kern_synch.c revision 1.86
1/*	$OpenBSD: kern_synch.c,v 1.86 2008/09/05 14:38:15 oga Exp $	*/
2/*	$NetBSD: kern_synch.c,v 1.37 1996/04/22 01:38:37 christos Exp $	*/
3
4/*
5 * Copyright (c) 1982, 1986, 1990, 1991, 1993
6 *	The Regents of the University of California.  All rights reserved.
7 * (c) UNIX System Laboratories, Inc.
8 * All or some portions of this file are derived from material licensed
9 * to the University of California by American Telephone and Telegraph
10 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
11 * the permission of UNIX System Laboratories, Inc.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 *    notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 *    notice, this list of conditions and the following disclaimer in the
20 *    documentation and/or other materials provided with the distribution.
21 * 3. Neither the name of the University nor the names of its contributors
22 *    may be used to endorse or promote products derived from this software
23 *    without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
36 *
37 *	@(#)kern_synch.c	8.6 (Berkeley) 1/21/94
38 */
39
40#include <sys/param.h>
41#include <sys/systm.h>
42#include <sys/proc.h>
43#include <sys/kernel.h>
44#include <sys/buf.h>
45#include <sys/signalvar.h>
46#include <sys/resourcevar.h>
47#include <uvm/uvm_extern.h>
48#include <sys/sched.h>
49#include <sys/timeout.h>
50#include <sys/mount.h>
51#include <sys/syscallargs.h>
52#include <sys/pool.h>
53
54#include <machine/spinlock.h>
55
56#ifdef KTRACE
57#include <sys/ktrace.h>
58#endif
59
60void updatepri(struct proc *);
61void endtsleep(void *);
62
63/*
64 * We're only looking at 7 bits of the address; everything is
65 * aligned to 4, lots of things are aligned to greater powers
66 * of 2.  Shift right by 8, i.e. drop the bottom 256 worth.
67 */
68#define TABLESIZE	128
69#define LOOKUP(x)	(((long)(x) >> 8) & (TABLESIZE - 1))
70TAILQ_HEAD(slpque,proc) slpque[TABLESIZE];
71
72void
73sleep_queue_init(void)
74{
75	int i;
76
77	for (i = 0; i < TABLESIZE; i++)
78		TAILQ_INIT(&slpque[i]);
79}
80
81
82/*
83 * During autoconfiguration or after a panic, a sleep will simply
84 * lower the priority briefly to allow interrupts, then return.
85 * The priority to be used (safepri) is machine-dependent, thus this
86 * value is initialized and maintained in the machine-dependent layers.
87 * This priority will typically be 0, or the lowest priority
88 * that is safe for use on the interrupt stack; it can be made
89 * higher to block network software interrupts after panics.
90 */
91int safepri;
92
93/*
94 * General sleep call.  Suspends the current process until a wakeup is
95 * performed on the specified identifier.  The process will then be made
96 * runnable with the specified priority.  Sleeps at most timo/hz seconds
97 * (0 means no timeout).  If pri includes PCATCH flag, signals are checked
98 * before and after sleeping, else signals are not checked.  Returns 0 if
99 * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
100 * signal needs to be delivered, ERESTART is returned if the current system
101 * call should be restarted if possible, and EINTR is returned if the system
102 * call should be interrupted by the signal (return EINTR).
103 */
104int
105tsleep(void *ident, int priority, const char *wmesg, int timo)
106{
107	struct sleep_state sls;
108	int error, error1;
109
110	if (cold || panicstr) {
111		int s;
112		/*
113		 * After a panic, or during autoconfiguration,
114		 * just give interrupts a chance, then just return;
115		 * don't run any other procs or panic below,
116		 * in case this is the idle process and already asleep.
117		 */
118		s = splhigh();
119		splx(safepri);
120		splx(s);
121		return (0);
122	}
123
124	sleep_setup(&sls, ident, priority, wmesg);
125	sleep_setup_timeout(&sls, timo);
126	sleep_setup_signal(&sls, priority);
127
128	sleep_finish(&sls, 1);
129	error1 = sleep_finish_timeout(&sls);
130	error = sleep_finish_signal(&sls);
131
132	/* Signal errors are higher priority than timeouts. */
133	if (error == 0 && error1 != 0)
134		error = error1;
135
136	return (error);
137}
138
139/*
140 * Same as tsleep, but if we have a mutex provided, then once we've
141 * entered the sleep queue we drop the mutex. After sleeping we re-lock.
142 */
143int
144msleep(void *ident, struct mutex *mtx,  int priority, const char *wmesg, int timo)
145{
146	struct sleep_state sls;
147	int error, error1, spl;
148
149	sleep_setup(&sls, ident, priority, wmesg);
150	sleep_setup_timeout(&sls, timo);
151	sleep_setup_signal(&sls, priority);
152
153	if (mtx) {
154		/* XXX - We need to make sure that the mutex doesn't
155		 * unblock splsched. This can be made a bit more
156		 * correct when the sched_lock is a mutex.
