kern_synch.c revision 1.201
1/*	$OpenBSD: kern_synch.c,v 1.201 2024/03/30 13:33:20 mpi Exp $	*/
2/*	$NetBSD: kern_synch.c,v 1.37 1996/04/22 01:38:37 christos Exp $	*/
3
4/*
5 * Copyright (c) 1982, 1986, 1990, 1991, 1993
6 *	The Regents of the University of California.  All rights reserved.
7 * (c) UNIX System Laboratories, Inc.
8 * All or some portions of this file are derived from material licensed
9 * to the University of California by American Telephone and Telegraph
10 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
11 * the permission of UNIX System Laboratories, Inc.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 *    notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 *    notice, this list of conditions and the following disclaimer in the
20 *    documentation and/or other materials provided with the distribution.
21 * 3. Neither the name of the University nor the names of its contributors
22 *    may be used to endorse or promote products derived from this software
23 *    without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
36 *
37 *	@(#)kern_synch.c	8.6 (Berkeley) 1/21/94
38 */
39
40#include <sys/param.h>
41#include <sys/systm.h>
42#include <sys/proc.h>
43#include <sys/kernel.h>
44#include <sys/signalvar.h>
45#include <sys/sched.h>
46#include <sys/timeout.h>
47#include <sys/mount.h>
48#include <sys/syscallargs.h>
49#include <sys/refcnt.h>
50#include <sys/atomic.h>
51#include <sys/tracepoint.h>
52
53#include <ddb/db_output.h>
54
55#include <machine/spinlock.h>
56
57#ifdef DIAGNOSTIC
58#include <sys/syslog.h>
59#endif
60
61#ifdef KTRACE
62#include <sys/ktrace.h>
63#endif
64
65int	sleep_signal_check(void);
66int	thrsleep(struct proc *, struct sys___thrsleep_args *);
67int	thrsleep_unlock(void *);
68
69/*
70 * We're only looking at 7 bits of the address; everything is
71 * aligned to 4, lots of things are aligned to greater powers
72 * of 2.  Shift right by 8, i.e. drop the bottom 256 worth.
73 */
74#define TABLESIZE	128
75#define LOOKUP(x)	(((long)(x) >> 8) & (TABLESIZE - 1))
76TAILQ_HEAD(slpque,proc) slpque[TABLESIZE];
77
78void
79sleep_queue_init(void)
80{
81	int i;
82
83	for (i = 0; i < TABLESIZE; i++)
84		TAILQ_INIT(&slpque[i]);
85}
86
87/*
88 * Global sleep channel for threads that do not want to
89 * receive wakeup(9) broadcasts.
90 */
91int nowake;
92
93/*
94 * During autoconfiguration or after a panic, a sleep will simply
95 * lower the priority briefly to allow interrupts, then return.
96 * The priority to be used (safepri) is machine-dependent, thus this
97 * value is initialized and maintained in the machine-dependent layers.
98 * This priority will typically be 0, or the lowest priority
99 * that is safe for use on the interrupt stack; it can be made
100 * higher to block network software interrupts after panics.
101 */
102extern int safepri;
103
104/*
105 * General sleep call.  Suspends the current process until a wakeup is
106 * performed on the specified identifier.  The process will then be made
107 * runnable with the specified priority.  Sleeps at most timo/hz seconds
108 * (0 means no timeout).  If pri includes PCATCH flag, signals are checked
109 * before and after sleeping, else signals are not checked.  Returns 0 if
110 * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
111 * signal needs to be delivered, ERESTART is returned if the current system
112 * call should be restarted if possible, and EINTR is returned if the system
113 * call should be interrupted by the signal (return EINTR).
114 */
115int
116tsleep(const volatile void *ident, int priority, const char *wmesg, int timo)
117{
118#ifdef MULTIPROCESSOR
119	int hold_count;
120#endif
121
122	KASSERT((priority & ~(PRIMASK | PCATCH)) == 0);
123	KASSERT(ident != &nowake || ISSET(priority, PCATCH) || timo != 0);
124
125#ifdef MULTIPROCESSOR
126	KASSERT(ident == &nowake || timo || _kernel_lock_held());
127#endif
128
129#ifdef DDB
130	if (cold == 2)
131		db_stack_dump();
132#endif
133	if (cold || panicstr) {
134		int s;
135		/*
136		 * After a panic, or during autoconfiguration,
137		 * just give interrupts a chance, then just return;
138		 * don't run any other procs or panic below,
139		 * in case this is the idle process and already asleep.
