c1_LIRAssembler_sparc.cpp revision 2965:22cee0ee8927
1/*
2 * Copyright (c) 2000, 2011, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "c1/c1_Compilation.hpp"
27#include "c1/c1_LIRAssembler.hpp"
28#include "c1/c1_MacroAssembler.hpp"
29#include "c1/c1_Runtime1.hpp"
30#include "c1/c1_ValueStack.hpp"
31#include "ci/ciArrayKlass.hpp"
32#include "ci/ciInstance.hpp"
33#include "gc_interface/collectedHeap.hpp"
34#include "memory/barrierSet.hpp"
35#include "memory/cardTableModRefBS.hpp"
36#include "nativeInst_sparc.hpp"
37#include "oops/objArrayKlass.hpp"
38#include "runtime/sharedRuntime.hpp"
39
40#define __ _masm->
41
42
43//------------------------------------------------------------
44
45
46bool LIR_Assembler::is_small_constant(LIR_Opr opr) {
47  if (opr->is_constant()) {
48    LIR_Const* constant = opr->as_constant_ptr();
49    switch (constant->type()) {
50      case T_INT: {
51        jint value = constant->as_jint();
52        return Assembler::is_simm13(value);
53      }
54
55      default:
56        return false;
57    }
58  }
59  return false;
60}
61
62
63bool LIR_Assembler::is_single_instruction(LIR_Op* op) {
64  switch (op->code()) {
65    case lir_null_check:
66    return true;
67
68
69    case lir_add:
70    case lir_ushr:
71    case lir_shr:
72    case lir_shl:
73      // integer shifts and adds are always one instruction
74      return op->result_opr()->is_single_cpu();
75
76
77    case lir_move: {
78      LIR_Op1* op1 = op->as_Op1();
79      LIR_Opr src = op1->in_opr();
80      LIR_Opr dst = op1->result_opr();
81
82      if (src == dst) {
83        NEEDS_CLEANUP;
84        // this works around a problem where moves with the same src and dst
85        // end up in the delay slot and then the assembler swallows the mov
86        // since it has no effect and then it complains because the delay slot
87        // is empty.  returning false stops the optimizer from putting this in
88        // the delay slot
89        return false;
90      }
91
92      // don't put moves involving oops into the delay slot since the VerifyOops code
93      // will make it much larger than a single instruction.
94      if (VerifyOops) {
95        return false;
96      }
97
98      if (src->is_double_cpu() || dst->is_double_cpu() || op1->patch_code() != lir_patch_none ||
99          ((src->is_double_fpu() || dst->is_double_fpu()) && op1->move_kind() != lir_move_normal)) {
100        return false;
101      }
102
103      if (UseCompressedOops) {
104        if (dst->is_address() && !dst->is_stack() && (dst->type() == T_OBJECT || dst->type() == T_ARRAY)) return false;
105        if (src->is_address() && !src->is_stack() && (src->type() == T_OBJECT || src->type() == T_ARRAY)) return false;
106      }
107
108      if (dst->is_register()) {
109        if (src->is_address() && Assembler::is_simm13(src->as_address_ptr()->disp())) {
110          return !PatchALot;
111        } else if (src->is_single_stack()) {
112          return true;
113        }
114      }
115
116      if (src->is_register()) {
117        if (dst->is_address() && Assembler::is_simm13(dst->as_address_ptr()->disp())) {
118          return !PatchALot;
119        } else if (dst->is_single_stack()) {
120          return true;
121        }
122      }
123
124      if (dst->is_register() &&
125          ((src->is_register() && src->is_single_word() && src->is_same_type(dst)) ||
126           (src->is_constant() && LIR_Assembler::is_small_constant(op->as_Op1()->in_opr())))) {
127        return true;
128      }
129
130      return false;
131    }
132
133    default:
134      return false;
135  }
136  ShouldNotReachHere();
137}
138
139
140LIR_Opr LIR_Assembler::receiverOpr() {
141  return FrameMap::O0_oop_opr;
142}
143
144
145LIR_Opr LIR_Assembler::osrBufferPointer() {
146  return FrameMap::I0_opr;
147}
148
149
150int LIR_Assembler::initial_frame_size_in_bytes() {
151  return in_bytes(frame_map()->framesize_in_bytes());
152}
153
154
155// inline cache check: the inline cached class is in G5_inline_cache_reg(G5);
156// we fetch the class of the receiver (O0) and compare it with the cached class.
157// If they do not match we jump to slow case.
158int LIR_Assembler::check_icache() {
159  int offset = __ offset();
160  __ inline_cache_check(O0, G5_inline_cache_reg);
161  return offset;
162}
163
164
165void LIR_Assembler::osr_entry() {
166  // On-stack-replacement entry sequence (interpreter frame layout described in interpreter_sparc.cpp):
167  //
168  //   1. Create a new compiled activation.
169  //   2. Initialize local variables in the compiled activation.  The expression stack must be empty
170  //      at the osr_bci; it is not initialized.
171  //   3. Jump to the continuation address in compiled code to resume execution.
172
173  // OSR entry point
174  offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
175  BlockBegin* osr_entry = compilation()->hir()->osr_entry();
176  ValueStack* entry_state = osr_entry->end()->state();
177  int number_of_locks = entry_state->locks_size();
178
179  // Create a frame for the compiled activation.
180  __ build_frame(initial_frame_size_in_bytes());
181
182  // OSR buffer is
183  //
184  // locals[nlocals-1..0]
185  // monitors[number_of_locks-1..0]
186  //
187  // locals is a direct copy of the interpreter frame so in the osr buffer
188  // so first slot in the local array is the last local from the interpreter
189  // and last slot is local[0] (receiver) from the interpreter
190  //
191  // Similarly with locks. The first lock slot in the osr buffer is the nth lock
192  // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
193  // in the interpreter frame (the method lock if a sync method)
194
195  // Initialize monitors in the compiled activation.
196  //   I0: pointer to osr buffer
197  //
198  // All other registers are dead at this point and the locals will be
199  // copied into place by code emitted in the IR.
200
201  Register OSR_buf = osrBufferPointer()->as_register();
202  { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
203    int monitor_offset = BytesPerWord * method()->max_locals() +
204      (2 * BytesPerWord) * (number_of_locks - 1);
205    // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in
206    // the OSR buffer using 2 word entries: first the lock and then
207    // the oop.
208    for (int i = 0; i < number_of_locks; i++) {
209      int slot_offset = monitor_offset - ((i * 2) * BytesPerWord);
210#ifdef ASSERT
211      // verify the interpreter's monitor has a non-null object
212      {
213        Label L;
214        __ ld_ptr(OSR_buf, slot_offset + 1*BytesPerWord, O7);
215        __ cmp_and_br_short(O7, G0, Assembler::notEqual, Assembler::pt, L);
216        __ stop("locked object is NULL");
217        __ bind(L);
218      }
219#endif // ASSERT
220      // Copy the lock field into the compiled activation.
221      __ ld_ptr(OSR_buf, slot_offset + 0, O7);
222      __ st_ptr(O7, frame_map()->address_for_monitor_lock(i));
223      __ ld_ptr(OSR_buf, slot_offset + 1*BytesPerWord, O7);
224      __ st_ptr(O7, frame_map()->address_for_monitor_object(i));
225    }
226  }
227}
228
229
230// Optimized Library calls
231// This is the fast version of java.lang.String.compare; it has not
232// OSR-entry and therefore, we generate a slow version for OSR's
233void LIR_Assembler::emit_string_compare(LIR_Opr left, LIR_Opr right, LIR_Opr dst, CodeEmitInfo* info) {
234  Register str0 = left->as_register();
235  Register str1 = right->as_register();
236
237  Label Ldone;
238
239  Register result = dst->as_register();
240  {
241    // Get a pointer to the first character of string0 in tmp0 and get string0.count in str0
242    // Get a pointer to the first character of string1 in tmp1 and get string1.count in str1
243    // Also, get string0.count-string1.count in o7 and get the condition code set
244    // Note: some instructions have been hoisted for better instruction scheduling
245
246    Register tmp0 = L0;
247    Register tmp1 = L1;
248    Register tmp2 = L2;
249
250    int  value_offset = java_lang_String:: value_offset_in_bytes(); // char array
251    int offset_offset = java_lang_String::offset_offset_in_bytes(); // first character position
252    int  count_offset = java_lang_String:: count_offset_in_bytes();
253
254    __ load_heap_oop(str0, value_offset, tmp0);
255    __ ld(str0, offset_offset, tmp2);
256    __ add(tmp0, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp0);
257    __ ld(str0, count_offset, str0);
258    __ sll(tmp2, exact_log2(sizeof(jchar)), tmp2);
259
260    // str1 may be null
261    add_debug_info_for_null_check_here(info);
262
263    __ load_heap_oop(str1, value_offset, tmp1);
264    __ add(tmp0, tmp2, tmp0);
265
266    __ ld(str1, offset_offset, tmp2);
267    __ add(tmp1, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp1);
268    __ ld(str1, count_offset, str1);
269    __ sll(tmp2, exact_log2(sizeof(jchar)), tmp2);
270    __ subcc(str0, str1, O7);
271    __ add(tmp1, tmp2, tmp1);
272  }
273
274  {
275    // Compute the minimum of the string lengths, scale it and store it in limit
276    Register count0 = I0;
277    Register count1 = I1;
278    Register limit  = L3;
279
280    Label Lskip;
281    __ sll(count0, exact_log2(sizeof(jchar)), limit);             // string0 is shorter
282    __ br(Assembler::greater, true, Assembler::pt, Lskip);
283    __ delayed()->sll(count1, exact_log2(sizeof(jchar)), limit);  // string1 is shorter
284    __ bind(Lskip);
285
286    // If either string is empty (or both of them) the result is the difference in lengths
287    __ cmp(limit, 0);
288    __ br(Assembler::equal, true, Assembler::pn, Ldone);
289    __ delayed()->mov(O7, result);  // result is difference in lengths
290  }
291
292  {
293    // Neither string is empty
294    Label Lloop;
295
296    Register base0 = L0;
297    Register base1 = L1;
298    Register chr0  = I0;
299    Register chr1  = I1;
300    Register limit = L3;
301
302    // Shift base0 and base1 to the end of the arrays, negate limit
303    __ add(base0, limit, base0);
304    __ add(base1, limit, base1);
305    __ neg(limit);  // limit = -min{string0.count, strin1.count}
306
307    __ lduh(base0, limit, chr0);
308    __ bind(Lloop);
309    __ lduh(base1, limit, chr1);
310    __ subcc(chr0, chr1, chr0);
311    __ br(Assembler::notZero, false, Assembler::pn, Ldone);
312    assert(chr0 == result, "result must be pre-placed");
313    __ delayed()->inccc(limit, sizeof(jchar));
314    __ br(Assembler::notZero, true, Assembler::pt, Lloop);
315    __ delayed()->lduh(base0, limit, chr0);
316  }
317
318  // If strings are equal up to min length, return the length difference.
319  __ mov(O7, result);
320
321  // Otherwise, return the difference between the first mismatched chars.
322  __ bind(Ldone);
323}
324
325
326// --------------------------------------------------------------------------------------------
327
328void LIR_Assembler::monitorexit(LIR_Opr obj_opr, LIR_Opr lock_opr, Register hdr, int monitor_no) {
329  if (!GenerateSynchronizationCode) return;
330
331  Register obj_reg = obj_opr->as_register();
332  Register lock_reg = lock_opr->as_register();
333
334  Address mon_addr = frame_map()->address_for_monitor_lock(monitor_no);
335  Register reg = mon_addr.base();
336  int offset = mon_addr.disp();
337  // compute pointer to BasicLock
338  if (mon_addr.is_simm13()) {
339    __ add(reg, offset, lock_reg);
340  }
341  else {
342    __ set(offset, lock_reg);
343    __ add(reg, lock_reg, lock_reg);
344  }
345  // unlock object
346  MonitorAccessStub* slow_case = new MonitorExitStub(lock_opr, UseFastLocking, monitor_no);
347  // _slow_case_stubs->append(slow_case);
348  // temporary fix: must be created after exceptionhandler, therefore as call stub
349  _slow_case_stubs->append(slow_case);
350  if (UseFastLocking) {
351    // try inlined fast unlocking first, revert to slow locking if it fails
352    // note: lock_reg points to the displaced header since the displaced header offset is 0!
353    assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
354    __ unlock_object(hdr, obj_reg, lock_reg, *slow_case->entry());
355  } else {
356    // always do slow unlocking
357    // note: the slow unlocking code could be inlined here, however if we use
358    //       slow unlocking, speed doesn't matter anyway and this solution is
359    //       simpler and requires less duplicated code - additionally, the
360    //       slow unlocking code is the same in either case which simplifies
361    //       debugging
362    __ br(Assembler::always, false, Assembler::pt, *slow_case->entry());
363    __ delayed()->nop();
364  }
365  // done
366  __ bind(*slow_case->continuation());
367}
368
369
370int LIR_Assembler::emit_exception_handler() {
371  // if the last instruction is a call (typically to do a throw which
372  // is coming at the end after block reordering) the return address
373  // must still point into the code area in order to avoid assertion
374  // failures when searching for the corresponding bci => add a nop
375  // (was bug 5/14/1999 - gri)
376  __ nop();
377
378  // generate code for exception handler
379  ciMethod* method = compilation()->method();
380
381  address handler_base = __ start_a_stub(exception_handler_size);
382
383  if (handler_base == NULL) {
384    // not enough space left for the handler
385    bailout("exception handler overflow");
386    return -1;
387  }
388
389  int offset = code_offset();
390
391  __ call(Runtime1::entry_for(Runtime1::handle_exception_from_callee_id), relocInfo::runtime_call_type);
392  __ delayed()->nop();
393  __ should_not_reach_here();
394  assert(code_offset() - offset <= exception_handler_size, "overflow");
395  __ end_a_stub();
396
397  return offset;
398}
399
400
401// Emit the code to remove the frame from the stack in the exception
402// unwind path.
