1/*
2 * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
3 * Copyright (c) 2014, 2015, Red Hat Inc. All rights reserved.
4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5 *
6 * This code is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 only, as
8 * published by the Free Software Foundation.
9 *
10 * This code is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
13 * version 2 for more details (a copy is included in the LICENSE file that
14 * accompanied this code).
15 *
16 * You should have received a copy of the GNU General Public License version
17 * 2 along with this work; if not, write to the Free Software Foundation,
18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
19 *
20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
21 * or visit www.oracle.com if you need additional information or have any
22 * questions.
23 *
24 */
25
26#ifndef CPU_AARCH64_VM_MACROASSEMBLER_AARCH64_HPP
27#define CPU_AARCH64_VM_MACROASSEMBLER_AARCH64_HPP
28
29#include "asm/assembler.hpp"
30
31// MacroAssembler extends Assembler by frequently used macros.
32//
33// Instructions for which a 'better' code sequence exists depending
34// on arguments should also go in here.
35
36class MacroAssembler: public Assembler {
37  friend class LIR_Assembler;
38
39 public:
40  using Assembler::mov;
41  using Assembler::movi;
42
43 protected:
44
45  // Support for VM calls
46  //
47  // This is the base routine called by the different versions of call_VM_leaf. The interpreter
48  // may customize this version by overriding it for its purposes (e.g., to save/restore
49  // additional registers when doing a VM call).
50  virtual void call_VM_leaf_base(
51    address entry_point,               // the entry point
52    int     number_of_arguments,        // the number of arguments to pop after the call
53    Label *retaddr = NULL
54  );
55
56  virtual void call_VM_leaf_base(
57    address entry_point,               // the entry point
58    int     number_of_arguments,        // the number of arguments to pop after the call
59    Label &retaddr) {
60    call_VM_leaf_base(entry_point, number_of_arguments, &retaddr);
61  }
62
63  // This is the base routine called by the different versions of call_VM. The interpreter
64  // may customize this version by overriding it for its purposes (e.g., to save/restore
65  // additional registers when doing a VM call).
66  //
67  // If no java_thread register is specified (noreg) than rthread will be used instead. call_VM_base
68  // returns the register which contains the thread upon return. If a thread register has been
69  // specified, the return value will correspond to that register. If no last_java_sp is specified
70  // (noreg) than rsp will be used instead.
71  virtual void call_VM_base(           // returns the register containing the thread upon return
72    Register oop_result,               // where an oop-result ends up if any; use noreg otherwise
73    Register java_thread,              // the thread if computed before     ; use noreg otherwise
74    Register last_java_sp,             // to set up last_Java_frame in stubs; use noreg otherwise
75    address  entry_point,              // the entry point
76    int      number_of_arguments,      // the number of arguments (w/o thread) to pop after the call
77    bool     check_exceptions          // whether to check for pending exceptions after return
78  );
79
80  void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true);
81
82  // Maximum size of class area in Metaspace when compressed
83  uint64_t use_XOR_for_compressed_class_base;
84
85 public:
86  MacroAssembler(CodeBuffer* code) : Assembler(code) {
87    use_XOR_for_compressed_class_base
88      = (operand_valid_for_logical_immediate(false /*is32*/,
89                                             (uint64_t)Universe::narrow_klass_base())
90         && ((uint64_t)Universe::narrow_klass_base()
91             > (1u << log2_intptr(CompressedClassSpaceSize))));
92  }
93
94 // These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code.
95 // The implementation is only non-empty for the InterpreterMacroAssembler,
96 // as only the interpreter handles PopFrame and ForceEarlyReturn requests.
97 virtual void check_and_handle_popframe(Register java_thread);
98 virtual void check_and_handle_earlyret(Register java_thread);
99
100  // Biased locking support
101  // lock_reg and obj_reg must be loaded up with the appropriate values.
102  // swap_reg is killed.
103  // tmp_reg must be supplied and must not be rscratch1 or rscratch2
104  // Optional slow case is for implementations (interpreter and C1) which branch to
105  // slow case directly. Leaves condition codes set for C2's Fast_Lock node.
106  // Returns offset of first potentially-faulting instruction for null
107  // check info (currently consumed only by C1). If
108  // swap_reg_contains_mark is true then returns -1 as it is assumed
109  // the calling code has already passed any potential faults.
110  int biased_locking_enter(Register lock_reg, Register obj_reg,
111                           Register swap_reg, Register tmp_reg,
112                           bool swap_reg_contains_mark,
113                           Label& done, Label* slow_case = NULL,
114                           BiasedLockingCounters* counters = NULL);
115  void biased_locking_exit (Register obj_reg, Register temp_reg, Label& done);
116
117
118  // Helper functions for statistics gathering.
119  // Unconditional atomic increment.
120  void atomic_incw(Register counter_addr, Register tmp, Register tmp2);
121  void atomic_incw(Address counter_addr, Register tmp1, Register tmp2, Register tmp3) {
122    lea(tmp1, counter_addr);
123    atomic_incw(tmp1, tmp2, tmp3);
124  }
125  // Load Effective Address
126  void lea(Register r, const Address &a) {
127    InstructionMark im(this);
128    code_section()->relocate(inst_mark(), a.rspec());
129    a.lea(this, r);
130  }
131
132  void addmw(Address a, Register incr, Register scratch) {
133    ldrw(scratch, a);
134    addw(scratch, scratch, incr);
135    strw(scratch, a);
136  }
137
138  // Add constant to memory word
139  void addmw(Address a, int imm, Register scratch) {
140    ldrw(scratch, a);
141    if (imm > 0)
142      addw(scratch, scratch, (unsigned)imm);
143    else
144      subw(scratch, scratch, (unsigned)-imm);
145    strw(scratch, a);
146  }
147
148  void bind(Label& L) {
149    Assembler::bind(L);
150    code()->clear_last_membar();
151  }
152
153  void membar(Membar_mask_bits order_constraint);
154
155  // Frame creation and destruction shared between JITs.
156  void build_frame(int framesize);
157  void remove_frame(int framesize);
158
159  virtual void _call_Unimplemented(address call_site) {
160    mov(rscratch2, call_site);
161    haltsim();
162  }
163
164#define call_Unimplemented() _call_Unimplemented((address)__PRETTY_FUNCTION__)
165
166  virtual void notify(int type);
167
168  // aliases defined in AARCH64 spec
169
170  template<class T>
171  inline void cmpw(Register Rd, T imm)  { subsw(zr, Rd, imm); }
172  // imm is limited to 12 bits.