140		 */
141		s = splhigh();
142		splx(safepri);
143#ifdef MULTIPROCESSOR
144		if (_kernel_lock_held()) {
145			hold_count = __mp_release_all(&kernel_lock);
146			__mp_acquire_count(&kernel_lock, hold_count);
147		}
148#endif
149		splx(s);
150		return (0);
151	}
152
153	sleep_setup(ident, priority, wmesg);
154	return sleep_finish(timo, 1);
155}
156
157int
158tsleep_nsec(const volatile void *ident, int priority, const char *wmesg,
159    uint64_t nsecs)
160{
161	uint64_t to_ticks;
162
163	if (nsecs == INFSLP)
164		return tsleep(ident, priority, wmesg, 0);
165#ifdef DIAGNOSTIC
166	if (nsecs == 0) {
167		log(LOG_WARNING,
168		    "%s: %s[%d]: %s: trying to sleep zero nanoseconds\n",
169		    __func__, curproc->p_p->ps_comm, curproc->p_p->ps_pid,
170		    wmesg);
171	}
172#endif
173	/*
174	 * We want to sleep at least nsecs nanoseconds worth of ticks.
175	 *
176	 *  - Clamp nsecs to prevent arithmetic overflow.
177	 *
178	 *  - Round nsecs up to account for any nanoseconds that do not
179	 *    divide evenly into tick_nsec, otherwise we'll lose them to
180	 *    integer division in the next step.  We add (tick_nsec - 1)
181	 *    to keep from introducing a spurious tick if there are no
182	 *    such nanoseconds, i.e. nsecs % tick_nsec == 0.
183	 *
184	 *  - Divide the rounded value to a count of ticks.  We divide
185	 *    by (tick_nsec + 1) to discard the extra tick introduced if,
186	 *    before rounding, nsecs % tick_nsec == 1.
187	 *
188	 *  - Finally, add a tick to the result.  We need to wait out
189	 *    the current tick before we can begin counting our interval,
190	 *    as we do not know how much time has elapsed since the
191	 *    current tick began.
192	 */
193	nsecs = MIN(nsecs, UINT64_MAX - tick_nsec);
194	to_ticks = (nsecs + tick_nsec - 1) / (tick_nsec + 1) + 1;
195	if (to_ticks > INT_MAX)
196		to_ticks = INT_MAX;
197	return tsleep(ident, priority, wmesg, (int)to_ticks);
198}
199
200/*
201 * Same as tsleep, but if we have a mutex provided, then once we've
202 * entered the sleep queue we drop the mutex. After sleeping we re-lock.
203 */
204int
205msleep(const volatile void *ident, struct mutex *mtx, int priority,
206    const char *wmesg, int timo)
207{
208	int error, spl;
209#ifdef MULTIPROCESSOR
210	int hold_count;
211#endif
212
213	KASSERT((priority & ~(PRIMASK | PCATCH | PNORELOCK)) == 0);
214	KASSERT(ident != &nowake || ISSET(priority, PCATCH) || timo != 0);
215	KASSERT(mtx != NULL);
216
217#ifdef DDB
218	if (cold == 2)
219		db_stack_dump();
220#endif
221	if (cold || panicstr) {
222		/*
223		 * After a panic, or during autoconfiguration,
224		 * just give interrupts a chance, then just return;
225		 * don't run any other procs or panic below,
226		 * in case this is the idle process and already asleep.
