c1_LIRAssembler_sparc.cpp revision 2296:bb22629531fa
1/*
2 * Copyright (c) 2000, 2011, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "c1/c1_Compilation.hpp"
27#include "c1/c1_LIRAssembler.hpp"
28#include "c1/c1_MacroAssembler.hpp"
29#include "c1/c1_Runtime1.hpp"
30#include "c1/c1_ValueStack.hpp"
31#include "ci/ciArrayKlass.hpp"
32#include "ci/ciInstance.hpp"
33#include "gc_interface/collectedHeap.hpp"
34#include "memory/barrierSet.hpp"
35#include "memory/cardTableModRefBS.hpp"
36#include "nativeInst_sparc.hpp"
37#include "oops/objArrayKlass.hpp"
38#include "runtime/sharedRuntime.hpp"
39
40#define __ _masm->
41
42
43//------------------------------------------------------------
44
45
46bool LIR_Assembler::is_small_constant(LIR_Opr opr) {
47  if (opr->is_constant()) {
48    LIR_Const* constant = opr->as_constant_ptr();
49    switch (constant->type()) {
50      case T_INT: {
51        jint value = constant->as_jint();
52        return Assembler::is_simm13(value);
53      }
54
55      default:
56        return false;
57    }
58  }
59  return false;
60}
61
62
63bool LIR_Assembler::is_single_instruction(LIR_Op* op) {
64  switch (op->code()) {
65    case lir_null_check:
66    return true;
67
68
69    case lir_add:
70    case lir_ushr:
71    case lir_shr:
72    case lir_shl:
73      // integer shifts and adds are always one instruction
74      return op->result_opr()->is_single_cpu();
75
76
77    case lir_move: {
78      LIR_Op1* op1 = op->as_Op1();
79      LIR_Opr src = op1->in_opr();
80      LIR_Opr dst = op1->result_opr();
81
82      if (src == dst) {
83        NEEDS_CLEANUP;
84        // this works around a problem where moves with the same src and dst
85        // end up in the delay slot and then the assembler swallows the mov
86        // since it has no effect and then it complains because the delay slot
87        // is empty.  returning false stops the optimizer from putting this in
88        // the delay slot
89        return false;
90      }
91
92      // don't put moves involving oops into the delay slot since the VerifyOops code
93      // will make it much larger than a single instruction.
94      if (VerifyOops) {
95        return false;
96      }
97
98      if (src->is_double_cpu() || dst->is_double_cpu() || op1->patch_code() != lir_patch_none ||
99          ((src->is_double_fpu() || dst->is_double_fpu()) && op1->move_kind() != lir_move_normal)) {
100        return false;
101      }
102
103      if (UseCompressedOops) {
104        if (dst->is_address() && !dst->is_stack() && (dst->type() == T_OBJECT || dst->type() == T_ARRAY)) return false;
105        if (src->is_address() && !src->is_stack() && (src->type() == T_OBJECT || src->type() == T_ARRAY)) return false;
106      }
107
108      if (dst->is_register()) {
109        if (src->is_address() && Assembler::is_simm13(src->as_address_ptr()->disp())) {
110          return !PatchALot;
111        } else if (src->is_single_stack()) {
112          return true;
113        }
114      }
115
116      if (src->is_register()) {
117        if (dst->is_address() && Assembler::is_simm13(dst->as_address_ptr()->disp())) {
118          return !PatchALot;
119        } else if (dst->is_single_stack()) {
120          return true;
121        }
122      }
123
124      if (dst->is_register() &&
125          ((src->is_register() && src->is_single_word() && src->is_same_type(dst)) ||
126           (src->is_constant() && LIR_Assembler::is_small_constant(op->as_Op1()->in_opr())))) {
127        return true;
128      }
129
130      return false;
131    }
132
133    default:
134      return false;
135  }
136  ShouldNotReachHere();
137}
138
139
140LIR_Opr LIR_Assembler::receiverOpr() {
141  return FrameMap::O0_oop_opr;
142}
143
144
145LIR_Opr LIR_Assembler::incomingReceiverOpr() {
146  return FrameMap::I0_oop_opr;
147}
148
149
150LIR_Opr LIR_Assembler::osrBufferPointer() {
151  return FrameMap::I0_opr;
152}
153
154
155int LIR_Assembler::initial_frame_size_in_bytes() {
156  return in_bytes(frame_map()->framesize_in_bytes());
157}
158
159
160// inline cache check: the inline cached class is in G5_inline_cache_reg(G5);
161// we fetch the class of the receiver (O0) and compare it with the cached class.
162// If they do not match we jump to slow case.
163int LIR_Assembler::check_icache() {
164  int offset = __ offset();
165  __ inline_cache_check(O0, G5_inline_cache_reg);
166  return offset;
167}
168
169
170void LIR_Assembler::osr_entry() {
171  // On-stack-replacement entry sequence (interpreter frame layout described in interpreter_sparc.cpp):
172  //
173  //   1. Create a new compiled activation.
174  //   2. Initialize local variables in the compiled activation.  The expression stack must be empty
175  //      at the osr_bci; it is not initialized.
176  //   3. Jump to the continuation address in compiled code to resume execution.
177
178  // OSR entry point
179  offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
180  BlockBegin* osr_entry = compilation()->hir()->osr_entry();
181  ValueStack* entry_state = osr_entry->end()->state();
182  int number_of_locks = entry_state->locks_size();
183
184  // Create a frame for the compiled activation.
185  __ build_frame(initial_frame_size_in_bytes());
186
187  // OSR buffer is
188  //
189  // locals[nlocals-1..0]
190  // monitors[number_of_locks-1..0]
191  //
192  // locals is a direct copy of the interpreter frame so in the osr buffer
193  // so first slot in the local array is the last local from the interpreter
194  // and last slot is local[0] (receiver) from the interpreter
195  //
196  // Similarly with locks. The first lock slot in the osr buffer is the nth lock
197  // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
198  // in the interpreter frame (the method lock if a sync method)
199
200  // Initialize monitors in the compiled activation.
201  //   I0: pointer to osr buffer
202  //
203  // All other registers are dead at this point and the locals will be
204  // copied into place by code emitted in the IR.
205
206  Register OSR_buf = osrBufferPointer()->as_register();
207  { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
208    int monitor_offset = BytesPerWord * method()->max_locals() +
209      (2 * BytesPerWord) * (number_of_locks - 1);
210    // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in
211    // the OSR buffer using 2 word entries: first the lock and then
212    // the oop.
213    for (int i = 0; i < number_of_locks; i++) {
214      int slot_offset = monitor_offset - ((i * 2) * BytesPerWord);
215#ifdef ASSERT
216      // verify the interpreter's monitor has a non-null object
217      {
218        Label L;
219        __ ld_ptr(OSR_buf, slot_offset + 1*BytesPerWord, O7);
220        __ cmp(G0, O7);
221        __ br(Assembler::notEqual, false, Assembler::pt, L);
222        __ delayed()->nop();
223        __ stop("locked object is NULL");
224        __ bind(L);
225      }
226#endif // ASSERT
227      // Copy the lock field into the compiled activation.
228      __ ld_ptr(OSR_buf, slot_offset + 0, O7);
229      __ st_ptr(O7, frame_map()->address_for_monitor_lock(i));
230      __ ld_ptr(OSR_buf, slot_offset + 1*BytesPerWord, O7);
231      __ st_ptr(O7, frame_map()->address_for_monitor_object(i));
232    }
233  }
234}
235
236
237// Optimized Library calls
238// This is the fast version of java.lang.String.compare; it has not
239// OSR-entry and therefore, we generate a slow version for OSR's
240void LIR_Assembler::emit_string_compare(LIR_Opr left, LIR_Opr right, LIR_Opr dst, CodeEmitInfo* info) {
241  Register str0 = left->as_register();
242  Register str1 = right->as_register();
243
244  Label Ldone;
245
246  Register result = dst->as_register();
247  {
248    // Get a pointer to the first character of string0 in tmp0 and get string0.count in str0
249    // Get a pointer to the first character of string1 in tmp1 and get string1.count in str1
250    // Also, get string0.count-string1.count in o7 and get the condition code set
251    // Note: some instructions have been hoisted for better instruction scheduling
252
253    Register tmp0 = L0;
254    Register tmp1 = L1;
255    Register tmp2 = L2;
256
257    int  value_offset = java_lang_String:: value_offset_in_bytes(); // char array
258    int offset_offset = java_lang_String::offset_offset_in_bytes(); // first character position
259    int  count_offset = java_lang_String:: count_offset_in_bytes();
260
261    __ load_heap_oop(str0, value_offset, tmp0);
262    __ ld(str0, offset_offset, tmp2);
263    __ add(tmp0, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp0);
264    __ ld(str0, count_offset, str0);
265    __ sll(tmp2, exact_log2(sizeof(jchar)), tmp2);
266
267    // str1 may be null
268    add_debug_info_for_null_check_here(info);
269
270    __ load_heap_oop(str1, value_offset, tmp1);
271    __ add(tmp0, tmp2, tmp0);
272
273    __ ld(str1, offset_offset, tmp2);
274    __ add(tmp1, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp1);
275    __ ld(str1, count_offset, str1);
276    __ sll(tmp2, exact_log2(sizeof(jchar)), tmp2);
277    __ subcc(str0, str1, O7);
278    __ add(tmp1, tmp2, tmp1);
279  }
280
281  {
282    // Compute the minimum of the string lengths, scale it and store it in limit
283    Register count0 = I0;
284    Register count1 = I1;
285    Register limit  = L3;
286
287    Label Lskip;
288    __ sll(count0, exact_log2(sizeof(jchar)), limit);             // string0 is shorter
289    __ br(Assembler::greater, true, Assembler::pt, Lskip);
290    __ delayed()->sll(count1, exact_log2(sizeof(jchar)), limit);  // string1 is shorter
291    __ bind(Lskip);
292
293    // If either string is empty (or both of them) the result is the difference in lengths
294    __ cmp(limit, 0);
295    __ br(Assembler::equal, true, Assembler::pn, Ldone);
296    __ delayed()->mov(O7, result);  // result is difference in lengths
297  }
298
299  {
300    // Neither string is empty
301    Label Lloop;
302
303    Register base0 = L0;
304    Register base1 = L1;
305    Register chr0  = I0;
306    Register chr1  = I1;
307    Register limit = L3;
308
309    // Shift base0 and base1 to the end of the arrays, negate limit
310    __ add(base0, limit, base0);
311    __ add(base1, limit, base1);
312    __ neg(limit);  // limit = -min{string0.count, strin1.count}
313
314    __ lduh(base0, limit, chr0);
315    __ bind(Lloop);
316    __ lduh(base1, limit, chr1);
317    __ subcc(chr0, chr1, chr0);
318    __ br(Assembler::notZero, false, Assembler::pn, Ldone);
319    assert(chr0 == result, "result must be pre-placed");
320    __ delayed()->inccc(limit, sizeof(jchar));
321    __ br(Assembler::notZero, true, Assembler::pt, Lloop);
322    __ delayed()->lduh(base0, limit, chr0);
323  }
324
325  // If strings are equal up to min length, return the length difference.
326  __ mov(O7, result);
327
328  // Otherwise, return the difference between the first mismatched chars.
329  __ bind(Ldone);
330}
331
332
333// --------------------------------------------------------------------------------------------
334
335void LIR_Assembler::monitorexit(LIR_Opr obj_opr, LIR_Opr lock_opr, Register hdr, int monitor_no) {
336  if (!GenerateSynchronizationCode) return;
337
338  Register obj_reg = obj_opr->as_register();
339  Register lock_reg = lock_opr->as_register();
340
341  Address mon_addr = frame_map()->address_for_monitor_lock(monitor_no);
342  Register reg = mon_addr.base();
343  int offset = mon_addr.disp();
344  // compute pointer to BasicLock
345  if (mon_addr.is_simm13()) {
346    __ add(reg, offset, lock_reg);
347  }
348  else {
349    __ set(offset, lock_reg);
350    __ add(reg, lock_reg, lock_reg);
351  }
352  // unlock object
353  MonitorAccessStub* slow_case = new MonitorExitStub(lock_opr, UseFastLocking, monitor_no);
354  // _slow_case_stubs->append(slow_case);
355  // temporary fix: must be created after exceptionhandler, therefore as call stub
356  _slow_case_stubs->append(slow_case);
357  if (UseFastLocking) {
358    // try inlined fast unlocking first, revert to slow locking if it fails
359    // note: lock_reg points to the displaced header since the displaced header offset is 0!
360    assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
361    __ unlock_object(hdr, obj_reg, lock_reg, *slow_case->entry());
362  } else {
363    // always do slow unlocking
364    // note: the slow unlocking code could be inlined here, however if we use
365    //       slow unlocking, speed doesn't matter anyway and this solution is
366    //       simpler and requires less duplicated code - additionally, the
367    //       slow unlocking code is the same in either case which simplifies
368    //       debugging
369    __ br(Assembler::always, false, Assembler::pt, *slow_case->entry());
370    __ delayed()->nop();
371  }
372  // done
373  __ bind(*slow_case->continuation());
374}
375
376
377int LIR_Assembler::emit_exception_handler() {
378  // if the last instruction is a call (typically to do a throw which
379  // is coming at the end after block reordering) the return address
380  // must still point into the code area in order to avoid assertion
381  // failures when searching for the corresponding bci => add a nop
382  // (was bug 5/14/1999 - gri)
383  __ nop();
384
385  // generate code for exception handler
386  ciMethod* method = compilation()->method();
387
388  address handler_base = __ start_a_stub(exception_handler_size);
389
390  if (handler_base == NULL) {
391    // not enough space left for the handler
392    bailout("exception handler overflow");
393    return -1;
394  }
395
396  int offset = code_offset();
397
398  __ call(Runtime1::entry_for(Runtime1::handle_exception_from_callee_id), relocInfo::runtime_call_type);
399  __ delayed()->nop();
400  __ should_not_reach_here();
401  assert(code_offset() - offset <= exception_handler_size, "overflow");
402  __ end_a_stub();
403
404  return offset;
405}
406
407
408// Emit the code to remove the frame from the stack in the exception
409// unwind path.
