c1_LIRAssembler_sparc.cpp revision 1365:6476042f815c
1/*
2 * Copyright 2000-2010 Sun Microsystems, Inc.  All Rights Reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20 * CA 95054 USA or visit www.sun.com if you need additional information or
21 * have any questions.
22 *
23 */
24
25# include "incls/_precompiled.incl"
26# include "incls/_c1_LIRAssembler_sparc.cpp.incl"
27
28#define __ _masm->
29
30
31//------------------------------------------------------------
32
33
34bool LIR_Assembler::is_small_constant(LIR_Opr opr) {
35  if (opr->is_constant()) {
36    LIR_Const* constant = opr->as_constant_ptr();
37    switch (constant->type()) {
38      case T_INT: {
39        jint value = constant->as_jint();
40        return Assembler::is_simm13(value);
41      }
42
43      default:
44        return false;
45    }
46  }
47  return false;
48}
49
50
51bool LIR_Assembler::is_single_instruction(LIR_Op* op) {
52  switch (op->code()) {
53    case lir_null_check:
54    return true;
55
56
57    case lir_add:
58    case lir_ushr:
59    case lir_shr:
60    case lir_shl:
61      // integer shifts and adds are always one instruction
62      return op->result_opr()->is_single_cpu();
63
64
65    case lir_move: {
66      LIR_Op1* op1 = op->as_Op1();
67      LIR_Opr src = op1->in_opr();
68      LIR_Opr dst = op1->result_opr();
69
70      if (src == dst) {
71        NEEDS_CLEANUP;
72        // this works around a problem where moves with the same src and dst
73        // end up in the delay slot and then the assembler swallows the mov
74        // since it has no effect and then it complains because the delay slot
75        // is empty.  returning false stops the optimizer from putting this in
76        // the delay slot
77        return false;
78      }
79
80      // don't put moves involving oops into the delay slot since the VerifyOops code
81      // will make it much larger than a single instruction.
82      if (VerifyOops) {
83        return false;
84      }
85
86      if (src->is_double_cpu() || dst->is_double_cpu() || op1->patch_code() != lir_patch_none ||
87          ((src->is_double_fpu() || dst->is_double_fpu()) && op1->move_kind() != lir_move_normal)) {
88        return false;
89      }
90
91      if (dst->is_register()) {
92        if (src->is_address() && Assembler::is_simm13(src->as_address_ptr()->disp())) {
93          return !PatchALot;
94        } else if (src->is_single_stack()) {
95          return true;
96        }
97      }
98
99      if (src->is_register()) {
100        if (dst->is_address() && Assembler::is_simm13(dst->as_address_ptr()->disp())) {
101          return !PatchALot;
102        } else if (dst->is_single_stack()) {
103          return true;
104        }
105      }
106
107      if (dst->is_register() &&
108          ((src->is_register() && src->is_single_word() && src->is_same_type(dst)) ||
109           (src->is_constant() && LIR_Assembler::is_small_constant(op->as_Op1()->in_opr())))) {
110        return true;
111      }
112
113      return false;
114    }
115
116    default:
117      return false;
118  }
119  ShouldNotReachHere();
120}
121
122
123LIR_Opr LIR_Assembler::receiverOpr() {
124  return FrameMap::O0_oop_opr;
125}
126
127
128LIR_Opr LIR_Assembler::incomingReceiverOpr() {
129  return FrameMap::I0_oop_opr;
130}
131
132
133LIR_Opr LIR_Assembler::osrBufferPointer() {
134  return FrameMap::I0_opr;
135}
136
137
138int LIR_Assembler::initial_frame_size_in_bytes() {
139  return in_bytes(frame_map()->framesize_in_bytes());
140}
141
142
143// inline cache check: the inline cached class is in G5_inline_cache_reg(G5);
144// we fetch the class of the receiver (O0) and compare it with the cached class.
145// If they do not match we jump to slow case.
146int LIR_Assembler::check_icache() {
147  int offset = __ offset();
148  __ inline_cache_check(O0, G5_inline_cache_reg);
149  return offset;
150}
151
152
153void LIR_Assembler::osr_entry() {
154  // On-stack-replacement entry sequence (interpreter frame layout described in interpreter_sparc.cpp):
155  //
156  //   1. Create a new compiled activation.
157  //   2. Initialize local variables in the compiled activation.  The expression stack must be empty
158  //      at the osr_bci; it is not initialized.
159  //   3. Jump to the continuation address in compiled code to resume execution.
160
161  // OSR entry point
162  offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
163  BlockBegin* osr_entry = compilation()->hir()->osr_entry();
164  ValueStack* entry_state = osr_entry->end()->state();
165  int number_of_locks = entry_state->locks_size();
166
167  // Create a frame for the compiled activation.
168  __ build_frame(initial_frame_size_in_bytes());
169
170  // OSR buffer is
171  //
172  // locals[nlocals-1..0]
173  // monitors[number_of_locks-1..0]
174  //
175  // locals is a direct copy of the interpreter frame so in the osr buffer
176  // so first slot in the local array is the last local from the interpreter
177  // and last slot is local[0] (receiver) from the interpreter
178  //
179  // Similarly with locks. The first lock slot in the osr buffer is the nth lock
180  // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
181  // in the interpreter frame (the method lock if a sync method)
182
183  // Initialize monitors in the compiled activation.
184  //   I0: pointer to osr buffer
185  //
186  // All other registers are dead at this point and the locals will be
187  // copied into place by code emitted in the IR.
188
189  Register OSR_buf = osrBufferPointer()->as_register();
190  { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
191    int monitor_offset = BytesPerWord * method()->max_locals() +
192      (2 * BytesPerWord) * (number_of_locks - 1);
193    // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in
194    // the OSR buffer using 2 word entries: first the lock and then
195    // the oop.
196    for (int i = 0; i < number_of_locks; i++) {
197      int slot_offset = monitor_offset - ((i * 2) * BytesPerWord);
198#ifdef ASSERT
199      // verify the interpreter's monitor has a non-null object
200      {
201        Label L;
202        __ ld_ptr(OSR_buf, slot_offset + 1*BytesPerWord, O7);
203        __ cmp(G0, O7);
204        __ br(Assembler::notEqual, false, Assembler::pt, L);
205        __ delayed()->nop();
206        __ stop("locked object is NULL");
207        __ bind(L);
208      }
209#endif // ASSERT
210      // Copy the lock field into the compiled activation.
211      __ ld_ptr(OSR_buf, slot_offset + 0, O7);
212      __ st_ptr(O7, frame_map()->address_for_monitor_lock(i));
213      __ ld_ptr(OSR_buf, slot_offset + 1*BytesPerWord, O7);
214      __ st_ptr(O7, frame_map()->address_for_monitor_object(i));
215    }
216  }
217}
218
219
220// Optimized Library calls
221// This is the fast version of java.lang.String.compare; it has not
222// OSR-entry and therefore, we generate a slow version for OSR's
223void LIR_Assembler::emit_string_compare(LIR_Opr left, LIR_Opr right, LIR_Opr dst, CodeEmitInfo* info) {
224  Register str0 = left->as_register();
225  Register str1 = right->as_register();
226
227  Label Ldone;
228
229  Register result = dst->as_register();
230  {
231    // Get a pointer to the first character of string0 in tmp0 and get string0.count in str0
232    // Get a pointer to the first character of string1 in tmp1 and get string1.count in str1
233    // Also, get string0.count-string1.count in o7 and get the condition code set
234    // Note: some instructions have been hoisted for better instruction scheduling
235
236    Register tmp0 = L0;
237    Register tmp1 = L1;
238    Register tmp2 = L2;
239
240    int  value_offset = java_lang_String:: value_offset_in_bytes(); // char array
241    int offset_offset = java_lang_String::offset_offset_in_bytes(); // first character position
242    int  count_offset = java_lang_String:: count_offset_in_bytes();
243
244    __ ld_ptr(str0, value_offset, tmp0);
245    __ ld(str0, offset_offset, tmp2);
246    __ add(tmp0, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp0);
247    __ ld(str0, count_offset, str0);
248    __ sll(tmp2, exact_log2(sizeof(jchar)), tmp2);
249
250    // str1 may be null
251    add_debug_info_for_null_check_here(info);
252
253    __ ld_ptr(str1, value_offset, tmp1);
254    __ add(tmp0, tmp2, tmp0);
255
256    __ ld(str1, offset_offset, tmp2);
257    __ add(tmp1, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp1);
258    __ ld(str1, count_offset, str1);
259    __ sll(tmp2, exact_log2(sizeof(jchar)), tmp2);
260    __ subcc(str0, str1, O7);
261    __ add(tmp1, tmp2, tmp1);
262  }
263
264  {
265    // Compute the minimum of the string lengths, scale it and store it in limit
266    Register count0 = I0;
267    Register count1 = I1;
268    Register limit  = L3;
269
270    Label Lskip;
271    __ sll(count0, exact_log2(sizeof(jchar)), limit);             // string0 is shorter
272    __ br(Assembler::greater, true, Assembler::pt, Lskip);
273    __ delayed()->sll(count1, exact_log2(sizeof(jchar)), limit);  // string1 is shorter
274    __ bind(Lskip);
275
276    // If either string is empty (or both of them) the result is the difference in lengths
277    __ cmp(limit, 0);
278    __ br(Assembler::equal, true, Assembler::pn, Ldone);
279    __ delayed()->mov(O7, result);  // result is difference in lengths
280  }
281
282  {
283    // Neither string is empty
284    Label Lloop;
285
286    Register base0 = L0;
287    Register base1 = L1;
288    Register chr0  = I0;
289    Register chr1  = I1;
290    Register limit = L3;
291
292    // Shift base0 and base1 to the end of the arrays, negate limit
293    __ add(base0, limit, base0);
294    __ add(base1, limit, base1);
295    __ neg(limit);  // limit = -min{string0.count, strin1.count}
296
297    __ lduh(base0, limit, chr0);
298    __ bind(Lloop);
299    __ lduh(base1, limit, chr1);
300    __ subcc(chr0, chr1, chr0);
301    __ br(Assembler::notZero, false, Assembler::pn, Ldone);
302    assert(chr0 == result, "result must be pre-placed");
303    __ delayed()->inccc(limit, sizeof(jchar));
304    __ br(Assembler::notZero, true, Assembler::pt, Lloop);
305    __ delayed()->lduh(base0, limit, chr0);
306  }
307
308  // If strings are equal up to min length, return the length difference.
309  __ mov(O7, result);
310
311  // Otherwise, return the difference between the first mismatched chars.
312  __ bind(Ldone);
313}
314
315
316// --------------------------------------------------------------------------------------------
317
318void LIR_Assembler::monitorexit(LIR_Opr obj_opr, LIR_Opr lock_opr, Register hdr, int monitor_no) {
319  if (!GenerateSynchronizationCode) return;
320
321  Register obj_reg = obj_opr->as_register();
322  Register lock_reg = lock_opr->as_register();
323
324  Address mon_addr = frame_map()->address_for_monitor_lock(monitor_no);
325  Register reg = mon_addr.base();
326  int offset = mon_addr.disp();
327  // compute pointer to BasicLock
328  if (mon_addr.is_simm13()) {
329    __ add(reg, offset, lock_reg);
330  }
331  else {
332    __ set(offset, lock_reg);
333    __ add(reg, lock_reg, lock_reg);
334  }
335  // unlock object
336  MonitorAccessStub* slow_case = new MonitorExitStub(lock_opr, UseFastLocking, monitor_no);
337  // _slow_case_stubs->append(slow_case);
338  // temporary fix: must be created after exceptionhandler, therefore as call stub
339  _slow_case_stubs->append(slow_case);
340  if (UseFastLocking) {
341    // try inlined fast unlocking first, revert to slow locking if it fails
342    // note: lock_reg points to the displaced header since the displaced header offset is 0!
