1/*	$OpenBSD: ip6_output.c,v 1.291 2024/04/17 20:48:51 bluhm Exp $	*/
2/*	$KAME: ip6_output.c,v 1.172 2001/03/25 09:55:56 itojun Exp $	*/
3
4/*
5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the project nor the names of its contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 */
32
33/*
34 * Copyright (c) 1982, 1986, 1988, 1990, 1993
35 *	The Regents of the University of California.  All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 *    notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 *    notice, this list of conditions and the following disclaimer in the
44 *    documentation and/or other materials provided with the distribution.
45 * 3. Neither the name of the University nor the names of its contributors
46 *    may be used to endorse or promote products derived from this software
47 *    without specific prior written permission.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59 * SUCH DAMAGE.
60 *
61 *	@(#)ip_output.c	8.3 (Berkeley) 1/21/94
62 */
63
64#include "pf.h"
65
66#include <sys/param.h>
67#include <sys/malloc.h>
68#include <sys/mbuf.h>
69#include <sys/errno.h>
70#include <sys/protosw.h>
71#include <sys/socket.h>
72#include <sys/socketvar.h>
73#include <sys/proc.h>
74#include <sys/systm.h>
75
76#include <net/if.h>
77#include <net/if_var.h>
78#include <net/if_enc.h>
79#include <net/route.h>
80
81#include <netinet/in.h>
82#include <netinet/ip.h>
83#include <netinet/in_pcb.h>
84#include <netinet/udp.h>
85#include <netinet/tcp.h>
86
87#include <netinet/ip_var.h>
88#include <netinet/tcp_timer.h>
89#include <netinet/tcp_var.h>
90#include <netinet/udp_var.h>
91
92#include <netinet6/in6_var.h>
93#include <netinet/ip6.h>
94#include <netinet/icmp6.h>
95#include <netinet6/ip6_var.h>
96#include <netinet6/nd6.h>
97
98#include <crypto/idgen.h>
99
100#if NPF > 0
101#include <net/pfvar.h>
102#endif
103
104#ifdef IPSEC
105#include <netinet/ip_ipsp.h>
106#include <netinet/ip_ah.h>
107#include <netinet/ip_esp.h>
108
109#ifdef ENCDEBUG
110#define DPRINTF(fmt, args...)						\
111	do {								\
112		if (encdebug)						\
113			printf("%s: " fmt "\n", __func__, ## args);	\
114	} while (0)
115#else
116#define DPRINTF(fmt, args...)						\
117	do { } while (0)
118#endif
119#endif /* IPSEC */
120
121struct ip6_exthdrs {
122	struct mbuf *ip6e_ip6;
123	struct mbuf *ip6e_hbh;
124	struct mbuf *ip6e_dest1;
125	struct mbuf *ip6e_rthdr;
126	struct mbuf *ip6e_dest2;
127};
128
129int ip6_pcbopt(int, u_char *, int, struct ip6_pktopts **, int, int);
130int ip6_getpcbopt(struct ip6_pktopts *, int, struct mbuf *);
131int ip6_setpktopt(int, u_char *, int, struct ip6_pktopts *, int, int, int);
132int ip6_setmoptions(int, struct ip6_moptions **, struct mbuf *, unsigned int);
133int ip6_getmoptions(int, struct ip6_moptions *, struct mbuf *);
134int ip6_copyexthdr(struct mbuf **, caddr_t, int);
135int ip6_insertfraghdr(struct mbuf *, struct mbuf *, int,
136	struct ip6_frag **);
137int ip6_insert_jumboopt(struct ip6_exthdrs *, u_int32_t);
138int ip6_splithdr(struct mbuf *, struct ip6_exthdrs *);
139int ip6_getpmtu(struct rtentry *, struct ifnet *, u_long *);
140int copypktopts(struct ip6_pktopts *, struct ip6_pktopts *);
141static __inline u_int16_t __attribute__((__unused__))
142    in6_cksum_phdr(const struct in6_addr *, const struct in6_addr *,
143    u_int32_t, u_int32_t);
144void in6_delayed_cksum(struct mbuf *, u_int8_t);
145
146int ip6_output_ipsec_pmtu_update(struct tdb *, struct route *,
147    struct in6_addr *, int, int, int);
148
149/* Context for non-repeating IDs */
150struct idgen32_ctx ip6_id_ctx;
151
152/*
153 * IP6 output. The packet in mbuf chain m contains a skeletal IP6
154 * header (with pri, len, nxt, hlim, src, dst).
155 * This function may modify ver and hlim only.
156 * The mbuf chain containing the packet will be freed.
157 * The mbuf opt, if present, will not be freed.
158 *
159 * type of "mtu": rt_mtu is u_long, ifnet.ifr_mtu is int.
160 * We use u_long to hold largest one, * which is rt_mtu.
161 */
162int
163ip6_output(struct mbuf *m, struct ip6_pktopts *opt, struct route *ro,
164    int flags, struct ip6_moptions *im6o, const struct ipsec_level *seclevel)
165{
166	struct ip6_hdr *ip6;
167	struct ifnet *ifp = NULL;
168	struct mbuf_list ml;
169	int hlen, tlen;
170	struct route iproute;
171	struct rtentry *rt = NULL;
172	struct sockaddr_in6 *dst;
173	int error = 0;
174	u_long mtu;
175	int dontfrag;
176	u_int16_t src_scope, dst_scope;
177	u_int32_t optlen = 0, plen = 0, unfragpartlen = 0;
178	struct ip6_exthdrs exthdrs;
179	struct in6_addr finaldst;
180	struct route *ro_pmtu = NULL;
181	int hdrsplit = 0;
182	u_int8_t sproto = 0;
183	u_char nextproto;
184#ifdef IPSEC
185	struct tdb *tdb = NULL;
186#endif /* IPSEC */
187
188	ip6 = mtod(m, struct ip6_hdr *);
189	finaldst = ip6->ip6_dst;
190
191#define MAKE_EXTHDR(hp, mp)						\
192    do {								\
193	if (hp) {							\
194		struct ip6_ext *eh = (struct ip6_ext *)(hp);		\
195		error = ip6_copyexthdr((mp), (caddr_t)(hp),		\
196		    ((eh)->ip6e_len + 1) << 3);				\
197		if (error)						\
198			goto freehdrs;					\
199	}								\
200    } while (0)
201
202	bzero(&exthdrs, sizeof(exthdrs));
203
204	if (opt) {
205		/* Hop-by-Hop options header */
206		MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh);
207		/* Destination options header(1st part) */
208		MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1);
209		/* Routing header */
210		MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr);
211		/* Destination options header(2nd part) */
212		MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2);
213	}
214
215#ifdef IPSEC
216	if (ipsec_in_use || seclevel != NULL) {
217		error = ip6_output_ipsec_lookup(m, seclevel, &tdb);
218		if (error) {
219			/*
220			 * -EINVAL is used to indicate that the packet should
221			 * be silently dropped, typically because we've asked
222			 * key management for an SA.
223			 */
224			if (error == -EINVAL) /* Should silently drop packet */
225				error = 0;
226
227			goto freehdrs;
228		}
229	}
230#endif /* IPSEC */
231
232	/*
233	 * Calculate the total length of the extension header chain.
234	 * Keep the length of the unfragmentable part for fragmentation.
235	 */
236	optlen = 0;
237	if (exthdrs.ip6e_hbh) optlen += exthdrs.ip6e_hbh->m_len;
238	if (exthdrs.ip6e_dest1) optlen += exthdrs.ip6e_dest1->m_len;
239	if (exthdrs.ip6e_rthdr) optlen += exthdrs.ip6e_rthdr->m_len;
240	unfragpartlen = optlen + sizeof(struct ip6_hdr);
241	/* NOTE: we don't add AH/ESP length here. do that later. */
242	if (exthdrs.ip6e_dest2) optlen += exthdrs.ip6e_dest2->m_len;
243
244	/*
245	 * If we need IPsec, or there is at least one extension header,
246	 * separate IP6 header from the payload.
247	 */
248	if ((sproto || optlen) && !hdrsplit) {
249		if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
250			m = NULL;
251			goto freehdrs;
252		}
253		m = exthdrs.ip6e_ip6;
254		hdrsplit++;
255	}
256
257	/* adjust pointer */
258	ip6 = mtod(m, struct ip6_hdr *);
259
260	/* adjust mbuf packet header length */
261	m->m_pkthdr.len += optlen;
262	plen = m->m_pkthdr.len - sizeof(*ip6);
263
264	/* If this is a jumbo payload, insert a jumbo payload option. */
265	if (plen > IPV6_MAXPACKET) {
266		if (!hdrsplit) {
267			if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
268				m = NULL;
269				goto freehdrs;
270			}
271			m = exthdrs.ip6e_ip6;
272			hdrsplit++;
273		}
274		/* adjust pointer */
275		ip6 = mtod(m, struct ip6_hdr *);
276		if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0)
277			goto freehdrs;
278		ip6->ip6_plen = 0;
279	} else
280		ip6->ip6_plen = htons(plen);
281
282	/*
283	 * Concatenate headers and fill in next header fields.
284	 * Here we have, on "m"
285	 *	IPv6 payload
286	 * and we insert headers accordingly.  Finally, we should be getting:
287	 *	IPv6 hbh dest1 rthdr ah* [esp* dest2 payload]
288	 *
289	 * during the header composing process, "m" points to IPv6 header.
290	 * "mprev" points to an extension header prior to esp.
291	 */
292	{
293		u_char *nexthdrp = &ip6->ip6_nxt;
294		struct mbuf *mprev = m;
295
296		/*
297		 * we treat dest2 specially.  this makes IPsec processing
298		 * much easier.  the goal here is to make mprev point the
299		 * mbuf prior to dest2.
300		 *
301		 * result: IPv6 dest2 payload
302		 * m and mprev will point to IPv6 header.
303		 */
304		if (exthdrs.ip6e_dest2) {
305			if (!hdrsplit)
306				panic("%s: assumption failed: hdr not split",
307				    __func__);
308			exthdrs.ip6e_dest2->m_next = m->m_next;
309			m->m_next = exthdrs.ip6e_dest2;
310			*mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt;
311			ip6->ip6_nxt = IPPROTO_DSTOPTS;
312		}
313
314#define MAKE_CHAIN(m, mp, p, i)\
315    do {\
316	if (m) {\
317		if (!hdrsplit) \
318			panic("assumption failed: hdr not split"); \
319		*mtod((m), u_char *) = *(p);\
320		*(p) = (i);\
321		p = mtod((m), u_char *);\
322		(m)->m_next = (mp)->m_next;\
323		(mp)->m_next = (m);\
324		(mp) = (m);\
325	}\
326    } while (0)
327		/*
328		 * result: IPv6 hbh dest1 rthdr dest2 payload
329		 * m will point to IPv6 header.  mprev will point to the
330		 * extension header prior to dest2 (rthdr in the above case).
331		 */
332		MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS);
333		MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp,
334		    IPPROTO_DSTOPTS);
335		MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp,
336		    IPPROTO_ROUTING);
337	}
338
339	/*
340	 * If there is a routing header, replace the destination address field
341	 * with the first hop of the routing header.
342	 */
343	if (exthdrs.ip6e_rthdr) {
344		struct ip6_rthdr *rh;
345		struct ip6_rthdr0 *rh0;
346		struct in6_addr *addr;
347
348		rh = (struct ip6_rthdr *)(mtod(exthdrs.ip6e_rthdr,
349		    struct ip6_rthdr *));
350		switch (rh->ip6r_type) {
351		case IPV6_RTHDR_TYPE_0:
352			rh0 = (struct ip6_rthdr0 *)rh;
353			addr = (struct in6_addr *)(rh0 + 1);
354			ip6->ip6_dst = addr[0];
355			bcopy(&addr[1], &addr[0],
356			    sizeof(struct in6_addr) * (rh0->ip6r0_segleft - 1));
357			addr[rh0->ip6r0_segleft - 1] = finaldst;
358			break;
359		default:	/* is it possible? */
360			error = EINVAL;
361			goto bad;
362		}
363	}
364
365	/* Source address validation */
366	if (!(flags & IPV6_UNSPECSRC) &&
367	    IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
368		/*
369		 * XXX: we can probably assume validation in the caller, but
370		 * we explicitly check the address here for safety.
371		 */
372		error = EOPNOTSUPP;
373		ip6stat_inc(ip6s_badscope);
374		goto bad;
375	}
376	if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
377		error = EOPNOTSUPP;
378		ip6stat_inc(ip6s_badscope);
379		goto bad;
380	}
381
382	ip6stat_inc(ip6s_localout);
383
384	/*
385	 * Route packet.
386	 */
387#if NPF > 0
388reroute:
389#endif
390
391	/* initialize cached route */
392	if (ro == NULL) {
393		ro = &iproute;
394		ro->ro_rt = NULL;
395	}
396	ro_pmtu = ro;
397	if (opt && opt->ip6po_rthdr)
398		ro = &opt->ip6po_route;
399	dst = &ro->ro_dstsin6;
400
401	/*
402	 * if specified, try to fill in the traffic class field.
403	 * do not override if a non-zero value is already set.
404	 * we check the diffserv field and the ecn field separately.
