macroAssembler_aarch64.hpp revision 11020:c0ea2e3ebe83
1127668Sbms/*
2127668Sbms * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
3127668Sbms * Copyright (c) 2014, 2015, Red Hat Inc. All rights reserved.
4127668Sbms * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5127668Sbms *
6127668Sbms * This code is free software; you can redistribute it and/or modify it
7127668Sbms * under the terms of the GNU General Public License version 2 only, as
8127668Sbms * published by the Free Software Foundation.
9127668Sbms *
10127668Sbms * This code is distributed in the hope that it will be useful, but WITHOUT
11127668Sbms * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12127668Sbms * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
13127668Sbms * version 2 for more details (a copy is included in the LICENSE file that
14127668Sbms * accompanied this code).
15127668Sbms *
16127668Sbms * You should have received a copy of the GNU General Public License version
17190207Srpaulo * 2 along with this work; if not, write to the Free Software Foundation,
18127668Sbms * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
19127668Sbms *
20127668Sbms * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
21127668Sbms * or visit www.oracle.com if you need additional information or have any
22127668Sbms * questions.
23127668Sbms *
24127668Sbms */
25127668Sbms
26147899Ssam#ifndef CPU_AARCH64_VM_MACROASSEMBLER_AARCH64_HPP
27147899Ssam#define CPU_AARCH64_VM_MACROASSEMBLER_AARCH64_HPP
28147899Ssam
29147899Ssam#include "asm/assembler.hpp"
30147899Ssam
31147899Ssam// MacroAssembler extends Assembler by frequently used macros.
32147899Ssam//
33190207Srpaulo// Instructions for which a 'better' code sequence exists depending
34// on arguments should also go in here.
35
36class MacroAssembler: public Assembler {
37  friend class LIR_Assembler;
38
39 public:
40  using Assembler::mov;
41  using Assembler::movi;
42
43 protected:
44
45  // Support for VM calls
46  //
47  // This is the base routine called by the different versions of call_VM_leaf. The interpreter
48  // may customize this version by overriding it for its purposes (e.g., to save/restore
49  // additional registers when doing a VM call).
50  virtual void call_VM_leaf_base(
51    address entry_point,               // the entry point
52    int     number_of_arguments,        // the number of arguments to pop after the call
53    Label *retaddr = NULL
54  );
55
56  virtual void call_VM_leaf_base(
57    address entry_point,               // the entry point
58    int     number_of_arguments,        // the number of arguments to pop after the call
59    Label &retaddr) {
60    call_VM_leaf_base(entry_point, number_of_arguments, &retaddr);
61  }
62
63  // This is the base routine called by the different versions of call_VM. The interpreter
64  // may customize this version by overriding it for its purposes (e.g., to save/restore
65  // additional registers when doing a VM call).
66  //
67  // If no java_thread register is specified (noreg) than rthread will be used instead. call_VM_base
68  // returns the register which contains the thread upon return. If a thread register has been
69  // specified, the return value will correspond to that register. If no last_java_sp is specified
70  // (noreg) than rsp will be used instead.
71  virtual void call_VM_base(           // returns the register containing the thread upon return
72    Register oop_result,               // where an oop-result ends up if any; use noreg otherwise
73    Register java_thread,              // the thread if computed before     ; use noreg otherwise
74    Register last_java_sp,             // to set up last_Java_frame in stubs; use noreg otherwise
75    address  entry_point,              // the entry point
76    int      number_of_arguments,      // the number of arguments (w/o thread) to pop after the call
77    bool     check_exceptions          // whether to check for pending exceptions after return
78  );
79
80  // These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code.
81  // The implementation is only non-empty for the InterpreterMacroAssembler,
82  // as only the interpreter handles PopFrame and ForceEarlyReturn requests.
83  virtual void check_and_handle_popframe(Register java_thread);
84  virtual void check_and_handle_earlyret(Register java_thread);
85
86  void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true);
87
88  // Maximum size of class area in Metaspace when compressed
89  uint64_t use_XOR_for_compressed_class_base;
90
91 public:
92  MacroAssembler(CodeBuffer* code) : Assembler(code) {
93    use_XOR_for_compressed_class_base
94      = (operand_valid_for_logical_immediate(false /*is32*/,
95                                             (uint64_t)Universe::narrow_klass_base())
96         && ((uint64_t)Universe::narrow_klass_base()
97             > (1u << log2_intptr(CompressedClassSpaceSize))));
98  }
99
100  // Biased locking support
101  // lock_reg and obj_reg must be loaded up with the appropriate values.
102  // swap_reg is killed.
103  // tmp_reg must be supplied and must not be rscratch1 or rscratch2
104  // Optional slow case is for implementations (interpreter and C1) which branch to
105  // slow case directly. Leaves condition codes set for C2's Fast_Lock node.
106  // Returns offset of first potentially-faulting instruction for null
107  // check info (currently consumed only by C1). If
108  // swap_reg_contains_mark is true then returns -1 as it is assumed
109  // the calling code has already passed any potential faults.
110  int biased_locking_enter(Register lock_reg, Register obj_reg,
111                           Register swap_reg, Register tmp_reg,
112                           bool swap_reg_contains_mark,
113                           Label& done, Label* slow_case = NULL,
114                           BiasedLockingCounters* counters = NULL);
115  void biased_locking_exit (Register obj_reg, Register temp_reg, Label& done);
116
117
118  // Helper functions for statistics gathering.
119  // Unconditional atomic increment.
120  void atomic_incw(Register counter_addr, Register tmp, Register tmp2);
121  void atomic_incw(Address counter_addr, Register tmp1, Register tmp2, Register tmp3) {
122    lea(tmp1, counter_addr);
123    atomic_incw(tmp1, tmp2, tmp3);
124  }
125  // Load Effective Address
126  void lea(Register r, const Address &a) {
127    InstructionMark im(this);
128    code_section()->relocate(inst_mark(), a.rspec());
129    a.lea(this, r);
130  }
131
132  void addmw(Address a, Register incr, Register scratch) {
133    ldrw(scratch, a);
134    addw(scratch, scratch, incr);
135    strw(scratch, a);
136  }
137
138  // Add constant to memory word
139  void addmw(Address a, int imm, Register scratch) {
140    ldrw(scratch, a);
141    if (imm > 0)
142      addw(scratch, scratch, (unsigned)imm);
143    else
144      subw(scratch, scratch, (unsigned)-imm);
145    strw(scratch, a);
146  }
147
148  void bind(Label& L) {
149    Assembler::bind(L);
150    code()->clear_last_membar();
151  }
152
153  void membar(Membar_mask_bits order_constraint);
154
155  // Frame creation and destruction shared between JITs.