403int LIR_Assembler::emit_unwind_handler() {
404#ifndef PRODUCT
405  if (CommentedAssembly) {
406    _masm->block_comment("Unwind handler");
407  }
408#endif
409
410  int offset = code_offset();
411
412  // Fetch the exception from TLS and clear out exception related thread state
413  __ ld_ptr(G2_thread, in_bytes(JavaThread::exception_oop_offset()), O0);
414  __ st_ptr(G0, G2_thread, in_bytes(JavaThread::exception_oop_offset()));
415  __ st_ptr(G0, G2_thread, in_bytes(JavaThread::exception_pc_offset()));
416
417  __ bind(_unwind_handler_entry);
418  __ verify_not_null_oop(O0);
419  if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
420    __ mov(O0, I0);  // Preserve the exception
421  }
422
423  // Preform needed unlocking
424  MonitorExitStub* stub = NULL;
425  if (method()->is_synchronized()) {
426    monitor_address(0, FrameMap::I1_opr);
427    stub = new MonitorExitStub(FrameMap::I1_opr, true, 0);
428    __ unlock_object(I3, I2, I1, *stub->entry());
429    __ bind(*stub->continuation());
430  }
431
432  if (compilation()->env()->dtrace_method_probes()) {
433    __ mov(G2_thread, O0);
434    jobject2reg(method()->constant_encoding(), O1);
435    __ call(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), relocInfo::runtime_call_type);
436    __ delayed()->nop();
437  }
438
439  if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
440    __ mov(I0, O0);  // Restore the exception
441  }
442
443  // dispatch to the unwind logic
444  __ call(Runtime1::entry_for(Runtime1::unwind_exception_id), relocInfo::runtime_call_type);
445  __ delayed()->nop();
446
447  // Emit the slow path assembly
448  if (stub != NULL) {
449    stub->emit_code(this);
450  }
451
452  return offset;
453}
454
455
456int LIR_Assembler::emit_deopt_handler() {
457  // if the last instruction is a call (typically to do a throw which
458  // is coming at the end after block reordering) the return address
459  // must still point into the code area in order to avoid assertion
460  // failures when searching for the corresponding bci => add a nop
461  // (was bug 5/14/1999 - gri)
462  __ nop();
463
464  // generate code for deopt handler
465  ciMethod* method = compilation()->method();
466  address handler_base = __ start_a_stub(deopt_handler_size);
467  if (handler_base == NULL) {
468    // not enough space left for the handler
469    bailout("deopt handler overflow");
470    return -1;
471  }
472
473  int offset = code_offset();
474  AddressLiteral deopt_blob(SharedRuntime::deopt_blob()->unpack());
475  __ JUMP(deopt_blob, G3_scratch, 0); // sethi;jmp
476  __ delayed()->nop();
477  assert(code_offset() - offset <= deopt_handler_size, "overflow");
478  debug_only(__ stop("should have gone to the caller");)
479  __ end_a_stub();
480
481  return offset;
482}
483
484
485void LIR_Assembler::jobject2reg(jobject o, Register reg) {
486  if (o == NULL) {
487    __ set(NULL_WORD, reg);
488  } else {
489    int oop_index = __ oop_recorder()->find_index(o);
490    RelocationHolder rspec = oop_Relocation::spec(oop_index);
491    __ set(NULL_WORD, reg, rspec); // Will be set when the nmethod is created
492  }
493}
494
495
496void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo *info) {
497  // Allocate a new index in oop table to hold the oop once it's been patched
498  int oop_index = __ oop_recorder()->allocate_index((jobject)NULL);
499  PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id, oop_index);
500
501  AddressLiteral addrlit(NULL, oop_Relocation::spec(oop_index));
502  assert(addrlit.rspec().type() == relocInfo::oop_type, "must be an oop reloc");
503  // It may not seem necessary to use a sethi/add pair to load a NULL into dest, but the
504  // NULL will be dynamically patched later and the patched value may be large.  We must
505  // therefore generate the sethi/add as a placeholders
506  __ patchable_set(addrlit, reg);
507
508  patching_epilog(patch, lir_patch_normal, reg, info);
509}
510
511
512void LIR_Assembler::emit_op3(LIR_Op3* op) {
513  Register Rdividend = op->in_opr1()->as_register();
514  Register Rdivisor  = noreg;
515  Register Rscratch  = op->in_opr3()->as_register();
516  Register Rresult   = op->result_opr()->as_register();
517  int divisor = -1;
518
519  if (op->in_opr2()->is_register()) {
520    Rdivisor = op->in_opr2()->as_register();
521  } else {
522    divisor = op->in_opr2()->as_constant_ptr()->as_jint();
523    assert(Assembler::is_simm13(divisor), "can only handle simm13");
524  }
525
526  assert(Rdividend != Rscratch, "");
527  assert(Rdivisor  != Rscratch, "");
528  assert(op->code() == lir_idiv || op->code() == lir_irem, "Must be irem or idiv");
529
530  if (Rdivisor == noreg && is_power_of_2(divisor)) {
531    // convert division by a power of two into some shifts and logical operations
532    if (op->code() == lir_idiv) {
533      if (divisor == 2) {
534        __ srl(Rdividend, 31, Rscratch);
535      } else {
536        __ sra(Rdividend, 31, Rscratch);
537        __ and3(Rscratch, divisor - 1, Rscratch);
538      }
539      __ add(Rdividend, Rscratch, Rscratch);
540      __ sra(Rscratch, log2_intptr(divisor), Rresult);
541      return;
542    } else {
543      if (divisor == 2) {
544        __ srl(Rdividend, 31, Rscratch);
545      } else {
546        __ sra(Rdividend, 31, Rscratch);
547        __ and3(Rscratch, divisor - 1,Rscratch);
548      }
549      __ add(Rdividend, Rscratch, Rscratch);
550      __ andn(Rscratch, divisor - 1,Rscratch);
551      __ sub(Rdividend, Rscratch, Rresult);
552      return;
553    }
554  }
555
556  __ sra(Rdividend, 31, Rscratch);
557  __ wry(Rscratch);
558  if (!VM_Version::v9_instructions_work()) {
559    // v9 doesn't require these nops
560    __ nop();
561    __ nop();
562    __ nop();
563    __ nop();
564  }
565
566  add_debug_info_for_div0_here(op->info());
567
568  if (Rdivisor != noreg) {
569    __ sdivcc(Rdividend, Rdivisor, (op->code() == lir_idiv ? Rresult : Rscratch));
570  } else {
571    assert(Assembler::is_simm13(divisor), "can only handle simm13");
572    __ sdivcc(Rdividend, divisor, (op->code() == lir_idiv ? Rresult : Rscratch));
573  }
574
575  Label skip;
576  __ br(Assembler::overflowSet, true, Assembler::pn, skip);
577  __ delayed()->Assembler::sethi(0x80000000, (op->code() == lir_idiv ? Rresult : Rscratch));
578  __ bind(skip);
579
580  if (op->code() == lir_irem) {
581    if (Rdivisor != noreg) {
582      __ smul(Rscratch, Rdivisor, Rscratch);
583    } else {
584      __ smul(Rscratch, divisor, Rscratch);
585    }
586    __ sub(Rdividend, Rscratch, Rresult);
587  }
588}
589
590
591void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
592#ifdef ASSERT
593  assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label");
594  if (op->block() != NULL)  _branch_target_blocks.append(op->block());
595  if (op->ublock() != NULL) _branch_target_blocks.append(op->ublock());
596#endif
597  assert(op->info() == NULL, "shouldn't have CodeEmitInfo");
598
599  if (op->cond() == lir_cond_always) {
600    __ br(Assembler::always, false, Assembler::pt, *(op->label()));
601  } else if (op->code() == lir_cond_float_branch) {
602    assert(op->ublock() != NULL, "must have unordered successor");
603    bool is_unordered = (op->ublock() == op->block());
604    Assembler::Condition acond;
605    switch (op->cond()) {
606      case lir_cond_equal:         acond = Assembler::f_equal;    break;
607      case lir_cond_notEqual:      acond = Assembler::f_notEqual; break;
608      case lir_cond_less:          acond = (is_unordered ? Assembler::f_unorderedOrLess          : Assembler::f_less);           break;
609      case lir_cond_greater:       acond = (is_unordered ? Assembler::f_unorderedOrGreater       : Assembler::f_greater);        break;
610      case lir_cond_lessEqual:     acond = (is_unordered ? Assembler::f_unorderedOrLessOrEqual   : Assembler::f_lessOrEqual);    break;
611      case lir_cond_greaterEqual:  acond = (is_unordered ? Assembler::f_unorderedOrGreaterOrEqual: Assembler::f_greaterOrEqual); break;
612      default :                         ShouldNotReachHere();
613    };
614
615    if (!VM_Version::v9_instructions_work()) {
616      __ nop();
617    }
618    __ fb( acond, false, Assembler::pn, *(op->label()));
619  } else {
620    assert (op->code() == lir_branch, "just checking");
621
622    Assembler::Condition acond;
623    switch (op->cond()) {
624      case lir_cond_equal:        acond = Assembler::equal;                break;
625      case lir_cond_notEqual:     acond = Assembler::notEqual;             break;
626      case lir_cond_less:         acond = Assembler::less;                 break;
627      case lir_cond_lessEqual:    acond = Assembler::lessEqual;            break;
628      case lir_cond_greaterEqual: acond = Assembler::greaterEqual;         break;
629      case lir_cond_greater:      acond = Assembler::greater;              break;
630      case lir_cond_aboveEqual:   acond = Assembler::greaterEqualUnsigned; break;
631      case lir_cond_belowEqual:   acond = Assembler::lessEqualUnsigned;    break;
632      default:                         ShouldNotReachHere();
633    };
634
635    // sparc has different condition codes for testing 32-bit
636    // vs. 64-bit values.  We could always test xcc is we could
637    // guarantee that 32-bit loads always sign extended but that isn't
638    // true and since sign extension isn't free, it would impose a
639    // slight cost.
640#ifdef _LP64
641    if  (op->type() == T_INT) {
642      __ br(acond, false, Assembler::pn, *(op->label()));
643    } else
644#endif
645      __ brx(acond, false, Assembler::pn, *(op->label()));
646  }
647  // The peephole pass fills the delay slot
648}
649
650
651void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
652  Bytecodes::Code code = op->bytecode();
653  LIR_Opr dst = op->result_opr();
654
655  switch(code) {
656    case Bytecodes::_i2l: {
657      Register rlo  = dst->as_register_lo();
658      Register rhi  = dst->as_register_hi();
659      Register rval = op->in_opr()->as_register();
660#ifdef _LP64
661      __ sra(rval, 0, rlo);
662#else
663      __ mov(rval, rlo);
664      __ sra(rval, BitsPerInt-1, rhi);
665#endif
666      break;
667    }
668    case Bytecodes::_i2d:
669    case Bytecodes::_i2f: {
670      bool is_double = (code == Bytecodes::_i2d);
671      FloatRegister rdst = is_double ? dst->as_double_reg() : dst->as_float_reg();
672      FloatRegisterImpl::Width w = is_double ? FloatRegisterImpl::D : FloatRegisterImpl::S;
673      FloatRegister rsrc = op->in_opr()->as_float_reg();
674      if (rsrc != rdst) {
675        __ fmov(FloatRegisterImpl::S, rsrc, rdst);
676      }
677      __ fitof(w, rdst, rdst);
678      break;
679    }
680    case Bytecodes::_f2i:{
681      FloatRegister rsrc = op->in_opr()->as_float_reg();
682      Address       addr = frame_map()->address_for_slot(dst->single_stack_ix());
683      Label L;
684      // result must be 0 if value is NaN; test by comparing value to itself
685      __ fcmp(FloatRegisterImpl::S, Assembler::fcc0, rsrc, rsrc);
686      if (!VM_Version::v9_instructions_work()) {
687        __ nop();
688      }
689      __ fb(Assembler::f_unordered, true, Assembler::pn, L);
690      __ delayed()->st(G0, addr); // annuled if contents of rsrc is not NaN
691      __ ftoi(FloatRegisterImpl::S, rsrc, rsrc);
692      // move integer result from float register to int register
693      __ stf(FloatRegisterImpl::S, rsrc, addr.base(), addr.disp());
694      __ bind (L);
695      break;
696    }
697    case Bytecodes::_l2i: {
698      Register rlo  = op->in_opr()->as_register_lo();
699      Register rhi  = op->in_opr()->as_register_hi();
700      Register rdst = dst->as_register();
701#ifdef _LP64
702      __ sra(rlo, 0, rdst);
703#else
704      __ mov(rlo, rdst);
705#endif
706      break;
707    }
708    case Bytecodes::_d2f:
709    case Bytecodes::_f2d: {
710      bool is_double = (code == Bytecodes::_f2d);
711      assert((!is_double && dst->is_single_fpu()) || (is_double && dst->is_double_fpu()), "check");
712      LIR_Opr val = op->in_opr();
713      FloatRegister rval = (code == Bytecodes::_d2f) ? val->as_double_reg() : val->as_float_reg();
714      FloatRegister rdst = is_double ? dst->as_double_reg() : dst->as_float_reg();
715      FloatRegisterImpl::Width vw = is_double ? FloatRegisterImpl::S : FloatRegisterImpl::D;
716      FloatRegisterImpl::Width dw = is_double ? FloatRegisterImpl::D : FloatRegisterImpl::S;
717      __ ftof(vw, dw, rval, rdst);
718      break;
719    }
720    case Bytecodes::_i2s:
721    case Bytecodes::_i2b: {
722      Register rval = op->in_opr()->as_register();
723      Register rdst = dst->as_register();
724      int shift = (code == Bytecodes::_i2b) ? (BitsPerInt - T_BYTE_aelem_bytes * BitsPerByte) : (BitsPerInt - BitsPerShort);
725      __ sll (rval, shift, rdst);
726      __ sra (rdst, shift, rdst);
727      break;
728    }
729    case Bytecodes::_i2c: {
730      Register rval = op->in_opr()->as_register();
731      Register rdst = dst->as_register();
732      int shift = BitsPerInt - T_CHAR_aelem_bytes * BitsPerByte;
733      __ sll (rval, shift, rdst);
734      __ srl (rdst, shift, rdst);
735      break;
736    }
737
738    default: ShouldNotReachHere();
739  }
740}
741
742
743void LIR_Assembler::align_call(LIR_Code) {
744  // do nothing since all instructions are word aligned on sparc
745}
746
747
748void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) {
749  __ call(op->addr(), rtype);
750  // The peephole pass fills the delay slot, add_call_info is done in
751  // LIR_Assembler::emit_delay.
752}
753
754
755void LIR_Assembler::ic_call(LIR_OpJavaCall* op) {
756  RelocationHolder rspec = virtual_call_Relocation::spec(pc());
757  __ set_oop((jobject)Universe::non_oop_word(), G5_inline_cache_reg);
758  __ relocate(rspec);
759  __ call(op->addr(), relocInfo::none);
760  // The peephole pass fills the delay slot, add_call_info is done in
761  // LIR_Assembler::emit_delay.
