1/*	$OpenBSD: kern_synch.c,v 1.205 2024/06/03 12:48:25 claudio Exp $	*/
2/*	$NetBSD: kern_synch.c,v 1.37 1996/04/22 01:38:37 christos Exp $	*/
3
4/*
5 * Copyright (c) 1982, 1986, 1990, 1991, 1993
6 *	The Regents of the University of California.  All rights reserved.
7 * (c) UNIX System Laboratories, Inc.
8 * All or some portions of this file are derived from material licensed
9 * to the University of California by American Telephone and Telegraph
10 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
11 * the permission of UNIX System Laboratories, Inc.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 *    notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 *    notice, this list of conditions and the following disclaimer in the
20 *    documentation and/or other materials provided with the distribution.
21 * 3. Neither the name of the University nor the names of its contributors
22 *    may be used to endorse or promote products derived from this software
23 *    without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
36 *
37 *	@(#)kern_synch.c	8.6 (Berkeley) 1/21/94
38 */
39
40#include <sys/param.h>
41#include <sys/systm.h>
42#include <sys/proc.h>
43#include <sys/kernel.h>
44#include <sys/signalvar.h>
45#include <sys/sched.h>
46#include <sys/timeout.h>
47#include <sys/mount.h>
48#include <sys/syscallargs.h>
49#include <sys/refcnt.h>
50#include <sys/atomic.h>
51#include <sys/tracepoint.h>
52
53#include <ddb/db_output.h>
54
55#include <machine/spinlock.h>
56
57#ifdef DIAGNOSTIC
58#include <sys/syslog.h>
59#endif
60
61#ifdef KTRACE
62#include <sys/ktrace.h>
63#endif
64
65int	sleep_signal_check(void);
66int	thrsleep(struct proc *, struct sys___thrsleep_args *);
67int	thrsleep_unlock(void *);
68
69/*
70 * We're only looking at 7 bits of the address; everything is
71 * aligned to 4, lots of things are aligned to greater powers
72 * of 2.  Shift right by 8, i.e. drop the bottom 256 worth.
73 */
74#define TABLESIZE	128
75#define LOOKUP(x)	(((long)(x) >> 8) & (TABLESIZE - 1))
76TAILQ_HEAD(slpque,proc) slpque[TABLESIZE];
77
78void
79sleep_queue_init(void)
80{
81	int i;
82
83	for (i = 0; i < TABLESIZE; i++)
84		TAILQ_INIT(&slpque[i]);
85}
86
87/*
88 * Global sleep channel for threads that do not want to
89 * receive wakeup(9) broadcasts.
90 */
91int nowake;
92
93/*
94 * During autoconfiguration or after a panic, a sleep will simply
95 * lower the priority briefly to allow interrupts, then return.
96 * The priority to be used (safepri) is machine-dependent, thus this
97 * value is initialized and maintained in the machine-dependent layers.
98 * This priority will typically be 0, or the lowest priority
99 * that is safe for use on the interrupt stack; it can be made
100 * higher to block network software interrupts after panics.
101 */
102extern int safepri;
103
104/*
105 * General sleep call.  Suspends the current process until a wakeup is
106 * performed on the specified identifier.  The process will then be made
107 * runnable with the specified priority.  Sleeps at most timo/hz seconds
108 * (0 means no timeout).  If pri includes PCATCH flag, signals are checked
109 * before and after sleeping, else signals are not checked.  Returns 0 if
110 * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
111 * signal needs to be delivered, ERESTART is returned if the current system
112 * call should be restarted if possible, and EINTR is returned if the system
113 * call should be interrupted by the signal (return EINTR).
114 */
115int
116tsleep(const volatile void *ident, int priority, const char *wmesg, int timo)
117{
118#ifdef MULTIPROCESSOR
119	int hold_count;
120#endif
121
122	KASSERT((priority & ~(PRIMASK | PCATCH)) == 0);
123	KASSERT(ident != &nowake || ISSET(priority, PCATCH) || timo != 0);
124
125#ifdef MULTIPROCESSOR
126	KASSERT(ident == &nowake || timo || _kernel_lock_held());
127#endif
128
129#ifdef DDB
130	if (cold == 2)
131		db_stack_dump();
132#endif
133	if (cold || panicstr) {
134		int s;
135		/*
136		 * After a panic, or during autoconfiguration,
137		 * just give interrupts a chance, then just return;
138		 * don't run any other procs or panic below,
139		 * in case this is the idle process and already asleep.
