __ sra(dst_pos, 0, dst_pos);
2125  __ sra(src_pos, 0, src_pos);
2126  __ sra(length, 0, length);
2127#endif
2128
2129  // set up the arraycopy stub information
2130  ArrayCopyStub* stub = op->stub();
2131
2132  // always do stub if no type information is available.  it's ok if
2133  // the known type isn't loaded since the code sanity checks
2134  // in debug mode and the type isn't required when we know the exact type
2135  // also check that the type is an array type.
2136  if (op->expected_type() == NULL) {
2137    __ mov(src,     O0);
2138    __ mov(src_pos, O1);
2139    __ mov(dst,     O2);
2140    __ mov(dst_pos, O3);
2141    __ mov(length,  O4);
2142    address copyfunc_addr = StubRoutines::generic_arraycopy();
2143
2144    if (copyfunc_addr == NULL) { // Use C version if stub was not generated
2145      __ call_VM_leaf(tmp, CAST_FROM_FN_PTR(address, Runtime1::arraycopy));
2146    } else {
2147#ifndef PRODUCT
2148      if (PrintC1Statistics) {
2149        address counter = (address)&Runtime1::_generic_arraycopystub_cnt;
2150        __ inc_counter(counter, G1, G3);
2151      }
2152#endif
2153      __ call_VM_leaf(tmp, copyfunc_addr);
2154    }
2155
2156    if (copyfunc_addr != NULL) {
2157      __ xor3(O0, -1, tmp);
2158      __ sub(length, tmp, length);
2159      __ add(src_pos, tmp, src_pos);
2160      __ cmp_zero_and_br(Assembler::less, O0, *stub->entry());
2161      __ delayed()->add(dst_pos, tmp, dst_pos);
2162    } else {
2163      __ cmp_zero_and_br(Assembler::less, O0, *stub->entry());
2164      __ delayed()->nop();
2165    }
2166    __ bind(*stub->continuation());
2167    return;
2168  }
2169
2170  assert(default_type != NULL && default_type->is_array_klass(), "must be true at this point");
2171
2172  // make sure src and dst are non-null and load array length
2173  if (flags & LIR_OpArrayCopy::src_null_check) {
2174    __ tst(src);
2175    __ brx(Assembler::equal, false, Assembler::pn, *stub->entry());
2176    __ delayed()->nop();
2177  }
2178
2179  if (flags & LIR_OpArrayCopy::dst_null_check) {
2180    __ tst(dst);
2181    __ brx(Assembler::equal, false, Assembler::pn, *stub->entry());
2182    __ delayed()->nop();
2183  }
2184
2185  if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
2186    // test src_pos register
2187    __ cmp_zero_and_br(Assembler::less, src_pos, *stub->entry());
2188    __ delayed()->nop();
2189  }
2190
2191  if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
2192    // test dst_pos register
2193    __ cmp_zero_and_br(Assembler::less, dst_pos, *stub->entry());
2194    __ delayed()->nop();
2195  }
2196
2197  if (flags & LIR_OpArrayCopy::length_positive_check) {
2198    // make sure length isn't negative
2199    __ cmp_zero_and_br(Assembler::less, length, *stub->entry());
2200    __ delayed()->nop();
2201  }
2202
2203  if (flags & LIR_OpArrayCopy::src_range_check) {
2204    __ ld(src, arrayOopDesc::length_offset_in_bytes(), tmp2);
2205    __ add(length, src_pos, tmp);
2206    __ cmp(tmp2, tmp);
2207    __ br(Assembler::carrySet, false, Assembler::pn, *stub->entry());
2208    __ delayed()->nop();
2209  }
2210
2211  if (flags & LIR_OpArrayCopy::dst_range_check) {
2212    __ ld(dst, arrayOopDesc::length_offset_in_bytes(), tmp2);
2213    __ add(length, dst_pos, tmp);
2214    __ cmp(tmp2, tmp);
2215    __ br(Assembler::carrySet, false, Assembler::pn, *stub->entry());
2216    __ delayed()->nop();
2217  }
2218
2219  int shift = shift_amount(basic_type);
2220
2221  if (flags & LIR_OpArrayCopy::type_check) {
2222    // We don't know the array types are compatible
2223    if (basic_type != T_OBJECT) {
2224      // Simple test for basic type arrays
2225      if (UseCompressedKlassPointers) {
2226        // We don't need decode because we just need to compare
2227        __ lduw(src, oopDesc::klass_offset_in_bytes(), tmp);
2228        __ lduw(dst, oopDesc::klass_offset_in_bytes(), tmp2);
2229        __ cmp(tmp, tmp2);
2230        __ br(Assembler::notEqual, false, Assembler::pt, *stub->entry());
2231      } else {
2232        __ ld_ptr(src, oopDesc::klass_offset_in_bytes(), tmp);
2233        __ ld_ptr(dst, oopDesc::klass_offset_in_bytes(), tmp2);
2234        __ cmp(tmp, tmp2);
2235        __ brx(Assembler::notEqual, false, Assembler::pt, *stub->entry());
2236      }
2237      __ delayed()->nop();
2238    } else {
2239      // For object arrays, if src is a sub class of dst then we can
2240      // safely do the copy.
2241      address copyfunc_addr = StubRoutines::checkcast_arraycopy();
2242
2243      Label cont, slow;
2244      assert_different_registers(tmp, tmp2, G3, G1);
2245
2246      __ load_klass(src, G3);
2247      __ load_klass(dst, G1);
2248
2249      __ check_klass_subtype_fast_path(G3, G1, tmp, tmp2, &cont, copyfunc_addr == NULL ? stub->entry() : &slow, NULL);
2250
2251      __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
2252      __ delayed()->nop();
2253
2254      __ cmp(G3, 0);
2255      if (copyfunc_addr != NULL) { // use stub if available
2256        // src is not a sub class of dst so we have to do a
2257        // per-element check.
2258        __ br(Assembler::notEqual, false, Assembler::pt, cont);
2259        __ delayed()->nop();
2260
2261        __ bind(slow);
2262
2263        int mask = LIR_OpArrayCopy::src_objarray|LIR_OpArrayCopy::dst_objarray;
2264        if ((flags & mask) != mask) {
2265          // Check that at least both of them object arrays.