762}
763
764
765void LIR_Assembler::vtable_call(LIR_OpJavaCall* op) {
766  add_debug_info_for_null_check_here(op->info());
767  __ load_klass(O0, G3_scratch);
768  if (Assembler::is_simm13(op->vtable_offset())) {
769    __ ld_ptr(G3_scratch, op->vtable_offset(), G5_method);
770  } else {
771    // This will generate 2 instructions
772    __ set(op->vtable_offset(), G5_method);
773    // ld_ptr, set_hi, set
774    __ ld_ptr(G3_scratch, G5_method, G5_method);
775  }
776  __ ld_ptr(G5_method, methodOopDesc::from_compiled_offset(), G3_scratch);
777  __ callr(G3_scratch, G0);
778  // the peephole pass fills the delay slot
779}
780
781int LIR_Assembler::store(LIR_Opr from_reg, Register base, int offset, BasicType type, bool wide, bool unaligned) {
782  int store_offset;
783  if (!Assembler::is_simm13(offset + (type == T_LONG) ? wordSize : 0)) {
784    assert(!unaligned, "can't handle this");
785    // for offsets larger than a simm13 we setup the offset in O7
786    __ set(offset, O7);
787    store_offset = store(from_reg, base, O7, type, wide);
788  } else {
789    if (type == T_ARRAY || type == T_OBJECT) {
790      __ verify_oop(from_reg->as_register());
791    }
792    store_offset = code_offset();
793    switch (type) {
794      case T_BOOLEAN: // fall through
795      case T_BYTE  : __ stb(from_reg->as_register(), base, offset); break;
796      case T_CHAR  : __ sth(from_reg->as_register(), base, offset); break;
797      case T_SHORT : __ sth(from_reg->as_register(), base, offset); break;
798      case T_INT   : __ stw(from_reg->as_register(), base, offset); break;
799      case T_LONG  :
800#ifdef _LP64
801        if (unaligned || PatchALot) {
802          __ srax(from_reg->as_register_lo(), 32, O7);
803          __ stw(from_reg->as_register_lo(), base, offset + lo_word_offset_in_bytes);
804          __ stw(O7,                         base, offset + hi_word_offset_in_bytes);
805        } else {
806          __ stx(from_reg->as_register_lo(), base, offset);
807        }
808#else
809        assert(Assembler::is_simm13(offset + 4), "must be");
810        __ stw(from_reg->as_register_lo(), base, offset + lo_word_offset_in_bytes);
811        __ stw(from_reg->as_register_hi(), base, offset + hi_word_offset_in_bytes);
812#endif
813        break;
814      case T_ADDRESS:
815        __ st_ptr(from_reg->as_register(), base, offset);
816        break;
817      case T_ARRAY : // fall through
818      case T_OBJECT:
819        {
820          if (UseCompressedOops && !wide) {
821            __ encode_heap_oop(from_reg->as_register(), G3_scratch);
822            store_offset = code_offset();
823            __ stw(G3_scratch, base, offset);
824          } else {
825            __ st_ptr(from_reg->as_register(), base, offset);
826          }
827          break;
828        }
829
830      case T_FLOAT : __ stf(FloatRegisterImpl::S, from_reg->as_float_reg(), base, offset); break;
831      case T_DOUBLE:
832        {
833          FloatRegister reg = from_reg->as_double_reg();
834          // split unaligned stores
835          if (unaligned || PatchALot) {
836            assert(Assembler::is_simm13(offset + 4), "must be");
837            __ stf(FloatRegisterImpl::S, reg->successor(), base, offset + 4);
838            __ stf(FloatRegisterImpl::S, reg,              base, offset);
839          } else {
840            __ stf(FloatRegisterImpl::D, reg, base, offset);
841          }
842          break;
843        }
844      default      : ShouldNotReachHere();
845    }
846  }
847  return store_offset;
848}
849
850
851int LIR_Assembler::store(LIR_Opr from_reg, Register base, Register disp, BasicType type, bool wide) {
852  if (type == T_ARRAY || type == T_OBJECT) {
853    __ verify_oop(from_reg->as_register());
854  }
855  int store_offset = code_offset();
856  switch (type) {
857    case T_BOOLEAN: // fall through
858    case T_BYTE  : __ stb(from_reg->as_register(), base, disp); break;
859    case T_CHAR  : __ sth(from_reg->as_register(), base, disp); break;
860    case T_SHORT : __ sth(from_reg->as_register(), base, disp); break;
861    case T_INT   : __ stw(from_reg->as_register(), base, disp); break;
862    case T_LONG  :
863#ifdef _LP64
864      __ stx(from_reg->as_register_lo(), base, disp);
865#else
866      assert(from_reg->as_register_hi()->successor() == from_reg->as_register_lo(), "must match");
867      __ std(from_reg->as_register_hi(), base, disp);
868#endif
869      break;
870    case T_ADDRESS:
871      __ st_ptr(from_reg->as_register(), base, disp);
872      break;
873    case T_ARRAY : // fall through
874    case T_OBJECT:
875      {
876        if (UseCompressedOops && !wide) {
877          __ encode_heap_oop(from_reg->as_register(), G3_scratch);
878          store_offset = code_offset();
879          __ stw(G3_scratch, base, disp);
880        } else {
881          __ st_ptr(from_reg->as_register(), base, disp);
882        }
883        break;
884      }
885    case T_FLOAT : __ stf(FloatRegisterImpl::S, from_reg->as_float_reg(), base, disp); break;
886    case T_DOUBLE: __ stf(FloatRegisterImpl::D, from_reg->as_double_reg(), base, disp); break;
887    default      : ShouldNotReachHere();
888  }
889  return store_offset;
890}
891
892
893int LIR_Assembler::load(Register base, int offset, LIR_Opr to_reg, BasicType type, bool wide, bool unaligned) {
894  int load_offset;
895  if (!Assembler::is_simm13(offset + (type == T_LONG) ? wordSize : 0)) {
896    assert(base != O7, "destroying register");
897    assert(!unaligned, "can't handle this");
898    // for offsets larger than a simm13 we setup the offset in O7
899    __ set(offset, O7);
900    load_offset = load(base, O7, to_reg, type, wide);
901  } else {
902    load_offset = code_offset();
903    switch(type) {
904      case T_BOOLEAN: // fall through
905      case T_BYTE  : __ ldsb(base, offset, to_reg->as_register()); break;
906      case T_CHAR  : __ lduh(base, offset, to_reg->as_register()); break;
907      case T_SHORT : __ ldsh(base, offset, to_reg->as_register()); break;
908      case T_INT   : __ ld(base, offset, to_reg->as_register()); break;
909      case T_LONG  :
910        if (!unaligned) {
911#ifdef _LP64
912          __ ldx(base, offset, to_reg->as_register_lo());
913#else
914          assert(to_reg->as_register_hi()->successor() == to_reg->as_register_lo(),
915                 "must be sequential");
916          __ ldd(base, offset, to_reg->as_register_hi());
917#endif
918        } else {
919#ifdef _LP64
920          assert(base != to_reg->as_register_lo(), "can't handle this");
921          assert(O7 != to_reg->as_register_lo(), "can't handle this");
922          __ ld(base, offset + hi_word_offset_in_bytes, to_reg->as_register_lo());
923          __ lduw(base, offset + lo_word_offset_in_bytes, O7); // in case O7 is base or offset, use it last
924          __ sllx(to_reg->as_register_lo(), 32, to_reg->as_register_lo());
925          __ or3(to_reg->as_register_lo(), O7, to_reg->as_register_lo());
926#else
927          if (base == to_reg->as_register_lo()) {
928            __ ld(base, offset + hi_word_offset_in_bytes, to_reg->as_register_hi());
929            __ ld(base, offset + lo_word_offset_in_bytes, to_reg->as_register_lo());
930          } else {
931            __ ld(base, offset + lo_word_offset_in_bytes, to_reg->as_register_lo());
932            __ ld(base, offset + hi_word_offset_in_bytes, to_reg->as_register_hi());
933          }
934#endif
935        }
936        break;
937      case T_ADDRESS:  __ ld_ptr(base, offset, to_reg->as_register()); break;
938      case T_ARRAY : // fall through
939      case T_OBJECT:
940        {
941          if (UseCompressedOops && !wide) {
942            __ lduw(base, offset, to_reg->as_register());
943            __ decode_heap_oop(to_reg->as_register());
944          } else {
945            __ ld_ptr(base, offset, to_reg->as_register());
946          }
947          break;
948        }
949      case T_FLOAT:  __ ldf(FloatRegisterImpl::S, base, offset, to_reg->as_float_reg()); break;
950      case T_DOUBLE:
951        {
952          FloatRegister reg = to_reg->as_double_reg();
953          // split unaligned loads
954          if (unaligned || PatchALot) {
955            __ ldf(FloatRegisterImpl::S, base, offset + 4, reg->successor());
956            __ ldf(FloatRegisterImpl::S, base, offset,     reg);
957          } else {
958            __ ldf(FloatRegisterImpl::D, base, offset, to_reg->as_double_reg());
959          }
960          break;
961        }
962      default      : ShouldNotReachHere();
963    }
964    if (type == T_ARRAY || type == T_OBJECT) {
965      __ verify_oop(to_reg->as_register());
966    }
967  }
968  return load_offset;
969}
970
971
972int LIR_Assembler::load(Register base, Register disp, LIR_Opr to_reg, BasicType type, bool wide) {
973  int load_offset = code_offset();
974  switch(type) {
975    case T_BOOLEAN: // fall through
976    case T_BYTE  :  __ ldsb(base, disp, to_reg->as_register()); break;
977    case T_CHAR  :  __ lduh(base, disp, to_reg->as_register()); break;
978    case T_SHORT :  __ ldsh(base, disp, to_reg->as_register()); break;
979    case T_INT   :  __ ld(base, disp, to_reg->as_register()); break;
980    case T_ADDRESS: __ ld_ptr(base, disp, to_reg->as_register()); break;
981    case T_ARRAY : // fall through
982    case T_OBJECT:
983      {
984          if (UseCompressedOops && !wide) {
985            __ lduw(base, disp, to_reg->as_register());
986            __ decode_heap_oop(to_reg->as_register());
987          } else {
988            __ ld_ptr(base, disp, to_reg->as_register());
989          }
990          break;
991      }
992    case T_FLOAT:  __ ldf(FloatRegisterImpl::S, base, disp, to_reg->as_float_reg()); break;
993    case T_DOUBLE: __ ldf(FloatRegisterImpl::D, base, disp, to_reg->as_double_reg()); break;
994    case T_LONG  :
995#ifdef _LP64
996      __ ldx(base, disp, to_reg->as_register_lo());
997#else
998      assert(to_reg->as_register_hi()->successor() == to_reg->as_register_lo(),
999             "must be sequential");
1000      __ ldd(base, disp, to_reg->as_register_hi());
1001#endif
1002      break;
1003    default      : ShouldNotReachHere();
1004  }
1005  if (type == T_ARRAY || type == T_OBJECT) {
1006    __ verify_oop(to_reg->as_register());
1007  }
1008  return load_offset;
1009}
1010
1011void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
1012  LIR_Const* c = src->as_constant_ptr();
1013  switch (c->type()) {
1014    case T_INT:
1015    case T_FLOAT: {
1016      Register src_reg = O7;
1017      int value = c->as_jint_bits();
1018      if (value == 0) {
1019        src_reg = G0;
1020      } else {
1021        __ set(value, O7);
1022      }
1023      Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
1024      __ stw(src_reg, addr.base(), addr.disp());
1025      break;
1026    }
1027    case T_ADDRESS: {
1028      Register src_reg = O7;
1029      int value = c->as_jint_bits();
1030      if (value == 0) {
1031        src_reg = G0;
1032      } else {
1033        __ set(value, O7);
1034      }
1035      Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
1036      __ st_ptr(src_reg, addr.base(), addr.disp());
1037      break;
1038    }
1039    case T_OBJECT: {
1040      Register src_reg = O7;
1041      jobject2reg(c->as_jobject(), src_reg);
1042      Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
1043      __ st_ptr(src_reg, addr.base(), addr.disp());
1044      break;
1045    }
1046    case T_LONG:
1047    case T_DOUBLE: {
1048      Address addr = frame_map()->address_for_double_slot(dest->double_stack_ix());
1049
1050      Register tmp = O7;
1051      int value_lo = c->as_jint_lo_bits();
1052      if (value_lo == 0) {
1053        tmp = G0;
1054      } else {
1055        __ set(value_lo, O7);
1056      }
1057      __ stw(tmp, addr.base(), addr.disp() + lo_word_offset_in_bytes);
1058      int value_hi = c->as_jint_hi_bits();
1059      if (value_hi == 0) {
1060        tmp = G0;
1061      } else {
1062        __ set(value_hi, O7);
1063      }
1064      __ stw(tmp, addr.base(), addr.disp() + hi_word_offset_in_bytes);
1065      break;
1066    }
1067    default:
1068      Unimplemented();
1069  }
1070}
1071
1072
1073void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info, bool wide) {
1074  LIR_Const* c = src->as_constant_ptr();
1075  LIR_Address* addr     = dest->as_address_ptr();
1076  Register base = addr->base()->as_pointer_register();
1077  int offset = -1;
1078
1079  switch (c->type()) {
1080    case T_INT:
1081    case T_FLOAT:
1082    case T_ADDRESS: {
1083      LIR_Opr tmp = FrameMap::O7_opr;
1084      int value = c->as_jint_bits();
1085      if (value == 0) {
1086        tmp = FrameMap::G0_opr;
1087      } else if (Assembler::is_simm13(value)) {
1088        __ set(value, O7);
1089      }
1090      if (addr->index()->is_valid()) {
1091        assert(addr->disp() == 0, "must be zero");
1092        offset = store(tmp, base, addr->index()->as_pointer_register(), type, wide);
1093      } else {
1094        assert(Assembler::is_simm13(addr->disp()), "can't handle larger addresses");
1095        offset = store(tmp, base, addr->disp(), type, wide, false);
1096      }
1097      break;
1098    }
1099    case T_LONG:
1100    case T_DOUBLE: {
1101      assert(!addr->index()->is_valid(), "can't handle reg reg address here");
1102      assert(Assembler::is_simm13(addr->disp()) &&
1103             Assembler::is_simm13(addr->disp() + 4), "can't handle larger addresses");
1104
1105      LIR_Opr tmp = FrameMap::O7_opr;
1106      int value_lo = c->as_jint_lo_bits();
1107      if (value_lo == 0) {
1108        tmp = FrameMap::G0_opr;
1109      } else {
1110        __ set(value_lo, O7);
1111      }
1112      offset = store(tmp, base, addr->disp() + lo_word_offset_in_bytes, T_INT, wide, false);
1113      int value_hi = c->as_jint_hi_bits();
1114      if (value_hi == 0) {
1115        tmp = FrameMap::G0_opr;
1116      } else {
1117        __ set(value_hi, O7);
1118      }
1119      store(tmp, base, addr->disp() + hi_word_offset_in_bytes, T_INT, wide, false);
1120      break;
1121    }
1122    case T_OBJECT: {
1123      jobject obj = c->as_jobject();
1124      LIR_Opr tmp;
1125      if (obj == NULL) {
1126        tmp = FrameMap::G0_opr;
1127      } else {
1128        tmp = FrameMap::O7_opr;
1129        jobject2reg(c->as_jobject(), O7);
1130      }
1131      // handle either reg+reg or reg+disp address
1132      if (addr->index()->is_valid()) {
1133        assert(addr->disp() == 0, "must be zero");
1134        offset = store(tmp, base, addr->index()->as_pointer_register(), type, wide);
1135      } else {
1136        assert(Assembler::is_simm13(addr->disp()), "can't handle larger addresses");
1137        offset = store(tmp, base, addr->disp(), type, wide, false);
1138      }
1139
1140      break;
1141    }
1142    default:
1143      Unimplemented();
1144  }
1145  if (info != NULL) {
1146    assert(offset != -1, "offset should've been set");
1147    add_debug_info_for_null_check(offset, info);
1148  }
1149}
1150
1151
1152void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
1153  LIR_Const* c = src->as_constant_ptr();
1154  LIR_Opr to_reg = dest;
1155
1156  switch (c->type()) {
1157    case T_INT:
1158    case T_ADDRESS:
1159      {
1160        jint con = c->as_jint();
1161        if (to_reg->is_single_cpu()) {
1162          assert(patch_code == lir_patch_none, "no patching handled here");
1163          __ set(con, to_reg->as_register());
1164        } else {
1165          ShouldNotReachHere();
1166          assert(to_reg->is_single_fpu(), "wrong register kind");
1167
1168          __ set(con, O7);
1169          Address temp_slot(SP, (frame::register_save_words * wordSize) + STACK_BIAS);
1170          __ st(O7, temp_slot);
1171          __ ldf(FloatRegisterImpl::S, temp_slot, to_reg->as_float_reg());
1172        }
1173      }
1174      break;
1175
1176    case T_LONG:
1177      {
1178        jlong con = c->as_jlong();
1179
1180        if (to_reg->is_double_cpu()) {
1181#ifdef _LP64
1182          __ set(con,  to_reg->as_register_lo());
1183#else
1184          __ set(low(con),  to_reg->as_register_lo());
1185          __ set(high(con), to_reg->as_register_hi());
1186#endif
1187#ifdef _LP64
1188        } else if (to_reg->is_single_cpu()) {
1189          __ set(con, to_reg->as_register());
1190#endif
1191        } else {
1192          ShouldNotReachHere();
1193          assert(to_reg->is_double_fpu(), "wrong register kind");
1194          Address temp_slot_lo(SP, ((frame::register_save_words  ) * wordSize) + STACK_BIAS);
1195          Address temp_slot_hi(SP, ((frame::register_save_words) * wordSize) + (longSize/2) + STACK_BIAS);
1196          __ set(low(con),  O7);
1197          __ st(O7, temp_slot_lo);
1198          __ set(high(con), O7);
1199          __ st(O7, temp_slot_hi);
1200          __ ldf(FloatRegisterImpl::D, temp_slot_lo, to_reg->as_double_reg());
1201        }
1202      }
1203      break;
1204
1205    case T_OBJECT:
1206      {
1207        if (patch_code == lir_patch_none) {
1208          jobject2reg(c->as_jobject(), to_reg->as_register());
1209        } else {
1210          jobject2reg_with_patching(to_reg->as_register(), info);
1211        }
1212      }
1213      break;
1214
1215    case T_FLOAT:
1216      {
1217        address const_addr = __ float_constant(c->as_jfloat());
1218        if (const_addr == NULL) {
1219          bailout("const section overflow");
1220          break;
1221        }
1222        RelocationHolder rspec = internal_word_Relocation::spec(const_addr);
1223        AddressLiteral const_addrlit(const_addr, rspec);
1224        if (to_reg->is_single_fpu()) {
1225          __ patchable_sethi(const_addrlit, O7);
1226          __ relocate(rspec);
1227          __ ldf(FloatRegisterImpl::S, O7, const_addrlit.low10(), to_reg->as_float_reg());
1228
1229        } else {
1230          assert(to_reg->is_single_cpu(), "Must be a cpu register.");
1231
1232          __ set(const_addrlit, O7);
1233          __ ld(O7, 0, to_reg->as_register());
1234        }
1235      }
1236      break;
1237
1238    case T_DOUBLE:
1239      {
1240        address const_addr = __ double_constant(c->as_jdouble());
1241        if (const_addr == NULL) {
1242          bailout("const section overflow");
1243          break;
1244        }
1245        RelocationHolder rspec = internal_word_Relocation::spec(const_addr);
1246
1247        if (to_reg->is_double_fpu()) {
1248          AddressLiteral const_addrlit(const_addr, rspec);
1249          __ patchable_sethi(const_addrlit, O7);
1250          __ relocate(rspec);
1251          __ ldf (FloatRegisterImpl::D, O7, const_addrlit.low10(), to_reg->as_double_reg());
1252        } else {
1253          assert(to_reg->is_double_cpu(), "Must be a long register.");
1254#ifdef _LP64
1255          __ set(jlong_cast(c->as_jdouble()), to_reg->as_register_lo());
1256#else
1257          __ set(low(jlong_cast(c->as_jdouble())), to_reg->as_register_lo());
1258          __ set(high(jlong_cast(c->as_jdouble())), to_reg->as_register_hi());
1259#endif
1260        }
1261
1262      }
1263      break;
1264
1265    default:
1266      ShouldNotReachHere();
1267  }
1268}
1269
1270Address LIR_Assembler::as_Address(LIR_Address* addr) {
1271  Register reg = addr->base()->as_register();
1272  return Address(reg, addr->disp());
1273}
1274
1275
1276void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
1277  switch (type) {
1278    case T_INT:
1279    case T_FLOAT: {
1280      Register tmp = O7;
1281      Address from = frame_map()->address_for_slot(src->single_stack_ix());
1282      Address to   = frame_map()->address_for_slot(dest->single_stack_ix());
1283      __ lduw(from.base(), from.disp(), tmp);
1284      __ stw(tmp, to.base(), to.disp());
1285      break;
1286    }
1287    case T_OBJECT: {
1288      Register tmp = O7;
1289      Address from = frame_map()->address_for_slot(src->single_stack_ix());
1290      Address to   = frame_map()->address_for_slot(dest->single_stack_ix());
1291      __ ld_ptr(from.base(), from.disp(), tmp);
1292      __ st_ptr(tmp, to.base(), to.disp());
1293      break;
1294    }
1295    case T_LONG:
1296    case T_DOUBLE: {
1297      Register tmp = O7;
1298      Address from = frame_map()->address_for_double_slot(src->double_stack_ix());
1299      Address to   = frame_map()->address_for_double_slot(dest->double_stack_ix());
1300      __ lduw(from.base(), from.disp(), tmp);
1301      __ stw(tmp, to.base(), to.disp());
1302      __ lduw(from.base(), from.disp() + 4, tmp);
1303      __ stw(tmp, to.base(), to.disp() + 4);
1304      break;
1305    }
1306
1307    default:
1308      ShouldNotReachHere();
1309  }
1310}
1311
1312
1313Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
1314  Address base = as_Address(addr);
1315  return Address(base.base(), base.disp() + hi_word_offset_in_bytes);
1316}
1317
1318
1319Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
1320  Address base = as_Address(addr);
1321  return Address(base.base(), base.disp() + lo_word_offset_in_bytes);
1322}
1323
1324
1325void LIR_Assembler::mem2reg(LIR_Opr src_opr, LIR_Opr dest, BasicType type,
1326                            LIR_PatchCode patch_code, CodeEmitInfo* info, bool wide, bool unaligned) {
1327
1328  LIR_Address* addr = src_opr->as_address_ptr();
1329  LIR_Opr to_reg = dest;
1330
1331  Register src = addr->base()->as_pointer_register();
1332  Register disp_reg = noreg;
1333  int disp_value = addr->disp();
1334  bool needs_patching = (patch_code != lir_patch_none);
1335
1336  if (addr->base()->type() == T_OBJECT) {
1337    __ verify_oop(src);
1338  }
1339
1340  PatchingStub* patch = NULL;
1341  if (needs_patching) {
1342    patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1343    assert(!to_reg->is_double_cpu() ||
1344           patch_code == lir_patch_none ||
1345           patch_code == lir_patch_normal, "patching doesn't match register");
1346  }
1347
1348  if (addr->index()->is_illegal()) {
1349    if (!Assembler::is_simm13(disp_value) && (!unaligned || Assembler::is_simm13(disp_value + 4))) {
1350      if (needs_patching) {
1351        __ patchable_set(0, O7);
1352      } else {
1353        __ set(disp_value, O7);
1354      }
1355      disp_reg = O7;
1356    }
1357  } else if (unaligned || PatchALot) {
1358    __ add(src, addr->index()->as_register(), O7);
1359    src = O7;
1360  } else {
1361    disp_reg = addr->index()->as_pointer_register();
1362    assert(disp_value == 0, "can't handle 3 operand addresses");
1363  }
1364
1365  // remember the offset of the load.  The patching_epilog must be done
1366  // before the call to add_debug_info, otherwise the PcDescs don't get
1367  // entered in increasing order.