405	 */
406	if (opt && opt->ip6po_tclass >= 0) {
407		int mask = 0;
408
409		if ((ip6->ip6_flow & htonl(0xfc << 20)) == 0)
410			mask |= 0xfc;
411		if ((ip6->ip6_flow & htonl(0x03 << 20)) == 0)
412			mask |= 0x03;
413		if (mask != 0)
414			ip6->ip6_flow |=
415			    htonl((opt->ip6po_tclass & mask) << 20);
416	}
417
418	/* fill in or override the hop limit field, if necessary. */
419	if (opt && opt->ip6po_hlim != -1)
420		ip6->ip6_hlim = opt->ip6po_hlim & 0xff;
421	else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
422		if (im6o != NULL)
423			ip6->ip6_hlim = im6o->im6o_hlim;
424		else
425			ip6->ip6_hlim = ip6_defmcasthlim;
426	}
427
428#ifdef IPSEC
429	if (tdb != NULL) {
430		/*
431		 * XXX what should we do if ip6_hlim == 0 and the
432		 * packet gets tunneled?
433		 */
434		/*
435		 * if we are source-routing, do not attempt to tunnel the
436		 * packet just because ip6_dst is different from what tdb has.
437		 * XXX
438		 */
439		error = ip6_output_ipsec_send(tdb, m, ro,
440		    exthdrs.ip6e_rthdr ? 1 : 0, 0);
441		goto done;
442	}
443#endif /* IPSEC */
444
445	if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
446		struct in6_pktinfo *pi = NULL;
447
448		/*
449		 * If the caller specify the outgoing interface
450		 * explicitly, use it.
451		 */
452		if (opt != NULL && (pi = opt->ip6po_pktinfo) != NULL)
453			ifp = if_get(pi->ipi6_ifindex);
454
455		if (ifp == NULL && im6o != NULL)
456			ifp = if_get(im6o->im6o_ifidx);
457	}
458
459	if (ifp == NULL) {
460		rt = in6_selectroute(&ip6->ip6_dst, opt, ro,
461		    m->m_pkthdr.ph_rtableid);
462		if (rt == NULL) {
463			ip6stat_inc(ip6s_noroute);
464			error = EHOSTUNREACH;
465			goto bad;
466		}
467		if (ISSET(rt->rt_flags, RTF_LOCAL))
468			ifp = if_get(rtable_loindex(m->m_pkthdr.ph_rtableid));
469		else
470			ifp = if_get(rt->rt_ifidx);
471		/*
472		 * We aren't using rtisvalid() here because the UP/DOWN state
473		 * machine is broken with some Ethernet drivers like em(4).
474		 * As a result we might try to use an invalid cached route
475		 * entry while an interface is being detached.
476		 */
477		if (ifp == NULL) {
478			ip6stat_inc(ip6s_noroute);
479			error = EHOSTUNREACH;
480			goto bad;
481		}
482	} else {
483		route6_cache(ro, &ip6->ip6_dst, NULL, m->m_pkthdr.ph_rtableid);
484	}
485
486	if (rt && (rt->rt_flags & RTF_GATEWAY) &&
487	    !IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
488		dst = satosin6(rt->rt_gateway);
489
490	if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
491		/* Unicast */
492
493		m->m_flags &= ~(M_BCAST | M_MCAST);	/* just in case */
494	} else {
495		/* Multicast */
496
497		m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST;
498
499		/*
500		 * Confirm that the outgoing interface supports multicast.
501		 */
502		if ((ifp->if_flags & IFF_MULTICAST) == 0) {
503			ip6stat_inc(ip6s_noroute);
504			error = ENETUNREACH;
505			goto bad;
506		}
507
508		if ((im6o == NULL || im6o->im6o_loop) &&
509		    in6_hasmulti(&ip6->ip6_dst, ifp)) {
510			/*
511			 * If we belong to the destination multicast group
512			 * on the outgoing interface, and the caller did not
513			 * forbid loopback, loop back a copy.
514			 * Can't defer TCP/UDP checksumming, do the
515			 * computation now.
516			 */
517			in6_proto_cksum_out(m, NULL);
518			ip6_mloopback(ifp, m, dst);
519		}
520#ifdef MROUTING
521		else {
522			/*
523			 * If we are acting as a multicast router, perform
524			 * multicast forwarding as if the packet had just
525			 * arrived on the interface to which we are about
526			 * to send.  The multicast forwarding function
527			 * recursively calls this function, using the
528			 * IPV6_FORWARDING flag to prevent infinite recursion.
529			 *
530			 * Multicasts that are looped back by ip6_mloopback(),
531			 * above, will be forwarded by the ip6_input() routine,
532			 * if necessary.
533			 */
534			if (ip6_mforwarding && ip6_mrouter[ifp->if_rdomain] &&
535			    (flags & IPV6_FORWARDING) == 0) {
536				if (ip6_mforward(ip6, ifp, m) != 0) {
537					m_freem(m);
538					goto done;
539				}
540			}
541		}
542#endif
543		/*
544		 * Multicasts with a hoplimit of zero may be looped back,
545		 * above, but must not be transmitted on a network.
546		 * Also, multicasts addressed to the loopback interface
547		 * are not sent -- the above call to ip6_mloopback() will
548		 * loop back a copy if this host actually belongs to the
549		 * destination group on the loopback interface.
550		 */
551		if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK) ||
552		    IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) {
553			m_freem(m);
554			goto done;
555		}
556	}
557
558	/*
559	 * If this packet is going through a loopback interface we won't
560	 * be able to restore its scope ID using the interface index.
561	 */
562	if (IN6_IS_SCOPE_EMBED(&ip6->ip6_src)) {
563		if (ifp->if_flags & IFF_LOOPBACK)
564			src_scope = ip6->ip6_src.s6_addr16[1];
565		ip6->ip6_src.s6_addr16[1] = 0;
566	}
567	if (IN6_IS_SCOPE_EMBED(&ip6->ip6_dst)) {
568		if (ifp->if_flags & IFF_LOOPBACK)
569			dst_scope = ip6->ip6_dst.s6_addr16[1];
570		ip6->ip6_dst.s6_addr16[1] = 0;
571	}
572
573	/* Determine path MTU. */
574	if ((error = ip6_getpmtu(ro_pmtu->ro_rt, ifp, &mtu)) != 0)
575		goto bad;
576
577	/*
578	 * The caller of this function may specify to use the minimum MTU
579	 * in some cases.
580	 * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU
581	 * setting.  The logic is a bit complicated; by default, unicast
582	 * packets will follow path MTU while multicast packets will be sent at
583	 * the minimum MTU.  If IP6PO_MINMTU_ALL is specified, all packets
584	 * including unicast ones will be sent at the minimum MTU.  Multicast
585	 * packets will always be sent at the minimum MTU unless
586	 * IP6PO_MINMTU_DISABLE is explicitly specified.
587	 * See RFC 3542 for more details.
588	 */
589	if (mtu > IPV6_MMTU) {
590		if ((flags & IPV6_MINMTU))
591			mtu = IPV6_MMTU;
592		else if (opt && opt->ip6po_minmtu == IP6PO_MINMTU_ALL)
593			mtu = IPV6_MMTU;
594		else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) && (opt == NULL ||
595		    opt->ip6po_minmtu != IP6PO_MINMTU_DISABLE)) {
596			mtu = IPV6_MMTU;
597		}
598	}
599
600	/*
601	 * If the outgoing packet contains a hop-by-hop options header,
602	 * it must be examined and processed even by the source node.
603	 * (RFC 2460, section 4.)
604	 */
605	if (exthdrs.ip6e_hbh) {
606		struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, struct ip6_hbh *);
607		u_int32_t rtalert; /* returned value is ignored */
608		u_int32_t plen = 0; /* no more than 1 jumbo payload option! */
609
610		m->m_pkthdr.ph_ifidx = ifp->if_index;
611		if (ip6_process_hopopts(&m, (u_int8_t *)(hbh + 1),
612		    ((hbh->ip6h_len + 1) << 3) - sizeof(struct ip6_hbh),
613		    &rtalert, &plen) < 0) {
614			/* m was already freed at this point */
615			error = EINVAL;/* better error? */
616			goto done;
617		}
618		m->m_pkthdr.ph_ifidx = 0;
619	}
620
621#if NPF > 0
622	if (pf_test(AF_INET6, PF_OUT, ifp, &m) != PF_PASS) {
623		error = EACCES;
624		m_freem(m);
625		goto done;
626	}
627	if (m == NULL)
628		goto done;
629	ip6 = mtod(m, struct ip6_hdr *);
630	if ((m->m_pkthdr.pf.flags & (PF_TAG_REROUTE | PF_TAG_GENERATED)) ==
631	    (PF_TAG_REROUTE | PF_TAG_GENERATED)) {
632		/* already rerun the route lookup, go on */
633		m->m_pkthdr.pf.flags &= ~(PF_TAG_GENERATED | PF_TAG_REROUTE);
634	} else if (m->m_pkthdr.pf.flags & PF_TAG_REROUTE) {
635		/* tag as generated to skip over pf_test on rerun */
636		m->m_pkthdr.pf.flags |= PF_TAG_GENERATED;
637		finaldst = ip6->ip6_dst;
638		if (ro == &iproute)
639			rtfree(ro->ro_rt);
640		ro = NULL;
641		if_put(ifp); /* drop reference since destination changed */
642		ifp = NULL;
643		goto reroute;
644	}
645#endif
646
647	/*
648	 * If the packet is not going on the wire it can be destined
649	 * to any local address.  In this case do not clear its scopes
650	 * to let ip6_input() find a matching local route.
651	 */
652	if (ifp->if_flags & IFF_LOOPBACK) {
653		if (IN6_IS_SCOPE_EMBED(&ip6->ip6_src))
654			ip6->ip6_src.s6_addr16[1] = src_scope;
655		if (IN6_IS_SCOPE_EMBED(&ip6->ip6_dst))
656			ip6->ip6_dst.s6_addr16[1] = dst_scope;
657	}
658
659	/*
660	 * Send the packet to the outgoing interface.
661	 * If necessary, do IPv6 fragmentation before sending.
662	 *
663	 * the logic here is rather complex:
664	 * 1: normal case (dontfrag == 0)
665	 * 1-a: send as is if tlen <= path mtu
666	 * 1-b: fragment if tlen > path mtu
667	 *
668	 * 2: if user asks us not to fragment (dontfrag == 1)
669	 * 2-a: send as is if tlen <= interface mtu
670	 * 2-b: error if tlen > interface mtu
671	 */
672	tlen = ISSET(m->m_pkthdr.csum_flags, M_TCP_TSO) ?
673	    m->m_pkthdr.ph_mss : m->m_pkthdr.len;
674
675	if (ISSET(m->m_pkthdr.csum_flags, M_IPV6_DF_OUT)) {
676		CLR(m->m_pkthdr.csum_flags, M_IPV6_DF_OUT);
677		dontfrag = 1;
678	} else if (opt && ISSET(opt->ip6po_flags, IP6PO_DONTFRAG))
679		dontfrag = 1;
680	else
681		dontfrag = 0;
682
683	if (dontfrag && tlen > ifp->if_mtu) {		/* case 2-b */
684#ifdef IPSEC
685		if (ip_mtudisc)
686			ipsec_adjust_mtu(m, mtu);
687#endif
688		error = EMSGSIZE;
689		goto bad;
690	}
691
692	/*
693	 * transmit packet without fragmentation
694	 */
695	if (dontfrag || tlen <= mtu) {			/* case 1-a and 2-a */
696		error = if_output_tso(ifp, &m, sin6tosa(dst), ro->ro_rt,
697		    ifp->if_mtu);
698		if (error || m == NULL)
699			goto done;
700		goto bad;				/* should not happen */
701	}
702
703	/*
704	 * try to fragment the packet.  case 1-b
705	 */
706	if (mtu < IPV6_MMTU) {
707		/* path MTU cannot be less than IPV6_MMTU */
708		error = EMSGSIZE;
709		goto bad;
710	} else if (ip6->ip6_plen == 0) {
711		/* jumbo payload cannot be fragmented */
712		error = EMSGSIZE;
713		goto bad;
714	}
715
716	/*
717	 * Too large for the destination or interface;
718	 * fragment if possible.
719	 * Must be able to put at least 8 bytes per fragment.
720	 */
721	hlen = unfragpartlen;
722	if (mtu > IPV6_MAXPACKET)
723		mtu = IPV6_MAXPACKET;
724
725	/*
726	 * If we are doing fragmentation, we can't defer TCP/UDP
727	 * checksumming; compute the checksum and clear the flag.
728	 */
729        in6_proto_cksum_out(m, NULL);
730
731	/*
732	 * Change the next header field of the last header in the
733	 * unfragmentable part.