343    assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
344    __ unlock_object(hdr, obj_reg, lock_reg, *slow_case->entry());
345  } else {
346    // always do slow unlocking
347    // note: the slow unlocking code could be inlined here, however if we use
348    //       slow unlocking, speed doesn't matter anyway and this solution is
349    //       simpler and requires less duplicated code - additionally, the
350    //       slow unlocking code is the same in either case which simplifies
351    //       debugging
352    __ br(Assembler::always, false, Assembler::pt, *slow_case->entry());
353    __ delayed()->nop();
354  }
355  // done
356  __ bind(*slow_case->continuation());
357}
358
359
360int LIR_Assembler::emit_exception_handler() {
361  // if the last instruction is a call (typically to do a throw which
362  // is coming at the end after block reordering) the return address
363  // must still point into the code area in order to avoid assertion
364  // failures when searching for the corresponding bci => add a nop
365  // (was bug 5/14/1999 - gri)
366  __ nop();
367
368  // generate code for exception handler
369  ciMethod* method = compilation()->method();
370
371  address handler_base = __ start_a_stub(exception_handler_size);
372
373  if (handler_base == NULL) {
374    // not enough space left for the handler
375    bailout("exception handler overflow");
376    return -1;
377  }
378
379  int offset = code_offset();
380
381  __ call(Runtime1::entry_for(Runtime1::handle_exception_id), relocInfo::runtime_call_type);
382  __ delayed()->nop();
383  debug_only(__ stop("should have gone to the caller");)
384  assert(code_offset() - offset <= exception_handler_size, "overflow");
385  __ end_a_stub();
386
387  return offset;
388}
389
390
391int LIR_Assembler::emit_deopt_handler() {
392  // if the last instruction is a call (typically to do a throw which
393  // is coming at the end after block reordering) the return address
394  // must still point into the code area in order to avoid assertion
395  // failures when searching for the corresponding bci => add a nop
396  // (was bug 5/14/1999 - gri)
397  __ nop();
398
399  // generate code for deopt handler
400  ciMethod* method = compilation()->method();
401  address handler_base = __ start_a_stub(deopt_handler_size);
402  if (handler_base == NULL) {
403    // not enough space left for the handler
404    bailout("deopt handler overflow");
405    return -1;
406  }
407
408  int offset = code_offset();
409  AddressLiteral deopt_blob(SharedRuntime::deopt_blob()->unpack());
410  __ JUMP(deopt_blob, G3_scratch, 0); // sethi;jmp
411  __ delayed()->nop();
412  assert(code_offset() - offset <= deopt_handler_size, "overflow");
413  debug_only(__ stop("should have gone to the caller");)
414  __ end_a_stub();
415
416  return offset;
417}
418
419
420void LIR_Assembler::jobject2reg(jobject o, Register reg) {
421  if (o == NULL) {
422    __ set(NULL_WORD, reg);
423  } else {
424    int oop_index = __ oop_recorder()->find_index(o);
425    RelocationHolder rspec = oop_Relocation::spec(oop_index);
426    __ set(NULL_WORD, reg, rspec); // Will be set when the nmethod is created
427  }
428}
429
430
431void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo *info) {
432  // Allocate a new index in oop table to hold the oop once it's been patched
433  int oop_index = __ oop_recorder()->allocate_index((jobject)NULL);
434  PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id, oop_index);
435
436  AddressLiteral addrlit(NULL, oop_Relocation::spec(oop_index));
437  assert(addrlit.rspec().type() == relocInfo::oop_type, "must be an oop reloc");
438  // It may not seem necessary to use a sethi/add pair to load a NULL into dest, but the
439  // NULL will be dynamically patched later and the patched value may be large.  We must
440  // therefore generate the sethi/add as a placeholders
441  __ patchable_set(addrlit, reg);
442
443  patching_epilog(patch, lir_patch_normal, reg, info);
444}
445
446
447void LIR_Assembler::emit_op3(LIR_Op3* op) {
448  Register Rdividend = op->in_opr1()->as_register();
449  Register Rdivisor  = noreg;
450  Register Rscratch  = op->in_opr3()->as_register();
451  Register Rresult   = op->result_opr()->as_register();
452  int divisor = -1;
453
454  if (op->in_opr2()->is_register()) {
455    Rdivisor = op->in_opr2()->as_register();
456  } else {
457    divisor = op->in_opr2()->as_constant_ptr()->as_jint();
458    assert(Assembler::is_simm13(divisor), "can only handle simm13");
459  }
460
461  assert(Rdividend != Rscratch, "");
462  assert(Rdivisor  != Rscratch, "");
463  assert(op->code() == lir_idiv || op->code() == lir_irem, "Must be irem or idiv");
464
465  if (Rdivisor == noreg && is_power_of_2(divisor)) {
466    // convert division by a power of two into some shifts and logical operations
467    if (op->code() == lir_idiv) {
468      if (divisor == 2) {
469        __ srl(Rdividend, 31, Rscratch);
470      } else {
471        __ sra(Rdividend, 31, Rscratch);
472        __ and3(Rscratch, divisor - 1, Rscratch);
473      }
474      __ add(Rdividend, Rscratch, Rscratch);
475      __ sra(Rscratch, log2_intptr(divisor), Rresult);
476      return;
477    } else {
478      if (divisor == 2) {
479        __ srl(Rdividend, 31, Rscratch);
480      } else {
481        __ sra(Rdividend, 31, Rscratch);
482        __ and3(Rscratch, divisor - 1,Rscratch);
483      }
484      __ add(Rdividend, Rscratch, Rscratch);
485      __ andn(Rscratch, divisor - 1,Rscratch);
486      __ sub(Rdividend, Rscratch, Rresult);
487      return;
488    }
489  }
490
491  __ sra(Rdividend, 31, Rscratch);
492  __ wry(Rscratch);
493  if (!VM_Version::v9_instructions_work()) {
494    // v9 doesn't require these nops
495    __ nop();
496    __ nop();
497    __ nop();
498    __ nop();
499  }
500
501  add_debug_info_for_div0_here(op->info());
502
503  if (Rdivisor != noreg) {
504    __ sdivcc(Rdividend, Rdivisor, (op->code() == lir_idiv ? Rresult : Rscratch));
505  } else {
506    assert(Assembler::is_simm13(divisor), "can only handle simm13");
507    __ sdivcc(Rdividend, divisor, (op->code() == lir_idiv ? Rresult : Rscratch));
508  }
509
510  Label skip;
511  __ br(Assembler::overflowSet, true, Assembler::pn, skip);
512  __ delayed()->Assembler::sethi(0x80000000, (op->code() == lir_idiv ? Rresult : Rscratch));
513  __ bind(skip);
514
515  if (op->code() == lir_irem) {
516    if (Rdivisor != noreg) {
517      __ smul(Rscratch, Rdivisor, Rscratch);
518    } else {
519      __ smul(Rscratch, divisor, Rscratch);
520    }
521    __ sub(Rdividend, Rscratch, Rresult);
522  }
523}
524
525
526void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
527#ifdef ASSERT
528  assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label");
529  if (op->block() != NULL)  _branch_target_blocks.append(op->block());
530  if (op->ublock() != NULL) _branch_target_blocks.append(op->ublock());
531#endif
532  assert(op->info() == NULL, "shouldn't have CodeEmitInfo");
533
534  if (op->cond() == lir_cond_always) {
535    __ br(Assembler::always, false, Assembler::pt, *(op->label()));
536  } else if (op->code() == lir_cond_float_branch) {
537    assert(op->ublock() != NULL, "must have unordered successor");
538    bool is_unordered = (op->ublock() == op->block());
539    Assembler::Condition acond;
540    switch (op->cond()) {
541      case lir_cond_equal:         acond = Assembler::f_equal;    break;
542      case lir_cond_notEqual:      acond = Assembler::f_notEqual; break;
543      case lir_cond_less:          acond = (is_unordered ? Assembler::f_unorderedOrLess          : Assembler::f_less);           break;
544      case lir_cond_greater:       acond = (is_unordered ? Assembler::f_unorderedOrGreater       : Assembler::f_greater);        break;
545      case lir_cond_lessEqual:     acond = (is_unordered ? Assembler::f_unorderedOrLessOrEqual   : Assembler::f_lessOrEqual);    break;
546      case lir_cond_greaterEqual:  acond = (is_unordered ? Assembler::f_unorderedOrGreaterOrEqual: Assembler::f_greaterOrEqual); break;
547      default :                         ShouldNotReachHere();
548    };
549
550    if (!VM_Version::v9_instructions_work()) {
551      __ nop();
552    }
553    __ fb( acond, false, Assembler::pn, *(op->label()));
554  } else {
555    assert (op->code() == lir_branch, "just checking");
556
557    Assembler::Condition acond;
558    switch (op->cond()) {
559      case lir_cond_equal:        acond = Assembler::equal;                break;
560      case lir_cond_notEqual:     acond = Assembler::notEqual;             break;
561      case lir_cond_less:         acond = Assembler::less;                 break;
562      case lir_cond_lessEqual:    acond = Assembler::lessEqual;            break;
563      case lir_cond_greaterEqual: acond = Assembler::greaterEqual;         break;
564      case lir_cond_greater:      acond = Assembler::greater;              break;
565      case lir_cond_aboveEqual:   acond = Assembler::greaterEqualUnsigned; break;
566      case lir_cond_belowEqual:   acond = Assembler::lessEqualUnsigned;    break;
567      default:                         ShouldNotReachHere();
568    };
569
570    // sparc has different condition codes for testing 32-bit
571    // vs. 64-bit values.  We could always test xcc is we could
572    // guarantee that 32-bit loads always sign extended but that isn't
573    // true and since sign extension isn't free, it would impose a
574    // slight cost.
575#ifdef _LP64
576    if  (op->type() == T_INT) {
577      __ br(acond, false, Assembler::pn, *(op->label()));
578    } else
579#endif
580      __ brx(acond, false, Assembler::pn, *(op->label()));
581  }
582  // The peephole pass fills the delay slot
583}
584
585
586void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
587  Bytecodes::Code code = op->bytecode();
588  LIR_Opr dst = op->result_opr();
589
590  switch(code) {
591    case Bytecodes::_i2l: {
592      Register rlo  = dst->as_register_lo();
593      Register rhi  = dst->as_register_hi();
594      Register rval = op->in_opr()->as_register();
595#ifdef _LP64
596      __ sra(rval, 0, rlo);
597#else
598      __ mov(rval, rlo);
599      __ sra(rval, BitsPerInt-1, rhi);
600#endif
601      break;
602    }
603    case Bytecodes::_i2d:
604    case Bytecodes::_i2f: {
605      bool is_double = (code == Bytecodes::_i2d);
606      FloatRegister rdst = is_double ? dst->as_double_reg() : dst->as_float_reg();
607      FloatRegisterImpl::Width w = is_double ? FloatRegisterImpl::D : FloatRegisterImpl::S;
608      FloatRegister rsrc = op->in_opr()->as_float_reg();
609      if (rsrc != rdst) {
610        __ fmov(FloatRegisterImpl::S, rsrc, rdst);
611      }
612      __ fitof(w, rdst, rdst);
613      break;
614    }
615    case Bytecodes::_f2i:{
616      FloatRegister rsrc = op->in_opr()->as_float_reg();
617      Address       addr = frame_map()->address_for_slot(dst->single_stack_ix());
618      Label L;
619      // result must be 0 if value is NaN; test by comparing value to itself
620      __ fcmp(FloatRegisterImpl::S, Assembler::fcc0, rsrc, rsrc);
621      if (!VM_Version::v9_instructions_work()) {
622        __ nop();
623      }
624      __ fb(Assembler::f_unordered, true, Assembler::pn, L);
625      __ delayed()->st(G0, addr); // annuled if contents of rsrc is not NaN
626      __ ftoi(FloatRegisterImpl::S, rsrc, rsrc);
627      // move integer result from float register to int register
628      __ stf(FloatRegisterImpl::S, rsrc, addr.base(), addr.disp());
629      __ bind (L);
630      break;
631    }
632    case Bytecodes::_l2i: {
633      Register rlo  = op->in_opr()->as_register_lo();
634      Register rhi  = op->in_opr()->as_register_hi();
635      Register rdst = dst->as_register();
636#ifdef _LP64
637      __ sra(rlo, 0, rdst);
638#else
639      __ mov(rlo, rdst);
640#endif
641      break;
642    }
643    case Bytecodes::_d2f:
644    case Bytecodes::_f2d: {
645      bool is_double = (code == Bytecodes::_f2d);
646      assert((!is_double && dst->is_single_fpu()) || (is_double && dst->is_double_fpu()), "check");
647      LIR_Opr val = op->in_opr();
648      FloatRegister rval = (code == Bytecodes::_d2f) ? val->as_double_reg() : val->as_float_reg();
649      FloatRegister rdst = is_double ? dst->as_double_reg() : dst->as_float_reg();
650      FloatRegisterImpl::Width vw = is_double ? FloatRegisterImpl::S : FloatRegisterImpl::D;
651      FloatRegisterImpl::Width dw = is_double ? FloatRegisterImpl::D : FloatRegisterImpl::S;
652      __ ftof(vw, dw, rval, rdst);
653      break;
654    }
655    case Bytecodes::_i2s:
656    case Bytecodes::_i2b: {
657      Register rval = op->in_opr()->as_register();
658      Register rdst = dst->as_register();
659      int shift = (code == Bytecodes::_i2b) ? (BitsPerInt - T_BYTE_aelem_bytes * BitsPerByte) : (BitsPerInt - BitsPerShort);
660      __ sll (rval, shift, rdst);
661      __ sra (rdst, shift, rdst);
662      break;
663    }
664    case Bytecodes::_i2c: {
665      Register rval = op->in_opr()->as_register();
666      Register rdst = dst->as_register();
667      int shift = BitsPerInt - T_CHAR_aelem_bytes * BitsPerByte;
668      __ sll (rval, shift, rdst);
669      __ srl (rdst, shift, rdst);
670      break;
671    }
672
673    default: ShouldNotReachHere();
674  }
675}
676
677
678void LIR_Assembler::align_call(LIR_Code) {
679  // do nothing since all instructions are word aligned on sparc
680}
681
682
683void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) {
684  __ call(op->addr(), rtype);
685  // the peephole pass fills the delay slot
686}
687
688
689void LIR_Assembler::ic_call(LIR_OpJavaCall* op) {
690  RelocationHolder rspec = virtual_call_Relocation::spec(pc());
691  __ set_oop((jobject)Universe::non_oop_word(), G5_inline_cache_reg);
692  __ relocate(rspec);
693  __ call(op->addr(), relocInfo::none);
694  // the peephole pass fills the delay slot
695}
696
697
698void LIR_Assembler::vtable_call(LIR_OpJavaCall* op) {
699  add_debug_info_for_null_check_here(op->info());
700  __ ld_ptr(O0, oopDesc::klass_offset_in_bytes(), G3_scratch);
701  if (__ is_simm13(op->vtable_offset())) {
702    __ ld_ptr(G3_scratch, op->vtable_offset(), G5_method);
703  } else {
704    // This will generate 2 instructions
705    __ set(op->vtable_offset(), G5_method);
706    // ld_ptr, set_hi, set
707    __ ld_ptr(G3_scratch, G5_method, G5_method);
708  }
709  __ ld_ptr(G5_method, methodOopDesc::from_compiled_offset(), G3_scratch);
710  __ callr(G3_scratch, G0);
711  // the peephole pass fills the delay slot
712}
713
714
715void LIR_Assembler::preserve_SP(LIR_OpJavaCall* op) {
716  Unimplemented();
717}
718
719
720void LIR_Assembler::restore_SP(LIR_OpJavaCall* op) {
721  Unimplemented();
722}
723
724
725// load with 32-bit displacement
726int LIR_Assembler::load(Register s, int disp, Register d, BasicType ld_type, CodeEmitInfo *info) {
727  int load_offset = code_offset();
728  if (Assembler::is_simm13(disp)) {
729    if (info != NULL) add_debug_info_for_null_check_here(info);
730    switch(ld_type) {
731      case T_BOOLEAN: // fall through
732      case T_BYTE  : __ ldsb(s, disp, d); break;
733      case T_CHAR  : __ lduh(s, disp, d); break;
734      case T_SHORT : __ ldsh(s, disp, d); break;
735      case T_INT   : __ ld(s, disp, d); break;
736      case T_ADDRESS:// fall through
737      case T_ARRAY : // fall through
738      case T_OBJECT: __ ld_ptr(s, disp, d); break;
739      default      : ShouldNotReachHere();
740    }
741  } else {
742    __ set(disp, O7);
743    if (info != NULL) add_debug_info_for_null_check_here(info);
744    load_offset = code_offset();
745    switch(ld_type) {
746      case T_BOOLEAN: // fall through
747      case T_BYTE  : __ ldsb(s, O7, d); break;
748      case T_CHAR  : __ lduh(s, O7, d); break;
749      case T_SHORT : __ ldsh(s, O7, d); break;
750      case T_INT   : __ ld(s, O7, d); break;
751      case T_ADDRESS:// fall through
752      case T_ARRAY : // fall through
753      case T_OBJECT: __ ld_ptr(s, O7, d); break;
754      default      : ShouldNotReachHere();
755    }
756  }
757  if (ld_type == T_ARRAY || ld_type == T_OBJECT) __ verify_oop(d);
758  return load_offset;
759}
760
761
762// store with 32-bit displacement
763void LIR_Assembler::store(Register value, Register base, int offset, BasicType type, CodeEmitInfo *info) {
764  if (Assembler::is_simm13(offset)) {
765    if (info != NULL)  add_debug_info_for_null_check_here(info);
766    switch (type) {
767      case T_BOOLEAN: // fall through
768      case T_BYTE  : __ stb(value, base, offset); break;
769      case T_CHAR  : __ sth(value, base, offset); break;
770      case T_SHORT : __ sth(value, base, offset); break;
771      case T_INT   : __ stw(value, base, offset); break;
772      case T_ADDRESS:// fall through
773      case T_ARRAY : // fall through
774      case T_OBJECT: __ st_ptr(value, base, offset); break;
775      default      : ShouldNotReachHere();
776    }
777  } else {
778    __ set(offset, O7);
779    if (info != NULL) add_debug_info_for_null_check_here(info);
780    switch (type) {
781      case T_BOOLEAN: // fall through
782      case T_BYTE  : __ stb(value, base, O7); break;
783      case T_CHAR  : __ sth(value, base, O7); break;
784      case T_SHORT : __ sth(value, base, O7); break;
785      case T_INT   : __ stw(value, base, O7); break;
786      case T_ADDRESS:// fall through
787      case T_ARRAY : //fall through
788      case T_OBJECT: __ st_ptr(value, base, O7); break;
789      default      : ShouldNotReachHere();
790    }
791  }
792  // Note: Do the store before verification as the code might be patched!