173  inline void cmp(Register Rd, unsigned imm)  { subs(zr, Rd, imm); }
174
175  inline void cmnw(Register Rd, unsigned imm) { addsw(zr, Rd, imm); }
176  inline void cmn(Register Rd, unsigned imm) { adds(zr, Rd, imm); }
177
178  void cset(Register Rd, Assembler::Condition cond) {
179    csinc(Rd, zr, zr, ~cond);
180  }
181  void csetw(Register Rd, Assembler::Condition cond) {
182    csincw(Rd, zr, zr, ~cond);
183  }
184
185  void cneg(Register Rd, Register Rn, Assembler::Condition cond) {
186    csneg(Rd, Rn, Rn, ~cond);
187  }
188  void cnegw(Register Rd, Register Rn, Assembler::Condition cond) {
189    csnegw(Rd, Rn, Rn, ~cond);
190  }
191
192  inline void movw(Register Rd, Register Rn) {
193    if (Rd == sp || Rn == sp) {
194      addw(Rd, Rn, 0U);
195    } else {
196      orrw(Rd, zr, Rn);
197    }
198  }
199  inline void mov(Register Rd, Register Rn) {
200    assert(Rd != r31_sp && Rn != r31_sp, "should be");
201    if (Rd == Rn) {
202    } else if (Rd == sp || Rn == sp) {
203      add(Rd, Rn, 0U);
204    } else {
205      orr(Rd, zr, Rn);
206    }
207  }
208
209  inline void moviw(Register Rd, unsigned imm) { orrw(Rd, zr, imm); }
210  inline void movi(Register Rd, unsigned imm) { orr(Rd, zr, imm); }
211
212  inline void tstw(Register Rd, Register Rn) { andsw(zr, Rd, Rn); }
213  inline void tst(Register Rd, Register Rn) { ands(zr, Rd, Rn); }
214
215  inline void tstw(Register Rd, uint64_t imm) { andsw(zr, Rd, imm); }
216  inline void tst(Register Rd, uint64_t imm) { ands(zr, Rd, imm); }
217
218  inline void bfiw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
219    bfmw(Rd, Rn, ((32 - lsb) & 31), (width - 1));
220  }
221  inline void bfi(Register Rd, Register Rn, unsigned lsb, unsigned width) {
222    bfm(Rd, Rn, ((64 - lsb) & 63), (width - 1));
223  }
224
225  inline void bfxilw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
226    bfmw(Rd, Rn, lsb, (lsb + width - 1));
227  }
228  inline void bfxil(Register Rd, Register Rn, unsigned lsb, unsigned width) {
229    bfm(Rd, Rn, lsb , (lsb + width - 1));
230  }
231
232  inline void sbfizw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
233    sbfmw(Rd, Rn, ((32 - lsb) & 31), (width - 1));
234  }
235  inline void sbfiz(Register Rd, Register Rn, unsigned lsb, unsigned width) {
236    sbfm(Rd, Rn, ((64 - lsb) & 63), (width - 1));
237  }
238
239  inline void sbfxw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
240    sbfmw(Rd, Rn, lsb, (lsb + width - 1));
241  }
242  inline void sbfx(Register Rd, Register Rn, unsigned lsb, unsigned width) {
243    sbfm(Rd, Rn, lsb , (lsb + width - 1));
244  }
245
246  inline void ubfizw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
247    ubfmw(Rd, Rn, ((32 - lsb) & 31), (width - 1));
248  }
249  inline void ubfiz(Register Rd, Register Rn, unsigned lsb, unsigned width) {
250    ubfm(Rd, Rn, ((64 - lsb) & 63), (width - 1));
251  }
252
253  inline void ubfxw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
254    ubfmw(Rd, Rn, lsb, (lsb + width - 1));
255  }
256  inline void ubfx(Register Rd, Register Rn, unsigned lsb, unsigned width) {
257    ubfm(Rd, Rn, lsb , (lsb + width - 1));
258  }
259
260  inline void asrw(Register Rd, Register Rn, unsigned imm) {
261    sbfmw(Rd, Rn, imm, 31);
262  }
263
264  inline void asr(Register Rd, Register Rn, unsigned imm) {
265    sbfm(Rd, Rn, imm, 63);
266  }
267
268  inline void lslw(Register Rd, Register Rn, unsigned imm) {
269    ubfmw(Rd, Rn, ((32 - imm) & 31), (31 - imm));
270  }
271
272  inline void lsl(Register Rd, Register Rn, unsigned imm) {
273    ubfm(Rd, Rn, ((64 - imm) & 63), (63 - imm));
274  }
275
276  inline void lsrw(Register Rd, Register Rn, unsigned imm) {
277    ubfmw(Rd, Rn, imm, 31);
278  }
279
280  inline void lsr(Register Rd, Register Rn, unsigned imm) {
281    ubfm(Rd, Rn, imm, 63);
282  }
283
284  inline void rorw(Register Rd, Register Rn, unsigned imm) {
285    extrw(Rd, Rn, Rn, imm);
286  }
287
288  inline void ror(Register Rd, Register Rn, unsigned imm) {
289    extr(Rd, Rn, Rn, imm);
290  }
291
292  inline void sxtbw(Register Rd, Register Rn) {
293    sbfmw(Rd, Rn, 0, 7);
294  }
295  inline void sxthw(Register Rd, Register Rn) {
296    sbfmw(Rd, Rn, 0, 15);
297  }
298  inline void sxtb(Register Rd, Register Rn) {
299    sbfm(Rd, Rn, 0, 7);
300  }
301  inline void sxth(Register Rd, Register Rn) {
302    sbfm(Rd, Rn, 0, 15);
303  }
304  inline void sxtw(Register Rd, Register Rn) {
305    sbfm(Rd, Rn, 0, 31);
306  }
307
308  inline void uxtbw(Register Rd, Register Rn) {
309    ubfmw(Rd, Rn, 0, 7);
310  }
311  inline void uxthw(Register Rd, Register Rn) {
312    ubfmw(Rd, Rn, 0, 15);
313  }
314  inline void uxtb(Register Rd, Register Rn) {
315    ubfm(Rd, Rn, 0, 7);
316  }
317  inline void uxth(Register Rd, Register Rn) {
318    ubfm(Rd, Rn, 0, 15);
319  }
320  inline void uxtw(Register Rd, Register Rn) {
321    ubfm(Rd, Rn, 0, 31);
322  }
323
324  inline void cmnw(Register Rn, Register Rm) {
325    addsw(zr, Rn, Rm);
326  }
327  inline void cmn(Register Rn, Register Rm) {
