c1_LIRAssembler_sparc.cpp revision 1378:9f5b60a14736
1/*
2 * Copyright 2000-2010 Sun Microsystems, Inc.  All Rights Reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20 * CA 95054 USA or visit www.sun.com if you need additional information or
21 * have any questions.
22 *
23 */
24
25# include "incls/_precompiled.incl"
26# include "incls/_c1_LIRAssembler_sparc.cpp.incl"
27
28#define __ _masm->
29
30
31//------------------------------------------------------------
32
33
34bool LIR_Assembler::is_small_constant(LIR_Opr opr) {
35  if (opr->is_constant()) {
36    LIR_Const* constant = opr->as_constant_ptr();
37    switch (constant->type()) {
38      case T_INT: {
39        jint value = constant->as_jint();
40        return Assembler::is_simm13(value);
41      }
42
43      default:
44        return false;
45    }
46  }
47  return false;
48}
49
50
51bool LIR_Assembler::is_single_instruction(LIR_Op* op) {
52  switch (op->code()) {
53    case lir_null_check:
54    return true;
55
56
57    case lir_add:
58    case lir_ushr:
59    case lir_shr:
60    case lir_shl:
61      // integer shifts and adds are always one instruction
62      return op->result_opr()->is_single_cpu();
63
64
65    case lir_move: {
66      LIR_Op1* op1 = op->as_Op1();
67      LIR_Opr src = op1->in_opr();
68      LIR_Opr dst = op1->result_opr();
69
70      if (src == dst) {
71        NEEDS_CLEANUP;
72        // this works around a problem where moves with the same src and dst
73        // end up in the delay slot and then the assembler swallows the mov
74        // since it has no effect and then it complains because the delay slot
75        // is empty.  returning false stops the optimizer from putting this in
76        // the delay slot
77        return false;
78      }
79
80      // don't put moves involving oops into the delay slot since the VerifyOops code
81      // will make it much larger than a single instruction.
82      if (VerifyOops) {
83        return false;
84      }
85
86      if (src->is_double_cpu() || dst->is_double_cpu() || op1->patch_code() != lir_patch_none ||
87          ((src->is_double_fpu() || dst->is_double_fpu()) && op1->move_kind() != lir_move_normal)) {
88        return false;
89      }
90
91      if (dst->is_register()) {
92        if (src->is_address() && Assembler::is_simm13(src->as_address_ptr()->disp())) {
93          return !PatchALot;
94        } else if (src->is_single_stack()) {
95          return true;
96        }
97      }
98
99      if (src->is_register()) {
100        if (dst->is_address() && Assembler::is_simm13(dst->as_address_ptr()->disp())) {
101          return !PatchALot;
102        } else if (dst->is_single_stack()) {
103          return true;
104        }
105      }
106
107      if (dst->is_register() &&
108          ((src->is_register() && src->is_single_word() && src->is_same_type(dst)) ||
109           (src->is_constant() && LIR_Assembler::is_small_constant(op->as_Op1()->in_opr())))) {
110        return true;
111      }
112
113      return false;
114    }
115
116    default:
117      return false;
118  }
119  ShouldNotReachHere();
120}
121
122
123LIR_Opr LIR_Assembler::receiverOpr() {
124  return FrameMap::O0_oop_opr;
125}
126
127
128LIR_Opr LIR_Assembler::incomingReceiverOpr() {
129  return FrameMap::I0_oop_opr;
130}
131
132
133LIR_Opr LIR_Assembler::osrBufferPointer() {
134  return FrameMap::I0_opr;
135}
136
137
138int LIR_Assembler::initial_frame_size_in_bytes() {
139  return in_bytes(frame_map()->framesize_in_bytes());
140}
141
142
143// inline cache check: the inline cached class is in G5_inline_cache_reg(G5);
144// we fetch the class of the receiver (O0) and compare it with the cached class.
145// If they do not match we jump to slow case.
146int LIR_Assembler::check_icache() {
147  int offset = __ offset();
148  __ inline_cache_check(O0, G5_inline_cache_reg);
149  return offset;
150}
151
152
153void LIR_Assembler::osr_entry() {
154  // On-stack-replacement entry sequence (interpreter frame layout described in interpreter_sparc.cpp):
155  //
156  //   1. Create a new compiled activation.
157  //   2. Initialize local variables in the compiled activation.  The expression stack must be empty
158  //      at the osr_bci; it is not initialized.
159  //   3. Jump to the continuation address in compiled code to resume execution.
160
161  // OSR entry point
162  offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
163  BlockBegin* osr_entry = compilation()->hir()->osr_entry();
164  ValueStack* entry_state = osr_entry->end()->state();
165  int number_of_locks = entry_state->locks_size();
166
167  // Create a frame for the compiled activation.
168  __ build_frame(initial_frame_size_in_bytes());
169
170  // OSR buffer is
171  //
172  // locals[nlocals-1..0]
173  // monitors[number_of_locks-1..0]
174  //
175  // locals is a direct copy of the interpreter frame so in the osr buffer
176  // so first slot in the local array is the last local from the interpreter
177  // and last slot is local[0] (receiver) from the interpreter
178  //
179  // Similarly with locks. The first lock slot in the osr buffer is the nth lock
180  // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
181  // in the interpreter frame (the method lock if a sync method)
182
183  // Initialize monitors in the compiled activation.
184  //   I0: pointer to osr buffer
185  //
186  // All other registers are dead at this point and the locals will be
187  // copied into place by code emitted in the IR.
188
189  Register OSR_buf = osrBufferPointer()->as_register();
190  { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
191    int monitor_offset = BytesPerWord * method()->max_locals() +
192      (2 * BytesPerWord) * (number_of_locks - 1);
193    // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in
194    // the OSR buffer using 2 word entries: first the lock and then
195    // the oop.
196    for (int i = 0; i < number_of_locks; i++) {
197      int slot_offset = monitor_offset - ((i * 2) * BytesPerWord);
198#ifdef ASSERT
199      // verify the interpreter's monitor has a non-null object
200      {
201        Label L;
202        __ ld_ptr(OSR_buf, slot_offset + 1*BytesPerWord, O7);
203        __ cmp(G0, O7);
204        __ br(Assembler::notEqual, false, Assembler::pt, L);
205        __ delayed()->nop();
206        __ stop("locked object is NULL");
207        __ bind(L);
208      }
209#endif // ASSERT
210      // Copy the lock field into the compiled activation.
211      __ ld_ptr(OSR_buf, slot_offset + 0, O7);
212      __ st_ptr(O7, frame_map()->address_for_monitor_lock(i));
213      __ ld_ptr(OSR_buf, slot_offset + 1*BytesPerWord, O7);
214      __ st_ptr(O7, frame_map()->address_for_monitor_object(i));
215    }
216  }
217}
218
219
220// Optimized Library calls
221// This is the fast version of java.lang.String.compare; it has not
222// OSR-entry and therefore, we generate a slow version for OSR's
223void LIR_Assembler::emit_string_compare(LIR_Opr left, LIR_Opr right, LIR_Opr dst, CodeEmitInfo* info) {
224  Register str0 = left->as_register();
225  Register str1 = right->as_register();
226
227  Label Ldone;
228
229  Register result = dst->as_register();
230  {
231    // Get a pointer to the first character of string0 in tmp0 and get string0.count in str0
232    // Get a pointer to the first character of string1 in tmp1 and get string1.count in str1
233    // Also, get string0.count-string1.count in o7 and get the condition code set
234    // Note: some instructions have been hoisted for better instruction scheduling
235
236    Register tmp0 = L0;
237    Register tmp1 = L1;
238    Register tmp2 = L2;
239
240    int  value_offset = java_lang_String:: value_offset_in_bytes(); // char array
241    int offset_offset = java_lang_String::offset_offset_in_bytes(); // first character position
242    int  count_offset = java_lang_String:: count_offset_in_bytes();
243
244    __ ld_ptr(str0, value_offset, tmp0);
245    __ ld(str0, offset_offset, tmp2);
246    __ add(tmp0, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp0);
247    __ ld(str0, count_offset, str0);
248    __ sll(tmp2, exact_log2(sizeof(jchar)), tmp2);
249
250    // str1 may be null
251    add_debug_info_for_null_check_here(info);
252
253    __ ld_ptr(str1, value_offset, tmp1);
254    __ add(tmp0, tmp2, tmp0);
255
256    __ ld(str1, offset_offset, tmp2);
257    __ add(tmp1, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp1);
258    __ ld(str1, count_offset, str1);
259    __ sll(tmp2, exact_log2(sizeof(jchar)), tmp2);
260    __ subcc(str0, str1, O7);
261    __ add(tmp1, tmp2, tmp1);
262  }
263
264  {
265    // Compute the minimum of the string lengths, scale it and store it in limit
266    Register count0 = I0;
267    Register count1 = I1;
268    Register limit  = L3;
269
270    Label Lskip;
271    __ sll(count0, exact_log2(sizeof(jchar)), limit);             // string0 is shorter
272    __ br(Assembler::greater, true, Assembler::pt, Lskip);
273    __ delayed()->sll(count1, exact_log2(sizeof(jchar)), limit);  // string1 is shorter
274    __ bind(Lskip);
275
276    // If either string is empty (or both of them) the result is the difference in lengths
277    __ cmp(limit, 0);
278    __ br(Assembler::equal, true, Assembler::pn, Ldone);
279    __ delayed()->mov(O7, result);  // result is difference in lengths
280  }
281
282  {
283    // Neither string is empty
284    Label Lloop;
285
286    Register base0 = L0;
287    Register base1 = L1;
288    Register chr0  = I0;
289    Register chr1  = I1;
290    Register limit = L3;
291
292    // Shift base0 and base1 to the end of the arrays, negate limit
293    __ add(base0, limit, base0);
294    __ add(base1, limit, base1);
295    __ neg(limit);  // limit = -min{string0.count, strin1.count}
296
297    __ lduh(base0, limit, chr0);
298    __ bind(Lloop);
299    __ lduh(base1, limit, chr1);
300    __ subcc(chr0, chr1, chr0);
301    __ br(Assembler::notZero, false, Assembler::pn, Ldone);
302    assert(chr0 == result, "result must be pre-placed");
303    __ delayed()->inccc(limit, sizeof(jchar));
304    __ br(Assembler::notZero, true, Assembler::pt, Lloop);
305    __ delayed()->lduh(base0, limit, chr0);
306  }
307
308  // If strings are equal up to min length, return the length difference.
309  __ mov(O7, result);
310
311  // Otherwise, return the difference between the first mismatched chars.
312  __ bind(Ldone);
313}
314
315
316// --------------------------------------------------------------------------------------------
317
318void LIR_Assembler::monitorexit(LIR_Opr obj_opr, LIR_Opr lock_opr, Register hdr, int monitor_no) {
319  if (!GenerateSynchronizationCode) return;
320
321  Register obj_reg = obj_opr->as_register();
322  Register lock_reg = lock_opr->as_register();
323
324  Address mon_addr = frame_map()->address_for_monitor_lock(monitor_no);
325  Register reg = mon_addr.base();
326  int offset = mon_addr.disp();
327  // compute pointer to BasicLock
328  if (mon_addr.is_simm13()) {
329    __ add(reg, offset, lock_reg);
330  }
331  else {
332    __ set(offset, lock_reg);
333    __ add(reg, lock_reg, lock_reg);
334  }
335  // unlock object
336  MonitorAccessStub* slow_case = new MonitorExitStub(lock_opr, UseFastLocking, monitor_no);
337  // _slow_case_stubs->append(slow_case);
338  // temporary fix: must be created after exceptionhandler, therefore as call stub
339  _slow_case_stubs->append(slow_case);
340  if (UseFastLocking) {
341    // try inlined fast unlocking first, revert to slow locking if it fails
342    // note: lock_reg points to the displaced header since the displaced header offset is 0!
343    assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
344    __ unlock_object(hdr, obj_reg, lock_reg, *slow_case->entry());
345  } else {
346    // always do slow unlocking
347    // note: the slow unlocking code could be inlined here, however if we use
348    //       slow unlocking, speed doesn't matter anyway and this solution is
349    //       simpler and requires less duplicated code - additionally, the
350    //       slow unlocking code is the same in either case which simplifies
351    //       debugging
352    __ br(Assembler::always, false, Assembler::pt, *slow_case->entry());
353    __ delayed()->nop();
354  }
355  // done
356  __ bind(*slow_case->continuation());
357}
358
359
360int LIR_Assembler::emit_exception_handler() {
361  // if the last instruction is a call (typically to do a throw which
362  // is coming at the end after block reordering) the return address
363  // must still point into the code area in order to avoid assertion
364  // failures when searching for the corresponding bci => add a nop
365  // (was bug 5/14/1999 - gri)
366  __ nop();
367
368  // generate code for exception handler
369  ciMethod* method = compilation()->method();
370
371  address handler_base = __ start_a_stub(exception_handler_size);
372
373  if (handler_base == NULL) {
374    // not enough space left for the handler
375    bailout("exception handler overflow");
376    return -1;
377  }
378
379  int offset = code_offset();
380
381  __ call(Runtime1::entry_for(Runtime1::handle_exception_id), relocInfo::runtime_call_type);
382  __ delayed()->nop();
383  debug_only(__ stop("should have gone to the caller");)
384  assert(code_offset() - offset <= exception_handler_size, "overflow");
385  __ end_a_stub();
386
387  return offset;
388}
389
390
391// Emit the code to remove the frame from the stack in the exception
392// unwind path.