156  void build_frame(int framesize);
157  void remove_frame(int framesize);
158
159  virtual void _call_Unimplemented(address call_site) {
160    mov(rscratch2, call_site);
161    haltsim();
162  }
163
164#define call_Unimplemented() _call_Unimplemented((address)__PRETTY_FUNCTION__)
165
166  virtual void notify(int type);
167
168  // aliases defined in AARCH64 spec
169
170  template<class T>
171  inline void cmpw(Register Rd, T imm)  { subsw(zr, Rd, imm); }
172  inline void cmp(Register Rd, unsigned imm)  { subs(zr, Rd, imm); }
173
174  inline void cmnw(Register Rd, unsigned imm) { addsw(zr, Rd, imm); }
175  inline void cmn(Register Rd, unsigned imm) { adds(zr, Rd, imm); }
176
177  void cset(Register Rd, Assembler::Condition cond) {
178    csinc(Rd, zr, zr, ~cond);
179  }
180  void csetw(Register Rd, Assembler::Condition cond) {
181    csincw(Rd, zr, zr, ~cond);
182  }
183
184  void cneg(Register Rd, Register Rn, Assembler::Condition cond) {
185    csneg(Rd, Rn, Rn, ~cond);
186  }
187  void cnegw(Register Rd, Register Rn, Assembler::Condition cond) {
188    csnegw(Rd, Rn, Rn, ~cond);
189  }
190
191  inline void movw(Register Rd, Register Rn) {
192    if (Rd == sp || Rn == sp) {
193      addw(Rd, Rn, 0U);
194    } else {
195      orrw(Rd, zr, Rn);
196    }
197  }
198  inline void mov(Register Rd, Register Rn) {
199    assert(Rd != r31_sp && Rn != r31_sp, "should be");
200    if (Rd == Rn) {
201    } else if (Rd == sp || Rn == sp) {
202      add(Rd, Rn, 0U);
203    } else {
204      orr(Rd, zr, Rn);
205    }
206  }
207
208  inline void moviw(Register Rd, unsigned imm) { orrw(Rd, zr, imm); }
209  inline void movi(Register Rd, unsigned imm) { orr(Rd, zr, imm); }
210
211  inline void tstw(Register Rd, Register Rn) { andsw(zr, Rd, Rn); }
212  inline void tst(Register Rd, Register Rn) { ands(zr, Rd, Rn); }
213
214  inline void tstw(Register Rd, uint64_t imm) { andsw(zr, Rd, imm); }
215  inline void tst(Register Rd, uint64_t imm) { ands(zr, Rd, imm); }
216
217  inline void bfiw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
218    bfmw(Rd, Rn, ((32 - lsb) & 31), (width - 1));
219  }
220  inline void bfi(Register Rd, Register Rn, unsigned lsb, unsigned width) {
221    bfm(Rd, Rn, ((64 - lsb) & 63), (width - 1));
222  }
223
224  inline void bfxilw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
225    bfmw(Rd, Rn, lsb, (lsb + width - 1));
226  }
227  inline void bfxil(Register Rd, Register Rn, unsigned lsb, unsigned width) {
228    bfm(Rd, Rn, lsb , (lsb + width - 1));
229  }
230
231  inline void sbfizw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
232    sbfmw(Rd, Rn, ((32 - lsb) & 31), (width - 1));
233  }
234  inline void sbfiz(Register Rd, Register Rn, unsigned lsb, unsigned width) {
235    sbfm(Rd, Rn, ((64 - lsb) & 63), (width - 1));
236  }
237
238  inline void sbfxw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
239    sbfmw(Rd, Rn, lsb, (lsb + width - 1));
240  }
241  inline void sbfx(Register Rd, Register Rn, unsigned lsb, unsigned width) {
242    sbfm(Rd, Rn, lsb , (lsb + width - 1));
243  }
244
245  inline void ubfizw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
246    ubfmw(Rd, Rn, ((32 - lsb) & 31), (width - 1));
247  }
248  inline void ubfiz(Register Rd, Register Rn, unsigned lsb, unsigned width) {
249    ubfm(Rd, Rn, ((64 - lsb) & 63), (width - 1));
250  }
251
252  inline void ubfxw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
253    ubfmw(Rd, Rn, lsb, (lsb + width - 1));
254  }
255  inline void ubfx(Register Rd, Register Rn, unsigned lsb, unsigned width) {
256    ubfm(Rd, Rn, lsb , (lsb + width - 1));
257  }
258
259  inline void asrw(Register Rd, Register Rn, unsigned imm) {
260    sbfmw(Rd, Rn, imm, 31);
261  }
262
263  inline void asr(Register Rd, Register Rn, unsigned imm) {
264    sbfm(Rd, Rn, imm, 63);
265  }
266
267  inline void lslw(Register Rd, Register Rn, unsigned imm) {
268    ubfmw(Rd, Rn, ((32 - imm) & 31), (31 - imm));
269  }
270
271  inline void lsl(Register Rd, Register Rn, unsigned imm) {
272    ubfm(Rd, Rn, ((64 - imm) & 63), (63 - imm));
273  }
274
275  inline void lsrw(Register Rd, Register Rn, unsigned imm) {
276    ubfmw(Rd, Rn, imm, 31);
277  }
278
279  inline void lsr(Register Rd, Register Rn, unsigned imm) {
280    ubfm(Rd, Rn, imm, 63);
281  }
282
283  inline void rorw(Register Rd, Register Rn, unsigned imm) {
284    extrw(Rd, Rn, Rn, imm);
285  }
286
287  inline void ror(Register Rd, Register Rn, unsigned imm) {
288    extr(Rd, Rn, Rn, imm);
289  }
290
291  inline void sxtbw(Register Rd, Register Rn) {
292    sbfmw(Rd, Rn, 0, 7);
293  }
294  inline void sxthw(Register Rd, Register Rn) {
295    sbfmw(Rd, Rn, 0, 15);
296  }
297  inline void sxtb(Register Rd, Register Rn) {
298    sbfm(Rd, Rn, 0, 7);
299  }
300  inline void sxth(Register Rd, Register Rn) {
301    sbfm(Rd, Rn, 0, 15);
302  }
303  inline void sxtw(Register Rd, Register Rn) {
304    sbfm(Rd, Rn, 0, 31);
305  }
306
307  inline void uxtbw(Register Rd, Register Rn) {
308    ubfmw(Rd, Rn, 0, 7);
309  }
310  inline void uxthw(Register Rd, Register Rn) {
311    ubfmw(Rd, Rn, 0, 15);
312  }
313  inline void uxtb(Register Rd, Register Rn) {
314    ubfm(Rd, Rn, 0, 7);
315  }
316  inline void uxth(Register Rd, Register Rn) {
317    ubfm(Rd, Rn, 0, 15);