328    adds(zr, Rn, Rm);
329  }
330
331  inline void cmpw(Register Rn, Register Rm) {
332    subsw(zr, Rn, Rm);
333  }
334  inline void cmp(Register Rn, Register Rm) {
335    subs(zr, Rn, Rm);
336  }
337
338  inline void negw(Register Rd, Register Rn) {
339    subw(Rd, zr, Rn);
340  }
341
342  inline void neg(Register Rd, Register Rn) {
343    sub(Rd, zr, Rn);
344  }
345
346  inline void negsw(Register Rd, Register Rn) {
347    subsw(Rd, zr, Rn);
348  }
349
350  inline void negs(Register Rd, Register Rn) {
351    subs(Rd, zr, Rn);
352  }
353
354  inline void cmnw(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) {
355    addsw(zr, Rn, Rm, kind, shift);
356  }
357  inline void cmn(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) {
358    adds(zr, Rn, Rm, kind, shift);
359  }
360
361  inline void cmpw(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) {
362    subsw(zr, Rn, Rm, kind, shift);
363  }
364  inline void cmp(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) {
365    subs(zr, Rn, Rm, kind, shift);
366  }
367
368  inline void negw(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) {
369    subw(Rd, zr, Rn, kind, shift);
370  }
371
372  inline void neg(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) {
373    sub(Rd, zr, Rn, kind, shift);
374  }
375
376  inline void negsw(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) {
377    subsw(Rd, zr, Rn, kind, shift);
378  }
379
380  inline void negs(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) {
381    subs(Rd, zr, Rn, kind, shift);
382  }
383
384  inline void mnegw(Register Rd, Register Rn, Register Rm) {
385    msubw(Rd, Rn, Rm, zr);
386  }
387  inline void mneg(Register Rd, Register Rn, Register Rm) {
388    msub(Rd, Rn, Rm, zr);
389  }
390
391  inline void mulw(Register Rd, Register Rn, Register Rm) {
392    maddw(Rd, Rn, Rm, zr);
393  }
394  inline void mul(Register Rd, Register Rn, Register Rm) {
395    madd(Rd, Rn, Rm, zr);
396  }
397
398  inline void smnegl(Register Rd, Register Rn, Register Rm) {
399    smsubl(Rd, Rn, Rm, zr);
400  }
401  inline void smull(Register Rd, Register Rn, Register Rm) {
402    smaddl(Rd, Rn, Rm, zr);
403  }
404
405  inline void umnegl(Register Rd, Register Rn, Register Rm) {
406    umsubl(Rd, Rn, Rm, zr);
407  }
408  inline void umull(Register Rd, Register Rn, Register Rm) {
409    umaddl(Rd, Rn, Rm, zr);
410  }
411
412#define WRAP(INSN)                                                            \
413  void INSN(Register Rd, Register Rn, Register Rm, Register Ra) {             \
414    if ((VM_Version::features() & VM_Version::CPU_A53MAC) && Ra != zr)        \
415      nop();                                                                  \
416    Assembler::INSN(Rd, Rn, Rm, Ra);                                          \
417  }
418
419  WRAP(madd) WRAP(msub) WRAP(maddw) WRAP(msubw)
420  WRAP(smaddl) WRAP(smsubl) WRAP(umaddl) WRAP(umsubl)
421#undef WRAP
422
423
424  // macro assembly operations needed for aarch64
425
426  // first two private routines for loading 32 bit or 64 bit constants
427private:
428
429  void mov_immediate64(Register dst, u_int64_t imm64);
430  void mov_immediate32(Register dst, u_int32_t imm32);
431
432  int push(unsigned int bitset, Register stack);
433  int pop(unsigned int bitset, Register stack);
434
435  void mov(Register dst, Address a);
436
437public:
438  void push(RegSet regs, Register stack) { if (regs.bits()) push(regs.bits(), stack); }
439  void pop(RegSet regs, Register stack) { if (regs.bits()) pop(regs.bits(), stack); }
440
441  // Push and pop everything that might be clobbered by a native
442  // runtime call except rscratch1 and rscratch2.  (They are always
443  // scratch, so we don't have to protect them.)  Only save the lower
444  // 64 bits of each vector register.
445  void push_call_clobbered_registers();
446  void pop_call_clobbered_registers();
447
448  // now mov instructions for loading absolute addresses and 32 or
449  // 64 bit integers
450
451  inline void mov(Register dst, address addr)
452  {
453    mov_immediate64(dst, (u_int64_t)addr);
454  }
455
456  inline void mov(Register dst, u_int64_t imm64)
457  {
458    mov_immediate64(dst, imm64);
459  }
460
461  inline void movw(Register dst, u_int32_t imm32)
462  {
463    mov_immediate32(dst, imm32);
464  }
465
466  inline void mov(Register dst, long l)
467  {
468    mov(dst, (u_int64_t)l);
469  }
470
471  inline void mov(Register dst, int i)
472  {
473    mov(dst, (long)i);
474  }
475
476  void mov(Register dst, RegisterOrConstant src) {
477    if (src.is_register())
478      mov(dst, src.as_register());
479    else
480      mov(dst, src.as_constant());
481  }
482
483  void movptr(Register r, uintptr_t imm64);
484
485  void mov(FloatRegister Vd, SIMD_Arrangement T, u_int32_t imm32);
486
487  void mov(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) {
488    orr(Vd, T, Vn, Vn);
489  }
490
491public:
492
493  // Generalized Test Bit And Branch, including a "far" variety which
494  // spans more than 32KiB.