410int LIR_Assembler::emit_unwind_handler() {
411#ifndef PRODUCT
412  if (CommentedAssembly) {
413    _masm->block_comment("Unwind handler");
414  }
415#endif
416
417  int offset = code_offset();
418
419  // Fetch the exception from TLS and clear out exception related thread state
420  __ ld_ptr(G2_thread, in_bytes(JavaThread::exception_oop_offset()), O0);
421  __ st_ptr(G0, G2_thread, in_bytes(JavaThread::exception_oop_offset()));
422  __ st_ptr(G0, G2_thread, in_bytes(JavaThread::exception_pc_offset()));
423
424  __ bind(_unwind_handler_entry);
425  __ verify_not_null_oop(O0);
426  if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
427    __ mov(O0, I0);  // Preserve the exception
428  }
429
430  // Preform needed unlocking
431  MonitorExitStub* stub = NULL;
432  if (method()->is_synchronized()) {
433    monitor_address(0, FrameMap::I1_opr);
434    stub = new MonitorExitStub(FrameMap::I1_opr, true, 0);
435    __ unlock_object(I3, I2, I1, *stub->entry());
436    __ bind(*stub->continuation());
437  }
438
439  if (compilation()->env()->dtrace_method_probes()) {
440    __ mov(G2_thread, O0);
441    jobject2reg(method()->constant_encoding(), O1);
442    __ call(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), relocInfo::runtime_call_type);
443    __ delayed()->nop();
444  }
445
446  if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
447    __ mov(I0, O0);  // Restore the exception
448  }
449
450  // dispatch to the unwind logic
451  __ call(Runtime1::entry_for(Runtime1::unwind_exception_id), relocInfo::runtime_call_type);
452  __ delayed()->nop();
453
454  // Emit the slow path assembly
455  if (stub != NULL) {
456    stub->emit_code(this);
457  }
458
459  return offset;
460}
461
462
463int LIR_Assembler::emit_deopt_handler() {
464  // if the last instruction is a call (typically to do a throw which
465  // is coming at the end after block reordering) the return address
466  // must still point into the code area in order to avoid assertion
467  // failures when searching for the corresponding bci => add a nop
468  // (was bug 5/14/1999 - gri)
469  __ nop();
470
471  // generate code for deopt handler
472  ciMethod* method = compilation()->method();
473  address handler_base = __ start_a_stub(deopt_handler_size);
474  if (handler_base == NULL) {
475    // not enough space left for the handler
476    bailout("deopt handler overflow");
477    return -1;
478  }
479
480  int offset = code_offset();
481  AddressLiteral deopt_blob(SharedRuntime::deopt_blob()->unpack());
482  __ JUMP(deopt_blob, G3_scratch, 0); // sethi;jmp
483  __ delayed()->nop();
484  assert(code_offset() - offset <= deopt_handler_size, "overflow");
485  debug_only(__ stop("should have gone to the caller");)
486  __ end_a_stub();
487
488  return offset;
489}
490
491
492void LIR_Assembler::jobject2reg(jobject o, Register reg) {
493  if (o == NULL) {
494    __ set(NULL_WORD, reg);
495  } else {
496    int oop_index = __ oop_recorder()->find_index(o);
497    RelocationHolder rspec = oop_Relocation::spec(oop_index);
498    __ set(NULL_WORD, reg, rspec); // Will be set when the nmethod is created
499  }
500}
501
502
503void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo *info) {
504  // Allocate a new index in oop table to hold the oop once it's been patched
505  int oop_index = __ oop_recorder()->allocate_index((jobject)NULL);
506  PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id, oop_index);
507
508  AddressLiteral addrlit(NULL, oop_Relocation::spec(oop_index));
509  assert(addrlit.rspec().type() == relocInfo::oop_type, "must be an oop reloc");
510  // It may not seem necessary to use a sethi/add pair to load a NULL into dest, but the
511  // NULL will be dynamically patched later and the patched value may be large.  We must
512  // therefore generate the sethi/add as a placeholders
513  __ patchable_set(addrlit, reg);
514
515  patching_epilog(patch, lir_patch_normal, reg, info);
516}
517
518
519void LIR_Assembler::emit_op3(LIR_Op3* op) {
520  Register Rdividend = op->in_opr1()->as_register();
521  Register Rdivisor  = noreg;
522  Register Rscratch  = op->in_opr3()->as_register();
523  Register Rresult   = op->result_opr()->as_register();
524  int divisor = -1;
525
526  if (op->in_opr2()->is_register()) {
527    Rdivisor = op->in_opr2()->as_register();
528  } else {
529    divisor = op->in_opr2()->as_constant_ptr()->as_jint();
530    assert(Assembler::is_simm13(divisor), "can only handle simm13");
531  }
532
533  assert(Rdividend != Rscratch, "");
534  assert(Rdivisor  != Rscratch, "");
535  assert(op->code() == lir_idiv || op->code() == lir_irem, "Must be irem or idiv");
536
537  if (Rdivisor == noreg && is_power_of_2(divisor)) {
538    // convert division by a power of two into some shifts and logical operations
539    if (op->code() == lir_idiv) {
540      if (divisor == 2) {
541        __ srl(Rdividend, 31, Rscratch);
542      } else {
543        __ sra(Rdividend, 31, Rscratch);
544        __ and3(Rscratch, divisor - 1, Rscratch);
545      }
546      __ add(Rdividend, Rscratch, Rscratch);
547      __ sra(Rscratch, log2_intptr(divisor), Rresult);
548      return;
549    } else {
550      if (divisor == 2) {
551        __ srl(Rdividend, 31, Rscratch);
552      } else {
553        __ sra(Rdividend, 31, Rscratch);
554        __ and3(Rscratch, divisor - 1,Rscratch);
555      }
556      __ add(Rdividend, Rscratch, Rscratch);
557      __ andn(Rscratch, divisor - 1,Rscratch);
558      __ sub(Rdividend, Rscratch, Rresult);
559      return;
560    }
561  }
562
563  __ sra(Rdividend, 31, Rscratch);
564  __ wry(Rscratch);
565  if (!VM_Version::v9_instructions_work()) {
566    // v9 doesn't require these nops
567    __ nop();
568    __ nop();
569    __ nop();
570    __ nop();
571  }
572
573  add_debug_info_for_div0_here(op->info());
574
575  if (Rdivisor != noreg) {
576    __ sdivcc(Rdividend, Rdivisor, (op->code() == lir_idiv ? Rresult : Rscratch));
577  } else {
578    assert(Assembler::is_simm13(divisor), "can only handle simm13");
579    __ sdivcc(Rdividend, divisor, (op->code() == lir_idiv ? Rresult : Rscratch));
580  }
581
582  Label skip;
583  __ br(Assembler::overflowSet, true, Assembler::pn, skip);
584  __ delayed()->Assembler::sethi(0x80000000, (op->code() == lir_idiv ? Rresult : Rscratch));
585  __ bind(skip);
586
587  if (op->code() == lir_irem) {
588    if (Rdivisor != noreg) {
589      __ smul(Rscratch, Rdivisor, Rscratch);
590    } else {
591      __ smul(Rscratch, divisor, Rscratch);
592    }
593    __ sub(Rdividend, Rscratch, Rresult);
594  }
595}
596
597
598void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
599#ifdef ASSERT
600  assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label");
601  if (op->block() != NULL)  _branch_target_blocks.append(op->block());
602  if (op->ublock() != NULL) _branch_target_blocks.append(op->ublock());
603#endif
604  assert(op->info() == NULL, "shouldn't have CodeEmitInfo");
605
606  if (op->cond() == lir_cond_always) {
607    __ br(Assembler::always, false, Assembler::pt, *(op->label()));
608  } else if (op->code() == lir_cond_float_branch) {
609    assert(op->ublock() != NULL, "must have unordered successor");
610    bool is_unordered = (op->ublock() == op->block());
611    Assembler::Condition acond;
612    switch (op->cond()) {
613      case lir_cond_equal:         acond = Assembler::f_equal;    break;
614      case lir_cond_notEqual:      acond = Assembler::f_notEqual; break;
615      case lir_cond_less:          acond = (is_unordered ? Assembler::f_unorderedOrLess          : Assembler::f_less);           break;
616      case lir_cond_greater:       acond = (is_unordered ? Assembler::f_unorderedOrGreater       : Assembler::f_greater);        break;
617      case lir_cond_lessEqual:     acond = (is_unordered ? Assembler::f_unorderedOrLessOrEqual   : Assembler::f_lessOrEqual);    break;
618      case lir_cond_greaterEqual:  acond = (is_unordered ? Assembler::f_unorderedOrGreaterOrEqual: Assembler::f_greaterOrEqual); break;
619      default :                         ShouldNotReachHere();
620    };
621
622    if (!VM_Version::v9_instructions_work()) {
623      __ nop();
624    }
625    __ fb( acond, false, Assembler::pn, *(op->label()));
626  } else {
627    assert (op->code() == lir_branch, "just checking");
628
629    Assembler::Condition acond;
630    switch (op->cond()) {
631      case lir_cond_equal:        acond = Assembler::equal;                break;
632      case lir_cond_notEqual:     acond = Assembler::notEqual;             break;
633      case lir_cond_less:         acond = Assembler::less;                 break;
634      case lir_cond_lessEqual:    acond = Assembler::lessEqual;            break;
635      case lir_cond_greaterEqual: acond = Assembler::greaterEqual;         break;
636      case lir_cond_greater:      acond = Assembler::greater;              break;
637      case lir_cond_aboveEqual:   acond = Assembler::greaterEqualUnsigned; break;
638      case lir_cond_belowEqual:   acond = Assembler::lessEqualUnsigned;    break;
639      default:                         ShouldNotReachHere();
640    };
641
642    // sparc has different condition codes for testing 32-bit
643    // vs. 64-bit values.  We could always test xcc is we could
644    // guarantee that 32-bit loads always sign extended but that isn't
645    // true and since sign extension isn't free, it would impose a
646    // slight cost.
647#ifdef _LP64
648    if  (op->type() == T_INT) {
649      __ br(acond, false, Assembler::pn, *(op->label()));
650    } else
651#endif
652      __ brx(acond, false, Assembler::pn, *(op->label()));
653  }
654  // The peephole pass fills the delay slot
655}
656
657
658void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
659  Bytecodes::Code code = op->bytecode();
660  LIR_Opr dst = op->result_opr();
661
662  switch(code) {
663    case Bytecodes::_i2l: {
664      Register rlo  = dst->as_register_lo();
665      Register rhi  = dst->as_register_hi();
666      Register rval = op->in_opr()->as_register();
667#ifdef _LP64
668      __ sra(rval, 0, rlo);
669#else
670      __ mov(rval, rlo);
671      __ sra(rval, BitsPerInt-1, rhi);
672#endif
673      break;
674    }
675    case Bytecodes::_i2d:
676    case Bytecodes::_i2f: {
677      bool is_double = (code == Bytecodes::_i2d);
678      FloatRegister rdst = is_double ? dst->as_double_reg() : dst->as_float_reg();
679      FloatRegisterImpl::Width w = is_double ? FloatRegisterImpl::D : FloatRegisterImpl::S;
680      FloatRegister rsrc = op->in_opr()->as_float_reg();
681      if (rsrc != rdst) {
682        __ fmov(FloatRegisterImpl::S, rsrc, rdst);
683      }
684      __ fitof(w, rdst, rdst);
685      break;
686    }
687    case Bytecodes::_f2i:{
688      FloatRegister rsrc = op->in_opr()->as_float_reg();
689      Address       addr = frame_map()->address_for_slot(dst->single_stack_ix());
690      Label L;
691      // result must be 0 if value is NaN; test by comparing value to itself
692      __ fcmp(FloatRegisterImpl::S, Assembler::fcc0, rsrc, rsrc);
693      if (!VM_Version::v9_instructions_work()) {
694        __ nop();
695      }
696      __ fb(Assembler::f_unordered, true, Assembler::pn, L);
697      __ delayed()->st(G0, addr); // annuled if contents of rsrc is not NaN
698      __ ftoi(FloatRegisterImpl::S, rsrc, rsrc);
699      // move integer result from float register to int register
700      __ stf(FloatRegisterImpl::S, rsrc, addr.base(), addr.disp());
701      __ bind (L);
702      break;
703    }
704    case Bytecodes::_l2i: {
705      Register rlo  = op->in_opr()->as_register_lo();
706      Register rhi  = op->in_opr()->as_register_hi();
707      Register rdst = dst->as_register();
708#ifdef _LP64
709      __ sra(rlo, 0, rdst);
710#else
711      __ mov(rlo, rdst);
712#endif
713      break;
714    }
715    case Bytecodes::_d2f:
716    case Bytecodes::_f2d: {
717      bool is_double = (code == Bytecodes::_f2d);
718      assert((!is_double && dst->is_single_fpu()) || (is_double && dst->is_double_fpu()), "check");
719      LIR_Opr val = op->in_opr();
720      FloatRegister rval = (code == Bytecodes::_d2f) ? val->as_double_reg() : val->as_float_reg();
721      FloatRegister rdst = is_double ? dst->as_double_reg() : dst->as_float_reg();
722      FloatRegisterImpl::Width vw = is_double ? FloatRegisterImpl::S : FloatRegisterImpl::D;
723      FloatRegisterImpl::Width dw = is_double ? FloatRegisterImpl::D : FloatRegisterImpl::S;
724      __ ftof(vw, dw, rval, rdst);
725      break;
726    }
727    case Bytecodes::_i2s:
728    case Bytecodes::_i2b: {
729      Register rval = op->in_opr()->as_register();
730      Register rdst = dst->as_register();
731      int shift = (code == Bytecodes::_i2b) ? (BitsPerInt - T_BYTE_aelem_bytes * BitsPerByte) : (BitsPerInt - BitsPerShort);
732      __ sll (rval, shift, rdst);
733      __ sra (rdst, shift, rdst);
734      break;
735    }
736    case Bytecodes::_i2c: {
737      Register rval = op->in_opr()->as_register();
738      Register rdst = dst->as_register();
739      int shift = BitsPerInt - T_CHAR_aelem_bytes * BitsPerByte;
740      __ sll (rval, shift, rdst);
741      __ srl (rdst, shift, rdst);
742      break;
743    }
744
745    default: ShouldNotReachHere();
746  }
747}
748
749
750void LIR_Assembler::align_call(LIR_Code) {
751  // do nothing since all instructions are word aligned on sparc
752}
753
754
755void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) {
756  __ call(op->addr(), rtype);
757  // The peephole pass fills the delay slot, add_call_info is done in
758  // LIR_Assembler::emit_delay.
759}
760
761
762void LIR_Assembler::ic_call(LIR_OpJavaCall* op) {
763  RelocationHolder rspec = virtual_call_Relocation::spec(pc());
764  __ set_oop((jobject)Universe::non_oop_word(), G5_inline_cache_reg);
765  __ relocate(rspec);
766  __ call(op->addr(), relocInfo::none);
767  // The peephole pass fills the delay slot, add_call_info is done in
768  // LIR_Assembler::emit_delay.