227		 */
228		spl = MUTEX_OLDIPL(mtx);
229		MUTEX_OLDIPL(mtx) = safepri;
230		mtx_leave(mtx);
231#ifdef MULTIPROCESSOR
232		if (_kernel_lock_held()) {
233			hold_count = __mp_release_all(&kernel_lock);
234			__mp_acquire_count(&kernel_lock, hold_count);
235		}
236#endif
237		if ((priority & PNORELOCK) == 0) {
238			mtx_enter(mtx);
239			MUTEX_OLDIPL(mtx) = spl;
240		} else
241			splx(spl);
242		return (0);
243	}
244
245	sleep_setup(ident, priority, wmesg);
246
247	mtx_leave(mtx);
248	/* signal may stop the process, release mutex before that */
249	error = sleep_finish(timo, 1);
250
251	if ((priority & PNORELOCK) == 0)
252		mtx_enter(mtx);
253
254	return error;
255}
256
257int
258msleep_nsec(const volatile void *ident, struct mutex *mtx, int priority,
259    const char *wmesg, uint64_t nsecs)
260{
261	uint64_t to_ticks;
262
263	if (nsecs == INFSLP)
264		return msleep(ident, mtx, priority, wmesg, 0);
265#ifdef DIAGNOSTIC
266	if (nsecs == 0) {
267		log(LOG_WARNING,
268		    "%s: %s[%d]: %s: trying to sleep zero nanoseconds\n",
269		    __func__, curproc->p_p->ps_comm, curproc->p_p->ps_pid,
270		    wmesg);
271	}
272#endif
273	nsecs = MIN(nsecs, UINT64_MAX - tick_nsec);
274	to_ticks = (nsecs + tick_nsec - 1) / (tick_nsec + 1) + 1;
275	if (to_ticks > INT_MAX)
276		to_ticks = INT_MAX;
277	return msleep(ident, mtx, priority, wmesg, (int)to_ticks);
278}
279
280/*
281 * Same as tsleep, but if we have a rwlock provided, then once we've
282 * entered the sleep queue we drop the it. After sleeping we re-lock.
283 */
284int
285rwsleep(const volatile void *ident, struct rwlock *rwl, int priority,
286    const char *wmesg, int timo)
287{
288	int error, status;
289
290	KASSERT((priority & ~(PRIMASK | PCATCH | PNORELOCK)) == 0);
291	KASSERT(ident != &nowake || ISSET(priority, PCATCH) || timo != 0);
292	KASSERT(ident != rwl);
293	rw_assert_anylock(rwl);
294	status = rw_status(rwl);
295
296	sleep_setup(ident, priority, wmesg);
297
298	rw_exit(rwl);
299	/* signal may stop the process, release rwlock before that */
300	error = sleep_finish(timo, 1);
301
302	if ((priority & PNORELOCK) == 0)
303		rw_enter(rwl, status);
304
305	return error;
306}
307
308int
309rwsleep_nsec(const volatile void *ident, struct rwlock *rwl, int priority,
310    const char *wmesg, uint64_t nsecs)
311{
312	uint64_t to_ticks;
313
314	if (nsecs == INFSLP)
315		return rwsleep(ident, rwl, priority, wmesg, 0);
316#ifdef DIAGNOSTIC
317	if (nsecs == 0) {
318		log(LOG_WARNING,
319		    "%s: %s[%d]: %s: trying to sleep zero nanoseconds\n",
320		    __func__, curproc->p_p->ps_comm, curproc->p_p->ps_pid,
321		    wmesg);
322	}
323#endif
324	nsecs = MIN(nsecs, UINT64_MAX - tick_nsec);
325	to_ticks = (nsecs + tick_nsec - 1) / (tick_nsec + 1) + 1;
326	if (to_ticks > INT_MAX)
327		to_ticks = INT_MAX;
328	return 	rwsleep(ident, rwl, priority, wmesg, (int)to_ticks);
329}
330
331void
332sleep_setup(const volatile void *ident, int prio, const char *wmesg)
333{
334	struct proc *p = curproc;
335	int s;
336
337#ifdef DIAGNOSTIC
338	if (p->p_flag & P_CANTSLEEP)
339		panic("sleep: %s failed insomnia", p->p_p->ps_comm);
340	if (ident == NULL)
341		panic("tsleep: no ident");
342	if (p->p_stat != SONPROC)
343		panic("tsleep: not SONPROC");
344#endif
345
346	SCHED_LOCK(s);
347
348	TRACEPOINT(sched, sleep, NULL);
349
350	p->p_wchan = ident;
351	p->p_wmesg = wmesg;
352	p->p_slptime = 0;
353	p->p_slppri = prio & PRIMASK;
354	atomic_setbits_int(&p->p_flag, P_WSLEEP);
355	TAILQ_INSERT_TAIL(&slpque[LOOKUP(ident)], p, p_runq);
356	if (prio & PCATCH)
357		atomic_setbits_int(&p->p_flag, P_SINTR);
358	p->p_stat = SSLEEP;
359
360	SCHED_UNLOCK(s);
361}
362
363int
364sleep_finish(int timo, int do_sleep)
365{
366	struct proc *p = curproc;
367	int s, catch, error = 0, error1 = 0;
368
369	catch = p->p_flag & P_SINTR;
370
371	if (timo != 0) {
372		KASSERT((p->p_flag & P_TIMEOUT) == 0);
373		timeout_add(&p->p_sleep_to, timo);
374	}
375
376	if (catch != 0) {
377		/*
378		 * We put ourselves on the sleep queue and start our
379		 * timeout before calling sleep_signal_check(), as we could
380		 * stop there, and a wakeup or a SIGCONT (or both) could
381		 * occur while we were stopped.  A SIGCONT would cause
382		 * us to be marked as SSLEEP without resuming us, thus
383		 * we must be ready for sleep when sleep_signal_check() is
384		 * called.
