c1_LIRAssembler_sparc.cpp revision 1484:61b2245abf36
1/*
2 * Copyright 2000-2010 Sun Microsystems, Inc.  All Rights Reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20 * CA 95054 USA or visit www.sun.com if you need additional information or
21 * have any questions.
22 *
23 */
24
25# include "incls/_precompiled.incl"
26# include "incls/_c1_LIRAssembler_sparc.cpp.incl"
27
28#define __ _masm->
29
30
31//------------------------------------------------------------
32
33
34bool LIR_Assembler::is_small_constant(LIR_Opr opr) {
35  if (opr->is_constant()) {
36    LIR_Const* constant = opr->as_constant_ptr();
37    switch (constant->type()) {
38      case T_INT: {
39        jint value = constant->as_jint();
40        return Assembler::is_simm13(value);
41      }
42
43      default:
44        return false;
45    }
46  }
47  return false;
48}
49
50
51bool LIR_Assembler::is_single_instruction(LIR_Op* op) {
52  switch (op->code()) {
53    case lir_null_check:
54    return true;
55
56
57    case lir_add:
58    case lir_ushr:
59    case lir_shr:
60    case lir_shl:
61      // integer shifts and adds are always one instruction
62      return op->result_opr()->is_single_cpu();
63
64
65    case lir_move: {
66      LIR_Op1* op1 = op->as_Op1();
67      LIR_Opr src = op1->in_opr();
68      LIR_Opr dst = op1->result_opr();
69
70      if (src == dst) {
71        NEEDS_CLEANUP;
72        // this works around a problem where moves with the same src and dst
73        // end up in the delay slot and then the assembler swallows the mov
74        // since it has no effect and then it complains because the delay slot
75        // is empty.  returning false stops the optimizer from putting this in
76        // the delay slot
77        return false;
78      }
79
80      // don't put moves involving oops into the delay slot since the VerifyOops code
81      // will make it much larger than a single instruction.
82      if (VerifyOops) {
83        return false;
84      }
85
86      if (src->is_double_cpu() || dst->is_double_cpu() || op1->patch_code() != lir_patch_none ||
87          ((src->is_double_fpu() || dst->is_double_fpu()) && op1->move_kind() != lir_move_normal)) {
88        return false;
89      }
90
91      if (dst->is_register()) {
92        if (src->is_address() && Assembler::is_simm13(src->as_address_ptr()->disp())) {
93          return !PatchALot;
94        } else if (src->is_single_stack()) {
95          return true;
96        }
97      }
98
99      if (src->is_register()) {
100        if (dst->is_address() && Assembler::is_simm13(dst->as_address_ptr()->disp())) {
101          return !PatchALot;
102        } else if (dst->is_single_stack()) {
103          return true;
104        }
105      }
106
107      if (dst->is_register() &&
108          ((src->is_register() && src->is_single_word() && src->is_same_type(dst)) ||
109           (src->is_constant() && LIR_Assembler::is_small_constant(op->as_Op1()->in_opr())))) {
110        return true;
111      }
112
113      return false;
114    }
115
116    default:
117      return false;
118  }
119  ShouldNotReachHere();
120}
121
122
123LIR_Opr LIR_Assembler::receiverOpr() {
124  return FrameMap::O0_oop_opr;
125}
126
127
128LIR_Opr LIR_Assembler::incomingReceiverOpr() {
129  return FrameMap::I0_oop_opr;
130}
131
132
133LIR_Opr LIR_Assembler::osrBufferPointer() {
134  return FrameMap::I0_opr;
135}
136
137
138int LIR_Assembler::initial_frame_size_in_bytes() {
139  return in_bytes(frame_map()->framesize_in_bytes());
140}
141
142
143// inline cache check: the inline cached class is in G5_inline_cache_reg(G5);
144// we fetch the class of the receiver (O0) and compare it with the cached class.
145// If they do not match we jump to slow case.
146int LIR_Assembler::check_icache() {
147  int offset = __ offset();
148  __ inline_cache_check(O0, G5_inline_cache_reg);
149  return offset;
150}
151
152
153void LIR_Assembler::osr_entry() {
154  // On-stack-replacement entry sequence (interpreter frame layout described in interpreter_sparc.cpp):
155  //
156  //   1. Create a new compiled activation.
157  //   2. Initialize local variables in the compiled activation.  The expression stack must be empty
158  //      at the osr_bci; it is not initialized.
159  //   3. Jump to the continuation address in compiled code to resume execution.
160
161  // OSR entry point
162  offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
163  BlockBegin* osr_entry = compilation()->hir()->osr_entry();
164  ValueStack* entry_state = osr_entry->end()->state();
165  int number_of_locks = entry_state->locks_size();
166
167  // Create a frame for the compiled activation.
168  __ build_frame(initial_frame_size_in_bytes());
169
170  // OSR buffer is
171  //
172  // locals[nlocals-1..0]
173  // monitors[number_of_locks-1..0]
174  //
175  // locals is a direct copy of the interpreter frame so in the osr buffer
176  // so first slot in the local array is the last local from the interpreter
177  // and last slot is local[0] (receiver) from the interpreter
178  //
179  // Similarly with locks. The first lock slot in the osr buffer is the nth lock
180  // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
181  // in the interpreter frame (the method lock if a sync method)
182
183  // Initialize monitors in the compiled activation.
184  //   I0: pointer to osr buffer
185  //
186  // All other registers are dead at this point and the locals will be
187  // copied into place by code emitted in the IR.
188
189  Register OSR_buf = osrBufferPointer()->as_register();
190  { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
191    int monitor_offset = BytesPerWord * method()->max_locals() +
192      (2 * BytesPerWord) * (number_of_locks - 1);
193    // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in
194    // the OSR buffer using 2 word entries: first the lock and then
195    // the oop.
196    for (int i = 0; i < number_of_locks; i++) {
197      int slot_offset = monitor_offset - ((i * 2) * BytesPerWord);
198#ifdef ASSERT
199      // verify the interpreter's monitor has a non-null object
200      {
201        Label L;
202        __ ld_ptr(OSR_buf, slot_offset + 1*BytesPerWord, O7);
203        __ cmp(G0, O7);
204        __ br(Assembler::notEqual, false, Assembler::pt, L);
205        __ delayed()->nop();
206        __ stop("locked object is NULL");
207        __ bind(L);
208      }
209#endif // ASSERT
210      // Copy the lock field into the compiled activation.
211      __ ld_ptr(OSR_buf, slot_offset + 0, O7);
212      __ st_ptr(O7, frame_map()->address_for_monitor_lock(i));
213      __ ld_ptr(OSR_buf, slot_offset + 1*BytesPerWord, O7);
214      __ st_ptr(O7, frame_map()->address_for_monitor_object(i));
215    }
216  }
217}
218
219
220// Optimized Library calls
221// This is the fast version of java.lang.String.compare; it has not
222// OSR-entry and therefore, we generate a slow version for OSR's
223void LIR_Assembler::emit_string_compare(LIR_Opr left, LIR_Opr right, LIR_Opr dst, CodeEmitInfo* info) {
224  Register str0 = left->as_register();
225  Register str1 = right->as_register();
226
227  Label Ldone;
228
229  Register result = dst->as_register();
230  {
231    // Get a pointer to the first character of string0 in tmp0 and get string0.count in str0
232    // Get a pointer to the first character of string1 in tmp1 and get string1.count in str1
233    // Also, get string0.count-string1.count in o7 and get the condition code set
234    // Note: some instructions have been hoisted for better instruction scheduling
235
236    Register tmp0 = L0;
237    Register tmp1 = L1;
238    Register tmp2 = L2;
239
240    int  value_offset = java_lang_String:: value_offset_in_bytes(); // char array
241    int offset_offset = java_lang_String::offset_offset_in_bytes(); // first character position
242    int  count_offset = java_lang_String:: count_offset_in_bytes();
243
244    __ ld_ptr(str0, value_offset, tmp0);
245    __ ld(str0, offset_offset, tmp2);
246    __ add(tmp0, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp0);
247    __ ld(str0, count_offset, str0);
248    __ sll(tmp2, exact_log2(sizeof(jchar)), tmp2);
249
250    // str1 may be null
251    add_debug_info_for_null_check_here(info);
252
253    __ ld_ptr(str1, value_offset, tmp1);
254    __ add(tmp0, tmp2, tmp0);
255
256    __ ld(str1, offset_offset, tmp2);
257    __ add(tmp1, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp1);
258    __ ld(str1, count_offset, str1);
259    __ sll(tmp2, exact_log2(sizeof(jchar)), tmp2);
260    __ subcc(str0, str1, O7);
261    __ add(tmp1, tmp2, tmp1);
262  }
263
264  {
265    // Compute the minimum of the string lengths, scale it and store it in limit
266    Register count0 = I0;
267    Register count1 = I1;
268    Register limit  = L3;
269
270    Label Lskip;
271    __ sll(count0, exact_log2(sizeof(jchar)), limit);             // string0 is shorter
272    __ br(Assembler::greater, true, Assembler::pt, Lskip);
273    __ delayed()->sll(count1, exact_log2(sizeof(jchar)), limit);  // string1 is shorter
274    __ bind(Lskip);
275
276    // If either string is empty (or both of them) the result is the difference in lengths
277    __ cmp(limit, 0);
278    __ br(Assembler::equal, true, Assembler::pn, Ldone);
279    __ delayed()->mov(O7, result);  // result is difference in lengths
280  }
281
282  {
283    // Neither string is empty
284    Label Lloop;
285
286    Register base0 = L0;
287    Register base1 = L1;
288    Register chr0  = I0;
289    Register chr1  = I1;
290    Register limit = L3;
291
292    // Shift base0 and base1 to the end of the arrays, negate limit
293    __ add(base0, limit, base0);
294    __ add(base1, limit, base1);
295    __ neg(limit);  // limit = -min{string0.count, strin1.count}
296
297    __ lduh(base0, limit, chr0);
298    __ bind(Lloop);
299    __ lduh(base1, limit, chr1);
300    __ subcc(chr0, chr1, chr0);
301    __ br(Assembler::notZero, false, Assembler::pn, Ldone);
302    assert(chr0 == result, "result must be pre-placed");
303    __ delayed()->inccc(limit, sizeof(jchar));
304    __ br(Assembler::notZero, true, Assembler::pt, Lloop);
305    __ delayed()->lduh(base0, limit, chr0);
306  }
307
308  // If strings are equal up to min length, return the length difference.
309  __ mov(O7, result);
310
311  // Otherwise, return the difference between the first mismatched chars.
312  __ bind(Ldone);
313}
314
315
316// --------------------------------------------------------------------------------------------
317
318void LIR_Assembler::monitorexit(LIR_Opr obj_opr, LIR_Opr lock_opr, Register hdr, int monitor_no) {
319  if (!GenerateSynchronizationCode) return;
320
321  Register obj_reg = obj_opr->as_register();
322  Register lock_reg = lock_opr->as_register();
323
324  Address mon_addr = frame_map()->address_for_monitor_lock(monitor_no);
325  Register reg = mon_addr.base();
326  int offset = mon_addr.disp();
327  // compute pointer to BasicLock
328  if (mon_addr.is_simm13()) {
329    __ add(reg, offset, lock_reg);
330  }
331  else {
332    __ set(offset, lock_reg);
333    __ add(reg, lock_reg, lock_reg);
334  }
335  // unlock object
336  MonitorAccessStub* slow_case = new MonitorExitStub(lock_opr, UseFastLocking, monitor_no);
337  // _slow_case_stubs->append(slow_case);
338  // temporary fix: must be created after exceptionhandler, therefore as call stub
339  _slow_case_stubs->append(slow_case);
340  if (UseFastLocking) {
341    // try inlined fast unlocking first, revert to slow locking if it fails
342    // note: lock_reg points to the displaced header since the displaced header offset is 0!
343    assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
344    __ unlock_object(hdr, obj_reg, lock_reg, *slow_case->entry());
345  } else {
346    // always do slow unlocking
347    // note: the slow unlocking code could be inlined here, however if we use
348    //       slow unlocking, speed doesn't matter anyway and this solution is
349    //       simpler and requires less duplicated code - additionally, the
350    //       slow unlocking code is the same in either case which simplifies
351    //       debugging
352    __ br(Assembler::always, false, Assembler::pt, *slow_case->entry());
353    __ delayed()->nop();
354  }
355  // done
356  __ bind(*slow_case->continuation());
357}
358
359
360int LIR_Assembler::emit_exception_handler() {
361  // if the last instruction is a call (typically to do a throw which
362  // is coming at the end after block reordering) the return address
363  // must still point into the code area in order to avoid assertion
364  // failures when searching for the corresponding bci => add a nop
365  // (was bug 5/14/1999 - gri)
366  __ nop();
367
368  // generate code for exception handler
369  ciMethod* method = compilation()->method();
370
371  address handler_base = __ start_a_stub(exception_handler_size);
372
373  if (handler_base == NULL) {
374    // not enough space left for the handler
375    bailout("exception handler overflow");
376    return -1;
377  }
378
379  int offset = code_offset();
380
381  __ call(Runtime1::entry_for(Runtime1::handle_exception_id), relocInfo::runtime_call_type);
382  __ delayed()->nop();
383  debug_only(__ stop("should have gone to the caller");)
384  assert(code_offset() - offset <= exception_handler_size, "overflow");
385  __ end_a_stub();
386
387  return offset;
388}
389
390
391// Emit the code to remove the frame from the stack in the exception
392// unwind path.