734	 */
735	if (exthdrs.ip6e_rthdr) {
736		nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *);
737		*mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT;
738	} else if (exthdrs.ip6e_dest1) {
739		nextproto = *mtod(exthdrs.ip6e_dest1, u_char *);
740		*mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT;
741	} else if (exthdrs.ip6e_hbh) {
742		nextproto = *mtod(exthdrs.ip6e_hbh, u_char *);
743		*mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT;
744	} else {
745		nextproto = ip6->ip6_nxt;
746		ip6->ip6_nxt = IPPROTO_FRAGMENT;
747	}
748
749	if ((error = ip6_fragment(m, &ml, hlen, nextproto, mtu)) ||
750	    (error = if_output_ml(ifp, &ml, sin6tosa(dst), ro->ro_rt)))
751		goto done;
752	ip6stat_inc(ip6s_fragmented);
753	goto done;
754
755 freehdrs:
756	m_freem(exthdrs.ip6e_hbh);	/* m_freem will check if mbuf is 0 */
757	m_freem(exthdrs.ip6e_dest1);
758	m_freem(exthdrs.ip6e_rthdr);
759	m_freem(exthdrs.ip6e_dest2);
760 bad:
761	m_freem(m);
762 done:
763	if (ro == &iproute)
764		rtfree(ro->ro_rt);
765	else if (ro_pmtu == &iproute)
766		rtfree(ro_pmtu->ro_rt);
767	if_put(ifp);
768#ifdef IPSEC
769	tdb_unref(tdb);
770#endif /* IPSEC */
771	return (error);
772}
773
774int
775ip6_fragment(struct mbuf *m0, struct mbuf_list *ml, int hlen, u_char nextproto,
776    u_long mtu)
777{
778	struct ip6_hdr *ip6;
779	u_int32_t id;
780	int tlen, len, off;
781	int error;
782
783	ml_init(ml);
784
785	ip6 = mtod(m0, struct ip6_hdr *);
786	tlen = m0->m_pkthdr.len;
787	len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7;
788	if (len < 8) {
789		error = EMSGSIZE;
790		goto bad;
791	}
792	id = htonl(ip6_randomid());
793
794	/*
795	 * Loop through length of payload,
796	 * make new header and copy data of each part and link onto chain.
797	 */
798	for (off = hlen; off < tlen; off += len) {
799		struct mbuf *m;
800		struct mbuf *mlast;
801		struct ip6_hdr *mhip6;
802		struct ip6_frag *ip6f;
803
804		MGETHDR(m, M_DONTWAIT, MT_HEADER);
805		if (m == NULL) {
806			error = ENOBUFS;
807			goto bad;
808		}
809		ml_enqueue(ml, m);
810		if ((error = m_dup_pkthdr(m, m0, M_DONTWAIT)) != 0)
811			goto bad;
812		m->m_data += max_linkhdr;
813		mhip6 = mtod(m, struct ip6_hdr *);
814		*mhip6 = *ip6;
815		m->m_len = sizeof(struct ip6_hdr);
816
817		if ((error = ip6_insertfraghdr(m0, m, hlen, &ip6f)) != 0)
818			goto bad;
819		ip6f->ip6f_offlg = htons((off - hlen) & ~7);
820		if (off + len >= tlen)
821			len = tlen - off;
822		else
823			ip6f->ip6f_offlg |= IP6F_MORE_FRAG;
824
825		m->m_pkthdr.len = hlen + sizeof(struct ip6_frag) + len;
826		mhip6->ip6_plen = htons(m->m_pkthdr.len -
827		    sizeof(struct ip6_hdr));
828		for (mlast = m; mlast->m_next; mlast = mlast->m_next)
829			;
830		mlast->m_next = m_copym(m0, off, len, M_DONTWAIT);
831		if (mlast->m_next == NULL) {
832			error = ENOBUFS;
833			goto bad;
834		}
835
836		ip6f->ip6f_reserved = 0;
837		ip6f->ip6f_ident = id;
838		ip6f->ip6f_nxt = nextproto;
839	}
840
841	ip6stat_add(ip6s_ofragments, ml_len(ml));
842	m_freem(m0);
843	return (0);
844
845bad:
846	ip6stat_inc(ip6s_odropped);
847	ml_purge(ml);
848	m_freem(m0);
849	return (error);
850}
851
852int
853ip6_copyexthdr(struct mbuf **mp, caddr_t hdr, int hlen)
854{
855	struct mbuf *m;
856
857	if (hlen > MCLBYTES)
858		return (ENOBUFS); /* XXX */
859
860	MGET(m, M_DONTWAIT, MT_DATA);
861	if (!m)
862		return (ENOBUFS);
863
864	if (hlen > MLEN) {
865		MCLGET(m, M_DONTWAIT);
866		if ((m->m_flags & M_EXT) == 0) {
867			m_free(m);
868			return (ENOBUFS);
869		}
870	}
871	m->m_len = hlen;
872	if (hdr)
873		memcpy(mtod(m, caddr_t), hdr, hlen);
874
875	*mp = m;
876	return (0);
877}
878
879/*
880 * Insert jumbo payload option.
881 */
882int
883ip6_insert_jumboopt(struct ip6_exthdrs *exthdrs, u_int32_t plen)
884{
885	struct mbuf *mopt;
886	u_int8_t *optbuf;
887	u_int32_t v;
888
889#define JUMBOOPTLEN	8	/* length of jumbo payload option and padding */
890
891	/*
892	 * If there is no hop-by-hop options header, allocate new one.
893	 * If there is one but it doesn't have enough space to store the
894	 * jumbo payload option, allocate a cluster to store the whole options.
895	 * Otherwise, use it to store the options.
896	 */
897	if (exthdrs->ip6e_hbh == 0) {
898		MGET(mopt, M_DONTWAIT, MT_DATA);
899		if (mopt == NULL)
900			return (ENOBUFS);
901		mopt->m_len = JUMBOOPTLEN;
902		optbuf = mtod(mopt, u_int8_t *);
903		optbuf[1] = 0;	/* = ((JUMBOOPTLEN) >> 3) - 1 */
904		exthdrs->ip6e_hbh = mopt;
905	} else {
906		struct ip6_hbh *hbh;
907
908		mopt = exthdrs->ip6e_hbh;
909		if (m_trailingspace(mopt) < JUMBOOPTLEN) {
910			/*
911			 * XXX assumption:
912			 * - exthdrs->ip6e_hbh is not referenced from places
913			 *   other than exthdrs.
914			 * - exthdrs->ip6e_hbh is not an mbuf chain.
915			 */
916			int oldoptlen = mopt->m_len;
917			struct mbuf *n;
918
919			/*
920			 * XXX: give up if the whole (new) hbh header does
921			 * not fit even in an mbuf cluster.
922			 */
923			if (oldoptlen + JUMBOOPTLEN > MCLBYTES)
924				return (ENOBUFS);
925
926			/*
927			 * As a consequence, we must always prepare a cluster
928			 * at this point.
929			 */
930			MGET(n, M_DONTWAIT, MT_DATA);
931			if (n) {
932				MCLGET(n, M_DONTWAIT);
933				if ((n->m_flags & M_EXT) == 0) {
934					m_freem(n);
935					n = NULL;
936				}
937			}
938			if (!n)
939				return (ENOBUFS);
940			n->m_len = oldoptlen + JUMBOOPTLEN;
941			memcpy(mtod(n, caddr_t), mtod(mopt, caddr_t),
942			      oldoptlen);
943			optbuf = mtod(n, u_int8_t *) + oldoptlen;
944			m_freem(mopt);
945			mopt = exthdrs->ip6e_hbh = n;
946		} else {
947			optbuf = mtod(mopt, u_int8_t *) + mopt->m_len;
948			mopt->m_len += JUMBOOPTLEN;
949		}
950		optbuf[0] = IP6OPT_PADN;
951		optbuf[1] = 0;
952
953		/*
954		 * Adjust the header length according to the pad and
955		 * the jumbo payload option.
956		 */
957		hbh = mtod(mopt, struct ip6_hbh *);
958		hbh->ip6h_len += (JUMBOOPTLEN >> 3);
959	}
960
961	/* fill in the option. */
962	optbuf[2] = IP6OPT_JUMBO;
963	optbuf[3] = 4;
964	v = (u_int32_t)htonl(plen + JUMBOOPTLEN);
965	memcpy(&optbuf[4], &v, sizeof(u_int32_t));
966
967	/* finally, adjust the packet header length */
968	exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN;
969
970	return (0);
971#undef JUMBOOPTLEN
972}
973
974/*
975 * Insert fragment header and copy unfragmentable header portions.
976 */
977int
978ip6_insertfraghdr(struct mbuf *m0, struct mbuf *m, int hlen,
979    struct ip6_frag **frghdrp)
980{
981	struct mbuf *n, *mlast;
982
983	if (hlen > sizeof(struct ip6_hdr)) {
984		n = m_copym(m0, sizeof(struct ip6_hdr),
985		    hlen - sizeof(struct ip6_hdr), M_DONTWAIT);
986		if (n == NULL)
987			return (ENOBUFS);
988		m->m_next = n;
989	} else
990		n = m;
991
992	/* Search for the last mbuf of unfragmentable part. */
993	for (mlast = n; mlast->m_next; mlast = mlast->m_next)
994		;
995
996	if ((mlast->m_flags & M_EXT) == 0 &&
997	    m_trailingspace(mlast) >= sizeof(struct ip6_frag)) {
998		/* use the trailing space of the last mbuf for fragment hdr */
999		*frghdrp = (struct ip6_frag *)(mtod(mlast, caddr_t) +
1000		    mlast->m_len);
1001		mlast->m_len += sizeof(struct ip6_frag);
1002		m->m_pkthdr.len += sizeof(struct ip6_frag);
1003	} else {
1004		/* allocate a new mbuf for the fragment header */
1005		struct mbuf *mfrg;
1006
1007		MGET(mfrg, M_DONTWAIT, MT_DATA);
1008		if (mfrg == NULL)
1009			return (ENOBUFS);
1010		mfrg->m_len = sizeof(struct ip6_frag);
1011		*frghdrp = mtod(mfrg, struct ip6_frag *);
1012		mlast->m_next = mfrg;
1013	}
1014
1015	return (0);
1016}
1017
1018int
1019ip6_getpmtu(struct rtentry *rt, struct ifnet *ifp, u_long *mtup)
1020{
1021	u_int32_t mtu = 0;
1022	int error = 0;
1023
1024	if (rt != NULL) {
1025		mtu = rt->rt_mtu;
1026		if (mtu == 0)
1027			mtu = ifp->if_mtu;
1028		else if (mtu < IPV6_MMTU) {
1029			/* RFC8021 IPv6 Atomic Fragments Considered Harmful */
1030			mtu = IPV6_MMTU;
1031		} else if (mtu > ifp->if_mtu) {
1032			/*
1033			 * The MTU on the route is larger than the MTU on
1034			 * the interface!  This shouldn't happen, unless the
1035			 * MTU of the interface has been changed after the
1036			 * interface was brought up.  Change the MTU in the
1037			 * route to match the interface MTU (as long as the
1038			 * field isn't locked).
1039			 */
1040			mtu = ifp->if_mtu;
1041			if (!(rt->rt_locks & RTV_MTU))
1042				rt->rt_mtu = mtu;
1043		}
1044	} else {
1045		mtu = ifp->if_mtu;
1046	}
1047
1048	*mtup = mtu;
1049	return (error);
1050}
1051
1052/*
1053 * IP6 socket option processing.
1054 */
1055int
1056ip6_ctloutput(int op, struct socket *so, int level, int optname,
1057    struct mbuf *m)
1058{
1059	int privileged, optdatalen, uproto;
1060	void *optdata;
1061	struct inpcb *inp = sotoinpcb(so);
1062	int error, optval;
1063	struct proc *p = curproc; /* For IPsec and rdomain */
1064	u_int rtableid, rtid = 0;
1065
1066	error = optval = 0;
1067
1068	privileged = (inp->inp_socket->so_state & SS_PRIV);
1069	uproto = (int)so->so_proto->pr_protocol;
1070
1071	if (level != IPPROTO_IPV6)
1072		return (EINVAL);
1073
1074	rtableid = p->p_p->ps_rtableid;
1075
1076	switch (op) {
1077	case PRCO_SETOPT:
1078		switch (optname) {
1079		/*
1080		 * Use of some Hop-by-Hop options or some
1081		 * Destination options, might require special
1082		 * privilege.  That is, normal applications
1083		 * (without special privilege) might be forbidden
1084		 * from setting certain options in outgoing packets,
1085		 * and might never see certain options in received
1086		 * packets. [RFC 2292 Section 6]
1087		 * KAME specific note:
1088		 *  KAME prevents non-privileged users from sending or
1089		 *  receiving ANY hbh/dst options in order to avoid
1090		 *  overhead of parsing options in the kernel.