385		 */
386		if ((error = sleep_signal_check()) != 0) {
387			catch = 0;
388			do_sleep = 0;
389		}
390	}
391
392	SCHED_LOCK(s);
393	/*
394	 * If the wakeup happens while going to sleep, p->p_wchan
395	 * will be NULL. In that case unwind immediately but still
396	 * check for possible signals and timeouts.
397	 */
398	if (p->p_wchan == NULL)
399		do_sleep = 0;
400	atomic_clearbits_int(&p->p_flag, P_WSLEEP);
401
402	if (do_sleep) {
403		KASSERT(p->p_stat == SSLEEP || p->p_stat == SSTOP);
404		p->p_ru.ru_nvcsw++;
405		mi_switch();
406	} else {
407		KASSERT(p->p_stat == SONPROC || p->p_stat == SSLEEP ||
408		    p->p_stat == SSTOP);
409		unsleep(p);
410		p->p_stat = SONPROC;
411	}
412
413#ifdef DIAGNOSTIC
414	if (p->p_stat != SONPROC)
415		panic("sleep_finish !SONPROC");
416#endif
417
418	p->p_cpu->ci_schedstate.spc_curpriority = p->p_usrpri;
419	SCHED_UNLOCK(s);
420
421	/*
422	 * Even though this belongs to the signal handling part of sleep,
423	 * we need to clear it before the ktrace.
424	 */
425	atomic_clearbits_int(&p->p_flag, P_SINTR);
426
427	if (timo != 0) {
428		if (p->p_flag & P_TIMEOUT) {
429			error1 = EWOULDBLOCK;
430		} else {
431			/* This can sleep. It must not use timeouts. */
432			timeout_del_barrier(&p->p_sleep_to);
433		}
434		atomic_clearbits_int(&p->p_flag, P_TIMEOUT);
435	}
436
437	/* Check if thread was woken up because of a unwind or signal */
438	if (catch != 0)
439		error = sleep_signal_check();
440
441	/* Signal errors are higher priority than timeouts. */
442	if (error == 0 && error1 != 0)
443		error = error1;
444
445	return error;
446}
447
448/*
449 * Check and handle signals and suspensions around a sleep cycle.
450 */
451int
452sleep_signal_check(void)
453{
454	struct proc *p = curproc;
455	struct sigctx ctx;
456	int err, sig;
457
458	if ((err = single_thread_check(p, 1)) != 0)
459		return err;
460	if ((sig = cursig(p, &ctx)) != 0) {
461		if (ctx.sig_intr)
462			return EINTR;
463		else
464			return ERESTART;
465	}
466	return 0;
467}
468
469int
470wakeup_proc(struct proc *p, int flags)
471{
472	int awakened = 0;
473
474	SCHED_ASSERT_LOCKED();
475
476	if (p->p_wchan != NULL) {
477		awakened = 1;
478		if (flags)
479			atomic_setbits_int(&p->p_flag, flags);
480#ifdef DIAGNOSTIC
481		if (p->p_stat != SSLEEP && p->p_stat != SSTOP)
482			panic("thread %d p_stat is %d", p->p_tid, p->p_stat);
483#endif
484		unsleep(p);
485		if (p->p_stat == SSLEEP)
486			setrunnable(p);
487	}
488
489	return awakened;
490}
491
492
493/*
494 * Implement timeout for tsleep.