393int LIR_Assembler::emit_unwind_handler() {
394#ifndef PRODUCT
395  if (CommentedAssembly) {
396    _masm->block_comment("Unwind handler");
397  }
398#endif
399
400  int offset = code_offset();
401
402  // Fetch the exception from TLS and clear out exception related thread state
403  __ ld_ptr(G2_thread, in_bytes(JavaThread::exception_oop_offset()), O0);
404  __ st_ptr(G0, G2_thread, in_bytes(JavaThread::exception_oop_offset()));
405  __ st_ptr(G0, G2_thread, in_bytes(JavaThread::exception_pc_offset()));
406
407  __ bind(_unwind_handler_entry);
408  __ verify_not_null_oop(O0);
409  if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
410    __ mov(O0, I0);  // Preserve the exception
411  }
412
413  // Preform needed unlocking
414  MonitorExitStub* stub = NULL;
415  if (method()->is_synchronized()) {
416    monitor_address(0, FrameMap::I1_opr);
417    stub = new MonitorExitStub(FrameMap::I1_opr, true, 0);
418    __ unlock_object(I3, I2, I1, *stub->entry());
419    __ bind(*stub->continuation());
420  }
421
422  if (compilation()->env()->dtrace_method_probes()) {
423    jobject2reg(method()->constant_encoding(), O0);
424    __ call(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), relocInfo::runtime_call_type);
425    __ delayed()->nop();
426  }
427
428  if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
429    __ mov(I0, O0);  // Restore the exception
430  }
431
432  // dispatch to the unwind logic
433  __ call(Runtime1::entry_for(Runtime1::unwind_exception_id), relocInfo::runtime_call_type);
434  __ delayed()->nop();
435
436  // Emit the slow path assembly
437  if (stub != NULL) {
438    stub->emit_code(this);
439  }
440
441  return offset;
442}
443
444
445int LIR_Assembler::emit_deopt_handler() {
446  // if the last instruction is a call (typically to do a throw which
447  // is coming at the end after block reordering) the return address
448  // must still point into the code area in order to avoid assertion
449  // failures when searching for the corresponding bci => add a nop
450  // (was bug 5/14/1999 - gri)
451  __ nop();
452
453  // generate code for deopt handler
454  ciMethod* method = compilation()->method();
455  address handler_base = __ start_a_stub(deopt_handler_size);
456  if (handler_base == NULL) {
457    // not enough space left for the handler
458    bailout("deopt handler overflow");
459    return -1;
460  }
461
462  int offset = code_offset();
463  AddressLiteral deopt_blob(SharedRuntime::deopt_blob()->unpack());
464  __ JUMP(deopt_blob, G3_scratch, 0); // sethi;jmp
465  __ delayed()->nop();
466  assert(code_offset() - offset <= deopt_handler_size, "overflow");
467  debug_only(__ stop("should have gone to the caller");)
468  __ end_a_stub();
469
470  return offset;
471}
472
473
474void LIR_Assembler::jobject2reg(jobject o, Register reg) {
475  if (o == NULL) {
476    __ set(NULL_WORD, reg);
477  } else {
478    int oop_index = __ oop_recorder()->find_index(o);
479    RelocationHolder rspec = oop_Relocation::spec(oop_index);
480    __ set(NULL_WORD, reg, rspec); // Will be set when the nmethod is created
481  }
482}
483
484
485void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo *info) {
486  // Allocate a new index in oop table to hold the oop once it's been patched
487  int oop_index = __ oop_recorder()->allocate_index((jobject)NULL);
488  PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id, oop_index);
489
490  AddressLiteral addrlit(NULL, oop_Relocation::spec(oop_index));
491  assert(addrlit.rspec().type() == relocInfo::oop_type, "must be an oop reloc");
492  // It may not seem necessary to use a sethi/add pair to load a NULL into dest, but the
493  // NULL will be dynamically patched later and the patched value may be large.  We must
494  // therefore generate the sethi/add as a placeholders
495  __ patchable_set(addrlit, reg);
496
497  patching_epilog(patch, lir_patch_normal, reg, info);
498}
499
500
501void LIR_Assembler::emit_op3(LIR_Op3* op) {
502  Register Rdividend = op->in_opr1()->as_register();
503  Register Rdivisor  = noreg;
504  Register Rscratch  = op->in_opr3()->as_register();
505  Register Rresult   = op->result_opr()->as_register();
506  int divisor = -1;
507
508  if (op->in_opr2()->is_register()) {
509    Rdivisor = op->in_opr2()->as_register();
510  } else {
511    divisor = op->in_opr2()->as_constant_ptr()->as_jint();
512    assert(Assembler::is_simm13(divisor), "can only handle simm13");
513  }
514
515  assert(Rdividend != Rscratch, "");
516  assert(Rdivisor  != Rscratch, "");
517  assert(op->code() == lir_idiv || op->code() == lir_irem, "Must be irem or idiv");
518
519  if (Rdivisor == noreg && is_power_of_2(divisor)) {
520    // convert division by a power of two into some shifts and logical operations
521    if (op->code() == lir_idiv) {
522      if (divisor == 2) {
523        __ srl(Rdividend, 31, Rscratch);
524      } else {
525        __ sra(Rdividend, 31, Rscratch);
526        __ and3(Rscratch, divisor - 1, Rscratch);
527      }
528      __ add(Rdividend, Rscratch, Rscratch);
529      __ sra(Rscratch, log2_intptr(divisor), Rresult);
530      return;
531    } else {
532      if (divisor == 2) {
533        __ srl(Rdividend, 31, Rscratch);
534      } else {
535        __ sra(Rdividend, 31, Rscratch);
536        __ and3(Rscratch, divisor - 1,Rscratch);
537      }
538      __ add(Rdividend, Rscratch, Rscratch);
539      __ andn(Rscratch, divisor - 1,Rscratch);
540      __ sub(Rdividend, Rscratch, Rresult);
541      return;
542    }
543  }
544
545  __ sra(Rdividend, 31, Rscratch);
546  __ wry(Rscratch);
547  if (!VM_Version::v9_instructions_work()) {
548    // v9 doesn't require these nops
549    __ nop();
550    __ nop();
551    __ nop();
552    __ nop();
553  }
554
555  add_debug_info_for_div0_here(op->info());
556
557  if (Rdivisor != noreg) {
558    __ sdivcc(Rdividend, Rdivisor, (op->code() == lir_idiv ? Rresult : Rscratch));
559  } else {
560    assert(Assembler::is_simm13(divisor), "can only handle simm13");
561    __ sdivcc(Rdividend, divisor, (op->code() == lir_idiv ? Rresult : Rscratch));
562  }
563
564  Label skip;
565  __ br(Assembler::overflowSet, true, Assembler::pn, skip);
566  __ delayed()->Assembler::sethi(0x80000000, (op->code() == lir_idiv ? Rresult : Rscratch));
567  __ bind(skip);
568
569  if (op->code() == lir_irem) {
570    if (Rdivisor != noreg) {
571      __ smul(Rscratch, Rdivisor, Rscratch);
572    } else {
573      __ smul(Rscratch, divisor, Rscratch);
574    }
575    __ sub(Rdividend, Rscratch, Rresult);
576  }
577}
578
579
580void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
581#ifdef ASSERT
582  assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label");
583  if (op->block() != NULL)  _branch_target_blocks.append(op->block());
584  if (op->ublock() != NULL) _branch_target_blocks.append(op->ublock());
585#endif
586  assert(op->info() == NULL, "shouldn't have CodeEmitInfo");
587
588  if (op->cond() == lir_cond_always) {
589    __ br(Assembler::always, false, Assembler::pt, *(op->label()));
590  } else if (op->code() == lir_cond_float_branch) {
591    assert(op->ublock() != NULL, "must have unordered successor");
592    bool is_unordered = (op->ublock() == op->block());
593    Assembler::Condition acond;
594    switch (op->cond()) {
595      case lir_cond_equal:         acond = Assembler::f_equal;    break;
596      case lir_cond_notEqual:      acond = Assembler::f_notEqual; break;
597      case lir_cond_less:          acond = (is_unordered ? Assembler::f_unorderedOrLess          : Assembler::f_less);           break;
598      case lir_cond_greater:       acond = (is_unordered ? Assembler::f_unorderedOrGreater       : Assembler::f_greater);        break;
599      case lir_cond_lessEqual:     acond = (is_unordered ? Assembler::f_unorderedOrLessOrEqual   : Assembler::f_lessOrEqual);    break;
600      case lir_cond_greaterEqual:  acond = (is_unordered ? Assembler::f_unorderedOrGreaterOrEqual: Assembler::f_greaterOrEqual); break;
601      default :                         ShouldNotReachHere();
602    };
603
604    if (!VM_Version::v9_instructions_work()) {
605      __ nop();
606    }
607    __ fb( acond, false, Assembler::pn, *(op->label()));
608  } else {
609    assert (op->code() == lir_branch, "just checking");
610
611    Assembler::Condition acond;
612    switch (op->cond()) {
613      case lir_cond_equal:        acond = Assembler::equal;                break;
614      case lir_cond_notEqual:     acond = Assembler::notEqual;             break;
615      case lir_cond_less:         acond = Assembler::less;                 break;
616      case lir_cond_lessEqual:    acond = Assembler::lessEqual;            break;
617      case lir_cond_greaterEqual: acond = Assembler::greaterEqual;         break;
618      case lir_cond_greater:      acond = Assembler::greater;              break;
619      case lir_cond_aboveEqual:   acond = Assembler::greaterEqualUnsigned; break;
620      case lir_cond_belowEqual:   acond = Assembler::lessEqualUnsigned;    break;
621      default:                         ShouldNotReachHere();
622    };
623
624    // sparc has different condition codes for testing 32-bit
625    // vs. 64-bit values.  We could always test xcc is we could
626    // guarantee that 32-bit loads always sign extended but that isn't
627    // true and since sign extension isn't free, it would impose a
628    // slight cost.
629#ifdef _LP64
630    if  (op->type() == T_INT) {
631      __ br(acond, false, Assembler::pn, *(op->label()));
632    } else
633#endif
634      __ brx(acond, false, Assembler::pn, *(op->label()));
635  }
636  // The peephole pass fills the delay slot
637}
638
639
640void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
641  Bytecodes::Code code = op->bytecode();
642  LIR_Opr dst = op->result_opr();
643
644  switch(code) {
645    case Bytecodes::_i2l: {
646      Register rlo  = dst->as_register_lo();
647      Register rhi  = dst->as_register_hi();
648      Register rval = op->in_opr()->as_register();
649#ifdef _LP64
650      __ sra(rval, 0, rlo);
651#else
652      __ mov(rval, rlo);
653      __ sra(rval, BitsPerInt-1, rhi);
654#endif
655      break;
656    }
657    case Bytecodes::_i2d:
658    case Bytecodes::_i2f: {
659      bool is_double = (code == Bytecodes::_i2d);
660      FloatRegister rdst = is_double ? dst->as_double_reg() : dst->as_float_reg();
661      FloatRegisterImpl::Width w = is_double ? FloatRegisterImpl::D : FloatRegisterImpl::S;
662      FloatRegister rsrc = op->in_opr()->as_float_reg();
663      if (rsrc != rdst) {
664        __ fmov(FloatRegisterImpl::S, rsrc, rdst);
665      }
666      __ fitof(w, rdst, rdst);
667      break;
668    }
669    case Bytecodes::_f2i:{
670      FloatRegister rsrc = op->in_opr()->as_float_reg();
671      Address       addr = frame_map()->address_for_slot(dst->single_stack_ix());
672      Label L;
673      // result must be 0 if value is NaN; test by comparing value to itself
674      __ fcmp(FloatRegisterImpl::S, Assembler::fcc0, rsrc, rsrc);
675      if (!VM_Version::v9_instructions_work()) {
676        __ nop();
677      }
678      __ fb(Assembler::f_unordered, true, Assembler::pn, L);
679      __ delayed()->st(G0, addr); // annuled if contents of rsrc is not NaN
680      __ ftoi(FloatRegisterImpl::S, rsrc, rsrc);
681      // move integer result from float register to int register
682      __ stf(FloatRegisterImpl::S, rsrc, addr.base(), addr.disp());
683      __ bind (L);
684      break;
685    }
686    case Bytecodes::_l2i: {
687      Register rlo  = op->in_opr()->as_register_lo();
688      Register rhi  = op->in_opr()->as_register_hi();
689      Register rdst = dst->as_register();
690#ifdef _LP64
691      __ sra(rlo, 0, rdst);
692#else
693      __ mov(rlo, rdst);
694#endif
695      break;
696    }
697    case Bytecodes::_d2f:
698    case Bytecodes::_f2d: {
699      bool is_double = (code == Bytecodes::_f2d);
700      assert((!is_double && dst->is_single_fpu()) || (is_double && dst->is_double_fpu()), "check");
701      LIR_Opr val = op->in_opr();
702      FloatRegister rval = (code == Bytecodes::_d2f) ? val->as_double_reg() : val->as_float_reg();
703      FloatRegister rdst = is_double ? dst->as_double_reg() : dst->as_float_reg();
704      FloatRegisterImpl::Width vw = is_double ? FloatRegisterImpl::S : FloatRegisterImpl::D;
705      FloatRegisterImpl::Width dw = is_double ? FloatRegisterImpl::D : FloatRegisterImpl::S;
706      __ ftof(vw, dw, rval, rdst);
707      break;
708    }
709    case Bytecodes::_i2s:
710    case Bytecodes::_i2b: {
711      Register rval = op->in_opr()->as_register();
712      Register rdst = dst->as_register();
713      int shift = (code == Bytecodes::_i2b) ? (BitsPerInt - T_BYTE_aelem_bytes * BitsPerByte) : (BitsPerInt - BitsPerShort);
714      __ sll (rval, shift, rdst);
715      __ sra (rdst, shift, rdst);
716      break;
717    }
718    case Bytecodes::_i2c: {
719      Register rval = op->in_opr()->as_register();
720      Register rdst = dst->as_register();
721      int shift = BitsPerInt - T_CHAR_aelem_bytes * BitsPerByte;
722      __ sll (rval, shift, rdst);
723      __ srl (rdst, shift, rdst);
724      break;
725    }
726
727    default: ShouldNotReachHere();
728  }
729}
730
731
732void LIR_Assembler::align_call(LIR_Code) {
733  // do nothing since all instructions are word aligned on sparc
734}
735
736
737void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) {
738  __ call(op->addr(), rtype);
739  // The peephole pass fills the delay slot, add_call_info is done in
740  // LIR_Assembler::emit_delay.
741}
742
743
744void LIR_Assembler::ic_call(LIR_OpJavaCall* op) {
745  RelocationHolder rspec = virtual_call_Relocation::spec(pc());
746  __ set_oop((jobject)Universe::non_oop_word(), G5_inline_cache_reg);
747  __ relocate(rspec);
748  __ call(op->addr(), relocInfo::none);
749  // The peephole pass fills the delay slot, add_call_info is done in
750  // LIR_Assembler::emit_delay.
751}
752
753
754void LIR_Assembler::vtable_call(LIR_OpJavaCall* op) {
755  add_debug_info_for_null_check_here(op->info());
756  __ ld_ptr(O0, oopDesc::klass_offset_in_bytes(), G3_scratch);
757  if (__ is_simm13(op->vtable_offset())) {
758    __ ld_ptr(G3_scratch, op->vtable_offset(), G5_method);
759  } else {
760    // This will generate 2 instructions
761    __ set(op->vtable_offset(), G5_method);
762    // ld_ptr, set_hi, set
763    __ ld_ptr(G3_scratch, G5_method, G5_method);
764  }
765  __ ld_ptr(G5_method, methodOopDesc::from_compiled_offset(), G3_scratch);
766  __ callr(G3_scratch, G0);
767  // the peephole pass fills the delay slot
768}
769
770
771// load with 32-bit displacement
772int LIR_Assembler::load(Register s, int disp, Register d, BasicType ld_type, CodeEmitInfo *info) {
773  int load_offset = code_offset();
774  if (Assembler::is_simm13(disp)) {
775    if (info != NULL) add_debug_info_for_null_check_here(info);
776    switch(ld_type) {
777      case T_BOOLEAN: // fall through
778      case T_BYTE  : __ ldsb(s, disp, d); break;
779      case T_CHAR  : __ lduh(s, disp, d); break;
780      case T_SHORT : __ ldsh(s, disp, d); break;
781      case T_INT   : __ ld(s, disp, d); break;
782      case T_ADDRESS:// fall through
783      case T_ARRAY : // fall through
784      case T_OBJECT: __ ld_ptr(s, disp, d); break;
785      default      : ShouldNotReachHere();
786    }
787  } else {
788    __ set(disp, O7);
789    if (info != NULL) add_debug_info_for_null_check_here(info);
790    load_offset = code_offset();
791    switch(ld_type) {
792      case T_BOOLEAN: // fall through
793      case T_BYTE  : __ ldsb(s, O7, d); break;
794      case T_CHAR  : __ lduh(s, O7, d); break;
795      case T_SHORT : __ ldsh(s, O7, d); break;
796      case T_INT   : __ ld(s, O7, d); break;
797      case T_ADDRESS:// fall through
798      case T_ARRAY : // fall through
799      case T_OBJECT: __ ld_ptr(s, O7, d); break;
800      default      : ShouldNotReachHere();
801    }
802  }
803  if (ld_type == T_ARRAY || ld_type == T_OBJECT) __ verify_oop(d);
804  return load_offset;
805}
806
807
808// store with 32-bit displacement
809void LIR_Assembler::store(Register value, Register base, int offset, BasicType type, CodeEmitInfo *info) {
810  if (Assembler::is_simm13(offset)) {
811    if (info != NULL)  add_debug_info_for_null_check_here(info);
812    switch (type) {
813      case T_BOOLEAN: // fall through
814      case T_BYTE  : __ stb(value, base, offset); break;
815      case T_CHAR  : __ sth(value, base, offset); break;
816      case T_SHORT : __ sth(value, base, offset); break;
817      case T_INT   : __ stw(value, base, offset); break;
818      case T_ADDRESS:// fall through
819      case T_ARRAY : // fall through
820      case T_OBJECT: __ st_ptr(value, base, offset); break;
821      default      : ShouldNotReachHere();
822    }
823  } else {
824    __ set(offset, O7);
825    if (info != NULL) add_debug_info_for_null_check_here(info);
826    switch (type) {
827      case T_BOOLEAN: // fall through
828      case T_BYTE  : __ stb(value, base, O7); break;
829      case T_CHAR  : __ sth(value, base, O7); break;
830      case T_SHORT : __ sth(value, base, O7); break;
831      case T_INT   : __ stw(value, base, O7); break;
832      case T_ADDRESS:// fall through
833      case T_ARRAY : //fall through
834      case T_OBJECT: __ st_ptr(value, base, O7); break;
835      default      : ShouldNotReachHere();
836    }
837  }
838  // Note: Do the store before verification as the code might be patched!