1091		 */
1092		case IPV6_RECVHOPOPTS:
1093		case IPV6_RECVDSTOPTS:
1094			if (!privileged) {
1095				error = EPERM;
1096				break;
1097			}
1098			/* FALLTHROUGH */
1099		case IPV6_UNICAST_HOPS:
1100		case IPV6_MINHOPCOUNT:
1101		case IPV6_HOPLIMIT:
1102
1103		case IPV6_RECVPKTINFO:
1104		case IPV6_RECVHOPLIMIT:
1105		case IPV6_RECVRTHDR:
1106		case IPV6_RECVPATHMTU:
1107		case IPV6_RECVTCLASS:
1108		case IPV6_V6ONLY:
1109		case IPV6_AUTOFLOWLABEL:
1110		case IPV6_RECVDSTPORT:
1111			if (m == NULL || m->m_len != sizeof(int)) {
1112				error = EINVAL;
1113				break;
1114			}
1115			optval = *mtod(m, int *);
1116			switch (optname) {
1117
1118			case IPV6_UNICAST_HOPS:
1119				if (optval < -1 || optval >= 256)
1120					error = EINVAL;
1121				else {
1122					/* -1 = kernel default */
1123					inp->inp_hops = optval;
1124				}
1125				break;
1126
1127			case IPV6_MINHOPCOUNT:
1128				if (optval < 0 || optval > 255)
1129					error = EINVAL;
1130				else
1131					inp->inp_ip6_minhlim = optval;
1132				break;
1133
1134#define OPTSET(bit) \
1135do { \
1136	if (optval) \
1137		inp->inp_flags |= (bit); \
1138	else \
1139		inp->inp_flags &= ~(bit); \
1140} while (/*CONSTCOND*/ 0)
1141#define OPTBIT(bit) (inp->inp_flags & (bit) ? 1 : 0)
1142
1143			case IPV6_RECVPKTINFO:
1144				OPTSET(IN6P_PKTINFO);
1145				break;
1146
1147			case IPV6_HOPLIMIT:
1148			{
1149				struct ip6_pktopts **optp;
1150
1151				optp = &inp->inp_outputopts6;
1152				error = ip6_pcbopt(IPV6_HOPLIMIT,
1153				    (u_char *)&optval, sizeof(optval), optp,
1154				    privileged, uproto);
1155				break;
1156			}
1157
1158			case IPV6_RECVHOPLIMIT:
1159				OPTSET(IN6P_HOPLIMIT);
1160				break;
1161
1162			case IPV6_RECVHOPOPTS:
1163				OPTSET(IN6P_HOPOPTS);
1164				break;
1165
1166			case IPV6_RECVDSTOPTS:
1167				OPTSET(IN6P_DSTOPTS);
1168				break;
1169
1170			case IPV6_RECVRTHDR:
1171				OPTSET(IN6P_RTHDR);
1172				break;
1173
1174			case IPV6_RECVPATHMTU:
1175				/*
1176				 * We ignore this option for TCP
1177				 * sockets.
1178				 * (RFC3542 leaves this case
1179				 * unspecified.)
1180				 */
1181				if (uproto != IPPROTO_TCP)
1182					OPTSET(IN6P_MTU);
1183				break;
1184
1185			case IPV6_V6ONLY:
1186				/*
1187				 * make setsockopt(IPV6_V6ONLY)
1188				 * available only prior to bind(2).
1189				 * see ipng mailing list, Jun 22 2001.
1190				 */
1191				if (inp->inp_lport || !IN6_IS_ADDR_UNSPECIFIED(
1192				    &inp->inp_laddr6)) {
1193					error = EINVAL;
1194					break;
1195				}
1196				/* No support for IPv4-mapped addresses. */
1197				if (!optval)
1198					error = EINVAL;
1199				else
1200					error = 0;
1201				break;
1202			case IPV6_RECVTCLASS:
1203				OPTSET(IN6P_TCLASS);
1204				break;
1205			case IPV6_AUTOFLOWLABEL:
1206				OPTSET(IN6P_AUTOFLOWLABEL);
1207				break;
1208
1209			case IPV6_RECVDSTPORT:
1210				OPTSET(IN6P_RECVDSTPORT);
1211				break;
1212			}
1213			break;
1214
1215		case IPV6_TCLASS:
1216		case IPV6_DONTFRAG:
1217		case IPV6_USE_MIN_MTU:
1218			if (m == NULL || m->m_len != sizeof(optval)) {
1219				error = EINVAL;
1220				break;
1221			}
1222			optval = *mtod(m, int *);
1223			{
1224				struct ip6_pktopts **optp;
1225				optp = &inp->inp_outputopts6;
1226				error = ip6_pcbopt(optname, (u_char *)&optval,
1227				    sizeof(optval), optp, privileged, uproto);
1228				break;
1229			}
1230
1231		case IPV6_PKTINFO:
1232		case IPV6_HOPOPTS:
1233		case IPV6_RTHDR:
1234		case IPV6_DSTOPTS:
1235		case IPV6_RTHDRDSTOPTS:
1236		{
1237			/* new advanced API (RFC3542) */
1238			u_char *optbuf;
1239			int optbuflen;
1240			struct ip6_pktopts **optp;
1241
1242			if (m && m->m_next) {
1243				error = EINVAL;	/* XXX */
1244				break;
1245			}
1246			if (m) {
1247				optbuf = mtod(m, u_char *);
1248				optbuflen = m->m_len;
1249			} else {
1250				optbuf = NULL;
1251				optbuflen = 0;
1252			}
1253			optp = &inp->inp_outputopts6;
1254			error = ip6_pcbopt(optname, optbuf, optbuflen, optp,
1255			    privileged, uproto);
1256			break;
1257		}
1258#undef OPTSET
1259
1260		case IPV6_MULTICAST_IF:
1261		case IPV6_MULTICAST_HOPS:
1262		case IPV6_MULTICAST_LOOP:
1263		case IPV6_JOIN_GROUP:
1264		case IPV6_LEAVE_GROUP:
1265			error =	ip6_setmoptions(optname,
1266						&inp->inp_moptions6,
1267						m, inp->inp_rtableid);
1268			break;
1269
1270		case IPV6_PORTRANGE:
1271			if (m == NULL || m->m_len != sizeof(int)) {
1272				error = EINVAL;
1273				break;
1274			}
1275			optval = *mtod(m, int *);
1276
1277			switch (optval) {
1278			case IPV6_PORTRANGE_DEFAULT:
1279				inp->inp_flags &= ~(IN6P_LOWPORT);
1280				inp->inp_flags &= ~(IN6P_HIGHPORT);
1281				break;
1282
1283			case IPV6_PORTRANGE_HIGH:
1284				inp->inp_flags &= ~(IN6P_LOWPORT);
1285				inp->inp_flags |= IN6P_HIGHPORT;
1286				break;
1287
1288			case IPV6_PORTRANGE_LOW:
1289				inp->inp_flags &= ~(IN6P_HIGHPORT);
1290				inp->inp_flags |= IN6P_LOWPORT;
1291				break;
1292
1293			default:
1294				error = EINVAL;
1295				break;
1296			}
1297			break;
1298
1299		case IPSEC6_OUTSA:
1300			error = EINVAL;
1301			break;
1302
1303		case IPV6_AUTH_LEVEL:
1304		case IPV6_ESP_TRANS_LEVEL:
1305		case IPV6_ESP_NETWORK_LEVEL:
1306		case IPV6_IPCOMP_LEVEL:
1307#ifndef IPSEC
1308			error = EINVAL;
1309#else
1310			if (m == NULL || m->m_len != sizeof(int)) {
1311				error = EINVAL;
1312				break;
1313			}
1314			optval = *mtod(m, int *);
1315
1316			if (optval < IPSEC_LEVEL_BYPASS ||
1317			    optval > IPSEC_LEVEL_UNIQUE) {
1318				error = EINVAL;
1319				break;
1320			}
1321
1322			switch (optname) {
1323			case IPV6_AUTH_LEVEL:
1324				if (optval < IPSEC_AUTH_LEVEL_DEFAULT &&
1325				    suser(p)) {
1326					error = EACCES;
1327					break;
1328				}
1329				inp->inp_seclevel.sl_auth = optval;
1330				break;
1331
1332			case IPV6_ESP_TRANS_LEVEL:
1333				if (optval < IPSEC_ESP_TRANS_LEVEL_DEFAULT &&
1334				    suser(p)) {
1335					error = EACCES;
1336					break;
1337				}
1338				inp->inp_seclevel.sl_esp_trans = optval;
1339				break;
1340
1341			case IPV6_ESP_NETWORK_LEVEL:
1342				if (optval < IPSEC_ESP_NETWORK_LEVEL_DEFAULT &&
1343				    suser(p)) {
1344					error = EACCES;
1345					break;
1346				}
1347				inp->inp_seclevel.sl_esp_network = optval;
1348				break;
1349
1350			case IPV6_IPCOMP_LEVEL:
1351				if (optval < IPSEC_IPCOMP_LEVEL_DEFAULT &&
1352				    suser(p)) {
1353					error = EACCES;
1354					break;
1355				}
1356				inp->inp_seclevel.sl_ipcomp = optval;
1357				break;
1358			}
1359#endif
1360			break;
1361		case SO_RTABLE:
1362			if (m == NULL || m->m_len < sizeof(u_int)) {
1363				error = EINVAL;
1364				break;
1365			}
1366			rtid = *mtod(m, u_int *);
1367			if (inp->inp_rtableid == rtid)
1368				break;
1369			/* needs privileges to switch when already set */
1370			if (rtableid != rtid && rtableid != 0 &&
1371			    (error = suser(p)) != 0)
1372				break;
1373			error = in_pcbset_rtableid(inp, rtid);
1374			break;
1375		case IPV6_PIPEX:
1376			if (m != NULL && m->m_len == sizeof(int))
1377				inp->inp_pipex = *mtod(m, int *);
1378			else
1379				error = EINVAL;
1380			break;
1381
1382		default:
1383			error = ENOPROTOOPT;
1384			break;
1385		}
1386		break;
1387
1388	case PRCO_GETOPT:
1389		switch (optname) {
1390
1391		case IPV6_RECVHOPOPTS:
1392		case IPV6_RECVDSTOPTS:
1393		case IPV6_UNICAST_HOPS:
1394		case IPV6_MINHOPCOUNT:
1395		case IPV6_RECVPKTINFO:
1396		case IPV6_RECVHOPLIMIT:
1397		case IPV6_RECVRTHDR:
1398		case IPV6_RECVPATHMTU:
1399
1400		case IPV6_V6ONLY:
1401		case IPV6_PORTRANGE:
1402		case IPV6_RECVTCLASS:
1403		case IPV6_AUTOFLOWLABEL:
1404		case IPV6_RECVDSTPORT:
1405			switch (optname) {
1406
1407			case IPV6_RECVHOPOPTS:
1408				optval = OPTBIT(IN6P_HOPOPTS);
1409				break;
1410
1411			case IPV6_RECVDSTOPTS:
1412				optval = OPTBIT(IN6P_DSTOPTS);
1413				break;
1414
1415			case IPV6_UNICAST_HOPS:
1416				optval = inp->inp_hops;
1417				break;
1418
1419			case IPV6_MINHOPCOUNT:
1420				optval = inp->inp_ip6_minhlim;
1421				break;
1422
1423			case IPV6_RECVPKTINFO:
1424				optval = OPTBIT(IN6P_PKTINFO);
1425				break;
1426
1427			case IPV6_RECVHOPLIMIT:
1428				optval = OPTBIT(IN6P_HOPLIMIT);
1429				break;
1430
1431			case IPV6_RECVRTHDR:
1432				optval = OPTBIT(IN6P_RTHDR);
1433				break;
1434
1435			case IPV6_RECVPATHMTU:
1436				optval = OPTBIT(IN6P_MTU);
1437				break;
1438
1439			case IPV6_V6ONLY:
1440				optval = 1;
1441				break;
1442
1443			case IPV6_PORTRANGE:
1444			    {
1445				int flags;
1446				flags = inp->inp_flags;
1447				if (flags & IN6P_HIGHPORT)
1448					optval = IPV6_PORTRANGE_HIGH;
1449				else if (flags & IN6P_LOWPORT)
1450					optval = IPV6_PORTRANGE_LOW;
1451				else
1452					optval = 0;
1453				break;
1454			    }
1455			case IPV6_RECVTCLASS:
1456				optval = OPTBIT(IN6P_TCLASS);
1457				break;
1458
1459			case IPV6_AUTOFLOWLABEL:
1460				optval = OPTBIT(IN6P_AUTOFLOWLABEL);
1461				break;
1462
1463			case IPV6_RECVDSTPORT:
1464				optval = OPTBIT(IN6P_RECVDSTPORT);
1465				break;
1466			}
1467			if (error)
1468				break;
1469			m->m_len = sizeof(int);
1470			*mtod(m, int *) = optval;
1471			break;
1472
1473		case IPV6_PATHMTU:
1474		{
1475			u_long pmtu = 0;
1476			struct ip6_mtuinfo mtuinfo;
1477			struct ifnet *ifp;
1478			struct rtentry *rt;
1479
1480			if (!(so->so_state & SS_ISCONNECTED))
1481				return (ENOTCONN);
1482
1483			rt = in6_pcbrtentry(inp);
1484			if (!rtisvalid(rt))
1485				return (EHOSTUNREACH);
1486
1487			ifp = if_get(rt->rt_ifidx);
1488			if (ifp == NULL)
1489				return (EHOSTUNREACH);
1490			/*
1491			 * XXX: we dot not consider the case of source
1492			 * routing, or optional information to specify
1493			 * the outgoing interface.