2266          assert(flags & mask, "one of the two should be known to be an object array");
2267
2268          if (!(flags & LIR_OpArrayCopy::src_objarray)) {
2269            __ load_klass(src, tmp);
2270          } else if (!(flags & LIR_OpArrayCopy::dst_objarray)) {
2271            __ load_klass(dst, tmp);
2272          }
2273          int lh_offset = in_bytes(Klass::layout_helper_offset());
2274
2275          __ lduw(tmp, lh_offset, tmp2);
2276
2277          jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
2278          __ set(objArray_lh, tmp);
2279          __ cmp(tmp, tmp2);
2280          __ br(Assembler::notEqual, false, Assembler::pt,  *stub->entry());
2281          __ delayed()->nop();
2282        }
2283
2284        Register src_ptr = O0;
2285        Register dst_ptr = O1;
2286        Register len     = O2;
2287        Register chk_off = O3;
2288        Register super_k = O4;
2289
2290        __ add(src, arrayOopDesc::base_offset_in_bytes(basic_type), src_ptr);
2291        if (shift == 0) {
2292          __ add(src_ptr, src_pos, src_ptr);
2293        } else {
2294          __ sll(src_pos, shift, tmp);
2295          __ add(src_ptr, tmp, src_ptr);
2296        }
2297
2298        __ add(dst, arrayOopDesc::base_offset_in_bytes(basic_type), dst_ptr);
2299        if (shift == 0) {
2300          __ add(dst_ptr, dst_pos, dst_ptr);
2301        } else {
2302          __ sll(dst_pos, shift, tmp);
2303          __ add(dst_ptr, tmp, dst_ptr);
2304        }
2305        __ mov(length, len);
2306        __ load_klass(dst, tmp);
2307
2308        int ek_offset = in_bytes(ObjArrayKlass::element_klass_offset());
2309        __ ld_ptr(tmp, ek_offset, super_k);
2310
2311        int sco_offset = in_bytes(Klass::super_check_offset_offset());
2312        __ lduw(super_k, sco_offset, chk_off);
2313
2314        __ call_VM_leaf(tmp, copyfunc_addr);
2315
2316#ifndef PRODUCT
2317        if (PrintC1Statistics) {
2318          Label failed;
2319          __ br_notnull_short(O0, Assembler::pn, failed);
2320          __ inc_counter((address)&Runtime1::_arraycopy_checkcast_cnt, G1, G3);
2321          __ bind(failed);
2322        }
2323#endif
2324
2325        __ br_null(O0, false, Assembler::pt,  *stub->continuation());
2326        __ delayed()->xor3(O0, -1, tmp);
2327
2328#ifndef PRODUCT
2329        if (PrintC1Statistics) {
2330          __ inc_counter((address)&Runtime1::_arraycopy_checkcast_attempt_cnt, G1, G3);
2331        }
2332#endif
2333
2334        __ sub(length, tmp, length);
2335        __ add(src_pos, tmp, src_pos);
2336        __ br(Assembler::always, false, Assembler::pt, *stub->entry());
2337        __ delayed()->add(dst_pos, tmp, dst_pos);
2338
2339        __ bind(cont);
2340      } else {
2341        __ br(Assembler::equal, false, Assembler::pn, *stub->entry());
2342        __ delayed()->nop();
2343        __ bind(cont);
2344      }
2345    }
2346  }
2347
2348#ifdef ASSERT
2349  if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
2350    // Sanity check the known type with the incoming class.  For the
2351    // primitive case the types must match exactly with src.klass and
2352    // dst.klass each exactly matching the default type.  For the
2353    // object array case, if no type check is needed then either the
2354    // dst type is exactly the expected type and the src type is a
2355    // subtype which we can't check or src is the same array as dst
2356    // but not necessarily exactly of type default_type.
2357    Label known_ok, halt;
2358    metadata2reg(op->expected_type()->constant_encoding(), tmp);
2359    if (UseCompressedKlassPointers) {
2360      // tmp holds the default type. It currently comes uncompressed after the
2361      // load of a constant, so encode it.
2362      __ encode_klass_not_null(tmp);
2363      // load the raw value of the dst klass, since we will be comparing
2364      // uncompressed values directly.
2365      __ lduw(dst, oopDesc::klass_offset_in_bytes(), tmp2);
2366      if (basic_type != T_OBJECT) {
2367        __ cmp(tmp, tmp2);
2368        __ br(Assembler::notEqual, false, Assembler::pn, halt);
2369        // load the raw value of the src klass.
2370        __ delayed()->lduw(src, oopDesc::klass_offset_in_bytes(), tmp2);
2371        __ cmp_and_br_short(tmp, tmp2, Assembler::equal, Assembler::pn, known_ok);
2372      } else {
2373        __ cmp(tmp, tmp2);
2374        __ br(Assembler::equal, false, Assembler::pn, known_ok);
2375        __ delayed()->cmp(src, dst);
2376        __ brx(Assembler::equal, false, Assembler::pn, known_ok);
2377        __ delayed()->nop();
2378      }
2379    } else {
2380      __ ld_ptr(dst, oopDesc::klass_offset_in_bytes(), tmp2);
2381      if (basic_type != T_OBJECT) {
2382        __ cmp(tmp, tmp2);
2383        __ brx(Assembler::notEqual, false, Assembler::pn, halt);
2384        __ delayed()->ld_ptr(src, oopDesc::klass_offset_in_bytes(), tmp2);
2385        __ cmp_and_brx_short(tmp, tmp2, Assembler::equal, Assembler::pn, known_ok);
2386      } else {
2387        __ cmp(tmp, tmp2);
2388        __ brx(Assembler::equal, false, Assembler::pn, known_ok);
2389        __ delayed()->cmp(src, dst);
2390        __ brx(Assembler::equal, false, Assembler::pn, known_ok);
2391        __ delayed()->nop();
2392      }
2393    }
2394    __ bind(halt);
2395    __ stop("incorrect type information in arraycopy");
2396    __ bind(known_ok);
2397  }
2398#endif
2399
2400#ifndef PRODUCT
2401  if (PrintC1Statistics) {
2402    address counter = Runtime1::arraycopy_count_address(basic_type);
2403    __ inc_counter(counter, G1, G3);
2404  }
2405#endif
2406
2407  Register src_ptr = O0;
2408  Register dst_ptr = O1;
2409  Register len     = O2;
2410
2411  __ add(src, arrayOopDesc::base_offset_in_bytes(basic_type), src_ptr);
2412  if (shift == 0) {
2413    __ add(src_ptr, src_pos, src_ptr);
2414  } else {
2415    __ sll(src_pos, shift, tmp);
2416    __ add(src_ptr, tmp, src_ptr);
2417  }
2418
2419  __ add(dst, arrayOopDesc::base_offset_in_bytes(basic_type), dst_ptr);
2420  if (shift == 0) {
2421    __ add(dst_ptr, dst_pos, dst_ptr);
2422  } else {
2423    __ sll(dst_pos, shift, tmp);
2424    __ add(dst_ptr, tmp, dst_ptr);
2425  }
2426
2427  bool disjoint = (flags & LIR_OpArrayCopy::overlapping) == 0;
2428  bool aligned = (flags & LIR_OpArrayCopy::unaligned) == 0;
2429  const char *name;
2430  address entry = StubRoutines::select_arraycopy_function(basic_type, aligned, disjoint, name, false);
2431
2432  // arraycopy stubs takes a length in number of elements, so don't scale it.