839  if (type == T_ARRAY || type == T_OBJECT) __ verify_oop(value);
840}
841
842
843// load float with 32-bit displacement
844void LIR_Assembler::load(Register s, int disp, FloatRegister d, BasicType ld_type, CodeEmitInfo *info) {
845  FloatRegisterImpl::Width w;
846  switch(ld_type) {
847    case T_FLOAT : w = FloatRegisterImpl::S; break;
848    case T_DOUBLE: w = FloatRegisterImpl::D; break;
849    default      : ShouldNotReachHere();
850  }
851
852  if (Assembler::is_simm13(disp)) {
853    if (info != NULL) add_debug_info_for_null_check_here(info);
854    if (disp % BytesPerLong != 0 && w == FloatRegisterImpl::D) {
855      __ ldf(FloatRegisterImpl::S, s, disp + BytesPerWord, d->successor());
856      __ ldf(FloatRegisterImpl::S, s, disp               , d);
857    } else {
858      __ ldf(w, s, disp, d);
859    }
860  } else {
861    __ set(disp, O7);
862    if (info != NULL) add_debug_info_for_null_check_here(info);
863    __ ldf(w, s, O7, d);
864  }
865}
866
867
868// store float with 32-bit displacement
869void LIR_Assembler::store(FloatRegister value, Register base, int offset, BasicType type, CodeEmitInfo *info) {
870  FloatRegisterImpl::Width w;
871  switch(type) {
872    case T_FLOAT : w = FloatRegisterImpl::S; break;
873    case T_DOUBLE: w = FloatRegisterImpl::D; break;
874    default      : ShouldNotReachHere();
875  }
876
877  if (Assembler::is_simm13(offset)) {
878    if (info != NULL) add_debug_info_for_null_check_here(info);
879    if (w == FloatRegisterImpl::D && offset % BytesPerLong != 0) {
880      __ stf(FloatRegisterImpl::S, value->successor(), base, offset + BytesPerWord);
881      __ stf(FloatRegisterImpl::S, value             , base, offset);
882    } else {
883      __ stf(w, value, base, offset);
884    }
885  } else {
886    __ set(offset, O7);
887    if (info != NULL) add_debug_info_for_null_check_here(info);
888    __ stf(w, value, O7, base);
889  }
890}
891
892
893int LIR_Assembler::store(LIR_Opr from_reg, Register base, int offset, BasicType type, bool unaligned) {
894  int store_offset;
895  if (!Assembler::is_simm13(offset + (type == T_LONG) ? wordSize : 0)) {
896    assert(!unaligned, "can't handle this");
897    // for offsets larger than a simm13 we setup the offset in O7
898    __ set(offset, O7);
899    store_offset = store(from_reg, base, O7, type);
900  } else {
901    if (type == T_ARRAY || type == T_OBJECT) __ verify_oop(from_reg->as_register());
902    store_offset = code_offset();
903    switch (type) {
904      case T_BOOLEAN: // fall through
905      case T_BYTE  : __ stb(from_reg->as_register(), base, offset); break;
906      case T_CHAR  : __ sth(from_reg->as_register(), base, offset); break;
907      case T_SHORT : __ sth(from_reg->as_register(), base, offset); break;
908      case T_INT   : __ stw(from_reg->as_register(), base, offset); break;
909      case T_LONG  :
910#ifdef _LP64
911        if (unaligned || PatchALot) {
912          __ srax(from_reg->as_register_lo(), 32, O7);
913          __ stw(from_reg->as_register_lo(), base, offset + lo_word_offset_in_bytes);
914          __ stw(O7,                         base, offset + hi_word_offset_in_bytes);
915        } else {
916          __ stx(from_reg->as_register_lo(), base, offset);
917        }
918#else
919        assert(Assembler::is_simm13(offset + 4), "must be");
920        __ stw(from_reg->as_register_lo(), base, offset + lo_word_offset_in_bytes);
921        __ stw(from_reg->as_register_hi(), base, offset + hi_word_offset_in_bytes);
922#endif
923        break;
924      case T_ADDRESS:// fall through
925      case T_ARRAY : // fall through
926      case T_OBJECT: __ st_ptr(from_reg->as_register(), base, offset); break;
927      case T_FLOAT : __ stf(FloatRegisterImpl::S, from_reg->as_float_reg(), base, offset); break;
928      case T_DOUBLE:
929        {
930          FloatRegister reg = from_reg->as_double_reg();
931          // split unaligned stores
932          if (unaligned || PatchALot) {
933            assert(Assembler::is_simm13(offset + 4), "must be");
934            __ stf(FloatRegisterImpl::S, reg->successor(), base, offset + 4);
935            __ stf(FloatRegisterImpl::S, reg,              base, offset);
936          } else {
937            __ stf(FloatRegisterImpl::D, reg, base, offset);
938          }
939          break;
940        }
941      default      : ShouldNotReachHere();
942    }
943  }
944  return store_offset;
945}
946
947
948int LIR_Assembler::store(LIR_Opr from_reg, Register base, Register disp, BasicType type) {
949  if (type == T_ARRAY || type == T_OBJECT) __ verify_oop(from_reg->as_register());
950  int store_offset = code_offset();
951  switch (type) {
952    case T_BOOLEAN: // fall through
953    case T_BYTE  : __ stb(from_reg->as_register(), base, disp); break;
954    case T_CHAR  : __ sth(from_reg->as_register(), base, disp); break;
955    case T_SHORT : __ sth(from_reg->as_register(), base, disp); break;
956    case T_INT   : __ stw(from_reg->as_register(), base, disp); break;
957    case T_LONG  :
958#ifdef _LP64
959      __ stx(from_reg->as_register_lo(), base, disp);
960#else
961      assert(from_reg->as_register_hi()->successor() == from_reg->as_register_lo(), "must match");
962      __ std(from_reg->as_register_hi(), base, disp);
963#endif
964      break;
965    case T_ADDRESS:// fall through
966    case T_ARRAY : // fall through
967    case T_OBJECT: __ st_ptr(from_reg->as_register(), base, disp); break;
968    case T_FLOAT : __ stf(FloatRegisterImpl::S, from_reg->as_float_reg(), base, disp); break;
969    case T_DOUBLE: __ stf(FloatRegisterImpl::D, from_reg->as_double_reg(), base, disp); break;
970    default      : ShouldNotReachHere();
971  }
972  return store_offset;
973}
974
975
976int LIR_Assembler::load(Register base, int offset, LIR_Opr to_reg, BasicType type, bool unaligned) {
977  int load_offset;
978  if (!Assembler::is_simm13(offset + (type == T_LONG) ? wordSize : 0)) {
979    assert(base != O7, "destroying register");
980    assert(!unaligned, "can't handle this");
981    // for offsets larger than a simm13 we setup the offset in O7
982    __ set(offset, O7);
983    load_offset = load(base, O7, to_reg, type);
984  } else {
985    load_offset = code_offset();
986    switch(type) {
987      case T_BOOLEAN: // fall through
988      case T_BYTE  : __ ldsb(base, offset, to_reg->as_register()); break;
989      case T_CHAR  : __ lduh(base, offset, to_reg->as_register()); break;
990      case T_SHORT : __ ldsh(base, offset, to_reg->as_register()); break;
991      case T_INT   : __ ld(base, offset, to_reg->as_register()); break;
992      case T_LONG  :
993        if (!unaligned) {
994#ifdef _LP64
995          __ ldx(base, offset, to_reg->as_register_lo());
996#else
997          assert(to_reg->as_register_hi()->successor() == to_reg->as_register_lo(),
998                 "must be sequential");
999          __ ldd(base, offset, to_reg->as_register_hi());
1000#endif
1001        } else {
1002#ifdef _LP64
1003          assert(base != to_reg->as_register_lo(), "can't handle this");
1004          assert(O7 != to_reg->as_register_lo(), "can't handle this");
1005          __ ld(base, offset + hi_word_offset_in_bytes, to_reg->as_register_lo());
1006          __ lduw(base, offset + lo_word_offset_in_bytes, O7); // in case O7 is base or offset, use it last
1007          __ sllx(to_reg->as_register_lo(), 32, to_reg->as_register_lo());
1008          __ or3(to_reg->as_register_lo(), O7, to_reg->as_register_lo());
1009#else
1010          if (base == to_reg->as_register_lo()) {
1011            __ ld(base, offset + hi_word_offset_in_bytes, to_reg->as_register_hi());
1012            __ ld(base, offset + lo_word_offset_in_bytes, to_reg->as_register_lo());
1013          } else {
1014            __ ld(base, offset + lo_word_offset_in_bytes, to_reg->as_register_lo());
1015            __ ld(base, offset + hi_word_offset_in_bytes, to_reg->as_register_hi());
1016          }
1017#endif
1018        }
1019        break;
1020      case T_ADDRESS:// fall through
1021      case T_ARRAY : // fall through
1022      case T_OBJECT: __ ld_ptr(base, offset, to_reg->as_register()); break;
1023      case T_FLOAT:  __ ldf(FloatRegisterImpl::S, base, offset, to_reg->as_float_reg()); break;
1024      case T_DOUBLE:
1025        {
1026          FloatRegister reg = to_reg->as_double_reg();
1027          // split unaligned loads
1028          if (unaligned || PatchALot) {
1029            __ ldf(FloatRegisterImpl::S, base, offset + 4, reg->successor());
1030            __ ldf(FloatRegisterImpl::S, base, offset,     reg);
1031          } else {
1032            __ ldf(FloatRegisterImpl::D, base, offset, to_reg->as_double_reg());
1033          }
1034          break;
1035        }
1036      default      : ShouldNotReachHere();
1037    }
1038    if (type == T_ARRAY || type == T_OBJECT) __ verify_oop(to_reg->as_register());
1039  }
1040  return load_offset;
1041}
1042
1043
1044int LIR_Assembler::load(Register base, Register disp, LIR_Opr to_reg, BasicType type) {
1045  int load_offset = code_offset();
1046  switch(type) {
1047    case T_BOOLEAN: // fall through
1048    case T_BYTE  : __ ldsb(base, disp, to_reg->as_register()); break;
1049    case T_CHAR  : __ lduh(base, disp, to_reg->as_register()); break;
1050    case T_SHORT : __ ldsh(base, disp, to_reg->as_register()); break;
1051    case T_INT   : __ ld(base, disp, to_reg->as_register()); break;
1052    case T_ADDRESS:// fall through
1053    case T_ARRAY : // fall through
1054    case T_OBJECT: __ ld_ptr(base, disp, to_reg->as_register()); break;
1055    case T_FLOAT:  __ ldf(FloatRegisterImpl::S, base, disp, to_reg->as_float_reg()); break;
1056    case T_DOUBLE: __ ldf(FloatRegisterImpl::D, base, disp, to_reg->as_double_reg()); break;
1057    case T_LONG  :
1058#ifdef _LP64
1059      __ ldx(base, disp, to_reg->as_register_lo());
1060#else
1061      assert(to_reg->as_register_hi()->successor() == to_reg->as_register_lo(),
1062             "must be sequential");
1063      __ ldd(base, disp, to_reg->as_register_hi());
1064#endif
1065      break;
1066    default      : ShouldNotReachHere();
1067  }
1068  if (type == T_ARRAY || type == T_OBJECT) __ verify_oop(to_reg->as_register());
1069  return load_offset;
1070}
1071
1072
1073// load/store with an Address
1074void LIR_Assembler::load(const Address& a, Register d,  BasicType ld_type, CodeEmitInfo *info, int offset) {
1075  load(a.base(), a.disp() + offset, d, ld_type, info);
1076}
1077
1078
1079void LIR_Assembler::store(Register value, const Address& dest, BasicType type, CodeEmitInfo *info, int offset) {
1080  store(value, dest.base(), dest.disp() + offset, type, info);
1081}
1082
1083
1084// loadf/storef with an Address
1085void LIR_Assembler::load(const Address& a, FloatRegister d, BasicType ld_type, CodeEmitInfo *info, int offset) {
1086  load(a.base(), a.disp() + offset, d, ld_type, info);
1087}
1088
1089
1090void LIR_Assembler::store(FloatRegister value, const Address& dest, BasicType type, CodeEmitInfo *info, int offset) {
1091  store(value, dest.base(), dest.disp() + offset, type, info);
1092}
1093
1094
1095// load/store with an Address
1096void LIR_Assembler::load(LIR_Address* a, Register d,  BasicType ld_type, CodeEmitInfo *info) {
1097  load(as_Address(a), d, ld_type, info);
1098}
1099
1100
1101void LIR_Assembler::store(Register value, LIR_Address* dest, BasicType type, CodeEmitInfo *info) {
1102  store(value, as_Address(dest), type, info);
1103}
1104
1105
1106// loadf/storef with an Address
1107void LIR_Assembler::load(LIR_Address* a, FloatRegister d, BasicType ld_type, CodeEmitInfo *info) {
1108  load(as_Address(a), d, ld_type, info);
1109}
1110
1111
1112void LIR_Assembler::store(FloatRegister value, LIR_Address* dest, BasicType type, CodeEmitInfo *info) {
1113  store(value, as_Address(dest), type, info);
1114}
1115
1116
1117void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
1118  LIR_Const* c = src->as_constant_ptr();
1119  switch (c->type()) {
1120    case T_INT:
1121    case T_FLOAT:
1122    case T_ADDRESS: {
1123      Register src_reg = O7;
1124      int value = c->as_jint_bits();
1125      if (value == 0) {
1126        src_reg = G0;
1127      } else {
1128        __ set(value, O7);
1129      }
1130      Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
1131      __ stw(src_reg, addr.base(), addr.disp());
1132      break;
1133    }
1134    case T_OBJECT: {
1135      Register src_reg = O7;
1136      jobject2reg(c->as_jobject(), src_reg);
1137      Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
1138      __ st_ptr(src_reg, addr.base(), addr.disp());
1139      break;
1140    }
1141    case T_LONG:
1142    case T_DOUBLE: {
1143      Address addr = frame_map()->address_for_double_slot(dest->double_stack_ix());
1144
1145      Register tmp = O7;
1146      int value_lo = c->as_jint_lo_bits();
1147      if (value_lo == 0) {
1148        tmp = G0;
1149      } else {
1150        __ set(value_lo, O7);
1151      }
1152      __ stw(tmp, addr.base(), addr.disp() + lo_word_offset_in_bytes);
1153      int value_hi = c->as_jint_hi_bits();
1154      if (value_hi == 0) {
1155        tmp = G0;
1156      } else {
1157        __ set(value_hi, O7);
1158      }
1159      __ stw(tmp, addr.base(), addr.disp() + hi_word_offset_in_bytes);
1160      break;
1161    }
1162    default:
1163      Unimplemented();
1164  }
1165}
1166
1167
1168void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info ) {
1169  LIR_Const* c = src->as_constant_ptr();
1170  LIR_Address* addr     = dest->as_address_ptr();
1171  Register base = addr->base()->as_pointer_register();
1172
1173  if (info != NULL) {
1174    add_debug_info_for_null_check_here(info);
1175  }
1176  switch (c->type()) {
1177    case T_INT:
1178    case T_FLOAT:
1179    case T_ADDRESS: {
1180      LIR_Opr tmp = FrameMap::O7_opr;
1181      int value = c->as_jint_bits();
1182      if (value == 0) {
1183        tmp = FrameMap::G0_opr;
1184      } else if (Assembler::is_simm13(value)) {
1185        __ set(value, O7);
1186      }
1187      if (addr->index()->is_valid()) {
1188        assert(addr->disp() == 0, "must be zero");
1189        store(tmp, base, addr->index()->as_pointer_register(), type);
1190      } else {
1191        assert(Assembler::is_simm13(addr->disp()), "can't handle larger addresses");
1192        store(tmp, base, addr->disp(), type);
1193      }
1194      break;
1195    }
1196    case T_LONG:
1197    case T_DOUBLE: {
1198      assert(!addr->index()->is_valid(), "can't handle reg reg address here");