140		 */
141		s = splhigh();
142		splx(safepri);
143#ifdef MULTIPROCESSOR
144		if (_kernel_lock_held()) {
145			hold_count = __mp_release_all(&kernel_lock);
146			__mp_acquire_count(&kernel_lock, hold_count);
147		}
148#endif
149		splx(s);
150		return (0);
151	}
152
153	sleep_setup(ident, priority, wmesg);
154	return sleep_finish(timo, 1);
155}
156
157int
158tsleep_nsec(const volatile void *ident, int priority, const char *wmesg,
159    uint64_t nsecs)
160{
161	uint64_t to_ticks;
162
163	if (nsecs == INFSLP)
164		return tsleep(ident, priority, wmesg, 0);
165#ifdef DIAGNOSTIC
166	if (nsecs == 0) {
167		log(LOG_WARNING,
168		    "%s: %s[%d]: %s: trying to sleep zero nanoseconds\n",
169		    __func__, curproc->p_p->ps_comm, curproc->p_p->ps_pid,
170		    wmesg);
171	}
172#endif
173	/*
174	 * We want to sleep at least nsecs nanoseconds worth of ticks.
175	 *
176	 *  - Clamp nsecs to prevent arithmetic overflow.
177	 *
178	 *  - Round nsecs up to account for any nanoseconds that do not
179	 *    divide evenly into tick_nsec, otherwise we'll lose them to
180	 *    integer division in the next step.  We add (tick_nsec - 1)
181	 *    to keep from introducing a spurious tick if there are no
182	 *    such nanoseconds, i.e. nsecs % tick_nsec == 0.
183	 *
184	 *  - Divide the rounded value to a count of ticks.  We divide
185	 *    by (tick_nsec + 1) to discard the extra tick introduced if,
186	 *    before rounding, nsecs % tick_nsec == 1.
187	 *
188	 *  - Finally, add a tick to the result.  We need to wait out
189	 *    the current tick before we can begin counting our interval,
190	 *    as we do not know how much time has elapsed since the
191	 *    current tick began.
192	 */
193	nsecs = MIN(nsecs, UINT64_MAX - tick_nsec);
194	to_ticks = (nsecs + tick_nsec - 1) / (tick_nsec + 1) + 1;
195	if (to_ticks > INT_MAX)
196		to_ticks = INT_MAX;
197	return tsleep(ident, priority, wmesg, (int)to_ticks);
198}
199
200/*
201 * Same as tsleep, but if we have a mutex provided, then once we've
202 * entered the sleep queue we drop the mutex. After sleeping we re-lock.
203 */
204int
205msleep(const volatile void *ident, struct mutex *mtx, int priority,
206    const char *wmesg, int timo)
207{
208	int error, spl;
209#ifdef MULTIPROCESSOR
210	int hold_count;
211#endif
212
213	KASSERT((priority & ~(PRIMASK | PCATCH | PNORELOCK)) == 0);
214	KASSERT(ident != &nowake || ISSET(priority, PCATCH) || timo != 0);
215	KASSERT(mtx != NULL);
216
217#ifdef DDB
218	if (cold == 2)
219		db_stack_dump();
220#endif
221	if (cold || panicstr) {
222		/*
223		 * After a panic, or during autoconfiguration,
224		 * just give interrupts a chance, then just return;
225		 * don't run any other procs or panic below,
226		 * in case this is the idle process and already asleep.