2433  __ mov(length, len);
2434  __ call_VM_leaf(tmp, entry);
2435
2436  __ bind(*stub->continuation());
2437}
2438
2439
2440void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
2441  if (dest->is_single_cpu()) {
2442#ifdef _LP64
2443    if (left->type() == T_OBJECT) {
2444      switch (code) {
2445        case lir_shl:  __ sllx  (left->as_register(), count->as_register(), dest->as_register()); break;
2446        case lir_shr:  __ srax  (left->as_register(), count->as_register(), dest->as_register()); break;
2447        case lir_ushr: __ srl   (left->as_register(), count->as_register(), dest->as_register()); break;
2448        default: ShouldNotReachHere();
2449      }
2450    } else
2451#endif
2452      switch (code) {
2453        case lir_shl:  __ sll   (left->as_register(), count->as_register(), dest->as_register()); break;
2454        case lir_shr:  __ sra   (left->as_register(), count->as_register(), dest->as_register()); break;
2455        case lir_ushr: __ srl   (left->as_register(), count->as_register(), dest->as_register()); break;
2456        default: ShouldNotReachHere();
2457      }
2458  } else {
2459#ifdef _LP64
2460    switch (code) {
2461      case lir_shl:  __ sllx  (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
2462      case lir_shr:  __ srax  (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
2463      case lir_ushr: __ srlx  (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
2464      default: ShouldNotReachHere();
2465    }
2466#else
2467    switch (code) {
2468      case lir_shl:  __ lshl  (left->as_register_hi(), left->as_register_lo(), count->as_register(), dest->as_register_hi(), dest->as_register_lo(), G3_scratch); break;
2469      case lir_shr:  __ lshr  (left->as_register_hi(), left->as_register_lo(), count->as_register(), dest->as_register_hi(), dest->as_register_lo(), G3_scratch); break;
2470      case lir_ushr: __ lushr (left->as_register_hi(), left->as_register_lo(), count->as_register(), dest->as_register_hi(), dest->as_register_lo(), G3_scratch); break;
2471      default: ShouldNotReachHere();
2472    }
2473#endif
2474  }
2475}
2476
2477
2478void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
2479#ifdef _LP64
2480  if (left->type() == T_OBJECT) {
2481    count = count & 63;  // shouldn't shift by more than sizeof(intptr_t)
2482    Register l = left->as_register();
2483    Register d = dest->as_register_lo();
2484    switch (code) {
2485      case lir_shl:  __ sllx  (l, count, d); break;
2486      case lir_shr:  __ srax  (l, count, d); break;
2487      case lir_ushr: __ srlx  (l, count, d); break;
2488      default: ShouldNotReachHere();
2489    }
2490    return;
2491  }
2492#endif
2493
2494  if (dest->is_single_cpu()) {
2495    count = count & 0x1F; // Java spec
2496    switch (code) {
2497      case lir_shl:  __ sll   (left->as_register(), count, dest->as_register()); break;
2498      case lir_shr:  __ sra   (left->as_register(), count, dest->as_register()); break;
2499      case lir_ushr: __ srl   (left->as_register(), count, dest->as_register()); break;
2500      default: ShouldNotReachHere();
2501    }
2502  } else if (dest->is_double_cpu()) {
2503    count = count & 63; // Java spec
2504    switch (code) {
2505      case lir_shl:  __ sllx  (left->as_pointer_register(), count, dest->as_pointer_register()); break;
2506      case lir_shr:  __ srax  (left->as_pointer_register(), count, dest->as_pointer_register()); break;
2507      case lir_ushr: __ srlx  (left->as_pointer_register(), count, dest->as_pointer_register()); break;
2508      default: ShouldNotReachHere();
2509    }
2510  } else {
2511    ShouldNotReachHere();
2512  }
2513}
2514
2515
2516void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
2517  assert(op->tmp1()->as_register()  == G1 &&
2518         op->tmp2()->as_register()  == G3 &&
2519         op->tmp3()->as_register()  == G4 &&
2520         op->obj()->as_register()   == O0 &&
2521         op->klass()->as_register() == G5, "must be");
2522  if (op->init_check()) {
2523    __ ldub(op->klass()->as_register(),
2524          in_bytes(InstanceKlass::init_state_offset()),
2525          op->tmp1()->as_register());
2526    add_debug_info_for_null_check_here(op->stub()->info());
2527    __ cmp(op->tmp1()->as_register(), InstanceKlass::fully_initialized);
2528    __ br(Assembler::notEqual, false, Assembler::pn, *op->stub()->entry());
2529    __ delayed()->nop();
2530  }
2531  __ allocate_object(op->obj()->as_register(),
2532                     op->tmp1()->as_register(),
2533                     op->tmp2()->as_register(),
2534                     op->tmp3()->as_register(),
2535                     op->header_size(),
2536                     op->object_size(),
2537                     op->klass()->as_register(),
2538                     *op->stub()->entry());
2539  __ bind(*op->stub()->continuation());
2540  __ verify_oop(op->obj()->as_register());
2541}
2542
2543
2544void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
2545  assert(op->tmp1()->as_register()  == G1 &&
2546         op->tmp2()->as_register()  == G3 &&
2547         op->tmp3()->as_register()  == G4 &&
2548         op->tmp4()->as_register()  == O1 &&
2549         op->klass()->as_register() == G5, "must be");
2550
2551  LP64_ONLY( __ signx(op->len()->as_register()); )
2552  if (UseSlowPath ||
2553      (!UseFastNewObjectArray && (op->type() == T_OBJECT || op->type() == T_ARRAY)) ||
2554      (!UseFastNewTypeArray   && (op->type() != T_OBJECT && op->type() != T_ARRAY))) {
2555    __ br(Assembler::always, false, Assembler::pt, *op->stub()->entry());
2556    __ delayed()->nop();
2557  } else {
2558    __ allocate_array(op->obj()->as_register(),
2559                      op->len()->as_register(),
2560                      op->tmp1()->as_register(),
2561                      op->tmp2()->as_register(),
2562                      op->tmp3()->as_register(),
2563                      arrayOopDesc::header_size(op->type()),
2564                      type2aelembytes(op->type()),
2565                      op->klass()->as_register(),
2566                      *op->stub()->entry());
2567  }
2568  __ bind(*op->stub()->continuation());
2569}
2570
2571
2572void LIR_Assembler::type_profile_helper(Register mdo, int mdo_offset_bias,
2573                                        ciMethodData *md, ciProfileData *data,
2574                                        Register recv, Register tmp1, Label* update_done) {
2575  uint i;
2576  for (i = 0; i < VirtualCallData::row_limit(); i++) {
2577    Label next_test;
2578    // See if the receiver is receiver[n].
2579    Address receiver_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)) -
2580                          mdo_offset_bias);
2581    __ ld_ptr(receiver_addr, tmp1);
2582    __ verify_oop(tmp1);
2583    __ cmp_and_brx_short(recv, tmp1, Assembler::notEqual, Assembler::pt, next_test);
2584    Address data_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)) -
2585                      mdo_offset_bias);
2586    __ ld_ptr(data_addr, tmp1);
2587    __ add(tmp1, DataLayout::counter_increment, tmp1);
2588    __ st_ptr(tmp1, data_addr);
2589    __ ba(*update_done);
2590    __ delayed()->nop();
2591    __ bind(next_test);
2592  }
2593
2594  // Didn't find receiver; find next empty slot and fill it in
2595  for (i = 0; i < VirtualCallData::row_limit(); i++) {
2596    Label next_test;
2597    Address recv_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)) -
2598                      mdo_offset_bias);
2599    __ ld_ptr(recv_addr, tmp1);
2600    __ br_notnull_short(tmp1, Assembler::pt, next_test);
2601    __ st_ptr(recv, recv_addr);
2602    __ set(DataLayout::counter_increment, tmp1);
2603    __ st_ptr(tmp1, mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)) -
2604              mdo_offset_bias);
2605    __ ba(*update_done);
2606    __ delayed()->nop();
2607    __ bind(next_test);
2608  }
2609}
2610
2611
2612void LIR_Assembler::setup_md_access(ciMethod* method, int bci,
2613                                    ciMethodData*& md, ciProfileData*& data, int& mdo_offset_bias) {
2614  md = method->method_data_or_null();
2615  assert(md != NULL, "Sanity");
2616  data = md->bci_to_data(bci);
2617  assert(data != NULL,       "need data for checkcast");
2618  assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
2619  if (!Assembler::is_simm13(md->byte_offset_of_slot(data, DataLayout::header_offset()) + data->size_in_bytes())) {
2620    // The offset is large so bias the mdo by the base of the slot so
2621    // that the ld can use simm13s to reference the slots of the data
2622    mdo_offset_bias = md->byte_offset_of_slot(data, DataLayout::header_offset());
2623  }
2624}
2625
2626void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) {
2627  // we always need a stub for the failure case.