393int LIR_Assembler::emit_unwind_handler() {
394#ifndef PRODUCT
395  if (CommentedAssembly) {
396    _masm->block_comment("Unwind handler");
397  }
398#endif
399
400  int offset = code_offset();
401
402  // Fetch the exception from TLS and clear out exception related thread state
403  __ ld_ptr(G2_thread, in_bytes(JavaThread::exception_oop_offset()), O0);
404  __ st_ptr(G0, G2_thread, in_bytes(JavaThread::exception_oop_offset()));
405  __ st_ptr(G0, G2_thread, in_bytes(JavaThread::exception_pc_offset()));
406
407  __ bind(_unwind_handler_entry);
408  __ verify_not_null_oop(O0);
409  if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
410    __ mov(O0, I0);  // Preserve the exception
411  }
412
413  // Preform needed unlocking
414  MonitorExitStub* stub = NULL;
415  if (method()->is_synchronized()) {
416    monitor_address(0, FrameMap::I1_opr);
417    stub = new MonitorExitStub(FrameMap::I1_opr, true, 0);
418    __ unlock_object(I3, I2, I1, *stub->entry());
419    __ bind(*stub->continuation());
420  }
421
422  if (compilation()->env()->dtrace_method_probes()) {
423    jobject2reg(method()->constant_encoding(), O0);
424    __ call(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), relocInfo::runtime_call_type);
425    __ delayed()->nop();
426  }
427
428  if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
429    __ mov(I0, O0);  // Restore the exception
430  }
431
432  // dispatch to the unwind logic
433  __ call(Runtime1::entry_for(Runtime1::unwind_exception_id), relocInfo::runtime_call_type);
434  __ delayed()->nop();
435
436  // Emit the slow path assembly
437  if (stub != NULL) {
438    stub->emit_code(this);
439  }
440
441  return offset;
442}
443
444
445int LIR_Assembler::emit_deopt_handler() {
446  // if the last instruction is a call (typically to do a throw which
447  // is coming at the end after block reordering) the return address
448  // must still point into the code area in order to avoid assertion
449  // failures when searching for the corresponding bci => add a nop
450  // (was bug 5/14/1999 - gri)
451  __ nop();
452
453  // generate code for deopt handler
454  ciMethod* method = compilation()->method();
455  address handler_base = __ start_a_stub(deopt_handler_size);
456  if (handler_base == NULL) {
457    // not enough space left for the handler
458    bailout("deopt handler overflow");
459    return -1;
460  }
461
462  int offset = code_offset();
463  AddressLiteral deopt_blob(SharedRuntime::deopt_blob()->unpack());
464  __ JUMP(deopt_blob, G3_scratch, 0); // sethi;jmp
465  __ delayed()->nop();
466  assert(code_offset() - offset <= deopt_handler_size, "overflow");
467  debug_only(__ stop("should have gone to the caller");)
468  __ end_a_stub();
469
470  return offset;
471}
472
473
474void LIR_Assembler::jobject2reg(jobject o, Register reg) {
475  if (o == NULL) {
476    __ set(NULL_WORD, reg);
477  } else {
478    int oop_index = __ oop_recorder()->find_index(o);
479    RelocationHolder rspec = oop_Relocation::spec(oop_index);
480    __ set(NULL_WORD, reg, rspec); // Will be set when the nmethod is created
481  }
482}
483
484
485void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo *info) {
486  // Allocate a new index in oop table to hold the oop once it's been patched
487  int oop_index = __ oop_recorder()->allocate_index((jobject)NULL);
488  PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id, oop_index);
489
490  AddressLiteral addrlit(NULL, oop_Relocation::spec(oop_index));
491  assert(addrlit.rspec().type() == relocInfo::oop_type, "must be an oop reloc");
492  // It may not seem necessary to use a sethi/add pair to load a NULL into dest, but the
493  // NULL will be dynamically patched later and the patched value may be large.  We must
494  // therefore generate the sethi/add as a placeholders
495  __ patchable_set(addrlit, reg);
496
497  patching_epilog(patch, lir_patch_normal, reg, info);
498}
499
500
501void LIR_Assembler::emit_op3(LIR_Op3* op) {
502  Register Rdividend = op->in_opr1()->as_register();
503  Register Rdivisor  = noreg;
504  Register Rscratch  = op->in_opr3()->as_register();
505  Register Rresult   = op->result_opr()->as_register();
506  int divisor = -1;
507
508  if (op->in_opr2()->is_register()) {
509    Rdivisor = op->in_opr2()->as_register();
510  } else {
511    divisor = op->in_opr2()->as_constant_ptr()->as_jint();
512    assert(Assembler::is_simm13(divisor), "can only handle simm13");
513  }
514
515  assert(Rdividend != Rscratch, "");
516  assert(Rdivisor  != Rscratch, "");
517  assert(op->code() == lir_idiv || op->code() == lir_irem, "Must be irem or idiv");
518
519  if (Rdivisor == noreg && is_power_of_2(divisor)) {
520    // convert division by a power of two into some shifts and logical operations
521    if (op->code() == lir_idiv) {
522      if (divisor == 2) {
523        __ srl(Rdividend, 31, Rscratch);
524      } else {
525        __ sra(Rdividend, 31, Rscratch);
526        __ and3(Rscratch, divisor - 1, Rscratch);
527      }
528      __ add(Rdividend, Rscratch, Rscratch);
529      __ sra(Rscratch, log2_intptr(divisor), Rresult);
530      return;
531    } else {
532      if (divisor == 2) {
533        __ srl(Rdividend, 31, Rscratch);
534      } else {
535        __ sra(Rdividend, 31, Rscratch);
536        __ and3(Rscratch, divisor - 1,Rscratch);
537      }
538      __ add(Rdividend, Rscratch, Rscratch);
539      __ andn(Rscratch, divisor - 1,Rscratch);
540      __ sub(Rdividend, Rscratch, Rresult);
541      return;
542    }
543  }
544
545  __ sra(Rdividend, 31, Rscratch);
546  __ wry(Rscratch);
547  if (!VM_Version::v9_instructions_work()) {
548    // v9 doesn't require these nops
549    __ nop();
550    __ nop();
551    __ nop();
552    __ nop();
553  }
554
555  add_debug_info_for_div0_here(op->info());
556
557  if (Rdivisor != noreg) {
558    __ sdivcc(Rdividend, Rdivisor, (op->code() == lir_idiv ? Rresult : Rscratch));
559  } else {
560    assert(Assembler::is_simm13(divisor), "can only handle simm13");
561    __ sdivcc(Rdividend, divisor, (op->code() == lir_idiv ? Rresult : Rscratch));
562  }
563
564  Label skip;
565  __ br(Assembler::overflowSet, true, Assembler::pn, skip);
566  __ delayed()->Assembler::sethi(0x80000000, (op->code() == lir_idiv ? Rresult : Rscratch));
567  __ bind(skip);
568
569  if (op->code() == lir_irem) {
570    if (Rdivisor != noreg) {
571      __ smul(Rscratch, Rdivisor, Rscratch);
572    } else {
573      __ smul(Rscratch, divisor, Rscratch);
574    }
575    __ sub(Rdividend, Rscratch, Rresult);
576  }
577}
578
579
580void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
581#ifdef ASSERT
582  assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label");
583  if (op->block() != NULL)  _branch_target_blocks.append(op->block());
584  if (op->ublock() != NULL) _branch_target_blocks.append(op->ublock());
585#endif
586  assert(op->info() == NULL, "shouldn't have CodeEmitInfo");
587
588  if (op->cond() == lir_cond_always) {
589    __ br(Assembler::always, false, Assembler::pt, *(op->label()));
590  } else if (op->code() == lir_cond_float_branch) {
591    assert(op->ublock() != NULL, "must have unordered successor");
592    bool is_unordered = (op->ublock() == op->block());
593    Assembler::Condition acond;
594    switch (op->cond()) {
595      case lir_cond_equal:         acond = Assembler::f_equal;    break;
596      case lir_cond_notEqual:      acond = Assembler::f_notEqual; break;
597      case lir_cond_less:          acond = (is_unordered ? Assembler::f_unorderedOrLess          : Assembler::f_less);           break;
598      case lir_cond_greater:       acond = (is_unordered ? Assembler::f_unorderedOrGreater       : Assembler::f_greater);        break;
599      case lir_cond_lessEqual:     acond = (is_unordered ? Assembler::f_unorderedOrLessOrEqual   : Assembler::f_lessOrEqual);    break;
600      case lir_cond_greaterEqual:  acond = (is_unordered ? Assembler::f_unorderedOrGreaterOrEqual: Assembler::f_greaterOrEqual); break;
601      default :                         ShouldNotReachHere();
602    };
603
604    if (!VM_Version::v9_instructions_work()) {
605      __ nop();
606    }
607    __ fb( acond, false, Assembler::pn, *(op->label()));
608  } else {
609    assert (op->code() == lir_branch, "just checking");
610
611    Assembler::Condition acond;
612    switch (op->cond()) {
613      case lir_cond_equal:        acond = Assembler::equal;                break;
614      case lir_cond_notEqual:     acond = Assembler::notEqual;             break;
615      case lir_cond_less:         acond = Assembler::less;                 break;
616      case lir_cond_lessEqual:    acond = Assembler::lessEqual;            break;
617      case lir_cond_greaterEqual: acond = Assembler::greaterEqual;         break;
618      case lir_cond_greater:      acond = Assembler::greater;              break;
619      case lir_cond_aboveEqual:   acond = Assembler::greaterEqualUnsigned; break;
620      case lir_cond_belowEqual:   acond = Assembler::lessEqualUnsigned;    break;
621      default:                         ShouldNotReachHere();
622    };
623
624    // sparc has different condition codes for testing 32-bit
625    // vs. 64-bit values.  We could always test xcc is we could
626    // guarantee that 32-bit loads always sign extended but that isn't
627    // true and since sign extension isn't free, it would impose a
628    // slight cost.
629#ifdef _LP64
630    if  (op->type() == T_INT) {
631      __ br(acond, false, Assembler::pn, *(op->label()));
632    } else
633#endif
634      __ brx(acond, false, Assembler::pn, *(op->label()));
635  }
636  // The peephole pass fills the delay slot
637}
638
639
640void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
641  Bytecodes::Code code = op->bytecode();
642  LIR_Opr dst = op->result_opr();
643
644  switch(code) {
645    case Bytecodes::_i2l: {
646      Register rlo  = dst->as_register_lo();
647      Register rhi  = dst->as_register_hi();
648      Register rval = op->in_opr()->as_register();
649#ifdef _LP64
650      __ sra(rval, 0, rlo);
651#else
652      __ mov(rval, rlo);
653      __ sra(rval, BitsPerInt-1, rhi);
654#endif
655      break;
656    }
657    case Bytecodes::_i2d:
658    case Bytecodes::_i2f: {
659      bool is_double = (code == Bytecodes::_i2d);
660      FloatRegister rdst = is_double ? dst->as_double_reg() : dst->as_float_reg();
661      FloatRegisterImpl::Width w = is_double ? FloatRegisterImpl::D : FloatRegisterImpl::S;
662      FloatRegister rsrc = op->in_opr()->as_float_reg();
663      if (rsrc != rdst) {
664        __ fmov(FloatRegisterImpl::S, rsrc, rdst);
665      }
666      __ fitof(w, rdst, rdst);
667      break;
668    }
669    case Bytecodes::_f2i:{
670      FloatRegister rsrc = op->in_opr()->as_float_reg();
671      Address       addr = frame_map()->address_for_slot(dst->single_stack_ix());
672      Label L;
673      // result must be 0 if value is NaN; test by comparing value to itself
674      __ fcmp(FloatRegisterImpl::S, Assembler::fcc0, rsrc, rsrc);
675      if (!VM_Version::v9_instructions_work()) {
676        __ nop();
677      }
678      __ fb(Assembler::f_unordered, true, Assembler::pn, L);
679      __ delayed()->st(G0, addr); // annuled if contents of rsrc is not NaN
680      __ ftoi(FloatRegisterImpl::S, rsrc, rsrc);
681      // move integer result from float register to int register
682      __ stf(FloatRegisterImpl::S, rsrc, addr.base(), addr.disp());
683      __ bind (L);
684      break;
685    }
686    case Bytecodes::_l2i: {
687      Register rlo  = op->in_opr()->as_register_lo();
688      Register rhi  = op->in_opr()->as_register_hi();
689      Register rdst = dst->as_register();
690#ifdef _LP64
691      __ sra(rlo, 0, rdst);
692#else
693      __ mov(rlo, rdst);
694#endif
695      break;
696    }
697    case Bytecodes::_d2f:
698    case Bytecodes::_f2d: {
699      bool is_double = (code == Bytecodes::_f2d);
700      assert((!is_double && dst->is_single_fpu()) || (is_double && dst->is_double_fpu()), "check");
701      LIR_Opr val = op->in_opr();
702      FloatRegister rval = (code == Bytecodes::_d2f) ? val->as_double_reg() : val->as_float_reg();
703      FloatRegister rdst = is_double ? dst->as_double_reg() : dst->as_float_reg();
704      FloatRegisterImpl::Width vw = is_double ? FloatRegisterImpl::S : FloatRegisterImpl::D;
705      FloatRegisterImpl::Width dw = is_double ? FloatRegisterImpl::D : FloatRegisterImpl::S;
706      __ ftof(vw, dw, rval, rdst);
707      break;
708    }
709    case Bytecodes::_i2s:
710    case Bytecodes::_i2b: {
711      Register rval = op->in_opr()->as_register();
712      Register rdst = dst->as_register();
713      int shift = (code == Bytecodes::_i2b) ? (BitsPerInt - T_BYTE_aelem_bytes * BitsPerByte) : (BitsPerInt - BitsPerShort);
714      __ sll (rval, shift, rdst);
715      __ sra (rdst, shift, rdst);
716      break;
717    }
718    case Bytecodes::_i2c: {
719      Register rval = op->in_opr()->as_register();
720      Register rdst = dst->as_register();
721      int shift = BitsPerInt - T_CHAR_aelem_bytes * BitsPerByte;
722      __ sll (rval, shift, rdst);
723      __ srl (rdst, shift, rdst);
724      break;
725    }
726
727    default: ShouldNotReachHere();
728  }
729}
730
731
732void LIR_Assembler::align_call(LIR_Code) {
733  // do nothing since all instructions are word aligned on sparc
734}
735
736
737void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) {
738  __ call(op->addr(), rtype);
739  // the peephole pass fills the delay slot
740}
741
742
743void LIR_Assembler::ic_call(LIR_OpJavaCall* op) {
744  RelocationHolder rspec = virtual_call_Relocation::spec(pc());
745  __ set_oop((jobject)Universe::non_oop_word(), G5_inline_cache_reg);
746  __ relocate(rspec);
747  __ call(op->addr(), relocInfo::none);
748  // the peephole pass fills the delay slot
749}
750
751
752void LIR_Assembler::vtable_call(LIR_OpJavaCall* op) {
753  add_debug_info_for_null_check_here(op->info());
754  __ ld_ptr(O0, oopDesc::klass_offset_in_bytes(), G3_scratch);
755  if (__ is_simm13(op->vtable_offset())) {
756    __ ld_ptr(G3_scratch, op->vtable_offset(), G5_method);
757  } else {
758    // This will generate 2 instructions
759    __ set(op->vtable_offset(), G5_method);
760    // ld_ptr, set_hi, set
761    __ ld_ptr(G3_scratch, G5_method, G5_method);
762  }
763  __ ld_ptr(G5_method, methodOopDesc::from_compiled_offset(), G3_scratch);
764  __ callr(G3_scratch, G0);
765  // the peephole pass fills the delay slot
766}
767
768
769void LIR_Assembler::preserve_SP(LIR_OpJavaCall* op) {
770  Unimplemented();
771}
772
773
774void LIR_Assembler::restore_SP(LIR_OpJavaCall* op) {
775  Unimplemented();
776}
777
778
779// load with 32-bit displacement
780int LIR_Assembler::load(Register s, int disp, Register d, BasicType ld_type, CodeEmitInfo *info) {
781  int load_offset = code_offset();
782  if (Assembler::is_simm13(disp)) {
783    if (info != NULL) add_debug_info_for_null_check_here(info);
784    switch(ld_type) {
785      case T_BOOLEAN: // fall through
786      case T_BYTE  : __ ldsb(s, disp, d); break;
787      case T_CHAR  : __ lduh(s, disp, d); break;
788      case T_SHORT : __ ldsh(s, disp, d); break;
789      case T_INT   : __ ld(s, disp, d); break;
790      case T_ADDRESS:// fall through
791      case T_ARRAY : // fall through
792      case T_OBJECT: __ ld_ptr(s, disp, d); break;
793      default      : ShouldNotReachHere();
794    }
795  } else {
796    __ set(disp, O7);
797    if (info != NULL) add_debug_info_for_null_check_here(info);
798    load_offset = code_offset();
799    switch(ld_type) {
800      case T_BOOLEAN: // fall through
801      case T_BYTE  : __ ldsb(s, O7, d); break;
802      case T_CHAR  : __ lduh(s, O7, d); break;
803      case T_SHORT : __ ldsh(s, O7, d); break;
804      case T_INT   : __ ld(s, O7, d); break;
805      case T_ADDRESS:// fall through
806      case T_ARRAY : // fall through
807      case T_OBJECT: __ ld_ptr(s, O7, d); break;
808      default      : ShouldNotReachHere();
809    }
810  }
811  if (ld_type == T_ARRAY || ld_type == T_OBJECT) __ verify_oop(d);
812  return load_offset;
813}
814
815
816// store with 32-bit displacement
817void LIR_Assembler::store(Register value, Register base, int offset, BasicType type, CodeEmitInfo *info) {
818  if (Assembler::is_simm13(offset)) {
819    if (info != NULL)  add_debug_info_for_null_check_here(info);
820    switch (type) {
821      case T_BOOLEAN: // fall through
822      case T_BYTE  : __ stb(value, base, offset); break;
823      case T_CHAR  : __ sth(value, base, offset); break;
824      case T_SHORT : __ sth(value, base, offset); break;
825      case T_INT   : __ stw(value, base, offset); break;
826      case T_ADDRESS:// fall through
827      case T_ARRAY : // fall through
828      case T_OBJECT: __ st_ptr(value, base, offset); break;
829      default      : ShouldNotReachHere();
830    }
831  } else {
832    __ set(offset, O7);
833    if (info != NULL) add_debug_info_for_null_check_here(info);
834    switch (type) {
835      case T_BOOLEAN: // fall through
836      case T_BYTE  : __ stb(value, base, O7); break;
837      case T_CHAR  : __ sth(value, base, O7); break;
838      case T_SHORT : __ sth(value, base, O7); break;
839      case T_INT   : __ stw(value, base, O7); break;
840      case T_ADDRESS:// fall through
841      case T_ARRAY : //fall through
842      case T_OBJECT: __ st_ptr(value, base, O7); break;
843      default      : ShouldNotReachHere();
844    }
845  }
846  // Note: Do the store before verification as the code might be patched!