318  }
319  inline void uxtw(Register Rd, Register Rn) {
320    ubfm(Rd, Rn, 0, 31);
321  }
322
323  inline void cmnw(Register Rn, Register Rm) {
324    addsw(zr, Rn, Rm);
325  }
326  inline void cmn(Register Rn, Register Rm) {
327    adds(zr, Rn, Rm);
328  }
329
330  inline void cmpw(Register Rn, Register Rm) {
331    subsw(zr, Rn, Rm);
332  }
333  inline void cmp(Register Rn, Register Rm) {
334    subs(zr, Rn, Rm);
335  }
336
337  inline void negw(Register Rd, Register Rn) {
338    subw(Rd, zr, Rn);
339  }
340
341  inline void neg(Register Rd, Register Rn) {
342    sub(Rd, zr, Rn);
343  }
344
345  inline void negsw(Register Rd, Register Rn) {
346    subsw(Rd, zr, Rn);
347  }
348
349  inline void negs(Register Rd, Register Rn) {
350    subs(Rd, zr, Rn);
351  }
352
353  inline void cmnw(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) {
354    addsw(zr, Rn, Rm, kind, shift);
355  }
356  inline void cmn(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) {
357    adds(zr, Rn, Rm, kind, shift);
358  }
359
360  inline void cmpw(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) {
361    subsw(zr, Rn, Rm, kind, shift);
362  }
363  inline void cmp(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) {
364    subs(zr, Rn, Rm, kind, shift);
365  }
366
367  inline void negw(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) {
368    subw(Rd, zr, Rn, kind, shift);
369  }
370
371  inline void neg(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) {
372    sub(Rd, zr, Rn, kind, shift);
373  }
374
375  inline void negsw(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) {
376    subsw(Rd, zr, Rn, kind, shift);
377  }
378
379  inline void negs(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) {
380    subs(Rd, zr, Rn, kind, shift);
381  }
382
383  inline void mnegw(Register Rd, Register Rn, Register Rm) {
384    msubw(Rd, Rn, Rm, zr);
385  }
386  inline void mneg(Register Rd, Register Rn, Register Rm) {
387    msub(Rd, Rn, Rm, zr);
388  }
389
390  inline void mulw(Register Rd, Register Rn, Register Rm) {
391    maddw(Rd, Rn, Rm, zr);
392  }
393  inline void mul(Register Rd, Register Rn, Register Rm) {
394    madd(Rd, Rn, Rm, zr);
395  }
396
397  inline void smnegl(Register Rd, Register Rn, Register Rm) {
398    smsubl(Rd, Rn, Rm, zr);
399  }
400  inline void smull(Register Rd, Register Rn, Register Rm) {
401    smaddl(Rd, Rn, Rm, zr);
402  }
403
404  inline void umnegl(Register Rd, Register Rn, Register Rm) {
405    umsubl(Rd, Rn, Rm, zr);
406  }
407  inline void umull(Register Rd, Register Rn, Register Rm) {
408    umaddl(Rd, Rn, Rm, zr);
409  }
410
411#define WRAP(INSN)                                                            \
412  void INSN(Register Rd, Register Rn, Register Rm, Register Ra) {             \
413    if ((VM_Version::features() & VM_Version::CPU_A53MAC) && Ra != zr)        \
414      nop();                                                                  \
415    Assembler::INSN(Rd, Rn, Rm, Ra);                                          \
416  }
417
418  WRAP(madd) WRAP(msub) WRAP(maddw) WRAP(msubw)
419  WRAP(smaddl) WRAP(smsubl) WRAP(umaddl) WRAP(umsubl)
420#undef WRAP
421
422
423  // macro assembly operations needed for aarch64
424
425  // first two private routines for loading 32 bit or 64 bit constants
426private:
427
428  void mov_immediate64(Register dst, u_int64_t imm64);
429  void mov_immediate32(Register dst, u_int32_t imm32);
430
431  int push(unsigned int bitset, Register stack);
432  int pop(unsigned int bitset, Register stack);
433
434  void mov(Register dst, Address a);
435
436public:
437  void push(RegSet regs, Register stack) { if (regs.bits()) push(regs.bits(), stack); }
438  void pop(RegSet regs, Register stack) { if (regs.bits()) pop(regs.bits(), stack); }
439
440  // Push and pop everything that might be clobbered by a native
441  // runtime call except rscratch1 and rscratch2.  (They are always
442  // scratch, so we don't have to protect them.)  Only save the lower
443  // 64 bits of each vector register.
444  void push_call_clobbered_registers();
445  void pop_call_clobbered_registers();
446
447  // now mov instructions for loading absolute addresses and 32 or
448  // 64 bit integers
449
450  inline void mov(Register dst, address addr)
451  {
452    mov_immediate64(dst, (u_int64_t)addr);
453  }
454
455  inline void mov(Register dst, u_int64_t imm64)
456  {
457    mov_immediate64(dst, imm64);
458  }
459
460  inline void movw(Register dst, u_int32_t imm32)
461  {
462    mov_immediate32(dst, imm32);
463  }
464
465  inline void mov(Register dst, long l)
466  {
467    mov(dst, (u_int64_t)l);
468  }
469
470  inline void mov(Register dst, int i)
471  {
472    mov(dst, (long)i);
473  }
474
475  void mov(Register dst, RegisterOrConstant src) {
476    if (src.is_register())
477      mov(dst, src.as_register());
478    else
479      mov(dst, src.as_constant());
480  }
481
482  void movptr(Register r, uintptr_t imm64);
483
484  void mov(FloatRegister Vd, SIMD_Arrangement T, u_int32_t imm32);
485
486  void mov(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) {
487    orr(Vd, T, Vn, Vn);
488  }
489
490public:
491
492  // Generalized Test Bit And Branch, including a "far" variety which
493  // spans more than 32KiB.