495 * If process hasn't been awakened (wchan non-zero),
496 * set timeout flag and undo the sleep.  If proc
497 * is stopped, just unsleep so it will remain stopped.
498 */
499void
500endtsleep(void *arg)
501{
502	struct proc *p = arg;
503	int s;
504
505	SCHED_LOCK(s);
506	wakeup_proc(p, P_TIMEOUT);
507	SCHED_UNLOCK(s);
508}
509
510/*
511 * Remove a process from its wait queue
512 */
513void
514unsleep(struct proc *p)
515{
516	SCHED_ASSERT_LOCKED();
517
518	if (p->p_wchan != NULL) {
519		TAILQ_REMOVE(&slpque[LOOKUP(p->p_wchan)], p, p_runq);
520		p->p_wchan = NULL;
521		TRACEPOINT(sched, unsleep, p->p_tid + THREAD_PID_OFFSET,
522		    p->p_p->ps_pid);
523	}
524}
525
526/*
527 * Make a number of processes sleeping on the specified identifier runnable.
528 */
529void
530wakeup_n(const volatile void *ident, int n)
531{
532	struct slpque *qp, wakeq;
533	struct proc *p;
534	struct proc *pnext;
535	int s;
536
537	TAILQ_INIT(&wakeq);
538
539	SCHED_LOCK(s);
540	qp = &slpque[LOOKUP(ident)];
541	for (p = TAILQ_FIRST(qp); p != NULL && n != 0; p = pnext) {
542		pnext = TAILQ_NEXT(p, p_runq);
543#ifdef DIAGNOSTIC
544		if (p->p_stat != SSLEEP && p->p_stat != SSTOP)
545			panic("thread %d p_stat is %d", p->p_tid, p->p_stat);
546#endif
547		KASSERT(p->p_wchan != NULL);
548		if (p->p_wchan == ident) {
549			TAILQ_REMOVE(qp, p, p_runq);
550			p->p_wchan = NULL;
551			TAILQ_INSERT_TAIL(&wakeq, p, p_runq);
552			--n;
553		}
554	}
555	while ((p = TAILQ_FIRST(&wakeq))) {
556		TAILQ_REMOVE(&wakeq, p, p_runq);
557		TRACEPOINT(sched, unsleep, p->p_tid + THREAD_PID_OFFSET,
558		    p->p_p->ps_pid);
559		if (p->p_stat == SSLEEP)
560			setrunnable(p);
561	}
562	SCHED_UNLOCK(s);
563}
564
565/*
566 * Make all processes sleeping on the specified identifier runnable.
567 */
568void
569wakeup(const volatile void *chan)
570{
571	wakeup_n(chan, -1);
572}
573
574int
575sys_sched_yield(struct proc *p, void *v, register_t *retval)
576{
577	struct proc *q;
578	uint8_t newprio;
579	int s;
580
581	SCHED_LOCK(s);
582	/*
583	 * If one of the threads of a multi-threaded process called
584	 * sched_yield(2), drop its priority to ensure its siblings
585	 * can make some progress.