847  if (type == T_ARRAY || type == T_OBJECT) __ verify_oop(value);
848}
849
850
851// load float with 32-bit displacement
852void LIR_Assembler::load(Register s, int disp, FloatRegister d, BasicType ld_type, CodeEmitInfo *info) {
853  FloatRegisterImpl::Width w;
854  switch(ld_type) {
855    case T_FLOAT : w = FloatRegisterImpl::S; break;
856    case T_DOUBLE: w = FloatRegisterImpl::D; break;
857    default      : ShouldNotReachHere();
858  }
859
860  if (Assembler::is_simm13(disp)) {
861    if (info != NULL) add_debug_info_for_null_check_here(info);
862    if (disp % BytesPerLong != 0 && w == FloatRegisterImpl::D) {
863      __ ldf(FloatRegisterImpl::S, s, disp + BytesPerWord, d->successor());
864      __ ldf(FloatRegisterImpl::S, s, disp               , d);
865    } else {
866      __ ldf(w, s, disp, d);
867    }
868  } else {
869    __ set(disp, O7);
870    if (info != NULL) add_debug_info_for_null_check_here(info);
871    __ ldf(w, s, O7, d);
872  }
873}
874
875
876// store float with 32-bit displacement
877void LIR_Assembler::store(FloatRegister value, Register base, int offset, BasicType type, CodeEmitInfo *info) {
878  FloatRegisterImpl::Width w;
879  switch(type) {
880    case T_FLOAT : w = FloatRegisterImpl::S; break;
881    case T_DOUBLE: w = FloatRegisterImpl::D; break;
882    default      : ShouldNotReachHere();
883  }
884
885  if (Assembler::is_simm13(offset)) {
886    if (info != NULL) add_debug_info_for_null_check_here(info);
887    if (w == FloatRegisterImpl::D && offset % BytesPerLong != 0) {
888      __ stf(FloatRegisterImpl::S, value->successor(), base, offset + BytesPerWord);
889      __ stf(FloatRegisterImpl::S, value             , base, offset);
890    } else {
891      __ stf(w, value, base, offset);
892    }
893  } else {
894    __ set(offset, O7);
895    if (info != NULL) add_debug_info_for_null_check_here(info);
896    __ stf(w, value, O7, base);
897  }
898}
899
900
901int LIR_Assembler::store(LIR_Opr from_reg, Register base, int offset, BasicType type, bool unaligned) {
902  int store_offset;
903  if (!Assembler::is_simm13(offset + (type == T_LONG) ? wordSize : 0)) {
904    assert(!unaligned, "can't handle this");
905    // for offsets larger than a simm13 we setup the offset in O7
906    __ set(offset, O7);
907    store_offset = store(from_reg, base, O7, type);
908  } else {
909    if (type == T_ARRAY || type == T_OBJECT) __ verify_oop(from_reg->as_register());
910    store_offset = code_offset();
911    switch (type) {
912      case T_BOOLEAN: // fall through
913      case T_BYTE  : __ stb(from_reg->as_register(), base, offset); break;
914      case T_CHAR  : __ sth(from_reg->as_register(), base, offset); break;
915      case T_SHORT : __ sth(from_reg->as_register(), base, offset); break;
916      case T_INT   : __ stw(from_reg->as_register(), base, offset); break;
917      case T_LONG  :
918#ifdef _LP64
919        if (unaligned || PatchALot) {
920          __ srax(from_reg->as_register_lo(), 32, O7);
921          __ stw(from_reg->as_register_lo(), base, offset + lo_word_offset_in_bytes);
922          __ stw(O7,                         base, offset + hi_word_offset_in_bytes);
923        } else {
924          __ stx(from_reg->as_register_lo(), base, offset);
925        }
926#else
927        assert(Assembler::is_simm13(offset + 4), "must be");
928        __ stw(from_reg->as_register_lo(), base, offset + lo_word_offset_in_bytes);
929        __ stw(from_reg->as_register_hi(), base, offset + hi_word_offset_in_bytes);
930#endif
931        break;
932      case T_ADDRESS:// fall through
933      case T_ARRAY : // fall through
934      case T_OBJECT: __ st_ptr(from_reg->as_register(), base, offset); break;
935      case T_FLOAT : __ stf(FloatRegisterImpl::S, from_reg->as_float_reg(), base, offset); break;
936      case T_DOUBLE:
937        {
938          FloatRegister reg = from_reg->as_double_reg();
939          // split unaligned stores
940          if (unaligned || PatchALot) {
941            assert(Assembler::is_simm13(offset + 4), "must be");
942            __ stf(FloatRegisterImpl::S, reg->successor(), base, offset + 4);
943            __ stf(FloatRegisterImpl::S, reg,              base, offset);
944          } else {
945            __ stf(FloatRegisterImpl::D, reg, base, offset);
946          }
947          break;
948        }
949      default      : ShouldNotReachHere();
950    }
951  }
952  return store_offset;
953}
954
955
956int LIR_Assembler::store(LIR_Opr from_reg, Register base, Register disp, BasicType type) {
957  if (type == T_ARRAY || type == T_OBJECT) __ verify_oop(from_reg->as_register());
958  int store_offset = code_offset();
959  switch (type) {
960    case T_BOOLEAN: // fall through
961    case T_BYTE  : __ stb(from_reg->as_register(), base, disp); break;
962    case T_CHAR  : __ sth(from_reg->as_register(), base, disp); break;
963    case T_SHORT : __ sth(from_reg->as_register(), base, disp); break;
964    case T_INT   : __ stw(from_reg->as_register(), base, disp); break;
965    case T_LONG  :
966#ifdef _LP64
967      __ stx(from_reg->as_register_lo(), base, disp);
968#else
969      assert(from_reg->as_register_hi()->successor() == from_reg->as_register_lo(), "must match");
970      __ std(from_reg->as_register_hi(), base, disp);
971#endif
972      break;
973    case T_ADDRESS:// fall through
974    case T_ARRAY : // fall through
975    case T_OBJECT: __ st_ptr(from_reg->as_register(), base, disp); break;
976    case T_FLOAT : __ stf(FloatRegisterImpl::S, from_reg->as_float_reg(), base, disp); break;
977    case T_DOUBLE: __ stf(FloatRegisterImpl::D, from_reg->as_double_reg(), base, disp); break;
978    default      : ShouldNotReachHere();
979  }
980  return store_offset;
981}
982
983
984int LIR_Assembler::load(Register base, int offset, LIR_Opr to_reg, BasicType type, bool unaligned) {
985  int load_offset;
986  if (!Assembler::is_simm13(offset + (type == T_LONG) ? wordSize : 0)) {
987    assert(base != O7, "destroying register");
988    assert(!unaligned, "can't handle this");
989    // for offsets larger than a simm13 we setup the offset in O7
990    __ set(offset, O7);
991    load_offset = load(base, O7, to_reg, type);
992  } else {
993    load_offset = code_offset();
994    switch(type) {
995      case T_BOOLEAN: // fall through
996      case T_BYTE  : __ ldsb(base, offset, to_reg->as_register()); break;
997      case T_CHAR  : __ lduh(base, offset, to_reg->as_register()); break;
998      case T_SHORT : __ ldsh(base, offset, to_reg->as_register()); break;
999      case T_INT   : __ ld(base, offset, to_reg->as_register()); break;
1000      case T_LONG  :
1001        if (!unaligned) {
1002#ifdef _LP64
1003          __ ldx(base, offset, to_reg->as_register_lo());
1004#else
1005          assert(to_reg->as_register_hi()->successor() == to_reg->as_register_lo(),
1006                 "must be sequential");
1007          __ ldd(base, offset, to_reg->as_register_hi());
1008#endif
1009        } else {
1010#ifdef _LP64
1011          assert(base != to_reg->as_register_lo(), "can't handle this");
1012          assert(O7 != to_reg->as_register_lo(), "can't handle this");
1013          __ ld(base, offset + hi_word_offset_in_bytes, to_reg->as_register_lo());
1014          __ lduw(base, offset + lo_word_offset_in_bytes, O7); // in case O7 is base or offset, use it last
1015          __ sllx(to_reg->as_register_lo(), 32, to_reg->as_register_lo());
1016          __ or3(to_reg->as_register_lo(), O7, to_reg->as_register_lo());
1017#else
1018          if (base == to_reg->as_register_lo()) {
1019            __ ld(base, offset + hi_word_offset_in_bytes, to_reg->as_register_hi());
1020            __ ld(base, offset + lo_word_offset_in_bytes, to_reg->as_register_lo());
1021          } else {
1022            __ ld(base, offset + lo_word_offset_in_bytes, to_reg->as_register_lo());
1023            __ ld(base, offset + hi_word_offset_in_bytes, to_reg->as_register_hi());
1024          }
1025#endif
1026        }
1027        break;
1028      case T_ADDRESS:// fall through
1029      case T_ARRAY : // fall through
1030      case T_OBJECT: __ ld_ptr(base, offset, to_reg->as_register()); break;
1031      case T_FLOAT:  __ ldf(FloatRegisterImpl::S, base, offset, to_reg->as_float_reg()); break;
1032      case T_DOUBLE:
1033        {
1034          FloatRegister reg = to_reg->as_double_reg();
1035          // split unaligned loads
1036          if (unaligned || PatchALot) {
1037            __ ldf(FloatRegisterImpl::S, base, offset + 4, reg->successor());
1038            __ ldf(FloatRegisterImpl::S, base, offset,     reg);
1039          } else {
1040            __ ldf(FloatRegisterImpl::D, base, offset, to_reg->as_double_reg());
1041          }
1042          break;
1043        }
1044      default      : ShouldNotReachHere();
1045    }
1046    if (type == T_ARRAY || type == T_OBJECT) __ verify_oop(to_reg->as_register());
1047  }
1048  return load_offset;
1049}
1050
1051
1052int LIR_Assembler::load(Register base, Register disp, LIR_Opr to_reg, BasicType type) {
1053  int load_offset = code_offset();
1054  switch(type) {
1055    case T_BOOLEAN: // fall through
1056    case T_BYTE  : __ ldsb(base, disp, to_reg->as_register()); break;
1057    case T_CHAR  : __ lduh(base, disp, to_reg->as_register()); break;
1058    case T_SHORT : __ ldsh(base, disp, to_reg->as_register()); break;
1059    case T_INT   : __ ld(base, disp, to_reg->as_register()); break;
1060    case T_ADDRESS:// fall through
1061    case T_ARRAY : // fall through
1062    case T_OBJECT: __ ld_ptr(base, disp, to_reg->as_register()); break;
1063    case T_FLOAT:  __ ldf(FloatRegisterImpl::S, base, disp, to_reg->as_float_reg()); break;
1064    case T_DOUBLE: __ ldf(FloatRegisterImpl::D, base, disp, to_reg->as_double_reg()); break;
1065    case T_LONG  :
1066#ifdef _LP64
1067      __ ldx(base, disp, to_reg->as_register_lo());
1068#else
1069      assert(to_reg->as_register_hi()->successor() == to_reg->as_register_lo(),
1070             "must be sequential");
1071      __ ldd(base, disp, to_reg->as_register_hi());
1072#endif
1073      break;
1074    default      : ShouldNotReachHere();
1075  }
1076  if (type == T_ARRAY || type == T_OBJECT) __ verify_oop(to_reg->as_register());
1077  return load_offset;
1078}
1079
1080
1081// load/store with an Address
1082void LIR_Assembler::load(const Address& a, Register d,  BasicType ld_type, CodeEmitInfo *info, int offset) {
1083  load(a.base(), a.disp() + offset, d, ld_type, info);
1084}
1085
1086
1087void LIR_Assembler::store(Register value, const Address& dest, BasicType type, CodeEmitInfo *info, int offset) {
1088  store(value, dest.base(), dest.disp() + offset, type, info);
1089}
1090
1091
1092// loadf/storef with an Address
1093void LIR_Assembler::load(const Address& a, FloatRegister d, BasicType ld_type, CodeEmitInfo *info, int offset) {
1094  load(a.base(), a.disp() + offset, d, ld_type, info);
1095}
1096
1097
1098void LIR_Assembler::store(FloatRegister value, const Address& dest, BasicType type, CodeEmitInfo *info, int offset) {
1099  store(value, dest.base(), dest.disp() + offset, type, info);
1100}
1101
1102
1103// load/store with an Address
1104void LIR_Assembler::load(LIR_Address* a, Register d,  BasicType ld_type, CodeEmitInfo *info) {
1105  load(as_Address(a), d, ld_type, info);
1106}
1107
1108
1109void LIR_Assembler::store(Register value, LIR_Address* dest, BasicType type, CodeEmitInfo *info) {
1110  store(value, as_Address(dest), type, info);
1111}
1112
1113
1114// loadf/storef with an Address
1115void LIR_Assembler::load(LIR_Address* a, FloatRegister d, BasicType ld_type, CodeEmitInfo *info) {
1116  load(as_Address(a), d, ld_type, info);
1117}
1118
1119
1120void LIR_Assembler::store(FloatRegister value, LIR_Address* dest, BasicType type, CodeEmitInfo *info) {
1121  store(value, as_Address(dest), type, info);
1122}
1123
1124
1125void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
1126  LIR_Const* c = src->as_constant_ptr();
1127  switch (c->type()) {
1128    case T_INT:
1129    case T_FLOAT:
1130    case T_ADDRESS: {
1131      Register src_reg = O7;
1132      int value = c->as_jint_bits();
1133      if (value == 0) {
1134        src_reg = G0;
1135      } else {
1136        __ set(value, O7);
1137      }
1138      Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
1139      __ stw(src_reg, addr.base(), addr.disp());
1140      break;
1141    }
1142    case T_OBJECT: {
1143      Register src_reg = O7;
1144      jobject2reg(c->as_jobject(), src_reg);
1145      Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
1146      __ st_ptr(src_reg, addr.base(), addr.disp());
1147      break;
1148    }
1149    case T_LONG:
1150    case T_DOUBLE: {
1151      Address addr = frame_map()->address_for_double_slot(dest->double_stack_ix());
1152
1153      Register tmp = O7;
1154      int value_lo = c->as_jint_lo_bits();
1155      if (value_lo == 0) {
1156        tmp = G0;
1157      } else {
1158        __ set(value_lo, O7);
1159      }
1160      __ stw(tmp, addr.base(), addr.disp() + lo_word_offset_in_bytes);
1161      int value_hi = c->as_jint_hi_bits();
1162      if (value_hi == 0) {
1163        tmp = G0;
1164      } else {
1165        __ set(value_hi, O7);
1166      }
1167      __ stw(tmp, addr.base(), addr.disp() + hi_word_offset_in_bytes);
1168      break;
1169    }
1170    default:
1171      Unimplemented();
1172  }
1173}
1174
1175
1176void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info ) {
1177  LIR_Const* c = src->as_constant_ptr();
1178  LIR_Address* addr     = dest->as_address_ptr();
1179  Register base = addr->base()->as_pointer_register();
1180
1181  if (info != NULL) {
1182    add_debug_info_for_null_check_here(info);
1183  }
1184  switch (c->type()) {
1185    case T_INT:
1186    case T_FLOAT:
1187    case T_ADDRESS: {
1188      LIR_Opr tmp = FrameMap::O7_opr;
1189      int value = c->as_jint_bits();
1190      if (value == 0) {
1191        tmp = FrameMap::G0_opr;
1192      } else if (Assembler::is_simm13(value)) {
1193        __ set(value, O7);
1194      }
1195      if (addr->index()->is_valid()) {
1196        assert(addr->disp() == 0, "must be zero");
1197        store(tmp, base, addr->index()->as_pointer_register(), type);
1198      } else {
1199        assert(Assembler::is_simm13(addr->disp()), "can't handle larger addresses");
1200        store(tmp, base, addr->disp(), type);
1201      }
1202      break;
1203    }
1204    case T_LONG:
1205    case T_DOUBLE: {
1206      assert(!addr->index()->is_valid(), "can't handle reg reg address here");