793  if (type == T_ARRAY || type == T_OBJECT) __ verify_oop(value);
794}
795
796
797// load float with 32-bit displacement
798void LIR_Assembler::load(Register s, int disp, FloatRegister d, BasicType ld_type, CodeEmitInfo *info) {
799  FloatRegisterImpl::Width w;
800  switch(ld_type) {
801    case T_FLOAT : w = FloatRegisterImpl::S; break;
802    case T_DOUBLE: w = FloatRegisterImpl::D; break;
803    default      : ShouldNotReachHere();
804  }
805
806  if (Assembler::is_simm13(disp)) {
807    if (info != NULL) add_debug_info_for_null_check_here(info);
808    if (disp % BytesPerLong != 0 && w == FloatRegisterImpl::D) {
809      __ ldf(FloatRegisterImpl::S, s, disp + BytesPerWord, d->successor());
810      __ ldf(FloatRegisterImpl::S, s, disp               , d);
811    } else {
812      __ ldf(w, s, disp, d);
813    }
814  } else {
815    __ set(disp, O7);
816    if (info != NULL) add_debug_info_for_null_check_here(info);
817    __ ldf(w, s, O7, d);
818  }
819}
820
821
822// store float with 32-bit displacement
823void LIR_Assembler::store(FloatRegister value, Register base, int offset, BasicType type, CodeEmitInfo *info) {
824  FloatRegisterImpl::Width w;
825  switch(type) {
826    case T_FLOAT : w = FloatRegisterImpl::S; break;
827    case T_DOUBLE: w = FloatRegisterImpl::D; break;
828    default      : ShouldNotReachHere();
829  }
830
831  if (Assembler::is_simm13(offset)) {
832    if (info != NULL) add_debug_info_for_null_check_here(info);
833    if (w == FloatRegisterImpl::D && offset % BytesPerLong != 0) {
834      __ stf(FloatRegisterImpl::S, value->successor(), base, offset + BytesPerWord);
835      __ stf(FloatRegisterImpl::S, value             , base, offset);
836    } else {
837      __ stf(w, value, base, offset);
838    }
839  } else {
840    __ set(offset, O7);
841    if (info != NULL) add_debug_info_for_null_check_here(info);
842    __ stf(w, value, O7, base);
843  }
844}
845
846
847int LIR_Assembler::store(LIR_Opr from_reg, Register base, int offset, BasicType type, bool unaligned) {
848  int store_offset;
849  if (!Assembler::is_simm13(offset + (type == T_LONG) ? wordSize : 0)) {
850    assert(!unaligned, "can't handle this");
851    // for offsets larger than a simm13 we setup the offset in O7
852    __ set(offset, O7);
853    store_offset = store(from_reg, base, O7, type);
854  } else {
855    if (type == T_ARRAY || type == T_OBJECT) __ verify_oop(from_reg->as_register());
856    store_offset = code_offset();
857    switch (type) {
858      case T_BOOLEAN: // fall through
859      case T_BYTE  : __ stb(from_reg->as_register(), base, offset); break;
860      case T_CHAR  : __ sth(from_reg->as_register(), base, offset); break;
861      case T_SHORT : __ sth(from_reg->as_register(), base, offset); break;
862      case T_INT   : __ stw(from_reg->as_register(), base, offset); break;
863      case T_LONG  :
864#ifdef _LP64
865        if (unaligned || PatchALot) {
866          __ srax(from_reg->as_register_lo(), 32, O7);
867          __ stw(from_reg->as_register_lo(), base, offset + lo_word_offset_in_bytes);
868          __ stw(O7,                         base, offset + hi_word_offset_in_bytes);
869        } else {
870          __ stx(from_reg->as_register_lo(), base, offset);
871        }
872#else
873        assert(Assembler::is_simm13(offset + 4), "must be");
874        __ stw(from_reg->as_register_lo(), base, offset + lo_word_offset_in_bytes);
875        __ stw(from_reg->as_register_hi(), base, offset + hi_word_offset_in_bytes);
876#endif
877        break;
878      case T_ADDRESS:// fall through
879      case T_ARRAY : // fall through
880      case T_OBJECT: __ st_ptr(from_reg->as_register(), base, offset); break;
881      case T_FLOAT : __ stf(FloatRegisterImpl::S, from_reg->as_float_reg(), base, offset); break;
882      case T_DOUBLE:
883        {
884          FloatRegister reg = from_reg->as_double_reg();
885          // split unaligned stores
886          if (unaligned || PatchALot) {
887            assert(Assembler::is_simm13(offset + 4), "must be");
888            __ stf(FloatRegisterImpl::S, reg->successor(), base, offset + 4);
889            __ stf(FloatRegisterImpl::S, reg,              base, offset);
890          } else {
891            __ stf(FloatRegisterImpl::D, reg, base, offset);
892          }
893          break;
894        }
895      default      : ShouldNotReachHere();
896    }
897  }
898  return store_offset;
899}
900
901
902int LIR_Assembler::store(LIR_Opr from_reg, Register base, Register disp, BasicType type) {
903  if (type == T_ARRAY || type == T_OBJECT) __ verify_oop(from_reg->as_register());
904  int store_offset = code_offset();
905  switch (type) {
906    case T_BOOLEAN: // fall through
907    case T_BYTE  : __ stb(from_reg->as_register(), base, disp); break;
908    case T_CHAR  : __ sth(from_reg->as_register(), base, disp); break;
909    case T_SHORT : __ sth(from_reg->as_register(), base, disp); break;
910    case T_INT   : __ stw(from_reg->as_register(), base, disp); break;
911    case T_LONG  :
912#ifdef _LP64
913      __ stx(from_reg->as_register_lo(), base, disp);
914#else
915      assert(from_reg->as_register_hi()->successor() == from_reg->as_register_lo(), "must match");
916      __ std(from_reg->as_register_hi(), base, disp);
917#endif
918      break;
919    case T_ADDRESS:// fall through
920    case T_ARRAY : // fall through
921    case T_OBJECT: __ st_ptr(from_reg->as_register(), base, disp); break;
922    case T_FLOAT : __ stf(FloatRegisterImpl::S, from_reg->as_float_reg(), base, disp); break;
923    case T_DOUBLE: __ stf(FloatRegisterImpl::D, from_reg->as_double_reg(), base, disp); break;
924    default      : ShouldNotReachHere();
925  }
926  return store_offset;
927}
928
929
930int LIR_Assembler::load(Register base, int offset, LIR_Opr to_reg, BasicType type, bool unaligned) {
931  int load_offset;
932  if (!Assembler::is_simm13(offset + (type == T_LONG) ? wordSize : 0)) {
933    assert(base != O7, "destroying register");
934    assert(!unaligned, "can't handle this");
935    // for offsets larger than a simm13 we setup the offset in O7
936    __ set(offset, O7);
937    load_offset = load(base, O7, to_reg, type);
938  } else {
939    load_offset = code_offset();
940    switch(type) {
941      case T_BOOLEAN: // fall through
942      case T_BYTE  : __ ldsb(base, offset, to_reg->as_register()); break;
943      case T_CHAR  : __ lduh(base, offset, to_reg->as_register()); break;
944      case T_SHORT : __ ldsh(base, offset, to_reg->as_register()); break;
945      case T_INT   : __ ld(base, offset, to_reg->as_register()); break;
946      case T_LONG  :
947        if (!unaligned) {
948#ifdef _LP64
949          __ ldx(base, offset, to_reg->as_register_lo());
950#else
951          assert(to_reg->as_register_hi()->successor() == to_reg->as_register_lo(),
952                 "must be sequential");
953          __ ldd(base, offset, to_reg->as_register_hi());
954#endif
955        } else {
956#ifdef _LP64
957          assert(base != to_reg->as_register_lo(), "can't handle this");
958          assert(O7 != to_reg->as_register_lo(), "can't handle this");
959          __ ld(base, offset + hi_word_offset_in_bytes, to_reg->as_register_lo());
960          __ lduw(base, offset + lo_word_offset_in_bytes, O7); // in case O7 is base or offset, use it last
961          __ sllx(to_reg->as_register_lo(), 32, to_reg->as_register_lo());
962          __ or3(to_reg->as_register_lo(), O7, to_reg->as_register_lo());
963#else
964          if (base == to_reg->as_register_lo()) {
965            __ ld(base, offset + hi_word_offset_in_bytes, to_reg->as_register_hi());
966            __ ld(base, offset + lo_word_offset_in_bytes, to_reg->as_register_lo());
967          } else {
968            __ ld(base, offset + lo_word_offset_in_bytes, to_reg->as_register_lo());
969            __ ld(base, offset + hi_word_offset_in_bytes, to_reg->as_register_hi());
970          }
971#endif
972        }
973        break;
974      case T_ADDRESS:// fall through
975      case T_ARRAY : // fall through
976      case T_OBJECT: __ ld_ptr(base, offset, to_reg->as_register()); break;
977      case T_FLOAT:  __ ldf(FloatRegisterImpl::S, base, offset, to_reg->as_float_reg()); break;
978      case T_DOUBLE:
979        {
980          FloatRegister reg = to_reg->as_double_reg();
981          // split unaligned loads
982          if (unaligned || PatchALot) {
983            __ ldf(FloatRegisterImpl::S, base, offset + 4, reg->successor());
984            __ ldf(FloatRegisterImpl::S, base, offset,     reg);
985          } else {
986            __ ldf(FloatRegisterImpl::D, base, offset, to_reg->as_double_reg());
987          }
988          break;
989        }
990      default      : ShouldNotReachHere();
991    }
992    if (type == T_ARRAY || type == T_OBJECT) __ verify_oop(to_reg->as_register());
993  }
994  return load_offset;
995}
996
997
998int LIR_Assembler::load(Register base, Register disp, LIR_Opr to_reg, BasicType type) {
999  int load_offset = code_offset();
1000  switch(type) {
1001    case T_BOOLEAN: // fall through
1002    case T_BYTE  : __ ldsb(base, disp, to_reg->as_register()); break;
1003    case T_CHAR  : __ lduh(base, disp, to_reg->as_register()); break;
1004    case T_SHORT : __ ldsh(base, disp, to_reg->as_register()); break;
1005    case T_INT   : __ ld(base, disp, to_reg->as_register()); break;
1006    case T_ADDRESS:// fall through
1007    case T_ARRAY : // fall through
1008    case T_OBJECT: __ ld_ptr(base, disp, to_reg->as_register()); break;
1009    case T_FLOAT:  __ ldf(FloatRegisterImpl::S, base, disp, to_reg->as_float_reg()); break;
1010    case T_DOUBLE: __ ldf(FloatRegisterImpl::D, base, disp, to_reg->as_double_reg()); break;
1011    case T_LONG  :
1012#ifdef _LP64
1013      __ ldx(base, disp, to_reg->as_register_lo());
1014#else
1015      assert(to_reg->as_register_hi()->successor() == to_reg->as_register_lo(),
1016             "must be sequential");
1017      __ ldd(base, disp, to_reg->as_register_hi());
1018#endif
1019      break;
1020    default      : ShouldNotReachHere();
1021  }
1022  if (type == T_ARRAY || type == T_OBJECT) __ verify_oop(to_reg->as_register());
1023  return load_offset;
1024}
1025
1026
1027// load/store with an Address
1028void LIR_Assembler::load(const Address& a, Register d,  BasicType ld_type, CodeEmitInfo *info, int offset) {
1029  load(a.base(), a.disp() + offset, d, ld_type, info);
1030}
1031
1032
1033void LIR_Assembler::store(Register value, const Address& dest, BasicType type, CodeEmitInfo *info, int offset) {
1034  store(value, dest.base(), dest.disp() + offset, type, info);
1035}
1036
1037
1038// loadf/storef with an Address
1039void LIR_Assembler::load(const Address& a, FloatRegister d, BasicType ld_type, CodeEmitInfo *info, int offset) {
1040  load(a.base(), a.disp() + offset, d, ld_type, info);
1041}
1042
1043
1044void LIR_Assembler::store(FloatRegister value, const Address& dest, BasicType type, CodeEmitInfo *info, int offset) {
1045  store(value, dest.base(), dest.disp() + offset, type, info);
1046}
1047
1048
1049// load/store with an Address
1050void LIR_Assembler::load(LIR_Address* a, Register d,  BasicType ld_type, CodeEmitInfo *info) {
1051  load(as_Address(a), d, ld_type, info);
1052}
1053
1054
1055void LIR_Assembler::store(Register value, LIR_Address* dest, BasicType type, CodeEmitInfo *info) {
1056  store(value, as_Address(dest), type, info);
1057}
1058
1059
1060// loadf/storef with an Address
1061void LIR_Assembler::load(LIR_Address* a, FloatRegister d, BasicType ld_type, CodeEmitInfo *info) {
1062  load(as_Address(a), d, ld_type, info);
1063}
1064
1065
1066void LIR_Assembler::store(FloatRegister value, LIR_Address* dest, BasicType type, CodeEmitInfo *info) {
1067  store(value, as_Address(dest), type, info);
1068}
1069
1070
1071void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
1072  LIR_Const* c = src->as_constant_ptr();
1073  switch (c->type()) {
1074    case T_INT:
1075    case T_FLOAT:
1076    case T_ADDRESS: {
1077      Register src_reg = O7;
1078      int value = c->as_jint_bits();
1079      if (value == 0) {
1080        src_reg = G0;
1081      } else {
1082        __ set(value, O7);
1083      }
1084      Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
1085      __ stw(src_reg, addr.base(), addr.disp());
1086      break;
1087    }
1088    case T_OBJECT: {
1089      Register src_reg = O7;
1090      jobject2reg(c->as_jobject(), src_reg);
1091      Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
1092      __ st_ptr(src_reg, addr.base(), addr.disp());
1093      break;
1094    }
1095    case T_LONG:
1096    case T_DOUBLE: {
1097      Address addr = frame_map()->address_for_double_slot(dest->double_stack_ix());
1098
1099      Register tmp = O7;
1100      int value_lo = c->as_jint_lo_bits();
1101      if (value_lo == 0) {
1102        tmp = G0;
1103      } else {
1104        __ set(value_lo, O7);
1105      }
1106      __ stw(tmp, addr.base(), addr.disp() + lo_word_offset_in_bytes);
1107      int value_hi = c->as_jint_hi_bits();
1108      if (value_hi == 0) {
1109        tmp = G0;
1110      } else {
1111        __ set(value_hi, O7);
1112      }
1113      __ stw(tmp, addr.base(), addr.disp() + hi_word_offset_in_bytes);
1114      break;
1115    }
1116    default:
1117      Unimplemented();
1118  }
1119}
1120
1121
1122void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info ) {
1123  LIR_Const* c = src->as_constant_ptr();
1124  LIR_Address* addr     = dest->as_address_ptr();
1125  Register base = addr->base()->as_pointer_register();
1126
1127  if (info != NULL) {
1128    add_debug_info_for_null_check_here(info);
1129  }
1130  switch (c->type()) {
1131    case T_INT:
1132    case T_FLOAT:
1133    case T_ADDRESS: {
1134      LIR_Opr tmp = FrameMap::O7_opr;
1135      int value = c->as_jint_bits();
1136      if (value == 0) {
1137        tmp = FrameMap::G0_opr;
1138      } else if (Assembler::is_simm13(value)) {
1139        __ set(value, O7);
1140      }
1141      if (addr->index()->is_valid()) {
1142        assert(addr->disp() == 0, "must be zero");
1143        store(tmp, base, addr->index()->as_pointer_register(), type);
1144      } else {
1145        assert(Assembler::is_simm13(addr->disp()), "can't handle larger addresses");
1146        store(tmp, base, addr->disp(), type);
1147      }
1148      break;
1149    }
1150    case T_LONG:
1151    case T_DOUBLE: {
1152      assert(!addr->index()->is_valid(), "can't handle reg reg address here");
1153      assert(Assembler::is_simm13(addr->disp()) &&
1154             Assembler::is_simm13(addr->disp() + 4), "can't handle larger addresses");
1155
1156      Register tmp = O7;
1157      int value_lo = c->as_jint_lo_bits();
1158      if (value_lo == 0) {
1159        tmp = G0;
1160      } else {
1161        __ set(value_lo, O7);
1162      }
1163      store(tmp, base, addr->disp() + lo_word_offset_in_bytes, T_INT);
1164      int value_hi = c->as_jint_hi_bits();
1165      if (value_hi == 0) {
1166        tmp = G0;