1494			 */
1495			error = ip6_getpmtu(rt, ifp, &pmtu);
1496			if_put(ifp);
1497			if (error)
1498				break;
1499			if (pmtu > IPV6_MAXPACKET)
1500				pmtu = IPV6_MAXPACKET;
1501
1502			bzero(&mtuinfo, sizeof(mtuinfo));
1503			mtuinfo.ip6m_mtu = (u_int32_t)pmtu;
1504			optdata = (void *)&mtuinfo;
1505			optdatalen = sizeof(mtuinfo);
1506			if (optdatalen > MCLBYTES)
1507				return (EMSGSIZE); /* XXX */
1508			if (optdatalen > MLEN)
1509				MCLGET(m, M_WAIT);
1510			m->m_len = optdatalen;
1511			bcopy(optdata, mtod(m, void *), optdatalen);
1512			break;
1513		}
1514
1515		case IPV6_PKTINFO:
1516		case IPV6_HOPOPTS:
1517		case IPV6_RTHDR:
1518		case IPV6_DSTOPTS:
1519		case IPV6_RTHDRDSTOPTS:
1520		case IPV6_TCLASS:
1521		case IPV6_DONTFRAG:
1522		case IPV6_USE_MIN_MTU:
1523			error = ip6_getpcbopt(inp->inp_outputopts6,
1524			    optname, m);
1525			break;
1526
1527		case IPV6_MULTICAST_IF:
1528		case IPV6_MULTICAST_HOPS:
1529		case IPV6_MULTICAST_LOOP:
1530		case IPV6_JOIN_GROUP:
1531		case IPV6_LEAVE_GROUP:
1532			error = ip6_getmoptions(optname,
1533			    inp->inp_moptions6, m);
1534			break;
1535
1536		case IPSEC6_OUTSA:
1537			error = EINVAL;
1538			break;
1539
1540		case IPV6_AUTH_LEVEL:
1541		case IPV6_ESP_TRANS_LEVEL:
1542		case IPV6_ESP_NETWORK_LEVEL:
1543		case IPV6_IPCOMP_LEVEL:
1544#ifndef IPSEC
1545			m->m_len = sizeof(int);
1546			*mtod(m, int *) = IPSEC_LEVEL_NONE;
1547#else
1548			m->m_len = sizeof(int);
1549			switch (optname) {
1550			case IPV6_AUTH_LEVEL:
1551				optval = inp->inp_seclevel.sl_auth;
1552				break;
1553
1554			case IPV6_ESP_TRANS_LEVEL:
1555				optval =
1556				    inp->inp_seclevel.sl_esp_trans;
1557				break;
1558
1559			case IPV6_ESP_NETWORK_LEVEL:
1560				optval =
1561				    inp->inp_seclevel.sl_esp_network;
1562				break;
1563
1564			case IPV6_IPCOMP_LEVEL:
1565				optval = inp->inp_seclevel.sl_ipcomp;
1566				break;
1567			}
1568			*mtod(m, int *) = optval;
1569#endif
1570			break;
1571		case SO_RTABLE:
1572			m->m_len = sizeof(u_int);
1573			*mtod(m, u_int *) = inp->inp_rtableid;
1574			break;
1575		case IPV6_PIPEX:
1576			m->m_len = sizeof(int);
1577			*mtod(m, int *) = inp->inp_pipex;
1578			break;
1579
1580		default:
1581			error = ENOPROTOOPT;
1582			break;
1583		}
1584		break;
1585	}
1586	return (error);
1587}
1588
1589int
1590ip6_raw_ctloutput(int op, struct socket *so, int level, int optname,
1591    struct mbuf *m)
1592{
1593	int error = 0, optval;
1594	const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum);
1595	struct inpcb *inp = sotoinpcb(so);
1596
1597	if (level != IPPROTO_IPV6)
1598		return (EINVAL);
1599
1600	switch (optname) {
1601	case IPV6_CHECKSUM:
1602		/*
1603		 * For ICMPv6 sockets, no modification allowed for checksum
1604		 * offset, permit "no change" values to help existing apps.
1605		 *
1606		 * RFC3542 says: "An attempt to set IPV6_CHECKSUM
1607		 * for an ICMPv6 socket will fail."
1608		 * The current behavior does not meet RFC3542.
1609		 */
1610		switch (op) {
1611		case PRCO_SETOPT:
1612			if (m == NULL || m->m_len != sizeof(int)) {
1613				error = EINVAL;
1614				break;
1615			}
1616			optval = *mtod(m, int *);
1617			if (optval < -1 ||
1618			    (optval > 0 && (optval % 2) != 0)) {
1619				/*
1620				 * The API assumes non-negative even offset
1621				 * values or -1 as a special value.
1622				 */
1623				error = EINVAL;
1624			} else if (so->so_proto->pr_protocol ==
1625			    IPPROTO_ICMPV6) {
1626				if (optval != icmp6off)
1627					error = EINVAL;
1628			} else
1629				inp->inp_cksum6 = optval;
1630			break;
1631
1632		case PRCO_GETOPT:
1633			if (so->so_proto->pr_protocol == IPPROTO_ICMPV6)
1634				optval = icmp6off;
1635			else
1636				optval = inp->inp_cksum6;
1637
1638			m->m_len = sizeof(int);
1639			*mtod(m, int *) = optval;
1640			break;
1641
1642		default:
1643			error = EINVAL;
1644			break;
1645		}
1646		break;
1647
1648	default:
1649		error = ENOPROTOOPT;
1650		break;
1651	}
1652
1653	return (error);
1654}
1655
1656/*
1657 * initialize ip6_pktopts.  beware that there are non-zero default values in
1658 * the struct.
1659 */
1660void
1661ip6_initpktopts(struct ip6_pktopts *opt)
1662{
1663	bzero(opt, sizeof(*opt));
1664	opt->ip6po_hlim = -1;	/* -1 means default hop limit */
1665	opt->ip6po_tclass = -1;	/* -1 means default traffic class */
1666	opt->ip6po_minmtu = IP6PO_MINMTU_MCASTONLY;
1667}
1668
1669int
1670ip6_pcbopt(int optname, u_char *buf, int len, struct ip6_pktopts **pktopt,
1671    int priv, int uproto)
1672{
1673	struct ip6_pktopts *opt;
1674
1675	if (*pktopt == NULL) {
1676		*pktopt = malloc(sizeof(struct ip6_pktopts), M_IP6OPT,
1677		    M_WAITOK);
1678		ip6_initpktopts(*pktopt);
1679	}
1680	opt = *pktopt;
1681
1682	return (ip6_setpktopt(optname, buf, len, opt, priv, 1, uproto));
1683}
1684
1685int
1686ip6_getpcbopt(struct ip6_pktopts *pktopt, int optname, struct mbuf *m)
1687{
1688	void *optdata = NULL;
1689	int optdatalen = 0;
1690	struct ip6_ext *ip6e;
1691	int error = 0;
1692	struct in6_pktinfo null_pktinfo;
1693	int deftclass = 0, on;
1694	int defminmtu = IP6PO_MINMTU_MCASTONLY;
1695
1696	switch (optname) {
1697	case IPV6_PKTINFO:
1698		if (pktopt && pktopt->ip6po_pktinfo)
1699			optdata = (void *)pktopt->ip6po_pktinfo;
1700		else {
1701			/* XXX: we don't have to do this every time... */
1702			bzero(&null_pktinfo, sizeof(null_pktinfo));
1703			optdata = (void *)&null_pktinfo;
1704		}
1705		optdatalen = sizeof(struct in6_pktinfo);
1706		break;
1707	case IPV6_TCLASS:
1708		if (pktopt && pktopt->ip6po_tclass >= 0)
1709			optdata = (void *)&pktopt->ip6po_tclass;
1710		else
1711			optdata = (void *)&deftclass;
1712		optdatalen = sizeof(int);
1713		break;
1714	case IPV6_HOPOPTS:
1715		if (pktopt && pktopt->ip6po_hbh) {
1716			optdata = (void *)pktopt->ip6po_hbh;
1717			ip6e = (struct ip6_ext *)pktopt->ip6po_hbh;
1718			optdatalen = (ip6e->ip6e_len + 1) << 3;
1719		}
1720		break;
1721	case IPV6_RTHDR:
1722		if (pktopt && pktopt->ip6po_rthdr) {
1723			optdata = (void *)pktopt->ip6po_rthdr;
1724			ip6e = (struct ip6_ext *)pktopt->ip6po_rthdr;
1725			optdatalen = (ip6e->ip6e_len + 1) << 3;
1726		}
1727		break;
1728	case IPV6_RTHDRDSTOPTS:
1729		if (pktopt && pktopt->ip6po_dest1) {
1730			optdata = (void *)pktopt->ip6po_dest1;
1731			ip6e = (struct ip6_ext *)pktopt->ip6po_dest1;
1732			optdatalen = (ip6e->ip6e_len + 1) << 3;
1733		}
1734		break;
1735	case IPV6_DSTOPTS:
1736		if (pktopt && pktopt->ip6po_dest2) {
1737			optdata = (void *)pktopt->ip6po_dest2;
1738			ip6e = (struct ip6_ext *)pktopt->ip6po_dest2;
1739			optdatalen = (ip6e->ip6e_len + 1) << 3;
1740		}
1741		break;
1742	case IPV6_USE_MIN_MTU:
1743		if (pktopt)
1744			optdata = (void *)&pktopt->ip6po_minmtu;
1745		else
1746			optdata = (void *)&defminmtu;
1747		optdatalen = sizeof(int);
1748		break;
1749	case IPV6_DONTFRAG:
1750		if (pktopt && ((pktopt->ip6po_flags) & IP6PO_DONTFRAG))
1751			on = 1;
1752		else
1753			on = 0;
1754		optdata = (void *)&on;
1755		optdatalen = sizeof(on);
1756		break;
1757	default:		/* should not happen */
1758#ifdef DIAGNOSTIC
1759		panic("%s: unexpected option", __func__);
1760#endif
1761		return (ENOPROTOOPT);
1762	}
1763
1764	if (optdatalen > MCLBYTES)
1765		return (EMSGSIZE); /* XXX */
1766	if (optdatalen > MLEN)
1767		MCLGET(m, M_WAIT);
1768	m->m_len = optdatalen;
1769	if (optdatalen)
1770		bcopy(optdata, mtod(m, void *), optdatalen);
1771
1772	return (error);
1773}
1774
1775void
1776ip6_clearpktopts(struct ip6_pktopts *pktopt, int optname)
1777{
1778	if (optname == -1 || optname == IPV6_PKTINFO) {
1779		if (pktopt->ip6po_pktinfo)
1780			free(pktopt->ip6po_pktinfo, M_IP6OPT, 0);
1781		pktopt->ip6po_pktinfo = NULL;
1782	}
1783	if (optname == -1 || optname == IPV6_HOPLIMIT)
1784		pktopt->ip6po_hlim = -1;
1785	if (optname == -1 || optname == IPV6_TCLASS)
1786		pktopt->ip6po_tclass = -1;
1787	if (optname == -1 || optname == IPV6_HOPOPTS) {
1788		if (pktopt->ip6po_hbh)
1789			free(pktopt->ip6po_hbh, M_IP6OPT, 0);
1790		pktopt->ip6po_hbh = NULL;
1791	}
1792	if (optname == -1 || optname == IPV6_RTHDRDSTOPTS) {
1793		if (pktopt->ip6po_dest1)
1794			free(pktopt->ip6po_dest1, M_IP6OPT, 0);
1795		pktopt->ip6po_dest1 = NULL;
1796	}
1797	if (optname == -1 || optname == IPV6_RTHDR) {
1798		if (pktopt->ip6po_rhinfo.ip6po_rhi_rthdr)
1799			free(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT, 0);
1800		pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL;
1801		if (pktopt->ip6po_route.ro_rt) {
1802			rtfree(pktopt->ip6po_route.ro_rt);
1803			pktopt->ip6po_route.ro_rt = NULL;
1804		}
1805	}
1806	if (optname == -1 || optname == IPV6_DSTOPTS) {
1807		if (pktopt->ip6po_dest2)
1808			free(pktopt->ip6po_dest2, M_IP6OPT, 0);
1809		pktopt->ip6po_dest2 = NULL;
1810	}
1811}
1812
1813#define PKTOPT_EXTHDRCPY(type) \
1814do {\
1815	if (src->type) {\
1816		size_t hlen;\
1817		hlen = (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\
1818		dst->type = malloc(hlen, M_IP6OPT, M_NOWAIT);\
1819		if (dst->type == NULL)\
1820			goto bad;\
1821		memcpy(dst->type, src->type, hlen);\
1822	}\
1823} while (/*CONSTCOND*/ 0)
1824
1825int
1826copypktopts(struct ip6_pktopts *dst, struct ip6_pktopts *src)
1827{
1828	dst->ip6po_hlim = src->ip6po_hlim;
1829	dst->ip6po_tclass = src->ip6po_tclass;
1830	dst->ip6po_flags = src->ip6po_flags;
1831	if (src->ip6po_pktinfo) {
1832		dst->ip6po_pktinfo = malloc(sizeof(*dst->ip6po_pktinfo),
1833		    M_IP6OPT, M_NOWAIT);
1834		if (dst->ip6po_pktinfo == NULL)
1835			goto bad;
1836		*dst->ip6po_pktinfo = *src->ip6po_pktinfo;
1837	}
1838	PKTOPT_EXTHDRCPY(ip6po_hbh);
1839	PKTOPT_EXTHDRCPY(ip6po_dest1);
1840	PKTOPT_EXTHDRCPY(ip6po_dest2);
1841	PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */
1842	return (0);
1843
1844  bad:
1845	ip6_clearpktopts(dst, -1);
1846	return (ENOBUFS);
1847}
1848#undef PKTOPT_EXTHDRCPY
1849
1850void
1851ip6_freepcbopts(struct ip6_pktopts *pktopt)
1852{
1853	if (pktopt == NULL)
1854		return;
1855
1856	ip6_clearpktopts(pktopt, -1);
1857
1858	free(pktopt, M_IP6OPT, 0);
1859}
1860
1861/*
1862 * Set the IP6 multicast options in response to user setsockopt().