1207      assert(Assembler::is_simm13(addr->disp()) &&
1208             Assembler::is_simm13(addr->disp() + 4), "can't handle larger addresses");
1209
1210      Register tmp = O7;
1211      int value_lo = c->as_jint_lo_bits();
1212      if (value_lo == 0) {
1213        tmp = G0;
1214      } else {
1215        __ set(value_lo, O7);
1216      }
1217      store(tmp, base, addr->disp() + lo_word_offset_in_bytes, T_INT);
1218      int value_hi = c->as_jint_hi_bits();
1219      if (value_hi == 0) {
1220        tmp = G0;
1221      } else {
1222        __ set(value_hi, O7);
1223      }
1224      store(tmp, base, addr->disp() + hi_word_offset_in_bytes, T_INT);
1225      break;
1226    }
1227    case T_OBJECT: {
1228      jobject obj = c->as_jobject();
1229      LIR_Opr tmp;
1230      if (obj == NULL) {
1231        tmp = FrameMap::G0_opr;
1232      } else {
1233        tmp = FrameMap::O7_opr;
1234        jobject2reg(c->as_jobject(), O7);
1235      }
1236      // handle either reg+reg or reg+disp address
1237      if (addr->index()->is_valid()) {
1238        assert(addr->disp() == 0, "must be zero");
1239        store(tmp, base, addr->index()->as_pointer_register(), type);
1240      } else {
1241        assert(Assembler::is_simm13(addr->disp()), "can't handle larger addresses");
1242        store(tmp, base, addr->disp(), type);
1243      }
1244
1245      break;
1246    }
1247    default:
1248      Unimplemented();
1249  }
1250}
1251
1252
1253void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
1254  LIR_Const* c = src->as_constant_ptr();
1255  LIR_Opr to_reg = dest;
1256
1257  switch (c->type()) {
1258    case T_INT:
1259    case T_ADDRESS:
1260      {
1261        jint con = c->as_jint();
1262        if (to_reg->is_single_cpu()) {
1263          assert(patch_code == lir_patch_none, "no patching handled here");
1264          __ set(con, to_reg->as_register());
1265        } else {
1266          ShouldNotReachHere();
1267          assert(to_reg->is_single_fpu(), "wrong register kind");
1268
1269          __ set(con, O7);
1270          Address temp_slot(SP, (frame::register_save_words * wordSize) + STACK_BIAS);
1271          __ st(O7, temp_slot);
1272          __ ldf(FloatRegisterImpl::S, temp_slot, to_reg->as_float_reg());
1273        }
1274      }
1275      break;
1276
1277    case T_LONG:
1278      {
1279        jlong con = c->as_jlong();
1280
1281        if (to_reg->is_double_cpu()) {
1282#ifdef _LP64
1283          __ set(con,  to_reg->as_register_lo());
1284#else
1285          __ set(low(con),  to_reg->as_register_lo());
1286          __ set(high(con), to_reg->as_register_hi());
1287#endif
1288#ifdef _LP64
1289        } else if (to_reg->is_single_cpu()) {
1290          __ set(con, to_reg->as_register());
1291#endif
1292        } else {
1293          ShouldNotReachHere();
1294          assert(to_reg->is_double_fpu(), "wrong register kind");
1295          Address temp_slot_lo(SP, ((frame::register_save_words  ) * wordSize) + STACK_BIAS);
1296          Address temp_slot_hi(SP, ((frame::register_save_words) * wordSize) + (longSize/2) + STACK_BIAS);
1297          __ set(low(con),  O7);
1298          __ st(O7, temp_slot_lo);
1299          __ set(high(con), O7);
1300          __ st(O7, temp_slot_hi);
1301          __ ldf(FloatRegisterImpl::D, temp_slot_lo, to_reg->as_double_reg());
1302        }
1303      }
1304      break;
1305
1306    case T_OBJECT:
1307      {
1308        if (patch_code == lir_patch_none) {
1309          jobject2reg(c->as_jobject(), to_reg->as_register());
1310        } else {
1311          jobject2reg_with_patching(to_reg->as_register(), info);
1312        }
1313      }
1314      break;
1315
1316    case T_FLOAT:
1317      {
1318        address const_addr = __ float_constant(c->as_jfloat());
1319        if (const_addr == NULL) {
1320          bailout("const section overflow");
1321          break;
1322        }
1323        RelocationHolder rspec = internal_word_Relocation::spec(const_addr);
1324        AddressLiteral const_addrlit(const_addr, rspec);
1325        if (to_reg->is_single_fpu()) {
1326          __ patchable_sethi(const_addrlit, O7);
1327          __ relocate(rspec);
1328          __ ldf(FloatRegisterImpl::S, O7, const_addrlit.low10(), to_reg->as_float_reg());
1329
1330        } else {
1331          assert(to_reg->is_single_cpu(), "Must be a cpu register.");
1332
1333          __ set(const_addrlit, O7);
1334          load(O7, 0, to_reg->as_register(), T_INT);
1335        }
1336      }
1337      break;
1338
1339    case T_DOUBLE:
1340      {
1341        address const_addr = __ double_constant(c->as_jdouble());
1342        if (const_addr == NULL) {
1343          bailout("const section overflow");
1344          break;
1345        }
1346        RelocationHolder rspec = internal_word_Relocation::spec(const_addr);
1347
1348        if (to_reg->is_double_fpu()) {
1349          AddressLiteral const_addrlit(const_addr, rspec);
1350          __ patchable_sethi(const_addrlit, O7);
1351          __ relocate(rspec);
1352          __ ldf (FloatRegisterImpl::D, O7, const_addrlit.low10(), to_reg->as_double_reg());
1353        } else {
1354          assert(to_reg->is_double_cpu(), "Must be a long register.");
1355#ifdef _LP64
1356          __ set(jlong_cast(c->as_jdouble()), to_reg->as_register_lo());
1357#else
1358          __ set(low(jlong_cast(c->as_jdouble())), to_reg->as_register_lo());
1359          __ set(high(jlong_cast(c->as_jdouble())), to_reg->as_register_hi());
1360#endif
1361        }
1362
1363      }
1364      break;
1365
1366    default:
1367      ShouldNotReachHere();
1368  }
1369}
1370
1371Address LIR_Assembler::as_Address(LIR_Address* addr) {
1372  Register reg = addr->base()->as_register();
1373  return Address(reg, addr->disp());
1374}
1375
1376
1377void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
1378  switch (type) {
1379    case T_INT:
1380    case T_FLOAT: {
1381      Register tmp = O7;
1382      Address from = frame_map()->address_for_slot(src->single_stack_ix());
1383      Address to   = frame_map()->address_for_slot(dest->single_stack_ix());
1384      __ lduw(from.base(), from.disp(), tmp);
1385      __ stw(tmp, to.base(), to.disp());
1386      break;
1387    }
1388    case T_OBJECT: {
1389      Register tmp = O7;
1390      Address from = frame_map()->address_for_slot(src->single_stack_ix());
1391      Address to   = frame_map()->address_for_slot(dest->single_stack_ix());
1392      __ ld_ptr(from.base(), from.disp(), tmp);
1393      __ st_ptr(tmp, to.base(), to.disp());
1394      break;
1395    }
1396    case T_LONG:
1397    case T_DOUBLE: {
1398      Register tmp = O7;
1399      Address from = frame_map()->address_for_double_slot(src->double_stack_ix());
1400      Address to   = frame_map()->address_for_double_slot(dest->double_stack_ix());
1401      __ lduw(from.base(), from.disp(), tmp);
1402      __ stw(tmp, to.base(), to.disp());
1403      __ lduw(from.base(), from.disp() + 4, tmp);
1404      __ stw(tmp, to.base(), to.disp() + 4);
1405      break;
1406    }
1407
1408    default:
1409      ShouldNotReachHere();
1410  }
1411}
1412
1413
1414Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
1415  Address base = as_Address(addr);
1416  return Address(base.base(), base.disp() + hi_word_offset_in_bytes);
1417}
1418
1419
1420Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
1421  Address base = as_Address(addr);
1422  return Address(base.base(), base.disp() + lo_word_offset_in_bytes);
1423}
1424
1425
1426void LIR_Assembler::mem2reg(LIR_Opr src_opr, LIR_Opr dest, BasicType type,
1427                            LIR_PatchCode patch_code, CodeEmitInfo* info, bool unaligned) {
1428
1429  LIR_Address* addr = src_opr->as_address_ptr();
1430  LIR_Opr to_reg = dest;
1431
1432  Register src = addr->base()->as_pointer_register();
1433  Register disp_reg = noreg;
1434  int disp_value = addr->disp();
1435  bool needs_patching = (patch_code != lir_patch_none);
1436
1437  if (addr->base()->type() == T_OBJECT) {
1438    __ verify_oop(src);
1439  }
1440
1441  PatchingStub* patch = NULL;
1442  if (needs_patching) {
1443    patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1444    assert(!to_reg->is_double_cpu() ||
1445           patch_code == lir_patch_none ||
1446           patch_code == lir_patch_normal, "patching doesn't match register");
1447  }
1448
1449  if (addr->index()->is_illegal()) {
1450    if (!Assembler::is_simm13(disp_value) && (!unaligned || Assembler::is_simm13(disp_value + 4))) {
1451      if (needs_patching) {
1452        __ patchable_set(0, O7);
1453      } else {
1454        __ set(disp_value, O7);
1455      }
1456      disp_reg = O7;
1457    }
1458  } else if (unaligned || PatchALot) {
1459    __ add(src, addr->index()->as_register(), O7);
1460    src = O7;
1461  } else {
1462    disp_reg = addr->index()->as_pointer_register();
1463    assert(disp_value == 0, "can't handle 3 operand addresses");
1464  }
1465
1466  // remember the offset of the load.  The patching_epilog must be done
1467  // before the call to add_debug_info, otherwise the PcDescs don't get
1468  // entered in increasing order.
1469  int offset = code_offset();
1470
1471  assert(disp_reg != noreg || Assembler::is_simm13(disp_value), "should have set this up");
1472  if (disp_reg == noreg) {
1473    offset = load(src, disp_value, to_reg, type, unaligned);
1474  } else {
1475    assert(!unaligned, "can't handle this");
1476    offset = load(src, disp_reg, to_reg, type);
1477  }
1478
1479  if (patch != NULL) {
1480    patching_epilog(patch, patch_code, src, info);
1481  }
1482
1483  if (info != NULL) add_debug_info_for_null_check(offset, info);
1484}
1485
1486
1487void LIR_Assembler::prefetchr(LIR_Opr src) {
1488  LIR_Address* addr = src->as_address_ptr();
1489  Address from_addr = as_Address(addr);
1490
1491  if (VM_Version::has_v9()) {
1492    __ prefetch(from_addr, Assembler::severalReads);
1493  }
1494}
1495
1496
1497void LIR_Assembler::prefetchw(LIR_Opr src) {
1498  LIR_Address* addr = src->as_address_ptr();
1499  Address from_addr = as_Address(addr);
1500
1501  if (VM_Version::has_v9()) {
1502    __ prefetch(from_addr, Assembler::severalWritesAndPossiblyReads);
1503  }
1504}
1505
1506
1507void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
1508  Address addr;
1509  if (src->is_single_word()) {
1510    addr = frame_map()->address_for_slot(src->single_stack_ix());
1511  } else if (src->is_double_word())  {
1512    addr = frame_map()->address_for_double_slot(src->double_stack_ix());
1513  }
1514
1515  bool unaligned = (addr.disp() - STACK_BIAS) % 8 != 0;
1516  load(addr.base(), addr.disp(), dest, dest->type(), unaligned);
1517}
1518
1519
1520void LIR_Assembler::reg2stack(LIR_Opr from_reg, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
1521  Address addr;
1522  if (dest->is_single_word()) {
1523    addr = frame_map()->address_for_slot(dest->single_stack_ix());
1524  } else if (dest->is_double_word())  {
1525    addr = frame_map()->address_for_slot(dest->double_stack_ix());
1526  }
1527  bool unaligned = (addr.disp() - STACK_BIAS) % 8 != 0;
1528  store(from_reg, addr.base(), addr.disp(), from_reg->type(), unaligned);
1529}
1530
1531
1532void LIR_Assembler::reg2reg(LIR_Opr from_reg, LIR_Opr to_reg) {
1533  if (from_reg->is_float_kind() && to_reg->is_float_kind()) {
1534    if (from_reg->is_double_fpu()) {
1535      // double to double moves
1536      assert(to_reg->is_double_fpu(), "should match");
1537      __ fmov(FloatRegisterImpl::D, from_reg->as_double_reg(), to_reg->as_double_reg());
1538    } else {
1539      // float to float moves
1540      assert(to_reg->is_single_fpu(), "should match");
1541      __ fmov(FloatRegisterImpl::S, from_reg->as_float_reg(), to_reg->as_float_reg());
1542    }
1543  } else if (!from_reg->is_float_kind() && !to_reg->is_float_kind()) {
1544    if (from_reg->is_double_cpu()) {
1545#ifdef _LP64
1546      __ mov(from_reg->as_pointer_register(), to_reg->as_pointer_register());
1547#else
1548      assert(to_reg->is_double_cpu() &&
1549             from_reg->as_register_hi() != to_reg->as_register_lo() &&
1550             from_reg->as_register_lo() != to_reg->as_register_hi(),
1551             "should both be long and not overlap");
1552      // long to long moves
1553      __ mov(from_reg->as_register_hi(), to_reg->as_register_hi());
1554      __ mov(from_reg->as_register_lo(), to_reg->as_register_lo());
1555#endif
1556#ifdef _LP64
1557    } else if (to_reg->is_double_cpu()) {
1558      // int to int moves
1559      __ mov(from_reg->as_register(), to_reg->as_register_lo());
1560#endif
1561    } else {
1562      // int to int moves
1563      __ mov(from_reg->as_register(), to_reg->as_register());
1564    }
1565  } else {
1566    ShouldNotReachHere();
1567  }
1568  if (to_reg->type() == T_OBJECT || to_reg->type() == T_ARRAY) {
1569    __ verify_oop(to_reg->as_register());
1570  }
1571}
1572
1573
1574void LIR_Assembler::reg2mem(LIR_Opr from_reg, LIR_Opr dest, BasicType type,
1575                            LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack,
1576                            bool unaligned) {
1577  LIR_Address* addr = dest->as_address_ptr();
1578
1579  Register src = addr->base()->as_pointer_register();
1580  Register disp_reg = noreg;
1581  int disp_value = addr->disp();
1582  bool needs_patching = (patch_code != lir_patch_none);
1583
1584  if (addr->base()->is_oop_register()) {
1585    __ verify_oop(src);
1586  }
1587
1588  PatchingStub* patch = NULL;
1589  if (needs_patching) {
1590    patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1591    assert(!from_reg->is_double_cpu() ||
1592           patch_code == lir_patch_none ||
1593           patch_code == lir_patch_normal, "patching doesn't match register");
1594  }
1595
1596  if (addr->index()->is_illegal()) {
1597    if (!Assembler::is_simm13(disp_value) && (!unaligned || Assembler::is_simm13(disp_value + 4))) {
1598      if (needs_patching) {
1599        __ patchable_set(0, O7);
1600      } else {
1601        __ set(disp_value, O7);
1602      }
1603      disp_reg = O7;
1604    }
1605  } else if (unaligned || PatchALot) {
1606    __ add(src, addr->index()->as_register(), O7);
1607    src = O7;
1608  } else {
1609    disp_reg = addr->index()->as_pointer_register();
1610    assert(disp_value == 0, "can't handle 3 operand addresses");
1611  }
1612
1613  // remember the offset of the store.  The patching_epilog must be done
1614  // before the call to add_debug_info_for_null_check, otherwise the PcDescs don't get
1615  // entered in increasing order.