1167      } else {
1168        __ set(value_hi, O7);
1169      }
1170      store(tmp, base, addr->disp() + hi_word_offset_in_bytes, T_INT);
1171      break;
1172    }
1173    case T_OBJECT: {
1174      jobject obj = c->as_jobject();
1175      LIR_Opr tmp;
1176      if (obj == NULL) {
1177        tmp = FrameMap::G0_opr;
1178      } else {
1179        tmp = FrameMap::O7_opr;
1180        jobject2reg(c->as_jobject(), O7);
1181      }
1182      // handle either reg+reg or reg+disp address
1183      if (addr->index()->is_valid()) {
1184        assert(addr->disp() == 0, "must be zero");
1185        store(tmp, base, addr->index()->as_pointer_register(), type);
1186      } else {
1187        assert(Assembler::is_simm13(addr->disp()), "can't handle larger addresses");
1188        store(tmp, base, addr->disp(), type);
1189      }
1190
1191      break;
1192    }
1193    default:
1194      Unimplemented();
1195  }
1196}
1197
1198
1199void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
1200  LIR_Const* c = src->as_constant_ptr();
1201  LIR_Opr to_reg = dest;
1202
1203  switch (c->type()) {
1204    case T_INT:
1205    case T_ADDRESS:
1206      {
1207        jint con = c->as_jint();
1208        if (to_reg->is_single_cpu()) {
1209          assert(patch_code == lir_patch_none, "no patching handled here");
1210          __ set(con, to_reg->as_register());
1211        } else {
1212          ShouldNotReachHere();
1213          assert(to_reg->is_single_fpu(), "wrong register kind");
1214
1215          __ set(con, O7);
1216          Address temp_slot(SP, (frame::register_save_words * wordSize) + STACK_BIAS);
1217          __ st(O7, temp_slot);
1218          __ ldf(FloatRegisterImpl::S, temp_slot, to_reg->as_float_reg());
1219        }
1220      }
1221      break;
1222
1223    case T_LONG:
1224      {
1225        jlong con = c->as_jlong();
1226
1227        if (to_reg->is_double_cpu()) {
1228#ifdef _LP64
1229          __ set(con,  to_reg->as_register_lo());
1230#else
1231          __ set(low(con),  to_reg->as_register_lo());
1232          __ set(high(con), to_reg->as_register_hi());
1233#endif
1234#ifdef _LP64
1235        } else if (to_reg->is_single_cpu()) {
1236          __ set(con, to_reg->as_register());
1237#endif
1238        } else {
1239          ShouldNotReachHere();
1240          assert(to_reg->is_double_fpu(), "wrong register kind");
1241          Address temp_slot_lo(SP, ((frame::register_save_words  ) * wordSize) + STACK_BIAS);
1242          Address temp_slot_hi(SP, ((frame::register_save_words) * wordSize) + (longSize/2) + STACK_BIAS);
1243          __ set(low(con),  O7);
1244          __ st(O7, temp_slot_lo);
1245          __ set(high(con), O7);
1246          __ st(O7, temp_slot_hi);
1247          __ ldf(FloatRegisterImpl::D, temp_slot_lo, to_reg->as_double_reg());
1248        }
1249      }
1250      break;
1251
1252    case T_OBJECT:
1253      {
1254        if (patch_code == lir_patch_none) {
1255          jobject2reg(c->as_jobject(), to_reg->as_register());
1256        } else {
1257          jobject2reg_with_patching(to_reg->as_register(), info);
1258        }
1259      }
1260      break;
1261
1262    case T_FLOAT:
1263      {
1264        address const_addr = __ float_constant(c->as_jfloat());
1265        if (const_addr == NULL) {
1266          bailout("const section overflow");
1267          break;
1268        }
1269        RelocationHolder rspec = internal_word_Relocation::spec(const_addr);
1270        AddressLiteral const_addrlit(const_addr, rspec);
1271        if (to_reg->is_single_fpu()) {
1272          __ patchable_sethi(const_addrlit, O7);
1273          __ relocate(rspec);
1274          __ ldf(FloatRegisterImpl::S, O7, const_addrlit.low10(), to_reg->as_float_reg());
1275
1276        } else {
1277          assert(to_reg->is_single_cpu(), "Must be a cpu register.");
1278
1279          __ set(const_addrlit, O7);
1280          load(O7, 0, to_reg->as_register(), T_INT);
1281        }
1282      }
1283      break;
1284
1285    case T_DOUBLE:
1286      {
1287        address const_addr = __ double_constant(c->as_jdouble());
1288        if (const_addr == NULL) {
1289          bailout("const section overflow");
1290          break;
1291        }
1292        RelocationHolder rspec = internal_word_Relocation::spec(const_addr);
1293
1294        if (to_reg->is_double_fpu()) {
1295          AddressLiteral const_addrlit(const_addr, rspec);
1296          __ patchable_sethi(const_addrlit, O7);
1297          __ relocate(rspec);
1298          __ ldf (FloatRegisterImpl::D, O7, const_addrlit.low10(), to_reg->as_double_reg());
1299        } else {
1300          assert(to_reg->is_double_cpu(), "Must be a long register.");
1301#ifdef _LP64
1302          __ set(jlong_cast(c->as_jdouble()), to_reg->as_register_lo());
1303#else
1304          __ set(low(jlong_cast(c->as_jdouble())), to_reg->as_register_lo());
1305          __ set(high(jlong_cast(c->as_jdouble())), to_reg->as_register_hi());
1306#endif
1307        }
1308
1309      }
1310      break;
1311
1312    default:
1313      ShouldNotReachHere();
1314  }
1315}
1316
1317Address LIR_Assembler::as_Address(LIR_Address* addr) {
1318  Register reg = addr->base()->as_register();
1319  return Address(reg, addr->disp());
1320}
1321
1322
1323void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
1324  switch (type) {
1325    case T_INT:
1326    case T_FLOAT: {
1327      Register tmp = O7;
1328      Address from = frame_map()->address_for_slot(src->single_stack_ix());
1329      Address to   = frame_map()->address_for_slot(dest->single_stack_ix());
1330      __ lduw(from.base(), from.disp(), tmp);
1331      __ stw(tmp, to.base(), to.disp());
1332      break;
1333    }
1334    case T_OBJECT: {
1335      Register tmp = O7;
1336      Address from = frame_map()->address_for_slot(src->single_stack_ix());
1337      Address to   = frame_map()->address_for_slot(dest->single_stack_ix());
1338      __ ld_ptr(from.base(), from.disp(), tmp);
1339      __ st_ptr(tmp, to.base(), to.disp());
1340      break;
1341    }
1342    case T_LONG:
1343    case T_DOUBLE: {
1344      Register tmp = O7;
1345      Address from = frame_map()->address_for_double_slot(src->double_stack_ix());
1346      Address to   = frame_map()->address_for_double_slot(dest->double_stack_ix());
1347      __ lduw(from.base(), from.disp(), tmp);
1348      __ stw(tmp, to.base(), to.disp());
1349      __ lduw(from.base(), from.disp() + 4, tmp);
1350      __ stw(tmp, to.base(), to.disp() + 4);
1351      break;
1352    }
1353
1354    default:
1355      ShouldNotReachHere();
1356  }
1357}
1358
1359
1360Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
1361  Address base = as_Address(addr);
1362  return Address(base.base(), base.disp() + hi_word_offset_in_bytes);
1363}
1364
1365
1366Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
1367  Address base = as_Address(addr);
1368  return Address(base.base(), base.disp() + lo_word_offset_in_bytes);
1369}
1370
1371
1372void LIR_Assembler::mem2reg(LIR_Opr src_opr, LIR_Opr dest, BasicType type,
1373                            LIR_PatchCode patch_code, CodeEmitInfo* info, bool unaligned) {
1374
1375  LIR_Address* addr = src_opr->as_address_ptr();
1376  LIR_Opr to_reg = dest;
1377
1378  Register src = addr->base()->as_pointer_register();
1379  Register disp_reg = noreg;
1380  int disp_value = addr->disp();
1381  bool needs_patching = (patch_code != lir_patch_none);
1382
1383  if (addr->base()->type() == T_OBJECT) {
1384    __ verify_oop(src);
1385  }
1386
1387  PatchingStub* patch = NULL;
1388  if (needs_patching) {
1389    patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1390    assert(!to_reg->is_double_cpu() ||
1391           patch_code == lir_patch_none ||
1392           patch_code == lir_patch_normal, "patching doesn't match register");
1393  }
1394
1395  if (addr->index()->is_illegal()) {
1396    if (!Assembler::is_simm13(disp_value) && (!unaligned || Assembler::is_simm13(disp_value + 4))) {
1397      if (needs_patching) {
1398        __ patchable_set(0, O7);
1399      } else {
1400        __ set(disp_value, O7);
1401      }
1402      disp_reg = O7;
1403    }
1404  } else if (unaligned || PatchALot) {
1405    __ add(src, addr->index()->as_register(), O7);
1406    src = O7;
1407  } else {
1408    disp_reg = addr->index()->as_pointer_register();
1409    assert(disp_value == 0, "can't handle 3 operand addresses");
1410  }
1411
1412  // remember the offset of the load.  The patching_epilog must be done
1413  // before the call to add_debug_info, otherwise the PcDescs don't get
1414  // entered in increasing order.
1415  int offset = code_offset();
1416
1417  assert(disp_reg != noreg || Assembler::is_simm13(disp_value), "should have set this up");
1418  if (disp_reg == noreg) {
1419    offset = load(src, disp_value, to_reg, type, unaligned);
1420  } else {
1421    assert(!unaligned, "can't handle this");
1422    offset = load(src, disp_reg, to_reg, type);
1423  }
1424
1425  if (patch != NULL) {
1426    patching_epilog(patch, patch_code, src, info);
1427  }
1428
1429  if (info != NULL) add_debug_info_for_null_check(offset, info);
1430}
1431
1432
1433void LIR_Assembler::prefetchr(LIR_Opr src) {
1434  LIR_Address* addr = src->as_address_ptr();
1435  Address from_addr = as_Address(addr);
1436
1437  if (VM_Version::has_v9()) {
1438    __ prefetch(from_addr, Assembler::severalReads);
1439  }
1440}
1441
1442
1443void LIR_Assembler::prefetchw(LIR_Opr src) {
1444  LIR_Address* addr = src->as_address_ptr();
1445  Address from_addr = as_Address(addr);
1446
1447  if (VM_Version::has_v9()) {
1448    __ prefetch(from_addr, Assembler::severalWritesAndPossiblyReads);
1449  }
1450}
1451
1452
1453void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
1454  Address addr;
1455  if (src->is_single_word()) {
1456    addr = frame_map()->address_for_slot(src->single_stack_ix());
1457  } else if (src->is_double_word())  {
1458    addr = frame_map()->address_for_double_slot(src->double_stack_ix());
1459  }
1460
1461  bool unaligned = (addr.disp() - STACK_BIAS) % 8 != 0;
1462  load(addr.base(), addr.disp(), dest, dest->type(), unaligned);
1463}
1464
1465
1466void LIR_Assembler::reg2stack(LIR_Opr from_reg, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
1467  Address addr;
1468  if (dest->is_single_word()) {
1469    addr = frame_map()->address_for_slot(dest->single_stack_ix());
1470  } else if (dest->is_double_word())  {
1471    addr = frame_map()->address_for_slot(dest->double_stack_ix());
1472  }
1473  bool unaligned = (addr.disp() - STACK_BIAS) % 8 != 0;
1474  store(from_reg, addr.base(), addr.disp(), from_reg->type(), unaligned);
1475}
1476
1477
1478void LIR_Assembler::reg2reg(LIR_Opr from_reg, LIR_Opr to_reg) {
1479  if (from_reg->is_float_kind() && to_reg->is_float_kind()) {
1480    if (from_reg->is_double_fpu()) {
1481      // double to double moves
1482      assert(to_reg->is_double_fpu(), "should match");
1483      __ fmov(FloatRegisterImpl::D, from_reg->as_double_reg(), to_reg->as_double_reg());
1484    } else {
1485      // float to float moves
1486      assert(to_reg->is_single_fpu(), "should match");
1487      __ fmov(FloatRegisterImpl::S, from_reg->as_float_reg(), to_reg->as_float_reg());
1488    }
1489  } else if (!from_reg->is_float_kind() && !to_reg->is_float_kind()) {
1490    if (from_reg->is_double_cpu()) {
1491#ifdef _LP64
1492      __ mov(from_reg->as_pointer_register(), to_reg->as_pointer_register());
1493#else
1494      assert(to_reg->is_double_cpu() &&
1495             from_reg->as_register_hi() != to_reg->as_register_lo() &&
1496             from_reg->as_register_lo() != to_reg->as_register_hi(),
1497             "should both be long and not overlap");
1498      // long to long moves
1499      __ mov(from_reg->as_register_hi(), to_reg->as_register_hi());
1500      __ mov(from_reg->as_register_lo(), to_reg->as_register_lo());
1501#endif
1502#ifdef _LP64
1503    } else if (to_reg->is_double_cpu()) {
1504      // int to int moves
1505      __ mov(from_reg->as_register(), to_reg->as_register_lo());
1506#endif
1507    } else {
1508      // int to int moves
1509      __ mov(from_reg->as_register(), to_reg->as_register());
1510    }
1511  } else {
1512    ShouldNotReachHere();
1513  }
1514  if (to_reg->type() == T_OBJECT || to_reg->type() == T_ARRAY) {
1515    __ verify_oop(to_reg->as_register());
1516  }
1517}
1518
1519
1520void LIR_Assembler::reg2mem(LIR_Opr from_reg, LIR_Opr dest, BasicType type,
1521                            LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack,
1522                            bool unaligned) {
1523  LIR_Address* addr = dest->as_address_ptr();
1524
1525  Register src = addr->base()->as_pointer_register();
1526  Register disp_reg = noreg;
1527  int disp_value = addr->disp();
1528  bool needs_patching = (patch_code != lir_patch_none);
1529
1530  if (addr->base()->is_oop_register()) {
1531    __ verify_oop(src);
1532  }
1533
1534  PatchingStub* patch = NULL;
1535  if (needs_patching) {
1536    patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1537    assert(!from_reg->is_double_cpu() ||
1538           patch_code == lir_patch_none ||
1539           patch_code == lir_patch_normal, "patching doesn't match register");
1540  }
1541
1542  if (addr->index()->is_illegal()) {
1543    if (!Assembler::is_simm13(disp_value) && (!unaligned || Assembler::is_simm13(disp_value + 4))) {
1544      if (needs_patching) {
1545        __ patchable_set(0, O7);
1546      } else {
1547        __ set(disp_value, O7);
1548      }
1549      disp_reg = O7;
1550    }
1551  } else if (unaligned || PatchALot) {
1552    __ add(src, addr->index()->as_register(), O7);
1553    src = O7;
1554  } else {
1555    disp_reg = addr->index()->as_pointer_register();
1556    assert(disp_value == 0, "can't handle 3 operand addresses");
1557  }
1558
1559  // remember the offset of the store.  The patching_epilog must be done
1560  // before the call to add_debug_info_for_null_check, otherwise the PcDescs don't get
1561  // entered in increasing order.
1562  int offset;
1563
1564  assert(disp_reg != noreg || Assembler::is_simm13(disp_value), "should have set this up");
1565  if (disp_reg == noreg) {
1566    offset = store(from_reg, src, disp_value, type, unaligned);
1567  } else {
1568    assert(!unaligned, "can't handle this");
1569    offset = store(from_reg, src, disp_reg, type);
1570  }
1571
1572  if (patch != NULL) {
1573    patching_epilog(patch, patch_code, src, info);
1574  }
1575
1576  if (info != NULL) add_debug_info_for_null_check(offset, info);
1577}
1578
1579
1580void LIR_Assembler::return_op(LIR_Opr result) {
1581  // the poll may need a register so just pick one that isn't the return register
1582#ifdef TIERED
1583  if (result->type_field() == LIR_OprDesc::long_type) {
1584    // Must move the result to G1
1585    // Must leave proper result in O0,O1 and G1 (TIERED only)
1586    __ sllx(I0, 32, G1);          // Shift bits into high G1
1587    __ srl (I1, 0, I1);           // Zero extend O1 (harmless?)