1368  int offset = code_offset();
1369
1370  assert(disp_reg != noreg || Assembler::is_simm13(disp_value), "should have set this up");
1371  if (disp_reg == noreg) {
1372    offset = load(src, disp_value, to_reg, type, wide, unaligned);
1373  } else {
1374    assert(!unaligned, "can't handle this");
1375    offset = load(src, disp_reg, to_reg, type, wide);
1376  }
1377
1378  if (patch != NULL) {
1379    patching_epilog(patch, patch_code, src, info);
1380  }
1381  if (info != NULL) add_debug_info_for_null_check(offset, info);
1382}
1383
1384
1385void LIR_Assembler::prefetchr(LIR_Opr src) {
1386  LIR_Address* addr = src->as_address_ptr();
1387  Address from_addr = as_Address(addr);
1388
1389  if (VM_Version::has_v9()) {
1390    __ prefetch(from_addr, Assembler::severalReads);
1391  }
1392}
1393
1394
1395void LIR_Assembler::prefetchw(LIR_Opr src) {
1396  LIR_Address* addr = src->as_address_ptr();
1397  Address from_addr = as_Address(addr);
1398
1399  if (VM_Version::has_v9()) {
1400    __ prefetch(from_addr, Assembler::severalWritesAndPossiblyReads);
1401  }
1402}
1403
1404
1405void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
1406  Address addr;
1407  if (src->is_single_word()) {
1408    addr = frame_map()->address_for_slot(src->single_stack_ix());
1409  } else if (src->is_double_word())  {
1410    addr = frame_map()->address_for_double_slot(src->double_stack_ix());
1411  }
1412
1413  bool unaligned = (addr.disp() - STACK_BIAS) % 8 != 0;
1414  load(addr.base(), addr.disp(), dest, dest->type(), true /*wide*/, unaligned);
1415}
1416
1417
1418void LIR_Assembler::reg2stack(LIR_Opr from_reg, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
1419  Address addr;
1420  if (dest->is_single_word()) {
1421    addr = frame_map()->address_for_slot(dest->single_stack_ix());
1422  } else if (dest->is_double_word())  {
1423    addr = frame_map()->address_for_slot(dest->double_stack_ix());
1424  }
1425  bool unaligned = (addr.disp() - STACK_BIAS) % 8 != 0;
1426  store(from_reg, addr.base(), addr.disp(), from_reg->type(), true /*wide*/, unaligned);
1427}
1428
1429
1430void LIR_Assembler::reg2reg(LIR_Opr from_reg, LIR_Opr to_reg) {
1431  if (from_reg->is_float_kind() && to_reg->is_float_kind()) {
1432    if (from_reg->is_double_fpu()) {
1433      // double to double moves
1434      assert(to_reg->is_double_fpu(), "should match");
1435      __ fmov(FloatRegisterImpl::D, from_reg->as_double_reg(), to_reg->as_double_reg());
1436    } else {
1437      // float to float moves
1438      assert(to_reg->is_single_fpu(), "should match");
1439      __ fmov(FloatRegisterImpl::S, from_reg->as_float_reg(), to_reg->as_float_reg());
1440    }
1441  } else if (!from_reg->is_float_kind() && !to_reg->is_float_kind()) {
1442    if (from_reg->is_double_cpu()) {
1443#ifdef _LP64
1444      __ mov(from_reg->as_pointer_register(), to_reg->as_pointer_register());
1445#else
1446      assert(to_reg->is_double_cpu() &&
1447             from_reg->as_register_hi() != to_reg->as_register_lo() &&
1448             from_reg->as_register_lo() != to_reg->as_register_hi(),
1449             "should both be long and not overlap");
1450      // long to long moves
1451      __ mov(from_reg->as_register_hi(), to_reg->as_register_hi());
1452      __ mov(from_reg->as_register_lo(), to_reg->as_register_lo());
1453#endif
1454#ifdef _LP64
1455    } else if (to_reg->is_double_cpu()) {
1456      // int to int moves
1457      __ mov(from_reg->as_register(), to_reg->as_register_lo());
1458#endif
1459    } else {
1460      // int to int moves
1461      __ mov(from_reg->as_register(), to_reg->as_register());
1462    }
1463  } else {
1464    ShouldNotReachHere();
1465  }
1466  if (to_reg->type() == T_OBJECT || to_reg->type() == T_ARRAY) {
1467    __ verify_oop(to_reg->as_register());
1468  }
1469}
1470
1471
1472void LIR_Assembler::reg2mem(LIR_Opr from_reg, LIR_Opr dest, BasicType type,
1473                            LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack,
1474                            bool wide, bool unaligned) {
1475  LIR_Address* addr = dest->as_address_ptr();
1476
1477  Register src = addr->base()->as_pointer_register();
1478  Register disp_reg = noreg;
1479  int disp_value = addr->disp();
1480  bool needs_patching = (patch_code != lir_patch_none);
1481
1482  if (addr->base()->is_oop_register()) {
1483    __ verify_oop(src);
1484  }
1485
1486  PatchingStub* patch = NULL;
1487  if (needs_patching) {
1488    patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1489    assert(!from_reg->is_double_cpu() ||
1490           patch_code == lir_patch_none ||
1491           patch_code == lir_patch_normal, "patching doesn't match register");
1492  }
1493
1494  if (addr->index()->is_illegal()) {
1495    if (!Assembler::is_simm13(disp_value) && (!unaligned || Assembler::is_simm13(disp_value + 4))) {
1496      if (needs_patching) {
1497        __ patchable_set(0, O7);
1498      } else {
1499        __ set(disp_value, O7);
1500      }
1501      disp_reg = O7;
1502    }
1503  } else if (unaligned || PatchALot) {
1504    __ add(src, addr->index()->as_register(), O7);
1505    src = O7;
1506  } else {
1507    disp_reg = addr->index()->as_pointer_register();
1508    assert(disp_value == 0, "can't handle 3 operand addresses");
1509  }
1510
1511  // remember the offset of the store.  The patching_epilog must be done
1512  // before the call to add_debug_info_for_null_check, otherwise the PcDescs don't get
1513  // entered in increasing order.
1514  int offset;
1515
1516  assert(disp_reg != noreg || Assembler::is_simm13(disp_value), "should have set this up");
1517  if (disp_reg == noreg) {
1518    offset = store(from_reg, src, disp_value, type, wide, unaligned);
1519  } else {
1520    assert(!unaligned, "can't handle this");
1521    offset = store(from_reg, src, disp_reg, type, wide);
1522  }
1523
1524  if (patch != NULL) {
1525    patching_epilog(patch, patch_code, src, info);
1526  }
1527
1528  if (info != NULL) add_debug_info_for_null_check(offset, info);
1529}
1530
1531
1532void LIR_Assembler::return_op(LIR_Opr result) {
1533  // the poll may need a register so just pick one that isn't the return register
1534#if defined(TIERED) && !defined(_LP64)
1535  if (result->type_field() == LIR_OprDesc::long_type) {
1536    // Must move the result to G1
1537    // Must leave proper result in O0,O1 and G1 (TIERED only)
1538    __ sllx(I0, 32, G1);          // Shift bits into high G1
1539    __ srl (I1, 0, I1);           // Zero extend O1 (harmless?)
1540    __ or3 (I1, G1, G1);          // OR 64 bits into G1
1541#ifdef ASSERT
1542    // mangle it so any problems will show up
1543    __ set(0xdeadbeef, I0);
1544    __ set(0xdeadbeef, I1);
1545#endif
1546  }
1547#endif // TIERED
1548  __ set((intptr_t)os::get_polling_page(), L0);
1549  __ relocate(relocInfo::poll_return_type);
1550  __ ld_ptr(L0, 0, G0);
1551  __ ret();
1552  __ delayed()->restore();
1553}
1554
1555
1556int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
1557  __ set((intptr_t)os::get_polling_page(), tmp->as_register());
1558  if (info != NULL) {
1559    add_debug_info_for_branch(info);
1560  } else {
1561    __ relocate(relocInfo::poll_type);
1562  }
1563
1564  int offset = __ offset();
1565  __ ld_ptr(tmp->as_register(), 0, G0);
1566
1567  return offset;
1568}
1569
1570
1571void LIR_Assembler::emit_static_call_stub() {
1572  address call_pc = __ pc();
1573  address stub = __ start_a_stub(call_stub_size);
1574  if (stub == NULL) {
1575    bailout("static call stub overflow");
1576    return;
1577  }
1578
1579  int start = __ offset();
1580  __ relocate(static_stub_Relocation::spec(call_pc));
1581
1582  __ set_oop(NULL, G5);
1583  // must be set to -1 at code generation time
1584  AddressLiteral addrlit(-1);
1585  __ jump_to(addrlit, G3);
1586  __ delayed()->nop();
1587
1588  assert(__ offset() - start <= call_stub_size, "stub too big");
1589  __ end_a_stub();
1590}
1591
1592
1593void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
1594  if (opr1->is_single_fpu()) {
1595    __ fcmp(FloatRegisterImpl::S, Assembler::fcc0, opr1->as_float_reg(), opr2->as_float_reg());
1596  } else if (opr1->is_double_fpu()) {
1597    __ fcmp(FloatRegisterImpl::D, Assembler::fcc0, opr1->as_double_reg(), opr2->as_double_reg());
1598  } else if (opr1->is_single_cpu()) {
1599    if (opr2->is_constant()) {
1600      switch (opr2->as_constant_ptr()->type()) {
1601        case T_INT:
1602          { jint con = opr2->as_constant_ptr()->as_jint();
1603            if (Assembler::is_simm13(con)) {
1604              __ cmp(opr1->as_register(), con);
1605            } else {
1606              __ set(con, O7);
1607              __ cmp(opr1->as_register(), O7);
1608            }
1609          }
1610          break;
1611
1612        case T_OBJECT:
1613          // there are only equal/notequal comparisions on objects
1614          { jobject con = opr2->as_constant_ptr()->as_jobject();
1615            if (con == NULL) {
1616              __ cmp(opr1->as_register(), 0);
1617            } else {
1618              jobject2reg(con, O7);
1619              __ cmp(opr1->as_register(), O7);
1620            }
1621          }
1622          break;
1623
1624        default:
1625          ShouldNotReachHere();
1626          break;
1627      }
1628    } else {
1629      if (opr2->is_address()) {
1630        LIR_Address * addr = opr2->as_address_ptr();
1631        BasicType type = addr->type();
1632        if ( type == T_OBJECT ) __ ld_ptr(as_Address(addr), O7);
1633        else                    __ ld(as_Address(addr), O7);
1634        __ cmp(opr1->as_register(), O7);
1635      } else {
1636        __ cmp(opr1->as_register(), opr2->as_register());
1637      }
1638    }
1639  } else if (opr1->is_double_cpu()) {
1640    Register xlo = opr1->as_register_lo();
1641    Register xhi = opr1->as_register_hi();
1642    if (opr2->is_constant() && opr2->as_jlong() == 0) {
1643      assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "only handles these cases");
1644#ifdef _LP64
1645      __ orcc(xhi, G0, G0);
1646#else
1647      __ orcc(xhi, xlo, G0);
1648#endif
1649    } else if (opr2->is_register()) {
1650      Register ylo = opr2->as_register_lo();
1651      Register yhi = opr2->as_register_hi();
1652#ifdef _LP64
1653      __ cmp(xlo, ylo);
1654#else
1655      __ subcc(xlo, ylo, xlo);
1656      __ subccc(xhi, yhi, xhi);
1657      if (condition == lir_cond_equal || condition == lir_cond_notEqual) {
1658        __ orcc(xhi, xlo, G0);
1659      }
1660#endif
1661    } else {
1662      ShouldNotReachHere();
1663    }
1664  } else if (opr1->is_address()) {
1665    LIR_Address * addr = opr1->as_address_ptr();
1666    BasicType type = addr->type();
1667    assert (opr2->is_constant(), "Checking");
1668    if ( type == T_OBJECT ) __ ld_ptr(as_Address(addr), O7);
1669    else                    __ ld(as_Address(addr), O7);
1670    __ cmp(O7, opr2->as_constant_ptr()->as_jint());
1671  } else {
1672    ShouldNotReachHere();
1673  }
1674}
1675
1676
1677void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op){
1678  if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
1679    bool is_unordered_less = (code == lir_ucmp_fd2i);
1680    if (left->is_single_fpu()) {
1681      __ float_cmp(true, is_unordered_less ? -1 : 1, left->as_float_reg(), right->as_float_reg(), dst->as_register());
1682    } else if (left->is_double_fpu()) {
1683      __ float_cmp(false, is_unordered_less ? -1 : 1, left->as_double_reg(), right->as_double_reg(), dst->as_register());
1684    } else {
1685      ShouldNotReachHere();
1686    }
1687  } else if (code == lir_cmp_l2i) {
1688#ifdef _LP64
1689    __ lcmp(left->as_register_lo(), right->as_register_lo(), dst->as_register());
1690#else
1691    __ lcmp(left->as_register_hi(),  left->as_register_lo(),
1692            right->as_register_hi(), right->as_register_lo(),
1693            dst->as_register());
1694#endif
1695  } else {
1696    ShouldNotReachHere();
1697  }
1698}
1699
1700
1701void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type) {
1702  Assembler::Condition acond;
1703  switch (condition) {
1704    case lir_cond_equal:        acond = Assembler::equal;        break;
1705    case lir_cond_notEqual:     acond = Assembler::notEqual;     break;
1706    case lir_cond_less:         acond = Assembler::less;         break;
1707    case lir_cond_lessEqual:    acond = Assembler::lessEqual;    break;
1708    case lir_cond_greaterEqual: acond = Assembler::greaterEqual; break;
1709    case lir_cond_greater:      acond = Assembler::greater;      break;
1710    case lir_cond_aboveEqual:   acond = Assembler::greaterEqualUnsigned;      break;
1711    case lir_cond_belowEqual:   acond = Assembler::lessEqualUnsigned;      break;
1712    default:                         ShouldNotReachHere();
1713  };
1714
1715  if (opr1->is_constant() && opr1->type() == T_INT) {
1716    Register dest = result->as_register();
1717    // load up first part of constant before branch
1718    // and do the rest in the delay slot.