1863 */
1864int
1865ip6_setmoptions(int optname, struct ip6_moptions **im6op, struct mbuf *m,
1866    unsigned int rtableid)
1867{
1868	int error = 0;
1869	u_int loop, ifindex;
1870	struct ipv6_mreq *mreq;
1871	struct ifnet *ifp;
1872	struct ip6_moptions *im6o = *im6op;
1873	struct in6_multi_mship *imm;
1874	struct proc *p = curproc;	/* XXX */
1875
1876	if (im6o == NULL) {
1877		/*
1878		 * No multicast option buffer attached to the pcb;
1879		 * allocate one and initialize to default values.
1880		 */
1881		im6o = malloc(sizeof(*im6o), M_IPMOPTS, M_WAITOK);
1882		if (im6o == NULL)
1883			return (ENOBUFS);
1884		*im6op = im6o;
1885		im6o->im6o_ifidx = 0;
1886		im6o->im6o_hlim = ip6_defmcasthlim;
1887		im6o->im6o_loop = IPV6_DEFAULT_MULTICAST_LOOP;
1888		LIST_INIT(&im6o->im6o_memberships);
1889	}
1890
1891	switch (optname) {
1892
1893	case IPV6_MULTICAST_IF:
1894		/*
1895		 * Select the interface for outgoing multicast packets.
1896		 */
1897		if (m == NULL || m->m_len != sizeof(u_int)) {
1898			error = EINVAL;
1899			break;
1900		}
1901		memcpy(&ifindex, mtod(m, u_int *), sizeof(ifindex));
1902		if (ifindex != 0) {
1903			ifp = if_get(ifindex);
1904			if (ifp == NULL) {
1905				error = ENXIO;	/* XXX EINVAL? */
1906				break;
1907			}
1908			if (ifp->if_rdomain != rtable_l2(rtableid) ||
1909			    (ifp->if_flags & IFF_MULTICAST) == 0) {
1910				error = EADDRNOTAVAIL;
1911				if_put(ifp);
1912				break;
1913			}
1914			if_put(ifp);
1915		}
1916		im6o->im6o_ifidx = ifindex;
1917		break;
1918
1919	case IPV6_MULTICAST_HOPS:
1920	    {
1921		/*
1922		 * Set the IP6 hoplimit for outgoing multicast packets.
1923		 */
1924		int optval;
1925		if (m == NULL || m->m_len != sizeof(int)) {
1926			error = EINVAL;
1927			break;
1928		}
1929		memcpy(&optval, mtod(m, u_int *), sizeof(optval));
1930		if (optval < -1 || optval >= 256)
1931			error = EINVAL;
1932		else if (optval == -1)
1933			im6o->im6o_hlim = ip6_defmcasthlim;
1934		else
1935			im6o->im6o_hlim = optval;
1936		break;
1937	    }
1938
1939	case IPV6_MULTICAST_LOOP:
1940		/*
1941		 * Set the loopback flag for outgoing multicast packets.
1942		 * Must be zero or one.
1943		 */
1944		if (m == NULL || m->m_len != sizeof(u_int)) {
1945			error = EINVAL;
1946			break;
1947		}
1948		memcpy(&loop, mtod(m, u_int *), sizeof(loop));
1949		if (loop > 1) {
1950			error = EINVAL;
1951			break;
1952		}
1953		im6o->im6o_loop = loop;
1954		break;
1955
1956	case IPV6_JOIN_GROUP:
1957		/*
1958		 * Add a multicast group membership.
1959		 * Group must be a valid IP6 multicast address.
1960		 */
1961		if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) {
1962			error = EINVAL;
1963			break;
1964		}
1965		mreq = mtod(m, struct ipv6_mreq *);
1966		if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) {
1967			/*
1968			 * We use the unspecified address to specify to accept
1969			 * all multicast addresses. Only super user is allowed
1970			 * to do this.
1971			 */
1972			if (suser(p))
1973			{
1974				error = EACCES;
1975				break;
1976			}
1977		} else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) {
1978			error = EINVAL;
1979			break;
1980		}
1981
1982		/*
1983		 * If no interface was explicitly specified, choose an
1984		 * appropriate one according to the given multicast address.
1985		 */
1986		if (mreq->ipv6mr_interface == 0) {
1987			struct rtentry *rt;
1988			struct sockaddr_in6 dst;
1989
1990			memset(&dst, 0, sizeof(dst));
1991			dst.sin6_len = sizeof(dst);
1992			dst.sin6_family = AF_INET6;
1993			dst.sin6_addr = mreq->ipv6mr_multiaddr;
1994			rt = rtalloc(sin6tosa(&dst), RT_RESOLVE, rtableid);
1995			if (rt == NULL) {
1996				error = EADDRNOTAVAIL;
1997				break;
1998			}
1999			ifp = if_get(rt->rt_ifidx);
2000			rtfree(rt);
2001		} else {
2002			/*
2003			 * If the interface is specified, validate it.
2004			 */
2005			ifp = if_get(mreq->ipv6mr_interface);
2006			if (ifp == NULL) {
2007				error = ENXIO;	/* XXX EINVAL? */
2008				break;
2009			}
2010		}
2011
2012		/*
2013		 * See if we found an interface, and confirm that it
2014		 * supports multicast
2015		 */
2016		if (ifp == NULL || ifp->if_rdomain != rtable_l2(rtableid) ||
2017		    (ifp->if_flags & IFF_MULTICAST) == 0) {
2018			if_put(ifp);
2019			error = EADDRNOTAVAIL;
2020			break;
2021		}
2022		/*
2023		 * Put interface index into the multicast address,
2024		 * if the address has link/interface-local scope.
2025		 */
2026		if (IN6_IS_SCOPE_EMBED(&mreq->ipv6mr_multiaddr)) {
2027			mreq->ipv6mr_multiaddr.s6_addr16[1] =
2028			    htons(ifp->if_index);
2029		}
2030		/*
2031		 * See if the membership already exists.
2032		 */
2033		LIST_FOREACH(imm, &im6o->im6o_memberships, i6mm_chain)
2034			if (imm->i6mm_maddr->in6m_ifidx == ifp->if_index &&
2035			    IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
2036			    &mreq->ipv6mr_multiaddr))
2037				break;
2038		if (imm != NULL) {
2039			if_put(ifp);
2040			error = EADDRINUSE;
2041			break;
2042		}
2043		/*
2044		 * Everything looks good; add a new record to the multicast
2045		 * address list for the given interface.
2046		 */
2047		imm = in6_joingroup(ifp, &mreq->ipv6mr_multiaddr, &error);
2048		if_put(ifp);
2049		if (!imm)
2050			break;
2051		LIST_INSERT_HEAD(&im6o->im6o_memberships, imm, i6mm_chain);
2052		break;
2053
2054	case IPV6_LEAVE_GROUP:
2055		/*
2056		 * Drop a multicast group membership.
2057		 * Group must be a valid IP6 multicast address.
2058		 */
2059		if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) {
2060			error = EINVAL;
2061			break;
2062		}
2063		mreq = mtod(m, struct ipv6_mreq *);
2064		if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) {
2065			if (suser(p)) {
2066				error = EACCES;
2067				break;
2068			}
2069		} else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) {
2070			error = EINVAL;
2071			break;
2072		}
2073
2074		/*
2075		 * Put interface index into the multicast address,
2076		 * if the address has link-local scope.
2077		 */
2078		if (IN6_IS_ADDR_MC_LINKLOCAL(&mreq->ipv6mr_multiaddr)) {
2079			mreq->ipv6mr_multiaddr.s6_addr16[1] =
2080			    htons(mreq->ipv6mr_interface);
2081		}
2082
2083		/*
2084		 * If an interface address was specified, get a pointer
2085		 * to its ifnet structure.
2086		 */
2087		if (mreq->ipv6mr_interface == 0)
2088			ifp = NULL;
2089		else {
2090			ifp = if_get(mreq->ipv6mr_interface);
2091			if (ifp == NULL) {
2092				error = ENXIO;	/* XXX EINVAL? */
2093				break;
2094			}
2095		}
2096
2097		/*
2098		 * Find the membership in the membership list.
2099		 */
2100		LIST_FOREACH(imm, &im6o->im6o_memberships, i6mm_chain) {
2101			if ((ifp == NULL ||
2102			    imm->i6mm_maddr->in6m_ifidx == ifp->if_index) &&
2103			    IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
2104			    &mreq->ipv6mr_multiaddr))
2105				break;
2106		}
2107
2108		if_put(ifp);
2109
2110		if (imm == NULL) {
2111			/* Unable to resolve interface */
2112			error = EADDRNOTAVAIL;
2113			break;
2114		}
2115		/*
2116		 * Give up the multicast address record to which the
2117		 * membership points.
2118		 */
2119		LIST_REMOVE(imm, i6mm_chain);
2120		in6_leavegroup(imm);
2121		break;
2122
2123	default:
2124		error = EOPNOTSUPP;
2125		break;
2126	}
2127
2128	/*
2129	 * If all options have default values, no need to keep the option
2130	 * structure.
2131	 */
2132	if (im6o->im6o_ifidx == 0 &&
2133	    im6o->im6o_hlim == ip6_defmcasthlim &&
2134	    im6o->im6o_loop == IPV6_DEFAULT_MULTICAST_LOOP &&
2135	    LIST_EMPTY(&im6o->im6o_memberships)) {
2136		free(*im6op, M_IPMOPTS, sizeof(**im6op));
2137		*im6op = NULL;
2138	}
2139
2140	return (error);
2141}
2142
2143/*
2144 * Return the IP6 multicast options in response to user getsockopt().
2145 */
2146int
2147ip6_getmoptions(int optname, struct ip6_moptions *im6o, struct mbuf *m)
2148{
2149	u_int *hlim, *loop, *ifindex;
2150
2151	switch (optname) {
2152	case IPV6_MULTICAST_IF:
2153		ifindex = mtod(m, u_int *);
2154		m->m_len = sizeof(u_int);
2155		if (im6o == NULL || im6o->im6o_ifidx == 0)
2156			*ifindex = 0;
2157		else
2158			*ifindex = im6o->im6o_ifidx;
2159		return (0);
2160
2161	case IPV6_MULTICAST_HOPS:
2162		hlim = mtod(m, u_int *);
2163		m->m_len = sizeof(u_int);
2164		if (im6o == NULL)
2165			*hlim = ip6_defmcasthlim;
2166		else
2167			*hlim = im6o->im6o_hlim;
2168		return (0);
2169
2170	case IPV6_MULTICAST_LOOP:
2171		loop = mtod(m, u_int *);
2172		m->m_len = sizeof(u_int);
2173		if (im6o == NULL)
2174			*loop = ip6_defmcasthlim;
2175		else
2176			*loop = im6o->im6o_loop;
2177		return (0);
2178
2179	default:
2180		return (EOPNOTSUPP);
2181	}
2182}
2183
2184/*
2185 * Discard the IP6 multicast options.
2186 */
2187void
2188ip6_freemoptions(struct ip6_moptions *im6o)
2189{
2190	struct in6_multi_mship *imm;
2191
2192	if (im6o == NULL)
2193		return;
2194
2195	while (!LIST_EMPTY(&im6o->im6o_memberships)) {
2196		imm = LIST_FIRST(&im6o->im6o_memberships);
2197		LIST_REMOVE(imm, i6mm_chain);
2198		in6_leavegroup(imm);
2199	}
2200	free(im6o, M_IPMOPTS, sizeof(*im6o));
2201}
2202
2203/*
2204 * Set IPv6 outgoing packet options based on advanced API.
2205 */
2206int
2207ip6_setpktopts(struct mbuf *control, struct ip6_pktopts *opt,
2208    struct ip6_pktopts *stickyopt, int priv, int uproto)
2209{
2210	u_int clen;
2211	struct cmsghdr *cm = 0;
2212	caddr_t cmsgs;
2213	int error;
2214
2215	if (control == NULL || opt == NULL)
2216		return (EINVAL);
2217
2218	ip6_initpktopts(opt);
2219	if (stickyopt) {
2220		int error;
2221
2222		/*
2223		 * If stickyopt is provided, make a local copy of the options
2224		 * for this particular packet, then override them by ancillary
2225		 * objects.
2226		 * XXX: copypktopts() does not copy the cached route to a next
2227		 * hop (if any).  This is not very good in terms of efficiency,
2228		 * but we can allow this since this option should be rarely
2229		 * used.
2230		 */
2231		if ((error = copypktopts(opt, stickyopt)) != 0)
2232			return (error);
2233	}
2234
2235	/*
2236	 * XXX: Currently, we assume all the optional information is stored
2237	 * in a single mbuf.