1588    __ or3 (I1, G1, G1);          // OR 64 bits into G1
1589  }
1590#endif // TIERED
1591  __ set((intptr_t)os::get_polling_page(), L0);
1592  __ relocate(relocInfo::poll_return_type);
1593  __ ld_ptr(L0, 0, G0);
1594  __ ret();
1595  __ delayed()->restore();
1596}
1597
1598
1599int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
1600  __ set((intptr_t)os::get_polling_page(), tmp->as_register());
1601  if (info != NULL) {
1602    add_debug_info_for_branch(info);
1603  } else {
1604    __ relocate(relocInfo::poll_type);
1605  }
1606
1607  int offset = __ offset();
1608  __ ld_ptr(tmp->as_register(), 0, G0);
1609
1610  return offset;
1611}
1612
1613
1614void LIR_Assembler::emit_static_call_stub() {
1615  address call_pc = __ pc();
1616  address stub = __ start_a_stub(call_stub_size);
1617  if (stub == NULL) {
1618    bailout("static call stub overflow");
1619    return;
1620  }
1621
1622  int start = __ offset();
1623  __ relocate(static_stub_Relocation::spec(call_pc));
1624
1625  __ set_oop(NULL, G5);
1626  // must be set to -1 at code generation time
1627  AddressLiteral addrlit(-1);
1628  __ jump_to(addrlit, G3);
1629  __ delayed()->nop();
1630
1631  assert(__ offset() - start <= call_stub_size, "stub too big");
1632  __ end_a_stub();
1633}
1634
1635
1636void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
1637  if (opr1->is_single_fpu()) {
1638    __ fcmp(FloatRegisterImpl::S, Assembler::fcc0, opr1->as_float_reg(), opr2->as_float_reg());
1639  } else if (opr1->is_double_fpu()) {
1640    __ fcmp(FloatRegisterImpl::D, Assembler::fcc0, opr1->as_double_reg(), opr2->as_double_reg());
1641  } else if (opr1->is_single_cpu()) {
1642    if (opr2->is_constant()) {
1643      switch (opr2->as_constant_ptr()->type()) {
1644        case T_INT:
1645          { jint con = opr2->as_constant_ptr()->as_jint();
1646            if (Assembler::is_simm13(con)) {
1647              __ cmp(opr1->as_register(), con);
1648            } else {
1649              __ set(con, O7);
1650              __ cmp(opr1->as_register(), O7);
1651            }
1652          }
1653          break;
1654
1655        case T_OBJECT:
1656          // there are only equal/notequal comparisions on objects
1657          { jobject con = opr2->as_constant_ptr()->as_jobject();
1658            if (con == NULL) {
1659              __ cmp(opr1->as_register(), 0);
1660            } else {
1661              jobject2reg(con, O7);
1662              __ cmp(opr1->as_register(), O7);
1663            }
1664          }
1665          break;
1666
1667        default:
1668          ShouldNotReachHere();
1669          break;
1670      }
1671    } else {
1672      if (opr2->is_address()) {
1673        LIR_Address * addr = opr2->as_address_ptr();
1674        BasicType type = addr->type();
1675        if ( type == T_OBJECT ) __ ld_ptr(as_Address(addr), O7);
1676        else                    __ ld(as_Address(addr), O7);
1677        __ cmp(opr1->as_register(), O7);
1678      } else {
1679        __ cmp(opr1->as_register(), opr2->as_register());
1680      }
1681    }
1682  } else if (opr1->is_double_cpu()) {
1683    Register xlo = opr1->as_register_lo();
1684    Register xhi = opr1->as_register_hi();
1685    if (opr2->is_constant() && opr2->as_jlong() == 0) {
1686      assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "only handles these cases");
1687#ifdef _LP64
1688      __ orcc(xhi, G0, G0);
1689#else
1690      __ orcc(xhi, xlo, G0);
1691#endif
1692    } else if (opr2->is_register()) {
1693      Register ylo = opr2->as_register_lo();
1694      Register yhi = opr2->as_register_hi();
1695#ifdef _LP64
1696      __ cmp(xlo, ylo);
1697#else
1698      __ subcc(xlo, ylo, xlo);
1699      __ subccc(xhi, yhi, xhi);
1700      if (condition == lir_cond_equal || condition == lir_cond_notEqual) {
1701        __ orcc(xhi, xlo, G0);
1702      }
1703#endif
1704    } else {
1705      ShouldNotReachHere();
1706    }
1707  } else if (opr1->is_address()) {
1708    LIR_Address * addr = opr1->as_address_ptr();
1709    BasicType type = addr->type();
1710    assert (opr2->is_constant(), "Checking");
1711    if ( type == T_OBJECT ) __ ld_ptr(as_Address(addr), O7);
1712    else                    __ ld(as_Address(addr), O7);
1713    __ cmp(O7, opr2->as_constant_ptr()->as_jint());
1714  } else {
1715    ShouldNotReachHere();
1716  }
1717}
1718
1719
1720void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op){
1721  if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
1722    bool is_unordered_less = (code == lir_ucmp_fd2i);
1723    if (left->is_single_fpu()) {
1724      __ float_cmp(true, is_unordered_less ? -1 : 1, left->as_float_reg(), right->as_float_reg(), dst->as_register());
1725    } else if (left->is_double_fpu()) {
1726      __ float_cmp(false, is_unordered_less ? -1 : 1, left->as_double_reg(), right->as_double_reg(), dst->as_register());
1727    } else {
1728      ShouldNotReachHere();
1729    }
1730  } else if (code == lir_cmp_l2i) {
1731    __ lcmp(left->as_register_hi(),  left->as_register_lo(),
1732            right->as_register_hi(), right->as_register_lo(),
1733            dst->as_register());
1734  } else {
1735    ShouldNotReachHere();
1736  }
1737}
1738
1739
1740void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result) {
1741
1742  Assembler::Condition acond;
1743  switch (condition) {
1744    case lir_cond_equal:        acond = Assembler::equal;        break;
1745    case lir_cond_notEqual:     acond = Assembler::notEqual;     break;
1746    case lir_cond_less:         acond = Assembler::less;         break;
1747    case lir_cond_lessEqual:    acond = Assembler::lessEqual;    break;
1748    case lir_cond_greaterEqual: acond = Assembler::greaterEqual; break;
1749    case lir_cond_greater:      acond = Assembler::greater;      break;
1750    case lir_cond_aboveEqual:   acond = Assembler::greaterEqualUnsigned;      break;
1751    case lir_cond_belowEqual:   acond = Assembler::lessEqualUnsigned;      break;
1752    default:                         ShouldNotReachHere();
1753  };
1754
1755  if (opr1->is_constant() && opr1->type() == T_INT) {
1756    Register dest = result->as_register();
1757    // load up first part of constant before branch
1758    // and do the rest in the delay slot.
1759    if (!Assembler::is_simm13(opr1->as_jint())) {
1760      __ sethi(opr1->as_jint(), dest);
1761    }
1762  } else if (opr1->is_constant()) {
1763    const2reg(opr1, result, lir_patch_none, NULL);
1764  } else if (opr1->is_register()) {
1765    reg2reg(opr1, result);
1766  } else if (opr1->is_stack()) {
1767    stack2reg(opr1, result, result->type());
1768  } else {
1769    ShouldNotReachHere();
1770  }
1771  Label skip;
1772  __ br(acond, false, Assembler::pt, skip);
1773  if (opr1->is_constant() && opr1->type() == T_INT) {
1774    Register dest = result->as_register();
1775    if (Assembler::is_simm13(opr1->as_jint())) {
1776      __ delayed()->or3(G0, opr1->as_jint(), dest);
1777    } else {
1778      // the sethi has been done above, so just put in the low 10 bits
1779      __ delayed()->or3(dest, opr1->as_jint() & 0x3ff, dest);
1780    }
1781  } else {
1782    // can't do anything useful in the delay slot
1783    __ delayed()->nop();
1784  }
1785  if (opr2->is_constant()) {
1786    const2reg(opr2, result, lir_patch_none, NULL);
1787  } else if (opr2->is_register()) {
1788    reg2reg(opr2, result);
1789  } else if (opr2->is_stack()) {
1790    stack2reg(opr2, result, result->type());
1791  } else {
1792    ShouldNotReachHere();
1793  }
1794  __ bind(skip);
1795}
1796
1797
1798void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) {
1799  assert(info == NULL, "unused on this code path");
1800  assert(left->is_register(), "wrong items state");
1801  assert(dest->is_register(), "wrong items state");
1802
1803  if (right->is_register()) {
1804    if (dest->is_float_kind()) {
1805
1806      FloatRegister lreg, rreg, res;
1807      FloatRegisterImpl::Width w;
1808      if (right->is_single_fpu()) {
1809        w = FloatRegisterImpl::S;
1810        lreg = left->as_float_reg();
1811        rreg = right->as_float_reg();
1812        res  = dest->as_float_reg();
1813      } else {
1814        w = FloatRegisterImpl::D;
1815        lreg = left->as_double_reg();
1816        rreg = right->as_double_reg();
1817        res  = dest->as_double_reg();
1818      }
1819
1820      switch (code) {
1821        case lir_add: __ fadd(w, lreg, rreg, res); break;
1822        case lir_sub: __ fsub(w, lreg, rreg, res); break;
1823        case lir_mul: // fall through
1824        case lir_mul_strictfp: __ fmul(w, lreg, rreg, res); break;
1825        case lir_div: // fall through
1826        case lir_div_strictfp: __ fdiv(w, lreg, rreg, res); break;
1827        default: ShouldNotReachHere();
1828      }
1829
1830    } else if (dest->is_double_cpu()) {
1831#ifdef _LP64
1832      Register dst_lo = dest->as_register_lo();
1833      Register op1_lo = left->as_pointer_register();
1834      Register op2_lo = right->as_pointer_register();
1835
1836      switch (code) {
1837        case lir_add:
1838          __ add(op1_lo, op2_lo, dst_lo);
1839          break;
1840
1841        case lir_sub:
1842          __ sub(op1_lo, op2_lo, dst_lo);
1843          break;
1844
1845        default: ShouldNotReachHere();
1846      }
1847#else
1848      Register op1_lo = left->as_register_lo();
1849      Register op1_hi = left->as_register_hi();
1850      Register op2_lo = right->as_register_lo();
1851      Register op2_hi = right->as_register_hi();
1852      Register dst_lo = dest->as_register_lo();
1853      Register dst_hi = dest->as_register_hi();
1854
1855      switch (code) {
1856        case lir_add:
1857          __ addcc(op1_lo, op2_lo, dst_lo);
1858          __ addc (op1_hi, op2_hi, dst_hi);
1859          break;
1860
1861        case lir_sub:
1862          __ subcc(op1_lo, op2_lo, dst_lo);
1863          __ subc (op1_hi, op2_hi, dst_hi);
1864          break;
1865
1866        default: ShouldNotReachHere();
1867      }
1868#endif
1869    } else {
1870      assert (right->is_single_cpu(), "Just Checking");
1871
1872      Register lreg = left->as_register();
1873      Register res  = dest->as_register();
1874      Register rreg = right->as_register();
1875      switch (code) {
1876        case lir_add:  __ add  (lreg, rreg, res); break;
1877        case lir_sub:  __ sub  (lreg, rreg, res); break;
1878        case lir_mul:  __ mult (lreg, rreg, res); break;
1879        default: ShouldNotReachHere();
1880      }
1881    }
1882  } else {
1883    assert (right->is_constant(), "must be constant");
1884
1885    if (dest->is_single_cpu()) {
1886      Register lreg = left->as_register();
1887      Register res  = dest->as_register();
1888      int    simm13 = right->as_constant_ptr()->as_jint();
1889
1890      switch (code) {
1891        case lir_add:  __ add  (lreg, simm13, res); break;
1892        case lir_sub:  __ sub  (lreg, simm13, res); break;
1893        case lir_mul:  __ mult (lreg, simm13, res); break;
1894        default: ShouldNotReachHere();
1895      }
1896    } else {
1897      Register lreg = left->as_pointer_register();
1898      Register res  = dest->as_register_lo();
1899      long con = right->as_constant_ptr()->as_jlong();
1900      assert(Assembler::is_simm13(con), "must be simm13");
1901
1902      switch (code) {
1903        case lir_add:  __ add  (lreg, (int)con, res); break;
1904        case lir_sub:  __ sub  (lreg, (int)con, res); break;
1905        case lir_mul:  __ mult (lreg, (int)con, res); break;
1906        default: ShouldNotReachHere();
1907      }
1908    }
1909  }
1910}
1911
1912
1913void LIR_Assembler::fpop() {
1914  // do nothing
1915}
1916
1917
1918void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr thread, LIR_Opr dest, LIR_Op* op) {
1919  switch (code) {
1920    case lir_sin:
1921    case lir_tan:
1922    case lir_cos: {
1923      assert(thread->is_valid(), "preserve the thread object for performance reasons");
1924      assert(dest->as_double_reg() == F0, "the result will be in f0/f1");
1925      break;
1926    }
1927    case lir_sqrt: {
1928      assert(!thread->is_valid(), "there is no need for a thread_reg for dsqrt");
1929      FloatRegister src_reg = value->as_double_reg();
1930      FloatRegister dst_reg = dest->as_double_reg();
1931      __ fsqrt(FloatRegisterImpl::D, src_reg, dst_reg);
1932      break;
1933    }
1934    case lir_abs: {
1935      assert(!thread->is_valid(), "there is no need for a thread_reg for fabs");
1936      FloatRegister src_reg = value->as_double_reg();
1937      FloatRegister dst_reg = dest->as_double_reg();
1938      __ fabs(FloatRegisterImpl::D, src_reg, dst_reg);
1939      break;
1940    }
1941    default: {
1942      ShouldNotReachHere();
1943      break;
1944    }
1945  }
1946}
1947
1948
1949void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest) {
1950  if (right->is_constant()) {
1951    if (dest->is_single_cpu()) {
1952      int simm13 = right->as_constant_ptr()->as_jint();
1953      switch (code) {
1954        case lir_logic_and:   __ and3 (left->as_register(), simm13, dest->as_register()); break;
1955        case lir_logic_or:    __ or3  (left->as_register(), simm13, dest->as_register()); break;
1956        case lir_logic_xor:   __ xor3 (left->as_register(), simm13, dest->as_register()); break;
1957        default: ShouldNotReachHere();
1958      }
1959    } else {
1960      long c = right->as_constant_ptr()->as_jlong();
1961      assert(c == (int)c && Assembler::is_simm13(c), "out of range");
1962      int simm13 = (int)c;
1963      switch (code) {
1964        case lir_logic_and:
1965#ifndef _LP64
1966          __ and3 (left->as_register_hi(), 0,      dest->as_register_hi());
1967#endif
1968          __ and3 (left->as_register_lo(), simm13, dest->as_register_lo());
1969          break;
1970
1971        case lir_logic_or:
1972#ifndef _LP64
1973          __ or3 (left->as_register_hi(), 0,      dest->as_register_hi());
1974#endif
1975          __ or3 (left->as_register_lo(), simm13, dest->as_register_lo());
1976          break;
1977
1978        case lir_logic_xor:
1979#ifndef _LP64
1980          __ xor3 (left->as_register_hi(), 0,      dest->as_register_hi());
1981#endif
1982          __ xor3 (left->as_register_lo(), simm13, dest->as_register_lo());
1983          break;
1984
1985        default: ShouldNotReachHere();
1986      }
1987    }
1988  } else {
1989    assert(right->is_register(), "right should be in register");
1990
1991    if (dest->is_single_cpu()) {
1992      switch (code) {
1993        case lir_logic_and:   __ and3 (left->as_register(), right->as_register(), dest->as_register()); break;
1994        case lir_logic_or:    __ or3  (left->as_register(), right->as_register(), dest->as_register()); break;
1995        case lir_logic_xor:   __ xor3 (left->as_register(), right->as_register(), dest->as_register()); break;
1996        default: ShouldNotReachHere();
1997      }
1998    } else {
1999#ifdef _LP64
2000      Register l = (left->is_single_cpu() && left->is_oop_register()) ? left->as_register() :
2001                                                                        left->as_register_lo();
2002      Register r = (right->is_single_cpu() && right->is_oop_register()) ? right->as_register() :
2003                                                                          right->as_register_lo();
2004
2005      switch (code) {
2006        case lir_logic_and: __ and3 (l, r, dest->as_register_lo()); break;
2007        case lir_logic_or:  __ or3  (l, r, dest->as_register_lo()); break;
2008        case lir_logic_xor: __ xor3 (l, r, dest->as_register_lo()); break;
2009        default: ShouldNotReachHere();
2010      }
2011#else
2012      switch (code) {
2013        case lir_logic_and:
2014          __ and3 (left->as_register_hi(), right->as_register_hi(), dest->as_register_hi());
2015          __ and3 (left->as_register_lo(), right->as_register_lo(), dest->as_register_lo());
2016          break;
2017
2018        case lir_logic_or:
2019          __ or3 (left->as_register_hi(), right->as_register_hi(), dest->as_register_hi());
2020          __ or3 (left->as_register_lo(), right->as_register_lo(), dest->as_register_lo());
2021          break;
2022
2023        case lir_logic_xor:
2024          __ xor3 (left->as_register_hi(), right->as_register_hi(), dest->as_register_hi());
2025          __ xor3 (left->as_register_lo(), right->as_register_lo(), dest->as_register_lo());
2026          break;
2027
2028        default: ShouldNotReachHere();
2029      }
2030#endif
2031    }
2032  }
2033}
2034
2035
2036int LIR_Assembler::shift_amount(BasicType t) {
2037  int elem_size = type2aelembytes(t);
2038  switch (elem_size) {
2039    case 1 : return 0;
2040    case 2 : return 1;
2041    case 4 : return 2;
2042    case 8 : return 3;
2043  }
2044  ShouldNotReachHere();
2045  return -1;
2046}
2047
2048
2049void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info, bool unwind) {
2050  assert(exceptionOop->as_register() == Oexception, "should match");
2051  assert(unwind || exceptionPC->as_register() == Oissuing_pc, "should match");
2052
2053  info->add_register_oop(exceptionOop);
2054
2055  if (unwind) {
2056    __ call(Runtime1::entry_for(Runtime1::unwind_exception_id), relocInfo::runtime_call_type);
2057    __ delayed()->nop();
2058  } else {
2059    // reuse the debug info from the safepoint poll for the throw op itself
2060    address pc_for_athrow  = __ pc();
2061    int pc_for_athrow_offset = __ offset();
2062    RelocationHolder rspec = internal_word_Relocation::spec(pc_for_athrow);
2063    __ set(pc_for_athrow, Oissuing_pc, rspec);
2064    add_call_info(pc_for_athrow_offset, info); // for exception handler
2065
2066    __ call(Runtime1::entry_for(Runtime1::handle_exception_id), relocInfo::runtime_call_type);
2067    __ delayed()->nop();
2068  }
2069}
2070
2071
2072void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
2073  Register src = op->src()->as_register();
2074  Register dst = op->dst()->as_register();
2075  Register src_pos = op->src_pos()->as_register();
2076  Register dst_pos = op->dst_pos()->as_register();
2077  Register length  = op->length()->as_register();
2078  Register tmp = op->tmp()->as_register();
2079  Register tmp2 = O7;
2080
2081  int flags = op->flags();
2082  ciArrayKlass* default_type = op->expected_type();
2083  BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL;
2084  if (basic_type == T_ARRAY) basic_type = T_OBJECT;
2085
2086  // set up the arraycopy stub information
2087  ArrayCopyStub* stub = op->stub();
2088
2089  // always do stub if no type information is available.  it's ok if
2090  // the known type isn't loaded since the code sanity checks
2091  // in debug mode and the type isn't required when we know the exact type
2092  // also check that the type is an array type.