586	 */
587	newprio = p->p_usrpri;
588	TAILQ_FOREACH(q, &p->p_p->ps_threads, p_thr_link)
589		newprio = max(newprio, q->p_runpri);
590	setrunqueue(p->p_cpu, p, newprio);
591	p->p_ru.ru_nvcsw++;
592	mi_switch();
593	SCHED_UNLOCK(s);
594
595	return (0);
596}
597
598int
599thrsleep_unlock(void *lock)
600{
601	static _atomic_lock_t unlocked = _ATOMIC_LOCK_UNLOCKED;
602	_atomic_lock_t *atomiclock = lock;
603
604	if (!lock)
605		return 0;
606
607	return copyout(&unlocked, atomiclock, sizeof(unlocked));
608}
609
610struct tslpentry {
611	TAILQ_ENTRY(tslpentry)	tslp_link;
612	long			tslp_ident;
613};
614
615/* thrsleep queue shared between processes */
616static struct tslpqueue thrsleep_queue = TAILQ_HEAD_INITIALIZER(thrsleep_queue);
617static struct rwlock thrsleep_lock = RWLOCK_INITIALIZER("thrsleeplk");
618
619int
620thrsleep(struct proc *p, struct sys___thrsleep_args *v)
621{
622	struct sys___thrsleep_args /* {
623		syscallarg(const volatile void *) ident;
624		syscallarg(clockid_t) clock_id;
625		syscallarg(const struct timespec *) tp;
626		syscallarg(void *) lock;
627		syscallarg(const int *) abort;
628	} */ *uap = v;
629	long ident = (long)SCARG(uap, ident);
630	struct tslpentry entry;
631	struct tslpqueue *queue;
632	struct rwlock *qlock;
633	struct timespec *tsp = (struct timespec *)SCARG(uap, tp);
634	void *lock = SCARG(uap, lock);
635	uint64_t nsecs = INFSLP;
636	int abort = 0, error;
637	clockid_t clock_id = SCARG(uap, clock_id);
638
639	if (ident == 0)
640		return (EINVAL);
641	if (tsp != NULL) {
642		struct timespec now;
643
644		if ((error = clock_gettime(p, clock_id, &now)))
645			return (error);
646#ifdef KTRACE
647		if (KTRPOINT(p, KTR_STRUCT))
648			ktrabstimespec(p, tsp);
649#endif
650
651		if (timespeccmp(tsp, &now, <=)) {
652			/* already passed: still do the unlock */
653			if ((error = thrsleep_unlock(lock)))
654				return (error);
655			return (EWOULDBLOCK);
656		}
657
658		timespecsub(tsp, &now, tsp);
659		nsecs = MIN(TIMESPEC_TO_NSEC(tsp), MAXTSLP);
660	}
661
662	if (ident == -1) {
663		queue = &thrsleep_queue;
664		qlock = &thrsleep_lock;
665	} else {
666		queue = &p->p_p->ps_tslpqueue;
667		qlock = &p->p_p->ps_lock;
668	}
669
670	/* Interlock with wakeup. */
671	entry.tslp_ident = ident;
672	rw_enter_write(qlock);
673	TAILQ_INSERT_TAIL(queue, &entry, tslp_link);
674	rw_exit_write(qlock);
675
676	error = thrsleep_unlock(lock);
677
678	if (error == 0 && SCARG(uap, abort) != NULL)
679		error = copyin(SCARG(uap, abort), &abort, sizeof(abort));
680
681	rw_enter_write(qlock);
682	if (error != 0)
683		goto out;
684	if (abort != 0) {
685		error = EINTR;
686		goto out;
687	}
688	if (entry.tslp_ident != 0) {
689		error = rwsleep_nsec(&entry, qlock, PWAIT|PCATCH, "thrsleep",
690		    nsecs);
691	}
692
693out:
694	if (entry.tslp_ident != 0)
695		TAILQ_REMOVE(queue, &entry, tslp_link);
696	rw_exit_write(qlock);
697
698	if (error == ERESTART)
699		error = ECANCELED;
700
701	return (error);
702
703}
704
705int
706sys___thrsleep(struct proc *p, void *v, register_t *retval)
707{
708	struct sys___thrsleep_args /* {
709		syscallarg(const volatile void *) ident;
710		syscallarg(clockid_t) clock_id;
711		syscallarg(struct timespec *) tp;
712		syscallarg(void *) lock;
713		syscallarg(const int *) abort;
714	} */ *uap = v;
715	struct timespec ts;
716	int error;
717
718	if (SCARG(uap, tp) != NULL) {
719		if ((error = copyin(SCARG(uap, tp), &ts, sizeof(ts)))) {
720			*retval = error;
721			return 0;
722		}
723		if (!timespecisvalid(&ts)) {
724			*retval = EINVAL;
725			return 0;
726		}
727		SCARG(uap, tp) = &ts;
728	}
729
730	*retval = thrsleep(p, uap);
731	return 0;
732}
733
734int
735sys___thrwakeup(struct proc *p, void *v, register_t *retval)
736{
737	struct sys___thrwakeup_args /* {
738		syscallarg(const volatile void *) ident;
739		syscallarg(int) n;
740	} */ *uap = v;
741	struct tslpentry *entry, *tmp;
742	struct tslpqueue *queue;
743	struct rwlock *qlock;
744	long ident = (long)SCARG(uap, ident);
745	int n = SCARG(uap, n);
746	int found = 0;
747
748	if (ident == 0)
749		*retval = EINVAL;
750	else {
751		if (ident == -1) {
752			queue = &thrsleep_queue;
753			qlock = &thrsleep_lock;
754			/*
755			 * Wake up all waiters with ident -1. This is needed
756			 * because ident -1 can be shared by multiple userspace
757			 * lock state machines concurrently. The implementation
758			 * has no way to direct the wakeup to a particular
759			 * state machine.