495  void tbr(Condition cond, Register Rt, int bitpos, Label &dest, bool far = false) {
496    assert(cond == EQ || cond == NE, "must be");
497
498    if (far)
499      cond = ~cond;
500
501    void (Assembler::* branch)(Register Rt, int bitpos, Label &L);
502    if (cond == Assembler::EQ)
503      branch = &Assembler::tbz;
504    else
505      branch = &Assembler::tbnz;
506
507    if (far) {
508      Label L;
509      (this->*branch)(Rt, bitpos, L);
510      b(dest);
511      bind(L);
512    } else {
513      (this->*branch)(Rt, bitpos, dest);
514    }
515  }
516
517  // macro instructions for accessing and updating floating point
518  // status register
519  //
520  // FPSR : op1 == 011
521  //        CRn == 0100
522  //        CRm == 0100
523  //        op2 == 001
524
525  inline void get_fpsr(Register reg)
526  {
527    mrs(0b11, 0b0100, 0b0100, 0b001, reg);
528  }
529
530  inline void set_fpsr(Register reg)
531  {
532    msr(0b011, 0b0100, 0b0100, 0b001, reg);
533  }
534
535  inline void clear_fpsr()
536  {
537    msr(0b011, 0b0100, 0b0100, 0b001, zr);
538  }
539
540  // DCZID_EL0: op1 == 011
541  //            CRn == 0000
542  //            CRm == 0000
543  //            op2 == 111
544  inline void get_dczid_el0(Register reg)
545  {
546    mrs(0b011, 0b0000, 0b0000, 0b111, reg);
547  }
548
549  // CTR_EL0:   op1 == 011
550  //            CRn == 0000
551  //            CRm == 0000
552  //            op2 == 001
553  inline void get_ctr_el0(Register reg)
554  {
555    mrs(0b011, 0b0000, 0b0000, 0b001, reg);
556  }
557
558  // idiv variant which deals with MINLONG as dividend and -1 as divisor
559  int corrected_idivl(Register result, Register ra, Register rb,
560                      bool want_remainder, Register tmp = rscratch1);
561  int corrected_idivq(Register result, Register ra, Register rb,
562                      bool want_remainder, Register tmp = rscratch1);
563
564  // Support for NULL-checks
565  //
566  // Generates code that causes a NULL OS exception if the content of reg is NULL.
567  // If the accessed location is M[reg + offset] and the offset is known, provide the
568  // offset. No explicit code generation is needed if the offset is within a certain
569  // range (0 <= offset <= page_size).
570
571  virtual void null_check(Register reg, int offset = -1);
572  static bool needs_explicit_null_check(intptr_t offset);
573
574  static address target_addr_for_insn(address insn_addr, unsigned insn);
575  static address target_addr_for_insn(address insn_addr) {
576    unsigned insn = *(unsigned*)insn_addr;
577    return target_addr_for_insn(insn_addr, insn);
578  }
579
580  // Required platform-specific helpers for Label::patch_instructions.
581  // They _shadow_ the declarations in AbstractAssembler, which are undefined.
582  static int pd_patch_instruction_size(address branch, address target);
583  static void pd_patch_instruction(address branch, address target) {
584    pd_patch_instruction_size(branch, target);
585  }
586  static address pd_call_destination(address branch) {
587    return target_addr_for_insn(branch);
588  }
589#ifndef PRODUCT
590  static void pd_print_patched_instruction(address branch);
591#endif
592
593  static int patch_oop(address insn_addr, address o);
594  static int patch_narrow_klass(address insn_addr, narrowKlass n);
595
596  address emit_trampoline_stub(int insts_call_instruction_offset, address target);
597
598  // The following 4 methods return the offset of the appropriate move instruction
599
600  // Support for fast byte/short loading with zero extension (depending on particular CPU)
601  int load_unsigned_byte(Register dst, Address src);
602  int load_unsigned_short(Register dst, Address src);
603
604  // Support for fast byte/short loading with sign extension (depending on particular CPU)
605  int load_signed_byte(Register dst, Address src);
606  int load_signed_short(Register dst, Address src);
607
608  int load_signed_byte32(Register dst, Address src);
609  int load_signed_short32(Register dst, Address src);
610
611  // Support for sign-extension (hi:lo = extend_sign(lo))
612  void extend_sign(Register hi, Register lo);
613
614  // Load and store values by size and signed-ness
615  void load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2 = noreg);
616  void store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2 = noreg);
617
618  // Support for inc/dec with optimal instruction selection depending on value
619
620  // x86_64 aliases an unqualified register/address increment and
621  // decrement to call incrementq and decrementq but also supports
622  // explicitly sized calls to incrementq/decrementq or
623  // incrementl/decrementl
624
625  // for aarch64 the proper convention would be to use
626  // increment/decrement for 64 bit operatons and
627  // incrementw/decrementw for 32 bit operations. so when porting
628  // x86_64 code we can leave calls to increment/decrement as is,
629  // replace incrementq/decrementq with increment/decrement and
630  // replace incrementl/decrementl with incrementw/decrementw.
631
632  // n.b. increment/decrement calls with an Address destination will
633  // need to use a scratch register to load the value to be
634  // incremented. increment/decrement calls which add or subtract a
635  // constant value greater than 2^12 will need to use a 2nd scratch
636  // register to hold the constant. so, a register increment/decrement
637  // may trash rscratch2 and an address increment/decrement trash
638  // rscratch and rscratch2
639
640  void decrementw(Address dst, int value = 1);
641  void decrementw(Register reg, int value = 1);
642
643  void decrement(Register reg, int value = 1);
644  void decrement(Address dst, int value = 1);
645
646  void incrementw(Address dst, int value = 1);
647  void incrementw(Register reg, int value = 1);
648
649  void increment(Register reg, int value = 1);
650  void increment(Address dst, int value = 1);
651
652
653  // Alignment
654  void align(int modulus);
655
656  // Stack frame creation/removal
657  void enter()
658  {
659    stp(rfp, lr, Address(pre(sp, -2 * wordSize)));
660    mov(rfp, sp);
661  }
662  void leave()
663  {
664    mov(sp, rfp);
665    ldp(rfp, lr, Address(post(sp, 2 * wordSize)));
666  }
667
668  // Support for getting the JavaThread pointer (i.e.; a reference to thread-local information)
669  // The pointer will be loaded into the thread register.
670  void get_thread(Register thread);
671
672
673  // Support for VM calls
674  //
675  // It is imperative that all calls into the VM are handled via the call_VM macros.