2093  // We also, for now, always call the stub if the barrier set requires a
2094  // write_ref_pre barrier (which the stub does, but none of the optimized
2095  // cases currently does).
2096  if (op->expected_type() == NULL ||
2097      Universe::heap()->barrier_set()->has_write_ref_pre_barrier()) {
2098    __ mov(src,     O0);
2099    __ mov(src_pos, O1);
2100    __ mov(dst,     O2);
2101    __ mov(dst_pos, O3);
2102    __ mov(length,  O4);
2103    __ call_VM_leaf(tmp, CAST_FROM_FN_PTR(address, Runtime1::arraycopy));
2104
2105    __ br_zero(Assembler::less, false, Assembler::pn, O0, *stub->entry());
2106    __ delayed()->nop();
2107    __ bind(*stub->continuation());
2108    return;
2109  }
2110
2111  assert(default_type != NULL && default_type->is_array_klass(), "must be true at this point");
2112
2113  // make sure src and dst are non-null and load array length
2114  if (flags & LIR_OpArrayCopy::src_null_check) {
2115    __ tst(src);
2116    __ br(Assembler::equal, false, Assembler::pn, *stub->entry());
2117    __ delayed()->nop();
2118  }
2119
2120  if (flags & LIR_OpArrayCopy::dst_null_check) {
2121    __ tst(dst);
2122    __ br(Assembler::equal, false, Assembler::pn, *stub->entry());
2123    __ delayed()->nop();
2124  }
2125
2126  if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
2127    // test src_pos register
2128    __ tst(src_pos);
2129    __ br(Assembler::less, false, Assembler::pn, *stub->entry());
2130    __ delayed()->nop();
2131  }
2132
2133  if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
2134    // test dst_pos register
2135    __ tst(dst_pos);
2136    __ br(Assembler::less, false, Assembler::pn, *stub->entry());
2137    __ delayed()->nop();
2138  }
2139
2140  if (flags & LIR_OpArrayCopy::length_positive_check) {
2141    // make sure length isn't negative
2142    __ tst(length);
2143    __ br(Assembler::less, false, Assembler::pn, *stub->entry());
2144    __ delayed()->nop();
2145  }
2146
2147  if (flags & LIR_OpArrayCopy::src_range_check) {
2148    __ ld(src, arrayOopDesc::length_offset_in_bytes(), tmp2);
2149    __ add(length, src_pos, tmp);
2150    __ cmp(tmp2, tmp);
2151    __ br(Assembler::carrySet, false, Assembler::pn, *stub->entry());
2152    __ delayed()->nop();
2153  }
2154
2155  if (flags & LIR_OpArrayCopy::dst_range_check) {
2156    __ ld(dst, arrayOopDesc::length_offset_in_bytes(), tmp2);
2157    __ add(length, dst_pos, tmp);
2158    __ cmp(tmp2, tmp);
2159    __ br(Assembler::carrySet, false, Assembler::pn, *stub->entry());
2160    __ delayed()->nop();
2161  }
2162
2163  if (flags & LIR_OpArrayCopy::type_check) {
2164    __ ld_ptr(src, oopDesc::klass_offset_in_bytes(), tmp);
2165    __ ld_ptr(dst, oopDesc::klass_offset_in_bytes(), tmp2);
2166    __ cmp(tmp, tmp2);
2167    __ br(Assembler::notEqual, false, Assembler::pt, *stub->entry());
2168    __ delayed()->nop();
2169  }
2170
2171#ifdef ASSERT
2172  if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
2173    // Sanity check the known type with the incoming class.  For the
2174    // primitive case the types must match exactly with src.klass and
2175    // dst.klass each exactly matching the default type.  For the
2176    // object array case, if no type check is needed then either the
2177    // dst type is exactly the expected type and the src type is a
2178    // subtype which we can't check or src is the same array as dst
2179    // but not necessarily exactly of type default_type.
2180    Label known_ok, halt;
2181    jobject2reg(op->expected_type()->constant_encoding(), tmp);
2182    __ ld_ptr(dst, oopDesc::klass_offset_in_bytes(), tmp2);
2183    if (basic_type != T_OBJECT) {
2184      __ cmp(tmp, tmp2);
2185      __ br(Assembler::notEqual, false, Assembler::pn, halt);
2186      __ delayed()->ld_ptr(src, oopDesc::klass_offset_in_bytes(), tmp2);
2187      __ cmp(tmp, tmp2);
2188      __ br(Assembler::equal, false, Assembler::pn, known_ok);
2189      __ delayed()->nop();
2190    } else {
2191      __ cmp(tmp, tmp2);
2192      __ br(Assembler::equal, false, Assembler::pn, known_ok);
2193      __ delayed()->cmp(src, dst);
2194      __ br(Assembler::equal, false, Assembler::pn, known_ok);
2195      __ delayed()->nop();
2196    }
2197    __ bind(halt);
2198    __ stop("incorrect type information in arraycopy");
2199    __ bind(known_ok);
2200  }
2201#endif
2202
2203  int shift = shift_amount(basic_type);
2204
2205  Register src_ptr = O0;
2206  Register dst_ptr = O1;
2207  Register len     = O2;
2208
2209  __ add(src, arrayOopDesc::base_offset_in_bytes(basic_type), src_ptr);
2210  LP64_ONLY(__ sra(src_pos, 0, src_pos);) //higher 32bits must be null
2211  if (shift == 0) {
2212    __ add(src_ptr, src_pos, src_ptr);
2213  } else {
2214    __ sll(src_pos, shift, tmp);
2215    __ add(src_ptr, tmp, src_ptr);
2216  }
2217
2218  __ add(dst, arrayOopDesc::base_offset_in_bytes(basic_type), dst_ptr);
2219  LP64_ONLY(__ sra(dst_pos, 0, dst_pos);) //higher 32bits must be null
2220  if (shift == 0) {
2221    __ add(dst_ptr, dst_pos, dst_ptr);
2222  } else {
2223    __ sll(dst_pos, shift, tmp);
2224    __ add(dst_ptr, tmp, dst_ptr);
2225  }
2226
2227  if (basic_type != T_OBJECT) {
2228    if (shift == 0) {
2229      __ mov(length, len);
2230    } else {
2231      __ sll(length, shift, len);
2232    }
2233    __ call_VM_leaf(tmp, CAST_FROM_FN_PTR(address, Runtime1::primitive_arraycopy));
2234  } else {
2235    // oop_arraycopy takes a length in number of elements, so don't scale it.
2236    __ mov(length, len);
2237    __ call_VM_leaf(tmp, CAST_FROM_FN_PTR(address, Runtime1::oop_arraycopy));
2238  }
2239
2240  __ bind(*stub->continuation());
2241}
2242
2243
2244void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
2245  if (dest->is_single_cpu()) {
2246#ifdef _LP64
2247    if (left->type() == T_OBJECT) {
2248      switch (code) {
2249        case lir_shl:  __ sllx  (left->as_register(), count->as_register(), dest->as_register()); break;
2250        case lir_shr:  __ srax  (left->as_register(), count->as_register(), dest->as_register()); break;
2251        case lir_ushr: __ srl   (left->as_register(), count->as_register(), dest->as_register()); break;
2252        default: ShouldNotReachHere();
2253      }
2254    } else
2255#endif
2256      switch (code) {
2257        case lir_shl:  __ sll   (left->as_register(), count->as_register(), dest->as_register()); break;
2258        case lir_shr:  __ sra   (left->as_register(), count->as_register(), dest->as_register()); break;
2259        case lir_ushr: __ srl   (left->as_register(), count->as_register(), dest->as_register()); break;
2260        default: ShouldNotReachHere();
2261      }
2262  } else {
2263#ifdef _LP64
2264    switch (code) {
2265      case lir_shl:  __ sllx  (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
2266      case lir_shr:  __ srax  (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
2267      case lir_ushr: __ srlx  (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
2268      default: ShouldNotReachHere();
2269    }
2270#else
2271    switch (code) {
2272      case lir_shl:  __ lshl  (left->as_register_hi(), left->as_register_lo(), count->as_register(), dest->as_register_hi(), dest->as_register_lo(), G3_scratch); break;
2273      case lir_shr:  __ lshr  (left->as_register_hi(), left->as_register_lo(), count->as_register(), dest->as_register_hi(), dest->as_register_lo(), G3_scratch); break;
2274      case lir_ushr: __ lushr (left->as_register_hi(), left->as_register_lo(), count->as_register(), dest->as_register_hi(), dest->as_register_lo(), G3_scratch); break;
2275      default: ShouldNotReachHere();
2276    }
2277#endif
2278  }
2279}
2280
2281
2282void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
2283#ifdef _LP64
2284  if (left->type() == T_OBJECT) {
2285    count = count & 63;  // shouldn't shift by more than sizeof(intptr_t)
2286    Register l = left->as_register();
2287    Register d = dest->as_register_lo();
2288    switch (code) {
2289      case lir_shl:  __ sllx  (l, count, d); break;
2290      case lir_shr:  __ srax  (l, count, d); break;
2291      case lir_ushr: __ srlx  (l, count, d); break;
2292      default: ShouldNotReachHere();
2293    }
2294    return;
2295  }
2296#endif
2297
2298  if (dest->is_single_cpu()) {
2299    count = count & 0x1F; // Java spec
2300    switch (code) {
2301      case lir_shl:  __ sll   (left->as_register(), count, dest->as_register()); break;
2302      case lir_shr:  __ sra   (left->as_register(), count, dest->as_register()); break;
2303      case lir_ushr: __ srl   (left->as_register(), count, dest->as_register()); break;
2304      default: ShouldNotReachHere();
2305    }
2306  } else if (dest->is_double_cpu()) {
2307    count = count & 63; // Java spec
2308    switch (code) {
2309      case lir_shl:  __ sllx  (left->as_pointer_register(), count, dest->as_pointer_register()); break;
2310      case lir_shr:  __ srax  (left->as_pointer_register(), count, dest->as_pointer_register()); break;
2311      case lir_ushr: __ srlx  (left->as_pointer_register(), count, dest->as_pointer_register()); break;
2312      default: ShouldNotReachHere();
2313    }
2314  } else {
2315    ShouldNotReachHere();
2316  }
2317}
2318
2319
2320void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
2321  assert(op->tmp1()->as_register()  == G1 &&
2322         op->tmp2()->as_register()  == G3 &&
2323         op->tmp3()->as_register()  == G4 &&
2324         op->obj()->as_register()   == O0 &&
2325         op->klass()->as_register() == G5, "must be");
2326  if (op->init_check()) {
2327    __ ld(op->klass()->as_register(),
2328          instanceKlass::init_state_offset_in_bytes() + sizeof(oopDesc),
2329          op->tmp1()->as_register());
2330    add_debug_info_for_null_check_here(op->stub()->info());
2331    __ cmp(op->tmp1()->as_register(), instanceKlass::fully_initialized);
2332    __ br(Assembler::notEqual, false, Assembler::pn, *op->stub()->entry());
2333    __ delayed()->nop();
2334  }
2335  __ allocate_object(op->obj()->as_register(),
2336                     op->tmp1()->as_register(),
2337                     op->tmp2()->as_register(),
2338                     op->tmp3()->as_register(),
2339                     op->header_size(),
2340                     op->object_size(),
2341                     op->klass()->as_register(),
2342                     *op->stub()->entry());
2343  __ bind(*op->stub()->continuation());
2344  __ verify_oop(op->obj()->as_register());
2345}
2346
2347
2348void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
2349  assert(op->tmp1()->as_register()  == G1 &&
2350         op->tmp2()->as_register()  == G3 &&
2351         op->tmp3()->as_register()  == G4 &&
2352         op->tmp4()->as_register()  == O1 &&
2353         op->klass()->as_register() == G5, "must be");
2354  if (UseSlowPath ||
2355      (!UseFastNewObjectArray && (op->type() == T_OBJECT || op->type() == T_ARRAY)) ||
2356      (!UseFastNewTypeArray   && (op->type() != T_OBJECT && op->type() != T_ARRAY))) {
2357    __ br(Assembler::always, false, Assembler::pn, *op->stub()->entry());
2358    __ delayed()->nop();
2359  } else {
2360    __ allocate_array(op->obj()->as_register(),
2361                      op->len()->as_register(),
2362                      op->tmp1()->as_register(),
2363                      op->tmp2()->as_register(),
2364                      op->tmp3()->as_register(),
2365                      arrayOopDesc::header_size(op->type()),
2366                      type2aelembytes(op->type()),
2367                      op->klass()->as_register(),
2368                      *op->stub()->entry());
2369  }
2370  __ bind(*op->stub()->continuation());
2371}
2372
2373
2374void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
2375  LIR_Code code = op->code();
2376  if (code == lir_store_check) {
2377    Register value = op->object()->as_register();
2378    Register array = op->array()->as_register();
2379    Register k_RInfo = op->tmp1()->as_register();
2380    Register klass_RInfo = op->tmp2()->as_register();
2381    Register Rtmp1 = op->tmp3()->as_register();
2382
2383    __ verify_oop(value);
2384
2385    CodeStub* stub = op->stub();
2386    Label done;
2387    __ cmp(value, 0);
2388    __ br(Assembler::equal, false, Assembler::pn, done);
2389    __ delayed()->nop();
2390    load(array, oopDesc::klass_offset_in_bytes(), k_RInfo, T_OBJECT, op->info_for_exception());
2391    load(value, oopDesc::klass_offset_in_bytes(), klass_RInfo, T_OBJECT, NULL);
2392
2393    // get instance klass
2394    load(k_RInfo, objArrayKlass::element_klass_offset_in_bytes() + sizeof(oopDesc), k_RInfo, T_OBJECT, NULL);
2395    // perform the fast part of the checking logic
2396    __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, O7, &done, stub->entry(), NULL);
2397
2398    // call out-of-line instance of __ check_klass_subtype_slow_path(...):
2399    assert(klass_RInfo == G3 && k_RInfo == G1, "incorrect call setup");
2400    __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
2401    __ delayed()->nop();
2402    __ cmp(G3, 0);
2403    __ br(Assembler::equal, false, Assembler::pn, *stub->entry());
2404    __ delayed()->nop();
2405    __ bind(done);
2406  } else if (op->code() == lir_checkcast) {
2407    // we always need a stub for the failure case.