1616  int offset;
1617
1618  assert(disp_reg != noreg || Assembler::is_simm13(disp_value), "should have set this up");
1619  if (disp_reg == noreg) {
1620    offset = store(from_reg, src, disp_value, type, unaligned);
1621  } else {
1622    assert(!unaligned, "can't handle this");
1623    offset = store(from_reg, src, disp_reg, type);
1624  }
1625
1626  if (patch != NULL) {
1627    patching_epilog(patch, patch_code, src, info);
1628  }
1629
1630  if (info != NULL) add_debug_info_for_null_check(offset, info);
1631}
1632
1633
1634void LIR_Assembler::return_op(LIR_Opr result) {
1635  // the poll may need a register so just pick one that isn't the return register
1636#ifdef TIERED
1637  if (result->type_field() == LIR_OprDesc::long_type) {
1638    // Must move the result to G1
1639    // Must leave proper result in O0,O1 and G1 (TIERED only)
1640    __ sllx(I0, 32, G1);          // Shift bits into high G1
1641    __ srl (I1, 0, I1);           // Zero extend O1 (harmless?)
1642    __ or3 (I1, G1, G1);          // OR 64 bits into G1
1643  }
1644#endif // TIERED
1645  __ set((intptr_t)os::get_polling_page(), L0);
1646  __ relocate(relocInfo::poll_return_type);
1647  __ ld_ptr(L0, 0, G0);
1648  __ ret();
1649  __ delayed()->restore();
1650}
1651
1652
1653int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
1654  __ set((intptr_t)os::get_polling_page(), tmp->as_register());
1655  if (info != NULL) {
1656    add_debug_info_for_branch(info);
1657  } else {
1658    __ relocate(relocInfo::poll_type);
1659  }
1660
1661  int offset = __ offset();
1662  __ ld_ptr(tmp->as_register(), 0, G0);
1663
1664  return offset;
1665}
1666
1667
1668void LIR_Assembler::emit_static_call_stub() {
1669  address call_pc = __ pc();
1670  address stub = __ start_a_stub(call_stub_size);
1671  if (stub == NULL) {
1672    bailout("static call stub overflow");
1673    return;
1674  }
1675
1676  int start = __ offset();
1677  __ relocate(static_stub_Relocation::spec(call_pc));
1678
1679  __ set_oop(NULL, G5);
1680  // must be set to -1 at code generation time
1681  AddressLiteral addrlit(-1);
1682  __ jump_to(addrlit, G3);
1683  __ delayed()->nop();
1684
1685  assert(__ offset() - start <= call_stub_size, "stub too big");
1686  __ end_a_stub();
1687}
1688
1689
1690void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
1691  if (opr1->is_single_fpu()) {
1692    __ fcmp(FloatRegisterImpl::S, Assembler::fcc0, opr1->as_float_reg(), opr2->as_float_reg());
1693  } else if (opr1->is_double_fpu()) {
1694    __ fcmp(FloatRegisterImpl::D, Assembler::fcc0, opr1->as_double_reg(), opr2->as_double_reg());
1695  } else if (opr1->is_single_cpu()) {
1696    if (opr2->is_constant()) {
1697      switch (opr2->as_constant_ptr()->type()) {
1698        case T_INT:
1699          { jint con = opr2->as_constant_ptr()->as_jint();
1700            if (Assembler::is_simm13(con)) {
1701              __ cmp(opr1->as_register(), con);
1702            } else {
1703              __ set(con, O7);
1704              __ cmp(opr1->as_register(), O7);
1705            }
1706          }
1707          break;
1708
1709        case T_OBJECT:
1710          // there are only equal/notequal comparisions on objects
1711          { jobject con = opr2->as_constant_ptr()->as_jobject();
1712            if (con == NULL) {
1713              __ cmp(opr1->as_register(), 0);
1714            } else {
1715              jobject2reg(con, O7);
1716              __ cmp(opr1->as_register(), O7);
1717            }
1718          }
1719          break;
1720
1721        default:
1722          ShouldNotReachHere();
1723          break;
1724      }
1725    } else {
1726      if (opr2->is_address()) {
1727        LIR_Address * addr = opr2->as_address_ptr();
1728        BasicType type = addr->type();
1729        if ( type == T_OBJECT ) __ ld_ptr(as_Address(addr), O7);
1730        else                    __ ld(as_Address(addr), O7);
1731        __ cmp(opr1->as_register(), O7);
1732      } else {
1733        __ cmp(opr1->as_register(), opr2->as_register());
1734      }
1735    }
1736  } else if (opr1->is_double_cpu()) {
1737    Register xlo = opr1->as_register_lo();
1738    Register xhi = opr1->as_register_hi();
1739    if (opr2->is_constant() && opr2->as_jlong() == 0) {
1740      assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "only handles these cases");
1741#ifdef _LP64
1742      __ orcc(xhi, G0, G0);
1743#else
1744      __ orcc(xhi, xlo, G0);
1745#endif
1746    } else if (opr2->is_register()) {
1747      Register ylo = opr2->as_register_lo();
1748      Register yhi = opr2->as_register_hi();
1749#ifdef _LP64
1750      __ cmp(xlo, ylo);
1751#else
1752      __ subcc(xlo, ylo, xlo);
1753      __ subccc(xhi, yhi, xhi);
1754      if (condition == lir_cond_equal || condition == lir_cond_notEqual) {
1755        __ orcc(xhi, xlo, G0);
1756      }
1757#endif
1758    } else {
1759      ShouldNotReachHere();
1760    }
1761  } else if (opr1->is_address()) {
1762    LIR_Address * addr = opr1->as_address_ptr();
1763    BasicType type = addr->type();
1764    assert (opr2->is_constant(), "Checking");
1765    if ( type == T_OBJECT ) __ ld_ptr(as_Address(addr), O7);
1766    else                    __ ld(as_Address(addr), O7);
1767    __ cmp(O7, opr2->as_constant_ptr()->as_jint());
1768  } else {
1769    ShouldNotReachHere();
1770  }
1771}
1772
1773
1774void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op){
1775  if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
1776    bool is_unordered_less = (code == lir_ucmp_fd2i);
1777    if (left->is_single_fpu()) {
1778      __ float_cmp(true, is_unordered_less ? -1 : 1, left->as_float_reg(), right->as_float_reg(), dst->as_register());
1779    } else if (left->is_double_fpu()) {
1780      __ float_cmp(false, is_unordered_less ? -1 : 1, left->as_double_reg(), right->as_double_reg(), dst->as_register());
1781    } else {
1782      ShouldNotReachHere();
1783    }
1784  } else if (code == lir_cmp_l2i) {
1785#ifdef _LP64
1786    __ lcmp(left->as_register_lo(), right->as_register_lo(), dst->as_register());
1787#else
1788    __ lcmp(left->as_register_hi(),  left->as_register_lo(),
1789            right->as_register_hi(), right->as_register_lo(),
1790            dst->as_register());
1791#endif
1792  } else {
1793    ShouldNotReachHere();
1794  }
1795}
1796
1797
1798void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result) {
1799
1800  Assembler::Condition acond;
1801  switch (condition) {
1802    case lir_cond_equal:        acond = Assembler::equal;        break;
1803    case lir_cond_notEqual:     acond = Assembler::notEqual;     break;
1804    case lir_cond_less:         acond = Assembler::less;         break;
1805    case lir_cond_lessEqual:    acond = Assembler::lessEqual;    break;
1806    case lir_cond_greaterEqual: acond = Assembler::greaterEqual; break;
1807    case lir_cond_greater:      acond = Assembler::greater;      break;
1808    case lir_cond_aboveEqual:   acond = Assembler::greaterEqualUnsigned;      break;
1809    case lir_cond_belowEqual:   acond = Assembler::lessEqualUnsigned;      break;
1810    default:                         ShouldNotReachHere();
1811  };
1812
1813  if (opr1->is_constant() && opr1->type() == T_INT) {
1814    Register dest = result->as_register();
1815    // load up first part of constant before branch
1816    // and do the rest in the delay slot.
1817    if (!Assembler::is_simm13(opr1->as_jint())) {
1818      __ sethi(opr1->as_jint(), dest);
1819    }
1820  } else if (opr1->is_constant()) {
1821    const2reg(opr1, result, lir_patch_none, NULL);
1822  } else if (opr1->is_register()) {
1823    reg2reg(opr1, result);
1824  } else if (opr1->is_stack()) {
1825    stack2reg(opr1, result, result->type());
1826  } else {
1827    ShouldNotReachHere();
1828  }
1829  Label skip;
1830  __ br(acond, false, Assembler::pt, skip);
1831  if (opr1->is_constant() && opr1->type() == T_INT) {
1832    Register dest = result->as_register();
1833    if (Assembler::is_simm13(opr1->as_jint())) {
1834      __ delayed()->or3(G0, opr1->as_jint(), dest);
1835    } else {
1836      // the sethi has been done above, so just put in the low 10 bits
1837      __ delayed()->or3(dest, opr1->as_jint() & 0x3ff, dest);
1838    }
1839  } else {
1840    // can't do anything useful in the delay slot
1841    __ delayed()->nop();
1842  }
1843  if (opr2->is_constant()) {
1844    const2reg(opr2, result, lir_patch_none, NULL);
1845  } else if (opr2->is_register()) {
1846    reg2reg(opr2, result);
1847  } else if (opr2->is_stack()) {
1848    stack2reg(opr2, result, result->type());
1849  } else {
1850    ShouldNotReachHere();
1851  }
1852  __ bind(skip);
1853}
1854
1855
1856void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) {
1857  assert(info == NULL, "unused on this code path");
1858  assert(left->is_register(), "wrong items state");
1859  assert(dest->is_register(), "wrong items state");
1860
1861  if (right->is_register()) {
1862    if (dest->is_float_kind()) {
1863
1864      FloatRegister lreg, rreg, res;
1865      FloatRegisterImpl::Width w;
1866      if (right->is_single_fpu()) {
1867        w = FloatRegisterImpl::S;
1868        lreg = left->as_float_reg();
1869        rreg = right->as_float_reg();
1870        res  = dest->as_float_reg();
1871      } else {
1872        w = FloatRegisterImpl::D;
1873        lreg = left->as_double_reg();
1874        rreg = right->as_double_reg();
1875        res  = dest->as_double_reg();
1876      }
1877
1878      switch (code) {
1879        case lir_add: __ fadd(w, lreg, rreg, res); break;
1880        case lir_sub: __ fsub(w, lreg, rreg, res); break;
1881        case lir_mul: // fall through
1882        case lir_mul_strictfp: __ fmul(w, lreg, rreg, res); break;
1883        case lir_div: // fall through
1884        case lir_div_strictfp: __ fdiv(w, lreg, rreg, res); break;
1885        default: ShouldNotReachHere();
1886      }
1887
1888    } else if (dest->is_double_cpu()) {
1889#ifdef _LP64
1890      Register dst_lo = dest->as_register_lo();
1891      Register op1_lo = left->as_pointer_register();
1892      Register op2_lo = right->as_pointer_register();
1893
1894      switch (code) {
1895        case lir_add:
1896          __ add(op1_lo, op2_lo, dst_lo);
1897          break;
1898
1899        case lir_sub:
1900          __ sub(op1_lo, op2_lo, dst_lo);
1901          break;
1902
1903        default: ShouldNotReachHere();
1904      }
1905#else
1906      Register op1_lo = left->as_register_lo();
1907      Register op1_hi = left->as_register_hi();
1908      Register op2_lo = right->as_register_lo();
1909      Register op2_hi = right->as_register_hi();
1910      Register dst_lo = dest->as_register_lo();
1911      Register dst_hi = dest->as_register_hi();
1912
1913      switch (code) {
1914        case lir_add:
1915          __ addcc(op1_lo, op2_lo, dst_lo);
1916          __ addc (op1_hi, op2_hi, dst_hi);
1917          break;
1918
1919        case lir_sub:
1920          __ subcc(op1_lo, op2_lo, dst_lo);
1921          __ subc (op1_hi, op2_hi, dst_hi);
1922          break;
1923
1924        default: ShouldNotReachHere();
1925      }
1926#endif
1927    } else {
1928      assert (right->is_single_cpu(), "Just Checking");
1929
1930      Register lreg = left->as_register();
1931      Register res  = dest->as_register();
1932      Register rreg = right->as_register();
1933      switch (code) {
1934        case lir_add:  __ add  (lreg, rreg, res); break;
1935        case lir_sub:  __ sub  (lreg, rreg, res); break;
1936        case lir_mul:  __ mult (lreg, rreg, res); break;
1937        default: ShouldNotReachHere();
1938      }
1939    }
1940  } else {
1941    assert (right->is_constant(), "must be constant");
1942
1943    if (dest->is_single_cpu()) {
1944      Register lreg = left->as_register();
1945      Register res  = dest->as_register();
1946      int    simm13 = right->as_constant_ptr()->as_jint();
1947
1948      switch (code) {
1949        case lir_add:  __ add  (lreg, simm13, res); break;
1950        case lir_sub:  __ sub  (lreg, simm13, res); break;
1951        case lir_mul:  __ mult (lreg, simm13, res); break;
1952        default: ShouldNotReachHere();
1953      }
1954    } else {
1955      Register lreg = left->as_pointer_register();
1956      Register res  = dest->as_register_lo();
1957      long con = right->as_constant_ptr()->as_jlong();
1958      assert(Assembler::is_simm13(con), "must be simm13");
1959
1960      switch (code) {
1961        case lir_add:  __ add  (lreg, (int)con, res); break;
1962        case lir_sub:  __ sub  (lreg, (int)con, res); break;
1963        case lir_mul:  __ mult (lreg, (int)con, res); break;
1964        default: ShouldNotReachHere();
1965      }
1966    }
1967  }
1968}
1969
1970
1971void LIR_Assembler::fpop() {
1972  // do nothing
1973}
1974
1975
1976void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr thread, LIR_Opr dest, LIR_Op* op) {
1977  switch (code) {
1978    case lir_sin:
1979    case lir_tan:
1980    case lir_cos: {
1981      assert(thread->is_valid(), "preserve the thread object for performance reasons");
1982      assert(dest->as_double_reg() == F0, "the result will be in f0/f1");
1983      break;
1984    }
1985    case lir_sqrt: {
1986      assert(!thread->is_valid(), "there is no need for a thread_reg for dsqrt");
1987      FloatRegister src_reg = value->as_double_reg();
1988      FloatRegister dst_reg = dest->as_double_reg();
1989      __ fsqrt(FloatRegisterImpl::D, src_reg, dst_reg);
1990      break;
1991    }
1992    case lir_abs: {
1993      assert(!thread->is_valid(), "there is no need for a thread_reg for fabs");
1994      FloatRegister src_reg = value->as_double_reg();
1995      FloatRegister dst_reg = dest->as_double_reg();
1996      __ fabs(FloatRegisterImpl::D, src_reg, dst_reg);
1997      break;
1998    }
1999    default: {
2000      ShouldNotReachHere();
2001      break;
2002    }
2003  }
2004}
2005
2006
2007void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest) {
2008  if (right->is_constant()) {
2009    if (dest->is_single_cpu()) {
2010      int simm13 = right->as_constant_ptr()->as_jint();
2011      switch (code) {
2012        case lir_logic_and:   __ and3 (left->as_register(), simm13, dest->as_register()); break;
2013        case lir_logic_or:    __ or3  (left->as_register(), simm13, dest->as_register()); break;
2014        case lir_logic_xor:   __ xor3 (left->as_register(), simm13, dest->as_register()); break;
2015        default: ShouldNotReachHere();
2016      }
2017    } else {
2018      long c = right->as_constant_ptr()->as_jlong();
2019      assert(c == (int)c && Assembler::is_simm13(c), "out of range");
2020      int simm13 = (int)c;
2021      switch (code) {
2022        case lir_logic_and:
2023#ifndef _LP64
2024          __ and3 (left->as_register_hi(), 0,      dest->as_register_hi());
2025#endif
2026          __ and3 (left->as_register_lo(), simm13, dest->as_register_lo());
2027          break;
2028
2029        case lir_logic_or:
2030#ifndef _LP64
2031          __ or3 (left->as_register_hi(), 0,      dest->as_register_hi());
2032#endif
2033          __ or3 (left->as_register_lo(), simm13, dest->as_register_lo());
2034          break;
2035
2036        case lir_logic_xor:
2037#ifndef _LP64
2038          __ xor3 (left->as_register_hi(), 0,      dest->as_register_hi());
2039#endif
2040          __ xor3 (left->as_register_lo(), simm13, dest->as_register_lo());
2041          break;
2042
2043        default: ShouldNotReachHere();
2044      }
2045    }
2046  } else {
2047    assert(right->is_register(), "right should be in register");
2048
2049    if (dest->is_single_cpu()) {
2050      switch (code) {
2051        case lir_logic_and:   __ and3 (left->as_register(), right->as_register(), dest->as_register()); break;
2052        case lir_logic_or:    __ or3  (left->as_register(), right->as_register(), dest->as_register()); break;
2053        case lir_logic_xor:   __ xor3 (left->as_register(), right->as_register(), dest->as_register()); break;
2054        default: ShouldNotReachHere();
2055      }
2056    } else {
2057#ifdef _LP64
2058      Register l = (left->is_single_cpu() && left->is_oop_register()) ? left->as_register() :
2059                                                                        left->as_register_lo();
2060      Register r = (right->is_single_cpu() && right->is_oop_register()) ? right->as_register() :
2061                                                                          right->as_register_lo();
2062
2063      switch (code) {
2064        case lir_logic_and: __ and3 (l, r, dest->as_register_lo()); break;
2065        case lir_logic_or:  __ or3  (l, r, dest->as_register_lo()); break;
2066        case lir_logic_xor: __ xor3 (l, r, dest->as_register_lo()); break;
2067        default: ShouldNotReachHere();
2068      }
2069#else
2070      switch (code) {
2071        case lir_logic_and:
2072          __ and3 (left->as_register_hi(), right->as_register_hi(), dest->as_register_hi());
2073          __ and3 (left->as_register_lo(), right->as_register_lo(), dest->as_register_lo());
2074          break;
2075
2076        case lir_logic_or:
2077          __ or3 (left->as_register_hi(), right->as_register_hi(), dest->as_register_hi());
2078          __ or3 (left->as_register_lo(), right->as_register_lo(), dest->as_register_lo());
2079          break;
2080
2081        case lir_logic_xor:
2082          __ xor3 (left->as_register_hi(), right->as_register_hi(), dest->as_register_hi());
2083          __ xor3 (left->as_register_lo(), right->as_register_lo(), dest->as_register_lo());
2084          break;
2085
2086        default: ShouldNotReachHere();
2087      }
2088#endif
2089    }
2090  }
2091}
2092
2093
2094int LIR_Assembler::shift_amount(BasicType t) {
2095  int elem_size = type2aelembytes(t);
2096  switch (elem_size) {
2097    case 1 : return 0;
2098    case 2 : return 1;
2099    case 4 : return 2;
2100    case 8 : return 3;
2101  }
2102  ShouldNotReachHere();
2103  return -1;
2104}
2105
2106
2107void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
2108  assert(exceptionOop->as_register() == Oexception, "should match");
2109  assert(exceptionPC->as_register() == Oissuing_pc, "should match");
2110
2111  info->add_register_oop(exceptionOop);
2112
2113  // reuse the debug info from the safepoint poll for the throw op itself
2114  address pc_for_athrow  = __ pc();
2115  int pc_for_athrow_offset = __ offset();
2116  RelocationHolder rspec = internal_word_Relocation::spec(pc_for_athrow);
2117  __ set(pc_for_athrow, Oissuing_pc, rspec);
2118  add_call_info(pc_for_athrow_offset, info); // for exception handler
2119
2120  __ call(Runtime1::entry_for(Runtime1::handle_exception_id), relocInfo::runtime_call_type);
2121  __ delayed()->nop();
2122}
2123
2124
2125void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) {
2126  assert(exceptionOop->as_register() == Oexception, "should match");
2127
2128  __ br(Assembler::always, false, Assembler::pt, _unwind_handler_entry);
2129  __ delayed()->nop();
2130}
2131
2132
2133void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
2134  Register src = op->src()->as_register();
2135  Register dst = op->dst()->as_register();
2136  Register src_pos = op->src_pos()->as_register();
2137  Register dst_pos = op->dst_pos()->as_register();
2138  Register length  = op->length()->as_register();
2139  Register tmp = op->tmp()->as_register();
2140  Register tmp2 = O7;
2141
2142  int flags = op->flags();
2143  ciArrayKlass* default_type = op->expected_type();
2144  BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL;
2145  if (basic_type == T_ARRAY) basic_type = T_OBJECT;
2146
2147  // set up the arraycopy stub information
2148  ArrayCopyStub* stub = op->stub();
2149
2150  // always do stub if no type information is available.  it's ok if
2151  // the known type isn't loaded since the code sanity checks
2152  // in debug mode and the type isn't required when we know the exact type
2153  // also check that the type is an array type.