676  // They make sure that the stack linkage is setup correctly. call_VM's correspond
677  // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
678
679
680  void call_VM(Register oop_result,
681               address entry_point,
682               bool check_exceptions = true);
683  void call_VM(Register oop_result,
684               address entry_point,
685               Register arg_1,
686               bool check_exceptions = true);
687  void call_VM(Register oop_result,
688               address entry_point,
689               Register arg_1, Register arg_2,
690               bool check_exceptions = true);
691  void call_VM(Register oop_result,
692               address entry_point,
693               Register arg_1, Register arg_2, Register arg_3,
694               bool check_exceptions = true);
695
696  // Overloadings with last_Java_sp
697  void call_VM(Register oop_result,
698               Register last_java_sp,
699               address entry_point,
700               int number_of_arguments = 0,
701               bool check_exceptions = true);
702  void call_VM(Register oop_result,
703               Register last_java_sp,
704               address entry_point,
705               Register arg_1, bool
706               check_exceptions = true);
707  void call_VM(Register oop_result,
708               Register last_java_sp,
709               address entry_point,
710               Register arg_1, Register arg_2,
711               bool check_exceptions = true);
712  void call_VM(Register oop_result,
713               Register last_java_sp,
714               address entry_point,
715               Register arg_1, Register arg_2, Register arg_3,
716               bool check_exceptions = true);
717
718  void get_vm_result  (Register oop_result, Register thread);
719  void get_vm_result_2(Register metadata_result, Register thread);
720
721  // These always tightly bind to MacroAssembler::call_VM_base
722  // bypassing the virtual implementation
723  void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
724  void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true);
725  void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
726  void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
727  void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4, bool check_exceptions = true);
728
729  void call_VM_leaf(address entry_point,
730                    int number_of_arguments = 0);
731  void call_VM_leaf(address entry_point,
732                    Register arg_1);
733  void call_VM_leaf(address entry_point,
734                    Register arg_1, Register arg_2);
735  void call_VM_leaf(address entry_point,
736                    Register arg_1, Register arg_2, Register arg_3);
737
738  // These always tightly bind to MacroAssembler::call_VM_leaf_base
739  // bypassing the virtual implementation
740  void super_call_VM_leaf(address entry_point);
741  void super_call_VM_leaf(address entry_point, Register arg_1);
742  void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2);
743  void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3);
744  void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4);
745
746  // last Java Frame (fills frame anchor)
747  void set_last_Java_frame(Register last_java_sp,
748                           Register last_java_fp,
749                           address last_java_pc,
750                           Register scratch);
751
752  void set_last_Java_frame(Register last_java_sp,
753                           Register last_java_fp,
754                           Label &last_java_pc,
755                           Register scratch);
756
757  void set_last_Java_frame(Register last_java_sp,
758                           Register last_java_fp,
759                           Register last_java_pc,
760                           Register scratch);
761
762  void reset_last_Java_frame(Register thread);
763
764  // thread in the default location (rthread)
765  void reset_last_Java_frame(bool clear_fp);
766
767  // Stores
768  void store_check(Register obj);                // store check for obj - register is destroyed afterwards
769  void store_check(Register obj, Address dst);   // same as above, dst is exact store location (reg. is destroyed)
770
771#if INCLUDE_ALL_GCS
772
773  void g1_write_barrier_pre(Register obj,
774                            Register pre_val,
775                            Register thread,
776                            Register tmp,
777                            bool tosca_live,
778                            bool expand_call);
779
780  void g1_write_barrier_post(Register store_addr,
781                             Register new_val,
782                             Register thread,
783                             Register tmp,
784                             Register tmp2);
785
786#endif // INCLUDE_ALL_GCS
787
788  // oop manipulations
789  void load_klass(Register dst, Register src);
790  void store_klass(Register dst, Register src);
791  void cmp_klass(Register oop, Register trial_klass, Register tmp);
792
793  void resolve_oop_handle(Register result);
794  void load_mirror(Register dst, Register method);
795
796  void load_heap_oop(Register dst, Address src);
797
798  void load_heap_oop_not_null(Register dst, Address src);
799  void store_heap_oop(Address dst, Register src);
800
801  // currently unimplemented
802  // Used for storing NULL. All other oop constants should be
803  // stored using routines that take a jobject.
804  void store_heap_oop_null(Address dst);
805
806  void load_prototype_header(Register dst, Register src);
807
808  void store_klass_gap(Register dst, Register src);
809
810  // This dummy is to prevent a call to store_heap_oop from
811  // converting a zero (like NULL) into a Register by giving
812  // the compiler two choices it can't resolve
813
814  void store_heap_oop(Address dst, void* dummy);
815
816  void encode_heap_oop(Register d, Register s);
817  void encode_heap_oop(Register r) { encode_heap_oop(r, r); }
818  void decode_heap_oop(Register d, Register s);
819  void decode_heap_oop(Register r) { decode_heap_oop(r, r); }
820  void encode_heap_oop_not_null(Register r);
821  void decode_heap_oop_not_null(Register r);
822  void encode_heap_oop_not_null(Register dst, Register src);
823  void decode_heap_oop_not_null(Register dst, Register src);
824
825  void set_narrow_oop(Register dst, jobject obj);
826
827  void encode_klass_not_null(Register r);
828  void decode_klass_not_null(Register r);
829  void encode_klass_not_null(Register dst, Register src);
830  void decode_klass_not_null(Register dst, Register src);
831
832  void set_narrow_klass(Register dst, Klass* k);
833
834  // if heap base register is used - reinit it with the correct value
835  void reinit_heapbase();
836
837  DEBUG_ONLY(void verify_heapbase(const char* msg);)
838
839  void push_CPU_state(bool save_vectors = false);
840  void pop_CPU_state(bool restore_vectors = false) ;
841
842  // Round up to a power of two
843  void round_to(Register reg, int modulus);
844
845  // allocation
846  void eden_allocate(
847    Register obj,                      // result: pointer to object after successful allocation
848    Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
849    int      con_size_in_bytes,        // object size in bytes if   known at compile time
850    Register t1,                       // temp register
851    Label&   slow_case                 // continuation point if fast allocation fails
852  );
853  void tlab_allocate(
854    Register obj,                      // result: pointer to object after successful allocation
855    Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
856    int      con_size_in_bytes,        // object size in bytes if   known at compile time
857    Register t1,                       // temp register
858    Register t2,                       // temp register
859    Label&   slow_case                 // continuation point if fast allocation fails
860  );
861  Register tlab_refill(Label& retry_tlab, Label& try_eden, Label& slow_case); // returns TLS address
862  void zero_memory(Register addr, Register len, Register t1);
863  void verify_tlab();
864
865  void incr_allocated_bytes(Register thread,
866                            Register var_size_in_bytes, int con_size_in_bytes,
867                            Register t1 = noreg);
868
869  // interface method calling
870  void lookup_interface_method(Register recv_klass,
871                               Register intf_klass,
872                               RegisterOrConstant itable_index,
873                               Register method_result,
874                               Register scan_temp,
875                               Label& no_such_interface);
876
877  // virtual method calling
878  // n.b. x86 allows RegisterOrConstant for vtable_index
879  void lookup_virtual_method(Register recv_klass,
880                             RegisterOrConstant vtable_index,
881                             Register method_result);
882
883  // Test sub_klass against super_klass, with fast and slow paths.
884
885  // The fast path produces a tri-state answer: yes / no / maybe-slow.
886  // One of the three labels can be NULL, meaning take the fall-through.
887  // If super_check_offset is -1, the value is loaded up from super_klass.
888  // No registers are killed, except temp_reg.