157		 */
158		spl = MUTEX_OLDIPL(mtx);
159		MUTEX_OLDIPL(mtx) = splsched();
160		mtx_leave(mtx);
161	}
162
163	sleep_finish(&sls, 1);
164	error1 = sleep_finish_timeout(&sls);
165	error = sleep_finish_signal(&sls);
166
167	if (mtx && (priority & PNORELOCK) == 0) {
168		mtx_enter(mtx);
169		MUTEX_OLDIPL(mtx) = spl; /* put the ipl back */
170	}
171	/* Signal errors are higher priority than timeouts. */
172	if (error == 0 && error1 != 0)
173		error = error1;
174
175	return (error);
176}
177
178void
179sleep_setup(struct sleep_state *sls, void *ident, int prio, const char *wmesg)
180{
181	struct proc *p = curproc;
182
183#ifdef DIAGNOSTIC
184	if (ident == NULL)
185		panic("tsleep: no ident");
186	if (p->p_stat != SONPROC)
187		panic("tsleep: not SONPROC");
188#endif
189
190#ifdef KTRACE
191	if (KTRPOINT(p, KTR_CSW))
192		ktrcsw(p, 1, 0);
193#endif
194
195	sls->sls_catch = 0;
196	sls->sls_do_sleep = 1;
197	sls->sls_sig = 1;
198
199	SCHED_LOCK(sls->sls_s);
200
201	p->p_wchan = ident;
202	p->p_wmesg = wmesg;
203	p->p_slptime = 0;
204	p->p_priority = prio & PRIMASK;
205	TAILQ_INSERT_TAIL(&slpque[LOOKUP(ident)], p, p_runq);
206}
207
208void
209sleep_finish(struct sleep_state *sls, int do_sleep)
210{
211	struct proc *p = curproc;
212
213	if (sls->sls_do_sleep && do_sleep) {
214		p->p_stat = SSLEEP;
215		p->p_stats->p_ru.ru_nvcsw++;
216		SCHED_ASSERT_LOCKED();
217		mi_switch();
218	} else if (!do_sleep) {
219		unsleep(p);
220	}
221
222#ifdef DIAGNOSTIC
223	if (p->p_stat != SONPROC)
224		panic("sleep_finish !SONPROC");
225#endif
226
227	p->p_cpu->ci_schedstate.spc_curpriority = p->p_usrpri;
228	SCHED_UNLOCK(sls->sls_s);
229
230	/*
231	 * Even though this belongs to the signal handling part of sleep,
232	 * we need to clear it before the ktrace.
233	 */
234	atomic_clearbits_int(&p->p_flag, P_SINTR);
235
236#ifdef KTRACE
237	if (KTRPOINT(p, KTR_CSW))
238		ktrcsw(p, 0, 0);
239#endif
240}
241
242void
243sleep_setup_timeout(struct sleep_state *sls, int timo)
244{
245	if (timo)
246		timeout_add(&curproc->p_sleep_to, timo);
247}
248
249int
250sleep_finish_timeout(struct sleep_state *sls)
251{
252	struct proc *p = curproc;
253
254	if (p->p_flag & P_TIMEOUT) {
255		atomic_clearbits_int(&p->p_flag, P_TIMEOUT);
256		return (EWOULDBLOCK);
257	} else if (timeout_pending(&p->p_sleep_to)) {
258		timeout_del(&p->p_sleep_to);
259	}
260
261	return (0);
262}
263
264void
265sleep_setup_signal(struct sleep_state *sls, int prio)
266{
267	struct proc *p = curproc;
268
269	if ((sls->sls_catch = (prio & PCATCH)) == 0)
270		return;
271
272	/*
273	 * We put ourselves on the sleep queue and start our timeout
274	 * before calling CURSIG, as we could stop there, and a wakeup
275	 * or a SIGCONT (or both) could occur while we were stopped.
276	 * A SIGCONT would cause us to be marked as SSLEEP
277	 * without resuming us, thus we must be ready for sleep
278	 * when CURSIG is called.  If the wakeup happens while we're
279	 * stopped, p->p_wchan will be 0 upon return from CURSIG.
280	 */
281	atomic_setbits_int(&p->p_flag, P_SINTR);
282	if ((sls->sls_sig = CURSIG(p)) != 0) {
283		if (p->p_wchan)
284			unsleep(p);
285		p->p_stat = SONPROC;
286		sls->sls_do_sleep = 0;
287	} else if (p->p_wchan == 0) {
288		sls->sls_catch = 0;
289		sls->sls_do_sleep = 0;
290	}
291}
292
293int
294sleep_finish_signal(struct sleep_state *sls)
295{
296	struct proc *p = curproc;
297
298	if (sls->sls_catch != 0) {
299		if (sls->sls_sig != 0 || (sls->sls_sig = CURSIG(p)) != 0) {
300			if (p->p_sigacts->ps_sigintr & sigmask(sls->sls_sig))
301				return (EINTR);
302			return (ERESTART);
303		}
304	}
305
306	return (0);
307}
308
309/*
310 * Implement timeout for tsleep.