1199      assert(Assembler::is_simm13(addr->disp()) &&
1200             Assembler::is_simm13(addr->disp() + 4), "can't handle larger addresses");
1201
1202      Register tmp = O7;
1203      int value_lo = c->as_jint_lo_bits();
1204      if (value_lo == 0) {
1205        tmp = G0;
1206      } else {
1207        __ set(value_lo, O7);
1208      }
1209      store(tmp, base, addr->disp() + lo_word_offset_in_bytes, T_INT);
1210      int value_hi = c->as_jint_hi_bits();
1211      if (value_hi == 0) {
1212        tmp = G0;
1213      } else {
1214        __ set(value_hi, O7);
1215      }
1216      store(tmp, base, addr->disp() + hi_word_offset_in_bytes, T_INT);
1217      break;
1218    }
1219    case T_OBJECT: {
1220      jobject obj = c->as_jobject();
1221      LIR_Opr tmp;
1222      if (obj == NULL) {
1223        tmp = FrameMap::G0_opr;
1224      } else {
1225        tmp = FrameMap::O7_opr;
1226        jobject2reg(c->as_jobject(), O7);
1227      }
1228      // handle either reg+reg or reg+disp address
1229      if (addr->index()->is_valid()) {
1230        assert(addr->disp() == 0, "must be zero");
1231        store(tmp, base, addr->index()->as_pointer_register(), type);
1232      } else {
1233        assert(Assembler::is_simm13(addr->disp()), "can't handle larger addresses");
1234        store(tmp, base, addr->disp(), type);
1235      }
1236
1237      break;
1238    }
1239    default:
1240      Unimplemented();
1241  }
1242}
1243
1244
1245void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
1246  LIR_Const* c = src->as_constant_ptr();
1247  LIR_Opr to_reg = dest;
1248
1249  switch (c->type()) {
1250    case T_INT:
1251    case T_ADDRESS:
1252      {
1253        jint con = c->as_jint();
1254        if (to_reg->is_single_cpu()) {
1255          assert(patch_code == lir_patch_none, "no patching handled here");
1256          __ set(con, to_reg->as_register());
1257        } else {
1258          ShouldNotReachHere();
1259          assert(to_reg->is_single_fpu(), "wrong register kind");
1260
1261          __ set(con, O7);
1262          Address temp_slot(SP, (frame::register_save_words * wordSize) + STACK_BIAS);
1263          __ st(O7, temp_slot);
1264          __ ldf(FloatRegisterImpl::S, temp_slot, to_reg->as_float_reg());
1265        }
1266      }
1267      break;
1268
1269    case T_LONG:
1270      {
1271        jlong con = c->as_jlong();
1272
1273        if (to_reg->is_double_cpu()) {
1274#ifdef _LP64
1275          __ set(con,  to_reg->as_register_lo());
1276#else
1277          __ set(low(con),  to_reg->as_register_lo());
1278          __ set(high(con), to_reg->as_register_hi());
1279#endif
1280#ifdef _LP64
1281        } else if (to_reg->is_single_cpu()) {
1282          __ set(con, to_reg->as_register());
1283#endif
1284        } else {
1285          ShouldNotReachHere();
1286          assert(to_reg->is_double_fpu(), "wrong register kind");
1287          Address temp_slot_lo(SP, ((frame::register_save_words  ) * wordSize) + STACK_BIAS);
1288          Address temp_slot_hi(SP, ((frame::register_save_words) * wordSize) + (longSize/2) + STACK_BIAS);
1289          __ set(low(con),  O7);
1290          __ st(O7, temp_slot_lo);
1291          __ set(high(con), O7);
1292          __ st(O7, temp_slot_hi);
1293          __ ldf(FloatRegisterImpl::D, temp_slot_lo, to_reg->as_double_reg());
1294        }
1295      }
1296      break;
1297
1298    case T_OBJECT:
1299      {
1300        if (patch_code == lir_patch_none) {
1301          jobject2reg(c->as_jobject(), to_reg->as_register());
1302        } else {
1303          jobject2reg_with_patching(to_reg->as_register(), info);
1304        }
1305      }
1306      break;
1307
1308    case T_FLOAT:
1309      {
1310        address const_addr = __ float_constant(c->as_jfloat());
1311        if (const_addr == NULL) {
1312          bailout("const section overflow");
1313          break;
1314        }
1315        RelocationHolder rspec = internal_word_Relocation::spec(const_addr);
1316        AddressLiteral const_addrlit(const_addr, rspec);
1317        if (to_reg->is_single_fpu()) {
1318          __ patchable_sethi(const_addrlit, O7);
1319          __ relocate(rspec);
1320          __ ldf(FloatRegisterImpl::S, O7, const_addrlit.low10(), to_reg->as_float_reg());
1321
1322        } else {
1323          assert(to_reg->is_single_cpu(), "Must be a cpu register.");
1324
1325          __ set(const_addrlit, O7);
1326          load(O7, 0, to_reg->as_register(), T_INT);
1327        }
1328      }
1329      break;
1330
1331    case T_DOUBLE:
1332      {
1333        address const_addr = __ double_constant(c->as_jdouble());
1334        if (const_addr == NULL) {
1335          bailout("const section overflow");
1336          break;
1337        }
1338        RelocationHolder rspec = internal_word_Relocation::spec(const_addr);
1339
1340        if (to_reg->is_double_fpu()) {
1341          AddressLiteral const_addrlit(const_addr, rspec);
1342          __ patchable_sethi(const_addrlit, O7);
1343          __ relocate(rspec);
1344          __ ldf (FloatRegisterImpl::D, O7, const_addrlit.low10(), to_reg->as_double_reg());
1345        } else {
1346          assert(to_reg->is_double_cpu(), "Must be a long register.");
1347#ifdef _LP64
1348          __ set(jlong_cast(c->as_jdouble()), to_reg->as_register_lo());
1349#else
1350          __ set(low(jlong_cast(c->as_jdouble())), to_reg->as_register_lo());
1351          __ set(high(jlong_cast(c->as_jdouble())), to_reg->as_register_hi());
1352#endif
1353        }
1354
1355      }
1356      break;
1357
1358    default:
1359      ShouldNotReachHere();
1360  }
1361}
1362
1363Address LIR_Assembler::as_Address(LIR_Address* addr) {
1364  Register reg = addr->base()->as_register();
1365  return Address(reg, addr->disp());
1366}
1367
1368
1369void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
1370  switch (type) {
1371    case T_INT:
1372    case T_FLOAT: {
1373      Register tmp = O7;
1374      Address from = frame_map()->address_for_slot(src->single_stack_ix());
1375      Address to   = frame_map()->address_for_slot(dest->single_stack_ix());
1376      __ lduw(from.base(), from.disp(), tmp);
1377      __ stw(tmp, to.base(), to.disp());
1378      break;
1379    }
1380    case T_OBJECT: {
1381      Register tmp = O7;
1382      Address from = frame_map()->address_for_slot(src->single_stack_ix());
1383      Address to   = frame_map()->address_for_slot(dest->single_stack_ix());
1384      __ ld_ptr(from.base(), from.disp(), tmp);
1385      __ st_ptr(tmp, to.base(), to.disp());
1386      break;
1387    }
1388    case T_LONG:
1389    case T_DOUBLE: {
1390      Register tmp = O7;
1391      Address from = frame_map()->address_for_double_slot(src->double_stack_ix());
1392      Address to   = frame_map()->address_for_double_slot(dest->double_stack_ix());
1393      __ lduw(from.base(), from.disp(), tmp);
1394      __ stw(tmp, to.base(), to.disp());
1395      __ lduw(from.base(), from.disp() + 4, tmp);
1396      __ stw(tmp, to.base(), to.disp() + 4);
1397      break;
1398    }
1399
1400    default:
1401      ShouldNotReachHere();
1402  }
1403}
1404
1405
1406Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
1407  Address base = as_Address(addr);
1408  return Address(base.base(), base.disp() + hi_word_offset_in_bytes);
1409}
1410
1411
1412Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
1413  Address base = as_Address(addr);
1414  return Address(base.base(), base.disp() + lo_word_offset_in_bytes);
1415}
1416
1417
1418void LIR_Assembler::mem2reg(LIR_Opr src_opr, LIR_Opr dest, BasicType type,
1419                            LIR_PatchCode patch_code, CodeEmitInfo* info, bool unaligned) {
1420
1421  LIR_Address* addr = src_opr->as_address_ptr();
1422  LIR_Opr to_reg = dest;
1423
1424  Register src = addr->base()->as_pointer_register();
1425  Register disp_reg = noreg;
1426  int disp_value = addr->disp();
1427  bool needs_patching = (patch_code != lir_patch_none);
1428
1429  if (addr->base()->type() == T_OBJECT) {
1430    __ verify_oop(src);
1431  }
1432
1433  PatchingStub* patch = NULL;
1434  if (needs_patching) {
1435    patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1436    assert(!to_reg->is_double_cpu() ||
1437           patch_code == lir_patch_none ||
1438           patch_code == lir_patch_normal, "patching doesn't match register");
1439  }
1440
1441  if (addr->index()->is_illegal()) {
1442    if (!Assembler::is_simm13(disp_value) && (!unaligned || Assembler::is_simm13(disp_value + 4))) {
1443      if (needs_patching) {
1444        __ patchable_set(0, O7);
1445      } else {
1446        __ set(disp_value, O7);
1447      }
1448      disp_reg = O7;
1449    }
1450  } else if (unaligned || PatchALot) {
1451    __ add(src, addr->index()->as_register(), O7);
1452    src = O7;
1453  } else {
1454    disp_reg = addr->index()->as_pointer_register();
1455    assert(disp_value == 0, "can't handle 3 operand addresses");
1456  }
1457
1458  // remember the offset of the load.  The patching_epilog must be done
1459  // before the call to add_debug_info, otherwise the PcDescs don't get
1460  // entered in increasing order.
1461  int offset = code_offset();
1462
1463  assert(disp_reg != noreg || Assembler::is_simm13(disp_value), "should have set this up");
1464  if (disp_reg == noreg) {
1465    offset = load(src, disp_value, to_reg, type, unaligned);
1466  } else {
1467    assert(!unaligned, "can't handle this");
1468    offset = load(src, disp_reg, to_reg, type);
1469  }
1470
1471  if (patch != NULL) {
1472    patching_epilog(patch, patch_code, src, info);
1473  }
1474
1475  if (info != NULL) add_debug_info_for_null_check(offset, info);
1476}
1477
1478
1479void LIR_Assembler::prefetchr(LIR_Opr src) {
1480  LIR_Address* addr = src->as_address_ptr();
1481  Address from_addr = as_Address(addr);
1482
1483  if (VM_Version::has_v9()) {
1484    __ prefetch(from_addr, Assembler::severalReads);
1485  }
1486}
1487
1488
1489void LIR_Assembler::prefetchw(LIR_Opr src) {
1490  LIR_Address* addr = src->as_address_ptr();
1491  Address from_addr = as_Address(addr);
1492
1493  if (VM_Version::has_v9()) {
1494    __ prefetch(from_addr, Assembler::severalWritesAndPossiblyReads);
1495  }
1496}
1497
1498
1499void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
1500  Address addr;
1501  if (src->is_single_word()) {
1502    addr = frame_map()->address_for_slot(src->single_stack_ix());
1503  } else if (src->is_double_word())  {
1504    addr = frame_map()->address_for_double_slot(src->double_stack_ix());
1505  }
1506
1507  bool unaligned = (addr.disp() - STACK_BIAS) % 8 != 0;
1508  load(addr.base(), addr.disp(), dest, dest->type(), unaligned);
1509}
1510
1511
1512void LIR_Assembler::reg2stack(LIR_Opr from_reg, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
1513  Address addr;
1514  if (dest->is_single_word()) {
1515    addr = frame_map()->address_for_slot(dest->single_stack_ix());
1516  } else if (dest->is_double_word())  {
1517    addr = frame_map()->address_for_slot(dest->double_stack_ix());
1518  }
1519  bool unaligned = (addr.disp() - STACK_BIAS) % 8 != 0;
1520  store(from_reg, addr.base(), addr.disp(), from_reg->type(), unaligned);
1521}
1522
1523
1524void LIR_Assembler::reg2reg(LIR_Opr from_reg, LIR_Opr to_reg) {
1525  if (from_reg->is_float_kind() && to_reg->is_float_kind()) {
1526    if (from_reg->is_double_fpu()) {
1527      // double to double moves
1528      assert(to_reg->is_double_fpu(), "should match");
1529      __ fmov(FloatRegisterImpl::D, from_reg->as_double_reg(), to_reg->as_double_reg());
1530    } else {
1531      // float to float moves
1532      assert(to_reg->is_single_fpu(), "should match");
1533      __ fmov(FloatRegisterImpl::S, from_reg->as_float_reg(), to_reg->as_float_reg());
1534    }
1535  } else if (!from_reg->is_float_kind() && !to_reg->is_float_kind()) {
1536    if (from_reg->is_double_cpu()) {
1537#ifdef _LP64
1538      __ mov(from_reg->as_pointer_register(), to_reg->as_pointer_register());
1539#else
1540      assert(to_reg->is_double_cpu() &&
1541             from_reg->as_register_hi() != to_reg->as_register_lo() &&
1542             from_reg->as_register_lo() != to_reg->as_register_hi(),
1543             "should both be long and not overlap");
1544      // long to long moves
1545      __ mov(from_reg->as_register_hi(), to_reg->as_register_hi());
1546      __ mov(from_reg->as_register_lo(), to_reg->as_register_lo());
1547#endif
1548#ifdef _LP64
1549    } else if (to_reg->is_double_cpu()) {
1550      // int to int moves
1551      __ mov(from_reg->as_register(), to_reg->as_register_lo());
1552#endif
1553    } else {
1554      // int to int moves
1555      __ mov(from_reg->as_register(), to_reg->as_register());
1556    }
1557  } else {
1558    ShouldNotReachHere();
1559  }
1560  if (to_reg->type() == T_OBJECT || to_reg->type() == T_ARRAY) {
1561    __ verify_oop(to_reg->as_register());
1562  }
1563}
1564
1565
1566void LIR_Assembler::reg2mem(LIR_Opr from_reg, LIR_Opr dest, BasicType type,
1567                            LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack,
1568                            bool unaligned) {
1569  LIR_Address* addr = dest->as_address_ptr();
1570
1571  Register src = addr->base()->as_pointer_register();
1572  Register disp_reg = noreg;
1573  int disp_value = addr->disp();
1574  bool needs_patching = (patch_code != lir_patch_none);
1575
1576  if (addr->base()->is_oop_register()) {
1577    __ verify_oop(src);
1578  }
1579
1580  PatchingStub* patch = NULL;
1581  if (needs_patching) {
1582    patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1583    assert(!from_reg->is_double_cpu() ||
1584           patch_code == lir_patch_none ||
1585           patch_code == lir_patch_normal, "patching doesn't match register");
1586  }
1587
1588  if (addr->index()->is_illegal()) {
1589    if (!Assembler::is_simm13(disp_value) && (!unaligned || Assembler::is_simm13(disp_value + 4))) {
1590      if (needs_patching) {
1591        __ patchable_set(0, O7);
1592      } else {
1593        __ set(disp_value, O7);
1594      }
1595      disp_reg = O7;
1596    }
1597  } else if (unaligned || PatchALot) {
1598    __ add(src, addr->index()->as_register(), O7);
1599    src = O7;
1600  } else {
1601    disp_reg = addr->index()->as_pointer_register();
1602    assert(disp_value == 0, "can't handle 3 operand addresses");
1603  }
1604
1605  // remember the offset of the store.  The patching_epilog must be done
1606  // before the call to add_debug_info_for_null_check, otherwise the PcDescs don't get
1607  // entered in increasing order.