769}
770
771
772void LIR_Assembler::vtable_call(LIR_OpJavaCall* op) {
773  add_debug_info_for_null_check_here(op->info());
774  __ load_klass(O0, G3_scratch);
775  if (__ is_simm13(op->vtable_offset())) {
776    __ ld_ptr(G3_scratch, op->vtable_offset(), G5_method);
777  } else {
778    // This will generate 2 instructions
779    __ set(op->vtable_offset(), G5_method);
780    // ld_ptr, set_hi, set
781    __ ld_ptr(G3_scratch, G5_method, G5_method);
782  }
783  __ ld_ptr(G5_method, methodOopDesc::from_compiled_offset(), G3_scratch);
784  __ callr(G3_scratch, G0);
785  // the peephole pass fills the delay slot
786}
787
788int LIR_Assembler::store(LIR_Opr from_reg, Register base, int offset, BasicType type, bool wide, bool unaligned) {
789  int store_offset;
790  if (!Assembler::is_simm13(offset + (type == T_LONG) ? wordSize : 0)) {
791    assert(!unaligned, "can't handle this");
792    // for offsets larger than a simm13 we setup the offset in O7
793    __ set(offset, O7);
794    store_offset = store(from_reg, base, O7, type, wide);
795  } else {
796    if (type == T_ARRAY || type == T_OBJECT) {
797      __ verify_oop(from_reg->as_register());
798    }
799    store_offset = code_offset();
800    switch (type) {
801      case T_BOOLEAN: // fall through
802      case T_BYTE  : __ stb(from_reg->as_register(), base, offset); break;
803      case T_CHAR  : __ sth(from_reg->as_register(), base, offset); break;
804      case T_SHORT : __ sth(from_reg->as_register(), base, offset); break;
805      case T_INT   : __ stw(from_reg->as_register(), base, offset); break;
806      case T_LONG  :
807#ifdef _LP64
808        if (unaligned || PatchALot) {
809          __ srax(from_reg->as_register_lo(), 32, O7);
810          __ stw(from_reg->as_register_lo(), base, offset + lo_word_offset_in_bytes);
811          __ stw(O7,                         base, offset + hi_word_offset_in_bytes);
812        } else {
813          __ stx(from_reg->as_register_lo(), base, offset);
814        }
815#else
816        assert(Assembler::is_simm13(offset + 4), "must be");
817        __ stw(from_reg->as_register_lo(), base, offset + lo_word_offset_in_bytes);
818        __ stw(from_reg->as_register_hi(), base, offset + hi_word_offset_in_bytes);
819#endif
820        break;
821      case T_ADDRESS:
822        __ st_ptr(from_reg->as_register(), base, offset);
823        break;
824      case T_ARRAY : // fall through
825      case T_OBJECT:
826        {
827          if (UseCompressedOops && !wide) {
828            __ encode_heap_oop(from_reg->as_register(), G3_scratch);
829            store_offset = code_offset();
830            __ stw(G3_scratch, base, offset);
831          } else {
832            __ st_ptr(from_reg->as_register(), base, offset);
833          }
834          break;
835        }
836
837      case T_FLOAT : __ stf(FloatRegisterImpl::S, from_reg->as_float_reg(), base, offset); break;
838      case T_DOUBLE:
839        {
840          FloatRegister reg = from_reg->as_double_reg();
841          // split unaligned stores
842          if (unaligned || PatchALot) {
843            assert(Assembler::is_simm13(offset + 4), "must be");
844            __ stf(FloatRegisterImpl::S, reg->successor(), base, offset + 4);
845            __ stf(FloatRegisterImpl::S, reg,              base, offset);
846          } else {
847            __ stf(FloatRegisterImpl::D, reg, base, offset);
848          }
849          break;
850        }
851      default      : ShouldNotReachHere();
852    }
853  }
854  return store_offset;
855}
856
857
858int LIR_Assembler::store(LIR_Opr from_reg, Register base, Register disp, BasicType type, bool wide) {
859  if (type == T_ARRAY || type == T_OBJECT) {
860    __ verify_oop(from_reg->as_register());
861  }
862  int store_offset = code_offset();
863  switch (type) {
864    case T_BOOLEAN: // fall through
865    case T_BYTE  : __ stb(from_reg->as_register(), base, disp); break;
866    case T_CHAR  : __ sth(from_reg->as_register(), base, disp); break;
867    case T_SHORT : __ sth(from_reg->as_register(), base, disp); break;
868    case T_INT   : __ stw(from_reg->as_register(), base, disp); break;
869    case T_LONG  :
870#ifdef _LP64
871      __ stx(from_reg->as_register_lo(), base, disp);
872#else
873      assert(from_reg->as_register_hi()->successor() == from_reg->as_register_lo(), "must match");
874      __ std(from_reg->as_register_hi(), base, disp);
875#endif
876      break;
877    case T_ADDRESS:
878      __ st_ptr(from_reg->as_register(), base, disp);
879      break;
880    case T_ARRAY : // fall through
881    case T_OBJECT:
882      {
883        if (UseCompressedOops && !wide) {
884          __ encode_heap_oop(from_reg->as_register(), G3_scratch);
885          store_offset = code_offset();
886          __ stw(G3_scratch, base, disp);
887        } else {
888          __ st_ptr(from_reg->as_register(), base, disp);
889        }
890        break;
891      }
892    case T_FLOAT : __ stf(FloatRegisterImpl::S, from_reg->as_float_reg(), base, disp); break;
893    case T_DOUBLE: __ stf(FloatRegisterImpl::D, from_reg->as_double_reg(), base, disp); break;
894    default      : ShouldNotReachHere();
895  }
896  return store_offset;
897}
898
899
900int LIR_Assembler::load(Register base, int offset, LIR_Opr to_reg, BasicType type, bool wide, bool unaligned) {
901  int load_offset;
902  if (!Assembler::is_simm13(offset + (type == T_LONG) ? wordSize : 0)) {
903    assert(base != O7, "destroying register");
904    assert(!unaligned, "can't handle this");
905    // for offsets larger than a simm13 we setup the offset in O7
906    __ set(offset, O7);
907    load_offset = load(base, O7, to_reg, type, wide);
908  } else {
909    load_offset = code_offset();
910    switch(type) {
911      case T_BOOLEAN: // fall through
912      case T_BYTE  : __ ldsb(base, offset, to_reg->as_register()); break;
913      case T_CHAR  : __ lduh(base, offset, to_reg->as_register()); break;
914      case T_SHORT : __ ldsh(base, offset, to_reg->as_register()); break;
915      case T_INT   : __ ld(base, offset, to_reg->as_register()); break;
916      case T_LONG  :
917        if (!unaligned) {
918#ifdef _LP64
919          __ ldx(base, offset, to_reg->as_register_lo());
920#else
921          assert(to_reg->as_register_hi()->successor() == to_reg->as_register_lo(),
922                 "must be sequential");
923          __ ldd(base, offset, to_reg->as_register_hi());
924#endif
925        } else {
926#ifdef _LP64
927          assert(base != to_reg->as_register_lo(), "can't handle this");
928          assert(O7 != to_reg->as_register_lo(), "can't handle this");
929          __ ld(base, offset + hi_word_offset_in_bytes, to_reg->as_register_lo());
930          __ lduw(base, offset + lo_word_offset_in_bytes, O7); // in case O7 is base or offset, use it last
931          __ sllx(to_reg->as_register_lo(), 32, to_reg->as_register_lo());
932          __ or3(to_reg->as_register_lo(), O7, to_reg->as_register_lo());
933#else
934          if (base == to_reg->as_register_lo()) {
935            __ ld(base, offset + hi_word_offset_in_bytes, to_reg->as_register_hi());
936            __ ld(base, offset + lo_word_offset_in_bytes, to_reg->as_register_lo());
937          } else {
938            __ ld(base, offset + lo_word_offset_in_bytes, to_reg->as_register_lo());
939            __ ld(base, offset + hi_word_offset_in_bytes, to_reg->as_register_hi());
940          }
941#endif
942        }
943        break;
944      case T_ADDRESS:  __ ld_ptr(base, offset, to_reg->as_register()); break;
945      case T_ARRAY : // fall through
946      case T_OBJECT:
947        {
948          if (UseCompressedOops && !wide) {
949            __ lduw(base, offset, to_reg->as_register());
950            __ decode_heap_oop(to_reg->as_register());
951          } else {
952            __ ld_ptr(base, offset, to_reg->as_register());
953          }
954          break;
955        }
956      case T_FLOAT:  __ ldf(FloatRegisterImpl::S, base, offset, to_reg->as_float_reg()); break;
957      case T_DOUBLE:
958        {
959          FloatRegister reg = to_reg->as_double_reg();
960          // split unaligned loads
961          if (unaligned || PatchALot) {
962            __ ldf(FloatRegisterImpl::S, base, offset + 4, reg->successor());
963            __ ldf(FloatRegisterImpl::S, base, offset,     reg);
964          } else {
965            __ ldf(FloatRegisterImpl::D, base, offset, to_reg->as_double_reg());
966          }
967          break;
968        }
969      default      : ShouldNotReachHere();
970    }
971    if (type == T_ARRAY || type == T_OBJECT) {
972      __ verify_oop(to_reg->as_register());
973    }
974  }
975  return load_offset;
976}
977
978
979int LIR_Assembler::load(Register base, Register disp, LIR_Opr to_reg, BasicType type, bool wide) {
980  int load_offset = code_offset();
981  switch(type) {
982    case T_BOOLEAN: // fall through
983    case T_BYTE  :  __ ldsb(base, disp, to_reg->as_register()); break;
984    case T_CHAR  :  __ lduh(base, disp, to_reg->as_register()); break;
985    case T_SHORT :  __ ldsh(base, disp, to_reg->as_register()); break;
986    case T_INT   :  __ ld(base, disp, to_reg->as_register()); break;
987    case T_ADDRESS: __ ld_ptr(base, disp, to_reg->as_register()); break;
988    case T_ARRAY : // fall through
989    case T_OBJECT:
990      {
991          if (UseCompressedOops && !wide) {
992            __ lduw(base, disp, to_reg->as_register());
993            __ decode_heap_oop(to_reg->as_register());
994          } else {
995            __ ld_ptr(base, disp, to_reg->as_register());
996          }
997          break;
998      }
999    case T_FLOAT:  __ ldf(FloatRegisterImpl::S, base, disp, to_reg->as_float_reg()); break;
1000    case T_DOUBLE: __ ldf(FloatRegisterImpl::D, base, disp, to_reg->as_double_reg()); break;
1001    case T_LONG  :
1002#ifdef _LP64
1003      __ ldx(base, disp, to_reg->as_register_lo());
1004#else
1005      assert(to_reg->as_register_hi()->successor() == to_reg->as_register_lo(),
1006             "must be sequential");
1007      __ ldd(base, disp, to_reg->as_register_hi());
1008#endif
1009      break;
1010    default      : ShouldNotReachHere();
1011  }
1012  if (type == T_ARRAY || type == T_OBJECT) {
1013    __ verify_oop(to_reg->as_register());
1014  }
1015  return load_offset;
1016}
1017
1018void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
1019  LIR_Const* c = src->as_constant_ptr();
1020  switch (c->type()) {
1021    case T_INT:
1022    case T_FLOAT: {
1023      Register src_reg = O7;
1024      int value = c->as_jint_bits();
1025      if (value == 0) {
1026        src_reg = G0;
1027      } else {
1028        __ set(value, O7);
1029      }
1030      Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
1031      __ stw(src_reg, addr.base(), addr.disp());
1032      break;
1033    }
1034    case T_ADDRESS: {
1035      Register src_reg = O7;
1036      int value = c->as_jint_bits();
1037      if (value == 0) {
1038        src_reg = G0;
1039      } else {
1040        __ set(value, O7);
1041      }
1042      Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
1043      __ st_ptr(src_reg, addr.base(), addr.disp());
1044      break;
1045    }
1046    case T_OBJECT: {
1047      Register src_reg = O7;
1048      jobject2reg(c->as_jobject(), src_reg);
1049      Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
1050      __ st_ptr(src_reg, addr.base(), addr.disp());
1051      break;
1052    }
1053    case T_LONG:
1054    case T_DOUBLE: {
1055      Address addr = frame_map()->address_for_double_slot(dest->double_stack_ix());
1056
1057      Register tmp = O7;
1058      int value_lo = c->as_jint_lo_bits();
1059      if (value_lo == 0) {
1060        tmp = G0;
1061      } else {
1062        __ set(value_lo, O7);
1063      }
1064      __ stw(tmp, addr.base(), addr.disp() + lo_word_offset_in_bytes);
1065      int value_hi = c->as_jint_hi_bits();
1066      if (value_hi == 0) {
1067        tmp = G0;
1068      } else {
1069        __ set(value_hi, O7);
1070      }
1071      __ stw(tmp, addr.base(), addr.disp() + hi_word_offset_in_bytes);
1072      break;
1073    }
1074    default:
1075      Unimplemented();
1076  }
1077}
1078
1079
1080void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info, bool wide) {
1081  LIR_Const* c = src->as_constant_ptr();
1082  LIR_Address* addr     = dest->as_address_ptr();
1083  Register base = addr->base()->as_pointer_register();
1084  int offset = -1;
1085
1086  switch (c->type()) {
1087    case T_INT:
1088    case T_FLOAT:
1089    case T_ADDRESS: {
1090      LIR_Opr tmp = FrameMap::O7_opr;
1091      int value = c->as_jint_bits();
1092      if (value == 0) {
1093        tmp = FrameMap::G0_opr;
1094      } else if (Assembler::is_simm13(value)) {
1095        __ set(value, O7);
1096      }
1097      if (addr->index()->is_valid()) {
1098        assert(addr->disp() == 0, "must be zero");
1099        offset = store(tmp, base, addr->index()->as_pointer_register(), type, wide);
1100      } else {
1101        assert(Assembler::is_simm13(addr->disp()), "can't handle larger addresses");
1102        offset = store(tmp, base, addr->disp(), type, wide, false);
1103      }
1104      break;
1105    }
1106    case T_LONG:
1107    case T_DOUBLE: {
1108      assert(!addr->index()->is_valid(), "can't handle reg reg address here");
1109      assert(Assembler::is_simm13(addr->disp()) &&
1110             Assembler::is_simm13(addr->disp() + 4), "can't handle larger addresses");
1111
1112      LIR_Opr tmp = FrameMap::O7_opr;
1113      int value_lo = c->as_jint_lo_bits();
1114      if (value_lo == 0) {
1115        tmp = FrameMap::G0_opr;
1116      } else {
1117        __ set(value_lo, O7);
1118      }
1119      offset = store(tmp, base, addr->disp() + lo_word_offset_in_bytes, T_INT, wide, false);
1120      int value_hi = c->as_jint_hi_bits();
1121      if (value_hi == 0) {
1122        tmp = FrameMap::G0_opr;
1123      } else {
1124        __ set(value_hi, O7);
1125      }
1126      offset = store(tmp, base, addr->disp() + hi_word_offset_in_bytes, T_INT, wide, false);
1127      break;
1128    }
1129    case T_OBJECT: {
1130      jobject obj = c->as_jobject();
1131      LIR_Opr tmp;
1132      if (obj == NULL) {
1133        tmp = FrameMap::G0_opr;
1134      } else {
1135        tmp = FrameMap::O7_opr;
1136        jobject2reg(c->as_jobject(), O7);
1137      }
1138      // handle either reg+reg or reg+disp address
1139      if (addr->index()->is_valid()) {
1140        assert(addr->disp() == 0, "must be zero");
1141        offset = store(tmp, base, addr->index()->as_pointer_register(), type, wide);
1142      } else {
1143        assert(Assembler::is_simm13(addr->disp()), "can't handle larger addresses");
1144        offset = store(tmp, base, addr->disp(), type, wide, false);
1145      }
1146
1147      break;
1148    }
1149    default:
1150      Unimplemented();
1151  }
1152  if (info != NULL) {
1153    assert(offset != -1, "offset should've been set");
1154    add_debug_info_for_null_check(offset, info);
1155  }
1156}
1157
1158
1159void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
1160  LIR_Const* c = src->as_constant_ptr();
1161  LIR_Opr to_reg = dest;
1162
1163  switch (c->type()) {
1164    case T_INT:
1165    case T_ADDRESS:
1166      {
1167        jint con = c->as_jint();
1168        if (to_reg->is_single_cpu()) {
1169          assert(patch_code == lir_patch_none, "no patching handled here");
1170          __ set(con, to_reg->as_register());
1171        } else {
1172          ShouldNotReachHere();
1173          assert(to_reg->is_single_fpu(), "wrong register kind");
1174
1175          __ set(con, O7);
1176          Address temp_slot(SP, (frame::register_save_words * wordSize) + STACK_BIAS);
1177          __ st(O7, temp_slot);
1178          __ ldf(FloatRegisterImpl::S, temp_slot, to_reg->as_float_reg());
1179        }
1180      }
1181      break;
1182
1183    case T_LONG:
1184      {
1185        jlong con = c->as_jlong();
1186
1187        if (to_reg->is_double_cpu()) {
1188#ifdef _LP64
1189          __ set(con,  to_reg->as_register_lo());
1190#else
1191          __ set(low(con),  to_reg->as_register_lo());
1192          __ set(high(con), to_reg->as_register_hi());
1193#endif
1194#ifdef _LP64
1195        } else if (to_reg->is_single_cpu()) {
1196          __ set(con, to_reg->as_register());
1197#endif
1198        } else {
1199          ShouldNotReachHere();
1200          assert(to_reg->is_double_fpu(), "wrong register kind");
1201          Address temp_slot_lo(SP, ((frame::register_save_words  ) * wordSize) + STACK_BIAS);
1202          Address temp_slot_hi(SP, ((frame::register_save_words) * wordSize) + (longSize/2) + STACK_BIAS);
1203          __ set(low(con),  O7);
1204          __ st(O7, temp_slot_lo);
1205          __ set(high(con), O7);
1206          __ st(O7, temp_slot_hi);
1207          __ ldf(FloatRegisterImpl::D, temp_slot_lo, to_reg->as_double_reg());
1208        }
1209      }
1210      break;
1211
1212    case T_OBJECT:
1213      {
1214        if (patch_code == lir_patch_none) {
1215          jobject2reg(c->as_jobject(), to_reg->as_register());
1216        } else {
1217          jobject2reg_with_patching(to_reg->as_register(), info);
1218        }
1219      }
1220      break;
1221
1222    case T_FLOAT:
1223      {
1224        address const_addr = __ float_constant(c->as_jfloat());
1225        if (const_addr == NULL) {
1226          bailout("const section overflow");
1227          break;
1228        }
1229        RelocationHolder rspec = internal_word_Relocation::spec(const_addr);
1230        AddressLiteral const_addrlit(const_addr, rspec);
1231        if (to_reg->is_single_fpu()) {
1232          __ patchable_sethi(const_addrlit, O7);
1233          __ relocate(rspec);
1234          __ ldf(FloatRegisterImpl::S, O7, const_addrlit.low10(), to_reg->as_float_reg());
1235
1236        } else {
1237          assert(to_reg->is_single_cpu(), "Must be a cpu register.");
1238
1239          __ set(const_addrlit, O7);
1240          __ ld(O7, 0, to_reg->as_register());
1241        }
1242      }
1243      break;
1244
1245    case T_DOUBLE:
1246      {
1247        address const_addr = __ double_constant(c->as_jdouble());
1248        if (const_addr == NULL) {
1249          bailout("const section overflow");
1250          break;
1251        }
1252        RelocationHolder rspec = internal_word_Relocation::spec(const_addr);
1253
1254        if (to_reg->is_double_fpu()) {
1255          AddressLiteral const_addrlit(const_addr, rspec);
1256          __ patchable_sethi(const_addrlit, O7);
1257          __ relocate(rspec);
1258          __ ldf (FloatRegisterImpl::D, O7, const_addrlit.low10(), to_reg->as_double_reg());
1259        } else {
1260          assert(to_reg->is_double_cpu(), "Must be a long register.");
1261#ifdef _LP64
1262          __ set(jlong_cast(c->as_jdouble()), to_reg->as_register_lo());
1263#else
1264          __ set(low(jlong_cast(c->as_jdouble())), to_reg->as_register_lo());
1265          __ set(high(jlong_cast(c->as_jdouble())), to_reg->as_register_hi());
1266#endif
1267        }
1268
1269      }
1270      break;
1271
1272    default:
1273      ShouldNotReachHere();
1274  }
1275}
1276
1277Address LIR_Assembler::as_Address(LIR_Address* addr) {
1278  Register reg = addr->base()->as_register();
1279  return Address(reg, addr->disp());
1280}
1281
1282
1283void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
1284  switch (type) {
1285    case T_INT:
1286    case T_FLOAT: {
1287      Register tmp = O7;
1288      Address from = frame_map()->address_for_slot(src->single_stack_ix());
1289      Address to   = frame_map()->address_for_slot(dest->single_stack_ix());
1290      __ lduw(from.base(), from.disp(), tmp);
1291      __ stw(tmp, to.base(), to.disp());
1292      break;
1293    }
1294    case T_OBJECT: {
1295      Register tmp = O7;
1296      Address from = frame_map()->address_for_slot(src->single_stack_ix());
1297      Address to   = frame_map()->address_for_slot(dest->single_stack_ix());
1298      __ ld_ptr(from.base(), from.disp(), tmp);
1299      __ st_ptr(tmp, to.base(), to.disp());
1300      break;
1301    }
1302    case T_LONG:
1303    case T_DOUBLE: {
1304      Register tmp = O7;
1305      Address from = frame_map()->address_for_double_slot(src->double_stack_ix());
1306      Address to   = frame_map()->address_for_double_slot(dest->double_stack_ix());
1307      __ lduw(from.base(), from.disp(), tmp);
1308      __ stw(tmp, to.base(), to.disp());
1309      __ lduw(from.base(), from.disp() + 4, tmp);
1310      __ stw(tmp, to.base(), to.disp() + 4);
1311      break;
1312    }
1313
1314    default:
1315      ShouldNotReachHere();
1316  }
1317}
1318
1319
1320Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
1321  Address base = as_Address(addr);
1322  return Address(base.base(), base.disp() + hi_word_offset_in_bytes);
1323}
1324
1325
1326Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
1327  Address base = as_Address(addr);
1328  return Address(base.base(), base.disp() + lo_word_offset_in_bytes);
1329}
1330
1331
1332void LIR_Assembler::mem2reg(LIR_Opr src_opr, LIR_Opr dest, BasicType type,
1333                            LIR_PatchCode patch_code, CodeEmitInfo* info, bool wide, bool unaligned) {
1334
1335  LIR_Address* addr = src_opr->as_address_ptr();
1336  LIR_Opr to_reg = dest;
1337
1338  Register src = addr->base()->as_pointer_register();
1339  Register disp_reg = noreg;
1340  int disp_value = addr->disp();
1341  bool needs_patching = (patch_code != lir_patch_none);
1342
1343  if (addr->base()->type() == T_OBJECT) {
1344    __ verify_oop(src);
1345  }
1346
1347  PatchingStub* patch = NULL;
1348  if (needs_patching) {
1349    patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1350    assert(!to_reg->is_double_cpu() ||
1351           patch_code == lir_patch_none ||
1352           patch_code == lir_patch_normal, "patching doesn't match register");
1353  }
1354
1355  if (addr->index()->is_illegal()) {
1356    if (!Assembler::is_simm13(disp_value) && (!unaligned || Assembler::is_simm13(disp_value + 4))) {
1357      if (needs_patching) {
1358        __ patchable_set(0, O7);
1359      } else {
1360        __ set(disp_value, O7);
1361      }
1362      disp_reg = O7;
1363    }
1364  } else if (unaligned || PatchALot) {
1365    __ add(src, addr->index()->as_register(), O7);
1366    src = O7;
1367  } else {
1368    disp_reg = addr->index()->as_pointer_register();
1369    assert(disp_value == 0, "can't handle 3 operand addresses");
1370  }
1371
1372  // remember the offset of the load.  The patching_epilog must be done
1373  // before the call to add_debug_info, otherwise the PcDescs don't get
1374  // entered in increasing order.