311 * If process hasn't been awakened (wchan non-zero),
312 * set timeout flag and undo the sleep.  If proc
313 * is stopped, just unsleep so it will remain stopped.
314 */
315void
316endtsleep(void *arg)
317{
318	struct proc *p = arg;
319	int s;
320
321	SCHED_LOCK(s);
322	if (p->p_wchan) {
323		if (p->p_stat == SSLEEP)
324			setrunnable(p);
325		else
326			unsleep(p);
327		atomic_setbits_int(&p->p_flag, P_TIMEOUT);
328	}
329	SCHED_UNLOCK(s);
330}
331
332/*
333 * Remove a process from its wait queue
334 */
335void
336unsleep(struct proc *p)
337{
338	if (p->p_wchan) {
339		TAILQ_REMOVE(&slpque[LOOKUP(p->p_wchan)], p, p_runq);
340		p->p_wchan = NULL;
341	}
342}
343
344/*
345 * Make a number of processes sleeping on the specified identifier runnable.
346 */
347void
348wakeup_n(void *ident, int n)
349{
350	struct slpque *qp;
351	struct proc *p;
352	struct proc *pnext;
353	int s;
354
355	SCHED_LOCK(s);
356	qp = &slpque[LOOKUP(ident)];
357	for (p = TAILQ_FIRST(qp); p != NULL && n != 0; p = pnext) {
358		pnext = TAILQ_NEXT(p, p_runq);
359#ifdef DIAGNOSTIC
360		if (p->p_stat != SSLEEP && p->p_stat != SSTOP)
361			panic("wakeup: p_stat is %d", (int)p->p_stat);
362#endif
363		if (p->p_wchan == ident) {
364			--n;
365			p->p_wchan = 0;
366			TAILQ_REMOVE(qp, p, p_runq);
367			if (p->p_stat == SSLEEP) {
368				/* OPTIMIZED EXPANSION OF setrunnable(p); */
369				if (p->p_slptime > 1)
370					updatepri(p);
371				p->p_slptime = 0;
372				p->p_stat = SRUN;
373
374				/*
375				 * Since curpriority is a user priority,
376				 * p->p_priority is always better than
377				 * curpriority on the last CPU on
378				 * which it ran.
379				 *
380				 * XXXSMP See affinity comment in
381				 * resched_proc().
382				 */
383				setrunqueue(p);
384				KASSERT(p->p_cpu != NULL);
385				need_resched(p->p_cpu);
386				/* END INLINE EXPANSION */
387
388			}
389		}
390	}
391	SCHED_UNLOCK(s);
392}
393
394/*
395 * Make all processes sleeping on the specified identifier runnable.
396 */
397void
398wakeup(void *chan)
399{
400	wakeup_n(chan, -1);
401}
402
403int
404sys_sched_yield(struct proc *p, void *v, register_t *retval)
405{
406	yield();
407	return (0);
408}
409
410#ifdef RTHREADS
411
412int
413sys_thrsleep(struct proc *p, void *v, register_t *revtal)
414{
415	struct sys_thrsleep_args *uap = v;
416	long ident = (long)SCARG(uap, ident);
417	int timo = SCARG(uap, timeout);
418	_spinlock_lock_t *lock = SCARG(uap, lock);
419	_spinlock_lock_t unlocked = _SPINLOCK_UNLOCKED;
420	int error;
421
422	p->p_thrslpid = ident;
423
424	if (lock)
425		copyout(&unlocked, lock, sizeof(unlocked));
426	if (hz > 1000)
427		timo = timo * (hz / 1000);
428	else
429		timo = timo / (1000 / hz);
430	if (timo < 0)
431		timo = 0;
432	error = tsleep(&p->p_thrslpid, PUSER | PCATCH, "thrsleep", timo);
433
434	if (error == ERESTART)
435		error = EINTR;
436
437	return (error);
438
439}
440
441int
442sys_thrwakeup(struct proc *p, void *v, register_t *retval)
443{
444	struct sys_thrwakeup_args *uap = v;
445	long ident = (long)SCARG(uap, ident);
446	int n = SCARG(uap, n);
447	struct proc *q;
448	int found = 0;
449
450	TAILQ_FOREACH(q, &p->p_p->ps_threads, p_thr_link) {
451		if (q->p_thrslpid == ident) {
452			wakeup(&q->p_thrslpid);
453			q->p_thrslpid = 0;
454			if (++found == n)
455				return (0);
456		}
457	}
458	if (!found)
459		return (ESRCH);
460
461	return (0);
462}
463#endif
464