2628  CodeStub* stub = op->stub();
2629  Register obj = op->object()->as_register();
2630  Register k_RInfo = op->tmp1()->as_register();
2631  Register klass_RInfo = op->tmp2()->as_register();
2632  Register dst = op->result_opr()->as_register();
2633  Register Rtmp1 = op->tmp3()->as_register();
2634  ciKlass* k = op->klass();
2635
2636
2637  if (obj == k_RInfo) {
2638    k_RInfo = klass_RInfo;
2639    klass_RInfo = obj;
2640  }
2641
2642  ciMethodData* md;
2643  ciProfileData* data;
2644  int mdo_offset_bias = 0;
2645  if (op->should_profile()) {
2646    ciMethod* method = op->profiled_method();
2647    assert(method != NULL, "Should have method");
2648    setup_md_access(method, op->profiled_bci(), md, data, mdo_offset_bias);
2649
2650    Label not_null;
2651    __ br_notnull_short(obj, Assembler::pn, not_null);
2652    Register mdo      = k_RInfo;
2653    Register data_val = Rtmp1;
2654    metadata2reg(md->constant_encoding(), mdo);
2655    if (mdo_offset_bias > 0) {
2656      __ set(mdo_offset_bias, data_val);
2657      __ add(mdo, data_val, mdo);
2658    }
2659    Address flags_addr(mdo, md->byte_offset_of_slot(data, DataLayout::flags_offset()) - mdo_offset_bias);
2660    __ ldub(flags_addr, data_val);
2661    __ or3(data_val, BitData::null_seen_byte_constant(), data_val);
2662    __ stb(data_val, flags_addr);
2663    __ ba(*obj_is_null);
2664    __ delayed()->nop();
2665    __ bind(not_null);
2666  } else {
2667    __ br_null(obj, false, Assembler::pn, *obj_is_null);
2668    __ delayed()->nop();
2669  }
2670
2671  Label profile_cast_failure, profile_cast_success;
2672  Label *failure_target = op->should_profile() ? &profile_cast_failure : failure;
2673  Label *success_target = op->should_profile() ? &profile_cast_success : success;
2674
2675  // patching may screw with our temporaries on sparc,
2676  // so let's do it before loading the class
2677  if (k->is_loaded()) {
2678    metadata2reg(k->constant_encoding(), k_RInfo);
2679  } else {
2680    klass2reg_with_patching(k_RInfo, op->info_for_patch());
2681  }
2682  assert(obj != k_RInfo, "must be different");
2683
2684  // get object class
2685  // not a safepoint as obj null check happens earlier
2686  __ load_klass(obj, klass_RInfo);
2687  if (op->fast_check()) {
2688    assert_different_registers(klass_RInfo, k_RInfo);
2689    __ cmp(k_RInfo, klass_RInfo);
2690    __ brx(Assembler::notEqual, false, Assembler::pt, *failure_target);
2691    __ delayed()->nop();
2692  } else {
2693    bool need_slow_path = true;
2694    if (k->is_loaded()) {
2695      if ((int) k->super_check_offset() != in_bytes(Klass::secondary_super_cache_offset()))
2696        need_slow_path = false;
2697      // perform the fast part of the checking logic
2698      __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, noreg,
2699                                       (need_slow_path ? success_target : NULL),
2700                                       failure_target, NULL,
2701                                       RegisterOrConstant(k->super_check_offset()));
2702    } else {
2703      // perform the fast part of the checking logic
2704      __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, O7, success_target,
2705                                       failure_target, NULL);
2706    }
2707    if (need_slow_path) {
2708      // call out-of-line instance of __ check_klass_subtype_slow_path(...):
2709      assert(klass_RInfo == G3 && k_RInfo == G1, "incorrect call setup");
2710      __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
2711      __ delayed()->nop();
2712      __ cmp(G3, 0);
2713      __ br(Assembler::equal, false, Assembler::pn, *failure_target);
2714      __ delayed()->nop();
2715      // Fall through to success case
2716    }
2717  }
2718
2719  if (op->should_profile()) {
2720    Register mdo  = klass_RInfo, recv = k_RInfo, tmp1 = Rtmp1;
2721    assert_different_registers(obj, mdo, recv, tmp1);
2722    __ bind(profile_cast_success);
2723    metadata2reg(md->constant_encoding(), mdo);
2724    if (mdo_offset_bias > 0) {
2725      __ set(mdo_offset_bias, tmp1);
2726      __ add(mdo, tmp1, mdo);
2727    }
2728    __ load_klass(obj, recv);
2729    type_profile_helper(mdo, mdo_offset_bias, md, data, recv, tmp1, success);
2730    // Jump over the failure case
2731    __ ba(*success);
2732    __ delayed()->nop();
2733    // Cast failure case
2734    __ bind(profile_cast_failure);
2735    metadata2reg(md->constant_encoding(), mdo);
2736    if (mdo_offset_bias > 0) {
2737      __ set(mdo_offset_bias, tmp1);
2738      __ add(mdo, tmp1, mdo);
2739    }
2740    Address data_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias);
2741    __ ld_ptr(data_addr, tmp1);
2742    __ sub(tmp1, DataLayout::counter_increment, tmp1);
2743    __ st_ptr(tmp1, data_addr);
2744    __ ba(*failure);
2745    __ delayed()->nop();
2746  }
2747  __ ba(*success);
2748  __ delayed()->nop();
2749}
2750
2751void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
2752  LIR_Code code = op->code();
2753  if (code == lir_store_check) {
2754    Register value = op->object()->as_register();
2755    Register array = op->array()->as_register();
2756    Register k_RInfo = op->tmp1()->as_register();
2757    Register klass_RInfo = op->tmp2()->as_register();
2758    Register Rtmp1 = op->tmp3()->as_register();
2759
2760    __ verify_oop(value);
2761    CodeStub* stub = op->stub();
2762    // check if it needs to be profiled
2763    ciMethodData* md;
2764    ciProfileData* data;
2765    int mdo_offset_bias = 0;
2766    if (op->should_profile()) {
2767      ciMethod* method = op->profiled_method();
2768      assert(method != NULL, "Should have method");