494  void tbr(Condition cond, Register Rt, int bitpos, Label &dest, bool far = false) {
495    assert(cond == EQ || cond == NE, "must be");
496
497    if (far)
498      cond = ~cond;
499
500    void (Assembler::* branch)(Register Rt, int bitpos, Label &L);
501    if (cond == Assembler::EQ)
502      branch = &Assembler::tbz;
503    else
504      branch = &Assembler::tbnz;
505
506    if (far) {
507      Label L;
508      (this->*branch)(Rt, bitpos, L);
509      b(dest);
510      bind(L);
511    } else {
512      (this->*branch)(Rt, bitpos, dest);
513    }
514  }
515
516  // macro instructions for accessing and updating floating point
517  // status register
518  //
519  // FPSR : op1 == 011
520  //        CRn == 0100
521  //        CRm == 0100
522  //        op2 == 001
523
524  inline void get_fpsr(Register reg)
525  {
526    mrs(0b11, 0b0100, 0b0100, 0b001, reg);
527  }
528
529  inline void set_fpsr(Register reg)
530  {
531    msr(0b011, 0b0100, 0b0100, 0b001, reg);
532  }
533
534  inline void clear_fpsr()
535  {
536    msr(0b011, 0b0100, 0b0100, 0b001, zr);
537  }
538
539  // idiv variant which deals with MINLONG as dividend and -1 as divisor
540  int corrected_idivl(Register result, Register ra, Register rb,
541                      bool want_remainder, Register tmp = rscratch1);
542  int corrected_idivq(Register result, Register ra, Register rb,
543                      bool want_remainder, Register tmp = rscratch1);
544
545  // Support for NULL-checks
546  //
547  // Generates code that causes a NULL OS exception if the content of reg is NULL.
548  // If the accessed location is M[reg + offset] and the offset is known, provide the
549  // offset. No explicit code generation is needed if the offset is within a certain
550  // range (0 <= offset <= page_size).
551
552  virtual void null_check(Register reg, int offset = -1);
553  static bool needs_explicit_null_check(intptr_t offset);
554
555  static address target_addr_for_insn(address insn_addr, unsigned insn);
556  static address target_addr_for_insn(address insn_addr) {
557    unsigned insn = *(unsigned*)insn_addr;
558    return target_addr_for_insn(insn_addr, insn);
559  }
560
561  // Required platform-specific helpers for Label::patch_instructions.
562  // They _shadow_ the declarations in AbstractAssembler, which are undefined.
563  static int pd_patch_instruction_size(address branch, address target);
564  static void pd_patch_instruction(address branch, address target) {
565    pd_patch_instruction_size(branch, target);
566  }
567  static address pd_call_destination(address branch) {
568    return target_addr_for_insn(branch);
569  }
570#ifndef PRODUCT
571  static void pd_print_patched_instruction(address branch);
572#endif
573
574  static int patch_oop(address insn_addr, address o);
575
576  address emit_trampoline_stub(int insts_call_instruction_offset, address target);
577
578  // The following 4 methods return the offset of the appropriate move instruction
579
580  // Support for fast byte/short loading with zero extension (depending on particular CPU)
581  int load_unsigned_byte(Register dst, Address src);
582  int load_unsigned_short(Register dst, Address src);
583
584  // Support for fast byte/short loading with sign extension (depending on particular CPU)
585  int load_signed_byte(Register dst, Address src);
586  int load_signed_short(Register dst, Address src);
587
588  int load_signed_byte32(Register dst, Address src);
589  int load_signed_short32(Register dst, Address src);
590
591  // Support for sign-extension (hi:lo = extend_sign(lo))
592  void extend_sign(Register hi, Register lo);
593
594  // Load and store values by size and signed-ness
595  void load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2 = noreg);
596  void store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2 = noreg);
597
598  // Support for inc/dec with optimal instruction selection depending on value
599
600  // x86_64 aliases an unqualified register/address increment and
601  // decrement to call incrementq and decrementq but also supports
602  // explicitly sized calls to incrementq/decrementq or
603  // incrementl/decrementl
604
605  // for aarch64 the proper convention would be to use
606  // increment/decrement for 64 bit operatons and
607  // incrementw/decrementw for 32 bit operations. so when porting
608  // x86_64 code we can leave calls to increment/decrement as is,
609  // replace incrementq/decrementq with increment/decrement and
610  // replace incrementl/decrementl with incrementw/decrementw.
611
612  // n.b. increment/decrement calls with an Address destination will
613  // need to use a scratch register to load the value to be
614  // incremented. increment/decrement calls which add or subtract a
615  // constant value greater than 2^12 will need to use a 2nd scratch
616  // register to hold the constant. so, a register increment/decrement
617  // may trash rscratch2 and an address increment/decrement trash
618  // rscratch and rscratch2
619
620  void decrementw(Address dst, int value = 1);
621  void decrementw(Register reg, int value = 1);
622
623  void decrement(Register reg, int value = 1);
624  void decrement(Address dst, int value = 1);
625
626  void incrementw(Address dst, int value = 1);
627  void incrementw(Register reg, int value = 1);
628
629  void increment(Register reg, int value = 1);
630  void increment(Address dst, int value = 1);
631
632
633  // Alignment
634  void align(int modulus);
635
636  // Stack frame creation/removal
637  void enter()
638  {
639    stp(rfp, lr, Address(pre(sp, -2 * wordSize)));
640    mov(rfp, sp);
641  }
642  void leave()
643  {
644    mov(sp, rfp);
645    ldp(rfp, lr, Address(post(sp, 2 * wordSize)));
646  }
647
648  // Support for getting the JavaThread pointer (i.e.; a reference to thread-local information)
649  // The pointer will be loaded into the thread register.
650  void get_thread(Register thread);
651
652
653  // Support for VM calls
654  //
655  // It is imperative that all calls into the VM are handled via the call_VM macros.