1719    if (!Assembler::is_simm13(opr1->as_jint())) {
1720      __ sethi(opr1->as_jint(), dest);
1721    }
1722  } else if (opr1->is_constant()) {
1723    const2reg(opr1, result, lir_patch_none, NULL);
1724  } else if (opr1->is_register()) {
1725    reg2reg(opr1, result);
1726  } else if (opr1->is_stack()) {
1727    stack2reg(opr1, result, result->type());
1728  } else {
1729    ShouldNotReachHere();
1730  }
1731  Label skip;
1732#ifdef _LP64
1733    if  (type == T_INT) {
1734      __ br(acond, false, Assembler::pt, skip);
1735    } else
1736#endif
1737      __ brx(acond, false, Assembler::pt, skip); // checks icc on 32bit and xcc on 64bit
1738  if (opr1->is_constant() && opr1->type() == T_INT) {
1739    Register dest = result->as_register();
1740    if (Assembler::is_simm13(opr1->as_jint())) {
1741      __ delayed()->or3(G0, opr1->as_jint(), dest);
1742    } else {
1743      // the sethi has been done above, so just put in the low 10 bits
1744      __ delayed()->or3(dest, opr1->as_jint() & 0x3ff, dest);
1745    }
1746  } else {
1747    // can't do anything useful in the delay slot
1748    __ delayed()->nop();
1749  }
1750  if (opr2->is_constant()) {
1751    const2reg(opr2, result, lir_patch_none, NULL);
1752  } else if (opr2->is_register()) {
1753    reg2reg(opr2, result);
1754  } else if (opr2->is_stack()) {
1755    stack2reg(opr2, result, result->type());
1756  } else {
1757    ShouldNotReachHere();
1758  }
1759  __ bind(skip);
1760}
1761
1762
1763void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) {
1764  assert(info == NULL, "unused on this code path");
1765  assert(left->is_register(), "wrong items state");
1766  assert(dest->is_register(), "wrong items state");
1767
1768  if (right->is_register()) {
1769    if (dest->is_float_kind()) {
1770
1771      FloatRegister lreg, rreg, res;
1772      FloatRegisterImpl::Width w;
1773      if (right->is_single_fpu()) {
1774        w = FloatRegisterImpl::S;
1775        lreg = left->as_float_reg();
1776        rreg = right->as_float_reg();
1777        res  = dest->as_float_reg();
1778      } else {
1779        w = FloatRegisterImpl::D;
1780        lreg = left->as_double_reg();
1781        rreg = right->as_double_reg();
1782        res  = dest->as_double_reg();
1783      }
1784
1785      switch (code) {
1786        case lir_add: __ fadd(w, lreg, rreg, res); break;
1787        case lir_sub: __ fsub(w, lreg, rreg, res); break;
1788        case lir_mul: // fall through
1789        case lir_mul_strictfp: __ fmul(w, lreg, rreg, res); break;
1790        case lir_div: // fall through
1791        case lir_div_strictfp: __ fdiv(w, lreg, rreg, res); break;
1792        default: ShouldNotReachHere();
1793      }
1794
1795    } else if (dest->is_double_cpu()) {
1796#ifdef _LP64
1797      Register dst_lo = dest->as_register_lo();
1798      Register op1_lo = left->as_pointer_register();
1799      Register op2_lo = right->as_pointer_register();
1800
1801      switch (code) {
1802        case lir_add:
1803          __ add(op1_lo, op2_lo, dst_lo);
1804          break;
1805
1806        case lir_sub:
1807          __ sub(op1_lo, op2_lo, dst_lo);
1808          break;
1809
1810        default: ShouldNotReachHere();
1811      }
1812#else
1813      Register op1_lo = left->as_register_lo();
1814      Register op1_hi = left->as_register_hi();
1815      Register op2_lo = right->as_register_lo();
1816      Register op2_hi = right->as_register_hi();
1817      Register dst_lo = dest->as_register_lo();
1818      Register dst_hi = dest->as_register_hi();
1819
1820      switch (code) {
1821        case lir_add:
1822          __ addcc(op1_lo, op2_lo, dst_lo);
1823          __ addc (op1_hi, op2_hi, dst_hi);
1824          break;
1825
1826        case lir_sub:
1827          __ subcc(op1_lo, op2_lo, dst_lo);
1828          __ subc (op1_hi, op2_hi, dst_hi);
1829          break;
1830
1831        default: ShouldNotReachHere();
1832      }
1833#endif
1834    } else {
1835      assert (right->is_single_cpu(), "Just Checking");
1836
1837      Register lreg = left->as_register();
1838      Register res  = dest->as_register();
1839      Register rreg = right->as_register();
1840      switch (code) {
1841        case lir_add:  __ add  (lreg, rreg, res); break;
1842        case lir_sub:  __ sub  (lreg, rreg, res); break;
1843        case lir_mul:  __ mult (lreg, rreg, res); break;
1844        default: ShouldNotReachHere();
1845      }
1846    }
1847  } else {
1848    assert (right->is_constant(), "must be constant");
1849
1850    if (dest->is_single_cpu()) {
1851      Register lreg = left->as_register();
1852      Register res  = dest->as_register();
1853      int    simm13 = right->as_constant_ptr()->as_jint();
1854
1855      switch (code) {
1856        case lir_add:  __ add  (lreg, simm13, res); break;
1857        case lir_sub:  __ sub  (lreg, simm13, res); break;
1858        case lir_mul:  __ mult (lreg, simm13, res); break;
1859        default: ShouldNotReachHere();
1860      }
1861    } else {
1862      Register lreg = left->as_pointer_register();
1863      Register res  = dest->as_register_lo();
1864      long con = right->as_constant_ptr()->as_jlong();
1865      assert(Assembler::is_simm13(con), "must be simm13");
1866
1867      switch (code) {
1868        case lir_add:  __ add  (lreg, (int)con, res); break;
1869        case lir_sub:  __ sub  (lreg, (int)con, res); break;
1870        case lir_mul:  __ mult (lreg, (int)con, res); break;
1871        default: ShouldNotReachHere();
1872      }
1873    }
1874  }
1875}
1876
1877
1878void LIR_Assembler::fpop() {
1879  // do nothing
1880}
1881
1882
1883void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr thread, LIR_Opr dest, LIR_Op* op) {
1884  switch (code) {
1885    case lir_sin:
1886    case lir_tan:
1887    case lir_cos: {
1888      assert(thread->is_valid(), "preserve the thread object for performance reasons");
1889      assert(dest->as_double_reg() == F0, "the result will be in f0/f1");
1890      break;
1891    }
1892    case lir_sqrt: {
1893      assert(!thread->is_valid(), "there is no need for a thread_reg for dsqrt");
1894      FloatRegister src_reg = value->as_double_reg();
1895      FloatRegister dst_reg = dest->as_double_reg();
1896      __ fsqrt(FloatRegisterImpl::D, src_reg, dst_reg);
1897      break;
1898    }
1899    case lir_abs: {
1900      assert(!thread->is_valid(), "there is no need for a thread_reg for fabs");
1901      FloatRegister src_reg = value->as_double_reg();
1902      FloatRegister dst_reg = dest->as_double_reg();
1903      __ fabs(FloatRegisterImpl::D, src_reg, dst_reg);
1904      break;
1905    }
1906    default: {
1907      ShouldNotReachHere();
1908      break;
1909    }
1910  }
1911}
1912
1913
1914void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest) {
1915  if (right->is_constant()) {
1916    if (dest->is_single_cpu()) {
1917      int simm13 = right->as_constant_ptr()->as_jint();
1918      switch (code) {
1919        case lir_logic_and:   __ and3 (left->as_register(), simm13, dest->as_register()); break;
1920        case lir_logic_or:    __ or3  (left->as_register(), simm13, dest->as_register()); break;
1921        case lir_logic_xor:   __ xor3 (left->as_register(), simm13, dest->as_register()); break;
1922        default: ShouldNotReachHere();
1923      }
1924    } else {
1925      long c = right->as_constant_ptr()->as_jlong();
1926      assert(c == (int)c && Assembler::is_simm13(c), "out of range");
1927      int simm13 = (int)c;
1928      switch (code) {
1929        case lir_logic_and:
1930#ifndef _LP64
1931          __ and3 (left->as_register_hi(), 0,      dest->as_register_hi());
1932#endif
1933          __ and3 (left->as_register_lo(), simm13, dest->as_register_lo());
1934          break;
1935
1936        case lir_logic_or:
1937#ifndef _LP64
1938          __ or3 (left->as_register_hi(), 0,      dest->as_register_hi());
1939#endif
1940          __ or3 (left->as_register_lo(), simm13, dest->as_register_lo());
1941          break;
1942
1943        case lir_logic_xor:
1944#ifndef _LP64
1945          __ xor3 (left->as_register_hi(), 0,      dest->as_register_hi());
1946#endif
1947          __ xor3 (left->as_register_lo(), simm13, dest->as_register_lo());
1948          break;
1949
1950        default: ShouldNotReachHere();
1951      }
1952    }
1953  } else {
1954    assert(right->is_register(), "right should be in register");
1955
1956    if (dest->is_single_cpu()) {
1957      switch (code) {
1958        case lir_logic_and:   __ and3 (left->as_register(), right->as_register(), dest->as_register()); break;
1959        case lir_logic_or:    __ or3  (left->as_register(), right->as_register(), dest->as_register()); break;
1960        case lir_logic_xor:   __ xor3 (left->as_register(), right->as_register(), dest->as_register()); break;
1961        default: ShouldNotReachHere();
1962      }
1963    } else {
1964#ifdef _LP64
1965      Register l = (left->is_single_cpu() && left->is_oop_register()) ? left->as_register() :
1966                                                                        left->as_register_lo();
1967      Register r = (right->is_single_cpu() && right->is_oop_register()) ? right->as_register() :
1968                                                                          right->as_register_lo();
1969
1970      switch (code) {
1971        case lir_logic_and: __ and3 (l, r, dest->as_register_lo()); break;
1972        case lir_logic_or:  __ or3  (l, r, dest->as_register_lo()); break;
1973        case lir_logic_xor: __ xor3 (l, r, dest->as_register_lo()); break;
1974        default: ShouldNotReachHere();
1975      }
1976#else
1977      switch (code) {
1978        case lir_logic_and:
1979          __ and3 (left->as_register_hi(), right->as_register_hi(), dest->as_register_hi());
1980          __ and3 (left->as_register_lo(), right->as_register_lo(), dest->as_register_lo());
1981          break;
1982
1983        case lir_logic_or:
1984          __ or3 (left->as_register_hi(), right->as_register_hi(), dest->as_register_hi());
1985          __ or3 (left->as_register_lo(), right->as_register_lo(), dest->as_register_lo());
1986          break;
1987
1988        case lir_logic_xor:
1989          __ xor3 (left->as_register_hi(), right->as_register_hi(), dest->as_register_hi());
1990          __ xor3 (left->as_register_lo(), right->as_register_lo(), dest->as_register_lo());
1991          break;
1992
1993        default: ShouldNotReachHere();
1994      }
1995#endif
1996    }
1997  }
1998}
1999
2000
2001int LIR_Assembler::shift_amount(BasicType t) {
2002  int elem_size = type2aelembytes(t);
2003  switch (elem_size) {
2004    case 1 : return 0;
2005    case 2 : return 1;
2006    case 4 : return 2;
2007    case 8 : return 3;
2008  }
2009  ShouldNotReachHere();
2010  return -1;
2011}
2012
2013
2014void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
2015  assert(exceptionOop->as_register() == Oexception, "should match");
2016  assert(exceptionPC->as_register() == Oissuing_pc, "should match");
2017
2018  info->add_register_oop(exceptionOop);
2019
2020  // reuse the debug info from the safepoint poll for the throw op itself
2021  address pc_for_athrow  = __ pc();
2022  int pc_for_athrow_offset = __ offset();
2023  RelocationHolder rspec = internal_word_Relocation::spec(pc_for_athrow);
2024  __ set(pc_for_athrow, Oissuing_pc, rspec);
2025  add_call_info(pc_for_athrow_offset, info); // for exception handler
2026
2027  __ call(Runtime1::entry_for(Runtime1::handle_exception_id), relocInfo::runtime_call_type);
2028  __ delayed()->nop();
2029}
2030
2031
2032void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) {
2033  assert(exceptionOop->as_register() == Oexception, "should match");
2034
2035  __ br(Assembler::always, false, Assembler::pt, _unwind_handler_entry);
2036  __ delayed()->nop();
2037}
2038
2039
2040void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
2041  Register src = op->src()->as_register();
2042  Register dst = op->dst()->as_register();
2043  Register src_pos = op->src_pos()->as_register();
2044  Register dst_pos = op->dst_pos()->as_register();
2045  Register length  = op->length()->as_register();
2046  Register tmp = op->tmp()->as_register();
2047  Register tmp2 = O7;
2048
2049  int flags = op->flags();
2050  ciArrayKlass* default_type = op->expected_type();
2051  BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL;
2052  if (basic_type == T_ARRAY) basic_type = T_OBJECT;
2053
2054#ifdef _LP64
2055  // higher 32bits must be null
2056  __ sra(dst_pos, 0, dst_pos);
2057  __ sra(src_pos, 0, src_pos);
2058  __ sra(length, 0, length);
2059#endif
2060
2061  // set up the arraycopy stub information
2062  ArrayCopyStub* stub = op->stub();
2063
2064  // always do stub if no type information is available.  it's ok if
2065  // the known type isn't loaded since the code sanity checks
2066  // in debug mode and the type isn't required when we know the exact type
2067  // also check that the type is an array type.
2068  if (op->expected_type() == NULL) {
2069    __ mov(src,     O0);
2070    __ mov(src_pos, O1);
2071    __ mov(dst,     O2);
2072    __ mov(dst_pos, O3);
2073    __ mov(length,  O4);
2074    address copyfunc_addr = StubRoutines::generic_arraycopy();
2075
2076    if (copyfunc_addr == NULL) { // Use C version if stub was not generated
2077      __ call_VM_leaf(tmp, CAST_FROM_FN_PTR(address, Runtime1::arraycopy));
2078    } else {
2079#ifndef PRODUCT
2080      if (PrintC1Statistics) {
2081        address counter = (address)&Runtime1::_generic_arraycopystub_cnt;
2082        __ inc_counter(counter, G1, G3);
2083      }
2084#endif
2085      __ call_VM_leaf(tmp, copyfunc_addr);
2086    }
2087
2088    if (copyfunc_addr != NULL) {
2089      __ xor3(O0, -1, tmp);
2090      __ sub(length, tmp, length);
2091      __ add(src_pos, tmp, src_pos);
2092      __ cmp_zero_and_br(Assembler::less, O0, *stub->entry());
2093      __ delayed()->add(dst_pos, tmp, dst_pos);
2094    } else {
2095      __ cmp_zero_and_br(Assembler::less, O0, *stub->entry());
2096      __ delayed()->nop();
2097    }
2098    __ bind(*stub->continuation());
2099    return;
2100  }
2101
2102  assert(default_type != NULL && default_type->is_array_klass(), "must be true at this point");
2103
2104  // make sure src and dst are non-null and load array length
2105  if (flags & LIR_OpArrayCopy::src_null_check) {
2106    __ tst(src);
2107    __ brx(Assembler::equal, false, Assembler::pn, *stub->entry());
2108    __ delayed()->nop();
2109  }
2110
2111  if (flags & LIR_OpArrayCopy::dst_null_check) {
2112    __ tst(dst);
2113    __ brx(Assembler::equal, false, Assembler::pn, *stub->entry());
2114    __ delayed()->nop();
2115  }
2116
2117  if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
2118    // test src_pos register
2119    __ cmp_zero_and_br(Assembler::less, src_pos, *stub->entry());
2120    __ delayed()->nop();
2121  }
2122
2123  if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
2124    // test dst_pos register
2125    __ cmp_zero_and_br(Assembler::less, dst_pos, *stub->entry());
2126    __ delayed()->nop();
2127  }
2128
2129  if (flags & LIR_OpArrayCopy::length_positive_check) {
2130    // make sure length isn't negative
2131    __ cmp_zero_and_br(Assembler::less, length, *stub->entry());
2132    __ delayed()->nop();
2133  }
2134
2135  if (flags & LIR_OpArrayCopy::src_range_check) {
2136    __ ld(src, arrayOopDesc::length_offset_in_bytes(), tmp2);
2137    __ add(length, src_pos, tmp);
2138    __ cmp(tmp2, tmp);
2139    __ br(Assembler::carrySet, false, Assembler::pn, *stub->entry());
2140    __ delayed()->nop();
2141  }
2142
2143  if (flags & LIR_OpArrayCopy::dst_range_check) {
2144    __ ld(dst, arrayOopDesc::length_offset_in_bytes(), tmp2);
2145    __ add(length, dst_pos, tmp);
2146    __ cmp(tmp2, tmp);
2147    __ br(Assembler::carrySet, false, Assembler::pn, *stub->entry());
2148    __ delayed()->nop();
2149  }
2150
2151  int shift = shift_amount(basic_type);
2152
2153  if (flags & LIR_OpArrayCopy::type_check) {
2154    // We don't know the array types are compatible
2155    if (basic_type != T_OBJECT) {
2156      // Simple test for basic type arrays
2157      if (UseCompressedOops) {
2158        // We don't need decode because we just need to compare
2159        __ lduw(src, oopDesc::klass_offset_in_bytes(), tmp);
2160        __ lduw(dst, oopDesc::klass_offset_in_bytes(), tmp2);
2161        __ cmp(tmp, tmp2);
2162        __ br(Assembler::notEqual, false, Assembler::pt, *stub->entry());
2163      } else {
2164        __ ld_ptr(src, oopDesc::klass_offset_in_bytes(), tmp);
2165        __ ld_ptr(dst, oopDesc::klass_offset_in_bytes(), tmp2);
2166        __ cmp(tmp, tmp2);
2167        __ brx(Assembler::notEqual, false, Assembler::pt, *stub->entry());
2168      }
2169      __ delayed()->nop();
2170    } else {
2171      // For object arrays, if src is a sub class of dst then we can
2172      // safely do the copy.