2769      setup_md_access(method, op->profiled_bci(), md, data, mdo_offset_bias);
2770    }
2771    Label profile_cast_success, profile_cast_failure, done;
2772    Label *success_target = op->should_profile() ? &profile_cast_success : &done;
2773    Label *failure_target = op->should_profile() ? &profile_cast_failure : stub->entry();
2774
2775    if (op->should_profile()) {
2776      Label not_null;
2777      __ br_notnull_short(value, Assembler::pn, not_null);
2778      Register mdo      = k_RInfo;
2779      Register data_val = Rtmp1;
2780      metadata2reg(md->constant_encoding(), mdo);
2781      if (mdo_offset_bias > 0) {
2782        __ set(mdo_offset_bias, data_val);
2783        __ add(mdo, data_val, mdo);
2784      }
2785      Address flags_addr(mdo, md->byte_offset_of_slot(data, DataLayout::flags_offset()) - mdo_offset_bias);
2786      __ ldub(flags_addr, data_val);
2787      __ or3(data_val, BitData::null_seen_byte_constant(), data_val);
2788      __ stb(data_val, flags_addr);
2789      __ ba_short(done);
2790      __ bind(not_null);
2791    } else {
2792      __ br_null_short(value, Assembler::pn, done);
2793    }
2794    add_debug_info_for_null_check_here(op->info_for_exception());
2795    __ load_klass(array, k_RInfo);
2796    __ load_klass(value, klass_RInfo);
2797
2798    // get instance klass
2799    __ ld_ptr(Address(k_RInfo, ObjArrayKlass::element_klass_offset()), k_RInfo);
2800    // perform the fast part of the checking logic
2801    __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, O7, success_target, failure_target, NULL);
2802
2803    // call out-of-line instance of __ check_klass_subtype_slow_path(...):
2804    assert(klass_RInfo == G3 && k_RInfo == G1, "incorrect call setup");
2805    __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
2806    __ delayed()->nop();
2807    __ cmp(G3, 0);
2808    __ br(Assembler::equal, false, Assembler::pn, *failure_target);
2809    __ delayed()->nop();
2810    // fall through to the success case
2811
2812    if (op->should_profile()) {
2813      Register mdo  = klass_RInfo, recv = k_RInfo, tmp1 = Rtmp1;
2814      assert_different_registers(value, mdo, recv, tmp1);
2815      __ bind(profile_cast_success);
2816      metadata2reg(md->constant_encoding(), mdo);
2817      if (mdo_offset_bias > 0) {
2818        __ set(mdo_offset_bias, tmp1);
2819        __ add(mdo, tmp1, mdo);
2820      }
2821      __ load_klass(value, recv);
2822      type_profile_helper(mdo, mdo_offset_bias, md, data, recv, tmp1, &done);
2823      __ ba_short(done);
2824      // Cast failure case
2825      __ bind(profile_cast_failure);
2826      metadata2reg(md->constant_encoding(), mdo);
2827      if (mdo_offset_bias > 0) {
2828        __ set(mdo_offset_bias, tmp1);
2829        __ add(mdo, tmp1, mdo);
2830      }
2831      Address data_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias);
2832      __ ld_ptr(data_addr, tmp1);
2833      __ sub(tmp1, DataLayout::counter_increment, tmp1);
2834      __ st_ptr(tmp1, data_addr);
2835      __ ba(*stub->entry());
2836      __ delayed()->nop();
2837    }
2838    __ bind(done);
2839  } else if (code == lir_checkcast) {
2840    Register obj = op->object()->as_register();
2841    Register dst = op->result_opr()->as_register();
2842    Label success;
2843    emit_typecheck_helper(op, &success, op->stub()->entry(), &success);
2844    __ bind(success);
2845    __ mov(obj, dst);
2846  } else if (code == lir_instanceof) {
2847    Register obj = op->object()->as_register();
2848    Register dst = op->result_opr()->as_register();
2849    Label success, failure, done;
2850    emit_typecheck_helper(op, &success, &failure, &failure);
2851    __ bind(failure);
2852    __ set(0, dst);
2853    __ ba_short(done);
2854    __ bind(success);
2855    __ set(1, dst);
2856    __ bind(done);
2857  } else {
2858    ShouldNotReachHere();
2859  }
2860
2861}
2862
2863
2864void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
2865  if (op->code() == lir_cas_long) {
2866    assert(VM_Version::supports_cx8(), "wrong machine");
2867    Register addr = op->addr()->as_pointer_register();
2868    Register cmp_value_lo = op->cmp_value()->as_register_lo();
2869    Register cmp_value_hi = op->cmp_value()->as_register_hi();
2870    Register new_value_lo = op->new_value()->as_register_lo();
2871    Register new_value_hi = op->new_value()->as_register_hi();
2872    Register t1 = op->tmp1()->as_register();
2873    Register t2 = op->tmp2()->as_register();
2874#ifdef _LP64
2875    __ mov(cmp_value_lo, t1);
2876    __ mov(new_value_lo, t2);
2877    // perform the compare and swap operation
2878    __ casx(addr, t1, t2);
2879    // generate condition code - if the swap succeeded, t2 ("new value" reg) was
2880    // overwritten with the original value in "addr" and will be equal to t1.
2881    __ cmp(t1, t2);
2882#else
2883    // move high and low halves of long values into single registers
2884    __ sllx(cmp_value_hi, 32, t1);         // shift high half into temp reg
2885    __ srl(cmp_value_lo, 0, cmp_value_lo); // clear upper 32 bits of low half
2886    __ or3(t1, cmp_value_lo, t1);          // t1 holds 64-bit compare value
2887    __ sllx(new_value_hi, 32, t2);
2888    __ srl(new_value_lo, 0, new_value_lo);
2889    __ or3(t2, new_value_lo, t2);          // t2 holds 64-bit value to swap
2890    // perform the compare and swap operation
2891    __ casx(addr, t1, t2);
2892    // generate condition code - if the swap succeeded, t2 ("new value" reg) was
2893    // overwritten with the original value in "addr" and will be equal to t1.
2894    // Produce icc flag for 32bit.