2408    CodeStub* stub = op->stub();
2409    Register obj = op->object()->as_register();
2410    Register k_RInfo = op->tmp1()->as_register();
2411    Register klass_RInfo = op->tmp2()->as_register();
2412    Register dst = op->result_opr()->as_register();
2413    Register Rtmp1 = op->tmp3()->as_register();
2414    ciKlass* k = op->klass();
2415
2416    if (obj == k_RInfo) {
2417      k_RInfo = klass_RInfo;
2418      klass_RInfo = obj;
2419    }
2420    if (op->profiled_method() != NULL) {
2421      ciMethod* method = op->profiled_method();
2422      int bci          = op->profiled_bci();
2423
2424      // We need two temporaries to perform this operation on SPARC,
2425      // so to keep things simple we perform a redundant test here
2426      Label profile_done;
2427      __ cmp(obj, 0);
2428      __ br(Assembler::notEqual, false, Assembler::pn, profile_done);
2429      __ delayed()->nop();
2430      // Object is null; update methodDataOop
2431      ciMethodData* md = method->method_data();
2432      if (md == NULL) {
2433        bailout("out of memory building methodDataOop");
2434        return;
2435      }
2436      ciProfileData* data = md->bci_to_data(bci);
2437      assert(data != NULL,       "need data for checkcast");
2438      assert(data->is_BitData(), "need BitData for checkcast");
2439      Register mdo      = k_RInfo;
2440      Register data_val = Rtmp1;
2441      jobject2reg(md->constant_encoding(), mdo);
2442
2443      int mdo_offset_bias = 0;
2444      if (!Assembler::is_simm13(md->byte_offset_of_slot(data, DataLayout::header_offset()) + data->size_in_bytes())) {
2445        // The offset is large so bias the mdo by the base of the slot so
2446        // that the ld can use simm13s to reference the slots of the data
2447        mdo_offset_bias = md->byte_offset_of_slot(data, DataLayout::header_offset());
2448        __ set(mdo_offset_bias, data_val);
2449        __ add(mdo, data_val, mdo);
2450      }
2451
2452
2453      Address flags_addr(mdo, md->byte_offset_of_slot(data, DataLayout::flags_offset()) - mdo_offset_bias);
2454      __ ldub(flags_addr, data_val);
2455      __ or3(data_val, BitData::null_seen_byte_constant(), data_val);
2456      __ stb(data_val, flags_addr);
2457      __ bind(profile_done);
2458    }
2459
2460    Label done;
2461    // patching may screw with our temporaries on sparc,
2462    // so let's do it before loading the class
2463    if (k->is_loaded()) {
2464      jobject2reg(k->constant_encoding(), k_RInfo);
2465    } else {
2466      jobject2reg_with_patching(k_RInfo, op->info_for_patch());
2467    }
2468    assert(obj != k_RInfo, "must be different");
2469    __ cmp(obj, 0);
2470    __ br(Assembler::equal, false, Assembler::pn, done);
2471    __ delayed()->nop();
2472
2473    // get object class
2474    // not a safepoint as obj null check happens earlier
2475    load(obj, oopDesc::klass_offset_in_bytes(), klass_RInfo, T_OBJECT, NULL);
2476    if (op->fast_check()) {
2477      assert_different_registers(klass_RInfo, k_RInfo);
2478      __ cmp(k_RInfo, klass_RInfo);
2479      __ br(Assembler::notEqual, false, Assembler::pt, *stub->entry());
2480      __ delayed()->nop();
2481      __ bind(done);
2482    } else {
2483      bool need_slow_path = true;
2484      if (k->is_loaded()) {
2485        if (k->super_check_offset() != sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes())
2486          need_slow_path = false;
2487        // perform the fast part of the checking logic
2488        __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, noreg,
2489                                         (need_slow_path ? &done : NULL),
2490                                         stub->entry(), NULL,
2491                                         RegisterOrConstant(k->super_check_offset()));
2492      } else {
2493        // perform the fast part of the checking logic
2494        __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, O7,
2495                                         &done, stub->entry(), NULL);
2496      }
2497      if (need_slow_path) {
2498        // call out-of-line instance of __ check_klass_subtype_slow_path(...):
2499        assert(klass_RInfo == G3 && k_RInfo == G1, "incorrect call setup");
2500        __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
2501        __ delayed()->nop();
2502        __ cmp(G3, 0);
2503        __ br(Assembler::equal, false, Assembler::pn, *stub->entry());
2504        __ delayed()->nop();
2505      }
2506      __ bind(done);
2507    }
2508    __ mov(obj, dst);
2509  } else if (code == lir_instanceof) {
2510    Register obj = op->object()->as_register();
2511    Register k_RInfo = op->tmp1()->as_register();
2512    Register klass_RInfo = op->tmp2()->as_register();
2513    Register dst = op->result_opr()->as_register();
2514    Register Rtmp1 = op->tmp3()->as_register();
2515    ciKlass* k = op->klass();
2516
2517    Label done;
2518    if (obj == k_RInfo) {
2519      k_RInfo = klass_RInfo;
2520      klass_RInfo = obj;
2521    }
2522    // patching may screw with our temporaries on sparc,
2523    // so let's do it before loading the class
2524    if (k->is_loaded()) {
2525      jobject2reg(k->constant_encoding(), k_RInfo);
2526    } else {
2527      jobject2reg_with_patching(k_RInfo, op->info_for_patch());
2528    }
2529    assert(obj != k_RInfo, "must be different");
2530    __ cmp(obj, 0);
2531    __ br(Assembler::equal, true, Assembler::pn, done);
2532    __ delayed()->set(0, dst);
2533
2534    // get object class
2535    // not a safepoint as obj null check happens earlier
2536    load(obj, oopDesc::klass_offset_in_bytes(), klass_RInfo, T_OBJECT, NULL);
2537    if (op->fast_check()) {
2538      __ cmp(k_RInfo, klass_RInfo);
2539      __ br(Assembler::equal, true, Assembler::pt, done);
2540      __ delayed()->set(1, dst);
2541      __ set(0, dst);
2542      __ bind(done);
2543    } else {
2544      bool need_slow_path = true;
2545      if (k->is_loaded()) {
2546        if (k->super_check_offset() != sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes())
2547          need_slow_path = false;
2548        // perform the fast part of the checking logic
2549        __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, O7, noreg,
2550                                         (need_slow_path ? &done : NULL),
2551                                         (need_slow_path ? &done : NULL), NULL,
2552                                         RegisterOrConstant(k->super_check_offset()),
2553                                         dst);
2554      } else {
2555        assert(dst != klass_RInfo && dst != k_RInfo, "need 3 registers");
2556        // perform the fast part of the checking logic
2557        __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, O7, dst,
2558                                         &done, &done, NULL,
2559                                         RegisterOrConstant(-1),
2560                                         dst);
2561      }
2562      if (need_slow_path) {
2563        // call out-of-line instance of __ check_klass_subtype_slow_path(...):
2564        assert(klass_RInfo == G3 && k_RInfo == G1, "incorrect call setup");
2565        __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
2566        __ delayed()->nop();
2567        __ mov(G3, dst);
2568      }
2569      __ bind(done);
2570    }
2571  } else {
2572    ShouldNotReachHere();
2573  }
2574
2575}
2576
2577
2578void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
2579  if (op->code() == lir_cas_long) {
2580    assert(VM_Version::supports_cx8(), "wrong machine");
2581    Register addr = op->addr()->as_pointer_register();
2582    Register cmp_value_lo = op->cmp_value()->as_register_lo();
2583    Register cmp_value_hi = op->cmp_value()->as_register_hi();
2584    Register new_value_lo = op->new_value()->as_register_lo();
2585    Register new_value_hi = op->new_value()->as_register_hi();
2586    Register t1 = op->tmp1()->as_register();
2587    Register t2 = op->tmp2()->as_register();
2588#ifdef _LP64
2589    __ mov(cmp_value_lo, t1);
2590    __ mov(new_value_lo, t2);
2591#else
2592    // move high and low halves of long values into single registers
2593    __ sllx(cmp_value_hi, 32, t1);         // shift high half into temp reg
2594    __ srl(cmp_value_lo, 0, cmp_value_lo); // clear upper 32 bits of low half
2595    __ or3(t1, cmp_value_lo, t1);          // t1 holds 64-bit compare value
2596    __ sllx(new_value_hi, 32, t2);
2597    __ srl(new_value_lo, 0, new_value_lo);
2598    __ or3(t2, new_value_lo, t2);          // t2 holds 64-bit value to swap
2599#endif
2600    // perform the compare and swap operation
2601    __ casx(addr, t1, t2);
2602    // generate condition code - if the swap succeeded, t2 ("new value" reg) was
2603    // overwritten with the original value in "addr" and will be equal to t1.
2604    __ cmp(t1, t2);
2605
2606  } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj) {
2607    Register addr = op->addr()->as_pointer_register();
2608    Register cmp_value = op->cmp_value()->as_register();
2609    Register new_value = op->new_value()->as_register();
2610    Register t1 = op->tmp1()->as_register();
2611    Register t2 = op->tmp2()->as_register();
2612    __ mov(cmp_value, t1);
2613    __ mov(new_value, t2);
2614#ifdef _LP64
2615    if (op->code() == lir_cas_obj) {
2616      __ casx(addr, t1, t2);
2617    } else
2618#endif
2619      {
2620        __ cas(addr, t1, t2);
2621      }
2622    __ cmp(t1, t2);
2623  } else {
2624    Unimplemented();
2625  }
2626}
2627
2628void LIR_Assembler::set_24bit_FPU() {
2629  Unimplemented();
2630}
2631
2632
2633void LIR_Assembler::reset_FPU() {
2634  Unimplemented();
2635}
2636
2637
2638void LIR_Assembler::breakpoint() {
2639  __ breakpoint_trap();
2640}
2641
2642
2643void LIR_Assembler::push(LIR_Opr opr) {
2644  Unimplemented();
2645}
2646
2647
2648void LIR_Assembler::pop(LIR_Opr opr) {
2649  Unimplemented();
2650}
2651
2652
2653void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst_opr) {
2654  Address mon_addr = frame_map()->address_for_monitor_lock(monitor_no);
2655  Register dst = dst_opr->as_register();
2656  Register reg = mon_addr.base();
2657  int offset = mon_addr.disp();
2658  // compute pointer to BasicLock
2659  if (mon_addr.is_simm13()) {
2660    __ add(reg, offset, dst);
2661  } else {
2662    __ set(offset, dst);
2663    __ add(dst, reg, dst);
2664  }
2665}
2666
2667
2668void LIR_Assembler::emit_lock(LIR_OpLock* op) {
2669  Register obj = op->obj_opr()->as_register();
2670  Register hdr = op->hdr_opr()->as_register();
2671  Register lock = op->lock_opr()->as_register();
2672
2673  // obj may not be an oop
2674  if (op->code() == lir_lock) {
2675    MonitorEnterStub* stub = (MonitorEnterStub*)op->stub();
2676    if (UseFastLocking) {
2677      assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
2678      // add debug info for NullPointerException only if one is possible
2679      if (op->info() != NULL) {
2680        add_debug_info_for_null_check_here(op->info());
2681      }
2682      __ lock_object(hdr, obj, lock, op->scratch_opr()->as_register(), *op->stub()->entry());
2683    } else {
2684      // always do slow locking
2685      // note: the slow locking code could be inlined here, however if we use
2686      //       slow locking, speed doesn't matter anyway and this solution is
2687      //       simpler and requires less duplicated code - additionally, the
2688      //       slow locking code is the same in either case which simplifies
2689      //       debugging
2690      __ br(Assembler::always, false, Assembler::pt, *op->stub()->entry());
2691      __ delayed()->nop();
2692    }
2693  } else {
2694    assert (op->code() == lir_unlock, "Invalid code, expected lir_unlock");
2695    if (UseFastLocking) {
2696      assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
2697      __ unlock_object(hdr, obj, lock, *op->stub()->entry());
2698    } else {
2699      // always do slow unlocking
2700      // note: the slow unlocking code could be inlined here, however if we use
2701      //       slow unlocking, speed doesn't matter anyway and this solution is
2702      //       simpler and requires less duplicated code - additionally, the
2703      //       slow unlocking code is the same in either case which simplifies
2704      //       debugging
2705      __ br(Assembler::always, false, Assembler::pt, *op->stub()->entry());
2706      __ delayed()->nop();
2707    }
2708  }
2709  __ bind(*op->stub()->continuation());
2710}
2711
2712
2713void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
2714  ciMethod* method = op->profiled_method();
2715  int bci          = op->profiled_bci();
2716
2717  // Update counter for all call types
2718  ciMethodData* md = method->method_data();
2719  if (md == NULL) {
2720    bailout("out of memory building methodDataOop");
2721    return;
2722  }
2723  ciProfileData* data = md->bci_to_data(bci);
2724  assert(data->is_CounterData(), "need CounterData for calls");
2725  assert(op->mdo()->is_single_cpu(),  "mdo must be allocated");
2726  assert(op->tmp1()->is_single_cpu(), "tmp1 must be allocated");
2727  Register mdo  = op->mdo()->as_register();
2728  Register tmp1 = op->tmp1()->as_register();
2729  jobject2reg(md->constant_encoding(), mdo);
2730  int mdo_offset_bias = 0;
2731  if (!Assembler::is_simm13(md->byte_offset_of_slot(data, CounterData::count_offset()) +
2732                            data->size_in_bytes())) {
2733    // The offset is large so bias the mdo by the base of the slot so
2734    // that the ld can use simm13s to reference the slots of the data
2735    mdo_offset_bias = md->byte_offset_of_slot(data, CounterData::count_offset());
2736    __ set(mdo_offset_bias, O7);
2737    __ add(mdo, O7, mdo);
2738  }
2739
2740  Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias);
2741  Bytecodes::Code bc = method->java_code_at_bci(bci);
2742  // Perform additional virtual call profiling for invokevirtual and
2743  // invokeinterface bytecodes
2744  if ((bc == Bytecodes::_invokevirtual || bc == Bytecodes::_invokeinterface) &&
2745      Tier1ProfileVirtualCalls) {
2746    assert(op->recv()->is_single_cpu(), "recv must be allocated");
2747    Register recv = op->recv()->as_register();
2748    assert_different_registers(mdo, tmp1, recv);
2749    assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
2750    ciKlass* known_klass = op->known_holder();
2751    if (Tier1OptimizeVirtualCallProfiling && known_klass != NULL) {
2752      // We know the type that will be seen at this call site; we can
2753      // statically update the methodDataOop rather than needing to do
2754      // dynamic tests on the receiver type
2755
2756      // NOTE: we should probably put a lock around this search to
2757      // avoid collisions by concurrent compilations
2758      ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
2759      uint i;
2760      for (i = 0; i < VirtualCallData::row_limit(); i++) {
2761        ciKlass* receiver = vc_data->receiver(i);
2762        if (known_klass->equals(receiver)) {
2763          Address data_addr(mdo, md->byte_offset_of_slot(data,
2764                                                         VirtualCallData::receiver_count_offset(i)) -
2765                            mdo_offset_bias);
2766          __ lduw(data_addr, tmp1);
2767          __ add(tmp1, DataLayout::counter_increment, tmp1);
2768          __ stw(tmp1, data_addr);
2769          return;
2770        }
2771      }
2772
2773      // Receiver type not found in profile data; select an empty slot
2774
2775      // Note that this is less efficient than it should be because it
2776      // always does a write to the receiver part of the
2777      // VirtualCallData rather than just the first time
2778      for (i = 0; i < VirtualCallData::row_limit(); i++) {
2779        ciKlass* receiver = vc_data->receiver(i);
2780        if (receiver == NULL) {
2781          Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)) -
2782                            mdo_offset_bias);
2783          jobject2reg(known_klass->constant_encoding(), tmp1);
2784          __ st_ptr(tmp1, recv_addr);
2785          Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)) -
2786                            mdo_offset_bias);
2787          __ lduw(data_addr, tmp1);
2788          __ add(tmp1, DataLayout::counter_increment, tmp1);
2789          __ stw(tmp1, data_addr);
2790          return;
2791        }
2792      }
2793    } else {
2794      load(Address(recv, oopDesc::klass_offset_in_bytes()), recv, T_OBJECT);
2795      Label update_done;
2796      uint i;
2797      for (i = 0; i < VirtualCallData::row_limit(); i++) {
2798        Label next_test;
2799        // See if the receiver is receiver[n].