2238	 */
2239	if (control->m_next)
2240		return (EINVAL);
2241
2242	clen = control->m_len;
2243	cmsgs = mtod(control, caddr_t);
2244	do {
2245		if (clen < CMSG_LEN(0))
2246			return (EINVAL);
2247		cm = (struct cmsghdr *)cmsgs;
2248		if (cm->cmsg_len < CMSG_LEN(0) || cm->cmsg_len > clen ||
2249		    CMSG_ALIGN(cm->cmsg_len) > clen)
2250			return (EINVAL);
2251		if (cm->cmsg_level == IPPROTO_IPV6) {
2252			error = ip6_setpktopt(cm->cmsg_type, CMSG_DATA(cm),
2253			    cm->cmsg_len - CMSG_LEN(0), opt, priv, 0, uproto);
2254			if (error)
2255				return (error);
2256		}
2257
2258		clen -= CMSG_ALIGN(cm->cmsg_len);
2259		cmsgs += CMSG_ALIGN(cm->cmsg_len);
2260	} while (clen);
2261
2262	return (0);
2263}
2264
2265/*
2266 * Set a particular packet option, as a sticky option or an ancillary data
2267 * item.  "len" can be 0 only when it's a sticky option.
2268 */
2269int
2270ip6_setpktopt(int optname, u_char *buf, int len, struct ip6_pktopts *opt,
2271    int priv, int sticky, int uproto)
2272{
2273	int minmtupolicy;
2274
2275	switch (optname) {
2276	case IPV6_PKTINFO:
2277	{
2278		struct ifnet *ifp = NULL;
2279		struct in6_pktinfo *pktinfo;
2280
2281		if (len != sizeof(struct in6_pktinfo))
2282			return (EINVAL);
2283
2284		pktinfo = (struct in6_pktinfo *)buf;
2285
2286		/*
2287		 * An application can clear any sticky IPV6_PKTINFO option by
2288		 * doing a "regular" setsockopt with ipi6_addr being
2289		 * in6addr_any and ipi6_ifindex being zero.
2290		 * [RFC 3542, Section 6]
2291		 */
2292		if (opt->ip6po_pktinfo &&
2293		    pktinfo->ipi6_ifindex == 0 &&
2294		    IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) {
2295			ip6_clearpktopts(opt, optname);
2296			break;
2297		}
2298
2299		if (uproto == IPPROTO_TCP &&
2300		    sticky && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) {
2301			return (EINVAL);
2302		}
2303
2304		if (pktinfo->ipi6_ifindex) {
2305			ifp = if_get(pktinfo->ipi6_ifindex);
2306			if (ifp == NULL)
2307				return (ENXIO);
2308			if_put(ifp);
2309		}
2310
2311		/*
2312		 * We store the address anyway, and let in6_selectsrc()
2313		 * validate the specified address.  This is because ipi6_addr
2314		 * may not have enough information about its scope zone, and
2315		 * we may need additional information (such as outgoing
2316		 * interface or the scope zone of a destination address) to
2317		 * disambiguate the scope.
2318		 * XXX: the delay of the validation may confuse the
2319		 * application when it is used as a sticky option.
2320		 */
2321		if (opt->ip6po_pktinfo == NULL) {
2322			opt->ip6po_pktinfo = malloc(sizeof(*pktinfo),
2323			    M_IP6OPT, M_NOWAIT);
2324			if (opt->ip6po_pktinfo == NULL)
2325				return (ENOBUFS);
2326		}
2327		bcopy(pktinfo, opt->ip6po_pktinfo, sizeof(*pktinfo));
2328		break;
2329	}
2330
2331	case IPV6_HOPLIMIT:
2332	{
2333		int *hlimp;
2334
2335		/*
2336		 * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT
2337		 * to simplify the ordering among hoplimit options.
2338		 */
2339		if (sticky)
2340			return (ENOPROTOOPT);
2341
2342		if (len != sizeof(int))
2343			return (EINVAL);
2344		hlimp = (int *)buf;
2345		if (*hlimp < -1 || *hlimp > 255)
2346			return (EINVAL);
2347
2348		opt->ip6po_hlim = *hlimp;
2349		break;
2350	}
2351
2352	case IPV6_TCLASS:
2353	{
2354		int tclass;
2355
2356		if (len != sizeof(int))
2357			return (EINVAL);
2358		tclass = *(int *)buf;
2359		if (tclass < -1 || tclass > 255)
2360			return (EINVAL);
2361
2362		opt->ip6po_tclass = tclass;
2363		break;
2364	}
2365	case IPV6_HOPOPTS:
2366	{
2367		struct ip6_hbh *hbh;
2368		int hbhlen;
2369
2370		/*
2371		 * XXX: We don't allow a non-privileged user to set ANY HbH
2372		 * options, since per-option restriction has too much
2373		 * overhead.
2374		 */
2375		if (!priv)
2376			return (EPERM);
2377
2378		if (len == 0) {
2379			ip6_clearpktopts(opt, IPV6_HOPOPTS);
2380			break;	/* just remove the option */
2381		}
2382
2383		/* message length validation */
2384		if (len < sizeof(struct ip6_hbh))
2385			return (EINVAL);
2386		hbh = (struct ip6_hbh *)buf;
2387		hbhlen = (hbh->ip6h_len + 1) << 3;
2388		if (len != hbhlen)
2389			return (EINVAL);
2390
2391		/* turn off the previous option, then set the new option. */
2392		ip6_clearpktopts(opt, IPV6_HOPOPTS);
2393		opt->ip6po_hbh = malloc(hbhlen, M_IP6OPT, M_NOWAIT);
2394		if (opt->ip6po_hbh == NULL)
2395			return (ENOBUFS);
2396		memcpy(opt->ip6po_hbh, hbh, hbhlen);
2397
2398		break;
2399	}
2400
2401	case IPV6_DSTOPTS:
2402	case IPV6_RTHDRDSTOPTS:
2403	{
2404		struct ip6_dest *dest, **newdest = NULL;
2405		int destlen;
2406
2407		if (!priv)	/* XXX: see the comment for IPV6_HOPOPTS */
2408			return (EPERM);
2409
2410		if (len == 0) {
2411			ip6_clearpktopts(opt, optname);
2412			break;	/* just remove the option */
2413		}
2414
2415		/* message length validation */
2416		if (len < sizeof(struct ip6_dest))
2417			return (EINVAL);
2418		dest = (struct ip6_dest *)buf;
2419		destlen = (dest->ip6d_len + 1) << 3;
2420		if (len != destlen)
2421			return (EINVAL);
2422		/*
2423		 * Determine the position that the destination options header
2424		 * should be inserted; before or after the routing header.
2425		 */
2426		switch (optname) {
2427		case IPV6_RTHDRDSTOPTS:
2428			newdest = &opt->ip6po_dest1;
2429			break;
2430		case IPV6_DSTOPTS:
2431			newdest = &opt->ip6po_dest2;
2432			break;
2433		}
2434
2435		/* turn off the previous option, then set the new option. */
2436		ip6_clearpktopts(opt, optname);
2437		*newdest = malloc(destlen, M_IP6OPT, M_NOWAIT);
2438		if (*newdest == NULL)
2439			return (ENOBUFS);
2440		memcpy(*newdest, dest, destlen);
2441
2442		break;
2443	}
2444
2445	case IPV6_RTHDR:
2446	{
2447		struct ip6_rthdr *rth;
2448		int rthlen;
2449
2450		if (len == 0) {
2451			ip6_clearpktopts(opt, IPV6_RTHDR);
2452			break;	/* just remove the option */
2453		}
2454
2455		/* message length validation */
2456		if (len < sizeof(struct ip6_rthdr))
2457			return (EINVAL);
2458		rth = (struct ip6_rthdr *)buf;
2459		rthlen = (rth->ip6r_len + 1) << 3;
2460		if (len != rthlen)
2461			return (EINVAL);
2462
2463		switch (rth->ip6r_type) {
2464		case IPV6_RTHDR_TYPE_0:
2465			if (rth->ip6r_len == 0)	/* must contain one addr */
2466				return (EINVAL);
2467			if (rth->ip6r_len % 2) /* length must be even */
2468				return (EINVAL);
2469			if (rth->ip6r_len / 2 != rth->ip6r_segleft)
2470				return (EINVAL);
2471			break;
2472		default:
2473			return (EINVAL);	/* not supported */
2474		}
2475		/* turn off the previous option */
2476		ip6_clearpktopts(opt, IPV6_RTHDR);
2477		opt->ip6po_rthdr = malloc(rthlen, M_IP6OPT, M_NOWAIT);
2478		if (opt->ip6po_rthdr == NULL)
2479			return (ENOBUFS);
2480		memcpy(opt->ip6po_rthdr, rth, rthlen);
2481		break;
2482	}
2483
2484	case IPV6_USE_MIN_MTU:
2485		if (len != sizeof(int))
2486			return (EINVAL);
2487		minmtupolicy = *(int *)buf;
2488		if (minmtupolicy != IP6PO_MINMTU_MCASTONLY &&
2489		    minmtupolicy != IP6PO_MINMTU_DISABLE &&
2490		    minmtupolicy != IP6PO_MINMTU_ALL) {
2491			return (EINVAL);
2492		}
2493		opt->ip6po_minmtu = minmtupolicy;
2494		break;
2495
2496	case IPV6_DONTFRAG:
2497		if (len != sizeof(int))
2498			return (EINVAL);
2499
2500		if (uproto == IPPROTO_TCP || *(int *)buf == 0) {
2501			/*
2502			 * we ignore this option for TCP sockets.
2503			 * (RFC3542 leaves this case unspecified.)
2504			 */
2505			opt->ip6po_flags &= ~IP6PO_DONTFRAG;
2506		} else
2507			opt->ip6po_flags |= IP6PO_DONTFRAG;
2508		break;
2509
2510	default:
2511		return (ENOPROTOOPT);
2512	} /* end of switch */
2513
2514	return (0);
2515}
2516
2517/*
2518 * Routine called from ip6_output() to loop back a copy of an IP6 multicast
2519 * packet to the input queue of a specified interface.
2520 */
2521void
2522ip6_mloopback(struct ifnet *ifp, struct mbuf *m, struct sockaddr_in6 *dst)
2523{
2524	struct mbuf *copym;
2525	struct ip6_hdr *ip6;
2526
2527	/*
2528	 * Duplicate the packet.
2529	 */
2530	copym = m_copym(m, 0, M_COPYALL, M_NOWAIT);
2531	if (copym == NULL)
2532		return;
2533
2534	/*
2535	 * Make sure to deep-copy IPv6 header portion in case the data
2536	 * is in an mbuf cluster, so that we can safely override the IPv6
2537	 * header portion later.
2538	 */
2539	if ((copym->m_flags & M_EXT) != 0 ||
2540	    copym->m_len < sizeof(struct ip6_hdr)) {
2541		copym = m_pullup(copym, sizeof(struct ip6_hdr));
2542		if (copym == NULL)
2543			return;
2544	}
2545
2546#ifdef DIAGNOSTIC
2547	if (copym->m_len < sizeof(*ip6)) {
2548		m_freem(copym);
2549		return;
2550	}
2551#endif
2552
2553	ip6 = mtod(copym, struct ip6_hdr *);
2554	if (IN6_IS_SCOPE_EMBED(&ip6->ip6_src))
2555		ip6->ip6_src.s6_addr16[1] = 0;
2556	if (IN6_IS_SCOPE_EMBED(&ip6->ip6_dst))
2557		ip6->ip6_dst.s6_addr16[1] = 0;
2558
2559	if_input_local(ifp, copym, dst->sin6_family);
2560}
2561
2562/*
2563 * Chop IPv6 header off from the payload.
2564 */
2565int
2566ip6_splithdr(struct mbuf *m, struct ip6_exthdrs *exthdrs)
2567{
2568	struct mbuf *mh;
2569	struct ip6_hdr *ip6;
2570
2571	ip6 = mtod(m, struct ip6_hdr *);
2572	if (m->m_len > sizeof(*ip6)) {
2573		MGET(mh, M_DONTWAIT, MT_HEADER);
2574		if (mh == NULL) {
2575			m_freem(m);
2576			return ENOBUFS;
2577		}
2578		M_MOVE_PKTHDR(mh, m);
2579		m_align(mh, sizeof(*ip6));
2580		m->m_len -= sizeof(*ip6);
2581		m->m_data += sizeof(*ip6);
2582		mh->m_next = m;
2583		m = mh;
2584		m->m_len = sizeof(*ip6);
2585		bcopy((caddr_t)ip6, mtod(m, caddr_t), sizeof(*ip6));
2586	}
2587	exthdrs->ip6e_ip6 = m;
2588	return 0;
2589}
2590
2591u_int32_t
2592ip6_randomid(void)
2593{
2594	return idgen32(&ip6_id_ctx);
2595}
2596
2597void
2598ip6_randomid_init(void)
2599{
2600	idgen32_init(&ip6_id_ctx);
2601}
2602
2603/*
2604 *	Compute significant parts of the IPv6 checksum pseudo-header
2605 *	for use in a delayed TCP/UDP checksum calculation.