2895    __ sub(t1, t2, t2);
2896    __ srlx(t2, 32, t1);
2897    __ orcc(t2, t1, G0);
2898#endif
2899  } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj) {
2900    Register addr = op->addr()->as_pointer_register();
2901    Register cmp_value = op->cmp_value()->as_register();
2902    Register new_value = op->new_value()->as_register();
2903    Register t1 = op->tmp1()->as_register();
2904    Register t2 = op->tmp2()->as_register();
2905    __ mov(cmp_value, t1);
2906    __ mov(new_value, t2);
2907    if (op->code() == lir_cas_obj) {
2908      if (UseCompressedOops) {
2909        __ encode_heap_oop(t1);
2910        __ encode_heap_oop(t2);
2911        __ cas(addr, t1, t2);
2912      } else {
2913        __ cas_ptr(addr, t1, t2);
2914      }
2915    } else {
2916      __ cas(addr, t1, t2);
2917    }
2918    __ cmp(t1, t2);
2919  } else {
2920    Unimplemented();
2921  }
2922}
2923
2924void LIR_Assembler::set_24bit_FPU() {
2925  Unimplemented();
2926}
2927
2928
2929void LIR_Assembler::reset_FPU() {
2930  Unimplemented();
2931}
2932
2933
2934void LIR_Assembler::breakpoint() {
2935  __ breakpoint_trap();
2936}
2937
2938
2939void LIR_Assembler::push(LIR_Opr opr) {
2940  Unimplemented();
2941}
2942
2943
2944void LIR_Assembler::pop(LIR_Opr opr) {
2945  Unimplemented();
2946}
2947
2948
2949void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst_opr) {
2950  Address mon_addr = frame_map()->address_for_monitor_lock(monitor_no);
2951  Register dst = dst_opr->as_register();
2952  Register reg = mon_addr.base();
2953  int offset = mon_addr.disp();
2954  // compute pointer to BasicLock
2955  if (mon_addr.is_simm13()) {
2956    __ add(reg, offset, dst);
2957  } else {
2958    __ set(offset, dst);
2959    __ add(dst, reg, dst);
2960  }
2961}
2962
2963
2964void LIR_Assembler::emit_lock(LIR_OpLock* op) {
2965  Register obj = op->obj_opr()->as_register();
2966  Register hdr = op->hdr_opr()->as_register();
2967  Register lock = op->lock_opr()->as_register();
2968
2969  // obj may not be an oop
2970  if (op->code() == lir_lock) {
2971    MonitorEnterStub* stub = (MonitorEnterStub*)op->stub();
2972    if (UseFastLocking) {
2973      assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
2974      // add debug info for NullPointerException only if one is possible
2975      if (op->info() != NULL) {
2976        add_debug_info_for_null_check_here(op->info());
2977      }
2978      __ lock_object(hdr, obj, lock, op->scratch_opr()->as_register(), *op->stub()->entry());
2979    } else {
2980      // always do slow locking
2981      // note: the slow locking code could be inlined here, however if we use
2982      //       slow locking, speed doesn't matter anyway and this solution is
2983      //       simpler and requires less duplicated code - additionally, the
2984      //       slow locking code is the same in either case which simplifies
2985      //       debugging
2986      __ br(Assembler::always, false, Assembler::pt, *op->stub()->entry());
2987      __ delayed()->nop();
2988    }
2989  } else {
2990    assert (op->code() == lir_unlock, "Invalid code, expected lir_unlock");
2991    if (UseFastLocking) {
2992      assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
2993      __ unlock_object(hdr, obj, lock, *op->stub()->entry());
2994    } else {
2995      // always do slow unlocking
2996      // note: the slow unlocking code could be inlined here, however if we use
2997      //       slow unlocking, speed doesn't matter anyway and this solution is
2998      //       simpler and requires less duplicated code - additionally, the
2999      //       slow unlocking code is the same in either case which simplifies
3000      //       debugging
3001      __ br(Assembler::always, false, Assembler::pt, *op->stub()->entry());
3002      __ delayed()->nop();
3003    }
3004  }
3005  __ bind(*op->stub()->continuation());
3006}
3007
3008
3009void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
3010  ciMethod* method = op->profiled_method();
3011  int bci          = op->profiled_bci();
3012  ciMethod* callee = op->profiled_callee();
3013
3014  // Update counter for all call types
3015  ciMethodData* md = method->method_data_or_null();
3016  assert(md != NULL, "Sanity");
3017  ciProfileData* data = md->bci_to_data(bci);
3018  assert(data->is_CounterData(), "need CounterData for calls");
3019  assert(op->mdo()->is_single_cpu(),  "mdo must be allocated");
3020  Register mdo  = op->mdo()->as_register();
3021#ifdef _LP64
3022  assert(op->tmp1()->is_double_cpu(), "tmp1 must be allocated");
3023  Register tmp1 = op->tmp1()->as_register_lo();
3024#else
3025  assert(op->tmp1()->is_single_cpu(), "tmp1 must be allocated");
3026  Register tmp1 = op->tmp1()->as_register();
3027#endif
3028  metadata2reg(md->constant_encoding(), mdo);
3029  int mdo_offset_bias = 0;
3030  if (!Assembler::is_simm13(md->byte_offset_of_slot(data, CounterData::count_offset()) +
3031                            data->size_in_bytes())) {
3032    // The offset is large so bias the mdo by the base of the slot so
3033    // that the ld can use simm13s to reference the slots of the data
3034    mdo_offset_bias = md->byte_offset_of_slot(data, CounterData::count_offset());
3035    __ set(mdo_offset_bias, O7);
3036    __ add(mdo, O7, mdo);
3037  }
3038
3039  Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias);
3040  Bytecodes::Code bc = method->java_code_at_bci(bci);
3041  const bool callee_is_static = callee->is_loaded() && callee->is_static();
3042  // Perform additional virtual call profiling for invokevirtual and
3043  // invokeinterface bytecodes
3044  if ((bc == Bytecodes::_invokevirtual || bc == Bytecodes::_invokeinterface) &&
3045      !callee_is_static &&  // required for optimized MH invokes
3046      C1ProfileVirtualCalls) {
3047    assert(op->recv()->is_single_cpu(), "recv must be allocated");
3048    Register recv = op->recv()->as_register();
3049    assert_different_registers(mdo, tmp1, recv);
3050    assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
3051    ciKlass* known_klass = op->known_holder();
3052    if (C1OptimizeVirtualCallProfiling && known_klass != NULL) {
3053      // We know the type that will be seen at this call site; we can
3054      // statically update the MethodData* rather than needing to do
3055      // dynamic tests on the receiver type
3056
3057      // NOTE: we should probably put a lock around this search to
3058      // avoid collisions by concurrent compilations
3059      ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
3060      uint i;
3061      for (i = 0; i < VirtualCallData::row_limit(); i++) {
3062        ciKlass* receiver = vc_data->receiver(i);
3063        if (known_klass->equals(receiver)) {
3064          Address data_addr(mdo, md->byte_offset_of_slot(data,
3065                                                         VirtualCallData::receiver_count_offset(i)) -
3066                            mdo_offset_bias);
3067          __ ld_ptr(data_addr, tmp1);
3068          __ add(tmp1, DataLayout::counter_increment, tmp1);
3069          __ st_ptr(tmp1, data_addr);
3070          return;
3071        }
3072      }
3073
3074      // Receiver type not found in profile data; select an empty slot
3075
3076      // Note that this is less efficient than it should be because it
3077      // always does a write to the receiver part of the
3078      // VirtualCallData rather than just the first time
3079      for (i = 0; i < VirtualCallData::row_limit(); i++) {
3080        ciKlass* receiver = vc_data->receiver(i);
3081        if (receiver == NULL) {
3082          Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)) -
3083                            mdo_offset_bias);
3084          metadata2reg(known_klass->constant_encoding(), tmp1);
3085          __ st_ptr(tmp1, recv_addr);
3086          Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)) -
3087                            mdo_offset_bias);
3088          __ ld_ptr(data_addr, tmp1);
3089          __ add(tmp1, DataLayout::counter_increment, tmp1);
3090          __ st_ptr(tmp1, data_addr);
3091          return;
3092        }
3093      }
3094    } else {
3095      __ load_klass(recv, recv);
3096      Label update_done;
3097      type_profile_helper(mdo, mdo_offset_bias, md, data, recv, tmp1, &update_done);
3098      // Receiver did not match any saved receiver and there is no empty row for it.
3099      // Increment total counter to indicate polymorphic case.
3100      __ ld_ptr(counter_addr, tmp1);
3101      __ add(tmp1, DataLayout::counter_increment, tmp1);
3102      __ st_ptr(tmp1, counter_addr);
3103
3104      __ bind(update_done);
3105    }
3106  } else {
3107    // Static call
3108    __ ld_ptr(counter_addr, tmp1);
3109    __ add(tmp1, DataLayout::counter_increment, tmp1);
3110    __ st_ptr(tmp1, counter_addr);
3111  }
3112}
3113
3114void LIR_Assembler::align_backward_branch_target() {
3115  __ align(OptoLoopAlignment);
3116}
3117
3118
3119void LIR_Assembler::emit_delay(LIR_OpDelay* op) {
3120  // make sure we are expecting a delay
3121  // this has the side effect of clearing the delay state
3122  // so we can use _masm instead of _masm->delayed() to do the
3123  // code generation.