1608  int offset;
1609
1610  assert(disp_reg != noreg || Assembler::is_simm13(disp_value), "should have set this up");
1611  if (disp_reg == noreg) {
1612    offset = store(from_reg, src, disp_value, type, unaligned);
1613  } else {
1614    assert(!unaligned, "can't handle this");
1615    offset = store(from_reg, src, disp_reg, type);
1616  }
1617
1618  if (patch != NULL) {
1619    patching_epilog(patch, patch_code, src, info);
1620  }
1621
1622  if (info != NULL) add_debug_info_for_null_check(offset, info);
1623}
1624
1625
1626void LIR_Assembler::return_op(LIR_Opr result) {
1627  // the poll may need a register so just pick one that isn't the return register
1628#ifdef TIERED
1629  if (result->type_field() == LIR_OprDesc::long_type) {
1630    // Must move the result to G1
1631    // Must leave proper result in O0,O1 and G1 (TIERED only)
1632    __ sllx(I0, 32, G1);          // Shift bits into high G1
1633    __ srl (I1, 0, I1);           // Zero extend O1 (harmless?)
1634    __ or3 (I1, G1, G1);          // OR 64 bits into G1
1635  }
1636#endif // TIERED
1637  __ set((intptr_t)os::get_polling_page(), L0);
1638  __ relocate(relocInfo::poll_return_type);
1639  __ ld_ptr(L0, 0, G0);
1640  __ ret();
1641  __ delayed()->restore();
1642}
1643
1644
1645int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
1646  __ set((intptr_t)os::get_polling_page(), tmp->as_register());
1647  if (info != NULL) {
1648    add_debug_info_for_branch(info);
1649  } else {
1650    __ relocate(relocInfo::poll_type);
1651  }
1652
1653  int offset = __ offset();
1654  __ ld_ptr(tmp->as_register(), 0, G0);
1655
1656  return offset;
1657}
1658
1659
1660void LIR_Assembler::emit_static_call_stub() {
1661  address call_pc = __ pc();
1662  address stub = __ start_a_stub(call_stub_size);
1663  if (stub == NULL) {
1664    bailout("static call stub overflow");
1665    return;
1666  }
1667
1668  int start = __ offset();
1669  __ relocate(static_stub_Relocation::spec(call_pc));
1670
1671  __ set_oop(NULL, G5);
1672  // must be set to -1 at code generation time
1673  AddressLiteral addrlit(-1);
1674  __ jump_to(addrlit, G3);
1675  __ delayed()->nop();
1676
1677  assert(__ offset() - start <= call_stub_size, "stub too big");
1678  __ end_a_stub();
1679}
1680
1681
1682void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
1683  if (opr1->is_single_fpu()) {
1684    __ fcmp(FloatRegisterImpl::S, Assembler::fcc0, opr1->as_float_reg(), opr2->as_float_reg());
1685  } else if (opr1->is_double_fpu()) {
1686    __ fcmp(FloatRegisterImpl::D, Assembler::fcc0, opr1->as_double_reg(), opr2->as_double_reg());
1687  } else if (opr1->is_single_cpu()) {
1688    if (opr2->is_constant()) {
1689      switch (opr2->as_constant_ptr()->type()) {
1690        case T_INT:
1691          { jint con = opr2->as_constant_ptr()->as_jint();
1692            if (Assembler::is_simm13(con)) {
1693              __ cmp(opr1->as_register(), con);
1694            } else {
1695              __ set(con, O7);
1696              __ cmp(opr1->as_register(), O7);
1697            }
1698          }
1699          break;
1700
1701        case T_OBJECT:
1702          // there are only equal/notequal comparisions on objects
1703          { jobject con = opr2->as_constant_ptr()->as_jobject();
1704            if (con == NULL) {
1705              __ cmp(opr1->as_register(), 0);
1706            } else {
1707              jobject2reg(con, O7);
1708              __ cmp(opr1->as_register(), O7);
1709            }
1710          }
1711          break;
1712
1713        default:
1714          ShouldNotReachHere();
1715          break;
1716      }
1717    } else {
1718      if (opr2->is_address()) {
1719        LIR_Address * addr = opr2->as_address_ptr();
1720        BasicType type = addr->type();
1721        if ( type == T_OBJECT ) __ ld_ptr(as_Address(addr), O7);
1722        else                    __ ld(as_Address(addr), O7);
1723        __ cmp(opr1->as_register(), O7);
1724      } else {
1725        __ cmp(opr1->as_register(), opr2->as_register());
1726      }
1727    }
1728  } else if (opr1->is_double_cpu()) {
1729    Register xlo = opr1->as_register_lo();
1730    Register xhi = opr1->as_register_hi();
1731    if (opr2->is_constant() && opr2->as_jlong() == 0) {
1732      assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "only handles these cases");
1733#ifdef _LP64
1734      __ orcc(xhi, G0, G0);
1735#else
1736      __ orcc(xhi, xlo, G0);
1737#endif
1738    } else if (opr2->is_register()) {
1739      Register ylo = opr2->as_register_lo();
1740      Register yhi = opr2->as_register_hi();
1741#ifdef _LP64
1742      __ cmp(xlo, ylo);
1743#else
1744      __ subcc(xlo, ylo, xlo);
1745      __ subccc(xhi, yhi, xhi);
1746      if (condition == lir_cond_equal || condition == lir_cond_notEqual) {
1747        __ orcc(xhi, xlo, G0);
1748      }
1749#endif
1750    } else {
1751      ShouldNotReachHere();
1752    }
1753  } else if (opr1->is_address()) {
1754    LIR_Address * addr = opr1->as_address_ptr();
1755    BasicType type = addr->type();
1756    assert (opr2->is_constant(), "Checking");
1757    if ( type == T_OBJECT ) __ ld_ptr(as_Address(addr), O7);
1758    else                    __ ld(as_Address(addr), O7);
1759    __ cmp(O7, opr2->as_constant_ptr()->as_jint());
1760  } else {
1761    ShouldNotReachHere();
1762  }
1763}
1764
1765
1766void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op){
1767  if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
1768    bool is_unordered_less = (code == lir_ucmp_fd2i);
1769    if (left->is_single_fpu()) {
1770      __ float_cmp(true, is_unordered_less ? -1 : 1, left->as_float_reg(), right->as_float_reg(), dst->as_register());
1771    } else if (left->is_double_fpu()) {
1772      __ float_cmp(false, is_unordered_less ? -1 : 1, left->as_double_reg(), right->as_double_reg(), dst->as_register());
1773    } else {
1774      ShouldNotReachHere();
1775    }
1776  } else if (code == lir_cmp_l2i) {
1777#ifdef _LP64
1778    __ lcmp(left->as_register_lo(), right->as_register_lo(), dst->as_register());
1779#else
1780    __ lcmp(left->as_register_hi(),  left->as_register_lo(),
1781            right->as_register_hi(), right->as_register_lo(),
1782            dst->as_register());
1783#endif
1784  } else {
1785    ShouldNotReachHere();
1786  }
1787}
1788
1789
1790void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result) {
1791
1792  Assembler::Condition acond;
1793  switch (condition) {
1794    case lir_cond_equal:        acond = Assembler::equal;        break;
1795    case lir_cond_notEqual:     acond = Assembler::notEqual;     break;
1796    case lir_cond_less:         acond = Assembler::less;         break;
1797    case lir_cond_lessEqual:    acond = Assembler::lessEqual;    break;
1798    case lir_cond_greaterEqual: acond = Assembler::greaterEqual; break;
1799    case lir_cond_greater:      acond = Assembler::greater;      break;
1800    case lir_cond_aboveEqual:   acond = Assembler::greaterEqualUnsigned;      break;
1801    case lir_cond_belowEqual:   acond = Assembler::lessEqualUnsigned;      break;
1802    default:                         ShouldNotReachHere();
1803  };
1804
1805  if (opr1->is_constant() && opr1->type() == T_INT) {
1806    Register dest = result->as_register();
1807    // load up first part of constant before branch
1808    // and do the rest in the delay slot.
1809    if (!Assembler::is_simm13(opr1->as_jint())) {
1810      __ sethi(opr1->as_jint(), dest);
1811    }
1812  } else if (opr1->is_constant()) {
1813    const2reg(opr1, result, lir_patch_none, NULL);
1814  } else if (opr1->is_register()) {
1815    reg2reg(opr1, result);
1816  } else if (opr1->is_stack()) {
1817    stack2reg(opr1, result, result->type());
1818  } else {
1819    ShouldNotReachHere();
1820  }
1821  Label skip;
1822  __ br(acond, false, Assembler::pt, skip);
1823  if (opr1->is_constant() && opr1->type() == T_INT) {
1824    Register dest = result->as_register();
1825    if (Assembler::is_simm13(opr1->as_jint())) {
1826      __ delayed()->or3(G0, opr1->as_jint(), dest);
1827    } else {
1828      // the sethi has been done above, so just put in the low 10 bits
1829      __ delayed()->or3(dest, opr1->as_jint() & 0x3ff, dest);
1830    }
1831  } else {
1832    // can't do anything useful in the delay slot
1833    __ delayed()->nop();
1834  }
1835  if (opr2->is_constant()) {
1836    const2reg(opr2, result, lir_patch_none, NULL);
1837  } else if (opr2->is_register()) {
1838    reg2reg(opr2, result);
1839  } else if (opr2->is_stack()) {
1840    stack2reg(opr2, result, result->type());
1841  } else {
1842    ShouldNotReachHere();
1843  }
1844  __ bind(skip);
1845}
1846
1847
1848void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) {
1849  assert(info == NULL, "unused on this code path");
1850  assert(left->is_register(), "wrong items state");
1851  assert(dest->is_register(), "wrong items state");
1852
1853  if (right->is_register()) {
1854    if (dest->is_float_kind()) {
1855
1856      FloatRegister lreg, rreg, res;
1857      FloatRegisterImpl::Width w;
1858      if (right->is_single_fpu()) {
1859        w = FloatRegisterImpl::S;
1860        lreg = left->as_float_reg();
1861        rreg = right->as_float_reg();
1862        res  = dest->as_float_reg();
1863      } else {
1864        w = FloatRegisterImpl::D;
1865        lreg = left->as_double_reg();
1866        rreg = right->as_double_reg();
1867        res  = dest->as_double_reg();
1868      }
1869
1870      switch (code) {
1871        case lir_add: __ fadd(w, lreg, rreg, res); break;
1872        case lir_sub: __ fsub(w, lreg, rreg, res); break;
1873        case lir_mul: // fall through
1874        case lir_mul_strictfp: __ fmul(w, lreg, rreg, res); break;
1875        case lir_div: // fall through
1876        case lir_div_strictfp: __ fdiv(w, lreg, rreg, res); break;
1877        default: ShouldNotReachHere();
1878      }
1879
1880    } else if (dest->is_double_cpu()) {
1881#ifdef _LP64
1882      Register dst_lo = dest->as_register_lo();
1883      Register op1_lo = left->as_pointer_register();
1884      Register op2_lo = right->as_pointer_register();
1885
1886      switch (code) {
1887        case lir_add:
1888          __ add(op1_lo, op2_lo, dst_lo);
1889          break;
1890
1891        case lir_sub:
1892          __ sub(op1_lo, op2_lo, dst_lo);
1893          break;
1894
1895        default: ShouldNotReachHere();
1896      }
1897#else
1898      Register op1_lo = left->as_register_lo();
1899      Register op1_hi = left->as_register_hi();
1900      Register op2_lo = right->as_register_lo();
1901      Register op2_hi = right->as_register_hi();
1902      Register dst_lo = dest->as_register_lo();
1903      Register dst_hi = dest->as_register_hi();
1904
1905      switch (code) {
1906        case lir_add:
1907          __ addcc(op1_lo, op2_lo, dst_lo);
1908          __ addc (op1_hi, op2_hi, dst_hi);
1909          break;
1910
1911        case lir_sub:
1912          __ subcc(op1_lo, op2_lo, dst_lo);
1913          __ subc (op1_hi, op2_hi, dst_hi);
1914          break;
1915
1916        default: ShouldNotReachHere();
1917      }
1918#endif
1919    } else {
1920      assert (right->is_single_cpu(), "Just Checking");
1921
1922      Register lreg = left->as_register();
1923      Register res  = dest->as_register();
1924      Register rreg = right->as_register();
1925      switch (code) {
1926        case lir_add:  __ add  (lreg, rreg, res); break;
1927        case lir_sub:  __ sub  (lreg, rreg, res); break;
1928        case lir_mul:  __ mult (lreg, rreg, res); break;
1929        default: ShouldNotReachHere();
1930      }
1931    }
1932  } else {
1933    assert (right->is_constant(), "must be constant");
1934
1935    if (dest->is_single_cpu()) {
1936      Register lreg = left->as_register();
1937      Register res  = dest->as_register();
1938      int    simm13 = right->as_constant_ptr()->as_jint();
1939
1940      switch (code) {
1941        case lir_add:  __ add  (lreg, simm13, res); break;
1942        case lir_sub:  __ sub  (lreg, simm13, res); break;
1943        case lir_mul:  __ mult (lreg, simm13, res); break;
1944        default: ShouldNotReachHere();
1945      }
1946    } else {
1947      Register lreg = left->as_pointer_register();
1948      Register res  = dest->as_register_lo();
1949      long con = right->as_constant_ptr()->as_jlong();
1950      assert(Assembler::is_simm13(con), "must be simm13");
1951
1952      switch (code) {
1953        case lir_add:  __ add  (lreg, (int)con, res); break;
1954        case lir_sub:  __ sub  (lreg, (int)con, res); break;
1955        case lir_mul:  __ mult (lreg, (int)con, res); break;
1956        default: ShouldNotReachHere();
1957      }
1958    }
1959  }
1960}
1961
1962
1963void LIR_Assembler::fpop() {
1964  // do nothing
1965}
1966
1967
1968void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr thread, LIR_Opr dest, LIR_Op* op) {
1969  switch (code) {
1970    case lir_sin:
1971    case lir_tan:
1972    case lir_cos: {
1973      assert(thread->is_valid(), "preserve the thread object for performance reasons");
1974      assert(dest->as_double_reg() == F0, "the result will be in f0/f1");
1975      break;
1976    }
1977    case lir_sqrt: {
1978      assert(!thread->is_valid(), "there is no need for a thread_reg for dsqrt");
1979      FloatRegister src_reg = value->as_double_reg();
1980      FloatRegister dst_reg = dest->as_double_reg();
1981      __ fsqrt(FloatRegisterImpl::D, src_reg, dst_reg);
1982      break;
1983    }
1984    case lir_abs: {
1985      assert(!thread->is_valid(), "there is no need for a thread_reg for fabs");
1986      FloatRegister src_reg = value->as_double_reg();
1987      FloatRegister dst_reg = dest->as_double_reg();
1988      __ fabs(FloatRegisterImpl::D, src_reg, dst_reg);
1989      break;
1990    }
1991    default: {
1992      ShouldNotReachHere();
1993      break;
1994    }
1995  }
1996}
1997
1998
1999void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest) {
2000  if (right->is_constant()) {
2001    if (dest->is_single_cpu()) {
2002      int simm13 = right->as_constant_ptr()->as_jint();
2003      switch (code) {
2004        case lir_logic_and:   __ and3 (left->as_register(), simm13, dest->as_register()); break;
2005        case lir_logic_or:    __ or3  (left->as_register(), simm13, dest->as_register()); break;
2006        case lir_logic_xor:   __ xor3 (left->as_register(), simm13, dest->as_register()); break;
2007        default: ShouldNotReachHere();
2008      }
2009    } else {
2010      long c = right->as_constant_ptr()->as_jlong();
2011      assert(c == (int)c && Assembler::is_simm13(c), "out of range");
2012      int simm13 = (int)c;
2013      switch (code) {
2014        case lir_logic_and:
2015#ifndef _LP64
2016          __ and3 (left->as_register_hi(), 0,      dest->as_register_hi());
2017#endif
2018          __ and3 (left->as_register_lo(), simm13, dest->as_register_lo());
2019          break;
2020
2021        case lir_logic_or:
2022#ifndef _LP64
2023          __ or3 (left->as_register_hi(), 0,      dest->as_register_hi());
2024#endif
2025          __ or3 (left->as_register_lo(), simm13, dest->as_register_lo());
2026          break;
2027
2028        case lir_logic_xor:
2029#ifndef _LP64
2030          __ xor3 (left->as_register_hi(), 0,      dest->as_register_hi());
2031#endif
2032          __ xor3 (left->as_register_lo(), simm13, dest->as_register_lo());
2033          break;
2034
2035        default: ShouldNotReachHere();
2036      }
2037    }
2038  } else {
2039    assert(right->is_register(), "right should be in register");
2040
2041    if (dest->is_single_cpu()) {
2042      switch (code) {
2043        case lir_logic_and:   __ and3 (left->as_register(), right->as_register(), dest->as_register()); break;
2044        case lir_logic_or:    __ or3  (left->as_register(), right->as_register(), dest->as_register()); break;
2045        case lir_logic_xor:   __ xor3 (left->as_register(), right->as_register(), dest->as_register()); break;
2046        default: ShouldNotReachHere();
2047      }
2048    } else {
2049#ifdef _LP64
2050      Register l = (left->is_single_cpu() && left->is_oop_register()) ? left->as_register() :
2051                                                                        left->as_register_lo();
2052      Register r = (right->is_single_cpu() && right->is_oop_register()) ? right->as_register() :
2053                                                                          right->as_register_lo();
2054
2055      switch (code) {
2056        case lir_logic_and: __ and3 (l, r, dest->as_register_lo()); break;
2057        case lir_logic_or:  __ or3  (l, r, dest->as_register_lo()); break;
2058        case lir_logic_xor: __ xor3 (l, r, dest->as_register_lo()); break;
2059        default: ShouldNotReachHere();
2060      }
2061#else
2062      switch (code) {
2063        case lir_logic_and:
2064          __ and3 (left->as_register_hi(), right->as_register_hi(), dest->as_register_hi());
2065          __ and3 (left->as_register_lo(), right->as_register_lo(), dest->as_register_lo());
2066          break;
2067
2068        case lir_logic_or:
2069          __ or3 (left->as_register_hi(), right->as_register_hi(), dest->as_register_hi());
2070          __ or3 (left->as_register_lo(), right->as_register_lo(), dest->as_register_lo());
2071          break;
2072
2073        case lir_logic_xor:
2074          __ xor3 (left->as_register_hi(), right->as_register_hi(), dest->as_register_hi());
2075          __ xor3 (left->as_register_lo(), right->as_register_lo(), dest->as_register_lo());
2076          break;
2077
2078        default: ShouldNotReachHere();
2079      }
2080#endif
2081    }
2082  }
2083}
2084
2085
2086int LIR_Assembler::shift_amount(BasicType t) {
2087  int elem_size = type2aelembytes(t);
2088  switch (elem_size) {
2089    case 1 : return 0;
2090    case 2 : return 1;
2091    case 4 : return 2;
2092    case 8 : return 3;
2093  }
2094  ShouldNotReachHere();
2095  return -1;
2096}
2097
2098
2099void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
2100  assert(exceptionOop->as_register() == Oexception, "should match");
2101  assert(exceptionPC->as_register() == Oissuing_pc, "should match");
2102
2103  info->add_register_oop(exceptionOop);
2104
2105  // reuse the debug info from the safepoint poll for the throw op itself
2106  address pc_for_athrow  = __ pc();
2107  int pc_for_athrow_offset = __ offset();
2108  RelocationHolder rspec = internal_word_Relocation::spec(pc_for_athrow);
2109  __ set(pc_for_athrow, Oissuing_pc, rspec);
2110  add_call_info(pc_for_athrow_offset, info); // for exception handler
2111
2112  __ call(Runtime1::entry_for(Runtime1::handle_exception_id), relocInfo::runtime_call_type);
2113  __ delayed()->nop();
2114}
2115
2116
2117void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) {
2118  assert(exceptionOop->as_register() == Oexception, "should match");
2119
2120  __ br(Assembler::always, false, Assembler::pt, _unwind_handler_entry);
2121  __ delayed()->nop();
2122}
2123
2124
2125void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
2126  Register src = op->src()->as_register();
2127  Register dst = op->dst()->as_register();
2128  Register src_pos = op->src_pos()->as_register();
2129  Register dst_pos = op->dst_pos()->as_register();
2130  Register length  = op->length()->as_register();
2131  Register tmp = op->tmp()->as_register();
2132  Register tmp2 = O7;
2133
2134  int flags = op->flags();
2135  ciArrayKlass* default_type = op->expected_type();
2136  BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL;
2137  if (basic_type == T_ARRAY) basic_type = T_OBJECT;
2138
2139  // set up the arraycopy stub information
2140  ArrayCopyStub* stub = op->stub();
2141
2142  // always do stub if no type information is available.  it's ok if
2143  // the known type isn't loaded since the code sanity checks
2144  // in debug mode and the type isn't required when we know the exact type
2145  // also check that the type is an array type.