1375  int offset = code_offset();
1376
1377  assert(disp_reg != noreg || Assembler::is_simm13(disp_value), "should have set this up");
1378  if (disp_reg == noreg) {
1379    offset = load(src, disp_value, to_reg, type, wide, unaligned);
1380  } else {
1381    assert(!unaligned, "can't handle this");
1382    offset = load(src, disp_reg, to_reg, type, wide);
1383  }
1384
1385  if (patch != NULL) {
1386    patching_epilog(patch, patch_code, src, info);
1387  }
1388  if (info != NULL) add_debug_info_for_null_check(offset, info);
1389}
1390
1391
1392void LIR_Assembler::prefetchr(LIR_Opr src) {
1393  LIR_Address* addr = src->as_address_ptr();
1394  Address from_addr = as_Address(addr);
1395
1396  if (VM_Version::has_v9()) {
1397    __ prefetch(from_addr, Assembler::severalReads);
1398  }
1399}
1400
1401
1402void LIR_Assembler::prefetchw(LIR_Opr src) {
1403  LIR_Address* addr = src->as_address_ptr();
1404  Address from_addr = as_Address(addr);
1405
1406  if (VM_Version::has_v9()) {
1407    __ prefetch(from_addr, Assembler::severalWritesAndPossiblyReads);
1408  }
1409}
1410
1411
1412void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
1413  Address addr;
1414  if (src->is_single_word()) {
1415    addr = frame_map()->address_for_slot(src->single_stack_ix());
1416  } else if (src->is_double_word())  {
1417    addr = frame_map()->address_for_double_slot(src->double_stack_ix());
1418  }
1419
1420  bool unaligned = (addr.disp() - STACK_BIAS) % 8 != 0;
1421  load(addr.base(), addr.disp(), dest, dest->type(), true /*wide*/, unaligned);
1422}
1423
1424
1425void LIR_Assembler::reg2stack(LIR_Opr from_reg, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
1426  Address addr;
1427  if (dest->is_single_word()) {
1428    addr = frame_map()->address_for_slot(dest->single_stack_ix());
1429  } else if (dest->is_double_word())  {
1430    addr = frame_map()->address_for_slot(dest->double_stack_ix());
1431  }
1432  bool unaligned = (addr.disp() - STACK_BIAS) % 8 != 0;
1433  store(from_reg, addr.base(), addr.disp(), from_reg->type(), true /*wide*/, unaligned);
1434}
1435
1436
1437void LIR_Assembler::reg2reg(LIR_Opr from_reg, LIR_Opr to_reg) {
1438  if (from_reg->is_float_kind() && to_reg->is_float_kind()) {
1439    if (from_reg->is_double_fpu()) {
1440      // double to double moves
1441      assert(to_reg->is_double_fpu(), "should match");
1442      __ fmov(FloatRegisterImpl::D, from_reg->as_double_reg(), to_reg->as_double_reg());
1443    } else {
1444      // float to float moves
1445      assert(to_reg->is_single_fpu(), "should match");
1446      __ fmov(FloatRegisterImpl::S, from_reg->as_float_reg(), to_reg->as_float_reg());
1447    }
1448  } else if (!from_reg->is_float_kind() && !to_reg->is_float_kind()) {
1449    if (from_reg->is_double_cpu()) {
1450#ifdef _LP64
1451      __ mov(from_reg->as_pointer_register(), to_reg->as_pointer_register());
1452#else
1453      assert(to_reg->is_double_cpu() &&
1454             from_reg->as_register_hi() != to_reg->as_register_lo() &&
1455             from_reg->as_register_lo() != to_reg->as_register_hi(),
1456             "should both be long and not overlap");
1457      // long to long moves
1458      __ mov(from_reg->as_register_hi(), to_reg->as_register_hi());
1459      __ mov(from_reg->as_register_lo(), to_reg->as_register_lo());
1460#endif
1461#ifdef _LP64
1462    } else if (to_reg->is_double_cpu()) {
1463      // int to int moves
1464      __ mov(from_reg->as_register(), to_reg->as_register_lo());
1465#endif
1466    } else {
1467      // int to int moves
1468      __ mov(from_reg->as_register(), to_reg->as_register());
1469    }
1470  } else {
1471    ShouldNotReachHere();
1472  }
1473  if (to_reg->type() == T_OBJECT || to_reg->type() == T_ARRAY) {
1474    __ verify_oop(to_reg->as_register());
1475  }
1476}
1477
1478
1479void LIR_Assembler::reg2mem(LIR_Opr from_reg, LIR_Opr dest, BasicType type,
1480                            LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack,
1481                            bool wide, bool unaligned) {
1482  LIR_Address* addr = dest->as_address_ptr();
1483
1484  Register src = addr->base()->as_pointer_register();
1485  Register disp_reg = noreg;
1486  int disp_value = addr->disp();
1487  bool needs_patching = (patch_code != lir_patch_none);
1488
1489  if (addr->base()->is_oop_register()) {
1490    __ verify_oop(src);
1491  }
1492
1493  PatchingStub* patch = NULL;
1494  if (needs_patching) {
1495    patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1496    assert(!from_reg->is_double_cpu() ||
1497           patch_code == lir_patch_none ||
1498           patch_code == lir_patch_normal, "patching doesn't match register");
1499  }
1500
1501  if (addr->index()->is_illegal()) {
1502    if (!Assembler::is_simm13(disp_value) && (!unaligned || Assembler::is_simm13(disp_value + 4))) {
1503      if (needs_patching) {
1504        __ patchable_set(0, O7);
1505      } else {
1506        __ set(disp_value, O7);
1507      }
1508      disp_reg = O7;
1509    }
1510  } else if (unaligned || PatchALot) {
1511    __ add(src, addr->index()->as_register(), O7);
1512    src = O7;
1513  } else {
1514    disp_reg = addr->index()->as_pointer_register();
1515    assert(disp_value == 0, "can't handle 3 operand addresses");
1516  }
1517
1518  // remember the offset of the store.  The patching_epilog must be done
1519  // before the call to add_debug_info_for_null_check, otherwise the PcDescs don't get
1520  // entered in increasing order.
1521  int offset;
1522
1523  assert(disp_reg != noreg || Assembler::is_simm13(disp_value), "should have set this up");
1524  if (disp_reg == noreg) {
1525    offset = store(from_reg, src, disp_value, type, wide, unaligned);
1526  } else {
1527    assert(!unaligned, "can't handle this");
1528    offset = store(from_reg, src, disp_reg, type, wide);
1529  }
1530
1531  if (patch != NULL) {
1532    patching_epilog(patch, patch_code, src, info);
1533  }
1534
1535  if (info != NULL) add_debug_info_for_null_check(offset, info);
1536}
1537
1538
1539void LIR_Assembler::return_op(LIR_Opr result) {
1540  // the poll may need a register so just pick one that isn't the return register
1541#if defined(TIERED) && !defined(_LP64)
1542  if (result->type_field() == LIR_OprDesc::long_type) {
1543    // Must move the result to G1
1544    // Must leave proper result in O0,O1 and G1 (TIERED only)
1545    __ sllx(I0, 32, G1);          // Shift bits into high G1
1546    __ srl (I1, 0, I1);           // Zero extend O1 (harmless?)
1547    __ or3 (I1, G1, G1);          // OR 64 bits into G1
1548#ifdef ASSERT
1549    // mangle it so any problems will show up
1550    __ set(0xdeadbeef, I0);
1551    __ set(0xdeadbeef, I1);
1552#endif
1553  }
1554#endif // TIERED
1555  __ set((intptr_t)os::get_polling_page(), L0);
1556  __ relocate(relocInfo::poll_return_type);
1557  __ ld_ptr(L0, 0, G0);
1558  __ ret();
1559  __ delayed()->restore();
1560}
1561
1562
1563int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
1564  __ set((intptr_t)os::get_polling_page(), tmp->as_register());
1565  if (info != NULL) {
1566    add_debug_info_for_branch(info);
1567  } else {
1568    __ relocate(relocInfo::poll_type);
1569  }
1570
1571  int offset = __ offset();
1572  __ ld_ptr(tmp->as_register(), 0, G0);
1573
1574  return offset;
1575}
1576
1577
1578void LIR_Assembler::emit_static_call_stub() {
1579  address call_pc = __ pc();
1580  address stub = __ start_a_stub(call_stub_size);
1581  if (stub == NULL) {
1582    bailout("static call stub overflow");
1583    return;
1584  }
1585
1586  int start = __ offset();
1587  __ relocate(static_stub_Relocation::spec(call_pc));
1588
1589  __ set_oop(NULL, G5);
1590  // must be set to -1 at code generation time
1591  AddressLiteral addrlit(-1);
1592  __ jump_to(addrlit, G3);
1593  __ delayed()->nop();
1594
1595  assert(__ offset() - start <= call_stub_size, "stub too big");
1596  __ end_a_stub();
1597}
1598
1599
1600void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
1601  if (opr1->is_single_fpu()) {
1602    __ fcmp(FloatRegisterImpl::S, Assembler::fcc0, opr1->as_float_reg(), opr2->as_float_reg());
1603  } else if (opr1->is_double_fpu()) {
1604    __ fcmp(FloatRegisterImpl::D, Assembler::fcc0, opr1->as_double_reg(), opr2->as_double_reg());
1605  } else if (opr1->is_single_cpu()) {
1606    if (opr2->is_constant()) {
1607      switch (opr2->as_constant_ptr()->type()) {
1608        case T_INT:
1609          { jint con = opr2->as_constant_ptr()->as_jint();
1610            if (Assembler::is_simm13(con)) {
1611              __ cmp(opr1->as_register(), con);
1612            } else {
1613              __ set(con, O7);
1614              __ cmp(opr1->as_register(), O7);
1615            }
1616          }
1617          break;
1618
1619        case T_OBJECT:
1620          // there are only equal/notequal comparisions on objects
1621          { jobject con = opr2->as_constant_ptr()->as_jobject();
1622            if (con == NULL) {
1623              __ cmp(opr1->as_register(), 0);
1624            } else {
1625              jobject2reg(con, O7);
1626              __ cmp(opr1->as_register(), O7);
1627            }
1628          }
1629          break;
1630
1631        default:
1632          ShouldNotReachHere();
1633          break;
1634      }
1635    } else {
1636      if (opr2->is_address()) {
1637        LIR_Address * addr = opr2->as_address_ptr();
1638        BasicType type = addr->type();
1639        if ( type == T_OBJECT ) __ ld_ptr(as_Address(addr), O7);
1640        else                    __ ld(as_Address(addr), O7);
1641        __ cmp(opr1->as_register(), O7);
1642      } else {
1643        __ cmp(opr1->as_register(), opr2->as_register());
1644      }
1645    }
1646  } else if (opr1->is_double_cpu()) {
1647    Register xlo = opr1->as_register_lo();
1648    Register xhi = opr1->as_register_hi();
1649    if (opr2->is_constant() && opr2->as_jlong() == 0) {
1650      assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "only handles these cases");
1651#ifdef _LP64
1652      __ orcc(xhi, G0, G0);
1653#else
1654      __ orcc(xhi, xlo, G0);
1655#endif
1656    } else if (opr2->is_register()) {
1657      Register ylo = opr2->as_register_lo();
1658      Register yhi = opr2->as_register_hi();
1659#ifdef _LP64
1660      __ cmp(xlo, ylo);
1661#else
1662      __ subcc(xlo, ylo, xlo);
1663      __ subccc(xhi, yhi, xhi);
1664      if (condition == lir_cond_equal || condition == lir_cond_notEqual) {
1665        __ orcc(xhi, xlo, G0);
1666      }
1667#endif
1668    } else {
1669      ShouldNotReachHere();
1670    }
1671  } else if (opr1->is_address()) {
1672    LIR_Address * addr = opr1->as_address_ptr();
1673    BasicType type = addr->type();
1674    assert (opr2->is_constant(), "Checking");
1675    if ( type == T_OBJECT ) __ ld_ptr(as_Address(addr), O7);
1676    else                    __ ld(as_Address(addr), O7);
1677    __ cmp(O7, opr2->as_constant_ptr()->as_jint());
1678  } else {
1679    ShouldNotReachHere();
1680  }
1681}
1682
1683
1684void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op){
1685  if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
1686    bool is_unordered_less = (code == lir_ucmp_fd2i);
1687    if (left->is_single_fpu()) {
1688      __ float_cmp(true, is_unordered_less ? -1 : 1, left->as_float_reg(), right->as_float_reg(), dst->as_register());
1689    } else if (left->is_double_fpu()) {
1690      __ float_cmp(false, is_unordered_less ? -1 : 1, left->as_double_reg(), right->as_double_reg(), dst->as_register());
1691    } else {
1692      ShouldNotReachHere();
1693    }
1694  } else if (code == lir_cmp_l2i) {
1695#ifdef _LP64
1696    __ lcmp(left->as_register_lo(), right->as_register_lo(), dst->as_register());
1697#else
1698    __ lcmp(left->as_register_hi(),  left->as_register_lo(),
1699            right->as_register_hi(), right->as_register_lo(),
1700            dst->as_register());
1701#endif
1702  } else {
1703    ShouldNotReachHere();
1704  }
1705}
1706
1707
1708void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type) {
1709  Assembler::Condition acond;
1710  switch (condition) {
1711    case lir_cond_equal:        acond = Assembler::equal;        break;
1712    case lir_cond_notEqual:     acond = Assembler::notEqual;     break;
1713    case lir_cond_less:         acond = Assembler::less;         break;
1714    case lir_cond_lessEqual:    acond = Assembler::lessEqual;    break;
1715    case lir_cond_greaterEqual: acond = Assembler::greaterEqual; break;
1716    case lir_cond_greater:      acond = Assembler::greater;      break;
1717    case lir_cond_aboveEqual:   acond = Assembler::greaterEqualUnsigned;      break;
1718    case lir_cond_belowEqual:   acond = Assembler::lessEqualUnsigned;      break;
1719    default:                         ShouldNotReachHere();
1720  };
1721
1722  if (opr1->is_constant() && opr1->type() == T_INT) {
1723    Register dest = result->as_register();
1724    // load up first part of constant before branch
1725    // and do the rest in the delay slot.