889  void check_klass_subtype_fast_path(Register sub_klass,
890                                     Register super_klass,
891                                     Register temp_reg,
892                                     Label* L_success,
893                                     Label* L_failure,
894                                     Label* L_slow_path,
895                RegisterOrConstant super_check_offset = RegisterOrConstant(-1));
896
897  // The rest of the type check; must be wired to a corresponding fast path.
898  // It does not repeat the fast path logic, so don't use it standalone.
899  // The temp_reg and temp2_reg can be noreg, if no temps are available.
900  // Updates the sub's secondary super cache as necessary.
901  // If set_cond_codes, condition codes will be Z on success, NZ on failure.
902  void check_klass_subtype_slow_path(Register sub_klass,
903                                     Register super_klass,
904                                     Register temp_reg,
905                                     Register temp2_reg,
906                                     Label* L_success,
907                                     Label* L_failure,
908                                     bool set_cond_codes = false);
909
910  // Simplified, combined version, good for typical uses.
911  // Falls through on failure.
912  void check_klass_subtype(Register sub_klass,
913                           Register super_klass,
914                           Register temp_reg,
915                           Label& L_success);
916
917  Address argument_address(RegisterOrConstant arg_slot, int extra_slot_offset = 0);
918
919
920  // Debugging
921
922  // only if +VerifyOops
923  void verify_oop(Register reg, const char* s = "broken oop");
924  void verify_oop_addr(Address addr, const char * s = "broken oop addr");
925
926// TODO: verify method and klass metadata (compare against vptr?)
927  void _verify_method_ptr(Register reg, const char * msg, const char * file, int line) {}
928  void _verify_klass_ptr(Register reg, const char * msg, const char * file, int line){}
929
930#define verify_method_ptr(reg) _verify_method_ptr(reg, "broken method " #reg, __FILE__, __LINE__)
931#define verify_klass_ptr(reg) _verify_klass_ptr(reg, "broken klass " #reg, __FILE__, __LINE__)
932
933  // only if +VerifyFPU
934  void verify_FPU(int stack_depth, const char* s = "illegal FPU state");
935
936  // prints msg, dumps registers and stops execution
937  void stop(const char* msg);
938
939  // prints msg and continues
940  void warn(const char* msg);
941
942  static void debug64(char* msg, int64_t pc, int64_t regs[]);
943
944  void untested()                                { stop("untested"); }
945
946  void unimplemented(const char* what = "");
947
948  void should_not_reach_here()                   { stop("should not reach here"); }
949
950  // Stack overflow checking
951  void bang_stack_with_offset(int offset) {
952    // stack grows down, caller passes positive offset
953    assert(offset > 0, "must bang with negative offset");
954    sub(rscratch2, sp, offset);
955    str(zr, Address(rscratch2));
956  }
957
958  // Writes to stack successive pages until offset reached to check for
959  // stack overflow + shadow pages.  Also, clobbers tmp
960  void bang_stack_size(Register size, Register tmp);
961
962  // Check for reserved stack access in method being exited (for JIT)
963  void reserved_stack_check();
964
965  virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr,
966                                                Register tmp,
967                                                int offset);
968
969  // Support for serializing memory accesses between threads
970  void serialize_memory(Register thread, Register tmp);
971
972  // Arithmetics
973
974  void addptr(const Address &dst, int32_t src);
975  void cmpptr(Register src1, Address src2);
976
977  // Various forms of CAS
978
979  void cmpxchg_obj_header(Register oldv, Register newv, Register obj, Register tmp,
980                          Label &suceed, Label *fail);
981  void cmpxchgptr(Register oldv, Register newv, Register addr, Register tmp,
982                  Label &suceed, Label *fail);
983
984  void cmpxchgw(Register oldv, Register newv, Register addr, Register tmp,
985                  Label &suceed, Label *fail);
986
987  void atomic_add(Register prev, RegisterOrConstant incr, Register addr);
988  void atomic_addw(Register prev, RegisterOrConstant incr, Register addr);
989  void atomic_addal(Register prev, RegisterOrConstant incr, Register addr);
990  void atomic_addalw(Register prev, RegisterOrConstant incr, Register addr);
991
992  void atomic_xchg(Register prev, Register newv, Register addr);
993  void atomic_xchgw(Register prev, Register newv, Register addr);
994  void atomic_xchgal(Register prev, Register newv, Register addr);
995  void atomic_xchgalw(Register prev, Register newv, Register addr);
996
997  void orptr(Address adr, RegisterOrConstant src) {
998    ldr(rscratch2, adr);
999    if (src.is_register())
1000      orr(rscratch2, rscratch2, src.as_register());
1001    else
1002      orr(rscratch2, rscratch2, src.as_constant());
1003    str(rscratch2, adr);
1004  }
1005
1006  // A generic CAS; success or failure is in the EQ flag.
1007  // Clobbers rscratch1
1008  void cmpxchg(Register addr, Register expected, Register new_val,
1009               enum operand_size size,
1010               bool acquire, bool release, bool weak,
1011               Register result);
1012
1013  // Calls
1014
1015  address trampoline_call(Address entry, CodeBuffer *cbuf = NULL);
1016
1017  static bool far_branches() {
1018    return ReservedCodeCacheSize > branch_range;
1019  }
1020
1021  // Jumps that can reach anywhere in the code cache.
1022  // Trashes tmp.
1023  void far_call(Address entry, CodeBuffer *cbuf = NULL, Register tmp = rscratch1);
1024  void far_jump(Address entry, CodeBuffer *cbuf = NULL, Register tmp = rscratch1);
1025
1026  static int far_branch_size() {
1027    if (far_branches()) {
1028      return 3 * 4;  // adrp, add, br
1029    } else {
1030      return 4;
1031    }
1032  }
1033
1034  // Emit the CompiledIC call idiom
1035  address ic_call(address entry, jint method_index = 0);
1036
1037public:
1038
1039  // Data
1040
1041  void mov_metadata(Register dst, Metadata* obj);
1042  Address allocate_metadata_address(Metadata* obj);
1043  Address constant_oop_address(jobject obj);
1044
1045  void movoop(Register dst, jobject obj, bool immediate = false);
1046
1047  // CRC32 code for java.util.zip.CRC32::updateBytes() instrinsic.
1048  void kernel_crc32(Register crc, Register buf, Register len,
1049        Register table0, Register table1, Register table2, Register table3,
1050        Register tmp, Register tmp2, Register tmp3);
1051  // CRC32 code for java.util.zip.CRC32C::updateBytes() instrinsic.