2146  // We also, for now, always call the stub if the barrier set requires a
2147  // write_ref_pre barrier (which the stub does, but none of the optimized
2148  // cases currently does).
2149  if (op->expected_type() == NULL ||
2150      Universe::heap()->barrier_set()->has_write_ref_pre_barrier()) {
2151    __ mov(src,     O0);
2152    __ mov(src_pos, O1);
2153    __ mov(dst,     O2);
2154    __ mov(dst_pos, O3);
2155    __ mov(length,  O4);
2156    __ call_VM_leaf(tmp, CAST_FROM_FN_PTR(address, Runtime1::arraycopy));
2157
2158    __ br_zero(Assembler::less, false, Assembler::pn, O0, *stub->entry());
2159    __ delayed()->nop();
2160    __ bind(*stub->continuation());
2161    return;
2162  }
2163
2164  assert(default_type != NULL && default_type->is_array_klass(), "must be true at this point");
2165
2166  // make sure src and dst are non-null and load array length
2167  if (flags & LIR_OpArrayCopy::src_null_check) {
2168    __ tst(src);
2169    __ br(Assembler::equal, false, Assembler::pn, *stub->entry());
2170    __ delayed()->nop();
2171  }
2172
2173  if (flags & LIR_OpArrayCopy::dst_null_check) {
2174    __ tst(dst);
2175    __ br(Assembler::equal, false, Assembler::pn, *stub->entry());
2176    __ delayed()->nop();
2177  }
2178
2179  if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
2180    // test src_pos register
2181    __ tst(src_pos);
2182    __ br(Assembler::less, false, Assembler::pn, *stub->entry());
2183    __ delayed()->nop();
2184  }
2185
2186  if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
2187    // test dst_pos register
2188    __ tst(dst_pos);
2189    __ br(Assembler::less, false, Assembler::pn, *stub->entry());
2190    __ delayed()->nop();
2191  }
2192
2193  if (flags & LIR_OpArrayCopy::length_positive_check) {
2194    // make sure length isn't negative
2195    __ tst(length);
2196    __ br(Assembler::less, false, Assembler::pn, *stub->entry());
2197    __ delayed()->nop();
2198  }
2199
2200  if (flags & LIR_OpArrayCopy::src_range_check) {
2201    __ ld(src, arrayOopDesc::length_offset_in_bytes(), tmp2);
2202    __ add(length, src_pos, tmp);
2203    __ cmp(tmp2, tmp);
2204    __ br(Assembler::carrySet, false, Assembler::pn, *stub->entry());
2205    __ delayed()->nop();
2206  }
2207
2208  if (flags & LIR_OpArrayCopy::dst_range_check) {
2209    __ ld(dst, arrayOopDesc::length_offset_in_bytes(), tmp2);
2210    __ add(length, dst_pos, tmp);
2211    __ cmp(tmp2, tmp);
2212    __ br(Assembler::carrySet, false, Assembler::pn, *stub->entry());
2213    __ delayed()->nop();
2214  }
2215
2216  if (flags & LIR_OpArrayCopy::type_check) {
2217    __ ld_ptr(src, oopDesc::klass_offset_in_bytes(), tmp);
2218    __ ld_ptr(dst, oopDesc::klass_offset_in_bytes(), tmp2);
2219    __ cmp(tmp, tmp2);
2220    __ br(Assembler::notEqual, false, Assembler::pt, *stub->entry());
2221    __ delayed()->nop();
2222  }
2223
2224#ifdef ASSERT
2225  if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
2226    // Sanity check the known type with the incoming class.  For the
2227    // primitive case the types must match exactly with src.klass and
2228    // dst.klass each exactly matching the default type.  For the
2229    // object array case, if no type check is needed then either the
2230    // dst type is exactly the expected type and the src type is a
2231    // subtype which we can't check or src is the same array as dst
2232    // but not necessarily exactly of type default_type.
2233    Label known_ok, halt;
2234    jobject2reg(op->expected_type()->constant_encoding(), tmp);
2235    __ ld_ptr(dst, oopDesc::klass_offset_in_bytes(), tmp2);
2236    if (basic_type != T_OBJECT) {
2237      __ cmp(tmp, tmp2);
2238      __ br(Assembler::notEqual, false, Assembler::pn, halt);
2239      __ delayed()->ld_ptr(src, oopDesc::klass_offset_in_bytes(), tmp2);
2240      __ cmp(tmp, tmp2);
2241      __ br(Assembler::equal, false, Assembler::pn, known_ok);
2242      __ delayed()->nop();
2243    } else {
2244      __ cmp(tmp, tmp2);
2245      __ br(Assembler::equal, false, Assembler::pn, known_ok);
2246      __ delayed()->cmp(src, dst);
2247      __ br(Assembler::equal, false, Assembler::pn, known_ok);
2248      __ delayed()->nop();
2249    }
2250    __ bind(halt);
2251    __ stop("incorrect type information in arraycopy");
2252    __ bind(known_ok);
2253  }
2254#endif
2255
2256  int shift = shift_amount(basic_type);
2257
2258  Register src_ptr = O0;
2259  Register dst_ptr = O1;
2260  Register len     = O2;
2261
2262  __ add(src, arrayOopDesc::base_offset_in_bytes(basic_type), src_ptr);
2263  LP64_ONLY(__ sra(src_pos, 0, src_pos);) //higher 32bits must be null
2264  if (shift == 0) {
2265    __ add(src_ptr, src_pos, src_ptr);
2266  } else {
2267    __ sll(src_pos, shift, tmp);
2268    __ add(src_ptr, tmp, src_ptr);
2269  }
2270
2271  __ add(dst, arrayOopDesc::base_offset_in_bytes(basic_type), dst_ptr);
2272  LP64_ONLY(__ sra(dst_pos, 0, dst_pos);) //higher 32bits must be null
2273  if (shift == 0) {
2274    __ add(dst_ptr, dst_pos, dst_ptr);
2275  } else {
2276    __ sll(dst_pos, shift, tmp);
2277    __ add(dst_ptr, tmp, dst_ptr);
2278  }
2279
2280  if (basic_type != T_OBJECT) {
2281    if (shift == 0) {
2282      __ mov(length, len);
2283    } else {
2284      __ sll(length, shift, len);
2285    }
2286    __ call_VM_leaf(tmp, CAST_FROM_FN_PTR(address, Runtime1::primitive_arraycopy));
2287  } else {
2288    // oop_arraycopy takes a length in number of elements, so don't scale it.
2289    __ mov(length, len);
2290    __ call_VM_leaf(tmp, CAST_FROM_FN_PTR(address, Runtime1::oop_arraycopy));
2291  }
2292
2293  __ bind(*stub->continuation());
2294}
2295
2296
2297void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
2298  if (dest->is_single_cpu()) {
2299#ifdef _LP64
2300    if (left->type() == T_OBJECT) {
2301      switch (code) {
2302        case lir_shl:  __ sllx  (left->as_register(), count->as_register(), dest->as_register()); break;
2303        case lir_shr:  __ srax  (left->as_register(), count->as_register(), dest->as_register()); break;
2304        case lir_ushr: __ srl   (left->as_register(), count->as_register(), dest->as_register()); break;
2305        default: ShouldNotReachHere();
2306      }
2307    } else
2308#endif
2309      switch (code) {
2310        case lir_shl:  __ sll   (left->as_register(), count->as_register(), dest->as_register()); break;
2311        case lir_shr:  __ sra   (left->as_register(), count->as_register(), dest->as_register()); break;
2312        case lir_ushr: __ srl   (left->as_register(), count->as_register(), dest->as_register()); break;
2313        default: ShouldNotReachHere();
2314      }
2315  } else {
2316#ifdef _LP64
2317    switch (code) {
2318      case lir_shl:  __ sllx  (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
2319      case lir_shr:  __ srax  (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
2320      case lir_ushr: __ srlx  (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
2321      default: ShouldNotReachHere();
2322    }
2323#else
2324    switch (code) {
2325      case lir_shl:  __ lshl  (left->as_register_hi(), left->as_register_lo(), count->as_register(), dest->as_register_hi(), dest->as_register_lo(), G3_scratch); break;
2326      case lir_shr:  __ lshr  (left->as_register_hi(), left->as_register_lo(), count->as_register(), dest->as_register_hi(), dest->as_register_lo(), G3_scratch); break;
2327      case lir_ushr: __ lushr (left->as_register_hi(), left->as_register_lo(), count->as_register(), dest->as_register_hi(), dest->as_register_lo(), G3_scratch); break;
2328      default: ShouldNotReachHere();
2329    }
2330#endif
2331  }
2332}
2333
2334
2335void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
2336#ifdef _LP64
2337  if (left->type() == T_OBJECT) {
2338    count = count & 63;  // shouldn't shift by more than sizeof(intptr_t)
2339    Register l = left->as_register();
2340    Register d = dest->as_register_lo();
2341    switch (code) {
2342      case lir_shl:  __ sllx  (l, count, d); break;
2343      case lir_shr:  __ srax  (l, count, d); break;
2344      case lir_ushr: __ srlx  (l, count, d); break;
2345      default: ShouldNotReachHere();
2346    }
2347    return;
2348  }
2349#endif
2350
2351  if (dest->is_single_cpu()) {
2352    count = count & 0x1F; // Java spec
2353    switch (code) {
2354      case lir_shl:  __ sll   (left->as_register(), count, dest->as_register()); break;
2355      case lir_shr:  __ sra   (left->as_register(), count, dest->as_register()); break;
2356      case lir_ushr: __ srl   (left->as_register(), count, dest->as_register()); break;
2357      default: ShouldNotReachHere();
2358    }
2359  } else if (dest->is_double_cpu()) {
2360    count = count & 63; // Java spec
2361    switch (code) {
2362      case lir_shl:  __ sllx  (left->as_pointer_register(), count, dest->as_pointer_register()); break;
2363      case lir_shr:  __ srax  (left->as_pointer_register(), count, dest->as_pointer_register()); break;
2364      case lir_ushr: __ srlx  (left->as_pointer_register(), count, dest->as_pointer_register()); break;
2365      default: ShouldNotReachHere();
2366    }
2367  } else {
2368    ShouldNotReachHere();
2369  }
2370}
2371
2372
2373void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
2374  assert(op->tmp1()->as_register()  == G1 &&
2375         op->tmp2()->as_register()  == G3 &&
2376         op->tmp3()->as_register()  == G4 &&
2377         op->obj()->as_register()   == O0 &&
2378         op->klass()->as_register() == G5, "must be");
2379  if (op->init_check()) {
2380    __ ld(op->klass()->as_register(),
2381          instanceKlass::init_state_offset_in_bytes() + sizeof(oopDesc),
2382          op->tmp1()->as_register());
2383    add_debug_info_for_null_check_here(op->stub()->info());
2384    __ cmp(op->tmp1()->as_register(), instanceKlass::fully_initialized);
2385    __ br(Assembler::notEqual, false, Assembler::pn, *op->stub()->entry());
2386    __ delayed()->nop();
2387  }
2388  __ allocate_object(op->obj()->as_register(),
2389                     op->tmp1()->as_register(),
2390                     op->tmp2()->as_register(),
2391                     op->tmp3()->as_register(),
2392                     op->header_size(),
2393                     op->object_size(),
2394                     op->klass()->as_register(),
2395                     *op->stub()->entry());
2396  __ bind(*op->stub()->continuation());
2397  __ verify_oop(op->obj()->as_register());
2398}
2399
2400
2401void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
2402  assert(op->tmp1()->as_register()  == G1 &&
2403         op->tmp2()->as_register()  == G3 &&
2404         op->tmp3()->as_register()  == G4 &&
2405         op->tmp4()->as_register()  == O1 &&
2406         op->klass()->as_register() == G5, "must be");
2407  if (UseSlowPath ||
2408      (!UseFastNewObjectArray && (op->type() == T_OBJECT || op->type() == T_ARRAY)) ||
2409      (!UseFastNewTypeArray   && (op->type() != T_OBJECT && op->type() != T_ARRAY))) {
2410    __ br(Assembler::always, false, Assembler::pt, *op->stub()->entry());
2411    __ delayed()->nop();
2412  } else {
2413    __ allocate_array(op->obj()->as_register(),
2414                      op->len()->as_register(),
2415                      op->tmp1()->as_register(),
2416                      op->tmp2()->as_register(),
2417                      op->tmp3()->as_register(),
2418                      arrayOopDesc::header_size(op->type()),
2419                      type2aelembytes(op->type()),
2420                      op->klass()->as_register(),
2421                      *op->stub()->entry());
2422  }
2423  __ bind(*op->stub()->continuation());
2424}
2425
2426
2427void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
2428  LIR_Code code = op->code();
2429  if (code == lir_store_check) {
2430    Register value = op->object()->as_register();
2431    Register array = op->array()->as_register();
2432    Register k_RInfo = op->tmp1()->as_register();
2433    Register klass_RInfo = op->tmp2()->as_register();
2434    Register Rtmp1 = op->tmp3()->as_register();
2435
2436    __ verify_oop(value);
2437
2438    CodeStub* stub = op->stub();
2439    Label done;
2440    __ cmp(value, 0);
2441    __ br(Assembler::equal, false, Assembler::pn, done);
2442    __ delayed()->nop();
2443    load(array, oopDesc::klass_offset_in_bytes(), k_RInfo, T_OBJECT, op->info_for_exception());
2444    load(value, oopDesc::klass_offset_in_bytes(), klass_RInfo, T_OBJECT, NULL);
2445
2446    // get instance klass
2447    load(k_RInfo, objArrayKlass::element_klass_offset_in_bytes() + sizeof(oopDesc), k_RInfo, T_OBJECT, NULL);
2448    // perform the fast part of the checking logic
2449    __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, O7, &done, stub->entry(), NULL);
2450
2451    // call out-of-line instance of __ check_klass_subtype_slow_path(...):
2452    assert(klass_RInfo == G3 && k_RInfo == G1, "incorrect call setup");
2453    __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
2454    __ delayed()->nop();
2455    __ cmp(G3, 0);
2456    __ br(Assembler::equal, false, Assembler::pn, *stub->entry());
2457    __ delayed()->nop();
2458    __ bind(done);
2459  } else if (op->code() == lir_checkcast) {
2460    // we always need a stub for the failure case.