2154  // We also, for now, always call the stub if the barrier set requires a
2155  // write_ref_pre barrier (which the stub does, but none of the optimized
2156  // cases currently does).
2157  if (op->expected_type() == NULL ||
2158      Universe::heap()->barrier_set()->has_write_ref_pre_barrier()) {
2159    __ mov(src,     O0);
2160    __ mov(src_pos, O1);
2161    __ mov(dst,     O2);
2162    __ mov(dst_pos, O3);
2163    __ mov(length,  O4);
2164    __ call_VM_leaf(tmp, CAST_FROM_FN_PTR(address, Runtime1::arraycopy));
2165
2166    __ br_zero(Assembler::less, false, Assembler::pn, O0, *stub->entry());
2167    __ delayed()->nop();
2168    __ bind(*stub->continuation());
2169    return;
2170  }
2171
2172  assert(default_type != NULL && default_type->is_array_klass(), "must be true at this point");
2173
2174  // make sure src and dst are non-null and load array length
2175  if (flags & LIR_OpArrayCopy::src_null_check) {
2176    __ tst(src);
2177    __ br(Assembler::equal, false, Assembler::pn, *stub->entry());
2178    __ delayed()->nop();
2179  }
2180
2181  if (flags & LIR_OpArrayCopy::dst_null_check) {
2182    __ tst(dst);
2183    __ br(Assembler::equal, false, Assembler::pn, *stub->entry());
2184    __ delayed()->nop();
2185  }
2186
2187  if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
2188    // test src_pos register
2189    __ tst(src_pos);
2190    __ br(Assembler::less, false, Assembler::pn, *stub->entry());
2191    __ delayed()->nop();
2192  }
2193
2194  if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
2195    // test dst_pos register
2196    __ tst(dst_pos);
2197    __ br(Assembler::less, false, Assembler::pn, *stub->entry());
2198    __ delayed()->nop();
2199  }
2200
2201  if (flags & LIR_OpArrayCopy::length_positive_check) {
2202    // make sure length isn't negative
2203    __ tst(length);
2204    __ br(Assembler::less, false, Assembler::pn, *stub->entry());
2205    __ delayed()->nop();
2206  }
2207
2208  if (flags & LIR_OpArrayCopy::src_range_check) {
2209    __ ld(src, arrayOopDesc::length_offset_in_bytes(), tmp2);
2210    __ add(length, src_pos, tmp);
2211    __ cmp(tmp2, tmp);
2212    __ br(Assembler::carrySet, false, Assembler::pn, *stub->entry());
2213    __ delayed()->nop();
2214  }
2215
2216  if (flags & LIR_OpArrayCopy::dst_range_check) {
2217    __ ld(dst, arrayOopDesc::length_offset_in_bytes(), tmp2);
2218    __ add(length, dst_pos, tmp);
2219    __ cmp(tmp2, tmp);
2220    __ br(Assembler::carrySet, false, Assembler::pn, *stub->entry());
2221    __ delayed()->nop();
2222  }
2223
2224  if (flags & LIR_OpArrayCopy::type_check) {
2225    __ ld_ptr(src, oopDesc::klass_offset_in_bytes(), tmp);
2226    __ ld_ptr(dst, oopDesc::klass_offset_in_bytes(), tmp2);
2227    __ cmp(tmp, tmp2);
2228    __ br(Assembler::notEqual, false, Assembler::pt, *stub->entry());
2229    __ delayed()->nop();
2230  }
2231
2232#ifdef ASSERT
2233  if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
2234    // Sanity check the known type with the incoming class.  For the
2235    // primitive case the types must match exactly with src.klass and
2236    // dst.klass each exactly matching the default type.  For the
2237    // object array case, if no type check is needed then either the
2238    // dst type is exactly the expected type and the src type is a
2239    // subtype which we can't check or src is the same array as dst
2240    // but not necessarily exactly of type default_type.
2241    Label known_ok, halt;
2242    jobject2reg(op->expected_type()->constant_encoding(), tmp);
2243    __ ld_ptr(dst, oopDesc::klass_offset_in_bytes(), tmp2);
2244    if (basic_type != T_OBJECT) {
2245      __ cmp(tmp, tmp2);
2246      __ br(Assembler::notEqual, false, Assembler::pn, halt);
2247      __ delayed()->ld_ptr(src, oopDesc::klass_offset_in_bytes(), tmp2);
2248      __ cmp(tmp, tmp2);
2249      __ br(Assembler::equal, false, Assembler::pn, known_ok);
2250      __ delayed()->nop();
2251    } else {
2252      __ cmp(tmp, tmp2);
2253      __ br(Assembler::equal, false, Assembler::pn, known_ok);
2254      __ delayed()->cmp(src, dst);
2255      __ br(Assembler::equal, false, Assembler::pn, known_ok);
2256      __ delayed()->nop();
2257    }
2258    __ bind(halt);
2259    __ stop("incorrect type information in arraycopy");
2260    __ bind(known_ok);
2261  }
2262#endif
2263
2264  int shift = shift_amount(basic_type);
2265
2266  Register src_ptr = O0;
2267  Register dst_ptr = O1;
2268  Register len     = O2;
2269
2270  __ add(src, arrayOopDesc::base_offset_in_bytes(basic_type), src_ptr);
2271  LP64_ONLY(__ sra(src_pos, 0, src_pos);) //higher 32bits must be null
2272  if (shift == 0) {
2273    __ add(src_ptr, src_pos, src_ptr);
2274  } else {
2275    __ sll(src_pos, shift, tmp);
2276    __ add(src_ptr, tmp, src_ptr);
2277  }
2278
2279  __ add(dst, arrayOopDesc::base_offset_in_bytes(basic_type), dst_ptr);
2280  LP64_ONLY(__ sra(dst_pos, 0, dst_pos);) //higher 32bits must be null
2281  if (shift == 0) {
2282    __ add(dst_ptr, dst_pos, dst_ptr);
2283  } else {
2284    __ sll(dst_pos, shift, tmp);
2285    __ add(dst_ptr, tmp, dst_ptr);
2286  }
2287
2288  if (basic_type != T_OBJECT) {
2289    if (shift == 0) {
2290      __ mov(length, len);
2291    } else {
2292      __ sll(length, shift, len);
2293    }
2294    __ call_VM_leaf(tmp, CAST_FROM_FN_PTR(address, Runtime1::primitive_arraycopy));
2295  } else {
2296    // oop_arraycopy takes a length in number of elements, so don't scale it.
2297    __ mov(length, len);
2298    __ call_VM_leaf(tmp, CAST_FROM_FN_PTR(address, Runtime1::oop_arraycopy));
2299  }
2300
2301  __ bind(*stub->continuation());
2302}
2303
2304
2305void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
2306  if (dest->is_single_cpu()) {
2307#ifdef _LP64
2308    if (left->type() == T_OBJECT) {
2309      switch (code) {
2310        case lir_shl:  __ sllx  (left->as_register(), count->as_register(), dest->as_register()); break;
2311        case lir_shr:  __ srax  (left->as_register(), count->as_register(), dest->as_register()); break;
2312        case lir_ushr: __ srl   (left->as_register(), count->as_register(), dest->as_register()); break;
2313        default: ShouldNotReachHere();
2314      }
2315    } else
2316#endif
2317      switch (code) {
2318        case lir_shl:  __ sll   (left->as_register(), count->as_register(), dest->as_register()); break;
2319        case lir_shr:  __ sra   (left->as_register(), count->as_register(), dest->as_register()); break;
2320        case lir_ushr: __ srl   (left->as_register(), count->as_register(), dest->as_register()); break;
2321        default: ShouldNotReachHere();
2322      }
2323  } else {
2324#ifdef _LP64
2325    switch (code) {
2326      case lir_shl:  __ sllx  (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
2327      case lir_shr:  __ srax  (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
2328      case lir_ushr: __ srlx  (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
2329      default: ShouldNotReachHere();
2330    }
2331#else
2332    switch (code) {
2333      case lir_shl:  __ lshl  (left->as_register_hi(), left->as_register_lo(), count->as_register(), dest->as_register_hi(), dest->as_register_lo(), G3_scratch); break;
2334      case lir_shr:  __ lshr  (left->as_register_hi(), left->as_register_lo(), count->as_register(), dest->as_register_hi(), dest->as_register_lo(), G3_scratch); break;
2335      case lir_ushr: __ lushr (left->as_register_hi(), left->as_register_lo(), count->as_register(), dest->as_register_hi(), dest->as_register_lo(), G3_scratch); break;
2336      default: ShouldNotReachHere();
2337    }
2338#endif
2339  }
2340}
2341
2342
2343void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
2344#ifdef _LP64
2345  if (left->type() == T_OBJECT) {
2346    count = count & 63;  // shouldn't shift by more than sizeof(intptr_t)
2347    Register l = left->as_register();
2348    Register d = dest->as_register_lo();
2349    switch (code) {
2350      case lir_shl:  __ sllx  (l, count, d); break;
2351      case lir_shr:  __ srax  (l, count, d); break;
2352      case lir_ushr: __ srlx  (l, count, d); break;
2353      default: ShouldNotReachHere();
2354    }
2355    return;
2356  }
2357#endif
2358
2359  if (dest->is_single_cpu()) {
2360    count = count & 0x1F; // Java spec
2361    switch (code) {
2362      case lir_shl:  __ sll   (left->as_register(), count, dest->as_register()); break;
2363      case lir_shr:  __ sra   (left->as_register(), count, dest->as_register()); break;
2364      case lir_ushr: __ srl   (left->as_register(), count, dest->as_register()); break;
2365      default: ShouldNotReachHere();
2366    }
2367  } else if (dest->is_double_cpu()) {
2368    count = count & 63; // Java spec
2369    switch (code) {
2370      case lir_shl:  __ sllx  (left->as_pointer_register(), count, dest->as_pointer_register()); break;
2371      case lir_shr:  __ srax  (left->as_pointer_register(), count, dest->as_pointer_register()); break;
2372      case lir_ushr: __ srlx  (left->as_pointer_register(), count, dest->as_pointer_register()); break;
2373      default: ShouldNotReachHere();
2374    }
2375  } else {
2376    ShouldNotReachHere();
2377  }
2378}
2379
2380
2381void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
2382  assert(op->tmp1()->as_register()  == G1 &&
2383         op->tmp2()->as_register()  == G3 &&
2384         op->tmp3()->as_register()  == G4 &&
2385         op->obj()->as_register()   == O0 &&
2386         op->klass()->as_register() == G5, "must be");
2387  if (op->init_check()) {
2388    __ ld(op->klass()->as_register(),
2389          instanceKlass::init_state_offset_in_bytes() + sizeof(oopDesc),
2390          op->tmp1()->as_register());
2391    add_debug_info_for_null_check_here(op->stub()->info());
2392    __ cmp(op->tmp1()->as_register(), instanceKlass::fully_initialized);
2393    __ br(Assembler::notEqual, false, Assembler::pn, *op->stub()->entry());
2394    __ delayed()->nop();
2395  }
2396  __ allocate_object(op->obj()->as_register(),
2397                     op->tmp1()->as_register(),
2398                     op->tmp2()->as_register(),
2399                     op->tmp3()->as_register(),
2400                     op->header_size(),
2401                     op->object_size(),
2402                     op->klass()->as_register(),
2403                     *op->stub()->entry());
2404  __ bind(*op->stub()->continuation());
2405  __ verify_oop(op->obj()->as_register());
2406}
2407
2408
2409void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
2410  assert(op->tmp1()->as_register()  == G1 &&
2411         op->tmp2()->as_register()  == G3 &&
2412         op->tmp3()->as_register()  == G4 &&
2413         op->tmp4()->as_register()  == O1 &&
2414         op->klass()->as_register() == G5, "must be");
2415  if (UseSlowPath ||
2416      (!UseFastNewObjectArray && (op->type() == T_OBJECT || op->type() == T_ARRAY)) ||
2417      (!UseFastNewTypeArray   && (op->type() != T_OBJECT && op->type() != T_ARRAY))) {
2418    __ br(Assembler::always, false, Assembler::pt, *op->stub()->entry());
2419    __ delayed()->nop();
2420  } else {
2421    __ allocate_array(op->obj()->as_register(),
2422                      op->len()->as_register(),
2423                      op->tmp1()->as_register(),
2424                      op->tmp2()->as_register(),
2425                      op->tmp3()->as_register(),
2426                      arrayOopDesc::header_size(op->type()),
2427                      type2aelembytes(op->type()),
2428                      op->klass()->as_register(),
2429                      *op->stub()->entry());
2430  }
2431  __ bind(*op->stub()->continuation());
2432}
2433
2434
2435void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
2436  LIR_Code code = op->code();
2437  if (code == lir_store_check) {
2438    Register value = op->object()->as_register();
2439    Register array = op->array()->as_register();
2440    Register k_RInfo = op->tmp1()->as_register();
2441    Register klass_RInfo = op->tmp2()->as_register();
2442    Register Rtmp1 = op->tmp3()->as_register();
2443
2444    __ verify_oop(value);
2445
2446    CodeStub* stub = op->stub();
2447    Label done;
2448    __ cmp(value, 0);
2449    __ br(Assembler::equal, false, Assembler::pn, done);
2450    __ delayed()->nop();
2451    load(array, oopDesc::klass_offset_in_bytes(), k_RInfo, T_OBJECT, op->info_for_exception());
2452    load(value, oopDesc::klass_offset_in_bytes(), klass_RInfo, T_OBJECT, NULL);
2453
2454    // get instance klass
2455    load(k_RInfo, objArrayKlass::element_klass_offset_in_bytes() + sizeof(oopDesc), k_RInfo, T_OBJECT, NULL);
2456    // perform the fast part of the checking logic
2457    __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, O7, &done, stub->entry(), NULL);
2458
2459    // call out-of-line instance of __ check_klass_subtype_slow_path(...):
2460    assert(klass_RInfo == G3 && k_RInfo == G1, "incorrect call setup");
2461    __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
2462    __ delayed()->nop();
2463    __ cmp(G3, 0);
2464    __ br(Assembler::equal, false, Assembler::pn, *stub->entry());
2465    __ delayed()->nop();
2466    __ bind(done);
2467  } else if (op->code() == lir_checkcast) {
2468    // we always need a stub for the failure case.