227		 */
228		spl = MUTEX_OLDIPL(mtx);
229		MUTEX_OLDIPL(mtx) = safepri;
230		mtx_leave(mtx);
231#ifdef MULTIPROCESSOR
232		if (_kernel_lock_held()) {
233			hold_count = __mp_release_all(&kernel_lock);
234			__mp_acquire_count(&kernel_lock, hold_count);
235		}
236#endif
237		if ((priority & PNORELOCK) == 0) {
238			mtx_enter(mtx);
239			MUTEX_OLDIPL(mtx) = spl;
240		} else
241			splx(spl);
242		return (0);
243	}
244
245	sleep_setup(ident, priority, wmesg);
246
247	mtx_leave(mtx);
248	/* signal may stop the process, release mutex before that */
249	error = sleep_finish(timo, 1);
250
251	if ((priority & PNORELOCK) == 0)
252		mtx_enter(mtx);
253
254	return error;
255}
256
257int
258msleep_nsec(const volatile void *ident, struct mutex *mtx, int priority,
259    const char *wmesg, uint64_t nsecs)
260{
261	uint64_t to_ticks;
262
263	if (nsecs == INFSLP)
264		return msleep(ident, mtx, priority, wmesg, 0);
265#ifdef DIAGNOSTIC
266	if (nsecs == 0) {
267		log(LOG_WARNING,
268		    "%s: %s[%d]: %s: trying to sleep zero nanoseconds\n",
269		    __func__, curproc->p_p->ps_comm, curproc->p_p->ps_pid,
270		    wmesg);
271	}
272#endif
273	nsecs = MIN(nsecs, UINT64_MAX - tick_nsec);
274	to_ticks = (nsecs + tick_nsec - 1) / (tick_nsec + 1) + 1;
275	if (to_ticks > INT_MAX)
276		to_ticks = INT_MAX;
277	return msleep(ident, mtx, priority, wmesg, (int)to_ticks);
278}
279
280/*
281 * Same as tsleep, but if we have a rwlock provided, then once we've
282 * entered the sleep queue we drop the it. After sleeping we re-lock.
283 */
284int
285rwsleep(const volatile void *ident, struct rwlock *rwl, int priority,
286    const char *wmesg, int timo)
287{
288	int error, status;
289
290	KASSERT((priority & ~(PRIMASK | PCATCH | PNORELOCK)) == 0);
291	KASSERT(ident != &nowake || ISSET(priority, PCATCH) || timo != 0);
292	KASSERT(ident != rwl);
293	rw_assert_anylock(rwl);
294	status = rw_status(rwl);
295
296	sleep_setup(ident, priority, wmesg);
297
298	rw_exit(rwl);
299	/* signal may stop the process, release rwlock before that */
300	error = sleep_finish(timo, 1);
301
302	if ((priority & PNORELOCK) == 0)
303		rw_enter(rwl, status);
304
305	return error;
306}
307
308int
309rwsleep_nsec(const volatile void *ident, struct rwlock *rwl, int priority,
310    const char *wmesg, uint64_t nsecs)
311{
312	uint64_t to_ticks;
313
314	if (nsecs == INFSLP)
315		return rwsleep(ident, rwl, priority, wmesg, 0);
316#ifdef DIAGNOSTIC
317	if (nsecs == 0) {
318		log(LOG_WARNING,
319		    "%s: %s[%d]: %s: trying to sleep zero nanoseconds\n",
320		    __func__, curproc->p_p->ps_comm, curproc->p_p->ps_pid,
321		    wmesg);
322	}
323#endif
324	nsecs = MIN(nsecs, UINT64_MAX - tick_nsec);
325	to_ticks = (nsecs + tick_nsec - 1) / (tick_nsec + 1) + 1;
326	if (to_ticks > INT_MAX)
327		to_ticks = INT_MAX;
328	return 	rwsleep(ident, rwl, priority, wmesg, (int)to_ticks);
329}
330
331void
332sleep_setup(const volatile void *ident, int prio, const char *wmesg)
333{
334	struct proc *p = curproc;
335
336#ifdef DIAGNOSTIC
337	if (p->p_flag & P_CANTSLEEP)
338		panic("sleep: %s failed insomnia", p->p_p->ps_comm);
339	if (ident == NULL)
340		panic("tsleep: no ident");
341	if (p->p_stat != SONPROC)
342		panic("tsleep: not SONPROC");
343#endif
344	/* exiting processes are not allowed to catch signals */
345	if (p->p_flag & P_WEXIT)
346		CLR(prio, PCATCH);
347
348	SCHED_LOCK();
349
350	TRACEPOINT(sched, sleep, NULL);
351
352	p->p_wchan = ident;
353	p->p_wmesg = wmesg;
354	p->p_slptime = 0;
355	p->p_slppri = prio & PRIMASK;
356	atomic_setbits_int(&p->p_flag, P_WSLEEP);
357	TAILQ_INSERT_TAIL(&slpque[LOOKUP(ident)], p, p_runq);
358	if (prio & PCATCH)
359		atomic_setbits_int(&p->p_flag, P_SINTR);
360	p->p_stat = SSLEEP;
361
362	SCHED_UNLOCK();
363}
364
365int
366sleep_finish(int timo, int do_sleep)
367{
368	struct proc *p = curproc;
369	int catch, error = 0, error1 = 0;
370
371	catch = p->p_flag & P_SINTR;
372
373	if (timo != 0) {
374		KASSERT((p->p_flag & P_TIMEOUT) == 0);
375		timeout_add(&p->p_sleep_to, timo);
376	}
377
378	if (catch != 0) {
379		/*
380		 * We put ourselves on the sleep queue and start our
381		 * timeout before calling sleep_signal_check(), as we could
382		 * stop there, and a wakeup or a SIGCONT (or both) could
383		 * occur while we were stopped.  A SIGCONT would cause
384		 * us to be marked as SSLEEP without resuming us, thus
385		 * we must be ready for sleep when sleep_signal_check() is
386		 * called.