2461    CodeStub* stub = op->stub();
2462    Register obj = op->object()->as_register();
2463    Register k_RInfo = op->tmp1()->as_register();
2464    Register klass_RInfo = op->tmp2()->as_register();
2465    Register dst = op->result_opr()->as_register();
2466    Register Rtmp1 = op->tmp3()->as_register();
2467    ciKlass* k = op->klass();
2468
2469    if (obj == k_RInfo) {
2470      k_RInfo = klass_RInfo;
2471      klass_RInfo = obj;
2472    }
2473    if (op->profiled_method() != NULL) {
2474      ciMethod* method = op->profiled_method();
2475      int bci          = op->profiled_bci();
2476
2477      // We need two temporaries to perform this operation on SPARC,
2478      // so to keep things simple we perform a redundant test here
2479      Label profile_done;
2480      __ cmp(obj, 0);
2481      __ br(Assembler::notEqual, false, Assembler::pn, profile_done);
2482      __ delayed()->nop();
2483      // Object is null; update methodDataOop
2484      ciMethodData* md = method->method_data();
2485      if (md == NULL) {
2486        bailout("out of memory building methodDataOop");
2487        return;
2488      }
2489      ciProfileData* data = md->bci_to_data(bci);
2490      assert(data != NULL,       "need data for checkcast");
2491      assert(data->is_BitData(), "need BitData for checkcast");
2492      Register mdo      = k_RInfo;
2493      Register data_val = Rtmp1;
2494      jobject2reg(md->constant_encoding(), mdo);
2495
2496      int mdo_offset_bias = 0;
2497      if (!Assembler::is_simm13(md->byte_offset_of_slot(data, DataLayout::header_offset()) + data->size_in_bytes())) {
2498        // The offset is large so bias the mdo by the base of the slot so
2499        // that the ld can use simm13s to reference the slots of the data
2500        mdo_offset_bias = md->byte_offset_of_slot(data, DataLayout::header_offset());
2501        __ set(mdo_offset_bias, data_val);
2502        __ add(mdo, data_val, mdo);
2503      }
2504
2505
2506      Address flags_addr(mdo, md->byte_offset_of_slot(data, DataLayout::flags_offset()) - mdo_offset_bias);
2507      __ ldub(flags_addr, data_val);
2508      __ or3(data_val, BitData::null_seen_byte_constant(), data_val);
2509      __ stb(data_val, flags_addr);
2510      __ bind(profile_done);
2511    }
2512
2513    Label done;
2514    // patching may screw with our temporaries on sparc,
2515    // so let's do it before loading the class
2516    if (k->is_loaded()) {
2517      jobject2reg(k->constant_encoding(), k_RInfo);
2518    } else {
2519      jobject2reg_with_patching(k_RInfo, op->info_for_patch());
2520    }
2521    assert(obj != k_RInfo, "must be different");
2522    __ cmp(obj, 0);
2523    __ br(Assembler::equal, false, Assembler::pn, done);
2524    __ delayed()->nop();
2525
2526    // get object class
2527    // not a safepoint as obj null check happens earlier
2528    load(obj, oopDesc::klass_offset_in_bytes(), klass_RInfo, T_OBJECT, NULL);
2529    if (op->fast_check()) {
2530      assert_different_registers(klass_RInfo, k_RInfo);
2531      __ cmp(k_RInfo, klass_RInfo);
2532      __ br(Assembler::notEqual, false, Assembler::pt, *stub->entry());
2533      __ delayed()->nop();
2534      __ bind(done);
2535    } else {
2536      bool need_slow_path = true;
2537      if (k->is_loaded()) {
2538        if (k->super_check_offset() != sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes())
2539          need_slow_path = false;
2540        // perform the fast part of the checking logic
2541        __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, noreg,
2542                                         (need_slow_path ? &done : NULL),
2543                                         stub->entry(), NULL,
2544                                         RegisterOrConstant(k->super_check_offset()));
2545      } else {
2546        // perform the fast part of the checking logic
2547        __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, O7,
2548                                         &done, stub->entry(), NULL);
2549      }
2550      if (need_slow_path) {
2551        // call out-of-line instance of __ check_klass_subtype_slow_path(...):
2552        assert(klass_RInfo == G3 && k_RInfo == G1, "incorrect call setup");
2553        __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
2554        __ delayed()->nop();
2555        __ cmp(G3, 0);
2556        __ br(Assembler::equal, false, Assembler::pn, *stub->entry());
2557        __ delayed()->nop();
2558      }
2559      __ bind(done);
2560    }
2561    __ mov(obj, dst);
2562  } else if (code == lir_instanceof) {
2563    Register obj = op->object()->as_register();
2564    Register k_RInfo = op->tmp1()->as_register();
2565    Register klass_RInfo = op->tmp2()->as_register();
2566    Register dst = op->result_opr()->as_register();
2567    Register Rtmp1 = op->tmp3()->as_register();
2568    ciKlass* k = op->klass();
2569
2570    Label done;
2571    if (obj == k_RInfo) {
2572      k_RInfo = klass_RInfo;
2573      klass_RInfo = obj;
2574    }
2575    // patching may screw with our temporaries on sparc,
2576    // so let's do it before loading the class
2577    if (k->is_loaded()) {
2578      jobject2reg(k->constant_encoding(), k_RInfo);
2579    } else {
2580      jobject2reg_with_patching(k_RInfo, op->info_for_patch());
2581    }
2582    assert(obj != k_RInfo, "must be different");
2583    __ cmp(obj, 0);
2584    __ br(Assembler::equal, true, Assembler::pn, done);
2585    __ delayed()->set(0, dst);
2586
2587    // get object class
2588    // not a safepoint as obj null check happens earlier
2589    load(obj, oopDesc::klass_offset_in_bytes(), klass_RInfo, T_OBJECT, NULL);
2590    if (op->fast_check()) {
2591      __ cmp(k_RInfo, klass_RInfo);
2592      __ br(Assembler::equal, true, Assembler::pt, done);
2593      __ delayed()->set(1, dst);
2594      __ set(0, dst);
2595      __ bind(done);
2596    } else {
2597      bool need_slow_path = true;
2598      if (k->is_loaded()) {
2599        if (k->super_check_offset() != sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes())
2600          need_slow_path = false;
2601        // perform the fast part of the checking logic
2602        __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, O7, noreg,
2603                                         (need_slow_path ? &done : NULL),
2604                                         (need_slow_path ? &done : NULL), NULL,
2605                                         RegisterOrConstant(k->super_check_offset()),
2606                                         dst);
2607      } else {
2608        assert(dst != klass_RInfo && dst != k_RInfo, "need 3 registers");
2609        // perform the fast part of the checking logic
2610        __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, O7, dst,
2611                                         &done, &done, NULL,
2612                                         RegisterOrConstant(-1),
2613                                         dst);
2614      }
2615      if (need_slow_path) {
2616        // call out-of-line instance of __ check_klass_subtype_slow_path(...):
2617        assert(klass_RInfo == G3 && k_RInfo == G1, "incorrect call setup");
2618        __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
2619        __ delayed()->nop();
2620        __ mov(G3, dst);
2621      }
2622      __ bind(done);
2623    }
2624  } else {
2625    ShouldNotReachHere();
2626  }
2627
2628}
2629
2630
2631void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
2632  if (op->code() == lir_cas_long) {
2633    assert(VM_Version::supports_cx8(), "wrong machine");
2634    Register addr = op->addr()->as_pointer_register();
2635    Register cmp_value_lo = op->cmp_value()->as_register_lo();
2636    Register cmp_value_hi = op->cmp_value()->as_register_hi();
2637    Register new_value_lo = op->new_value()->as_register_lo();
2638    Register new_value_hi = op->new_value()->as_register_hi();
2639    Register t1 = op->tmp1()->as_register();
2640    Register t2 = op->tmp2()->as_register();
2641#ifdef _LP64
2642    __ mov(cmp_value_lo, t1);
2643    __ mov(new_value_lo, t2);
2644#else
2645    // move high and low halves of long values into single registers
2646    __ sllx(cmp_value_hi, 32, t1);         // shift high half into temp reg
2647    __ srl(cmp_value_lo, 0, cmp_value_lo); // clear upper 32 bits of low half
2648    __ or3(t1, cmp_value_lo, t1);          // t1 holds 64-bit compare value
2649    __ sllx(new_value_hi, 32, t2);
2650    __ srl(new_value_lo, 0, new_value_lo);
2651    __ or3(t2, new_value_lo, t2);          // t2 holds 64-bit value to swap
2652#endif
2653    // perform the compare and swap operation
2654    __ casx(addr, t1, t2);
2655    // generate condition code - if the swap succeeded, t2 ("new value" reg) was
2656    // overwritten with the original value in "addr" and will be equal to t1.
2657    __ cmp(t1, t2);
2658
2659  } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj) {
2660    Register addr = op->addr()->as_pointer_register();
2661    Register cmp_value = op->cmp_value()->as_register();
2662    Register new_value = op->new_value()->as_register();
2663    Register t1 = op->tmp1()->as_register();
2664    Register t2 = op->tmp2()->as_register();
2665    __ mov(cmp_value, t1);
2666    __ mov(new_value, t2);
2667#ifdef _LP64
2668    if (op->code() == lir_cas_obj) {
2669      __ casx(addr, t1, t2);
2670    } else
2671#endif
2672      {
2673        __ cas(addr, t1, t2);
2674      }
2675    __ cmp(t1, t2);
2676  } else {
2677    Unimplemented();
2678  }
2679}
2680
2681void LIR_Assembler::set_24bit_FPU() {
2682  Unimplemented();
2683}
2684
2685
2686void LIR_Assembler::reset_FPU() {
2687  Unimplemented();
2688}
2689
2690
2691void LIR_Assembler::breakpoint() {
2692  __ breakpoint_trap();
2693}
2694
2695
2696void LIR_Assembler::push(LIR_Opr opr) {
2697  Unimplemented();
2698}
2699
2700
2701void LIR_Assembler::pop(LIR_Opr opr) {
2702  Unimplemented();
2703}
2704
2705
2706void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst_opr) {
2707  Address mon_addr = frame_map()->address_for_monitor_lock(monitor_no);
2708  Register dst = dst_opr->as_register();
2709  Register reg = mon_addr.base();
2710  int offset = mon_addr.disp();
2711  // compute pointer to BasicLock
2712  if (mon_addr.is_simm13()) {
2713    __ add(reg, offset, dst);
2714  } else {
2715    __ set(offset, dst);
2716    __ add(dst, reg, dst);
2717  }
2718}
2719
2720
2721void LIR_Assembler::emit_lock(LIR_OpLock* op) {
2722  Register obj = op->obj_opr()->as_register();
2723  Register hdr = op->hdr_opr()->as_register();
2724  Register lock = op->lock_opr()->as_register();
2725
2726  // obj may not be an oop
2727  if (op->code() == lir_lock) {
2728    MonitorEnterStub* stub = (MonitorEnterStub*)op->stub();
2729    if (UseFastLocking) {
2730      assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
2731      // add debug info for NullPointerException only if one is possible
2732      if (op->info() != NULL) {
2733        add_debug_info_for_null_check_here(op->info());
2734      }
2735      __ lock_object(hdr, obj, lock, op->scratch_opr()->as_register(), *op->stub()->entry());
2736    } else {
2737      // always do slow locking
2738      // note: the slow locking code could be inlined here, however if we use
2739      //       slow locking, speed doesn't matter anyway and this solution is
2740      //       simpler and requires less duplicated code - additionally, the
2741      //       slow locking code is the same in either case which simplifies
2742      //       debugging
2743      __ br(Assembler::always, false, Assembler::pt, *op->stub()->entry());
2744      __ delayed()->nop();
2745    }
2746  } else {
2747    assert (op->code() == lir_unlock, "Invalid code, expected lir_unlock");
2748    if (UseFastLocking) {
2749      assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
2750      __ unlock_object(hdr, obj, lock, *op->stub()->entry());
2751    } else {
2752      // always do slow unlocking
2753      // note: the slow unlocking code could be inlined here, however if we use
2754      //       slow unlocking, speed doesn't matter anyway and this solution is
2755      //       simpler and requires less duplicated code - additionally, the
2756      //       slow unlocking code is the same in either case which simplifies
2757      //       debugging
2758      __ br(Assembler::always, false, Assembler::pt, *op->stub()->entry());
2759      __ delayed()->nop();
2760    }
2761  }
2762  __ bind(*op->stub()->continuation());
2763}
2764
2765
2766void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
2767  ciMethod* method = op->profiled_method();
2768  int bci          = op->profiled_bci();
2769
2770  // Update counter for all call types
2771  ciMethodData* md = method->method_data();
2772  if (md == NULL) {
2773    bailout("out of memory building methodDataOop");
2774    return;
2775  }
2776  ciProfileData* data = md->bci_to_data(bci);
2777  assert(data->is_CounterData(), "need CounterData for calls");
2778  assert(op->mdo()->is_single_cpu(),  "mdo must be allocated");
2779  assert(op->tmp1()->is_single_cpu(), "tmp1 must be allocated");
2780  Register mdo  = op->mdo()->as_register();
2781  Register tmp1 = op->tmp1()->as_register();
2782  jobject2reg(md->constant_encoding(), mdo);
2783  int mdo_offset_bias = 0;
2784  if (!Assembler::is_simm13(md->byte_offset_of_slot(data, CounterData::count_offset()) +
2785                            data->size_in_bytes())) {
2786    // The offset is large so bias the mdo by the base of the slot so
2787    // that the ld can use simm13s to reference the slots of the data
2788    mdo_offset_bias = md->byte_offset_of_slot(data, CounterData::count_offset());
2789    __ set(mdo_offset_bias, O7);
2790    __ add(mdo, O7, mdo);
2791  }
2792
2793  Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias);
2794  Bytecodes::Code bc = method->java_code_at_bci(bci);
2795  // Perform additional virtual call profiling for invokevirtual and
2796  // invokeinterface bytecodes
2797  if ((bc == Bytecodes::_invokevirtual || bc == Bytecodes::_invokeinterface) &&
2798      Tier1ProfileVirtualCalls) {
2799    assert(op->recv()->is_single_cpu(), "recv must be allocated");
2800    Register recv = op->recv()->as_register();
2801    assert_different_registers(mdo, tmp1, recv);
2802    assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
2803    ciKlass* known_klass = op->known_holder();
2804    if (Tier1OptimizeVirtualCallProfiling && known_klass != NULL) {
2805      // We know the type that will be seen at this call site; we can
2806      // statically update the methodDataOop rather than needing to do
2807      // dynamic tests on the receiver type
2808
2809      // NOTE: we should probably put a lock around this search to
2810      // avoid collisions by concurrent compilations
2811      ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
2812      uint i;
2813      for (i = 0; i < VirtualCallData::row_limit(); i++) {
2814        ciKlass* receiver = vc_data->receiver(i);
2815        if (known_klass->equals(receiver)) {
2816          Address data_addr(mdo, md->byte_offset_of_slot(data,
2817                                                         VirtualCallData::receiver_count_offset(i)) -
2818                            mdo_offset_bias);
2819          __ lduw(data_addr, tmp1);
2820          __ add(tmp1, DataLayout::counter_increment, tmp1);
2821          __ stw(tmp1, data_addr);
2822          return;
2823        }
2824      }
2825
2826      // Receiver type not found in profile data; select an empty slot
2827
2828      // Note that this is less efficient than it should be because it
2829      // always does a write to the receiver part of the
2830      // VirtualCallData rather than just the first time
2831      for (i = 0; i < VirtualCallData::row_limit(); i++) {
2832        ciKlass* receiver = vc_data->receiver(i);
2833        if (receiver == NULL) {
2834          Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)) -
2835                            mdo_offset_bias);
2836          jobject2reg(known_klass->constant_encoding(), tmp1);
2837          __ st_ptr(tmp1, recv_addr);
2838          Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)) -
2839                            mdo_offset_bias);
2840          __ lduw(data_addr, tmp1);
2841          __ add(tmp1, DataLayout::counter_increment, tmp1);
2842          __ stw(tmp1, data_addr);
2843          return;
2844        }
2845      }
2846    } else {
2847      load(Address(recv, oopDesc::klass_offset_in_bytes()), recv, T_OBJECT);
2848      Label update_done;
2849      uint i;
2850      for (i = 0; i < VirtualCallData::row_limit(); i++) {
2851        Label next_test;
2852        // See if the receiver is receiver[n].