656  // They make sure that the stack linkage is setup correctly. call_VM's correspond
657  // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
658
659
660  void call_VM(Register oop_result,
661               address entry_point,
662               bool check_exceptions = true);
663  void call_VM(Register oop_result,
664               address entry_point,
665               Register arg_1,
666               bool check_exceptions = true);
667  void call_VM(Register oop_result,
668               address entry_point,
669               Register arg_1, Register arg_2,
670               bool check_exceptions = true);
671  void call_VM(Register oop_result,
672               address entry_point,
673               Register arg_1, Register arg_2, Register arg_3,
674               bool check_exceptions = true);
675
676  // Overloadings with last_Java_sp
677  void call_VM(Register oop_result,
678               Register last_java_sp,
679               address entry_point,
680               int number_of_arguments = 0,
681               bool check_exceptions = true);
682  void call_VM(Register oop_result,
683               Register last_java_sp,
684               address entry_point,
685               Register arg_1, bool
686               check_exceptions = true);
687  void call_VM(Register oop_result,
688               Register last_java_sp,
689               address entry_point,
690               Register arg_1, Register arg_2,
691               bool check_exceptions = true);
692  void call_VM(Register oop_result,
693               Register last_java_sp,
694               address entry_point,
695               Register arg_1, Register arg_2, Register arg_3,
696               bool check_exceptions = true);
697
698  void get_vm_result  (Register oop_result, Register thread);
699  void get_vm_result_2(Register metadata_result, Register thread);
700
701  // These always tightly bind to MacroAssembler::call_VM_base
702  // bypassing the virtual implementation
703  void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
704  void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true);
705  void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
706  void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
707  void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4, bool check_exceptions = true);
708
709  void call_VM_leaf(address entry_point,
710                    int number_of_arguments = 0);
711  void call_VM_leaf(address entry_point,
712                    Register arg_1);
713  void call_VM_leaf(address entry_point,
714                    Register arg_1, Register arg_2);
715  void call_VM_leaf(address entry_point,
716                    Register arg_1, Register arg_2, Register arg_3);
717
718  // These always tightly bind to MacroAssembler::call_VM_leaf_base
719  // bypassing the virtual implementation
720  void super_call_VM_leaf(address entry_point);
721  void super_call_VM_leaf(address entry_point, Register arg_1);
722  void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2);
723  void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3);
724  void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4);
725
726  // last Java Frame (fills frame anchor)
727  void set_last_Java_frame(Register last_java_sp,
728                           Register last_java_fp,
729                           address last_java_pc,
730                           Register scratch);
731
732  void set_last_Java_frame(Register last_java_sp,
733                           Register last_java_fp,
734                           Label &last_java_pc,
735                           Register scratch);
736
737  void set_last_Java_frame(Register last_java_sp,
738                           Register last_java_fp,
739                           Register last_java_pc,
740                           Register scratch);
741
742  void reset_last_Java_frame(Register thread, bool clearfp, bool clear_pc);
743
744  // thread in the default location (r15_thread on 64bit)
745  void reset_last_Java_frame(bool clear_fp, bool clear_pc);
746
747  // Stores
748  void store_check(Register obj);                // store check for obj - register is destroyed afterwards
749  void store_check(Register obj, Address dst);   // same as above, dst is exact store location (reg. is destroyed)
750
751#if INCLUDE_ALL_GCS
752
753  void g1_write_barrier_pre(Register obj,
754                            Register pre_val,
755                            Register thread,
756                            Register tmp,
757                            bool tosca_live,
758                            bool expand_call);
759
760  void g1_write_barrier_post(Register store_addr,
761                             Register new_val,
762                             Register thread,
763                             Register tmp,
764                             Register tmp2);
765
766#endif // INCLUDE_ALL_GCS
767
768  // oop manipulations
769  void load_klass(Register dst, Register src);
770  void store_klass(Register dst, Register src);
771  void cmp_klass(Register oop, Register trial_klass, Register tmp);
772
773  void load_mirror(Register dst, Register method);
774
775  void load_heap_oop(Register dst, Address src);
776
777  void load_heap_oop_not_null(Register dst, Address src);
778  void store_heap_oop(Address dst, Register src);
779
780  // currently unimplemented
781  // Used for storing NULL. All other oop constants should be
782  // stored using routines that take a jobject.
783  void store_heap_oop_null(Address dst);
784
785  void load_prototype_header(Register dst, Register src);
786
787  void store_klass_gap(Register dst, Register src);
788
789  // This dummy is to prevent a call to store_heap_oop from
790  // converting a zero (like NULL) into a Register by giving
791  // the compiler two choices it can't resolve
792
793  void store_heap_oop(Address dst, void* dummy);
794
795  void encode_heap_oop(Register d, Register s);
796  void encode_heap_oop(Register r) { encode_heap_oop(r, r); }
797  void decode_heap_oop(Register d, Register s);
798  void decode_heap_oop(Register r) { decode_heap_oop(r, r); }
799  void encode_heap_oop_not_null(Register r);
800  void decode_heap_oop_not_null(Register r);
801  void encode_heap_oop_not_null(Register dst, Register src);
802  void decode_heap_oop_not_null(Register dst, Register src);
803
804  void set_narrow_oop(Register dst, jobject obj);
805
806  void encode_klass_not_null(Register r);
807  void decode_klass_not_null(Register r);
808  void encode_klass_not_null(Register dst, Register src);
809  void decode_klass_not_null(Register dst, Register src);
810
811  void set_narrow_klass(Register dst, Klass* k);
812
813  // if heap base register is used - reinit it with the correct value
814  void reinit_heapbase();
815
816  DEBUG_ONLY(void verify_heapbase(const char* msg);)
817
818  void push_CPU_state(bool save_vectors = false);
819  void pop_CPU_state(bool restore_vectors = false) ;
820
821  // Round up to a power of two
822  void round_to(Register reg, int modulus);
823
824  // allocation
825  void eden_allocate(
826    Register obj,                      // result: pointer to object after successful allocation
827    Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
828    int      con_size_in_bytes,        // object size in bytes if   known at compile time
829    Register t1,                       // temp register
830    Label&   slow_case                 // continuation point if fast allocation fails
831  );
832  void tlab_allocate(
833    Register obj,                      // result: pointer to object after successful allocation
834    Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
835    int      con_size_in_bytes,        // object size in bytes if   known at compile time
836    Register t1,                       // temp register
837    Register t2,                       // temp register
838    Label&   slow_case                 // continuation point if fast allocation fails
839  );
840  Register tlab_refill(Label& retry_tlab, Label& try_eden, Label& slow_case); // returns TLS address
841  void verify_tlab();
842
843  void incr_allocated_bytes(Register thread,
844                            Register var_size_in_bytes, int con_size_in_bytes,
845                            Register t1 = noreg);
846
847  // interface method calling
848  void lookup_interface_method(Register recv_klass,
849                               Register intf_klass,
850                               RegisterOrConstant itable_index,
851                               Register method_result,
852                               Register scan_temp,
853                               Label& no_such_interface);
854
855  // virtual method calling
856  // n.b. x86 allows RegisterOrConstant for vtable_index
857  void lookup_virtual_method(Register recv_klass,
858                             RegisterOrConstant vtable_index,
859                             Register method_result);
860
861  // Test sub_klass against super_klass, with fast and slow paths.