1726    if (!Assembler::is_simm13(opr1->as_jint())) {
1727      __ sethi(opr1->as_jint(), dest);
1728    }
1729  } else if (opr1->is_constant()) {
1730    const2reg(opr1, result, lir_patch_none, NULL);
1731  } else if (opr1->is_register()) {
1732    reg2reg(opr1, result);
1733  } else if (opr1->is_stack()) {
1734    stack2reg(opr1, result, result->type());
1735  } else {
1736    ShouldNotReachHere();
1737  }
1738  Label skip;
1739#ifdef _LP64
1740    if  (type == T_INT) {
1741      __ br(acond, false, Assembler::pt, skip);
1742    } else
1743#endif
1744      __ brx(acond, false, Assembler::pt, skip); // checks icc on 32bit and xcc on 64bit
1745  if (opr1->is_constant() && opr1->type() == T_INT) {
1746    Register dest = result->as_register();
1747    if (Assembler::is_simm13(opr1->as_jint())) {
1748      __ delayed()->or3(G0, opr1->as_jint(), dest);
1749    } else {
1750      // the sethi has been done above, so just put in the low 10 bits
1751      __ delayed()->or3(dest, opr1->as_jint() & 0x3ff, dest);
1752    }
1753  } else {
1754    // can't do anything useful in the delay slot
1755    __ delayed()->nop();
1756  }
1757  if (opr2->is_constant()) {
1758    const2reg(opr2, result, lir_patch_none, NULL);
1759  } else if (opr2->is_register()) {
1760    reg2reg(opr2, result);
1761  } else if (opr2->is_stack()) {
1762    stack2reg(opr2, result, result->type());
1763  } else {
1764    ShouldNotReachHere();
1765  }
1766  __ bind(skip);
1767}
1768
1769
1770void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) {
1771  assert(info == NULL, "unused on this code path");
1772  assert(left->is_register(), "wrong items state");
1773  assert(dest->is_register(), "wrong items state");
1774
1775  if (right->is_register()) {
1776    if (dest->is_float_kind()) {
1777
1778      FloatRegister lreg, rreg, res;
1779      FloatRegisterImpl::Width w;
1780      if (right->is_single_fpu()) {
1781        w = FloatRegisterImpl::S;
1782        lreg = left->as_float_reg();
1783        rreg = right->as_float_reg();
1784        res  = dest->as_float_reg();
1785      } else {
1786        w = FloatRegisterImpl::D;
1787        lreg = left->as_double_reg();
1788        rreg = right->as_double_reg();
1789        res  = dest->as_double_reg();
1790      }
1791
1792      switch (code) {
1793        case lir_add: __ fadd(w, lreg, rreg, res); break;
1794        case lir_sub: __ fsub(w, lreg, rreg, res); break;
1795        case lir_mul: // fall through
1796        case lir_mul_strictfp: __ fmul(w, lreg, rreg, res); break;
1797        case lir_div: // fall through
1798        case lir_div_strictfp: __ fdiv(w, lreg, rreg, res); break;
1799        default: ShouldNotReachHere();
1800      }
1801
1802    } else if (dest->is_double_cpu()) {
1803#ifdef _LP64
1804      Register dst_lo = dest->as_register_lo();
1805      Register op1_lo = left->as_pointer_register();
1806      Register op2_lo = right->as_pointer_register();
1807
1808      switch (code) {
1809        case lir_add:
1810          __ add(op1_lo, op2_lo, dst_lo);
1811          break;
1812
1813        case lir_sub:
1814          __ sub(op1_lo, op2_lo, dst_lo);
1815          break;
1816
1817        default: ShouldNotReachHere();
1818      }
1819#else
1820      Register op1_lo = left->as_register_lo();
1821      Register op1_hi = left->as_register_hi();
1822      Register op2_lo = right->as_register_lo();
1823      Register op2_hi = right->as_register_hi();
1824      Register dst_lo = dest->as_register_lo();
1825      Register dst_hi = dest->as_register_hi();
1826
1827      switch (code) {
1828        case lir_add:
1829          __ addcc(op1_lo, op2_lo, dst_lo);
1830          __ addc (op1_hi, op2_hi, dst_hi);
1831          break;
1832
1833        case lir_sub:
1834          __ subcc(op1_lo, op2_lo, dst_lo);
1835          __ subc (op1_hi, op2_hi, dst_hi);
1836          break;
1837
1838        default: ShouldNotReachHere();
1839      }
1840#endif
1841    } else {
1842      assert (right->is_single_cpu(), "Just Checking");
1843
1844      Register lreg = left->as_register();
1845      Register res  = dest->as_register();
1846      Register rreg = right->as_register();
1847      switch (code) {
1848        case lir_add:  __ add  (lreg, rreg, res); break;
1849        case lir_sub:  __ sub  (lreg, rreg, res); break;
1850        case lir_mul:  __ mult (lreg, rreg, res); break;
1851        default: ShouldNotReachHere();
1852      }
1853    }
1854  } else {
1855    assert (right->is_constant(), "must be constant");
1856
1857    if (dest->is_single_cpu()) {
1858      Register lreg = left->as_register();
1859      Register res  = dest->as_register();
1860      int    simm13 = right->as_constant_ptr()->as_jint();
1861
1862      switch (code) {
1863        case lir_add:  __ add  (lreg, simm13, res); break;
1864        case lir_sub:  __ sub  (lreg, simm13, res); break;
1865        case lir_mul:  __ mult (lreg, simm13, res); break;
1866        default: ShouldNotReachHere();
1867      }
1868    } else {
1869      Register lreg = left->as_pointer_register();
1870      Register res  = dest->as_register_lo();
1871      long con = right->as_constant_ptr()->as_jlong();
1872      assert(Assembler::is_simm13(con), "must be simm13");
1873
1874      switch (code) {
1875        case lir_add:  __ add  (lreg, (int)con, res); break;
1876        case lir_sub:  __ sub  (lreg, (int)con, res); break;
1877        case lir_mul:  __ mult (lreg, (int)con, res); break;
1878        default: ShouldNotReachHere();
1879      }
1880    }
1881  }
1882}
1883
1884
1885void LIR_Assembler::fpop() {
1886  // do nothing
1887}
1888
1889
1890void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr thread, LIR_Opr dest, LIR_Op* op) {
1891  switch (code) {
1892    case lir_sin:
1893    case lir_tan:
1894    case lir_cos: {
1895      assert(thread->is_valid(), "preserve the thread object for performance reasons");
1896      assert(dest->as_double_reg() == F0, "the result will be in f0/f1");
1897      break;
1898    }
1899    case lir_sqrt: {
1900      assert(!thread->is_valid(), "there is no need for a thread_reg for dsqrt");
1901      FloatRegister src_reg = value->as_double_reg();
1902      FloatRegister dst_reg = dest->as_double_reg();
1903      __ fsqrt(FloatRegisterImpl::D, src_reg, dst_reg);
1904      break;
1905    }
1906    case lir_abs: {
1907      assert(!thread->is_valid(), "there is no need for a thread_reg for fabs");
1908      FloatRegister src_reg = value->as_double_reg();
1909      FloatRegister dst_reg = dest->as_double_reg();
1910      __ fabs(FloatRegisterImpl::D, src_reg, dst_reg);
1911      break;
1912    }
1913    default: {
1914      ShouldNotReachHere();
1915      break;
1916    }
1917  }
1918}
1919
1920
1921void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest) {
1922  if (right->is_constant()) {
1923    if (dest->is_single_cpu()) {
1924      int simm13 = right->as_constant_ptr()->as_jint();
1925      switch (code) {
1926        case lir_logic_and:   __ and3 (left->as_register(), simm13, dest->as_register()); break;
1927        case lir_logic_or:    __ or3  (left->as_register(), simm13, dest->as_register()); break;
1928        case lir_logic_xor:   __ xor3 (left->as_register(), simm13, dest->as_register()); break;
1929        default: ShouldNotReachHere();
1930      }
1931    } else {
1932      long c = right->as_constant_ptr()->as_jlong();
1933      assert(c == (int)c && Assembler::is_simm13(c), "out of range");
1934      int simm13 = (int)c;
1935      switch (code) {
1936        case lir_logic_and:
1937#ifndef _LP64
1938          __ and3 (left->as_register_hi(), 0,      dest->as_register_hi());
1939#endif
1940          __ and3 (left->as_register_lo(), simm13, dest->as_register_lo());
1941          break;
1942
1943        case lir_logic_or:
1944#ifndef _LP64
1945          __ or3 (left->as_register_hi(), 0,      dest->as_register_hi());
1946#endif
1947          __ or3 (left->as_register_lo(), simm13, dest->as_register_lo());
1948          break;
1949
1950        case lir_logic_xor:
1951#ifndef _LP64
1952          __ xor3 (left->as_register_hi(), 0,      dest->as_register_hi());
1953#endif
1954          __ xor3 (left->as_register_lo(), simm13, dest->as_register_lo());
1955          break;
1956
1957        default: ShouldNotReachHere();
1958      }
1959    }
1960  } else {
1961    assert(right->is_register(), "right should be in register");
1962
1963    if (dest->is_single_cpu()) {
1964      switch (code) {
1965        case lir_logic_and:   __ and3 (left->as_register(), right->as_register(), dest->as_register()); break;
1966        case lir_logic_or:    __ or3  (left->as_register(), right->as_register(), dest->as_register()); break;
1967        case lir_logic_xor:   __ xor3 (left->as_register(), right->as_register(), dest->as_register()); break;
1968        default: ShouldNotReachHere();
1969      }
1970    } else {
1971#ifdef _LP64
1972      Register l = (left->is_single_cpu() && left->is_oop_register()) ? left->as_register() :
1973                                                                        left->as_register_lo();
1974      Register r = (right->is_single_cpu() && right->is_oop_register()) ? right->as_register() :
1975                                                                          right->as_register_lo();
1976
1977      switch (code) {
1978        case lir_logic_and: __ and3 (l, r, dest->as_register_lo()); break;
1979        case lir_logic_or:  __ or3  (l, r, dest->as_register_lo()); break;
1980        case lir_logic_xor: __ xor3 (l, r, dest->as_register_lo()); break;
1981        default: ShouldNotReachHere();
1982      }
1983#else
1984      switch (code) {
1985        case lir_logic_and:
1986          __ and3 (left->as_register_hi(), right->as_register_hi(), dest->as_register_hi());
1987          __ and3 (left->as_register_lo(), right->as_register_lo(), dest->as_register_lo());
1988          break;
1989
1990        case lir_logic_or:
1991          __ or3 (left->as_register_hi(), right->as_register_hi(), dest->as_register_hi());
1992          __ or3 (left->as_register_lo(), right->as_register_lo(), dest->as_register_lo());
1993          break;
1994
1995        case lir_logic_xor:
1996          __ xor3 (left->as_register_hi(), right->as_register_hi(), dest->as_register_hi());
1997          __ xor3 (left->as_register_lo(), right->as_register_lo(), dest->as_register_lo());
1998          break;
1999
2000        default: ShouldNotReachHere();
2001      }
2002#endif
2003    }
2004  }
2005}
2006
2007
2008int LIR_Assembler::shift_amount(BasicType t) {
2009  int elem_size = type2aelembytes(t);
2010  switch (elem_size) {
2011    case 1 : return 0;
2012    case 2 : return 1;
2013    case 4 : return 2;
2014    case 8 : return 3;
2015  }
2016  ShouldNotReachHere();
2017  return -1;
2018}
2019
2020
2021void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
2022  assert(exceptionOop->as_register() == Oexception, "should match");
2023  assert(exceptionPC->as_register() == Oissuing_pc, "should match");
2024
2025  info->add_register_oop(exceptionOop);
2026
2027  // reuse the debug info from the safepoint poll for the throw op itself
2028  address pc_for_athrow  = __ pc();
2029  int pc_for_athrow_offset = __ offset();
2030  RelocationHolder rspec = internal_word_Relocation::spec(pc_for_athrow);
2031  __ set(pc_for_athrow, Oissuing_pc, rspec);
2032  add_call_info(pc_for_athrow_offset, info); // for exception handler
2033
2034  __ call(Runtime1::entry_for(Runtime1::handle_exception_id), relocInfo::runtime_call_type);
2035  __ delayed()->nop();
2036}
2037
2038
2039void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) {
2040  assert(exceptionOop->as_register() == Oexception, "should match");
2041
2042  __ br(Assembler::always, false, Assembler::pt, _unwind_handler_entry);
2043  __ delayed()->nop();
2044}
2045
2046
2047void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
2048  Register src = op->src()->as_register();
2049  Register dst = op->dst()->as_register();
2050  Register src_pos = op->src_pos()->as_register();
2051  Register dst_pos = op->dst_pos()->as_register();
2052  Register length  = op->length()->as_register();
2053  Register tmp = op->tmp()->as_register();
2054  Register tmp2 = O7;
2055
2056  int flags = op->flags();
2057  ciArrayKlass* default_type = op->expected_type();
2058  BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL;
2059  if (basic_type == T_ARRAY) basic_type = T_OBJECT;
2060
2061#ifdef _LP64
2062  // higher 32bits must be null
2063  __ sra(dst_pos, 0, dst_pos);
2064  __ sra(src_pos, 0, src_pos);
2065  __ sra(length, 0, length);
2066#endif
2067
2068  // set up the arraycopy stub information
2069  ArrayCopyStub* stub = op->stub();
2070
2071  // always do stub if no type information is available.  it's ok if
2072  // the known type isn't loaded since the code sanity checks
2073  // in debug mode and the type isn't required when we know the exact type
2074  // also check that the type is an array type.
2075  if (op->expected_type() == NULL) {
2076    __ mov(src,     O0);
2077    __ mov(src_pos, O1);
2078    __ mov(dst,     O2);
2079    __ mov(dst_pos, O3);
2080    __ mov(length,  O4);
2081    address copyfunc_addr = StubRoutines::generic_arraycopy();
2082
2083    if (copyfunc_addr == NULL) { // Use C version if stub was not generated
2084      __ call_VM_leaf(tmp, CAST_FROM_FN_PTR(address, Runtime1::arraycopy));
2085    } else {
2086#ifndef PRODUCT
2087      if (PrintC1Statistics) {
2088        address counter = (address)&Runtime1::_generic_arraycopystub_cnt;
2089        __ inc_counter(counter, G1, G3);
2090      }
2091#endif
2092      __ call_VM_leaf(tmp, copyfunc_addr);
2093    }
2094
2095    if (copyfunc_addr != NULL) {
2096      __ xor3(O0, -1, tmp);
2097      __ sub(length, tmp, length);
2098      __ add(src_pos, tmp, src_pos);
2099      __ br_zero(Assembler::less, false, Assembler::pn, O0, *stub->entry());
2100      __ delayed()->add(dst_pos, tmp, dst_pos);
2101    } else {
2102      __ br_zero(Assembler::less, false, Assembler::pn, O0, *stub->entry());
2103      __ delayed()->nop();
2104    }
2105    __ bind(*stub->continuation());
2106    return;
2107  }
2108
2109  assert(default_type != NULL && default_type->is_array_klass(), "must be true at this point");
2110
2111  // make sure src and dst are non-null and load array length
2112  if (flags & LIR_OpArrayCopy::src_null_check) {
2113    __ tst(src);
2114    __ brx(Assembler::equal, false, Assembler::pn, *stub->entry());
2115    __ delayed()->nop();
2116  }
2117
2118  if (flags & LIR_OpArrayCopy::dst_null_check) {
2119    __ tst(dst);
2120    __ brx(Assembler::equal, false, Assembler::pn, *stub->entry());
2121    __ delayed()->nop();
2122  }
2123
2124  if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
2125    // test src_pos register
2126    __ tst(src_pos);
2127    __ br(Assembler::less, false, Assembler::pn, *stub->entry());
2128    __ delayed()->nop();
2129  }
2130
2131  if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
2132    // test dst_pos register
2133    __ tst(dst_pos);
2134    __ br(Assembler::less, false, Assembler::pn, *stub->entry());
2135    __ delayed()->nop();
2136  }
2137
2138  if (flags & LIR_OpArrayCopy::length_positive_check) {
2139    // make sure length isn't negative
2140    __ tst(length);
2141    __ br(Assembler::less, false, Assembler::pn, *stub->entry());
2142    __ delayed()->nop();
2143  }
2144
2145  if (flags & LIR_OpArrayCopy::src_range_check) {
2146    __ ld(src, arrayOopDesc::length_offset_in_bytes(), tmp2);
2147    __ add(length, src_pos, tmp);
2148    __ cmp(tmp2, tmp);
2149    __ br(Assembler::carrySet, false, Assembler::pn, *stub->entry());
2150    __ delayed()->nop();
2151  }
2152
2153  if (flags & LIR_OpArrayCopy::dst_range_check) {
2154    __ ld(dst, arrayOopDesc::length_offset_in_bytes(), tmp2);
2155    __ add(length, dst_pos, tmp);
2156    __ cmp(tmp2, tmp);
2157    __ br(Assembler::carrySet, false, Assembler::pn, *stub->entry());
2158    __ delayed()->nop();
2159  }
2160
2161  int shift = shift_amount(basic_type);
2162
2163  if (flags & LIR_OpArrayCopy::type_check) {
2164    // We don't know the array types are compatible
2165    if (basic_type != T_OBJECT) {
2166      // Simple test for basic type arrays
2167      if (UseCompressedOops) {
2168        // We don't need decode because we just need to compare
2169        __ lduw(src, oopDesc::klass_offset_in_bytes(), tmp);
2170        __ lduw(dst, oopDesc::klass_offset_in_bytes(), tmp2);
2171        __ cmp(tmp, tmp2);
2172        __ br(Assembler::notEqual, false, Assembler::pt, *stub->entry());
2173      } else {
2174        __ ld_ptr(src, oopDesc::klass_offset_in_bytes(), tmp);
2175        __ ld_ptr(dst, oopDesc::klass_offset_in_bytes(), tmp2);
2176        __ cmp(tmp, tmp2);
2177        __ brx(Assembler::notEqual, false, Assembler::pt, *stub->entry());
2178      }
2179      __ delayed()->nop();
2180    } else {
2181      // For object arrays, if src is a sub class of dst then we can
2182      // safely do the copy.