1052  void kernel_crc32c(Register crc, Register buf, Register len,
1053        Register table0, Register table1, Register table2, Register table3,
1054        Register tmp, Register tmp2, Register tmp3);
1055
1056  // Stack push and pop individual 64 bit registers
1057  void push(Register src);
1058  void pop(Register dst);
1059
1060  // push all registers onto the stack
1061  void pusha();
1062  void popa();
1063
1064  void repne_scan(Register addr, Register value, Register count,
1065                  Register scratch);
1066  void repne_scanw(Register addr, Register value, Register count,
1067                   Register scratch);
1068
1069  typedef void (MacroAssembler::* add_sub_imm_insn)(Register Rd, Register Rn, unsigned imm);
1070  typedef void (MacroAssembler::* add_sub_reg_insn)(Register Rd, Register Rn, Register Rm, enum shift_kind kind, unsigned shift);
1071
1072  // If a constant does not fit in an immediate field, generate some
1073  // number of MOV instructions and then perform the operation
1074  void wrap_add_sub_imm_insn(Register Rd, Register Rn, unsigned imm,
1075                             add_sub_imm_insn insn1,
1076                             add_sub_reg_insn insn2);
1077  // Seperate vsn which sets the flags
1078  void wrap_adds_subs_imm_insn(Register Rd, Register Rn, unsigned imm,
1079                             add_sub_imm_insn insn1,
1080                             add_sub_reg_insn insn2);
1081
1082#define WRAP(INSN)                                                      \
1083  void INSN(Register Rd, Register Rn, unsigned imm) {                   \
1084    wrap_add_sub_imm_insn(Rd, Rn, imm, &Assembler::INSN, &Assembler::INSN); \
1085  }                                                                     \
1086                                                                        \
1087  void INSN(Register Rd, Register Rn, Register Rm,                      \
1088             enum shift_kind kind, unsigned shift = 0) {                \
1089    Assembler::INSN(Rd, Rn, Rm, kind, shift);                           \
1090  }                                                                     \
1091                                                                        \
1092  void INSN(Register Rd, Register Rn, Register Rm) {                    \
1093    Assembler::INSN(Rd, Rn, Rm);                                        \
1094  }                                                                     \
1095                                                                        \
1096  void INSN(Register Rd, Register Rn, Register Rm,                      \
1097           ext::operation option, int amount = 0) {                     \
1098    Assembler::INSN(Rd, Rn, Rm, option, amount);                        \
1099  }
1100
1101  WRAP(add) WRAP(addw) WRAP(sub) WRAP(subw)
1102
1103#undef WRAP
1104#define WRAP(INSN)                                                      \
1105  void INSN(Register Rd, Register Rn, unsigned imm) {                   \
1106    wrap_adds_subs_imm_insn(Rd, Rn, imm, &Assembler::INSN, &Assembler::INSN); \
1107  }                                                                     \
1108                                                                        \
1109  void INSN(Register Rd, Register Rn, Register Rm,                      \
1110             enum shift_kind kind, unsigned shift = 0) {                \
1111    Assembler::INSN(Rd, Rn, Rm, kind, shift);                           \
1112  }                                                                     \
1113                                                                        \
1114  void INSN(Register Rd, Register Rn, Register Rm) {                    \
1115    Assembler::INSN(Rd, Rn, Rm);                                        \
1116  }                                                                     \
1117                                                                        \
1118  void INSN(Register Rd, Register Rn, Register Rm,                      \
1119           ext::operation option, int amount = 0) {                     \
1120    Assembler::INSN(Rd, Rn, Rm, option, amount);                        \
1121  }
1122
1123  WRAP(adds) WRAP(addsw) WRAP(subs) WRAP(subsw)
1124
1125  void add(Register Rd, Register Rn, RegisterOrConstant increment);
1126  void addw(Register Rd, Register Rn, RegisterOrConstant increment);
1127  void sub(Register Rd, Register Rn, RegisterOrConstant decrement);
1128  void subw(Register Rd, Register Rn, RegisterOrConstant decrement);
1129
1130  void adrp(Register reg1, const Address &dest, unsigned long &byte_offset);
1131
1132  void tableswitch(Register index, jint lowbound, jint highbound,
1133                   Label &jumptable, Label &jumptable_end, int stride = 1) {
1134    adr(rscratch1, jumptable);
1135    subsw(rscratch2, index, lowbound);
1136    subsw(zr, rscratch2, highbound - lowbound);
1137    br(Assembler::HS, jumptable_end);
1138    add(rscratch1, rscratch1, rscratch2,
1139        ext::sxtw, exact_log2(stride * Assembler::instruction_size));
1140    br(rscratch1);
1141  }
1142
1143  // Form an address from base + offset in Rd.  Rd may or may not
1144  // actually be used: you must use the Address that is returned.  It
1145  // is up to you to ensure that the shift provided matches the size
1146  // of your data.
1147  Address form_address(Register Rd, Register base, long byte_offset, int shift);
1148
1149  // Return true iff an address is within the 48-bit AArch64 address
1150  // space.
1151  bool is_valid_AArch64_address(address a) {
1152    return ((uint64_t)a >> 48) == 0;
1153  }
1154
1155  // Load the base of the cardtable byte map into reg.
1156  void load_byte_map_base(Register reg);
1157
1158  // Prolog generator routines to support switch between x86 code and
1159  // generated ARM code
1160
1161  // routine to generate an x86 prolog for a stub function which
1162  // bootstraps into the generated ARM code which directly follows the
1163  // stub
1164  //
1165
1166  public:
1167  // enum used for aarch64--x86 linkage to define return type of x86 function
1168  enum ret_type { ret_type_void, ret_type_integral, ret_type_float, ret_type_double};
1169
1170#ifdef BUILTIN_SIM
1171  void c_stub_prolog(int gp_arg_count, int fp_arg_count, int ret_type, address *prolog_ptr = NULL);
1172#else
1173  void c_stub_prolog(int gp_arg_count, int fp_arg_count, int ret_type) { }
1174#endif
1175
1176  // special version of call_VM_leaf_base needed for aarch64 simulator
1177  // where we need to specify both the gp and fp arg counts and the
1178  // return type so that the linkage routine from aarch64 to x86 and
1179  // back knows which aarch64 registers to copy to x86 registers and
1180  // which x86 result register to copy back to an aarch64 register
1181
1182  void call_VM_leaf_base1(
1183    address  entry_point,             // the entry point
1184    int      number_of_gp_arguments,  // the number of gp reg arguments to pass
1185    int      number_of_fp_arguments,  // the number of fp reg arguments to pass
1186    ret_type type,                    // the return type for the call
1187    Label*   retaddr = NULL
1188  );
1189
1190  void ldr_constant(Register dest, const Address &const_addr) {
1191    if (NearCpool) {
1192      ldr(dest, const_addr);
1193    } else {
1194      unsigned long offset;
1195      adrp(dest, InternalAddress(const_addr.target()), offset);
1196      ldr(dest, Address(dest, offset));
1197    }
1198  }
1199
1200  address read_polling_page(Register r, address page, relocInfo::relocType rtype);
1201  address read_polling_page(Register r, relocInfo::relocType rtype);
1202
1203  // CRC32 code for java.util.zip.CRC32::updateBytes() instrinsic.