760			 */
761			n = 0;
762		} else {
763			queue = &p->p_p->ps_tslpqueue;
764			qlock = &p->p_p->ps_lock;
765		}
766
767		rw_enter_write(qlock);
768		TAILQ_FOREACH_SAFE(entry, queue, tslp_link, tmp) {
769			if (entry->tslp_ident == ident) {
770				TAILQ_REMOVE(queue, entry, tslp_link);
771				entry->tslp_ident = 0;
772				wakeup_one(entry);
773				if (++found == n)
774					break;
775			}
776		}
777		rw_exit_write(qlock);
778
779		if (ident == -1)
780			*retval = 0;
781		else
782			*retval = found ? 0 : ESRCH;
783	}
784
785	return (0);
786}
787
788void
789refcnt_init(struct refcnt *r)
790{
791	refcnt_init_trace(r, 0);
792}
793
794void
795refcnt_init_trace(struct refcnt *r, int idx)
796{
797	r->r_traceidx = idx;
798	atomic_store_int(&r->r_refs, 1);
799	TRACEINDEX(refcnt, r->r_traceidx, r, 0, +1);
800}
801
802void
803refcnt_take(struct refcnt *r)
804{
805	u_int refs;
806
807	refs = atomic_inc_int_nv(&r->r_refs);
808	KASSERT(refs != 0);
809	TRACEINDEX(refcnt, r->r_traceidx, r, refs - 1, +1);
810	(void)refs;
811}
812
813int
814refcnt_rele(struct refcnt *r)
815{
816	u_int refs;
817
818	membar_exit_before_atomic();
819	refs = atomic_dec_int_nv(&r->r_refs);
820	KASSERT(refs != ~0);
821	TRACEINDEX(refcnt, r->r_traceidx, r, refs + 1, -1);
822	if (refs == 0) {
823		membar_enter_after_atomic();
824		return (1);
825	}
826	return (0);
827}
828
829void
830refcnt_rele_wake(struct refcnt *r)
831{
832	if (refcnt_rele(r))
833		wakeup_one(r);
834}
835
836void
837refcnt_finalize(struct refcnt *r, const char *wmesg)
838{
839	u_int refs;
840
841	membar_exit_before_atomic();
842	refs = atomic_dec_int_nv(&r->r_refs);
843	KASSERT(refs != ~0);
844	TRACEINDEX(refcnt, r->r_traceidx, r, refs + 1, -1);
845	while (refs) {
846		sleep_setup(r, PWAIT, wmesg);
847		refs = atomic_load_int(&r->r_refs);
848		sleep_finish(0, refs);
849	}
850	TRACEINDEX(refcnt, r->r_traceidx, r, refs, 0);
851	/* Order subsequent loads and stores after refs == 0 load. */
852	membar_sync();
853}
854
855int
856refcnt_shared(struct refcnt *r)
857{
858	u_int refs;
859
860	refs = atomic_load_int(&r->r_refs);
861	TRACEINDEX(refcnt, r->r_traceidx, r, refs, 0);
862	return (refs > 1);
863}
864
865unsigned int
866refcnt_read(struct refcnt *r)
867{
868	u_int refs;
869
870	refs = atomic_load_int(&r->r_refs);
871	TRACEINDEX(refcnt, r->r_traceidx, r, refs, 0);
872	return (refs);
873}
874
875void
876cond_init(struct cond *c)
877{
878	atomic_store_int(&c->c_wait, 1);
879}
880
881void
882cond_signal(struct cond *c)
883{
884	atomic_store_int(&c->c_wait, 0);
885
886	wakeup_one(c);
887}
888
889void
890cond_wait(struct cond *c, const char *wmesg)
891{
892	unsigned int wait;
893
894	wait = atomic_load_int(&c->c_wait);
895	while (wait) {
896		sleep_setup(c, PWAIT, wmesg);
897		wait = atomic_load_int(&c->c_wait);
898		sleep_finish(0, wait);
899	}
900}
901