3124  __ delayed();
3125
3126  // make sure we only emit one instruction
3127  int offset = code_offset();
3128  op->delay_op()->emit_code(this);
3129#ifdef ASSERT
3130  if (code_offset() - offset != NativeInstruction::nop_instruction_size) {
3131    op->delay_op()->print();
3132  }
3133  assert(code_offset() - offset == NativeInstruction::nop_instruction_size,
3134         "only one instruction can go in a delay slot");
3135#endif
3136
3137  // we may also be emitting the call info for the instruction
3138  // which we are the delay slot of.
3139  CodeEmitInfo* call_info = op->call_info();
3140  if (call_info) {
3141    add_call_info(code_offset(), call_info);
3142  }
3143
3144  if (VerifyStackAtCalls) {
3145    _masm->sub(FP, SP, O7);
3146    _masm->cmp(O7, initial_frame_size_in_bytes());
3147    _masm->trap(Assembler::notEqual, Assembler::ptr_cc, G0, ST_RESERVED_FOR_USER_0+2 );
3148  }
3149}
3150
3151
3152void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest) {
3153  assert(left->is_register(), "can only handle registers");
3154
3155  if (left->is_single_cpu()) {
3156    __ neg(left->as_register(), dest->as_register());
3157  } else if (left->is_single_fpu()) {
3158    __ fneg(FloatRegisterImpl::S, left->as_float_reg(), dest->as_float_reg());
3159  } else if (left->is_double_fpu()) {
3160    __ fneg(FloatRegisterImpl::D, left->as_double_reg(), dest->as_double_reg());
3161  } else {
3162    assert (left->is_double_cpu(), "Must be a long");
3163    Register Rlow = left->as_register_lo();
3164    Register Rhi = left->as_register_hi();
3165#ifdef _LP64
3166    __ sub(G0, Rlow, dest->as_register_lo());
3167#else
3168    __ subcc(G0, Rlow, dest->as_register_lo());
3169    __ subc (G0, Rhi,  dest->as_register_hi());
3170#endif
3171  }
3172}
3173
3174
3175void LIR_Assembler::fxch(int i) {
3176  Unimplemented();
3177}
3178
3179void LIR_Assembler::fld(int i) {
3180  Unimplemented();
3181}
3182
3183void LIR_Assembler::ffree(int i) {
3184  Unimplemented();
3185}
3186
3187void LIR_Assembler::rt_call(LIR_Opr result, address dest,
3188                            const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
3189
3190  // if tmp is invalid, then the function being called doesn't destroy the thread
3191  if (tmp->is_valid()) {
3192    __ save_thread(tmp->as_register());
3193  }
3194  __ call(dest, relocInfo::runtime_call_type);
3195  __ delayed()->nop();
3196  if (info != NULL) {
3197    add_call_info_here(info);
3198  }
3199  if (tmp->is_valid()) {
3200    __ restore_thread(tmp->as_register());
3201  }
3202
3203#ifdef ASSERT
3204  __ verify_thread();
3205#endif // ASSERT
3206}
3207
3208
3209void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
3210#ifdef _LP64
3211  ShouldNotReachHere();
3212#endif
3213
3214  NEEDS_CLEANUP;
3215  if (type == T_LONG) {
3216    LIR_Address* mem_addr = dest->is_address() ? dest->as_address_ptr() : src->as_address_ptr();
3217
3218    // (extended to allow indexed as well as constant displaced for JSR-166)
3219    Register idx = noreg; // contains either constant offset or index
3220
3221    int disp = mem_addr->disp();
3222    if (mem_addr->index() == LIR_OprFact::illegalOpr) {
3223      if (!Assembler::is_simm13(disp)) {
3224        idx = O7;
3225        __ set(disp, idx);
3226      }
3227    } else {
3228      assert(disp == 0, "not both indexed and disp");
3229      idx = mem_addr->index()->as_register();
3230    }
3231
3232    int null_check_offset = -1;
3233
3234    Register base = mem_addr->base()->as_register();
3235    if (src->is_register() && dest->is_address()) {
3236      // G4 is high half, G5 is low half
3237      if (VM_Version::v9_instructions_work()) {
3238        // clear the top bits of G5, and scale up G4
3239        __ srl (src->as_register_lo(),  0, G5);
3240        __ sllx(src->as_register_hi(), 32, G4);
3241        // combine the two halves into the 64 bits of G4
3242        __ or3(G4, G5, G4);
3243        null_check_offset = __ offset();
3244        if (idx == noreg) {
3245          __ stx(G4, base, disp);
3246        } else {
3247          __ stx(G4, base, idx);
3248        }
3249      } else {
3250        __ mov (src->as_register_hi(), G4);
3251        __ mov (src->as_register_lo(), G5);
3252        null_check_offset = __ offset();
3253        if (idx == noreg) {
3254          __ std(G4, base, disp);
3255        } else {
3256          __ std(G4, base, idx);
3257        }
3258      }
3259    } else if (src->is_address() && dest->is_register()) {
3260      null_check_offset = __ offset();
3261      if (VM_Version::v9_instructions_work()) {
3262        if (idx == noreg) {
3263          __ ldx(base, disp, G5);
3264        } else {
3265          __ ldx(base, idx, G5);
3266        }
3267        __ srax(G5, 32, dest->as_register_hi()); // fetch the high half into hi
3268        __ mov (G5, dest->as_register_lo());     // copy low half into lo
3269      } else {
3270        if (idx == noreg) {
3271          __ ldd(base, disp, G4);
3272        } else {
3273          __ ldd(base, idx, G4);
3274        }
3275        // G4 is high half, G5 is low half
3276        __ mov (G4, dest->as_register_hi());
3277        __ mov (G5, dest->as_register_lo());
3278      }
3279    } else {
3280      Unimplemented();
3281    }
3282    if (info != NULL) {
3283      add_debug_info_for_null_check(null_check_offset, info);
3284    }
3285
3286  } else {
3287    // use normal move for all other volatiles since they don't need
3288    // special handling to remain atomic.
3289    move_op(src, dest, type, lir_patch_none, info, false, false, false);
3290  }
3291}
3292
3293void LIR_Assembler::membar() {
3294  // only StoreLoad membars are ever explicitly needed on sparcs in TSO mode
3295  __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad) );
3296}
3297
3298void LIR_Assembler::membar_acquire() {
3299  // no-op on TSO
3300}
3301
3302void LIR_Assembler::membar_release() {
3303  // no-op on TSO
3304}
3305
3306void LIR_Assembler::membar_loadload() {
3307  // no-op
3308  //__ membar(Assembler::Membar_mask_bits(Assembler::loadload));
3309}
3310
3311void LIR_Assembler::membar_storestore() {
3312  // no-op
3313  //__ membar(Assembler::Membar_mask_bits(Assembler::storestore));
3314}
3315
3316void LIR_Assembler::membar_loadstore() {
3317  // no-op
3318  //__ membar(Assembler::Membar_mask_bits(Assembler::loadstore));
3319}
3320
3321void LIR_Assembler::membar_storeload() {
3322  __ membar(Assembler::Membar_mask_bits(Assembler::StoreLoad));
3323}
3324
3325
3326// Pack two sequential registers containing 32 bit values
3327// into a single 64 bit register.