387		 */
388		if ((error = sleep_signal_check()) != 0) {
389			catch = 0;
390			do_sleep = 0;
391		}
392	}
393
394	SCHED_LOCK();
395	/*
396	 * If the wakeup happens while going to sleep, p->p_wchan
397	 * will be NULL. In that case unwind immediately but still
398	 * check for possible signals and timeouts.
399	 */
400	if (p->p_wchan == NULL)
401		do_sleep = 0;
402	atomic_clearbits_int(&p->p_flag, P_WSLEEP);
403
404	if (do_sleep) {
405		KASSERT(p->p_stat == SSLEEP || p->p_stat == SSTOP);
406		p->p_ru.ru_nvcsw++;
407		mi_switch();
408	} else {
409		KASSERT(p->p_stat == SONPROC || p->p_stat == SSLEEP ||
410		    p->p_stat == SSTOP);
411		unsleep(p);
412		p->p_stat = SONPROC;
413	}
414
415#ifdef DIAGNOSTIC
416	if (p->p_stat != SONPROC)
417		panic("sleep_finish !SONPROC");
418#endif
419
420	p->p_cpu->ci_schedstate.spc_curpriority = p->p_usrpri;
421	SCHED_UNLOCK();
422
423	/*
424	 * Even though this belongs to the signal handling part of sleep,
425	 * we need to clear it before the ktrace.
426	 */
427	atomic_clearbits_int(&p->p_flag, P_SINTR);
428
429	if (timo != 0) {
430		if (p->p_flag & P_TIMEOUT) {
431			error1 = EWOULDBLOCK;
432		} else {
433			/* This can sleep. It must not use timeouts. */
434			timeout_del_barrier(&p->p_sleep_to);
435		}
436		atomic_clearbits_int(&p->p_flag, P_TIMEOUT);
437	}
438
439	/* Check if thread was woken up because of a unwind or signal */
440	if (catch != 0)
441		error = sleep_signal_check();
442
443	/* Signal errors are higher priority than timeouts. */
444	if (error == 0 && error1 != 0)
445		error = error1;
446
447	return error;
448}
449
450/*
451 * Check and handle signals and suspensions around a sleep cycle.
452 */
453int
454sleep_signal_check(void)
455{
456	struct proc *p = curproc;
457	struct sigctx ctx;
458	int err, sig;
459
460	if ((err = single_thread_check(p, 1)) != 0)
461		return err;
462	if ((sig = cursig(p, &ctx)) != 0) {
463		if (ctx.sig_intr)
464			return EINTR;
465		else
466			return ERESTART;
467	}
468	return 0;
469}
470
471int
472wakeup_proc(struct proc *p, int flags)
473{
474	int awakened = 0;
475
476	SCHED_ASSERT_LOCKED();
477
478	if (p->p_wchan != NULL) {
479		awakened = 1;
480		if (flags)
481			atomic_setbits_int(&p->p_flag, flags);
482#ifdef DIAGNOSTIC
483		if (p->p_stat != SSLEEP && p->p_stat != SSTOP)
484			panic("thread %d p_stat is %d", p->p_tid, p->p_stat);
485#endif
486		unsleep(p);
487		if (p->p_stat == SSLEEP)
488			setrunnable(p);
489	}
490
491	return awakened;
492}
493
494
495/*
496 * Implement timeout for tsleep.