2183      address copyfunc_addr = StubRoutines::checkcast_arraycopy();
2184
2185      Label cont, slow;
2186      assert_different_registers(tmp, tmp2, G3, G1);
2187
2188      __ load_klass(src, G3);
2189      __ load_klass(dst, G1);
2190
2191      __ check_klass_subtype_fast_path(G3, G1, tmp, tmp2, &cont, copyfunc_addr == NULL ? stub->entry() : &slow, NULL);
2192
2193      __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
2194      __ delayed()->nop();
2195
2196      __ cmp(G3, 0);
2197      if (copyfunc_addr != NULL) { // use stub if available
2198        // src is not a sub class of dst so we have to do a
2199        // per-element check.
2200        __ br(Assembler::notEqual, false, Assembler::pt, cont);
2201        __ delayed()->nop();
2202
2203        __ bind(slow);
2204
2205        int mask = LIR_OpArrayCopy::src_objarray|LIR_OpArrayCopy::dst_objarray;
2206        if ((flags & mask) != mask) {
2207          // Check that at least both of them object arrays.
2208          assert(flags & mask, "one of the two should be known to be an object array");
2209
2210          if (!(flags & LIR_OpArrayCopy::src_objarray)) {
2211            __ load_klass(src, tmp);
2212          } else if (!(flags & LIR_OpArrayCopy::dst_objarray)) {
2213            __ load_klass(dst, tmp);
2214          }
2215          int lh_offset = klassOopDesc::header_size() * HeapWordSize +
2216            Klass::layout_helper_offset_in_bytes();
2217
2218          __ lduw(tmp, lh_offset, tmp2);
2219
2220          jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
2221          __ set(objArray_lh, tmp);
2222          __ cmp(tmp, tmp2);
2223          __ br(Assembler::notEqual, false, Assembler::pt,  *stub->entry());
2224          __ delayed()->nop();
2225        }
2226
2227        Register src_ptr = O0;
2228        Register dst_ptr = O1;
2229        Register len     = O2;
2230        Register chk_off = O3;
2231        Register super_k = O4;
2232
2233        __ add(src, arrayOopDesc::base_offset_in_bytes(basic_type), src_ptr);
2234        if (shift == 0) {
2235          __ add(src_ptr, src_pos, src_ptr);
2236        } else {
2237          __ sll(src_pos, shift, tmp);
2238          __ add(src_ptr, tmp, src_ptr);
2239        }
2240
2241        __ add(dst, arrayOopDesc::base_offset_in_bytes(basic_type), dst_ptr);
2242        if (shift == 0) {
2243          __ add(dst_ptr, dst_pos, dst_ptr);
2244        } else {
2245          __ sll(dst_pos, shift, tmp);
2246          __ add(dst_ptr, tmp, dst_ptr);
2247        }
2248        __ mov(length, len);
2249        __ load_klass(dst, tmp);
2250
2251        int ek_offset = (klassOopDesc::header_size() * HeapWordSize +
2252                         objArrayKlass::element_klass_offset_in_bytes());
2253        __ ld_ptr(tmp, ek_offset, super_k);
2254
2255        int sco_offset = (klassOopDesc::header_size() * HeapWordSize +
2256                          Klass::super_check_offset_offset_in_bytes());
2257        __ lduw(super_k, sco_offset, chk_off);
2258
2259        __ call_VM_leaf(tmp, copyfunc_addr);
2260
2261#ifndef PRODUCT
2262        if (PrintC1Statistics) {
2263          Label failed;
2264          __ br_notnull(O0, false, Assembler::pn,  failed);
2265          __ delayed()->nop();
2266          __ inc_counter((address)&Runtime1::_arraycopy_checkcast_cnt, G1, G3);
2267          __ bind(failed);
2268        }
2269#endif
2270
2271        __ br_null(O0, false, Assembler::pt,  *stub->continuation());
2272        __ delayed()->xor3(O0, -1, tmp);
2273
2274#ifndef PRODUCT
2275        if (PrintC1Statistics) {
2276          __ inc_counter((address)&Runtime1::_arraycopy_checkcast_attempt_cnt, G1, G3);
2277        }
2278#endif
2279
2280        __ sub(length, tmp, length);
2281        __ add(src_pos, tmp, src_pos);
2282        __ br(Assembler::always, false, Assembler::pt, *stub->entry());
2283        __ delayed()->add(dst_pos, tmp, dst_pos);
2284
2285        __ bind(cont);
2286      } else {
2287        __ br(Assembler::equal, false, Assembler::pn, *stub->entry());
2288        __ delayed()->nop();
2289        __ bind(cont);
2290      }
2291    }
2292  }
2293
2294#ifdef ASSERT
2295  if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
2296    // Sanity check the known type with the incoming class.  For the
2297    // primitive case the types must match exactly with src.klass and
2298    // dst.klass each exactly matching the default type.  For the
2299    // object array case, if no type check is needed then either the
2300    // dst type is exactly the expected type and the src type is a
2301    // subtype which we can't check or src is the same array as dst
2302    // but not necessarily exactly of type default_type.
2303    Label known_ok, halt;
2304    jobject2reg(op->expected_type()->constant_encoding(), tmp);
2305    if (UseCompressedOops) {
2306      // tmp holds the default type. It currently comes uncompressed after the
2307      // load of a constant, so encode it.
2308      __ encode_heap_oop(tmp);
2309      // load the raw value of the dst klass, since we will be comparing
2310      // uncompressed values directly.
2311      __ lduw(dst, oopDesc::klass_offset_in_bytes(), tmp2);
2312      if (basic_type != T_OBJECT) {
2313        __ cmp(tmp, tmp2);
2314        __ br(Assembler::notEqual, false, Assembler::pn, halt);
2315        // load the raw value of the src klass.
2316        __ delayed()->lduw(src, oopDesc::klass_offset_in_bytes(), tmp2);
2317        __ cmp(tmp, tmp2);
2318        __ br(Assembler::equal, false, Assembler::pn, known_ok);
2319        __ delayed()->nop();
2320      } else {
2321        __ cmp(tmp, tmp2);
2322        __ br(Assembler::equal, false, Assembler::pn, known_ok);
2323        __ delayed()->cmp(src, dst);
2324        __ brx(Assembler::equal, false, Assembler::pn, known_ok);
2325        __ delayed()->nop();
2326      }
2327    } else {
2328      __ ld_ptr(dst, oopDesc::klass_offset_in_bytes(), tmp2);
2329      if (basic_type != T_OBJECT) {
2330        __ cmp(tmp, tmp2);
2331        __ brx(Assembler::notEqual, false, Assembler::pn, halt);
2332        __ delayed()->ld_ptr(src, oopDesc::klass_offset_in_bytes(), tmp2);
2333        __ cmp(tmp, tmp2);
2334        __ brx(Assembler::equal, false, Assembler::pn, known_ok);
2335        __ delayed()->nop();
2336      } else {
2337        __ cmp(tmp, tmp2);
2338        __ brx(Assembler::equal, false, Assembler::pn, known_ok);
2339        __ delayed()->cmp(src, dst);
2340        __ brx(Assembler::equal, false, Assembler::pn, known_ok);
2341        __ delayed()->nop();
2342      }
2343    }
2344    __ bind(halt);
2345    __ stop("incorrect type information in arraycopy");
2346    __ bind(known_ok);
2347  }
2348#endif
2349
2350#ifndef PRODUCT
2351  if (PrintC1Statistics) {
2352    address counter = Runtime1::arraycopy_count_address(basic_type);
2353    __ inc_counter(counter, G1, G3);
2354  }
2355#endif
2356
2357  Register src_ptr = O0;
2358  Register dst_ptr = O1;
2359  Register len     = O2;
2360
2361  __ add(src, arrayOopDesc::base_offset_in_bytes(basic_type), src_ptr);
2362  if (shift == 0) {
2363    __ add(src_ptr, src_pos, src_ptr);
2364  } else {
2365    __ sll(src_pos, shift, tmp);
2366    __ add(src_ptr, tmp, src_ptr);
2367  }
2368
2369  __ add(dst, arrayOopDesc::base_offset_in_bytes(basic_type), dst_ptr);
2370  if (shift == 0) {
2371    __ add(dst_ptr, dst_pos, dst_ptr);
2372  } else {
2373    __ sll(dst_pos, shift, tmp);
2374    __ add(dst_ptr, tmp, dst_ptr);
2375  }
2376
2377  bool disjoint = (flags & LIR_OpArrayCopy::overlapping) == 0;
2378  bool aligned = (flags & LIR_OpArrayCopy::unaligned) == 0;
2379  const char *name;
2380  address entry = StubRoutines::select_arraycopy_function(basic_type, aligned, disjoint, name, false);
2381
2382  // arraycopy stubs takes a length in number of elements, so don't scale it.
2383  __ mov(length, len);
2384  __ call_VM_leaf(tmp, entry);
2385
2386  __ bind(*stub->continuation());
2387}
2388
2389
2390void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
2391  if (dest->is_single_cpu()) {
2392#ifdef _LP64
2393    if (left->type() == T_OBJECT) {
2394      switch (code) {
2395        case lir_shl:  __ sllx  (left->as_register(), count->as_register(), dest->as_register()); break;
2396        case lir_shr:  __ srax  (left->as_register(), count->as_register(), dest->as_register()); break;
2397        case lir_ushr: __ srl   (left->as_register(), count->as_register(), dest->as_register()); break;
2398        default: ShouldNotReachHere();
2399      }
2400    } else
2401#endif
2402      switch (code) {
2403        case lir_shl:  __ sll   (left->as_register(), count->as_register(), dest->as_register()); break;
2404        case lir_shr:  __ sra   (left->as_register(), count->as_register(), dest->as_register()); break;
2405        case lir_ushr: __ srl   (left->as_register(), count->as_register(), dest->as_register()); break;
2406        default: ShouldNotReachHere();
2407      }
2408  } else {
2409#ifdef _LP64
2410    switch (code) {
2411      case lir_shl:  __ sllx  (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
2412      case lir_shr:  __ srax  (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
2413      case lir_ushr: __ srlx  (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
2414      default: ShouldNotReachHere();
2415    }
2416#else
2417    switch (code) {
2418      case lir_shl:  __ lshl  (left->as_register_hi(), left->as_register_lo(), count->as_register(), dest->as_register_hi(), dest->as_register_lo(), G3_scratch); break;
2419      case lir_shr:  __ lshr  (left->as_register_hi(), left->as_register_lo(), count->as_register(), dest->as_register_hi(), dest->as_register_lo(), G3_scratch); break;
2420      case lir_ushr: __ lushr (left->as_register_hi(), left->as_register_lo(), count->as_register(), dest->as_register_hi(), dest->as_register_lo(), G3_scratch); break;
2421      default: ShouldNotReachHere();
2422    }
2423#endif
2424  }
2425}
2426
2427
2428void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
2429#ifdef _LP64
2430  if (left->type() == T_OBJECT) {
2431    count = count & 63;  // shouldn't shift by more than sizeof(intptr_t)
2432    Register l = left->as_register();
2433    Register d = dest->as_register_lo();
2434    switch (code) {
2435      case lir_shl:  __ sllx  (l, count, d); break;
2436      case lir_shr:  __ srax  (l, count, d); break;
2437      case lir_ushr: __ srlx  (l, count, d); break;
2438      default: ShouldNotReachHere();
2439    }
2440    return;
2441  }
2442#endif
2443
2444  if (dest->is_single_cpu()) {
2445    count = count & 0x1F; // Java spec
2446    switch (code) {
2447      case lir_shl:  __ sll   (left->as_register(), count, dest->as_register()); break;
2448      case lir_shr:  __ sra   (left->as_register(), count, dest->as_register()); break;
2449      case lir_ushr: __ srl   (left->as_register(), count, dest->as_register()); break;
2450      default: ShouldNotReachHere();
2451    }
2452  } else if (dest->is_double_cpu()) {
2453    count = count & 63; // Java spec
2454    switch (code) {
2455      case lir_shl:  __ sllx  (left->as_pointer_register(), count, dest->as_pointer_register()); break;
2456      case lir_shr:  __ srax  (left->as_pointer_register(), count, dest->as_pointer_register()); break;
2457      case lir_ushr: __ srlx  (left->as_pointer_register(), count, dest->as_pointer_register()); break;
2458      default: ShouldNotReachHere();
2459    }
2460  } else {
2461    ShouldNotReachHere();
2462  }
2463}
2464
2465
2466void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
2467  assert(op->tmp1()->as_register()  == G1 &&
2468         op->tmp2()->as_register()  == G3 &&
2469         op->tmp3()->as_register()  == G4 &&
2470         op->obj()->as_register()   == O0 &&
2471         op->klass()->as_register() == G5, "must be");
2472  if (op->init_check()) {
2473    __ ld(op->klass()->as_register(),
2474          instanceKlass::init_state_offset_in_bytes() + sizeof(oopDesc),
2475          op->tmp1()->as_register());
2476    add_debug_info_for_null_check_here(op->stub()->info());
2477    __ cmp(op->tmp1()->as_register(), instanceKlass::fully_initialized);
2478    __ br(Assembler::notEqual, false, Assembler::pn, *op->stub()->entry());
2479    __ delayed()->nop();
2480  }
2481  __ allocate_object(op->obj()->as_register(),
2482                     op->tmp1()->as_register(),
2483                     op->tmp2()->as_register(),
2484                     op->tmp3()->as_register(),
2485                     op->header_size(),
2486                     op->object_size(),
2487                     op->klass()->as_register(),
2488                     *op->stub()->entry());
2489  __ bind(*op->stub()->continuation());
2490  __ verify_oop(op->obj()->as_register());
2491}
2492
2493
2494void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
2495  assert(op->tmp1()->as_register()  == G1 &&
2496         op->tmp2()->as_register()  == G3 &&
2497         op->tmp3()->as_register()  == G4 &&
2498         op->tmp4()->as_register()  == O1 &&
2499         op->klass()->as_register() == G5, "must be");
2500
2501  LP64_ONLY( __ signx(op->len()->as_register()); )
2502  if (UseSlowPath ||
2503      (!UseFastNewObjectArray && (op->type() == T_OBJECT || op->type() == T_ARRAY)) ||
2504      (!UseFastNewTypeArray   && (op->type() != T_OBJECT && op->type() != T_ARRAY))) {
2505    __ br(Assembler::always, false, Assembler::pt, *op->stub()->entry());
2506    __ delayed()->nop();
2507  } else {
2508    __ allocate_array(op->obj()->as_register(),
2509                      op->len()->as_register(),
2510                      op->tmp1()->as_register(),
2511                      op->tmp2()->as_register(),
2512                      op->tmp3()->as_register(),
2513                      arrayOopDesc::header_size(op->type()),
2514                      type2aelembytes(op->type()),
2515                      op->klass()->as_register(),
2516                      *op->stub()->entry());
2517  }
2518  __ bind(*op->stub()->continuation());
2519}
2520
2521
2522void LIR_Assembler::type_profile_helper(Register mdo, int mdo_offset_bias,
2523                                        ciMethodData *md, ciProfileData *data,
2524                                        Register recv, Register tmp1, Label* update_done) {
2525  uint i;
2526  for (i = 0; i < VirtualCallData::row_limit(); i++) {
2527    Label next_test;
2528    // See if the receiver is receiver[n].
2529    Address receiver_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)) -
2530                          mdo_offset_bias);
2531    __ ld_ptr(receiver_addr, tmp1);
2532    __ verify_oop(tmp1);
2533    __ cmp(recv, tmp1);
2534    __ brx(Assembler::notEqual, false, Assembler::pt, next_test);
2535    __ delayed()->nop();
2536    Address data_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)) -
2537                      mdo_offset_bias);
2538    __ ld_ptr(data_addr, tmp1);
2539    __ add(tmp1, DataLayout::counter_increment, tmp1);
2540    __ st_ptr(tmp1, data_addr);
2541    __ ba(false, *update_done);
2542    __ delayed()->nop();
2543    __ bind(next_test);
2544  }
2545
2546  // Didn't find receiver; find next empty slot and fill it in
2547  for (i = 0; i < VirtualCallData::row_limit(); i++) {
2548    Label next_test;
2549    Address recv_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)) -
2550                      mdo_offset_bias);
2551    __ ld_ptr(recv_addr, tmp1);
2552    __ br_notnull(tmp1, false, Assembler::pt, next_test);
2553    __ delayed()->nop();
2554    __ st_ptr(recv, recv_addr);
2555    __ set(DataLayout::counter_increment, tmp1);
2556    __ st_ptr(tmp1, mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)) -
2557              mdo_offset_bias);
2558    __ ba(false, *update_done);
2559    __ delayed()->nop();
2560    __ bind(next_test);
2561  }
2562}
2563
2564
2565void LIR_Assembler::setup_md_access(ciMethod* method, int bci,
2566                                    ciMethodData*& md, ciProfileData*& data, int& mdo_offset_bias) {
2567  md = method->method_data_or_null();
2568  assert(md != NULL, "Sanity");
2569  data = md->bci_to_data(bci);
2570  assert(data != NULL,       "need data for checkcast");
2571  assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
2572  if (!Assembler::is_simm13(md->byte_offset_of_slot(data, DataLayout::header_offset()) + data->size_in_bytes())) {
2573    // The offset is large so bias the mdo by the base of the slot so
2574    // that the ld can use simm13s to reference the slots of the data
2575    mdo_offset_bias = md->byte_offset_of_slot(data, DataLayout::header_offset());
2576  }
2577}
2578
2579void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) {
2580  // we always need a stub for the failure case.