862
863  // The fast path produces a tri-state answer: yes / no / maybe-slow.
864  // One of the three labels can be NULL, meaning take the fall-through.
865  // If super_check_offset is -1, the value is loaded up from super_klass.
866  // No registers are killed, except temp_reg.
867  void check_klass_subtype_fast_path(Register sub_klass,
868                                     Register super_klass,
869                                     Register temp_reg,
870                                     Label* L_success,
871                                     Label* L_failure,
872                                     Label* L_slow_path,
873                RegisterOrConstant super_check_offset = RegisterOrConstant(-1));
874
875  // The rest of the type check; must be wired to a corresponding fast path.
876  // It does not repeat the fast path logic, so don't use it standalone.
877  // The temp_reg and temp2_reg can be noreg, if no temps are available.
878  // Updates the sub's secondary super cache as necessary.
879  // If set_cond_codes, condition codes will be Z on success, NZ on failure.
880  void check_klass_subtype_slow_path(Register sub_klass,
881                                     Register super_klass,
882                                     Register temp_reg,
883                                     Register temp2_reg,
884                                     Label* L_success,
885                                     Label* L_failure,
886                                     bool set_cond_codes = false);
887
888  // Simplified, combined version, good for typical uses.
889  // Falls through on failure.
890  void check_klass_subtype(Register sub_klass,
891                           Register super_klass,
892                           Register temp_reg,
893                           Label& L_success);
894
895  Address argument_address(RegisterOrConstant arg_slot, int extra_slot_offset = 0);
896
897
898  // Debugging
899
900  // only if +VerifyOops
901  void verify_oop(Register reg, const char* s = "broken oop");
902  void verify_oop_addr(Address addr, const char * s = "broken oop addr");
903
904// TODO: verify method and klass metadata (compare against vptr?)
905  void _verify_method_ptr(Register reg, const char * msg, const char * file, int line) {}
906  void _verify_klass_ptr(Register reg, const char * msg, const char * file, int line){}
907
908#define verify_method_ptr(reg) _verify_method_ptr(reg, "broken method " #reg, __FILE__, __LINE__)
909#define verify_klass_ptr(reg) _verify_klass_ptr(reg, "broken klass " #reg, __FILE__, __LINE__)
910
911  // only if +VerifyFPU
912  void verify_FPU(int stack_depth, const char* s = "illegal FPU state");
913
914  // prints msg, dumps registers and stops execution
915  void stop(const char* msg);
916
917  // prints msg and continues
918  void warn(const char* msg);
919
920  static void debug64(char* msg, int64_t pc, int64_t regs[]);
921
922  void untested()                                { stop("untested"); }
923
924  void unimplemented(const char* what = "")      { char* b = new char[1024];  jio_snprintf(b, 1024, "unimplemented: %s", what);  stop(b); }
925
926  void should_not_reach_here()                   { stop("should not reach here"); }
927
928  // Stack overflow checking
929  void bang_stack_with_offset(int offset) {
930    // stack grows down, caller passes positive offset
931    assert(offset > 0, "must bang with negative offset");
932    mov(rscratch2, -offset);
933    str(zr, Address(sp, rscratch2));
934  }
935
936  // Writes to stack successive pages until offset reached to check for
937  // stack overflow + shadow pages.  Also, clobbers tmp
938  void bang_stack_size(Register size, Register tmp);
939
940  virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr,
941                                                Register tmp,
942                                                int offset);
943
944  // Support for serializing memory accesses between threads
945  void serialize_memory(Register thread, Register tmp);
946
947  // Arithmetics
948
949  void addptr(const Address &dst, int32_t src);
950  void cmpptr(Register src1, Address src2);
951
952  // Various forms of CAS
953
954  void cmpxchgptr(Register oldv, Register newv, Register addr, Register tmp,
955                  Label &suceed, Label *fail);
956
957  void cmpxchgw(Register oldv, Register newv, Register addr, Register tmp,
958                  Label &suceed, Label *fail);
959
960  void atomic_add(Register prev, RegisterOrConstant incr, Register addr);
961  void atomic_addw(Register prev, RegisterOrConstant incr, Register addr);
962  void atomic_addal(Register prev, RegisterOrConstant incr, Register addr);
963  void atomic_addalw(Register prev, RegisterOrConstant incr, Register addr);
964
965  void atomic_xchg(Register prev, Register newv, Register addr);
966  void atomic_xchgw(Register prev, Register newv, Register addr);
967  void atomic_xchgal(Register prev, Register newv, Register addr);
968  void atomic_xchgalw(Register prev, Register newv, Register addr);
969
970  void orptr(Address adr, RegisterOrConstant src) {
971    ldr(rscratch2, adr);
972    if (src.is_register())
973      orr(rscratch2, rscratch2, src.as_register());
974    else
975      orr(rscratch2, rscratch2, src.as_constant());
976    str(rscratch2, adr);
977  }
978
979  // A generic CAS; success or failure is in the EQ flag.
980  void cmpxchg(Register addr, Register expected, Register new_val,
981               enum operand_size size,
982               bool acquire, bool release,
983               Register tmp = rscratch1);
984
985  // Calls
986
987  address trampoline_call(Address entry, CodeBuffer *cbuf = NULL);
988
989  static bool far_branches() {
990    return ReservedCodeCacheSize > branch_range;
991  }
992
993  // Jumps that can reach anywhere in the code cache.
994  // Trashes tmp.
995  void far_call(Address entry, CodeBuffer *cbuf = NULL, Register tmp = rscratch1);
996  void far_jump(Address entry, CodeBuffer *cbuf = NULL, Register tmp = rscratch1);
997
998  static int far_branch_size() {
999    if (far_branches()) {
1000      return 3 * 4;  // adrp, add, br
1001    } else {
1002      return 4;
1003    }
1004  }
1005
1006  // Emit the CompiledIC call idiom
1007  address ic_call(address entry, jint method_index = 0);
1008
1009public:
1010
1011  // Data
1012
1013  void mov_metadata(Register dst, Metadata* obj);
1014  Address allocate_metadata_address(Metadata* obj);
1015  Address constant_oop_address(jobject obj);
1016
1017  void movoop(Register dst, jobject obj, bool immediate = false);
1018
1019  // CRC32 code for java.util.zip.CRC32::updateBytes() instrinsic.