497 * If process hasn't been awakened (wchan non-zero),
498 * set timeout flag and undo the sleep.  If proc
499 * is stopped, just unsleep so it will remain stopped.
500 */
501void
502endtsleep(void *arg)
503{
504	struct proc *p = arg;
505
506	SCHED_LOCK();
507	wakeup_proc(p, P_TIMEOUT);
508	SCHED_UNLOCK();
509}
510
511/*
512 * Remove a process from its wait queue
513 */
514void
515unsleep(struct proc *p)
516{
517	SCHED_ASSERT_LOCKED();
518
519	if (p->p_wchan != NULL) {
520		TAILQ_REMOVE(&slpque[LOOKUP(p->p_wchan)], p, p_runq);
521		p->p_wchan = NULL;
522		p->p_wmesg = NULL;
523		TRACEPOINT(sched, unsleep, p->p_tid + THREAD_PID_OFFSET,
524		    p->p_p->ps_pid);
525	}
526}
527
528/*
529 * Make a number of processes sleeping on the specified identifier runnable.
530 */
531void
532wakeup_n(const volatile void *ident, int n)
533{
534	struct slpque *qp, wakeq;
535	struct proc *p;
536	struct proc *pnext;
537
538	TAILQ_INIT(&wakeq);
539
540	SCHED_LOCK();
541	qp = &slpque[LOOKUP(ident)];
542	for (p = TAILQ_FIRST(qp); p != NULL && n != 0; p = pnext) {
543		pnext = TAILQ_NEXT(p, p_runq);
544#ifdef DIAGNOSTIC
545		if (p->p_stat != SSLEEP && p->p_stat != SSTOP)
546			panic("thread %d p_stat is %d", p->p_tid, p->p_stat);
547#endif
548		KASSERT(p->p_wchan != NULL);
549		if (p->p_wchan == ident) {
550			TAILQ_REMOVE(qp, p, p_runq);
551			p->p_wchan = NULL;
552			p->p_wmesg = NULL;
553			TAILQ_INSERT_TAIL(&wakeq, p, p_runq);
554			--n;
555		}
556	}
557	while ((p = TAILQ_FIRST(&wakeq))) {
558		TAILQ_REMOVE(&wakeq, p, p_runq);
559		TRACEPOINT(sched, unsleep, p->p_tid + THREAD_PID_OFFSET,
560		    p->p_p->ps_pid);
561		if (p->p_stat == SSLEEP)
562			setrunnable(p);
563	}
564	SCHED_UNLOCK();
565}
566
567/*
568 * Make all processes sleeping on the specified identifier runnable.
569 */
570void
571wakeup(const volatile void *chan)
572{
573	wakeup_n(chan, -1);
574}
575
576int
577sys_sched_yield(struct proc *p, void *v, register_t *retval)
578{
579	struct proc *q;
580	uint8_t newprio;
581
582	/*
583	 * If one of the threads of a multi-threaded process called
584	 * sched_yield(2), drop its priority to ensure its siblings
585	 * can make some progress.
586	 */
587	mtx_enter(&p->p_p->ps_mtx);
588	newprio = p->p_usrpri;
589	TAILQ_FOREACH(q, &p->p_p->ps_threads, p_thr_link)
590		newprio = max(newprio, q->p_runpri);
591	mtx_leave(&p->p_p->ps_mtx);
592
593	SCHED_LOCK();
594	setrunqueue(p->p_cpu, p, newprio);
595	p->p_ru.ru_nvcsw++;
596	mi_switch();
597	SCHED_UNLOCK();
598
599	return (0);
600}
601
602int
603thrsleep_unlock(void *lock)
604{
605	static _atomic_lock_t unlocked = _ATOMIC_LOCK_UNLOCKED;
606	_atomic_lock_t *atomiclock = lock;
607
608	if (!lock)
609		return 0;
610
611	return copyout(&unlocked, atomiclock, sizeof(unlocked));
612}
613
614struct tslpentry {
615	TAILQ_ENTRY(tslpentry)	tslp_link;
616	long			tslp_ident;
617};
618
619/* thrsleep queue shared between processes */
620static struct tslpqueue thrsleep_queue = TAILQ_HEAD_INITIALIZER(thrsleep_queue);
621static struct rwlock thrsleep_lock = RWLOCK_INITIALIZER("thrsleeplk");
622
623int
624thrsleep(struct proc *p, struct sys___thrsleep_args *v)
625{
626	struct sys___thrsleep_args /* {
627		syscallarg(const volatile void *) ident;
628		syscallarg(clockid_t) clock_id;
629		syscallarg(const struct timespec *) tp;
630		syscallarg(void *) lock;