2581  CodeStub* stub = op->stub();
2582  Register obj = op->object()->as_register();
2583  Register k_RInfo = op->tmp1()->as_register();
2584  Register klass_RInfo = op->tmp2()->as_register();
2585  Register dst = op->result_opr()->as_register();
2586  Register Rtmp1 = op->tmp3()->as_register();
2587  ciKlass* k = op->klass();
2588
2589
2590  if (obj == k_RInfo) {
2591    k_RInfo = klass_RInfo;
2592    klass_RInfo = obj;
2593  }
2594
2595  ciMethodData* md;
2596  ciProfileData* data;
2597  int mdo_offset_bias = 0;
2598  if (op->should_profile()) {
2599    ciMethod* method = op->profiled_method();
2600    assert(method != NULL, "Should have method");
2601    setup_md_access(method, op->profiled_bci(), md, data, mdo_offset_bias);
2602
2603    Label not_null;
2604    __ br_notnull(obj, false, Assembler::pn, not_null);
2605    __ delayed()->nop();
2606    Register mdo      = k_RInfo;
2607    Register data_val = Rtmp1;
2608    jobject2reg(md->constant_encoding(), mdo);
2609    if (mdo_offset_bias > 0) {
2610      __ set(mdo_offset_bias, data_val);
2611      __ add(mdo, data_val, mdo);
2612    }
2613    Address flags_addr(mdo, md->byte_offset_of_slot(data, DataLayout::flags_offset()) - mdo_offset_bias);
2614    __ ldub(flags_addr, data_val);
2615    __ or3(data_val, BitData::null_seen_byte_constant(), data_val);
2616    __ stb(data_val, flags_addr);
2617    __ ba(false, *obj_is_null);
2618    __ delayed()->nop();
2619    __ bind(not_null);
2620  } else {
2621    __ br_null(obj, false, Assembler::pn, *obj_is_null);
2622    __ delayed()->nop();
2623  }
2624
2625  Label profile_cast_failure, profile_cast_success;
2626  Label *failure_target = op->should_profile() ? &profile_cast_failure : failure;
2627  Label *success_target = op->should_profile() ? &profile_cast_success : success;
2628
2629  // patching may screw with our temporaries on sparc,
2630  // so let's do it before loading the class
2631  if (k->is_loaded()) {
2632    jobject2reg(k->constant_encoding(), k_RInfo);
2633  } else {
2634    jobject2reg_with_patching(k_RInfo, op->info_for_patch());
2635  }
2636  assert(obj != k_RInfo, "must be different");
2637
2638  // get object class
2639  // not a safepoint as obj null check happens earlier
2640  __ load_klass(obj, klass_RInfo);
2641  if (op->fast_check()) {
2642    assert_different_registers(klass_RInfo, k_RInfo);
2643    __ cmp(k_RInfo, klass_RInfo);
2644    __ brx(Assembler::notEqual, false, Assembler::pt, *failure_target);
2645    __ delayed()->nop();
2646  } else {
2647    bool need_slow_path = true;
2648    if (k->is_loaded()) {
2649      if (k->super_check_offset() != sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes())
2650        need_slow_path = false;
2651      // perform the fast part of the checking logic
2652      __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, noreg,
2653                                       (need_slow_path ? success_target : NULL),
2654                                       failure_target, NULL,
2655                                       RegisterOrConstant(k->super_check_offset()));
2656    } else {
2657      // perform the fast part of the checking logic
2658      __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, O7, success_target,
2659                                       failure_target, NULL);
2660    }
2661    if (need_slow_path) {
2662      // call out-of-line instance of __ check_klass_subtype_slow_path(...):
2663      assert(klass_RInfo == G3 && k_RInfo == G1, "incorrect call setup");
2664      __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
2665      __ delayed()->nop();
2666      __ cmp(G3, 0);
2667      __ br(Assembler::equal, false, Assembler::pn, *failure_target);
2668      __ delayed()->nop();
2669      // Fall through to success case
2670    }
2671  }
2672
2673  if (op->should_profile()) {
2674    Register mdo  = klass_RInfo, recv = k_RInfo, tmp1 = Rtmp1;
2675    assert_different_registers(obj, mdo, recv, tmp1);
2676    __ bind(profile_cast_success);
2677    jobject2reg(md->constant_encoding(), mdo);
2678    if (mdo_offset_bias > 0) {
2679      __ set(mdo_offset_bias, tmp1);
2680      __ add(mdo, tmp1, mdo);
2681    }
2682    __ load_klass(obj, recv);
2683    type_profile_helper(mdo, mdo_offset_bias, md, data, recv, tmp1, success);
2684    // Jump over the failure case
2685    __ ba(false, *success);
2686    __ delayed()->nop();
2687    // Cast failure case
2688    __ bind(profile_cast_failure);
2689    jobject2reg(md->constant_encoding(), mdo);
2690    if (mdo_offset_bias > 0) {
2691      __ set(mdo_offset_bias, tmp1);
2692      __ add(mdo, tmp1, mdo);
2693    }
2694    Address data_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias);
2695    __ ld_ptr(data_addr, tmp1);
2696    __ sub(tmp1, DataLayout::counter_increment, tmp1);
2697    __ st_ptr(tmp1, data_addr);
2698    __ ba(false, *failure);
2699    __ delayed()->nop();
2700  }
2701  __ ba(false, *success);
2702  __ delayed()->nop();
2703}
2704
2705void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
2706  LIR_Code code = op->code();
2707  if (code == lir_store_check) {
2708    Register value = op->object()->as_register();
2709    Register array = op->array()->as_register();
2710    Register k_RInfo = op->tmp1()->as_register();
2711    Register klass_RInfo = op->tmp2()->as_register();
2712    Register Rtmp1 = op->tmp3()->as_register();
2713
2714    __ verify_oop(value);
2715    CodeStub* stub = op->stub();
2716    // check if it needs to be profiled
2717    ciMethodData* md;
2718    ciProfileData* data;
2719    int mdo_offset_bias = 0;
2720    if (op->should_profile()) {
2721      ciMethod* method = op->profiled_method();
2722      assert(method != NULL, "Should have method");
2723      setup_md_access(method, op->profiled_bci(), md, data, mdo_offset_bias);
2724    }
2725    Label profile_cast_success, profile_cast_failure, done;
2726    Label *success_target = op->should_profile() ? &profile_cast_success : &done;
2727    Label *failure_target = op->should_profile() ? &profile_cast_failure : stub->entry();
2728
2729    if (op->should_profile()) {
2730      Label not_null;
2731      __ br_notnull(value, false, Assembler::pn, not_null);
2732      __ delayed()->nop();
2733      Register mdo      = k_RInfo;
2734      Register data_val = Rtmp1;
2735      jobject2reg(md->constant_encoding(), mdo);
2736      if (mdo_offset_bias > 0) {
2737        __ set(mdo_offset_bias, data_val);
2738        __ add(mdo, data_val, mdo);
2739      }
2740      Address flags_addr(mdo, md->byte_offset_of_slot(data, DataLayout::flags_offset()) - mdo_offset_bias);
2741      __ ldub(flags_addr, data_val);
2742      __ or3(data_val, BitData::null_seen_byte_constant(), data_val);
2743      __ stb(data_val, flags_addr);
2744      __ ba(false, done);
2745      __ delayed()->nop();
2746      __ bind(not_null);
2747    } else {
2748      __ br_null(value, false, Assembler::pn, done);
2749      __ delayed()->nop();
2750    }
2751    add_debug_info_for_null_check_here(op->info_for_exception());
2752    __ load_klass(array, k_RInfo);
2753    __ load_klass(value, klass_RInfo);
2754
2755    // get instance klass
2756    __ ld_ptr(Address(k_RInfo, objArrayKlass::element_klass_offset_in_bytes() + sizeof(oopDesc)), k_RInfo);
2757    // perform the fast part of the checking logic
2758    __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, O7, success_target, failure_target, NULL);
2759
2760    // call out-of-line instance of __ check_klass_subtype_slow_path(...):
2761    assert(klass_RInfo == G3 && k_RInfo == G1, "incorrect call setup");
2762    __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
2763    __ delayed()->nop();
2764    __ cmp(G3, 0);
2765    __ br(Assembler::equal, false, Assembler::pn, *failure_target);
2766    __ delayed()->nop();
2767    // fall through to the success case
2768
2769    if (op->should_profile()) {
2770      Register mdo  = klass_RInfo, recv = k_RInfo, tmp1 = Rtmp1;
2771      assert_different_registers(value, mdo, recv, tmp1);
2772      __ bind(profile_cast_success);
2773      jobject2reg(md->constant_encoding(), mdo);
2774      if (mdo_offset_bias > 0) {
2775        __ set(mdo_offset_bias, tmp1);
2776        __ add(mdo, tmp1, mdo);
2777      }
2778      __ load_klass(value, recv);
2779      type_profile_helper(mdo, mdo_offset_bias, md, data, recv, tmp1, &done);
2780      __ ba(false, done);
2781      __ delayed()->nop();
2782      // Cast failure case
2783      __ bind(profile_cast_failure);
2784      jobject2reg(md->constant_encoding(), mdo);
2785      if (mdo_offset_bias > 0) {
2786        __ set(mdo_offset_bias, tmp1);
2787        __ add(mdo, tmp1, mdo);
2788      }
2789      Address data_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias);
2790      __ ld_ptr(data_addr, tmp1);
2791      __ sub(tmp1, DataLayout::counter_increment, tmp1);
2792      __ st_ptr(tmp1, data_addr);
2793      __ ba(false, *stub->entry());
2794      __ delayed()->nop();
2795    }
2796    __ bind(done);
2797  } else if (code == lir_checkcast) {
2798    Register obj = op->object()->as_register();
2799    Register dst = op->result_opr()->as_register();
2800    Label success;
2801    emit_typecheck_helper(op, &success, op->stub()->entry(), &success);
2802    __ bind(success);
2803    __ mov(obj, dst);
2804  } else if (code == lir_instanceof) {
2805    Register obj = op->object()->as_register();
2806    Register dst = op->result_opr()->as_register();
2807    Label success, failure, done;
2808    emit_typecheck_helper(op, &success, &failure, &failure);
2809    __ bind(failure);
2810    __ set(0, dst);
2811    __ ba(false, done);
2812    __ delayed()->nop();
2813    __ bind(success);
2814    __ set(1, dst);
2815    __ bind(done);
2816  } else {
2817    ShouldNotReachHere();
2818  }
2819
2820}
2821
2822
2823void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
2824  if (op->code() == lir_cas_long) {
2825    assert(VM_Version::supports_cx8(), "wrong machine");
2826    Register addr = op->addr()->as_pointer_register();
2827    Register cmp_value_lo = op->cmp_value()->as_register_lo();
2828    Register cmp_value_hi = op->cmp_value()->as_register_hi();
2829    Register new_value_lo = op->new_value()->as_register_lo();
2830    Register new_value_hi = op->new_value()->as_register_hi();
2831    Register t1 = op->tmp1()->as_register();
2832    Register t2 = op->tmp2()->as_register();
2833#ifdef _LP64
2834    __ mov(cmp_value_lo, t1);
2835    __ mov(new_value_lo, t2);
2836    // perform the compare and swap operation
2837    __ casx(addr, t1, t2);
2838    // generate condition code - if the swap succeeded, t2 ("new value" reg) was
2839    // overwritten with the original value in "addr" and will be equal to t1.
2840    __ cmp(t1, t2);
2841#else
2842    // move high and low halves of long values into single registers
2843    __ sllx(cmp_value_hi, 32, t1);         // shift high half into temp reg
2844    __ srl(cmp_value_lo, 0, cmp_value_lo); // clear upper 32 bits of low half
2845    __ or3(t1, cmp_value_lo, t1);          // t1 holds 64-bit compare value
2846    __ sllx(new_value_hi, 32, t2);
2847    __ srl(new_value_lo, 0, new_value_lo);
2848    __ or3(t2, new_value_lo, t2);          // t2 holds 64-bit value to swap
2849    // perform the compare and swap operation
2850    __ casx(addr, t1, t2);
2851    // generate condition code - if the swap succeeded, t2 ("new value" reg) was
2852    // overwritten with the original value in "addr" and will be equal to t1.
2853    // Produce icc flag for 32bit.
2854    __ sub(t1, t2, t2);
2855    __ srlx(t2, 32, t1);
2856    __ orcc(t2, t1, G0);
2857#endif
2858  } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj) {
2859    Register addr = op->addr()->as_pointer_register();
2860    Register cmp_value = op->cmp_value()->as_register();
2861    Register new_value = op->new_value()->as_register();
2862    Register t1 = op->tmp1()->as_register();
2863    Register t2 = op->tmp2()->as_register();
2864    __ mov(cmp_value, t1);
2865    __ mov(new_value, t2);
2866    if (op->code() == lir_cas_obj) {
2867      if (UseCompressedOops) {
2868        __ encode_heap_oop(t1);
2869        __ encode_heap_oop(t2);
2870        __ cas(addr, t1, t2);
2871      } else {
2872        __ cas_ptr(addr, t1, t2);
2873      }
2874    } else {
2875      __ cas(addr, t1, t2);
2876    }
2877    __ cmp(t1, t2);
2878  } else {
2879    Unimplemented();
2880  }
2881}
2882
2883void LIR_Assembler::set_24bit_FPU() {
2884  Unimplemented();
2885}
2886
2887
2888void LIR_Assembler::reset_FPU() {
2889  Unimplemented();
2890}
2891
2892
2893void LIR_Assembler::breakpoint() {
2894  __ breakpoint_trap();
2895}
2896
2897
2898void LIR_Assembler::push(LIR_Opr opr) {
2899  Unimplemented();
2900}
2901
2902
2903void LIR_Assembler::pop(LIR_Opr opr) {
2904  Unimplemented();
2905}
2906
2907
2908void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst_opr) {
2909  Address mon_addr = frame_map()->address_for_monitor_lock(monitor_no);
2910  Register dst = dst_opr->as_register();
2911  Register reg = mon_addr.base();
2912  int offset = mon_addr.disp();
2913  // compute pointer to BasicLock
2914  if (mon_addr.is_simm13()) {
2915    __ add(reg, offset, dst);
2916  } else {
2917    __ set(offset, dst);
2918    __ add(dst, reg, dst);
2919  }
2920}
2921
2922
2923void LIR_Assembler::emit_lock(LIR_OpLock* op) {
2924  Register obj = op->obj_opr()->as_register();
2925  Register hdr = op->hdr_opr()->as_register();
2926  Register lock = op->lock_opr()->as_register();
2927
2928  // obj may not be an oop
2929  if (op->code() == lir_lock) {
2930    MonitorEnterStub* stub = (MonitorEnterStub*)op->stub();
2931    if (UseFastLocking) {
2932      assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
2933      // add debug info for NullPointerException only if one is possible
2934      if (op->info() != NULL) {
2935        add_debug_info_for_null_check_here(op->info());
2936      }
2937      __ lock_object(hdr, obj, lock, op->scratch_opr()->as_register(), *op->stub()->entry());
2938    } else {
2939      // always do slow locking
2940      // note: the slow locking code could be inlined here, however if we use
2941      //       slow locking, speed doesn't matter anyway and this solution is
2942      //       simpler and requires less duplicated code - additionally, the
2943      //       slow locking code is the same in either case which simplifies
2944      //       debugging
2945      __ br(Assembler::always, false, Assembler::pt, *op->stub()->entry());
2946      __ delayed()->nop();
2947    }
2948  } else {
2949    assert (op->code() == lir_unlock, "Invalid code, expected lir_unlock");
2950    if (UseFastLocking) {
2951      assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
2952      __ unlock_object(hdr, obj, lock, *op->stub()->entry());
2953    } else {
2954      // always do slow unlocking
2955      // note: the slow unlocking code could be inlined here, however if we use
2956      //       slow unlocking, speed doesn't matter anyway and this solution is
2957      //       simpler and requires less duplicated code - additionally, the
2958      //       slow unlocking code is the same in either case which simplifies
2959      //       debugging
2960      __ br(Assembler::always, false, Assembler::pt, *op->stub()->entry());
2961      __ delayed()->nop();
2962    }
2963  }
2964  __ bind(*op->stub()->continuation());
2965}
2966
2967
2968void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
2969  ciMethod* method = op->profiled_method();
2970  int bci          = op->profiled_bci();
2971
2972  // Update counter for all call types
2973  ciMethodData* md = method->method_data_or_null();
2974  assert(md != NULL, "Sanity");
2975  ciProfileData* data = md->bci_to_data(bci);
2976  assert(data->is_CounterData(), "need CounterData for calls");
2977  assert(op->mdo()->is_single_cpu(),  "mdo must be allocated");
2978  Register mdo  = op->mdo()->as_register();
2979#ifdef _LP64
2980  assert(op->tmp1()->is_double_cpu(), "tmp1 must be allocated");
2981  Register tmp1 = op->tmp1()->as_register_lo();
2982#else
2983  assert(op->tmp1()->is_single_cpu(), "tmp1 must be allocated");
2984  Register tmp1 = op->tmp1()->as_register();
2985#endif
2986  jobject2reg(md->constant_encoding(), mdo);
2987  int mdo_offset_bias = 0;
2988  if (!Assembler::is_simm13(md->byte_offset_of_slot(data, CounterData::count_offset()) +
2989                            data->size_in_bytes())) {
2990    // The offset is large so bias the mdo by the base of the slot so
2991    // that the ld can use simm13s to reference the slots of the data
2992    mdo_offset_bias = md->byte_offset_of_slot(data, CounterData::count_offset());
2993    __ set(mdo_offset_bias, O7);
2994    __ add(mdo, O7, mdo);
2995  }
2996
2997  Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias);
2998  Bytecodes::Code bc = method->java_code_at_bci(bci);
2999  // Perform additional virtual call profiling for invokevirtual and
3000  // invokeinterface bytecodes
3001  if ((bc == Bytecodes::_invokevirtual || bc == Bytecodes::_invokeinterface) &&
3002      C1ProfileVirtualCalls) {
3003    assert(op->recv()->is_single_cpu(), "recv must be allocated");
3004    Register recv = op->recv()->as_register();
3005    assert_different_registers(mdo, tmp1, recv);
3006    assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
3007    ciKlass* known_klass = op->known_holder();
3008    if (C1OptimizeVirtualCallProfiling && known_klass != NULL) {
3009      // We know the type that will be seen at this call site; we can
3010      // statically update the methodDataOop rather than needing to do
3011      // dynamic tests on the receiver type
3012
3013      // NOTE: we should probably put a lock around this search to
3014      // avoid collisions by concurrent compilations
3015      ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
3016      uint i;
3017      for (i = 0; i < VirtualCallData::row_limit(); i++) {
3018        ciKlass* receiver = vc_data->receiver(i);
3019        if (known_klass->equals(receiver)) {
3020          Address data_addr(mdo, md->byte_offset_of_slot(data,
3021                                                         VirtualCallData::receiver_count_offset(i)) -
3022                            mdo_offset_bias);
3023          __ ld_ptr(data_addr, tmp1);
3024          __ add(tmp1, DataLayout::counter_increment, tmp1);
3025          __ st_ptr(tmp1, data_addr);
3026          return;
3027        }
3028      }
3029
3030      // Receiver type not found in profile data; select an empty slot
3031
3032      // Note that this is less efficient than it should be because it
3033      // always does a write to the receiver part of the
3034      // VirtualCallData rather than just the first time
3035      for (i = 0; i < VirtualCallData::row_limit(); i++) {
3036        ciKlass* receiver = vc_data->receiver(i);
3037        if (receiver == NULL) {
3038          Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)) -
3039                            mdo_offset_bias);
3040          jobject2reg(known_klass->constant_encoding(), tmp1);
3041          __ st_ptr(tmp1, recv_addr);
3042          Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)) -
3043                            mdo_offset_bias);
3044          __ ld_ptr(data_addr, tmp1);
3045          __ add(tmp1, DataLayout::counter_increment, tmp1);
3046          __ st_ptr(tmp1, data_addr);
3047          return;
3048        }
3049      }
3050    } else {
3051      __ load_klass(recv, recv);
3052      Label update_done;
3053      type_profile_helper(mdo, mdo_offset_bias, md, data, recv, tmp1, &update_done);
3054      // Receiver did not match any saved receiver and there is no empty row for it.