2173      address copyfunc_addr = StubRoutines::checkcast_arraycopy();
2174
2175      Label cont, slow;
2176      assert_different_registers(tmp, tmp2, G3, G1);
2177
2178      __ load_klass(src, G3);
2179      __ load_klass(dst, G1);
2180
2181      __ check_klass_subtype_fast_path(G3, G1, tmp, tmp2, &cont, copyfunc_addr == NULL ? stub->entry() : &slow, NULL);
2182
2183      __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
2184      __ delayed()->nop();
2185
2186      __ cmp(G3, 0);
2187      if (copyfunc_addr != NULL) { // use stub if available
2188        // src is not a sub class of dst so we have to do a
2189        // per-element check.
2190        __ br(Assembler::notEqual, false, Assembler::pt, cont);
2191        __ delayed()->nop();
2192
2193        __ bind(slow);
2194
2195        int mask = LIR_OpArrayCopy::src_objarray|LIR_OpArrayCopy::dst_objarray;
2196        if ((flags & mask) != mask) {
2197          // Check that at least both of them object arrays.
2198          assert(flags & mask, "one of the two should be known to be an object array");
2199
2200          if (!(flags & LIR_OpArrayCopy::src_objarray)) {
2201            __ load_klass(src, tmp);
2202          } else if (!(flags & LIR_OpArrayCopy::dst_objarray)) {
2203            __ load_klass(dst, tmp);
2204          }
2205          int lh_offset = in_bytes(Klass::layout_helper_offset());
2206
2207          __ lduw(tmp, lh_offset, tmp2);
2208
2209          jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
2210          __ set(objArray_lh, tmp);
2211          __ cmp(tmp, tmp2);
2212          __ br(Assembler::notEqual, false, Assembler::pt,  *stub->entry());
2213          __ delayed()->nop();
2214        }
2215
2216        Register src_ptr = O0;
2217        Register dst_ptr = O1;
2218        Register len     = O2;
2219        Register chk_off = O3;
2220        Register super_k = O4;
2221
2222        __ add(src, arrayOopDesc::base_offset_in_bytes(basic_type), src_ptr);
2223        if (shift == 0) {
2224          __ add(src_ptr, src_pos, src_ptr);
2225        } else {
2226          __ sll(src_pos, shift, tmp);
2227          __ add(src_ptr, tmp, src_ptr);
2228        }
2229
2230        __ add(dst, arrayOopDesc::base_offset_in_bytes(basic_type), dst_ptr);
2231        if (shift == 0) {
2232          __ add(dst_ptr, dst_pos, dst_ptr);
2233        } else {
2234          __ sll(dst_pos, shift, tmp);
2235          __ add(dst_ptr, tmp, dst_ptr);
2236        }
2237        __ mov(length, len);
2238        __ load_klass(dst, tmp);
2239
2240        int ek_offset = in_bytes(objArrayKlass::element_klass_offset());
2241        __ ld_ptr(tmp, ek_offset, super_k);
2242
2243        int sco_offset = in_bytes(Klass::super_check_offset_offset());
2244        __ lduw(super_k, sco_offset, chk_off);
2245
2246        __ call_VM_leaf(tmp, copyfunc_addr);
2247
2248#ifndef PRODUCT
2249        if (PrintC1Statistics) {
2250          Label failed;
2251          __ br_notnull_short(O0, Assembler::pn, failed);
2252          __ inc_counter((address)&Runtime1::_arraycopy_checkcast_cnt, G1, G3);
2253          __ bind(failed);
2254        }
2255#endif
2256
2257        __ br_null(O0, false, Assembler::pt,  *stub->continuation());
2258        __ delayed()->xor3(O0, -1, tmp);
2259
2260#ifndef PRODUCT
2261        if (PrintC1Statistics) {
2262          __ inc_counter((address)&Runtime1::_arraycopy_checkcast_attempt_cnt, G1, G3);
2263        }
2264#endif
2265
2266        __ sub(length, tmp, length);
2267        __ add(src_pos, tmp, src_pos);
2268        __ br(Assembler::always, false, Assembler::pt, *stub->entry());
2269        __ delayed()->add(dst_pos, tmp, dst_pos);
2270
2271        __ bind(cont);
2272      } else {
2273        __ br(Assembler::equal, false, Assembler::pn, *stub->entry());
2274        __ delayed()->nop();
2275        __ bind(cont);
2276      }
2277    }
2278  }
2279
2280#ifdef ASSERT
2281  if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
2282    // Sanity check the known type with the incoming class.  For the
2283    // primitive case the types must match exactly with src.klass and
2284    // dst.klass each exactly matching the default type.  For the
2285    // object array case, if no type check is needed then either the
2286    // dst type is exactly the expected type and the src type is a
2287    // subtype which we can't check or src is the same array as dst
2288    // but not necessarily exactly of type default_type.
2289    Label known_ok, halt;
2290    jobject2reg(op->expected_type()->constant_encoding(), tmp);
2291    if (UseCompressedOops) {
2292      // tmp holds the default type. It currently comes uncompressed after the
2293      // load of a constant, so encode it.
2294      __ encode_heap_oop(tmp);
2295      // load the raw value of the dst klass, since we will be comparing
2296      // uncompressed values directly.
2297      __ lduw(dst, oopDesc::klass_offset_in_bytes(), tmp2);
2298      if (basic_type != T_OBJECT) {
2299        __ cmp(tmp, tmp2);
2300        __ br(Assembler::notEqual, false, Assembler::pn, halt);
2301        // load the raw value of the src klass.
2302        __ delayed()->lduw(src, oopDesc::klass_offset_in_bytes(), tmp2);
2303        __ cmp_and_br_short(tmp, tmp2, Assembler::equal, Assembler::pn, known_ok);
2304      } else {
2305        __ cmp(tmp, tmp2);
2306        __ br(Assembler::equal, false, Assembler::pn, known_ok);
2307        __ delayed()->cmp(src, dst);
2308        __ brx(Assembler::equal, false, Assembler::pn, known_ok);
2309        __ delayed()->nop();
2310      }
2311    } else {
2312      __ ld_ptr(dst, oopDesc::klass_offset_in_bytes(), tmp2);
2313      if (basic_type != T_OBJECT) {
2314        __ cmp(tmp, tmp2);
2315        __ brx(Assembler::notEqual, false, Assembler::pn, halt);
2316        __ delayed()->ld_ptr(src, oopDesc::klass_offset_in_bytes(), tmp2);
2317        __ cmp_and_brx_short(tmp, tmp2, Assembler::equal, Assembler::pn, known_ok);
2318      } else {
2319        __ cmp(tmp, tmp2);
2320        __ brx(Assembler::equal, false, Assembler::pn, known_ok);
2321        __ delayed()->cmp(src, dst);
2322        __ brx(Assembler::equal, false, Assembler::pn, known_ok);
2323        __ delayed()->nop();
2324      }
2325    }
2326    __ bind(halt);
2327    __ stop("incorrect type information in arraycopy");
2328    __ bind(known_ok);
2329  }
2330#endif
2331
2332#ifndef PRODUCT
2333  if (PrintC1Statistics) {
2334    address counter = Runtime1::arraycopy_count_address(basic_type);
2335    __ inc_counter(counter, G1, G3);
2336  }
2337#endif
2338
2339  Register src_ptr = O0;
2340  Register dst_ptr = O1;
2341  Register len     = O2;
2342
2343  __ add(src, arrayOopDesc::base_offset_in_bytes(basic_type), src_ptr);
2344  if (shift == 0) {
2345    __ add(src_ptr, src_pos, src_ptr);
2346  } else {
2347    __ sll(src_pos, shift, tmp);
2348    __ add(src_ptr, tmp, src_ptr);
2349  }
2350
2351  __ add(dst, arrayOopDesc::base_offset_in_bytes(basic_type), dst_ptr);
2352  if (shift == 0) {
2353    __ add(dst_ptr, dst_pos, dst_ptr);
2354  } else {
2355    __ sll(dst_pos, shift, tmp);
2356    __ add(dst_ptr, tmp, dst_ptr);
2357  }
2358
2359  bool disjoint = (flags & LIR_OpArrayCopy::overlapping) == 0;
2360  bool aligned = (flags & LIR_OpArrayCopy::unaligned) == 0;
2361  const char *name;
2362  address entry = StubRoutines::select_arraycopy_function(basic_type, aligned, disjoint, name, false);
2363
2364  // arraycopy stubs takes a length in number of elements, so don't scale it.
2365  __ mov(length, len);
2366  __ call_VM_leaf(tmp, entry);
2367
2368  __ bind(*stub->continuation());
2369}
2370
2371
2372void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
2373  if (dest->is_single_cpu()) {
2374#ifdef _LP64
2375    if (left->type() == T_OBJECT) {
2376      switch (code) {
2377        case lir_shl:  __ sllx  (left->as_register(), count->as_register(), dest->as_register()); break;
2378        case lir_shr:  __ srax  (left->as_register(), count->as_register(), dest->as_register()); break;
2379        case lir_ushr: __ srl   (left->as_register(), count->as_register(), dest->as_register()); break;
2380        default: ShouldNotReachHere();
2381      }
2382    } else
2383#endif
2384      switch (code) {
2385        case lir_shl:  __ sll   (left->as_register(), count->as_register(), dest->as_register()); break;
2386        case lir_shr:  __ sra   (left->as_register(), count->as_register(), dest->as_register()); break;
2387        case lir_ushr: __ srl   (left->as_register(), count->as_register(), dest->as_register()); break;
2388        default: ShouldNotReachHere();
2389      }
2390  } else {
2391#ifdef _LP64
2392    switch (code) {
2393      case lir_shl:  __ sllx  (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
2394      case lir_shr:  __ srax  (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
2395      case lir_ushr: __ srlx  (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
2396      default: ShouldNotReachHere();
2397    }
2398#else
2399    switch (code) {
2400      case lir_shl:  __ lshl  (left->as_register_hi(), left->as_register_lo(), count->as_register(), dest->as_register_hi(), dest->as_register_lo(), G3_scratch); break;
2401      case lir_shr:  __ lshr  (left->as_register_hi(), left->as_register_lo(), count->as_register(), dest->as_register_hi(), dest->as_register_lo(), G3_scratch); break;
2402      case lir_ushr: __ lushr (left->as_register_hi(), left->as_register_lo(), count->as_register(), dest->as_register_hi(), dest->as_register_lo(), G3_scratch); break;
2403      default: ShouldNotReachHere();
2404    }
2405#endif
2406  }
2407}
2408
2409
2410void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
2411#ifdef _LP64
2412  if (left->type() == T_OBJECT) {
2413    count = count & 63;  // shouldn't shift by more than sizeof(intptr_t)
2414    Register l = left->as_register();
2415    Register d = dest->as_register_lo();
2416    switch (code) {
2417      case lir_shl:  __ sllx  (l, count, d); break;
2418      case lir_shr:  __ srax  (l, count, d); break;
2419      case lir_ushr: __ srlx  (l, count, d); break;
2420      default: ShouldNotReachHere();
2421    }
2422    return;
2423  }
2424#endif
2425
2426  if (dest->is_single_cpu()) {
2427    count = count & 0x1F; // Java spec
2428    switch (code) {
2429      case lir_shl:  __ sll   (left->as_register(), count, dest->as_register()); break;
2430      case lir_shr:  __ sra   (left->as_register(), count, dest->as_register()); break;
2431      case lir_ushr: __ srl   (left->as_register(), count, dest->as_register()); break;
2432      default: ShouldNotReachHere();
2433    }
2434  } else if (dest->is_double_cpu()) {
2435    count = count & 63; // Java spec
2436    switch (code) {
2437      case lir_shl:  __ sllx  (left->as_pointer_register(), count, dest->as_pointer_register()); break;
2438      case lir_shr:  __ srax  (left->as_pointer_register(), count, dest->as_pointer_register()); break;
2439      case lir_ushr: __ srlx  (left->as_pointer_register(), count, dest->as_pointer_register()); break;
2440      default: ShouldNotReachHere();
2441    }
2442  } else {
2443    ShouldNotReachHere();
2444  }
2445}
2446
2447
2448void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
2449  assert(op->tmp1()->as_register()  == G1 &&
2450         op->tmp2()->as_register()  == G3 &&
2451         op->tmp3()->as_register()  == G4 &&
2452         op->obj()->as_register()   == O0 &&
2453         op->klass()->as_register() == G5, "must be");
2454  if (op->init_check()) {
2455    __ ldub(op->klass()->as_register(),
2456          in_bytes(instanceKlass::init_state_offset()),
2457          op->tmp1()->as_register());
2458    add_debug_info_for_null_check_here(op->stub()->info());
2459    __ cmp(op->tmp1()->as_register(), instanceKlass::fully_initialized);
2460    __ br(Assembler::notEqual, false, Assembler::pn, *op->stub()->entry());
2461    __ delayed()->nop();
2462  }
2463  __ allocate_object(op->obj()->as_register(),
2464                     op->tmp1()->as_register(),
2465                     op->tmp2()->as_register(),
2466                     op->tmp3()->as_register(),
2467                     op->header_size(),
2468                     op->object_size(),
2469                     op->klass()->as_register(),
2470                     *op->stub()->entry());
2471  __ bind(*op->stub()->continuation());
2472  __ verify_oop(op->obj()->as_register());
2473}
2474
2475
2476void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
2477  assert(op->tmp1()->as_register()  == G1 &&
2478         op->tmp2()->as_register()  == G3 &&
2479         op->tmp3()->as_register()  == G4 &&
2480         op->tmp4()->as_register()  == O1 &&
2481         op->klass()->as_register() == G5, "must be");
2482
2483  LP64_ONLY( __ signx(op->len()->as_register()); )
2484  if (UseSlowPath ||
2485      (!UseFastNewObjectArray && (op->type() == T_OBJECT || op->type() == T_ARRAY)) ||
2486      (!UseFastNewTypeArray   && (op->type() != T_OBJECT && op->type() != T_ARRAY))) {
2487    __ br(Assembler::always, false, Assembler::pt, *op->stub()->entry());
2488    __ delayed()->nop();
2489  } else {
2490    __ allocate_array(op->obj()->as_register(),
2491                      op->len()->as_register(),
2492                      op->tmp1()->as_register(),
2493                      op->tmp2()->as_register(),
2494                      op->tmp3()->as_register(),
2495                      arrayOopDesc::header_size(op->type()),
2496                      type2aelembytes(op->type()),
2497                      op->klass()->as_register(),
2498                      *op->stub()->entry());
2499  }
2500  __ bind(*op->stub()->continuation());
2501}
2502
2503
2504void LIR_Assembler::type_profile_helper(Register mdo, int mdo_offset_bias,
2505                                        ciMethodData *md, ciProfileData *data,
2506                                        Register recv, Register tmp1, Label* update_done) {
2507  uint i;
2508  for (i = 0; i < VirtualCallData::row_limit(); i++) {
2509    Label next_test;
2510    // See if the receiver is receiver[n].
2511    Address receiver_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)) -
2512                          mdo_offset_bias);
2513    __ ld_ptr(receiver_addr, tmp1);
2514    __ verify_oop(tmp1);
2515    __ cmp_and_brx_short(recv, tmp1, Assembler::notEqual, Assembler::pt, next_test);
2516    Address data_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)) -
2517                      mdo_offset_bias);
2518    __ ld_ptr(data_addr, tmp1);
2519    __ add(tmp1, DataLayout::counter_increment, tmp1);
2520    __ st_ptr(tmp1, data_addr);
2521    __ ba(*update_done);
2522    __ delayed()->nop();
2523    __ bind(next_test);
2524  }
2525
2526  // Didn't find receiver; find next empty slot and fill it in
2527  for (i = 0; i < VirtualCallData::row_limit(); i++) {
2528    Label next_test;
2529    Address recv_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)) -
2530                      mdo_offset_bias);
2531    __ ld_ptr(recv_addr, tmp1);
2532    __ br_notnull_short(tmp1, Assembler::pt, next_test);
2533    __ st_ptr(recv, recv_addr);
2534    __ set(DataLayout::counter_increment, tmp1);
2535    __ st_ptr(tmp1, mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)) -
2536              mdo_offset_bias);
2537    __ ba(*update_done);
2538    __ delayed()->nop();
2539    __ bind(next_test);
2540  }
2541}
2542
2543
2544void LIR_Assembler::setup_md_access(ciMethod* method, int bci,
2545                                    ciMethodData*& md, ciProfileData*& data, int& mdo_offset_bias) {
2546  md = method->method_data_or_null();
2547  assert(md != NULL, "Sanity");
2548  data = md->bci_to_data(bci);
2549  assert(data != NULL,       "need data for checkcast");
2550  assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
2551  if (!Assembler::is_simm13(md->byte_offset_of_slot(data, DataLayout::header_offset()) + data->size_in_bytes())) {
2552    // The offset is large so bias the mdo by the base of the slot so
2553    // that the ld can use simm13s to reference the slots of the data
2554    mdo_offset_bias = md->byte_offset_of_slot(data, DataLayout::header_offset());
2555  }
2556}
2557
2558void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) {
2559  // we always need a stub for the failure case.