2606 */
2607static __inline u_int16_t __attribute__((__unused__))
2608in6_cksum_phdr(const struct in6_addr *src, const struct in6_addr *dst,
2609    u_int32_t len, u_int32_t nxt)
2610{
2611	u_int32_t sum = 0;
2612	const u_int16_t *w;
2613
2614	w = (const u_int16_t *) src;
2615	sum += w[0];
2616	if (!IN6_IS_SCOPE_EMBED(src))
2617		sum += w[1];
2618	sum += w[2]; sum += w[3]; sum += w[4]; sum += w[5];
2619	sum += w[6]; sum += w[7];
2620
2621	w = (const u_int16_t *) dst;
2622	sum += w[0];
2623	if (!IN6_IS_SCOPE_EMBED(dst))
2624		sum += w[1];
2625	sum += w[2]; sum += w[3]; sum += w[4]; sum += w[5];
2626	sum += w[6]; sum += w[7];
2627
2628	sum += (u_int16_t)(len >> 16) + (u_int16_t)(len /*& 0xffff*/);
2629
2630	sum += (u_int16_t)(nxt >> 16) + (u_int16_t)(nxt /*& 0xffff*/);
2631
2632	sum = (u_int16_t)(sum >> 16) + (u_int16_t)(sum /*& 0xffff*/);
2633
2634	if (sum > 0xffff)
2635		sum -= 0xffff;
2636
2637	return (sum);
2638}
2639
2640/*
2641 * Process a delayed payload checksum calculation.
2642 */
2643void
2644in6_delayed_cksum(struct mbuf *m, u_int8_t nxt)
2645{
2646	int nxtp, offset;
2647	u_int16_t csum;
2648
2649	offset = ip6_lasthdr(m, 0, IPPROTO_IPV6, &nxtp);
2650	if (offset <= 0 || nxtp != nxt)
2651		/* If the desired next protocol isn't found, punt. */
2652		return;
2653	csum = (u_int16_t)(in6_cksum(m, 0, offset, m->m_pkthdr.len - offset));
2654
2655	switch (nxt) {
2656	case IPPROTO_TCP:
2657		offset += offsetof(struct tcphdr, th_sum);
2658		break;
2659
2660	case IPPROTO_UDP:
2661		offset += offsetof(struct udphdr, uh_sum);
2662		if (csum == 0)
2663			csum = 0xffff;
2664		break;
2665
2666	case IPPROTO_ICMPV6:
2667		offset += offsetof(struct icmp6_hdr, icmp6_cksum);
2668		break;
2669	}
2670
2671	if ((offset + sizeof(u_int16_t)) > m->m_len)
2672		m_copyback(m, offset, sizeof(csum), &csum, M_NOWAIT);
2673	else
2674		*(u_int16_t *)(mtod(m, caddr_t) + offset) = csum;
2675}
2676
2677void
2678in6_proto_cksum_out(struct mbuf *m, struct ifnet *ifp)
2679{
2680	struct ip6_hdr *ip6 = mtod(m, struct ip6_hdr *);
2681
2682	/* some hw and in6_delayed_cksum need the pseudo header cksum */
2683	if (m->m_pkthdr.csum_flags &
2684	    (M_TCP_CSUM_OUT|M_UDP_CSUM_OUT|M_ICMP_CSUM_OUT)) {
2685		int nxt, offset;
2686		u_int16_t csum;
2687
2688		offset = ip6_lasthdr(m, 0, IPPROTO_IPV6, &nxt);
2689		if (ISSET(m->m_pkthdr.csum_flags, M_TCP_TSO) &&
2690		    in_ifcap_cksum(m, ifp, IFCAP_TSOv6)) {
2691			csum = in6_cksum_phdr(&ip6->ip6_src, &ip6->ip6_dst,
2692			    htonl(0), htonl(nxt));
2693		} else {
2694			csum = in6_cksum_phdr(&ip6->ip6_src, &ip6->ip6_dst,
2695			    htonl(m->m_pkthdr.len - offset), htonl(nxt));
2696		}
2697		if (nxt == IPPROTO_TCP)
2698			offset += offsetof(struct tcphdr, th_sum);
2699		else if (nxt == IPPROTO_UDP)
2700			offset += offsetof(struct udphdr, uh_sum);
2701		else if (nxt == IPPROTO_ICMPV6)
2702			offset += offsetof(struct icmp6_hdr, icmp6_cksum);
2703		if ((offset + sizeof(u_int16_t)) > m->m_len)
2704			m_copyback(m, offset, sizeof(csum), &csum, M_NOWAIT);
2705		else
2706			*(u_int16_t *)(mtod(m, caddr_t) + offset) = csum;
2707	}
2708
2709	if (m->m_pkthdr.csum_flags & M_TCP_CSUM_OUT) {
2710		if (!ifp || !(ifp->if_capabilities & IFCAP_CSUM_TCPv6) ||
2711		    ip6->ip6_nxt != IPPROTO_TCP ||
2712		    ifp->if_bridgeidx != 0) {
2713			tcpstat_inc(tcps_outswcsum);
2714			in6_delayed_cksum(m, IPPROTO_TCP);
2715			m->m_pkthdr.csum_flags &= ~M_TCP_CSUM_OUT; /* Clear */
2716		}
2717	} else if (m->m_pkthdr.csum_flags & M_UDP_CSUM_OUT) {
2718		if (!ifp || !(ifp->if_capabilities & IFCAP_CSUM_UDPv6) ||
2719		    ip6->ip6_nxt != IPPROTO_UDP ||
2720		    ifp->if_bridgeidx != 0) {
2721			udpstat_inc(udps_outswcsum);
2722			in6_delayed_cksum(m, IPPROTO_UDP);
2723			m->m_pkthdr.csum_flags &= ~M_UDP_CSUM_OUT; /* Clear */
2724		}
2725	} else if (m->m_pkthdr.csum_flags & M_ICMP_CSUM_OUT) {
2726		in6_delayed_cksum(m, IPPROTO_ICMPV6);
2727		m->m_pkthdr.csum_flags &= ~M_ICMP_CSUM_OUT; /* Clear */
2728	}
2729}
2730
2731#ifdef IPSEC
2732int
2733ip6_output_ipsec_lookup(struct mbuf *m, const struct ipsec_level *seclevel,
2734    struct tdb **tdbout)
2735{
2736	struct tdb *tdb;
2737	struct m_tag *mtag;
2738	struct tdb_ident *tdbi;
2739	int error;
2740
2741	/*
2742	 * Check if there was an outgoing SA bound to the flow
2743	 * from a transport protocol.
2744	 */
2745
2746	/* Do we have any pending SAs to apply ? */
2747	error = ipsp_spd_lookup(m, AF_INET6, sizeof(struct ip6_hdr),
2748	    IPSP_DIRECTION_OUT, NULL, seclevel, &tdb, NULL);
2749	if (error || tdb == NULL) {
2750		*tdbout = NULL;
2751		return error;
2752	}
2753	/* Loop detection */
2754	for (mtag = m_tag_first(m); mtag != NULL; mtag = m_tag_next(m, mtag)) {
2755		if (mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_DONE)
2756			continue;
2757		tdbi = (struct tdb_ident *)(mtag + 1);
2758		if (tdbi->spi == tdb->tdb_spi &&
2759		    tdbi->proto == tdb->tdb_sproto &&
2760		    tdbi->rdomain == tdb->tdb_rdomain &&
2761		    !memcmp(&tdbi->dst, &tdb->tdb_dst,
2762		    sizeof(union sockaddr_union))) {
2763			/* no IPsec needed */
2764			tdb_unref(tdb);
2765			*tdbout = NULL;
2766			return 0;
2767		}
2768	}
2769	*tdbout = tdb;
2770	return 0;
2771}
2772
2773int
2774ip6_output_ipsec_pmtu_update(struct tdb *tdb, struct route *ro,
2775    struct in6_addr *dst, int ifidx, int rtableid, int transportmode)
2776{
2777	struct rtentry *rt = NULL;
2778	int rt_mtucloned = 0;
2779
2780	/* Find a host route to store the mtu in */
2781	if (ro != NULL)
2782		rt = ro->ro_rt;
2783	/* but don't add a PMTU route for transport mode SAs */
2784	if (transportmode)
2785		rt = NULL;
2786	else if (rt == NULL || (rt->rt_flags & RTF_HOST) == 0) {
2787		struct sockaddr_in6 sin6;
2788		int error;
2789
2790		memset(&sin6, 0, sizeof(sin6));
2791		sin6.sin6_family = AF_INET6;
2792		sin6.sin6_len = sizeof(sin6);
2793		sin6.sin6_addr = *dst;
2794		sin6.sin6_scope_id = in6_addr2scopeid(ifidx, dst);
2795		error = in6_embedscope(dst, &sin6, NULL, NULL);
2796		if (error) {
2797			/* should be impossible */
2798			return error;
2799		}
2800		rt = icmp6_mtudisc_clone(&sin6, rtableid, 1);
2801		rt_mtucloned = 1;
2802	}
2803	DPRINTF("spi %08x mtu %d rt %p cloned %d",
2804	    ntohl(tdb->tdb_spi), tdb->tdb_mtu, rt, rt_mtucloned);
2805	if (rt != NULL) {
2806		rt->rt_mtu = tdb->tdb_mtu;
2807		if (ro != NULL && ro->ro_rt != NULL) {
2808			rtfree(ro->ro_rt);
2809			ro->ro_rt = rtalloc(&ro->ro_dstsa, RT_RESOLVE,
2810			    rtableid);
2811		}
2812		if (rt_mtucloned)
2813			rtfree(rt);
2814	}
2815	return 0;
2816}
2817
2818int
2819ip6_output_ipsec_send(struct tdb *tdb, struct mbuf *m, struct route *ro,
2820    int tunalready, int fwd)
2821{
2822	struct mbuf_list ml;
2823	struct ifnet *encif = NULL;
2824	struct ip6_hdr *ip6;
2825	struct in6_addr dst;
2826	u_int len;
2827	int error, ifidx, rtableid, tso = 0;
2828
2829#if NPF > 0
2830	/*
2831	 * Packet filter
2832	 */
2833	if ((encif = enc_getif(tdb->tdb_rdomain, tdb->tdb_tap)) == NULL ||
2834	    pf_test(AF_INET6, fwd ? PF_FWD : PF_OUT, encif, &m) != PF_PASS) {
2835		m_freem(m);
2836		return EACCES;
2837	}
2838	if (m == NULL)
2839		return 0;
2840	/*
2841	 * PF_TAG_REROUTE handling or not...
2842	 * Packet is entering IPsec so the routing is
2843	 * already overruled by the IPsec policy.
2844	 * Until now the change was not reconsidered.
2845	 * What's the behaviour?
2846	 */
2847#endif
2848
2849	/* Check if we can chop the TCP packet */
2850	ip6 = mtod(m, struct ip6_hdr *);
2851	if (ISSET(m->m_pkthdr.csum_flags, M_TCP_TSO) &&
2852	    m->m_pkthdr.ph_mss <= tdb->tdb_mtu) {
2853		tso = 1;
2854		len = m->m_pkthdr.ph_mss;
2855	} else
2856		len = sizeof(struct ip6_hdr) + ntohs(ip6->ip6_plen);
2857
2858	/* Check if we are allowed to fragment */
2859	dst = ip6->ip6_dst;
2860	ifidx = m->m_pkthdr.ph_ifidx;
2861	rtableid = m->m_pkthdr.ph_rtableid;
2862	if (ip_mtudisc && tdb->tdb_mtu &&
2863	    len > tdb->tdb_mtu && tdb->tdb_mtutimeout > gettime()) {
2864		int transportmode;
2865
2866		transportmode = (tdb->tdb_dst.sa.sa_family == AF_INET6) &&
2867		    (IN6_ARE_ADDR_EQUAL(&tdb->tdb_dst.sin6.sin6_addr, &dst));
2868		error = ip6_output_ipsec_pmtu_update(tdb, ro, &dst, ifidx,
2869		    rtableid, transportmode);
2870		if (error) {
2871			ipsecstat_inc(ipsec_odrops);
2872			tdbstat_inc(tdb, tdb_odrops);
2873			m_freem(m);
2874			return error;
2875		}
2876		ipsec_adjust_mtu(m, tdb->tdb_mtu);
2877		m_freem(m);
2878		return EMSGSIZE;
2879	}
2880	/* propagate don't fragment for v6-over-v6 */
2881	if (ip_mtudisc)
2882		SET(m->m_pkthdr.csum_flags, M_IPV6_DF_OUT);
2883
2884	/*
2885	 * Clear these -- they'll be set in the recursive invocation
2886	 * as needed.
2887	 */
2888	m->m_flags &= ~(M_BCAST | M_MCAST);
2889
2890	if (tso) {
2891		error = tcp_chopper(m, &ml, encif, len);
2892		if (error)
2893			goto done;
2894	} else {
2895		CLR(m->m_pkthdr.csum_flags, M_TCP_TSO);
2896		in6_proto_cksum_out(m, encif);
2897		ml_init(&ml);
2898		ml_enqueue(&ml, m);
2899	}
2900
2901	KERNEL_LOCK();
2902	while ((m = ml_dequeue(&ml)) != NULL) {
2903		/* Callee frees mbuf */
2904		error = ipsp_process_packet(m, tdb, AF_INET6, tunalready);
2905		if (error)
2906			break;
2907	}
2908	KERNEL_UNLOCK();
2909 done:
2910	if (error) {
2911		ml_purge(&ml);
2912		ipsecstat_inc(ipsec_odrops);
2913		tdbstat_inc(tdb, tdb_odrops);
2914	}
2915	if (!error && tso)
2916		tcpstat_inc(tcps_outswtso);
2917	if (ip_mtudisc && error == EMSGSIZE)
2918		ip6_output_ipsec_pmtu_update(tdb, ro, &dst, ifidx, rtableid, 0);
2919	return error;
2920}
2921#endif /* IPSEC */
2922