2469    CodeStub* stub = op->stub();
2470    Register obj = op->object()->as_register();
2471    Register k_RInfo = op->tmp1()->as_register();
2472    Register klass_RInfo = op->tmp2()->as_register();
2473    Register dst = op->result_opr()->as_register();
2474    Register Rtmp1 = op->tmp3()->as_register();
2475    ciKlass* k = op->klass();
2476
2477    if (obj == k_RInfo) {
2478      k_RInfo = klass_RInfo;
2479      klass_RInfo = obj;
2480    }
2481    if (op->profiled_method() != NULL) {
2482      ciMethod* method = op->profiled_method();
2483      int bci          = op->profiled_bci();
2484
2485      // We need two temporaries to perform this operation on SPARC,
2486      // so to keep things simple we perform a redundant test here
2487      Label profile_done;
2488      __ cmp(obj, 0);
2489      __ br(Assembler::notEqual, false, Assembler::pn, profile_done);
2490      __ delayed()->nop();
2491      // Object is null; update methodDataOop
2492      ciMethodData* md = method->method_data();
2493      if (md == NULL) {
2494        bailout("out of memory building methodDataOop");
2495        return;
2496      }
2497      ciProfileData* data = md->bci_to_data(bci);
2498      assert(data != NULL,       "need data for checkcast");
2499      assert(data->is_BitData(), "need BitData for checkcast");
2500      Register mdo      = k_RInfo;
2501      Register data_val = Rtmp1;
2502      jobject2reg(md->constant_encoding(), mdo);
2503
2504      int mdo_offset_bias = 0;
2505      if (!Assembler::is_simm13(md->byte_offset_of_slot(data, DataLayout::header_offset()) + data->size_in_bytes())) {
2506        // The offset is large so bias the mdo by the base of the slot so
2507        // that the ld can use simm13s to reference the slots of the data
2508        mdo_offset_bias = md->byte_offset_of_slot(data, DataLayout::header_offset());
2509        __ set(mdo_offset_bias, data_val);
2510        __ add(mdo, data_val, mdo);
2511      }
2512
2513
2514      Address flags_addr(mdo, md->byte_offset_of_slot(data, DataLayout::flags_offset()) - mdo_offset_bias);
2515      __ ldub(flags_addr, data_val);
2516      __ or3(data_val, BitData::null_seen_byte_constant(), data_val);
2517      __ stb(data_val, flags_addr);
2518      __ bind(profile_done);
2519    }
2520
2521    Label done;
2522    // patching may screw with our temporaries on sparc,
2523    // so let's do it before loading the class
2524    if (k->is_loaded()) {
2525      jobject2reg(k->constant_encoding(), k_RInfo);
2526    } else {
2527      jobject2reg_with_patching(k_RInfo, op->info_for_patch());
2528    }
2529    assert(obj != k_RInfo, "must be different");
2530    __ cmp(obj, 0);
2531    __ br(Assembler::equal, false, Assembler::pn, done);
2532    __ delayed()->nop();
2533
2534    // get object class
2535    // not a safepoint as obj null check happens earlier
2536    load(obj, oopDesc::klass_offset_in_bytes(), klass_RInfo, T_OBJECT, NULL);
2537    if (op->fast_check()) {
2538      assert_different_registers(klass_RInfo, k_RInfo);
2539      __ cmp(k_RInfo, klass_RInfo);
2540      __ br(Assembler::notEqual, false, Assembler::pt, *stub->entry());
2541      __ delayed()->nop();
2542      __ bind(done);
2543    } else {
2544      bool need_slow_path = true;
2545      if (k->is_loaded()) {
2546        if (k->super_check_offset() != sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes())
2547          need_slow_path = false;
2548        // perform the fast part of the checking logic
2549        __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, noreg,
2550                                         (need_slow_path ? &done : NULL),
2551                                         stub->entry(), NULL,
2552                                         RegisterOrConstant(k->super_check_offset()));
2553      } else {
2554        // perform the fast part of the checking logic
2555        __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, O7,
2556                                         &done, stub->entry(), NULL);
2557      }
2558      if (need_slow_path) {
2559        // call out-of-line instance of __ check_klass_subtype_slow_path(...):
2560        assert(klass_RInfo == G3 && k_RInfo == G1, "incorrect call setup");
2561        __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
2562        __ delayed()->nop();
2563        __ cmp(G3, 0);
2564        __ br(Assembler::equal, false, Assembler::pn, *stub->entry());
2565        __ delayed()->nop();
2566      }
2567      __ bind(done);
2568    }
2569    __ mov(obj, dst);
2570  } else if (code == lir_instanceof) {
2571    Register obj = op->object()->as_register();
2572    Register k_RInfo = op->tmp1()->as_register();
2573    Register klass_RInfo = op->tmp2()->as_register();
2574    Register dst = op->result_opr()->as_register();
2575    Register Rtmp1 = op->tmp3()->as_register();
2576    ciKlass* k = op->klass();
2577
2578    Label done;
2579    if (obj == k_RInfo) {
2580      k_RInfo = klass_RInfo;
2581      klass_RInfo = obj;
2582    }
2583    // patching may screw with our temporaries on sparc,
2584    // so let's do it before loading the class
2585    if (k->is_loaded()) {
2586      jobject2reg(k->constant_encoding(), k_RInfo);
2587    } else {
2588      jobject2reg_with_patching(k_RInfo, op->info_for_patch());
2589    }
2590    assert(obj != k_RInfo, "must be different");
2591    __ cmp(obj, 0);
2592    __ br(Assembler::equal, true, Assembler::pn, done);
2593    __ delayed()->set(0, dst);
2594
2595    // get object class
2596    // not a safepoint as obj null check happens earlier
2597    load(obj, oopDesc::klass_offset_in_bytes(), klass_RInfo, T_OBJECT, NULL);
2598    if (op->fast_check()) {
2599      __ cmp(k_RInfo, klass_RInfo);
2600      __ br(Assembler::equal, true, Assembler::pt, done);
2601      __ delayed()->set(1, dst);
2602      __ set(0, dst);
2603      __ bind(done);
2604    } else {
2605      bool need_slow_path = true;
2606      if (k->is_loaded()) {
2607        if (k->super_check_offset() != sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes())
2608          need_slow_path = false;
2609        // perform the fast part of the checking logic
2610        __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, O7, noreg,
2611                                         (need_slow_path ? &done : NULL),
2612                                         (need_slow_path ? &done : NULL), NULL,
2613                                         RegisterOrConstant(k->super_check_offset()),
2614                                         dst);
2615      } else {
2616        assert(dst != klass_RInfo && dst != k_RInfo, "need 3 registers");
2617        // perform the fast part of the checking logic
2618        __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, O7, dst,
2619                                         &done, &done, NULL,
2620                                         RegisterOrConstant(-1),
2621                                         dst);
2622      }
2623      if (need_slow_path) {
2624        // call out-of-line instance of __ check_klass_subtype_slow_path(...):
2625        assert(klass_RInfo == G3 && k_RInfo == G1, "incorrect call setup");
2626        __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
2627        __ delayed()->nop();
2628        __ mov(G3, dst);
2629      }
2630      __ bind(done);
2631    }
2632  } else {
2633    ShouldNotReachHere();
2634  }
2635
2636}
2637
2638
2639void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
2640  if (op->code() == lir_cas_long) {
2641    assert(VM_Version::supports_cx8(), "wrong machine");
2642    Register addr = op->addr()->as_pointer_register();
2643    Register cmp_value_lo = op->cmp_value()->as_register_lo();
2644    Register cmp_value_hi = op->cmp_value()->as_register_hi();
2645    Register new_value_lo = op->new_value()->as_register_lo();
2646    Register new_value_hi = op->new_value()->as_register_hi();
2647    Register t1 = op->tmp1()->as_register();
2648    Register t2 = op->tmp2()->as_register();
2649#ifdef _LP64
2650    __ mov(cmp_value_lo, t1);
2651    __ mov(new_value_lo, t2);
2652#else
2653    // move high and low halves of long values into single registers
2654    __ sllx(cmp_value_hi, 32, t1);         // shift high half into temp reg
2655    __ srl(cmp_value_lo, 0, cmp_value_lo); // clear upper 32 bits of low half
2656    __ or3(t1, cmp_value_lo, t1);          // t1 holds 64-bit compare value
2657    __ sllx(new_value_hi, 32, t2);
2658    __ srl(new_value_lo, 0, new_value_lo);
2659    __ or3(t2, new_value_lo, t2);          // t2 holds 64-bit value to swap
2660#endif
2661    // perform the compare and swap operation
2662    __ casx(addr, t1, t2);
2663    // generate condition code - if the swap succeeded, t2 ("new value" reg) was
2664    // overwritten with the original value in "addr" and will be equal to t1.
2665    __ cmp(t1, t2);
2666
2667  } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj) {
2668    Register addr = op->addr()->as_pointer_register();
2669    Register cmp_value = op->cmp_value()->as_register();
2670    Register new_value = op->new_value()->as_register();
2671    Register t1 = op->tmp1()->as_register();
2672    Register t2 = op->tmp2()->as_register();
2673    __ mov(cmp_value, t1);
2674    __ mov(new_value, t2);
2675#ifdef _LP64
2676    if (op->code() == lir_cas_obj) {
2677      __ casx(addr, t1, t2);
2678    } else
2679#endif
2680      {
2681        __ cas(addr, t1, t2);
2682      }
2683    __ cmp(t1, t2);
2684  } else {
2685    Unimplemented();
2686  }
2687}
2688
2689void LIR_Assembler::set_24bit_FPU() {
2690  Unimplemented();
2691}
2692
2693
2694void LIR_Assembler::reset_FPU() {
2695  Unimplemented();
2696}
2697
2698
2699void LIR_Assembler::breakpoint() {
2700  __ breakpoint_trap();
2701}
2702
2703
2704void LIR_Assembler::push(LIR_Opr opr) {
2705  Unimplemented();
2706}
2707
2708
2709void LIR_Assembler::pop(LIR_Opr opr) {
2710  Unimplemented();
2711}
2712
2713
2714void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst_opr) {
2715  Address mon_addr = frame_map()->address_for_monitor_lock(monitor_no);
2716  Register dst = dst_opr->as_register();
2717  Register reg = mon_addr.base();
2718  int offset = mon_addr.disp();
2719  // compute pointer to BasicLock
2720  if (mon_addr.is_simm13()) {
2721    __ add(reg, offset, dst);
2722  } else {
2723    __ set(offset, dst);
2724    __ add(dst, reg, dst);
2725  }
2726}
2727
2728
2729void LIR_Assembler::emit_lock(LIR_OpLock* op) {
2730  Register obj = op->obj_opr()->as_register();
2731  Register hdr = op->hdr_opr()->as_register();
2732  Register lock = op->lock_opr()->as_register();
2733
2734  // obj may not be an oop
2735  if (op->code() == lir_lock) {
2736    MonitorEnterStub* stub = (MonitorEnterStub*)op->stub();
2737    if (UseFastLocking) {
2738      assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
2739      // add debug info for NullPointerException only if one is possible
2740      if (op->info() != NULL) {
2741        add_debug_info_for_null_check_here(op->info());
2742      }
2743      __ lock_object(hdr, obj, lock, op->scratch_opr()->as_register(), *op->stub()->entry());
2744    } else {
2745      // always do slow locking
2746      // note: the slow locking code could be inlined here, however if we use
2747      //       slow locking, speed doesn't matter anyway and this solution is
2748      //       simpler and requires less duplicated code - additionally, the
2749      //       slow locking code is the same in either case which simplifies
2750      //       debugging
2751      __ br(Assembler::always, false, Assembler::pt, *op->stub()->entry());
2752      __ delayed()->nop();
2753    }
2754  } else {
2755    assert (op->code() == lir_unlock, "Invalid code, expected lir_unlock");
2756    if (UseFastLocking) {
2757      assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
2758      __ unlock_object(hdr, obj, lock, *op->stub()->entry());
2759    } else {
2760      // always do slow unlocking
2761      // note: the slow unlocking code could be inlined here, however if we use
2762      //       slow unlocking, speed doesn't matter anyway and this solution is
2763      //       simpler and requires less duplicated code - additionally, the
2764      //       slow unlocking code is the same in either case which simplifies
2765      //       debugging
2766      __ br(Assembler::always, false, Assembler::pt, *op->stub()->entry());
2767      __ delayed()->nop();
2768    }
2769  }
2770  __ bind(*op->stub()->continuation());
2771}
2772
2773
2774void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
2775  ciMethod* method = op->profiled_method();
2776  int bci          = op->profiled_bci();
2777
2778  // Update counter for all call types
2779  ciMethodData* md = method->method_data();
2780  if (md == NULL) {
2781    bailout("out of memory building methodDataOop");
2782    return;
2783  }
2784  ciProfileData* data = md->bci_to_data(bci);
2785  assert(data->is_CounterData(), "need CounterData for calls");
2786  assert(op->mdo()->is_single_cpu(),  "mdo must be allocated");
2787  assert(op->tmp1()->is_single_cpu(), "tmp1 must be allocated");
2788  Register mdo  = op->mdo()->as_register();
2789  Register tmp1 = op->tmp1()->as_register();
2790  jobject2reg(md->constant_encoding(), mdo);
2791  int mdo_offset_bias = 0;
2792  if (!Assembler::is_simm13(md->byte_offset_of_slot(data, CounterData::count_offset()) +
2793                            data->size_in_bytes())) {
2794    // The offset is large so bias the mdo by the base of the slot so
2795    // that the ld can use simm13s to reference the slots of the data
2796    mdo_offset_bias = md->byte_offset_of_slot(data, CounterData::count_offset());
2797    __ set(mdo_offset_bias, O7);
2798    __ add(mdo, O7, mdo);
2799  }
2800
2801  Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias);
2802  Bytecodes::Code bc = method->java_code_at_bci(bci);
2803  // Perform additional virtual call profiling for invokevirtual and
2804  // invokeinterface bytecodes
2805  if ((bc == Bytecodes::_invokevirtual || bc == Bytecodes::_invokeinterface) &&
2806      Tier1ProfileVirtualCalls) {
2807    assert(op->recv()->is_single_cpu(), "recv must be allocated");
2808    Register recv = op->recv()->as_register();
2809    assert_different_registers(mdo, tmp1, recv);
2810    assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
2811    ciKlass* known_klass = op->known_holder();
2812    if (Tier1OptimizeVirtualCallProfiling && known_klass != NULL) {
2813      // We know the type that will be seen at this call site; we can
2814      // statically update the methodDataOop rather than needing to do
2815      // dynamic tests on the receiver type
2816
2817      // NOTE: we should probably put a lock around this search to
2818      // avoid collisions by concurrent compilations
2819      ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
2820      uint i;
2821      for (i = 0; i < VirtualCallData::row_limit(); i++) {
2822        ciKlass* receiver = vc_data->receiver(i);
2823        if (known_klass->equals(receiver)) {
2824          Address data_addr(mdo, md->byte_offset_of_slot(data,
2825                                                         VirtualCallData::receiver_count_offset(i)) -
2826                            mdo_offset_bias);
2827          __ lduw(data_addr, tmp1);
2828          __ add(tmp1, DataLayout::counter_increment, tmp1);
2829          __ stw(tmp1, data_addr);
2830          return;
2831        }
2832      }
2833
2834      // Receiver type not found in profile data; select an empty slot
2835
2836      // Note that this is less efficient than it should be because it
2837      // always does a write to the receiver part of the
2838      // VirtualCallData rather than just the first time
2839      for (i = 0; i < VirtualCallData::row_limit(); i++) {
2840        ciKlass* receiver = vc_data->receiver(i);
2841        if (receiver == NULL) {
2842          Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)) -
2843                            mdo_offset_bias);
2844          jobject2reg(known_klass->constant_encoding(), tmp1);
2845          __ st_ptr(tmp1, recv_addr);
2846          Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)) -
2847                            mdo_offset_bias);
2848          __ lduw(data_addr, tmp1);
2849          __ add(tmp1, DataLayout::counter_increment, tmp1);
2850          __ stw(tmp1, data_addr);
2851          return;
2852        }
2853      }
2854    } else {
2855      load(Address(recv, oopDesc::klass_offset_in_bytes()), recv, T_OBJECT);
2856      Label update_done;
2857      uint i;
2858      for (i = 0; i < VirtualCallData::row_limit(); i++) {
2859        Label next_test;
2860        // See if the receiver is receiver[n].