2560  CodeStub* stub = op->stub();
2561  Register obj = op->object()->as_register();
2562  Register k_RInfo = op->tmp1()->as_register();
2563  Register klass_RInfo = op->tmp2()->as_register();
2564  Register dst = op->result_opr()->as_register();
2565  Register Rtmp1 = op->tmp3()->as_register();
2566  ciKlass* k = op->klass();
2567
2568
2569  if (obj == k_RInfo) {
2570    k_RInfo = klass_RInfo;
2571    klass_RInfo = obj;
2572  }
2573
2574  ciMethodData* md;
2575  ciProfileData* data;
2576  int mdo_offset_bias = 0;
2577  if (op->should_profile()) {
2578    ciMethod* method = op->profiled_method();
2579    assert(method != NULL, "Should have method");
2580    setup_md_access(method, op->profiled_bci(), md, data, mdo_offset_bias);
2581
2582    Label not_null;
2583    __ br_notnull_short(obj, Assembler::pn, not_null);
2584    Register mdo      = k_RInfo;
2585    Register data_val = Rtmp1;
2586    jobject2reg(md->constant_encoding(), mdo);
2587    if (mdo_offset_bias > 0) {
2588      __ set(mdo_offset_bias, data_val);
2589      __ add(mdo, data_val, mdo);
2590    }
2591    Address flags_addr(mdo, md->byte_offset_of_slot(data, DataLayout::flags_offset()) - mdo_offset_bias);
2592    __ ldub(flags_addr, data_val);
2593    __ or3(data_val, BitData::null_seen_byte_constant(), data_val);
2594    __ stb(data_val, flags_addr);
2595    __ ba(*obj_is_null);
2596    __ delayed()->nop();
2597    __ bind(not_null);
2598  } else {
2599    __ br_null(obj, false, Assembler::pn, *obj_is_null);
2600    __ delayed()->nop();
2601  }
2602
2603  Label profile_cast_failure, profile_cast_success;
2604  Label *failure_target = op->should_profile() ? &profile_cast_failure : failure;
2605  Label *success_target = op->should_profile() ? &profile_cast_success : success;
2606
2607  // patching may screw with our temporaries on sparc,
2608  // so let's do it before loading the class
2609  if (k->is_loaded()) {
2610    jobject2reg(k->constant_encoding(), k_RInfo);
2611  } else {
2612    jobject2reg_with_patching(k_RInfo, op->info_for_patch());
2613  }
2614  assert(obj != k_RInfo, "must be different");
2615
2616  // get object class
2617  // not a safepoint as obj null check happens earlier
2618  __ load_klass(obj, klass_RInfo);
2619  if (op->fast_check()) {
2620    assert_different_registers(klass_RInfo, k_RInfo);
2621    __ cmp(k_RInfo, klass_RInfo);
2622    __ brx(Assembler::notEqual, false, Assembler::pt, *failure_target);
2623    __ delayed()->nop();
2624  } else {
2625    bool need_slow_path = true;
2626    if (k->is_loaded()) {
2627      if ((int) k->super_check_offset() != in_bytes(Klass::secondary_super_cache_offset()))
2628        need_slow_path = false;
2629      // perform the fast part of the checking logic
2630      __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, noreg,
2631                                       (need_slow_path ? success_target : NULL),
2632                                       failure_target, NULL,
2633                                       RegisterOrConstant(k->super_check_offset()));
2634    } else {
2635      // perform the fast part of the checking logic
2636      __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, O7, success_target,
2637                                       failure_target, NULL);
2638    }
2639    if (need_slow_path) {
2640      // call out-of-line instance of __ check_klass_subtype_slow_path(...):
2641      assert(klass_RInfo == G3 && k_RInfo == G1, "incorrect call setup");
2642      __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
2643      __ delayed()->nop();
2644      __ cmp(G3, 0);
2645      __ br(Assembler::equal, false, Assembler::pn, *failure_target);
2646      __ delayed()->nop();
2647      // Fall through to success case
2648    }
2649  }
2650
2651  if (op->should_profile()) {
2652    Register mdo  = klass_RInfo, recv = k_RInfo, tmp1 = Rtmp1;
2653    assert_different_registers(obj, mdo, recv, tmp1);
2654    __ bind(profile_cast_success);
2655    jobject2reg(md->constant_encoding(), mdo);
2656    if (mdo_offset_bias > 0) {
2657      __ set(mdo_offset_bias, tmp1);
2658      __ add(mdo, tmp1, mdo);
2659    }
2660    __ load_klass(obj, recv);
2661    type_profile_helper(mdo, mdo_offset_bias, md, data, recv, tmp1, success);
2662    // Jump over the failure case
2663    __ ba(*success);
2664    __ delayed()->nop();
2665    // Cast failure case
2666    __ bind(profile_cast_failure);
2667    jobject2reg(md->constant_encoding(), mdo);
2668    if (mdo_offset_bias > 0) {
2669      __ set(mdo_offset_bias, tmp1);
2670      __ add(mdo, tmp1, mdo);
2671    }
2672    Address data_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias);
2673    __ ld_ptr(data_addr, tmp1);
2674    __ sub(tmp1, DataLayout::counter_increment, tmp1);
2675    __ st_ptr(tmp1, data_addr);
2676    __ ba(*failure);
2677    __ delayed()->nop();
2678  }
2679  __ ba(*success);
2680  __ delayed()->nop();
2681}
2682
2683void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
2684  LIR_Code code = op->code();
2685  if (code == lir_store_check) {
2686    Register value = op->object()->as_register();
2687    Register array = op->array()->as_register();
2688    Register k_RInfo = op->tmp1()->as_register();
2689    Register klass_RInfo = op->tmp2()->as_register();
2690    Register Rtmp1 = op->tmp3()->as_register();
2691
2692    __ verify_oop(value);
2693    CodeStub* stub = op->stub();
2694    // check if it needs to be profiled
2695    ciMethodData* md;
2696    ciProfileData* data;
2697    int mdo_offset_bias = 0;
2698    if (op->should_profile()) {
2699      ciMethod* method = op->profiled_method();
2700      assert(method != NULL, "Should have method");
2701      setup_md_access(method, op->profiled_bci(), md, data, mdo_offset_bias);
2702    }
2703    Label profile_cast_success, profile_cast_failure, done;
2704    Label *success_target = op->should_profile() ? &profile_cast_success : &done;
2705    Label *failure_target = op->should_profile() ? &profile_cast_failure : stub->entry();
2706
2707    if (op->should_profile()) {
2708      Label not_null;
2709      __ br_notnull_short(value, Assembler::pn, not_null);
2710      Register mdo      = k_RInfo;
2711      Register data_val = Rtmp1;
2712      jobject2reg(md->constant_encoding(), mdo);
2713      if (mdo_offset_bias > 0) {
2714        __ set(mdo_offset_bias, data_val);
2715        __ add(mdo, data_val, mdo);
2716      }
2717      Address flags_addr(mdo, md->byte_offset_of_slot(data, DataLayout::flags_offset()) - mdo_offset_bias);
2718      __ ldub(flags_addr, data_val);
2719      __ or3(data_val, BitData::null_seen_byte_constant(), data_val);
2720      __ stb(data_val, flags_addr);
2721      __ ba_short(done);
2722      __ bind(not_null);
2723    } else {
2724      __ br_null_short(value, Assembler::pn, done);
2725    }
2726    add_debug_info_for_null_check_here(op->info_for_exception());
2727    __ load_klass(array, k_RInfo);
2728    __ load_klass(value, klass_RInfo);
2729
2730    // get instance klass
2731    __ ld_ptr(Address(k_RInfo, objArrayKlass::element_klass_offset()), k_RInfo);
2732    // perform the fast part of the checking logic
2733    __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, O7, success_target, failure_target, NULL);
2734
2735    // call out-of-line instance of __ check_klass_subtype_slow_path(...):
2736    assert(klass_RInfo == G3 && k_RInfo == G1, "incorrect call setup");
2737    __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
2738    __ delayed()->nop();
2739    __ cmp(G3, 0);
2740    __ br(Assembler::equal, false, Assembler::pn, *failure_target);
2741    __ delayed()->nop();
2742    // fall through to the success case
2743
2744    if (op->should_profile()) {
2745      Register mdo  = klass_RInfo, recv = k_RInfo, tmp1 = Rtmp1;
2746      assert_different_registers(value, mdo, recv, tmp1);
2747      __ bind(profile_cast_success);
2748      jobject2reg(md->constant_encoding(), mdo);
2749      if (mdo_offset_bias > 0) {
2750        __ set(mdo_offset_bias, tmp1);
2751        __ add(mdo, tmp1, mdo);
2752      }
2753      __ load_klass(value, recv);
2754      type_profile_helper(mdo, mdo_offset_bias, md, data, recv, tmp1, &done);
2755      __ ba_short(done);
2756      // Cast failure case
2757      __ bind(profile_cast_failure);
2758      jobject2reg(md->constant_encoding(), mdo);
2759      if (mdo_offset_bias > 0) {
2760        __ set(mdo_offset_bias, tmp1);
2761        __ add(mdo, tmp1, mdo);
2762      }
2763      Address data_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias);
2764      __ ld_ptr(data_addr, tmp1);
2765      __ sub(tmp1, DataLayout::counter_increment, tmp1);
2766      __ st_ptr(tmp1, data_addr);
2767      __ ba(*stub->entry());
2768      __ delayed()->nop();
2769    }
2770    __ bind(done);
2771  } else if (code == lir_checkcast) {
2772    Register obj = op->object()->as_register();
2773    Register dst = op->result_opr()->as_register();
2774    Label success;
2775    emit_typecheck_helper(op, &success, op->stub()->entry(), &success);
2776    __ bind(success);
2777    __ mov(obj, dst);
2778  } else if (code == lir_instanceof) {
2779    Register obj = op->object()->as_register();
2780    Register dst = op->result_opr()->as_register();
2781    Label success, failure, done;
2782    emit_typecheck_helper(op, &success, &failure, &failure);
2783    __ bind(failure);
2784    __ set(0, dst);
2785    __ ba_short(done);
2786    __ bind(success);
2787    __ set(1, dst);
2788    __ bind(done);
2789  } else {
2790    ShouldNotReachHere();
2791  }
2792
2793}
2794
2795
2796void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
2797  if (op->code() == lir_cas_long) {
2798    assert(VM_Version::supports_cx8(), "wrong machine");
2799    Register addr = op->addr()->as_pointer_register();
2800    Register cmp_value_lo = op->cmp_value()->as_register_lo();
2801    Register cmp_value_hi = op->cmp_value()->as_register_hi();
2802    Register new_value_lo = op->new_value()->as_register_lo();
2803    Register new_value_hi = op->new_value()->as_register_hi();
2804    Register t1 = op->tmp1()->as_register();
2805    Register t2 = op->tmp2()->as_register();
2806#ifdef _LP64
2807    __ mov(cmp_value_lo, t1);
2808    __ mov(new_value_lo, t2);
2809    // perform the compare and swap operation
2810    __ casx(addr, t1, t2);
2811    // generate condition code - if the swap succeeded, t2 ("new value" reg) was
2812    // overwritten with the original value in "addr" and will be equal to t1.
2813    __ cmp(t1, t2);
2814#else
2815    // move high and low halves of long values into single registers
2816    __ sllx(cmp_value_hi, 32, t1);         // shift high half into temp reg
2817    __ srl(cmp_value_lo, 0, cmp_value_lo); // clear upper 32 bits of low half
2818    __ or3(t1, cmp_value_lo, t1);          // t1 holds 64-bit compare value
2819    __ sllx(new_value_hi, 32, t2);
2820    __ srl(new_value_lo, 0, new_value_lo);
2821    __ or3(t2, new_value_lo, t2);          // t2 holds 64-bit value to swap
2822    // perform the compare and swap operation
2823    __ casx(addr, t1, t2);
2824    // generate condition code - if the swap succeeded, t2 ("new value" reg) was
2825    // overwritten with the original value in "addr" and will be equal to t1.
2826    // Produce icc flag for 32bit.
2827    __ sub(t1, t2, t2);
2828    __ srlx(t2, 32, t1);
2829    __ orcc(t2, t1, G0);
2830#endif
2831  } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj) {
2832    Register addr = op->addr()->as_pointer_register();
2833    Register cmp_value = op->cmp_value()->as_register();
2834    Register new_value = op->new_value()->as_register();
2835    Register t1 = op->tmp1()->as_register();
2836    Register t2 = op->tmp2()->as_register();
2837    __ mov(cmp_value, t1);
2838    __ mov(new_value, t2);
2839    if (op->code() == lir_cas_obj) {
2840      if (UseCompressedOops) {
2841        __ encode_heap_oop(t1);
2842        __ encode_heap_oop(t2);
2843        __ cas(addr, t1, t2);
2844      } else {
2845        __ cas_ptr(addr, t1, t2);
2846      }
2847    } else {
2848      __ cas(addr, t1, t2);
2849    }
2850    __ cmp(t1, t2);
2851  } else {
2852    Unimplemented();
2853  }
2854}
2855
2856void LIR_Assembler::set_24bit_FPU() {
2857  Unimplemented();
2858}
2859
2860
2861void LIR_Assembler::reset_FPU() {
2862  Unimplemented();
2863}
2864
2865
2866void LIR_Assembler::breakpoint() {
2867  __ breakpoint_trap();
2868}
2869
2870
2871void LIR_Assembler::push(LIR_Opr opr) {
2872  Unimplemented();
2873}
2874
2875
2876void LIR_Assembler::pop(LIR_Opr opr) {
2877  Unimplemented();
2878}
2879
2880
2881void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst_opr) {
2882  Address mon_addr = frame_map()->address_for_monitor_lock(monitor_no);
2883  Register dst = dst_opr->as_register();
2884  Register reg = mon_addr.base();
2885  int offset = mon_addr.disp();
2886  // compute pointer to BasicLock
2887  if (mon_addr.is_simm13()) {
2888    __ add(reg, offset, dst);
2889  } else {
2890    __ set(offset, dst);
2891    __ add(dst, reg, dst);
2892  }
2893}
2894
2895
2896void LIR_Assembler::emit_lock(LIR_OpLock* op) {
2897  Register obj = op->obj_opr()->as_register();
2898  Register hdr = op->hdr_opr()->as_register();
2899  Register lock = op->lock_opr()->as_register();
2900
2901  // obj may not be an oop
2902  if (op->code() == lir_lock) {
2903    MonitorEnterStub* stub = (MonitorEnterStub*)op->stub();
2904    if (UseFastLocking) {
2905      assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
2906      // add debug info for NullPointerException only if one is possible
2907      if (op->info() != NULL) {
2908        add_debug_info_for_null_check_here(op->info());
2909      }
2910      __ lock_object(hdr, obj, lock, op->scratch_opr()->as_register(), *op->stub()->entry());
2911    } else {
2912      // always do slow locking
2913      // note: the slow locking code could be inlined here, however if we use
2914      //       slow locking, speed doesn't matter anyway and this solution is
2915      //       simpler and requires less duplicated code - additionally, the
2916      //       slow locking code is the same in either case which simplifies
2917      //       debugging
2918      __ br(Assembler::always, false, Assembler::pt, *op->stub()->entry());
2919      __ delayed()->nop();
2920    }
2921  } else {
2922    assert (op->code() == lir_unlock, "Invalid code, expected lir_unlock");
2923    if (UseFastLocking) {
2924      assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
2925      __ unlock_object(hdr, obj, lock, *op->stub()->entry());
2926    } else {
2927      // always do slow unlocking
2928      // note: the slow unlocking code could be inlined here, however if we use
2929      //       slow unlocking, speed doesn't matter anyway and this solution is
2930      //       simpler and requires less duplicated code - additionally, the
2931      //       slow unlocking code is the same in either case which simplifies
2932      //       debugging
2933      __ br(Assembler::always, false, Assembler::pt, *op->stub()->entry());
2934      __ delayed()->nop();
2935    }
2936  }
2937  __ bind(*op->stub()->continuation());
2938}
2939
2940
2941void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
2942  ciMethod* method = op->profiled_method();
2943  int bci          = op->profiled_bci();
2944
2945  // Update counter for all call types
2946  ciMethodData* md = method->method_data_or_null();
2947  assert(md != NULL, "Sanity");
2948  ciProfileData* data = md->bci_to_data(bci);
2949  assert(data->is_CounterData(), "need CounterData for calls");
2950  assert(op->mdo()->is_single_cpu(),  "mdo must be allocated");
2951  Register mdo  = op->mdo()->as_register();
2952#ifdef _LP64
2953  assert(op->tmp1()->is_double_cpu(), "tmp1 must be allocated");
2954  Register tmp1 = op->tmp1()->as_register_lo();
2955#else
2956  assert(op->tmp1()->is_single_cpu(), "tmp1 must be allocated");
2957  Register tmp1 = op->tmp1()->as_register();
2958#endif
2959  jobject2reg(md->constant_encoding(), mdo);
2960  int mdo_offset_bias = 0;
2961  if (!Assembler::is_simm13(md->byte_offset_of_slot(data, CounterData::count_offset()) +
2962                            data->size_in_bytes())) {
2963    // The offset is large so bias the mdo by the base of the slot so
2964    // that the ld can use simm13s to reference the slots of the data
2965    mdo_offset_bias = md->byte_offset_of_slot(data, CounterData::count_offset());
2966    __ set(mdo_offset_bias, O7);
2967    __ add(mdo, O7, mdo);
2968  }
2969
2970  Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias);
2971  Bytecodes::Code bc = method->java_code_at_bci(bci);
2972  // Perform additional virtual call profiling for invokevirtual and
2973  // invokeinterface bytecodes
2974  if ((bc == Bytecodes::_invokevirtual || bc == Bytecodes::_invokeinterface) &&
2975      C1ProfileVirtualCalls) {
2976    assert(op->recv()->is_single_cpu(), "recv must be allocated");
2977    Register recv = op->recv()->as_register();
2978    assert_different_registers(mdo, tmp1, recv);
2979    assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
2980    ciKlass* known_klass = op->known_holder();
2981    if (C1OptimizeVirtualCallProfiling && known_klass != NULL) {
2982      // We know the type that will be seen at this call site; we can
2983      // statically update the methodDataOop rather than needing to do
2984      // dynamic tests on the receiver type
2985
2986      // NOTE: we should probably put a lock around this search to
2987      // avoid collisions by concurrent compilations
2988      ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
2989      uint i;
2990      for (i = 0; i < VirtualCallData::row_limit(); i++) {
2991        ciKlass* receiver = vc_data->receiver(i);
2992        if (known_klass->equals(receiver)) {
2993          Address data_addr(mdo, md->byte_offset_of_slot(data,
2994                                                         VirtualCallData::receiver_count_offset(i)) -
2995                            mdo_offset_bias);
2996          __ ld_ptr(data_addr, tmp1);
2997          __ add(tmp1, DataLayout::counter_increment, tmp1);
2998          __ st_ptr(tmp1, data_addr);
2999          return;
3000        }
3001      }
3002
3003      // Receiver type not found in profile data; select an empty slot
3004
3005      // Note that this is less efficient than it should be because it
3006      // always does a write to the receiver part of the
3007      // VirtualCallData rather than just the first time
3008      for (i = 0; i < VirtualCallData::row_limit(); i++) {
3009        ciKlass* receiver = vc_data->receiver(i);
3010        if (receiver == NULL) {
3011          Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)) -
3012                            mdo_offset_bias);
3013          jobject2reg(known_klass->constant_encoding(), tmp1);
3014          __ st_ptr(tmp1, recv_addr);
3015          Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)) -
3016                            mdo_offset_bias);
3017          __ ld_ptr(data_addr, tmp1);
3018          __ add(tmp1, DataLayout::counter_increment, tmp1);
3019          __ st_ptr(tmp1, data_addr);
3020          return;
3021        }
3022      }
3023    } else {
3024      __ load_klass(recv, recv);
3025      Label update_done;
3026      type_profile_helper(mdo, mdo_offset_bias, md, data, recv, tmp1, &update_done);
3027      // Receiver did not match any saved receiver and there is no empty row for it.