1204  void update_byte_crc32(Register crc, Register val, Register table);
1205  void update_word_crc32(Register crc, Register v, Register tmp,
1206        Register table0, Register table1, Register table2, Register table3,
1207        bool upper = false);
1208
1209  void string_compare(Register str1, Register str2,
1210                      Register cnt1, Register cnt2, Register result,
1211                      Register tmp1,
1212                      FloatRegister vtmp, FloatRegister vtmpZ, int ae);
1213
1214  void has_negatives(Register ary1, Register len, Register result);
1215
1216  void arrays_equals(Register a1, Register a2,
1217                     Register result, Register cnt1,
1218                     int elem_size, bool is_string);
1219
1220  void fill_words(Register base, Register cnt, Register value);
1221  void zero_words(Register base, u_int64_t cnt);
1222  void zero_words(Register ptr, Register cnt);
1223  void zero_dcache_blocks(Register base, Register cnt);
1224
1225  static const int zero_words_block_size;
1226
1227  void byte_array_inflate(Register src, Register dst, Register len,
1228                          FloatRegister vtmp1, FloatRegister vtmp2,
1229                          FloatRegister vtmp3, Register tmp4);
1230
1231  void char_array_compress(Register src, Register dst, Register len,
1232                           FloatRegister tmp1Reg, FloatRegister tmp2Reg,
1233                           FloatRegister tmp3Reg, FloatRegister tmp4Reg,
1234                           Register result);
1235
1236  void encode_iso_array(Register src, Register dst,
1237                        Register len, Register result,
1238                        FloatRegister Vtmp1, FloatRegister Vtmp2,
1239                        FloatRegister Vtmp3, FloatRegister Vtmp4);
1240  void string_indexof(Register str1, Register str2,
1241                      Register cnt1, Register cnt2,
1242                      Register tmp1, Register tmp2,
1243                      Register tmp3, Register tmp4,
1244                      int int_cnt1, Register result, int ae);
1245  void string_indexof_char(Register str1, Register cnt1,
1246                           Register ch, Register result,
1247                           Register tmp1, Register tmp2, Register tmp3);
1248private:
1249  void add2_with_carry(Register final_dest_hi, Register dest_hi, Register dest_lo,
1250                       Register src1, Register src2);
1251  void add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2) {
1252    add2_with_carry(dest_hi, dest_hi, dest_lo, src1, src2);
1253  }
1254  void multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
1255                             Register y, Register y_idx, Register z,
1256                             Register carry, Register product,
1257                             Register idx, Register kdx);
1258  void multiply_128_x_128_loop(Register y, Register z,
1259                               Register carry, Register carry2,
1260                               Register idx, Register jdx,
1261                               Register yz_idx1, Register yz_idx2,
1262                               Register tmp, Register tmp3, Register tmp4,
1263                               Register tmp7, Register product_hi);
1264public:
1265  void multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z,
1266                       Register zlen, Register tmp1, Register tmp2, Register tmp3,
1267                       Register tmp4, Register tmp5, Register tmp6, Register tmp7);
1268  // ISB may be needed because of a safepoint
1269  void maybe_isb() { isb(); }
1270
1271private:
1272  // Return the effective address r + (r1 << ext) + offset.
1273  // Uses rscratch2.
1274  Address offsetted_address(Register r, Register r1, Address::extend ext,
1275                            int offset, int size);
1276
1277private:
1278  // Returns an address on the stack which is reachable with a ldr/str of size
1279  // Uses rscratch2 if the address is not directly reachable
1280  Address spill_address(int size, int offset, Register tmp=rscratch2);
1281
1282public:
1283  void spill(Register Rx, bool is64, int offset) {
1284    if (is64) {
1285      str(Rx, spill_address(8, offset));
1286    } else {
1287      strw(Rx, spill_address(4, offset));
1288    }
1289  }
1290  void spill(FloatRegister Vx, SIMD_RegVariant T, int offset) {
1291    str(Vx, T, spill_address(1 << (int)T, offset));
1292  }
1293  void unspill(Register Rx, bool is64, int offset) {
1294    if (is64) {
1295      ldr(Rx, spill_address(8, offset));
1296    } else {
1297      ldrw(Rx, spill_address(4, offset));
1298    }
1299  }
1300  void unspill(FloatRegister Vx, SIMD_RegVariant T, int offset) {
1301    ldr(Vx, T, spill_address(1 << (int)T, offset));
1302  }
1303  void spill_copy128(int src_offset, int dst_offset,
1304                     Register tmp1=rscratch1, Register tmp2=rscratch2) {
1305    if (src_offset < 512 && (src_offset & 7) == 0 &&
1306        dst_offset < 512 && (dst_offset & 7) == 0) {
1307      ldp(tmp1, tmp2, Address(sp, src_offset));
1308      stp(tmp1, tmp2, Address(sp, dst_offset));
1309    } else {
1310      unspill(tmp1, true, src_offset);
1311      spill(tmp1, true, dst_offset);
1312      unspill(tmp1, true, src_offset+8);
1313      spill(tmp1, true, dst_offset+8);
1314    }
1315  }
1316};
1317
1318#ifdef ASSERT
1319inline bool AbstractAssembler::pd_check_instruction_mark() { return false; }
1320#endif
1321
1322/**
1323 * class SkipIfEqual:
1324 *
1325 * Instantiating this class will result in assembly code being output that will
1326 * jump around any code emitted between the creation of the instance and it's
1327 * automatic destruction at the end of a scope block, depending on the value of
1328 * the flag passed to the constructor, which will be checked at run-time.
1329 */
1330class SkipIfEqual {
1331 private:
1332  MacroAssembler* _masm;
1333  Label _label;
1334
1335 public:
1336   SkipIfEqual(MacroAssembler*, const bool* flag_addr, bool value);
1337   ~SkipIfEqual();
1338};
1339
1340struct tableswitch {
1341  Register _reg;
1342  int _insn_index; jint _first_key; jint _last_key;
1343  Label _after;
1344  Label _branches;
1345};
1346
1347#endif // CPU_AARCH64_VM_MACROASSEMBLER_AARCH64_HPP
1348