2861        Address receiver_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)) -
2862                              mdo_offset_bias);
2863        __ ld_ptr(receiver_addr, tmp1);
2864        __ verify_oop(tmp1);
2865        __ cmp(recv, tmp1);
2866        __ brx(Assembler::notEqual, false, Assembler::pt, next_test);
2867        __ delayed()->nop();
2868        Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)) -
2869                          mdo_offset_bias);
2870        __ lduw(data_addr, tmp1);
2871        __ add(tmp1, DataLayout::counter_increment, tmp1);
2872        __ stw(tmp1, data_addr);
2873        __ br(Assembler::always, false, Assembler::pt, update_done);
2874        __ delayed()->nop();
2875        __ bind(next_test);
2876      }
2877
2878      // Didn't find receiver; find next empty slot and fill it in
2879      for (i = 0; i < VirtualCallData::row_limit(); i++) {
2880        Label next_test;
2881        Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)) -
2882                          mdo_offset_bias);
2883        load(recv_addr, tmp1, T_OBJECT);
2884        __ tst(tmp1);
2885        __ brx(Assembler::notEqual, false, Assembler::pt, next_test);
2886        __ delayed()->nop();
2887        __ st_ptr(recv, recv_addr);
2888        __ set(DataLayout::counter_increment, tmp1);
2889        __ st_ptr(tmp1, mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)) -
2890                  mdo_offset_bias);
2891        __ br(Assembler::always, false, Assembler::pt, update_done);
2892        __ delayed()->nop();
2893        __ bind(next_test);
2894      }
2895      // Receiver did not match any saved receiver and there is no empty row for it.
2896      // Increment total counter to indicate polymorphic case.
2897      __ lduw(counter_addr, tmp1);
2898      __ add(tmp1, DataLayout::counter_increment, tmp1);
2899      __ stw(tmp1, counter_addr);
2900
2901      __ bind(update_done);
2902    }
2903  } else {
2904    // Static call
2905    __ lduw(counter_addr, tmp1);
2906    __ add(tmp1, DataLayout::counter_increment, tmp1);
2907    __ stw(tmp1, counter_addr);
2908  }
2909}
2910
2911
2912void LIR_Assembler::align_backward_branch_target() {
2913  __ align(OptoLoopAlignment);
2914}
2915
2916
2917void LIR_Assembler::emit_delay(LIR_OpDelay* op) {
2918  // make sure we are expecting a delay
2919  // this has the side effect of clearing the delay state
2920  // so we can use _masm instead of _masm->delayed() to do the
2921  // code generation.
2922  __ delayed();
2923
2924  // make sure we only emit one instruction
2925  int offset = code_offset();
2926  op->delay_op()->emit_code(this);
2927#ifdef ASSERT
2928  if (code_offset() - offset != NativeInstruction::nop_instruction_size) {
2929    op->delay_op()->print();
2930  }
2931  assert(code_offset() - offset == NativeInstruction::nop_instruction_size,
2932         "only one instruction can go in a delay slot");
2933#endif
2934
2935  // we may also be emitting the call info for the instruction
2936  // which we are the delay slot of.
2937  CodeEmitInfo * call_info = op->call_info();
2938  if (call_info) {
2939    add_call_info(code_offset(), call_info);
2940  }
2941
2942  if (VerifyStackAtCalls) {
2943    _masm->sub(FP, SP, O7);
2944    _masm->cmp(O7, initial_frame_size_in_bytes());
2945    _masm->trap(Assembler::notEqual, Assembler::ptr_cc, G0, ST_RESERVED_FOR_USER_0+2 );
2946  }
2947}
2948
2949
2950void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest) {
2951  assert(left->is_register(), "can only handle registers");
2952
2953  if (left->is_single_cpu()) {
2954    __ neg(left->as_register(), dest->as_register());
2955  } else if (left->is_single_fpu()) {
2956    __ fneg(FloatRegisterImpl::S, left->as_float_reg(), dest->as_float_reg());
2957  } else if (left->is_double_fpu()) {
2958    __ fneg(FloatRegisterImpl::D, left->as_double_reg(), dest->as_double_reg());
2959  } else {
2960    assert (left->is_double_cpu(), "Must be a long");
2961    Register Rlow = left->as_register_lo();
2962    Register Rhi = left->as_register_hi();
2963#ifdef _LP64
2964    __ sub(G0, Rlow, dest->as_register_lo());
2965#else
2966    __ subcc(G0, Rlow, dest->as_register_lo());
2967    __ subc (G0, Rhi,  dest->as_register_hi());
2968#endif
2969  }
2970}
2971
2972
2973void LIR_Assembler::fxch(int i) {
2974  Unimplemented();
2975}
2976
2977void LIR_Assembler::fld(int i) {
2978  Unimplemented();
2979}
2980
2981void LIR_Assembler::ffree(int i) {
2982  Unimplemented();
2983}
2984
2985void LIR_Assembler::rt_call(LIR_Opr result, address dest,
2986                            const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
2987
2988  // if tmp is invalid, then the function being called doesn't destroy the thread
2989  if (tmp->is_valid()) {
2990    __ save_thread(tmp->as_register());
2991  }
2992  __ call(dest, relocInfo::runtime_call_type);
2993  __ delayed()->nop();
2994  if (info != NULL) {
2995    add_call_info_here(info);
2996  }
2997  if (tmp->is_valid()) {
2998    __ restore_thread(tmp->as_register());
2999  }
3000
3001#ifdef ASSERT
3002  __ verify_thread();
3003#endif // ASSERT
3004}
3005
3006
3007void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
3008#ifdef _LP64
3009  ShouldNotReachHere();
3010#endif
3011
3012  NEEDS_CLEANUP;
3013  if (type == T_LONG) {
3014    LIR_Address* mem_addr = dest->is_address() ? dest->as_address_ptr() : src->as_address_ptr();
3015
3016    // (extended to allow indexed as well as constant displaced for JSR-166)
3017    Register idx = noreg; // contains either constant offset or index
3018
3019    int disp = mem_addr->disp();
3020    if (mem_addr->index() == LIR_OprFact::illegalOpr) {
3021      if (!Assembler::is_simm13(disp)) {
3022        idx = O7;
3023        __ set(disp, idx);
3024      }
3025    } else {
3026      assert(disp == 0, "not both indexed and disp");
3027      idx = mem_addr->index()->as_register();
3028    }
3029
3030    int null_check_offset = -1;
3031
3032    Register base = mem_addr->base()->as_register();
3033    if (src->is_register() && dest->is_address()) {
3034      // G4 is high half, G5 is low half
3035      if (VM_Version::v9_instructions_work()) {
3036        // clear the top bits of G5, and scale up G4
3037        __ srl (src->as_register_lo(),  0, G5);
3038        __ sllx(src->as_register_hi(), 32, G4);
3039        // combine the two halves into the 64 bits of G4
3040        __ or3(G4, G5, G4);
3041        null_check_offset = __ offset();
3042        if (idx == noreg) {
3043          __ stx(G4, base, disp);
3044        } else {
3045          __ stx(G4, base, idx);
3046        }
3047      } else {
3048        __ mov (src->as_register_hi(), G4);
3049        __ mov (src->as_register_lo(), G5);
3050        null_check_offset = __ offset();
3051        if (idx == noreg) {
3052          __ std(G4, base, disp);
3053        } else {
3054          __ std(G4, base, idx);
3055        }
3056      }
3057    } else if (src->is_address() && dest->is_register()) {
3058      null_check_offset = __ offset();
3059      if (VM_Version::v9_instructions_work()) {
3060        if (idx == noreg) {
3061          __ ldx(base, disp, G5);
3062        } else {
3063          __ ldx(base, idx, G5);
3064        }
3065        __ srax(G5, 32, dest->as_register_hi()); // fetch the high half into hi
3066        __ mov (G5, dest->as_register_lo());     // copy low half into lo
3067      } else {
3068        if (idx == noreg) {
3069          __ ldd(base, disp, G4);
3070        } else {
3071          __ ldd(base, idx, G4);
3072        }
3073        // G4 is high half, G5 is low half
3074        __ mov (G4, dest->as_register_hi());
3075        __ mov (G5, dest->as_register_lo());
3076      }
3077    } else {
3078      Unimplemented();
3079    }
3080    if (info != NULL) {
3081      add_debug_info_for_null_check(null_check_offset, info);
3082    }
3083
3084  } else {
3085    // use normal move for all other volatiles since they don't need
3086    // special handling to remain atomic.
3087    move_op(src, dest, type, lir_patch_none, info, false, false);
3088  }
3089}
3090
3091void LIR_Assembler::membar() {
3092  // only StoreLoad membars are ever explicitly needed on sparcs in TSO mode
3093  __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad) );
3094}
3095
3096void LIR_Assembler::membar_acquire() {
3097  // no-op on TSO
3098}
3099
3100void LIR_Assembler::membar_release() {
3101  // no-op on TSO
3102}
3103
3104// Macro to Pack two sequential registers containing 32 bit values
3105// into a single 64 bit register.
3106// rs and rs->successor() are packed into rd
3107// rd and rs may be the same register.
3108// Note: rs and rs->successor() are destroyed.
3109void LIR_Assembler::pack64( Register rs, Register rd ) {
3110  __ sllx(rs, 32, rs);
3111  __ srl(rs->successor(), 0, rs->successor());
3112  __ or3(rs, rs->successor(), rd);
3113}
3114
3115// Macro to unpack a 64 bit value in a register into
3116// two sequential registers.
3117// rd is unpacked into rd and rd->successor()
3118void LIR_Assembler::unpack64( Register rd ) {
3119  __ mov(rd, rd->successor());
3120  __ srax(rd, 32, rd);
3121  __ sra(rd->successor(), 0, rd->successor());
3122}
3123
3124
3125void LIR_Assembler::leal(LIR_Opr addr_opr, LIR_Opr dest) {
3126  LIR_Address* addr = addr_opr->as_address_ptr();
3127  assert(addr->index()->is_illegal() && addr->scale() == LIR_Address::times_1 && Assembler::is_simm13(addr->disp()), "can't handle complex addresses yet");
3128  __ add(addr->base()->as_register(), addr->disp(), dest->as_register());
3129}
3130
3131
3132void LIR_Assembler::get_thread(LIR_Opr result_reg) {
3133  assert(result_reg->is_register(), "check");
3134  __ mov(G2_thread, result_reg->as_register());
3135}
3136
3137
3138void LIR_Assembler::peephole(LIR_List* lir) {
3139  LIR_OpList* inst = lir->instructions_list();
3140  for (int i = 0; i < inst->length(); i++) {
3141    LIR_Op* op = inst->at(i);
3142    switch (op->code()) {
3143      case lir_cond_float_branch:
3144      case lir_branch: {
3145        LIR_OpBranch* branch = op->as_OpBranch();
3146        assert(branch->info() == NULL, "shouldn't be state on branches anymore");
3147        LIR_Op* delay_op = NULL;
3148        // we'd like to be able to pull following instructions into
3149        // this slot but we don't know enough to do it safely yet so
3150        // only optimize block to block control flow.
3151        if (LIRFillDelaySlots && branch->block()) {
3152          LIR_Op* prev = inst->at(i - 1);
3153          if (prev && LIR_Assembler::is_single_instruction(prev) && prev->info() == NULL) {
3154            // swap previous instruction into delay slot
3155            inst->at_put(i - 1, op);
3156            inst->at_put(i, new LIR_OpDelay(prev, op->info()));
3157#ifndef PRODUCT
3158            if (LIRTracePeephole) {
3159              tty->print_cr("delayed");
3160              inst->at(i - 1)->print();
3161              inst->at(i)->print();
3162            }
3163#endif
3164            continue;
3165          }
3166        }
3167
3168        if (!delay_op) {
3169          delay_op = new LIR_OpDelay(new LIR_Op0(lir_nop), NULL);
3170        }
3171        inst->insert_before(i + 1, delay_op);
3172        break;
3173      }
3174      case lir_static_call:
3175      case lir_virtual_call:
3176      case lir_icvirtual_call:
3177      case lir_optvirtual_call: {
3178        LIR_Op* delay_op = NULL;
3179        LIR_Op* prev = inst->at(i - 1);
3180        if (LIRFillDelaySlots && prev && prev->code() == lir_move && prev->info() == NULL &&
3181            (op->code() != lir_virtual_call ||
3182             !prev->result_opr()->is_single_cpu() ||
3183             prev->result_opr()->as_register() != O0) &&
3184            LIR_Assembler::is_single_instruction(prev)) {
3185          // Only moves without info can be put into the delay slot.
3186          // Also don't allow the setup of the receiver in the delay
3187          // slot for vtable calls.
3188          inst->at_put(i - 1, op);
3189          inst->at_put(i, new LIR_OpDelay(prev, op->info()));
3190#ifndef PRODUCT
3191          if (LIRTracePeephole) {
3192            tty->print_cr("delayed");
3193            inst->at(i - 1)->print();
3194            inst->at(i)->print();
3195          }
3196#endif
3197          continue;
3198        }
3199
3200        if (!delay_op) {
3201          delay_op = new LIR_OpDelay(new LIR_Op0(lir_nop), op->as_OpJavaCall()->info());
3202          inst->insert_before(i + 1, delay_op);
3203        }
3204        break;
3205      }
3206    }
3207  }
3208}
3209
3210
3211
3212
3213#undef __
3214