3055      // Increment total counter to indicate polymorphic case.
3056      __ ld_ptr(counter_addr, tmp1);
3057      __ add(tmp1, DataLayout::counter_increment, tmp1);
3058      __ st_ptr(tmp1, counter_addr);
3059
3060      __ bind(update_done);
3061    }
3062  } else {
3063    // Static call
3064    __ ld_ptr(counter_addr, tmp1);
3065    __ add(tmp1, DataLayout::counter_increment, tmp1);
3066    __ st_ptr(tmp1, counter_addr);
3067  }
3068}
3069
3070void LIR_Assembler::align_backward_branch_target() {
3071  __ align(OptoLoopAlignment);
3072}
3073
3074
3075void LIR_Assembler::emit_delay(LIR_OpDelay* op) {
3076  // make sure we are expecting a delay
3077  // this has the side effect of clearing the delay state
3078  // so we can use _masm instead of _masm->delayed() to do the
3079  // code generation.
3080  __ delayed();
3081
3082  // make sure we only emit one instruction
3083  int offset = code_offset();
3084  op->delay_op()->emit_code(this);
3085#ifdef ASSERT
3086  if (code_offset() - offset != NativeInstruction::nop_instruction_size) {
3087    op->delay_op()->print();
3088  }
3089  assert(code_offset() - offset == NativeInstruction::nop_instruction_size,
3090         "only one instruction can go in a delay slot");
3091#endif
3092
3093  // we may also be emitting the call info for the instruction
3094  // which we are the delay slot of.
3095  CodeEmitInfo* call_info = op->call_info();
3096  if (call_info) {
3097    add_call_info(code_offset(), call_info);
3098  }
3099
3100  if (VerifyStackAtCalls) {
3101    _masm->sub(FP, SP, O7);
3102    _masm->cmp(O7, initial_frame_size_in_bytes());
3103    _masm->trap(Assembler::notEqual, Assembler::ptr_cc, G0, ST_RESERVED_FOR_USER_0+2 );
3104  }
3105}
3106
3107
3108void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest) {
3109  assert(left->is_register(), "can only handle registers");
3110
3111  if (left->is_single_cpu()) {
3112    __ neg(left->as_register(), dest->as_register());
3113  } else if (left->is_single_fpu()) {
3114    __ fneg(FloatRegisterImpl::S, left->as_float_reg(), dest->as_float_reg());
3115  } else if (left->is_double_fpu()) {
3116    __ fneg(FloatRegisterImpl::D, left->as_double_reg(), dest->as_double_reg());
3117  } else {
3118    assert (left->is_double_cpu(), "Must be a long");
3119    Register Rlow = left->as_register_lo();
3120    Register Rhi = left->as_register_hi();
3121#ifdef _LP64
3122    __ sub(G0, Rlow, dest->as_register_lo());
3123#else
3124    __ subcc(G0, Rlow, dest->as_register_lo());
3125    __ subc (G0, Rhi,  dest->as_register_hi());
3126#endif
3127  }
3128}
3129
3130
3131void LIR_Assembler::fxch(int i) {
3132  Unimplemented();
3133}
3134
3135void LIR_Assembler::fld(int i) {
3136  Unimplemented();
3137}
3138
3139void LIR_Assembler::ffree(int i) {
3140  Unimplemented();
3141}
3142
3143void LIR_Assembler::rt_call(LIR_Opr result, address dest,
3144                            const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
3145
3146  // if tmp is invalid, then the function being called doesn't destroy the thread
3147  if (tmp->is_valid()) {
3148    __ save_thread(tmp->as_register());
3149  }
3150  __ call(dest, relocInfo::runtime_call_type);
3151  __ delayed()->nop();
3152  if (info != NULL) {
3153    add_call_info_here(info);
3154  }
3155  if (tmp->is_valid()) {
3156    __ restore_thread(tmp->as_register());
3157  }
3158
3159#ifdef ASSERT
3160  __ verify_thread();
3161#endif // ASSERT
3162}
3163
3164
3165void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
3166#ifdef _LP64
3167  ShouldNotReachHere();
3168#endif
3169
3170  NEEDS_CLEANUP;
3171  if (type == T_LONG) {
3172    LIR_Address* mem_addr = dest->is_address() ? dest->as_address_ptr() : src->as_address_ptr();
3173
3174    // (extended to allow indexed as well as constant displaced for JSR-166)
3175    Register idx = noreg; // contains either constant offset or index
3176
3177    int disp = mem_addr->disp();
3178    if (mem_addr->index() == LIR_OprFact::illegalOpr) {
3179      if (!Assembler::is_simm13(disp)) {
3180        idx = O7;
3181        __ set(disp, idx);
3182      }
3183    } else {
3184      assert(disp == 0, "not both indexed and disp");
3185      idx = mem_addr->index()->as_register();
3186    }
3187
3188    int null_check_offset = -1;
3189
3190    Register base = mem_addr->base()->as_register();
3191    if (src->is_register() && dest->is_address()) {
3192      // G4 is high half, G5 is low half
3193      if (VM_Version::v9_instructions_work()) {
3194        // clear the top bits of G5, and scale up G4
3195        __ srl (src->as_register_lo(),  0, G5);
3196        __ sllx(src->as_register_hi(), 32, G4);
3197        // combine the two halves into the 64 bits of G4
3198        __ or3(G4, G5, G4);
3199        null_check_offset = __ offset();
3200        if (idx == noreg) {
3201          __ stx(G4, base, disp);
3202        } else {
3203          __ stx(G4, base, idx);
3204        }
3205      } else {
3206        __ mov (src->as_register_hi(), G4);
3207        __ mov (src->as_register_lo(), G5);
3208        null_check_offset = __ offset();
3209        if (idx == noreg) {
3210          __ std(G4, base, disp);
3211        } else {
3212          __ std(G4, base, idx);
3213        }
3214      }
3215    } else if (src->is_address() && dest->is_register()) {
3216      null_check_offset = __ offset();
3217      if (VM_Version::v9_instructions_work()) {
3218        if (idx == noreg) {
3219          __ ldx(base, disp, G5);
3220        } else {
3221          __ ldx(base, idx, G5);
3222        }
3223        __ srax(G5, 32, dest->as_register_hi()); // fetch the high half into hi
3224        __ mov (G5, dest->as_register_lo());     // copy low half into lo
3225      } else {
3226        if (idx == noreg) {
3227          __ ldd(base, disp, G4);
3228        } else {
3229          __ ldd(base, idx, G4);
3230        }
3231        // G4 is high half, G5 is low half
3232        __ mov (G4, dest->as_register_hi());
3233        __ mov (G5, dest->as_register_lo());
3234      }
3235    } else {
3236      Unimplemented();
3237    }
3238    if (info != NULL) {
3239      add_debug_info_for_null_check(null_check_offset, info);
3240    }
3241
3242  } else {
3243    // use normal move for all other volatiles since they don't need
3244    // special handling to remain atomic.
3245    move_op(src, dest, type, lir_patch_none, info, false, false, false);
3246  }
3247}
3248
3249void LIR_Assembler::membar() {
3250  // only StoreLoad membars are ever explicitly needed on sparcs in TSO mode
3251  __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad) );
3252}
3253
3254void LIR_Assembler::membar_acquire() {
3255  // no-op on TSO
3256}
3257
3258void LIR_Assembler::membar_release() {
3259  // no-op on TSO
3260}
3261
3262// Pack two sequential registers containing 32 bit values
3263// into a single 64 bit register.
3264// src and src->successor() are packed into dst
3265// src and dst may be the same register.
3266// Note: src is destroyed
3267void LIR_Assembler::pack64(LIR_Opr src, LIR_Opr dst) {
3268  Register rs = src->as_register();
3269  Register rd = dst->as_register_lo();
3270  __ sllx(rs, 32, rs);
3271  __ srl(rs->successor(), 0, rs->successor());
3272  __ or3(rs, rs->successor(), rd);
3273}
3274
3275// Unpack a 64 bit value in a register into
3276// two sequential registers.
3277// src is unpacked into dst and dst->successor()
3278void LIR_Assembler::unpack64(LIR_Opr src, LIR_Opr dst) {
3279  Register rs = src->as_register_lo();
3280  Register rd = dst->as_register_hi();
3281  assert_different_registers(rs, rd, rd->successor());
3282  __ srlx(rs, 32, rd);
3283  __ srl (rs,  0, rd->successor());
3284}
3285
3286
3287void LIR_Assembler::leal(LIR_Opr addr_opr, LIR_Opr dest) {
3288  LIR_Address* addr = addr_opr->as_address_ptr();
3289  assert(addr->index()->is_illegal() && addr->scale() == LIR_Address::times_1 && Assembler::is_simm13(addr->disp()), "can't handle complex addresses yet");
3290
3291  __ add(addr->base()->as_pointer_register(), addr->disp(), dest->as_pointer_register());
3292}
3293
3294
3295void LIR_Assembler::get_thread(LIR_Opr result_reg) {
3296  assert(result_reg->is_register(), "check");
3297  __ mov(G2_thread, result_reg->as_register());
3298}
3299
3300
3301void LIR_Assembler::peephole(LIR_List* lir) {
3302  LIR_OpList* inst = lir->instructions_list();
3303  for (int i = 0; i < inst->length(); i++) {
3304    LIR_Op* op = inst->at(i);
3305    switch (op->code()) {
3306      case lir_cond_float_branch:
3307      case lir_branch: {
3308        LIR_OpBranch* branch = op->as_OpBranch();
3309        assert(branch->info() == NULL, "shouldn't be state on branches anymore");
3310        LIR_Op* delay_op = NULL;
3311        // we'd like to be able to pull following instructions into
3312        // this slot but we don't know enough to do it safely yet so
3313        // only optimize block to block control flow.
3314        if (LIRFillDelaySlots && branch->block()) {
3315          LIR_Op* prev = inst->at(i - 1);
3316          if (prev && LIR_Assembler::is_single_instruction(prev) && prev->info() == NULL) {
3317            // swap previous instruction into delay slot
3318            inst->at_put(i - 1, op);
3319            inst->at_put(i, new LIR_OpDelay(prev, op->info()));
3320#ifndef PRODUCT
3321            if (LIRTracePeephole) {
3322              tty->print_cr("delayed");
3323              inst->at(i - 1)->print();
3324              inst->at(i)->print();
3325              tty->cr();
3326            }
3327#endif
3328            continue;
3329          }
3330        }
3331
3332        if (!delay_op) {
3333          delay_op = new LIR_OpDelay(new LIR_Op0(lir_nop), NULL);
3334        }
3335        inst->insert_before(i + 1, delay_op);
3336        break;
3337      }
3338      case lir_static_call:
3339      case lir_virtual_call:
3340      case lir_icvirtual_call:
3341      case lir_optvirtual_call:
3342      case lir_dynamic_call: {
3343        LIR_Op* prev = inst->at(i - 1);
3344        if (LIRFillDelaySlots && prev && prev->code() == lir_move && prev->info() == NULL &&
3345            (op->code() != lir_virtual_call ||
3346             !prev->result_opr()->is_single_cpu() ||
3347             prev->result_opr()->as_register() != O0) &&
3348            LIR_Assembler::is_single_instruction(prev)) {
3349          // Only moves without info can be put into the delay slot.
3350          // Also don't allow the setup of the receiver in the delay
3351          // slot for vtable calls.
3352          inst->at_put(i - 1, op);
3353          inst->at_put(i, new LIR_OpDelay(prev, op->info()));
3354#ifndef PRODUCT
3355          if (LIRTracePeephole) {
3356            tty->print_cr("delayed");
3357            inst->at(i - 1)->print();
3358            inst->at(i)->print();
3359            tty->cr();
3360          }
3361#endif
3362        } else {
3363          LIR_Op* delay_op = new LIR_OpDelay(new LIR_Op0(lir_nop), op->as_OpJavaCall()->info());
3364          inst->insert_before(i + 1, delay_op);
3365          i++;
3366        }
3367
3368#if defined(TIERED) && !defined(_LP64)
3369        // fixup the return value from G1 to O0/O1 for long returns.
3370        // It's done here instead of in LIRGenerator because there's
3371        // such a mismatch between the single reg and double reg
3372        // calling convention.
3373        LIR_OpJavaCall* callop = op->as_OpJavaCall();
3374        if (callop->result_opr() == FrameMap::out_long_opr) {
3375          LIR_OpJavaCall* call;
3376          LIR_OprList* arguments = new LIR_OprList(callop->arguments()->length());
3377          for (int a = 0; a < arguments->length(); a++) {
3378            arguments[a] = callop->arguments()[a];
3379          }
3380          if (op->code() == lir_virtual_call) {
3381            call = new LIR_OpJavaCall(op->code(), callop->method(), callop->receiver(), FrameMap::g1_long_single_opr,
3382                                      callop->vtable_offset(), arguments, callop->info());
3383          } else {
3384            call = new LIR_OpJavaCall(op->code(), callop->method(), callop->receiver(), FrameMap::g1_long_single_opr,
3385                                      callop->addr(), arguments, callop->info());
3386          }
3387          inst->at_put(i - 1, call);
3388          inst->insert_before(i + 1, new LIR_Op1(lir_unpack64, FrameMap::g1_long_single_opr, callop->result_opr(),
3389                                                 T_LONG, lir_patch_none, NULL));
3390        }
3391#endif
3392        break;
3393      }
3394    }
3395  }
3396}
3397
3398
3399
3400
3401#undef __
3402