2800        Address receiver_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)) -
2801                              mdo_offset_bias);
2802        __ ld_ptr(receiver_addr, tmp1);
2803        __ verify_oop(tmp1);
2804        __ cmp(recv, tmp1);
2805        __ brx(Assembler::notEqual, false, Assembler::pt, next_test);
2806        __ delayed()->nop();
2807        Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)) -
2808                          mdo_offset_bias);
2809        __ lduw(data_addr, tmp1);
2810        __ add(tmp1, DataLayout::counter_increment, tmp1);
2811        __ stw(tmp1, data_addr);
2812        __ br(Assembler::always, false, Assembler::pt, update_done);
2813        __ delayed()->nop();
2814        __ bind(next_test);
2815      }
2816
2817      // Didn't find receiver; find next empty slot and fill it in
2818      for (i = 0; i < VirtualCallData::row_limit(); i++) {
2819        Label next_test;
2820        Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)) -
2821                          mdo_offset_bias);
2822        load(recv_addr, tmp1, T_OBJECT);
2823        __ tst(tmp1);
2824        __ brx(Assembler::notEqual, false, Assembler::pt, next_test);
2825        __ delayed()->nop();
2826        __ st_ptr(recv, recv_addr);
2827        __ set(DataLayout::counter_increment, tmp1);
2828        __ st_ptr(tmp1, mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)) -
2829                  mdo_offset_bias);
2830        __ br(Assembler::always, false, Assembler::pt, update_done);
2831        __ delayed()->nop();
2832        __ bind(next_test);
2833      }
2834      // Receiver did not match any saved receiver and there is no empty row for it.
2835      // Increment total counter to indicate polymorphic case.
2836      __ lduw(counter_addr, tmp1);
2837      __ add(tmp1, DataLayout::counter_increment, tmp1);
2838      __ stw(tmp1, counter_addr);
2839
2840      __ bind(update_done);
2841    }
2842  } else {
2843    // Static call
2844    __ lduw(counter_addr, tmp1);
2845    __ add(tmp1, DataLayout::counter_increment, tmp1);
2846    __ stw(tmp1, counter_addr);
2847  }
2848}
2849
2850
2851void LIR_Assembler::align_backward_branch_target() {
2852  __ align(OptoLoopAlignment);
2853}
2854
2855
2856void LIR_Assembler::emit_delay(LIR_OpDelay* op) {
2857  // make sure we are expecting a delay
2858  // this has the side effect of clearing the delay state
2859  // so we can use _masm instead of _masm->delayed() to do the
2860  // code generation.
2861  __ delayed();
2862
2863  // make sure we only emit one instruction
2864  int offset = code_offset();
2865  op->delay_op()->emit_code(this);
2866#ifdef ASSERT
2867  if (code_offset() - offset != NativeInstruction::nop_instruction_size) {
2868    op->delay_op()->print();
2869  }
2870  assert(code_offset() - offset == NativeInstruction::nop_instruction_size,
2871         "only one instruction can go in a delay slot");
2872#endif
2873
2874  // we may also be emitting the call info for the instruction
2875  // which we are the delay slot of.
2876  CodeEmitInfo * call_info = op->call_info();
2877  if (call_info) {
2878    add_call_info(code_offset(), call_info);
2879  }
2880
2881  if (VerifyStackAtCalls) {
2882    _masm->sub(FP, SP, O7);
2883    _masm->cmp(O7, initial_frame_size_in_bytes());
2884    _masm->trap(Assembler::notEqual, Assembler::ptr_cc, G0, ST_RESERVED_FOR_USER_0+2 );
2885  }
2886}
2887
2888
2889void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest) {
2890  assert(left->is_register(), "can only handle registers");
2891
2892  if (left->is_single_cpu()) {
2893    __ neg(left->as_register(), dest->as_register());
2894  } else if (left->is_single_fpu()) {
2895    __ fneg(FloatRegisterImpl::S, left->as_float_reg(), dest->as_float_reg());
2896  } else if (left->is_double_fpu()) {
2897    __ fneg(FloatRegisterImpl::D, left->as_double_reg(), dest->as_double_reg());
2898  } else {
2899    assert (left->is_double_cpu(), "Must be a long");
2900    Register Rlow = left->as_register_lo();
2901    Register Rhi = left->as_register_hi();
2902#ifdef _LP64
2903    __ sub(G0, Rlow, dest->as_register_lo());
2904#else
2905    __ subcc(G0, Rlow, dest->as_register_lo());
2906    __ subc (G0, Rhi,  dest->as_register_hi());
2907#endif
2908  }
2909}
2910
2911
2912void LIR_Assembler::fxch(int i) {
2913  Unimplemented();
2914}
2915
2916void LIR_Assembler::fld(int i) {
2917  Unimplemented();
2918}
2919
2920void LIR_Assembler::ffree(int i) {
2921  Unimplemented();
2922}
2923
2924void LIR_Assembler::rt_call(LIR_Opr result, address dest,
2925                            const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
2926
2927  // if tmp is invalid, then the function being called doesn't destroy the thread
2928  if (tmp->is_valid()) {
2929    __ save_thread(tmp->as_register());
2930  }
2931  __ call(dest, relocInfo::runtime_call_type);
2932  __ delayed()->nop();
2933  if (info != NULL) {
2934    add_call_info_here(info);
2935  }
2936  if (tmp->is_valid()) {
2937    __ restore_thread(tmp->as_register());
2938  }
2939
2940#ifdef ASSERT
2941  __ verify_thread();
2942#endif // ASSERT
2943}
2944
2945
2946void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
2947#ifdef _LP64
2948  ShouldNotReachHere();
2949#endif
2950
2951  NEEDS_CLEANUP;
2952  if (type == T_LONG) {
2953    LIR_Address* mem_addr = dest->is_address() ? dest->as_address_ptr() : src->as_address_ptr();
2954
2955    // (extended to allow indexed as well as constant displaced for JSR-166)
2956    Register idx = noreg; // contains either constant offset or index
2957
2958    int disp = mem_addr->disp();
2959    if (mem_addr->index() == LIR_OprFact::illegalOpr) {
2960      if (!Assembler::is_simm13(disp)) {
2961        idx = O7;
2962        __ set(disp, idx);
2963      }
2964    } else {
2965      assert(disp == 0, "not both indexed and disp");
2966      idx = mem_addr->index()->as_register();
2967    }
2968
2969    int null_check_offset = -1;
2970
2971    Register base = mem_addr->base()->as_register();
2972    if (src->is_register() && dest->is_address()) {
2973      // G4 is high half, G5 is low half
2974      if (VM_Version::v9_instructions_work()) {
2975        // clear the top bits of G5, and scale up G4
2976        __ srl (src->as_register_lo(),  0, G5);
2977        __ sllx(src->as_register_hi(), 32, G4);
2978        // combine the two halves into the 64 bits of G4
2979        __ or3(G4, G5, G4);
2980        null_check_offset = __ offset();
2981        if (idx == noreg) {
2982          __ stx(G4, base, disp);
2983        } else {
2984          __ stx(G4, base, idx);
2985        }
2986      } else {
2987        __ mov (src->as_register_hi(), G4);
2988        __ mov (src->as_register_lo(), G5);
2989        null_check_offset = __ offset();
2990        if (idx == noreg) {
2991          __ std(G4, base, disp);
2992        } else {
2993          __ std(G4, base, idx);
2994        }
2995      }
2996    } else if (src->is_address() && dest->is_register()) {
2997      null_check_offset = __ offset();
2998      if (VM_Version::v9_instructions_work()) {
2999        if (idx == noreg) {
3000          __ ldx(base, disp, G5);
3001        } else {
3002          __ ldx(base, idx, G5);
3003        }
3004        __ srax(G5, 32, dest->as_register_hi()); // fetch the high half into hi
3005        __ mov (G5, dest->as_register_lo());     // copy low half into lo
3006      } else {
3007        if (idx == noreg) {
3008          __ ldd(base, disp, G4);
3009        } else {
3010          __ ldd(base, idx, G4);
3011        }
3012        // G4 is high half, G5 is low half
3013        __ mov (G4, dest->as_register_hi());
3014        __ mov (G5, dest->as_register_lo());
3015      }
3016    } else {
3017      Unimplemented();
3018    }
3019    if (info != NULL) {
3020      add_debug_info_for_null_check(null_check_offset, info);
3021    }
3022
3023  } else {
3024    // use normal move for all other volatiles since they don't need
3025    // special handling to remain atomic.
3026    move_op(src, dest, type, lir_patch_none, info, false, false);
3027  }
3028}
3029
3030void LIR_Assembler::membar() {
3031  // only StoreLoad membars are ever explicitly needed on sparcs in TSO mode
3032  __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad) );
3033}
3034
3035void LIR_Assembler::membar_acquire() {
3036  // no-op on TSO
3037}
3038
3039void LIR_Assembler::membar_release() {
3040  // no-op on TSO
3041}
3042
3043// Macro to Pack two sequential registers containing 32 bit values
3044// into a single 64 bit register.
3045// rs and rs->successor() are packed into rd
3046// rd and rs may be the same register.
3047// Note: rs and rs->successor() are destroyed.
3048void LIR_Assembler::pack64( Register rs, Register rd ) {
3049  __ sllx(rs, 32, rs);
3050  __ srl(rs->successor(), 0, rs->successor());
3051  __ or3(rs, rs->successor(), rd);
3052}
3053
3054// Macro to unpack a 64 bit value in a register into
3055// two sequential registers.
3056// rd is unpacked into rd and rd->successor()
3057void LIR_Assembler::unpack64( Register rd ) {
3058  __ mov(rd, rd->successor());
3059  __ srax(rd, 32, rd);
3060  __ sra(rd->successor(), 0, rd->successor());
3061}
3062
3063
3064void LIR_Assembler::leal(LIR_Opr addr_opr, LIR_Opr dest) {
3065  LIR_Address* addr = addr_opr->as_address_ptr();
3066  assert(addr->index()->is_illegal() && addr->scale() == LIR_Address::times_1 && Assembler::is_simm13(addr->disp()), "can't handle complex addresses yet");
3067  __ add(addr->base()->as_register(), addr->disp(), dest->as_register());
3068}
3069
3070
3071void LIR_Assembler::get_thread(LIR_Opr result_reg) {
3072  assert(result_reg->is_register(), "check");
3073  __ mov(G2_thread, result_reg->as_register());
3074}
3075
3076
3077void LIR_Assembler::peephole(LIR_List* lir) {
3078  LIR_OpList* inst = lir->instructions_list();
3079  for (int i = 0; i < inst->length(); i++) {
3080    LIR_Op* op = inst->at(i);
3081    switch (op->code()) {
3082      case lir_cond_float_branch:
3083      case lir_branch: {
3084        LIR_OpBranch* branch = op->as_OpBranch();
3085        assert(branch->info() == NULL, "shouldn't be state on branches anymore");
3086        LIR_Op* delay_op = NULL;
3087        // we'd like to be able to pull following instructions into
3088        // this slot but we don't know enough to do it safely yet so
3089        // only optimize block to block control flow.
3090        if (LIRFillDelaySlots && branch->block()) {
3091          LIR_Op* prev = inst->at(i - 1);
3092          if (prev && LIR_Assembler::is_single_instruction(prev) && prev->info() == NULL) {
3093            // swap previous instruction into delay slot
3094            inst->at_put(i - 1, op);
3095            inst->at_put(i, new LIR_OpDelay(prev, op->info()));
3096#ifndef PRODUCT
3097            if (LIRTracePeephole) {
3098              tty->print_cr("delayed");
3099              inst->at(i - 1)->print();
3100              inst->at(i)->print();
3101            }
3102#endif
3103            continue;
3104          }
3105        }
3106
3107        if (!delay_op) {
3108          delay_op = new LIR_OpDelay(new LIR_Op0(lir_nop), NULL);
3109        }
3110        inst->insert_before(i + 1, delay_op);
3111        break;
3112      }
3113      case lir_static_call:
3114      case lir_virtual_call:
3115      case lir_icvirtual_call:
3116      case lir_optvirtual_call: {
3117        LIR_Op* delay_op = NULL;
3118        LIR_Op* prev = inst->at(i - 1);
3119        if (LIRFillDelaySlots && prev && prev->code() == lir_move && prev->info() == NULL &&
3120            (op->code() != lir_virtual_call ||
3121             !prev->result_opr()->is_single_cpu() ||
3122             prev->result_opr()->as_register() != O0) &&
3123            LIR_Assembler::is_single_instruction(prev)) {
3124          // Only moves without info can be put into the delay slot.
3125          // Also don't allow the setup of the receiver in the delay
3126          // slot for vtable calls.
3127          inst->at_put(i - 1, op);
3128          inst->at_put(i, new LIR_OpDelay(prev, op->info()));
3129#ifndef PRODUCT
3130          if (LIRTracePeephole) {
3131            tty->print_cr("delayed");
3132            inst->at(i - 1)->print();
3133            inst->at(i)->print();
3134          }
3135#endif
3136          continue;
3137        }
3138
3139        if (!delay_op) {
3140          delay_op = new LIR_OpDelay(new LIR_Op0(lir_nop), op->as_OpJavaCall()->info());
3141          inst->insert_before(i + 1, delay_op);
3142        }
3143        break;
3144      }
3145    }
3146  }
3147}
3148
3149
3150
3151
3152#undef __
3153