3328// src and src->successor() are packed into dst
3329// src and dst may be the same register.
3330// Note: src is destroyed
3331void LIR_Assembler::pack64(LIR_Opr src, LIR_Opr dst) {
3332  Register rs = src->as_register();
3333  Register rd = dst->as_register_lo();
3334  __ sllx(rs, 32, rs);
3335  __ srl(rs->successor(), 0, rs->successor());
3336  __ or3(rs, rs->successor(), rd);
3337}
3338
3339// Unpack a 64 bit value in a register into
3340// two sequential registers.
3341// src is unpacked into dst and dst->successor()
3342void LIR_Assembler::unpack64(LIR_Opr src, LIR_Opr dst) {
3343  Register rs = src->as_register_lo();
3344  Register rd = dst->as_register_hi();
3345  assert_different_registers(rs, rd, rd->successor());
3346  __ srlx(rs, 32, rd);
3347  __ srl (rs,  0, rd->successor());
3348}
3349
3350
3351void LIR_Assembler::leal(LIR_Opr addr_opr, LIR_Opr dest) {
3352  LIR_Address* addr = addr_opr->as_address_ptr();
3353  assert(addr->index()->is_illegal() && addr->scale() == LIR_Address::times_1 && Assembler::is_simm13(addr->disp()), "can't handle complex addresses yet");
3354
3355  __ add(addr->base()->as_pointer_register(), addr->disp(), dest->as_pointer_register());
3356}
3357
3358
3359void LIR_Assembler::get_thread(LIR_Opr result_reg) {
3360  assert(result_reg->is_register(), "check");
3361  __ mov(G2_thread, result_reg->as_register());
3362}
3363
3364
3365void LIR_Assembler::peephole(LIR_List* lir) {
3366  LIR_OpList* inst = lir->instructions_list();
3367  for (int i = 0; i < inst->length(); i++) {
3368    LIR_Op* op = inst->at(i);
3369    switch (op->code()) {
3370      case lir_cond_float_branch:
3371      case lir_branch: {
3372        LIR_OpBranch* branch = op->as_OpBranch();
3373        assert(branch->info() == NULL, "shouldn't be state on branches anymore");
3374        LIR_Op* delay_op = NULL;
3375        // we'd like to be able to pull following instructions into
3376        // this slot but we don't know enough to do it safely yet so
3377        // only optimize block to block control flow.
3378        if (LIRFillDelaySlots && branch->block()) {
3379          LIR_Op* prev = inst->at(i - 1);
3380          if (prev && LIR_Assembler::is_single_instruction(prev) && prev->info() == NULL) {
3381            // swap previous instruction into delay slot
3382            inst->at_put(i - 1, op);
3383            inst->at_put(i, new LIR_OpDelay(prev, op->info()));
3384#ifndef PRODUCT
3385            if (LIRTracePeephole) {
3386              tty->print_cr("delayed");
3387              inst->at(i - 1)->print();
3388              inst->at(i)->print();
3389              tty->cr();
3390            }
3391#endif
3392            continue;
3393          }
3394        }
3395
3396        if (!delay_op) {
3397          delay_op = new LIR_OpDelay(new LIR_Op0(lir_nop), NULL);
3398        }
3399        inst->insert_before(i + 1, delay_op);
3400        break;
3401      }
3402      case lir_static_call:
3403      case lir_virtual_call:
3404      case lir_icvirtual_call:
3405      case lir_optvirtual_call:
3406      case lir_dynamic_call: {
3407        LIR_Op* prev = inst->at(i - 1);
3408        if (LIRFillDelaySlots && prev && prev->code() == lir_move && prev->info() == NULL &&
3409            (op->code() != lir_virtual_call ||
3410             !prev->result_opr()->is_single_cpu() ||
3411             prev->result_opr()->as_register() != O0) &&
3412            LIR_Assembler::is_single_instruction(prev)) {
3413          // Only moves without info can be put into the delay slot.
3414          // Also don't allow the setup of the receiver in the delay
3415          // slot for vtable calls.
3416          inst->at_put(i - 1, op);
3417          inst->at_put(i, new LIR_OpDelay(prev, op->info()));
3418#ifndef PRODUCT
3419          if (LIRTracePeephole) {
3420            tty->print_cr("delayed");
3421            inst->at(i - 1)->print();
3422            inst->at(i)->print();
3423            tty->cr();
3424          }
3425#endif
3426        } else {
3427          LIR_Op* delay_op = new LIR_OpDelay(new LIR_Op0(lir_nop), op->as_OpJavaCall()->info());
3428          inst->insert_before(i + 1, delay_op);
3429          i++;
3430        }
3431
3432#if defined(TIERED) && !defined(_LP64)
3433        // fixup the return value from G1 to O0/O1 for long returns.
3434        // It's done here instead of in LIRGenerator because there's
3435        // such a mismatch between the single reg and double reg
3436        // calling convention.
3437        LIR_OpJavaCall* callop = op->as_OpJavaCall();
3438        if (callop->result_opr() == FrameMap::out_long_opr) {
3439          LIR_OpJavaCall* call;
3440          LIR_OprList* arguments = new LIR_OprList(callop->arguments()->length());
3441          for (int a = 0; a < arguments->length(); a++) {
3442            arguments[a] = callop->arguments()[a];
3443          }
3444          if (op->code() == lir_virtual_call) {
3445            call = new LIR_OpJavaCall(op->code(), callop->method(), callop->receiver(), FrameMap::g1_long_single_opr,
3446                                      callop->vtable_offset(), arguments, callop->info());
3447          } else {
3448            call = new LIR_OpJavaCall(op->code(), callop->method(), callop->receiver(), FrameMap::g1_long_single_opr,
3449                                      callop->addr(), arguments, callop->info());
3450          }
3451          inst->at_put(i - 1, call);
3452          inst->insert_before(i + 1, new LIR_Op1(lir_unpack64, FrameMap::g1_long_single_opr, callop->result_opr(),
3453                                                 T_LONG, lir_patch_none, NULL));
3454        }
3455#endif
3456        break;
3457      }
3458    }
3459  }
3460}
3461
3462void LIR_Assembler::atomic_op(LIR_Code code, LIR_Opr src, LIR_Opr data, LIR_Opr dest, LIR_Opr tmp) {
3463  LIR_Address* addr = src->as_address_ptr();
3464
3465  assert(data == dest, "swap uses only 2 operands");
3466  assert (code == lir_xchg, "no xadd on sparc");
3467
3468  if (data->type() == T_INT) {
3469    __ swap(as_Address(addr), data->as_register());
3470  } else if (data->is_oop()) {
3471    Register obj = data->as_register();
3472    Register narrow = tmp->as_register();
3473#ifdef _LP64
3474    assert(UseCompressedOops, "swap is 32bit only");
3475    __ encode_heap_oop(obj, narrow);
3476    __ swap(as_Address(addr), narrow);
3477    __ decode_heap_oop(narrow, obj);
3478#else
3479    __ swap(as_Address(addr), obj);
3480#endif
3481  } else {
3482    ShouldNotReachHere();
3483  }
3484}
3485
3486#undef __
3487