631		syscallarg(const int *) abort;
632	} */ *uap = v;
633	long ident = (long)SCARG(uap, ident);
634	struct tslpentry entry;
635	struct tslpqueue *queue;
636	struct rwlock *qlock;
637	struct timespec *tsp = (struct timespec *)SCARG(uap, tp);
638	void *lock = SCARG(uap, lock);
639	uint64_t nsecs = INFSLP;
640	int abort = 0, error;
641	clockid_t clock_id = SCARG(uap, clock_id);
642
643	if (ident == 0)
644		return (EINVAL);
645	if (tsp != NULL) {
646		struct timespec now;
647
648		if ((error = clock_gettime(p, clock_id, &now)))
649			return (error);
650#ifdef KTRACE
651		if (KTRPOINT(p, KTR_STRUCT))
652			ktrabstimespec(p, tsp);
653#endif
654
655		if (timespeccmp(tsp, &now, <=)) {
656			/* already passed: still do the unlock */
657			if ((error = thrsleep_unlock(lock)))
658				return (error);
659			return (EWOULDBLOCK);
660		}
661
662		timespecsub(tsp, &now, tsp);
663		nsecs = MIN(TIMESPEC_TO_NSEC(tsp), MAXTSLP);
664	}
665
666	if (ident == -1) {
667		queue = &thrsleep_queue;
668		qlock = &thrsleep_lock;
669	} else {
670		queue = &p->p_p->ps_tslpqueue;
671		qlock = &p->p_p->ps_lock;
672	}
673
674	/* Interlock with wakeup. */
675	entry.tslp_ident = ident;
676	rw_enter_write(qlock);
677	TAILQ_INSERT_TAIL(queue, &entry, tslp_link);
678	rw_exit_write(qlock);
679
680	error = thrsleep_unlock(lock);
681
682	if (error == 0 && SCARG(uap, abort) != NULL)
683		error = copyin(SCARG(uap, abort), &abort, sizeof(abort));
684
685	rw_enter_write(qlock);
686	if (error != 0)
687		goto out;
688	if (abort != 0) {
689		error = EINTR;
690		goto out;
691	}
692	if (entry.tslp_ident != 0) {
693		error = rwsleep_nsec(&entry, qlock, PWAIT|PCATCH, "thrsleep",
694		    nsecs);
695	}
696
697out:
698	if (entry.tslp_ident != 0)
699		TAILQ_REMOVE(queue, &entry, tslp_link);
700	rw_exit_write(qlock);
701
702	if (error == ERESTART)
703		error = ECANCELED;
704
705	return (error);
706
707}
708
709int
710sys___thrsleep(struct proc *p, void *v, register_t *retval)
711{
712	struct sys___thrsleep_args /* {
713		syscallarg(const volatile void *) ident;
714		syscallarg(clockid_t) clock_id;
715		syscallarg(struct timespec *) tp;
716		syscallarg(void *) lock;
717		syscallarg(const int *) abort;
718	} */ *uap = v;
719	struct timespec ts;
720	int error;
721
722	if (SCARG(uap, tp) != NULL) {
723		if ((error = copyin(SCARG(uap, tp), &ts, sizeof(ts)))) {
724			*retval = error;
725			return 0;
726		}
727		if (!timespecisvalid(&ts)) {
728			*retval = EINVAL;
729			return 0;
730		}
731		SCARG(uap, tp) = &ts;
732	}
733
734	*retval = thrsleep(p, uap);
735	return 0;
736}
737
738int
739sys___thrwakeup(struct proc *p, void *v, register_t *retval)
740{
741	struct sys___thrwakeup_args /* {
742		syscallarg(const volatile void *) ident;
743		syscallarg(int) n;
744	} */ *uap = v;
745	struct tslpentry *entry, *tmp;
746	struct tslpqueue *queue;
747	struct rwlock *qlock;
748	long ident = (long)SCARG(uap, ident);
749	int n = SCARG(uap, n);
750	int found = 0;
751
752	if (ident == 0)
753		*retval = EINVAL;
754	else {
755		if (ident == -1) {
756			queue = &thrsleep_queue;
757			qlock = &thrsleep_lock;
758			/*
759			 * Wake up all waiters with ident -1. This is needed
760			 * because ident -1 can be shared by multiple userspace
761			 * lock state machines concurrently. The implementation
762			 * has no way to direct the wakeup to a particular
763			 * state machine.