1020  void kernel_crc32(Register crc, Register buf, Register len,
1021        Register table0, Register table1, Register table2, Register table3,
1022        Register tmp, Register tmp2, Register tmp3);
1023  // CRC32 code for java.util.zip.CRC32C::updateBytes() instrinsic.
1024  void kernel_crc32c(Register crc, Register buf, Register len,
1025        Register table0, Register table1, Register table2, Register table3,
1026        Register tmp, Register tmp2, Register tmp3);
1027
1028  // Stack push and pop individual 64 bit registers
1029  void push(Register src);
1030  void pop(Register dst);
1031
1032  // push all registers onto the stack
1033  void pusha();
1034  void popa();
1035
1036  void repne_scan(Register addr, Register value, Register count,
1037                  Register scratch);
1038  void repne_scanw(Register addr, Register value, Register count,
1039                   Register scratch);
1040
1041  typedef void (MacroAssembler::* add_sub_imm_insn)(Register Rd, Register Rn, unsigned imm);
1042  typedef void (MacroAssembler::* add_sub_reg_insn)(Register Rd, Register Rn, Register Rm, enum shift_kind kind, unsigned shift);
1043
1044  // If a constant does not fit in an immediate field, generate some
1045  // number of MOV instructions and then perform the operation
1046  void wrap_add_sub_imm_insn(Register Rd, Register Rn, unsigned imm,
1047                             add_sub_imm_insn insn1,
1048                             add_sub_reg_insn insn2);
1049  // Seperate vsn which sets the flags
1050  void wrap_adds_subs_imm_insn(Register Rd, Register Rn, unsigned imm,
1051                             add_sub_imm_insn insn1,
1052                             add_sub_reg_insn insn2);
1053
1054#define WRAP(INSN)                                                      \
1055  void INSN(Register Rd, Register Rn, unsigned imm) {                   \
1056    wrap_add_sub_imm_insn(Rd, Rn, imm, &Assembler::INSN, &Assembler::INSN); \
1057  }                                                                     \
1058                                                                        \
1059  void INSN(Register Rd, Register Rn, Register Rm,                      \
1060             enum shift_kind kind, unsigned shift = 0) {                \
1061    Assembler::INSN(Rd, Rn, Rm, kind, shift);                           \
1062  }                                                                     \
1063                                                                        \
1064  void INSN(Register Rd, Register Rn, Register Rm) {                    \
1065    Assembler::INSN(Rd, Rn, Rm);                                        \
1066  }                                                                     \
1067                                                                        \
1068  void INSN(Register Rd, Register Rn, Register Rm,                      \
1069           ext::operation option, int amount = 0) {                     \
1070    Assembler::INSN(Rd, Rn, Rm, option, amount);                        \
1071  }
1072
1073  WRAP(add) WRAP(addw) WRAP(sub) WRAP(subw)
1074
1075#undef WRAP
1076#define WRAP(INSN)                                                      \
1077  void INSN(Register Rd, Register Rn, unsigned imm) {                   \
1078    wrap_adds_subs_imm_insn(Rd, Rn, imm, &Assembler::INSN, &Assembler::INSN); \
1079  }                                                                     \
1080                                                                        \
1081  void INSN(Register Rd, Register Rn, Register Rm,                      \
1082             enum shift_kind kind, unsigned shift = 0) {                \
1083    Assembler::INSN(Rd, Rn, Rm, kind, shift);                           \
1084  }                                                                     \
1085                                                                        \
1086  void INSN(Register Rd, Register Rn, Register Rm) {                    \
1087    Assembler::INSN(Rd, Rn, Rm);                                        \
1088  }                                                                     \
1089                                                                        \
1090  void INSN(Register Rd, Register Rn, Register Rm,                      \
1091           ext::operation option, int amount = 0) {                     \
1092    Assembler::INSN(Rd, Rn, Rm, option, amount);                        \
1093  }
1094
1095  WRAP(adds) WRAP(addsw) WRAP(subs) WRAP(subsw)
1096
1097  void add(Register Rd, Register Rn, RegisterOrConstant increment);
1098  void addw(Register Rd, Register Rn, RegisterOrConstant increment);
1099  void sub(Register Rd, Register Rn, RegisterOrConstant decrement);
1100  void subw(Register Rd, Register Rn, RegisterOrConstant decrement);
1101
1102  void adrp(Register reg1, const Address &dest, unsigned long &byte_offset);
1103
1104  void tableswitch(Register index, jint lowbound, jint highbound,
1105                   Label &jumptable, Label &jumptable_end, int stride = 1) {
1106    adr(rscratch1, jumptable);
1107    subsw(rscratch2, index, lowbound);
1108    subsw(zr, rscratch2, highbound - lowbound);
1109    br(Assembler::HS, jumptable_end);
1110    add(rscratch1, rscratch1, rscratch2,
1111        ext::sxtw, exact_log2(stride * Assembler::instruction_size));
1112    br(rscratch1);
1113  }
1114
1115  // Form an address from base + offset in Rd.  Rd may or may not
1116  // actually be used: you must use the Address that is returned.  It
1117  // is up to you to ensure that the shift provided matches the size
1118  // of your data.
1119  Address form_address(Register Rd, Register base, long byte_offset, int shift);
1120
1121  // Return true iff an address is within the 48-bit AArch64 address
1122  // space.
1123  bool is_valid_AArch64_address(address a) {
1124    return ((uint64_t)a >> 48) == 0;
1125  }
1126
1127  // Load the base of the cardtable byte map into reg.
1128  void load_byte_map_base(Register reg);
1129
1130  // Prolog generator routines to support switch between x86 code and
1131  // generated ARM code
1132
1133  // routine to generate an x86 prolog for a stub function which
1134  // bootstraps into the generated ARM code which directly follows the
1135  // stub
1136  //
1137
1138  public:
1139  // enum used for aarch64--x86 linkage to define return type of x86 function
1140  enum ret_type { ret_type_void, ret_type_integral, ret_type_float, ret_type_double};
1141
1142#ifdef BUILTIN_SIM
1143  void c_stub_prolog(int gp_arg_count, int fp_arg_count, int ret_type, address *prolog_ptr = NULL);
1144#else
1145  void c_stub_prolog(int gp_arg_count, int fp_arg_count, int ret_type) { }
1146#endif
1147
1148  // special version of call_VM_leaf_base needed for aarch64 simulator
1149  // where we need to specify both the gp and fp arg counts and the
1150  // return type so that the linkage routine from aarch64 to x86 and
1151  // back knows which aarch64 registers to copy to x86 registers and
1152  // which x86 result register to copy back to an aarch64 register
1153
1154  void call_VM_leaf_base1(
1155    address  entry_point,             // the entry point
1156    int      number_of_gp_arguments,  // the number of gp reg arguments to pass
1157    int      number_of_fp_arguments,  // the number of fp reg arguments to pass
1158    ret_type type,                    // the return type for the call
1159    Label*   retaddr = NULL
1160  );
1161
1162  void ldr_constant(Register dest, const Address &const_addr) {
1163    if (NearCpool) {
1164      ldr(dest, const_addr);
1165    } else {
1166      unsigned long offset;
1167      adrp(dest, InternalAddress(const_addr.target()), offset);
1168      ldr(dest, Address(dest, offset));
1169    }
1170  }
1171
1172  address read_polling_page(Register r, address page, relocInfo::relocType rtype);
1173  address read_polling_page(Register r, relocInfo::relocType rtype);
1174
1175  // CRC32 code for java.util.zip.CRC32::updateBytes() instrinsic.