3028      // Increment total counter to indicate polymorphic case.
3029      __ ld_ptr(counter_addr, tmp1);
3030      __ add(tmp1, DataLayout::counter_increment, tmp1);
3031      __ st_ptr(tmp1, counter_addr);
3032
3033      __ bind(update_done);
3034    }
3035  } else {
3036    // Static call
3037    __ ld_ptr(counter_addr, tmp1);
3038    __ add(tmp1, DataLayout::counter_increment, tmp1);
3039    __ st_ptr(tmp1, counter_addr);
3040  }
3041}
3042
3043void LIR_Assembler::align_backward_branch_target() {
3044  __ align(OptoLoopAlignment);
3045}
3046
3047
3048void LIR_Assembler::emit_delay(LIR_OpDelay* op) {
3049  // make sure we are expecting a delay
3050  // this has the side effect of clearing the delay state
3051  // so we can use _masm instead of _masm->delayed() to do the
3052  // code generation.
3053  __ delayed();
3054
3055  // make sure we only emit one instruction
3056  int offset = code_offset();
3057  op->delay_op()->emit_code(this);
3058#ifdef ASSERT
3059  if (code_offset() - offset != NativeInstruction::nop_instruction_size) {
3060    op->delay_op()->print();
3061  }
3062  assert(code_offset() - offset == NativeInstruction::nop_instruction_size,
3063         "only one instruction can go in a delay slot");
3064#endif
3065
3066  // we may also be emitting the call info for the instruction
3067  // which we are the delay slot of.
3068  CodeEmitInfo* call_info = op->call_info();
3069  if (call_info) {
3070    add_call_info(code_offset(), call_info);
3071  }
3072
3073  if (VerifyStackAtCalls) {
3074    _masm->sub(FP, SP, O7);
3075    _masm->cmp(O7, initial_frame_size_in_bytes());
3076    _masm->trap(Assembler::notEqual, Assembler::ptr_cc, G0, ST_RESERVED_FOR_USER_0+2 );
3077  }
3078}
3079
3080
3081void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest) {
3082  assert(left->is_register(), "can only handle registers");
3083
3084  if (left->is_single_cpu()) {
3085    __ neg(left->as_register(), dest->as_register());
3086  } else if (left->is_single_fpu()) {
3087    __ fneg(FloatRegisterImpl::S, left->as_float_reg(), dest->as_float_reg());
3088  } else if (left->is_double_fpu()) {
3089    __ fneg(FloatRegisterImpl::D, left->as_double_reg(), dest->as_double_reg());
3090  } else {
3091    assert (left->is_double_cpu(), "Must be a long");
3092    Register Rlow = left->as_register_lo();
3093    Register Rhi = left->as_register_hi();
3094#ifdef _LP64
3095    __ sub(G0, Rlow, dest->as_register_lo());
3096#else
3097    __ subcc(G0, Rlow, dest->as_register_lo());
3098    __ subc (G0, Rhi,  dest->as_register_hi());
3099#endif
3100  }
3101}
3102
3103
3104void LIR_Assembler::fxch(int i) {
3105  Unimplemented();
3106}
3107
3108void LIR_Assembler::fld(int i) {
3109  Unimplemented();
3110}
3111
3112void LIR_Assembler::ffree(int i) {
3113  Unimplemented();
3114}
3115
3116void LIR_Assembler::rt_call(LIR_Opr result, address dest,
3117                            const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
3118
3119  // if tmp is invalid, then the function being called doesn't destroy the thread
3120  if (tmp->is_valid()) {
3121    __ save_thread(tmp->as_register());
3122  }
3123  __ call(dest, relocInfo::runtime_call_type);
3124  __ delayed()->nop();
3125  if (info != NULL) {
3126    add_call_info_here(info);
3127  }
3128  if (tmp->is_valid()) {
3129    __ restore_thread(tmp->as_register());
3130  }
3131
3132#ifdef ASSERT
3133  __ verify_thread();
3134#endif // ASSERT
3135}
3136
3137
3138void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
3139#ifdef _LP64
3140  ShouldNotReachHere();
3141#endif
3142
3143  NEEDS_CLEANUP;
3144  if (type == T_LONG) {
3145    LIR_Address* mem_addr = dest->is_address() ? dest->as_address_ptr() : src->as_address_ptr();
3146
3147    // (extended to allow indexed as well as constant displaced for JSR-166)
3148    Register idx = noreg; // contains either constant offset or index
3149
3150    int disp = mem_addr->disp();
3151    if (mem_addr->index() == LIR_OprFact::illegalOpr) {
3152      if (!Assembler::is_simm13(disp)) {
3153        idx = O7;
3154        __ set(disp, idx);
3155      }
3156    } else {
3157      assert(disp == 0, "not both indexed and disp");
3158      idx = mem_addr->index()->as_register();
3159    }
3160
3161    int null_check_offset = -1;
3162
3163    Register base = mem_addr->base()->as_register();
3164    if (src->is_register() && dest->is_address()) {
3165      // G4 is high half, G5 is low half
3166      if (VM_Version::v9_instructions_work()) {
3167        // clear the top bits of G5, and scale up G4
3168        __ srl (src->as_register_lo(),  0, G5);
3169        __ sllx(src->as_register_hi(), 32, G4);
3170        // combine the two halves into the 64 bits of G4
3171        __ or3(G4, G5, G4);
3172        null_check_offset = __ offset();
3173        if (idx == noreg) {
3174          __ stx(G4, base, disp);
3175        } else {
3176          __ stx(G4, base, idx);
3177        }
3178      } else {
3179        __ mov (src->as_register_hi(), G4);
3180        __ mov (src->as_register_lo(), G5);
3181        null_check_offset = __ offset();
3182        if (idx == noreg) {
3183          __ std(G4, base, disp);
3184        } else {
3185          __ std(G4, base, idx);
3186        }
3187      }
3188    } else if (src->is_address() && dest->is_register()) {
3189      null_check_offset = __ offset();
3190      if (VM_Version::v9_instructions_work()) {
3191        if (idx == noreg) {
3192          __ ldx(base, disp, G5);
3193        } else {
3194          __ ldx(base, idx, G5);
3195        }
3196        __ srax(G5, 32, dest->as_register_hi()); // fetch the high half into hi
3197        __ mov (G5, dest->as_register_lo());     // copy low half into lo
3198      } else {
3199        if (idx == noreg) {
3200          __ ldd(base, disp, G4);
3201        } else {
3202          __ ldd(base, idx, G4);
3203        }
3204        // G4 is high half, G5 is low half
3205        __ mov (G4, dest->as_register_hi());
3206        __ mov (G5, dest->as_register_lo());
3207      }
3208    } else {
3209      Unimplemented();
3210    }
3211    if (info != NULL) {
3212      add_debug_info_for_null_check(null_check_offset, info);
3213    }
3214
3215  } else {
3216    // use normal move for all other volatiles since they don't need
3217    // special handling to remain atomic.
3218    move_op(src, dest, type, lir_patch_none, info, false, false, false);
3219  }
3220}
3221
3222void LIR_Assembler::membar() {
3223  // only StoreLoad membars are ever explicitly needed on sparcs in TSO mode
3224  __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad) );
3225}
3226
3227void LIR_Assembler::membar_acquire() {
3228  // no-op on TSO
3229}
3230
3231void LIR_Assembler::membar_release() {
3232  // no-op on TSO
3233}
3234
3235// Pack two sequential registers containing 32 bit values
3236// into a single 64 bit register.
3237// src and src->successor() are packed into dst
3238// src and dst may be the same register.
3239// Note: src is destroyed
3240void LIR_Assembler::pack64(LIR_Opr src, LIR_Opr dst) {
3241  Register rs = src->as_register();
3242  Register rd = dst->as_register_lo();
3243  __ sllx(rs, 32, rs);
3244  __ srl(rs->successor(), 0, rs->successor());
3245  __ or3(rs, rs->successor(), rd);
3246}
3247
3248// Unpack a 64 bit value in a register into
3249// two sequential registers.
3250// src is unpacked into dst and dst->successor()
3251void LIR_Assembler::unpack64(LIR_Opr src, LIR_Opr dst) {
3252  Register rs = src->as_register_lo();
3253  Register rd = dst->as_register_hi();
3254  assert_different_registers(rs, rd, rd->successor());
3255  __ srlx(rs, 32, rd);
3256  __ srl (rs,  0, rd->successor());
3257}
3258
3259
3260void LIR_Assembler::leal(LIR_Opr addr_opr, LIR_Opr dest) {
3261  LIR_Address* addr = addr_opr->as_address_ptr();
3262  assert(addr->index()->is_illegal() && addr->scale() == LIR_Address::times_1 && Assembler::is_simm13(addr->disp()), "can't handle complex addresses yet");
3263
3264  __ add(addr->base()->as_pointer_register(), addr->disp(), dest->as_pointer_register());
3265}
3266
3267
3268void LIR_Assembler::get_thread(LIR_Opr result_reg) {
3269  assert(result_reg->is_register(), "check");
3270  __ mov(G2_thread, result_reg->as_register());
3271}
3272
3273
3274void LIR_Assembler::peephole(LIR_List* lir) {
3275  LIR_OpList* inst = lir->instructions_list();
3276  for (int i = 0; i < inst->length(); i++) {
3277    LIR_Op* op = inst->at(i);
3278    switch (op->code()) {
3279      case lir_cond_float_branch:
3280      case lir_branch: {
3281        LIR_OpBranch* branch = op->as_OpBranch();
3282        assert(branch->info() == NULL, "shouldn't be state on branches anymore");
3283        LIR_Op* delay_op = NULL;
3284        // we'd like to be able to pull following instructions into
3285        // this slot but we don't know enough to do it safely yet so
3286        // only optimize block to block control flow.
3287        if (LIRFillDelaySlots && branch->block()) {
3288          LIR_Op* prev = inst->at(i - 1);
3289          if (prev && LIR_Assembler::is_single_instruction(prev) && prev->info() == NULL) {
3290            // swap previous instruction into delay slot
3291            inst->at_put(i - 1, op);
3292            inst->at_put(i, new LIR_OpDelay(prev, op->info()));
3293#ifndef PRODUCT
3294            if (LIRTracePeephole) {
3295              tty->print_cr("delayed");
3296              inst->at(i - 1)->print();
3297              inst->at(i)->print();
3298              tty->cr();
3299            }
3300#endif
3301            continue;
3302          }
3303        }
3304
3305        if (!delay_op) {
3306          delay_op = new LIR_OpDelay(new LIR_Op0(lir_nop), NULL);
3307        }
3308        inst->insert_before(i + 1, delay_op);
3309        break;
3310      }
3311      case lir_static_call:
3312      case lir_virtual_call:
3313      case lir_icvirtual_call:
3314      case lir_optvirtual_call:
3315      case lir_dynamic_call: {
3316        LIR_Op* prev = inst->at(i - 1);
3317        if (LIRFillDelaySlots && prev && prev->code() == lir_move && prev->info() == NULL &&
3318            (op->code() != lir_virtual_call ||
3319             !prev->result_opr()->is_single_cpu() ||
3320             prev->result_opr()->as_register() != O0) &&
3321            LIR_Assembler::is_single_instruction(prev)) {
3322          // Only moves without info can be put into the delay slot.
3323          // Also don't allow the setup of the receiver in the delay
3324          // slot for vtable calls.
3325          inst->at_put(i - 1, op);
3326          inst->at_put(i, new LIR_OpDelay(prev, op->info()));
3327#ifndef PRODUCT
3328          if (LIRTracePeephole) {
3329            tty->print_cr("delayed");
3330            inst->at(i - 1)->print();
3331            inst->at(i)->print();
3332            tty->cr();
3333          }
3334#endif
3335        } else {
3336          LIR_Op* delay_op = new LIR_OpDelay(new LIR_Op0(lir_nop), op->as_OpJavaCall()->info());
3337          inst->insert_before(i + 1, delay_op);
3338          i++;
3339        }
3340
3341#if defined(TIERED) && !defined(_LP64)
3342        // fixup the return value from G1 to O0/O1 for long returns.
3343        // It's done here instead of in LIRGenerator because there's
3344        // such a mismatch between the single reg and double reg
3345        // calling convention.
3346        LIR_OpJavaCall* callop = op->as_OpJavaCall();
3347        if (callop->result_opr() == FrameMap::out_long_opr) {
3348          LIR_OpJavaCall* call;
3349          LIR_OprList* arguments = new LIR_OprList(callop->arguments()->length());
3350          for (int a = 0; a < arguments->length(); a++) {
3351            arguments[a] = callop->arguments()[a];
3352          }
3353          if (op->code() == lir_virtual_call) {
3354            call = new LIR_OpJavaCall(op->code(), callop->method(), callop->receiver(), FrameMap::g1_long_single_opr,
3355                                      callop->vtable_offset(), arguments, callop->info());
3356          } else {
3357            call = new LIR_OpJavaCall(op->code(), callop->method(), callop->receiver(), FrameMap::g1_long_single_opr,
3358                                      callop->addr(), arguments, callop->info());
3359          }
3360          inst->at_put(i - 1, call);
3361          inst->insert_before(i + 1, new LIR_Op1(lir_unpack64, FrameMap::g1_long_single_opr, callop->result_opr(),
3362                                                 T_LONG, lir_patch_none, NULL));
3363        }
3364#endif
3365        break;
3366      }
3367    }
3368  }
3369}
3370
3371
3372
3373
3374#undef __
3375