764			 */
765			n = 0;
766		} else {
767			queue = &p->p_p->ps_tslpqueue;
768			qlock = &p->p_p->ps_lock;
769		}
770
771		rw_enter_write(qlock);
772		TAILQ_FOREACH_SAFE(entry, queue, tslp_link, tmp) {
773			if (entry->tslp_ident == ident) {
774				TAILQ_REMOVE(queue, entry, tslp_link);
775				entry->tslp_ident = 0;
776				wakeup_one(entry);
777				if (++found == n)
778					break;
779			}
780		}
781		rw_exit_write(qlock);
782
783		if (ident == -1)
784			*retval = 0;
785		else
786			*retval = found ? 0 : ESRCH;
787	}
788
789	return (0);
790}
791
792void
793refcnt_init(struct refcnt *r)
794{
795	refcnt_init_trace(r, 0);
796}
797
798void
799refcnt_init_trace(struct refcnt *r, int idx)
800{
801	r->r_traceidx = idx;
802	atomic_store_int(&r->r_refs, 1);
803	TRACEINDEX(refcnt, r->r_traceidx, r, 0, +1);
804}
805
806void
807refcnt_take(struct refcnt *r)
808{
809	u_int refs;
810
811	refs = atomic_inc_int_nv(&r->r_refs);
812	KASSERT(refs != 0);
813	TRACEINDEX(refcnt, r->r_traceidx, r, refs - 1, +1);
814	(void)refs;
815}
816
817int
818refcnt_rele(struct refcnt *r)
819{
820	u_int refs;
821
822	membar_exit_before_atomic();
823	refs = atomic_dec_int_nv(&r->r_refs);
824	KASSERT(refs != ~0);
825	TRACEINDEX(refcnt, r->r_traceidx, r, refs + 1, -1);
826	if (refs == 0) {
827		membar_enter_after_atomic();
828		return (1);
829	}
830	return (0);
831}
832
833void
834refcnt_rele_wake(struct refcnt *r)
835{
836	if (refcnt_rele(r))
837		wakeup_one(r);
838}
839
840void
841refcnt_finalize(struct refcnt *r, const char *wmesg)
842{
843	u_int refs;
844
845	membar_exit_before_atomic();
846	refs = atomic_dec_int_nv(&r->r_refs);
847	KASSERT(refs != ~0);
848	TRACEINDEX(refcnt, r->r_traceidx, r, refs + 1, -1);
849	while (refs) {
850		sleep_setup(r, PWAIT, wmesg);
851		refs = atomic_load_int(&r->r_refs);
852		sleep_finish(0, refs);
853	}
854	TRACEINDEX(refcnt, r->r_traceidx, r, refs, 0);
855	/* Order subsequent loads and stores after refs == 0 load. */
856	membar_sync();
857}
858
859int
860refcnt_shared(struct refcnt *r)
861{
862	u_int refs;
863
864	refs = atomic_load_int(&r->r_refs);
865	TRACEINDEX(refcnt, r->r_traceidx, r, refs, 0);
866	return (refs > 1);
867}
868
869unsigned int
870refcnt_read(struct refcnt *r)
871{
872	u_int refs;
873
874	refs = atomic_load_int(&r->r_refs);
875	TRACEINDEX(refcnt, r->r_traceidx, r, refs, 0);
876	return (refs);
877}
878
879void
880cond_init(struct cond *c)
881{
882	atomic_store_int(&c->c_wait, 1);
883}
884
885void
886cond_signal(struct cond *c)
887{
888	atomic_store_int(&c->c_wait, 0);
889
890	wakeup_one(c);
891}
892
893void
894cond_wait(struct cond *c, const char *wmesg)
895{
896	unsigned int wait;
897
898	wait = atomic_load_int(&c->c_wait);
899	while (wait) {
900		sleep_setup(c, PWAIT, wmesg);
901		wait = atomic_load_int(&c->c_wait);
902		sleep_finish(0, wait);
903	}
904}
905