1176  void update_byte_crc32(Register crc, Register val, Register table);
1177  void update_word_crc32(Register crc, Register v, Register tmp,
1178        Register table0, Register table1, Register table2, Register table3,
1179        bool upper = false);
1180
1181  void string_compare(Register str1, Register str2,
1182                      Register cnt1, Register cnt2, Register result,
1183                      Register tmp1);
1184
1185  void arrays_equals(Register a1, Register a2,
1186                     Register result, Register cnt1,
1187                     int elem_size, bool is_string);
1188
1189  void byte_array_inflate(Register src, Register dst, Register len,
1190                          FloatRegister vtmp1, FloatRegister vtmp2,
1191                          FloatRegister vtmp3, Register tmp4);
1192
1193  void char_array_compress(Register src, Register dst, Register len,
1194                           FloatRegister tmp1Reg, FloatRegister tmp2Reg,
1195                           FloatRegister tmp3Reg, FloatRegister tmp4Reg,
1196                           Register result);
1197
1198  void encode_iso_array(Register src, Register dst,
1199                        Register len, Register result,
1200                        FloatRegister Vtmp1, FloatRegister Vtmp2,
1201                        FloatRegister Vtmp3, FloatRegister Vtmp4);
1202  void string_indexof(Register str1, Register str2,
1203                      Register cnt1, Register cnt2,
1204                      Register tmp1, Register tmp2,
1205                      Register tmp3, Register tmp4,
1206                      int int_cnt1, Register result);
1207private:
1208  void add2_with_carry(Register final_dest_hi, Register dest_hi, Register dest_lo,
1209                       Register src1, Register src2);
1210  void add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2) {
1211    add2_with_carry(dest_hi, dest_hi, dest_lo, src1, src2);
1212  }
1213  void multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
1214                             Register y, Register y_idx, Register z,
1215                             Register carry, Register product,
1216                             Register idx, Register kdx);
1217  void multiply_128_x_128_loop(Register y, Register z,
1218                               Register carry, Register carry2,
1219                               Register idx, Register jdx,
1220                               Register yz_idx1, Register yz_idx2,
1221                               Register tmp, Register tmp3, Register tmp4,
1222                               Register tmp7, Register product_hi);
1223public:
1224  void multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z,
1225                       Register zlen, Register tmp1, Register tmp2, Register tmp3,
1226                       Register tmp4, Register tmp5, Register tmp6, Register tmp7);
1227  // ISB may be needed because of a safepoint
1228  void maybe_isb() { isb(); }
1229
1230private:
1231  // Return the effective address r + (r1 << ext) + offset.
1232  // Uses rscratch2.
1233  Address offsetted_address(Register r, Register r1, Address::extend ext,
1234                            int offset, int size);
1235
1236private:
1237  // Returns an address on the stack which is reachable with a ldr/str of size
1238  // Uses rscratch2 if the address is not directly reachable
1239  Address spill_address(int size, int offset, Register tmp=rscratch2);
1240
1241public:
1242  void spill(Register Rx, bool is64, int offset) {
1243    if (is64) {
1244      str(Rx, spill_address(8, offset));
1245    } else {
1246      strw(Rx, spill_address(4, offset));
1247    }
1248  }
1249  void spill(FloatRegister Vx, SIMD_RegVariant T, int offset) {
1250    str(Vx, T, spill_address(1 << (int)T, offset));
1251  }
1252  void unspill(Register Rx, bool is64, int offset) {
1253    if (is64) {
1254      ldr(Rx, spill_address(8, offset));
1255    } else {
1256      ldrw(Rx, spill_address(4, offset));
1257    }
1258  }
1259  void unspill(FloatRegister Vx, SIMD_RegVariant T, int offset) {
1260    ldr(Vx, T, spill_address(1 << (int)T, offset));
1261  }
1262  void spill_copy128(int src_offset, int dst_offset,
1263                     Register tmp1=rscratch1, Register tmp2=rscratch2) {
1264    if (src_offset < 512 && (src_offset & 7) == 0 &&
1265        dst_offset < 512 && (dst_offset & 7) == 0) {
1266      ldp(tmp1, tmp2, Address(sp, src_offset));
1267      stp(tmp1, tmp2, Address(sp, dst_offset));
1268    } else {
1269      unspill(tmp1, true, src_offset);
1270      spill(tmp1, true, dst_offset);
1271      unspill(tmp1, true, src_offset+8);
1272      spill(tmp1, true, dst_offset+8);
1273    }
1274  }
1275};
1276
1277#ifdef ASSERT
1278inline bool AbstractAssembler::pd_check_instruction_mark() { return false; }
1279#endif
1280
1281/**
1282 * class SkipIfEqual:
1283 *
1284 * Instantiating this class will result in assembly code being output that will
1285 * jump around any code emitted between the creation of the instance and it's
1286 * automatic destruction at the end of a scope block, depending on the value of
1287 * the flag passed to the constructor, which will be checked at run-time.
1288 */
1289class SkipIfEqual {
1290 private:
1291  MacroAssembler* _masm;
1292  Label _label;
1293
1294 public:
1295   SkipIfEqual(MacroAssembler*, const bool* flag_addr, bool value);
1296   ~SkipIfEqual();
1297};
1298
1299struct tableswitch {
1300  Register _reg;
1301  int _insn_index; jint _first_key; jint _last_key;
1302  Label _after;
1303  Label _branches;
1304};
1305
1306#endif // CPU_AARCH64_VM_MACROASSEMBLER_AARCH64_HPP
1307