2853        Address receiver_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)) -
2854                              mdo_offset_bias);
2855        __ ld_ptr(receiver_addr, tmp1);
2856        __ verify_oop(tmp1);
2857        __ cmp(recv, tmp1);
2858        __ brx(Assembler::notEqual, false, Assembler::pt, next_test);
2859        __ delayed()->nop();
2860        Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)) -
2861                          mdo_offset_bias);
2862        __ lduw(data_addr, tmp1);
2863        __ add(tmp1, DataLayout::counter_increment, tmp1);
2864        __ stw(tmp1, data_addr);
2865        __ br(Assembler::always, false, Assembler::pt, update_done);
2866        __ delayed()->nop();
2867        __ bind(next_test);
2868      }
2869
2870      // Didn't find receiver; find next empty slot and fill it in
2871      for (i = 0; i < VirtualCallData::row_limit(); i++) {
2872        Label next_test;
2873        Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)) -
2874                          mdo_offset_bias);
2875        load(recv_addr, tmp1, T_OBJECT);
2876        __ tst(tmp1);
2877        __ brx(Assembler::notEqual, false, Assembler::pt, next_test);
2878        __ delayed()->nop();
2879        __ st_ptr(recv, recv_addr);
2880        __ set(DataLayout::counter_increment, tmp1);
2881        __ st_ptr(tmp1, mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)) -
2882                  mdo_offset_bias);
2883        __ br(Assembler::always, false, Assembler::pt, update_done);
2884        __ delayed()->nop();
2885        __ bind(next_test);
2886      }
2887      // Receiver did not match any saved receiver and there is no empty row for it.
2888      // Increment total counter to indicate polymorphic case.
2889      __ lduw(counter_addr, tmp1);
2890      __ add(tmp1, DataLayout::counter_increment, tmp1);
2891      __ stw(tmp1, counter_addr);
2892
2893      __ bind(update_done);
2894    }
2895  } else {
2896    // Static call
2897    __ lduw(counter_addr, tmp1);
2898    __ add(tmp1, DataLayout::counter_increment, tmp1);
2899    __ stw(tmp1, counter_addr);
2900  }
2901}
2902
2903
2904void LIR_Assembler::align_backward_branch_target() {
2905  __ align(OptoLoopAlignment);
2906}
2907
2908
2909void LIR_Assembler::emit_delay(LIR_OpDelay* op) {
2910  // make sure we are expecting a delay
2911  // this has the side effect of clearing the delay state
2912  // so we can use _masm instead of _masm->delayed() to do the
2913  // code generation.
2914  __ delayed();
2915
2916  // make sure we only emit one instruction
2917  int offset = code_offset();
2918  op->delay_op()->emit_code(this);
2919#ifdef ASSERT
2920  if (code_offset() - offset != NativeInstruction::nop_instruction_size) {
2921    op->delay_op()->print();
2922  }
2923  assert(code_offset() - offset == NativeInstruction::nop_instruction_size,
2924         "only one instruction can go in a delay slot");
2925#endif
2926
2927  // we may also be emitting the call info for the instruction
2928  // which we are the delay slot of.
2929  CodeEmitInfo* call_info = op->call_info();
2930  if (call_info) {
2931    add_call_info(code_offset(), call_info);
2932  }
2933
2934  if (VerifyStackAtCalls) {
2935    _masm->sub(FP, SP, O7);
2936    _masm->cmp(O7, initial_frame_size_in_bytes());
2937    _masm->trap(Assembler::notEqual, Assembler::ptr_cc, G0, ST_RESERVED_FOR_USER_0+2 );
2938  }
2939}
2940
2941
2942void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest) {
2943  assert(left->is_register(), "can only handle registers");
2944
2945  if (left->is_single_cpu()) {
2946    __ neg(left->as_register(), dest->as_register());
2947  } else if (left->is_single_fpu()) {
2948    __ fneg(FloatRegisterImpl::S, left->as_float_reg(), dest->as_float_reg());
2949  } else if (left->is_double_fpu()) {
2950    __ fneg(FloatRegisterImpl::D, left->as_double_reg(), dest->as_double_reg());
2951  } else {
2952    assert (left->is_double_cpu(), "Must be a long");
2953    Register Rlow = left->as_register_lo();
2954    Register Rhi = left->as_register_hi();
2955#ifdef _LP64
2956    __ sub(G0, Rlow, dest->as_register_lo());
2957#else
2958    __ subcc(G0, Rlow, dest->as_register_lo());
2959    __ subc (G0, Rhi,  dest->as_register_hi());
2960#endif
2961  }
2962}
2963
2964
2965void LIR_Assembler::fxch(int i) {
2966  Unimplemented();
2967}
2968
2969void LIR_Assembler::fld(int i) {
2970  Unimplemented();
2971}
2972
2973void LIR_Assembler::ffree(int i) {
2974  Unimplemented();
2975}
2976
2977void LIR_Assembler::rt_call(LIR_Opr result, address dest,
2978                            const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
2979
2980  // if tmp is invalid, then the function being called doesn't destroy the thread
2981  if (tmp->is_valid()) {
2982    __ save_thread(tmp->as_register());
2983  }
2984  __ call(dest, relocInfo::runtime_call_type);
2985  __ delayed()->nop();
2986  if (info != NULL) {
2987    add_call_info_here(info);
2988  }
2989  if (tmp->is_valid()) {
2990    __ restore_thread(tmp->as_register());
2991  }
2992
2993#ifdef ASSERT
2994  __ verify_thread();
2995#endif // ASSERT
2996}
2997
2998
2999void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
3000#ifdef _LP64
3001  ShouldNotReachHere();
3002#endif
3003
3004  NEEDS_CLEANUP;
3005  if (type == T_LONG) {
3006    LIR_Address* mem_addr = dest->is_address() ? dest->as_address_ptr() : src->as_address_ptr();
3007
3008    // (extended to allow indexed as well as constant displaced for JSR-166)
3009    Register idx = noreg; // contains either constant offset or index
3010
3011    int disp = mem_addr->disp();
3012    if (mem_addr->index() == LIR_OprFact::illegalOpr) {
3013      if (!Assembler::is_simm13(disp)) {
3014        idx = O7;
3015        __ set(disp, idx);
3016      }
3017    } else {
3018      assert(disp == 0, "not both indexed and disp");
3019      idx = mem_addr->index()->as_register();
3020    }
3021
3022    int null_check_offset = -1;
3023
3024    Register base = mem_addr->base()->as_register();
3025    if (src->is_register() && dest->is_address()) {
3026      // G4 is high half, G5 is low half
3027      if (VM_Version::v9_instructions_work()) {
3028        // clear the top bits of G5, and scale up G4
3029        __ srl (src->as_register_lo(),  0, G5);
3030        __ sllx(src->as_register_hi(), 32, G4);
3031        // combine the two halves into the 64 bits of G4
3032        __ or3(G4, G5, G4);
3033        null_check_offset = __ offset();
3034        if (idx == noreg) {
3035          __ stx(G4, base, disp);
3036        } else {
3037          __ stx(G4, base, idx);
3038        }
3039      } else {
3040        __ mov (src->as_register_hi(), G4);
3041        __ mov (src->as_register_lo(), G5);
3042        null_check_offset = __ offset();
3043        if (idx == noreg) {
3044          __ std(G4, base, disp);
3045        } else {
3046          __ std(G4, base, idx);
3047        }
3048      }
3049    } else if (src->is_address() && dest->is_register()) {
3050      null_check_offset = __ offset();
3051      if (VM_Version::v9_instructions_work()) {
3052        if (idx == noreg) {
3053          __ ldx(base, disp, G5);
3054        } else {
3055          __ ldx(base, idx, G5);
3056        }
3057        __ srax(G5, 32, dest->as_register_hi()); // fetch the high half into hi
3058        __ mov (G5, dest->as_register_lo());     // copy low half into lo
3059      } else {
3060        if (idx == noreg) {
3061          __ ldd(base, disp, G4);
3062        } else {
3063          __ ldd(base, idx, G4);
3064        }
3065        // G4 is high half, G5 is low half
3066        __ mov (G4, dest->as_register_hi());
3067        __ mov (G5, dest->as_register_lo());
3068      }
3069    } else {
3070      Unimplemented();
3071    }
3072    if (info != NULL) {
3073      add_debug_info_for_null_check(null_check_offset, info);
3074    }
3075
3076  } else {
3077    // use normal move for all other volatiles since they don't need
3078    // special handling to remain atomic.
3079    move_op(src, dest, type, lir_patch_none, info, false, false);
3080  }
3081}
3082
3083void LIR_Assembler::membar() {
3084  // only StoreLoad membars are ever explicitly needed on sparcs in TSO mode
3085  __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad) );
3086}
3087
3088void LIR_Assembler::membar_acquire() {
3089  // no-op on TSO
3090}
3091
3092void LIR_Assembler::membar_release() {
3093  // no-op on TSO
3094}
3095
3096// Macro to Pack two sequential registers containing 32 bit values
3097// into a single 64 bit register.
3098// rs and rs->successor() are packed into rd
3099// rd and rs may be the same register.
3100// Note: rs and rs->successor() are destroyed.
3101void LIR_Assembler::pack64( Register rs, Register rd ) {
3102  __ sllx(rs, 32, rs);
3103  __ srl(rs->successor(), 0, rs->successor());
3104  __ or3(rs, rs->successor(), rd);
3105}
3106
3107// Macro to unpack a 64 bit value in a register into
3108// two sequential registers.
3109// rd is unpacked into rd and rd->successor()
3110void LIR_Assembler::unpack64( Register rd ) {
3111  __ mov(rd, rd->successor());
3112  __ srax(rd, 32, rd);
3113  __ sra(rd->successor(), 0, rd->successor());
3114}
3115
3116
3117void LIR_Assembler::leal(LIR_Opr addr_opr, LIR_Opr dest) {
3118  LIR_Address* addr = addr_opr->as_address_ptr();
3119  assert(addr->index()->is_illegal() && addr->scale() == LIR_Address::times_1 && Assembler::is_simm13(addr->disp()), "can't handle complex addresses yet");
3120  __ add(addr->base()->as_register(), addr->disp(), dest->as_register());
3121}
3122
3123
3124void LIR_Assembler::get_thread(LIR_Opr result_reg) {
3125  assert(result_reg->is_register(), "check");
3126  __ mov(G2_thread, result_reg->as_register());
3127}
3128
3129
3130void LIR_Assembler::peephole(LIR_List* lir) {
3131  LIR_OpList* inst = lir->instructions_list();
3132  for (int i = 0; i < inst->length(); i++) {
3133    LIR_Op* op = inst->at(i);
3134    switch (op->code()) {
3135      case lir_cond_float_branch:
3136      case lir_branch: {
3137        LIR_OpBranch* branch = op->as_OpBranch();
3138        assert(branch->info() == NULL, "shouldn't be state on branches anymore");
3139        LIR_Op* delay_op = NULL;
3140        // we'd like to be able to pull following instructions into
3141        // this slot but we don't know enough to do it safely yet so
3142        // only optimize block to block control flow.
3143        if (LIRFillDelaySlots && branch->block()) {
3144          LIR_Op* prev = inst->at(i - 1);
3145          if (prev && LIR_Assembler::is_single_instruction(prev) && prev->info() == NULL) {
3146            // swap previous instruction into delay slot
3147            inst->at_put(i - 1, op);
3148            inst->at_put(i, new LIR_OpDelay(prev, op->info()));
3149#ifndef PRODUCT
3150            if (LIRTracePeephole) {
3151              tty->print_cr("delayed");
3152              inst->at(i - 1)->print();
3153              inst->at(i)->print();
3154              tty->cr();
3155            }
3156#endif
3157            continue;
3158          }
3159        }
3160
3161        if (!delay_op) {
3162          delay_op = new LIR_OpDelay(new LIR_Op0(lir_nop), NULL);
3163        }
3164        inst->insert_before(i + 1, delay_op);
3165        break;
3166      }
3167      case lir_static_call:
3168      case lir_virtual_call:
3169      case lir_icvirtual_call:
3170      case lir_optvirtual_call:
3171      case lir_dynamic_call: {
3172        LIR_Op* prev = inst->at(i - 1);
3173        if (LIRFillDelaySlots && prev && prev->code() == lir_move && prev->info() == NULL &&
3174            (op->code() != lir_virtual_call ||
3175             !prev->result_opr()->is_single_cpu() ||
3176             prev->result_opr()->as_register() != O0) &&
3177            LIR_Assembler::is_single_instruction(prev)) {
3178          // Only moves without info can be put into the delay slot.
3179          // Also don't allow the setup of the receiver in the delay
3180          // slot for vtable calls.
3181          inst->at_put(i - 1, op);
3182          inst->at_put(i, new LIR_OpDelay(prev, op->info()));
3183#ifndef PRODUCT
3184          if (LIRTracePeephole) {
3185            tty->print_cr("delayed");
3186            inst->at(i - 1)->print();
3187            inst->at(i)->print();
3188            tty->cr();
3189          }
3190#endif
3191          continue;
3192        }
3193
3194        LIR_Op* delay_op = new LIR_OpDelay(new LIR_Op0(lir_nop), op->as_OpJavaCall()->info());
3195        inst->insert_before(i + 1, delay_op);
3196        break;
3197      }
3198    }
3199  }
3200}
3201
3202
3203
3204
3205#undef __
3206