kern_synch.c revision 1.186
1/*	$OpenBSD: kern_synch.c,v 1.186 2022/04/30 14:44:04 visa Exp $	*/
2/*	$NetBSD: kern_synch.c,v 1.37 1996/04/22 01:38:37 christos Exp $	*/
3
4/*
5 * Copyright (c) 1982, 1986, 1990, 1991, 1993
6 *	The Regents of the University of California.  All rights reserved.
7 * (c) UNIX System Laboratories, Inc.
8 * All or some portions of this file are derived from material licensed
9 * to the University of California by American Telephone and Telegraph
10 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
11 * the permission of UNIX System Laboratories, Inc.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 *    notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 *    notice, this list of conditions and the following disclaimer in the
20 *    documentation and/or other materials provided with the distribution.
21 * 3. Neither the name of the University nor the names of its contributors
22 *    may be used to endorse or promote products derived from this software
23 *    without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
36 *
37 *	@(#)kern_synch.c	8.6 (Berkeley) 1/21/94
38 */
39
40#include <sys/param.h>
41#include <sys/systm.h>
42#include <sys/proc.h>
43#include <sys/kernel.h>
44#include <sys/signalvar.h>
45#include <sys/resourcevar.h>
46#include <sys/sched.h>
47#include <sys/timeout.h>
48#include <sys/mount.h>
49#include <sys/syscallargs.h>
50#include <sys/pool.h>
51#include <sys/refcnt.h>
52#include <sys/atomic.h>
53#include <sys/witness.h>
54#include <sys/tracepoint.h>
55
56#include <ddb/db_output.h>
57
58#include <machine/spinlock.h>
59
60#ifdef DIAGNOSTIC
61#include <sys/syslog.h>
62#endif
63
64#ifdef KTRACE
65#include <sys/ktrace.h>
66#endif
67
68int	sleep_signal_check(void);
69int	thrsleep(struct proc *, struct sys___thrsleep_args *);
70int	thrsleep_unlock(void *);
71
72/*
73 * We're only looking at 7 bits of the address; everything is
74 * aligned to 4, lots of things are aligned to greater powers
75 * of 2.  Shift right by 8, i.e. drop the bottom 256 worth.
76 */
77#define TABLESIZE	128
78#define LOOKUP(x)	(((long)(x) >> 8) & (TABLESIZE - 1))
79TAILQ_HEAD(slpque,proc) slpque[TABLESIZE];
80
81void
82sleep_queue_init(void)
83{
84	int i;
85
86	for (i = 0; i < TABLESIZE; i++)
87		TAILQ_INIT(&slpque[i]);
88}
89
90/*
91 * Global sleep channel for threads that do not want to
92 * receive wakeup(9) broadcasts.
93 */
94int nowake;
95
96/*
97 * During autoconfiguration or after a panic, a sleep will simply
98 * lower the priority briefly to allow interrupts, then return.
99 * The priority to be used (safepri) is machine-dependent, thus this
100 * value is initialized and maintained in the machine-dependent layers.
101 * This priority will typically be 0, or the lowest priority
102 * that is safe for use on the interrupt stack; it can be made
103 * higher to block network software interrupts after panics.
104 */
105extern int safepri;
106
107/*
108 * General sleep call.  Suspends the current process until a wakeup is
109 * performed on the specified identifier.  The process will then be made
110 * runnable with the specified priority.  Sleeps at most timo/hz seconds
111 * (0 means no timeout).  If pri includes PCATCH flag, signals are checked
112 * before and after sleeping, else signals are not checked.  Returns 0 if
113 * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
114 * signal needs to be delivered, ERESTART is returned if the current system
115 * call should be restarted if possible, and EINTR is returned if the system
116 * call should be interrupted by the signal (return EINTR).
117 */
118int
119tsleep(const volatile void *ident, int priority, const char *wmesg, int timo)
120{
121	struct sleep_state sls;
122#ifdef MULTIPROCESSOR
123	int hold_count;
124#endif
125
126	KASSERT((priority & ~(PRIMASK | PCATCH)) == 0);
127	KASSERT(ident != &nowake || ISSET(priority, PCATCH) || timo != 0);
128
129#ifdef MULTIPROCESSOR
130	KASSERT(timo || _kernel_lock_held());
131#endif
132
133#ifdef DDB
134	if (cold == 2)
135		db_stack_dump();
136#endif
137	if (cold || panicstr) {
138		int s;
139		/*
140		 * After a panic, or during autoconfiguration,
141		 * just give interrupts a chance, then just return;
142		 * don't run any other procs or panic below,
143		 * in case this is the idle process and already asleep.
144		 */
145		s = splhigh();
146		splx(safepri);
147#ifdef MULTIPROCESSOR
148		if (_kernel_lock_held()) {
149			hold_count = __mp_release_all(&kernel_lock);
150			__mp_acquire_count(&kernel_lock, hold_count);
151		}
152#endif
153		splx(s);
154		return (0);
155	}
156
157	sleep_setup(&sls, ident, priority, wmesg, timo);
158	return sleep_finish(&sls, 1);
159}
160
161int
162tsleep_nsec(const volatile void *ident, int priority, const char *wmesg,
163    uint64_t nsecs)
164{
165	uint64_t to_ticks;
166
167	if (nsecs == INFSLP)
168		return tsleep(ident, priority, wmesg, 0);
169#ifdef DIAGNOSTIC
170	if (nsecs == 0) {
171		log(LOG_WARNING,
172		    "%s: %s[%d]: %s: trying to sleep zero nanoseconds\n",
173		    __func__, curproc->p_p->ps_comm, curproc->p_p->ps_pid,
174		    wmesg);
175	}
176#endif
177	/*
178	 * We want to sleep at least nsecs nanoseconds worth of ticks.
179	 *
180	 *  - Clamp nsecs to prevent arithmetic overflow.
181	 *
182	 *  - Round nsecs up to account for any nanoseconds that do not
183	 *    divide evenly into tick_nsec, otherwise we'll lose them to
184	 *    integer division in the next step.  We add (tick_nsec - 1)
185	 *    to keep from introducing a spurious tick if there are no
186	 *    such nanoseconds, i.e. nsecs % tick_nsec == 0.
187	 *
188	 *  - Divide the rounded value to a count of ticks.  We divide
189	 *    by (tick_nsec + 1) to discard the extra tick introduced if,
190	 *    before rounding, nsecs % tick_nsec == 1.
191	 *
192	 *  - Finally, add a tick to the result.  We need to wait out
193	 *    the current tick before we can begin counting our interval,
194	 *    as we do not know how much time has elapsed since the
195	 *    current tick began.
196	 */
197	nsecs = MIN(nsecs, UINT64_MAX - tick_nsec);
198	to_ticks = (nsecs + tick_nsec - 1) / (tick_nsec + 1) + 1;
199	if (to_ticks > INT_MAX)
200		to_ticks = INT_MAX;
201	return tsleep(ident, priority, wmesg, (int)to_ticks);
202}
203
204/*
205 * Same as tsleep, but if we have a mutex provided, then once we've
206 * entered the sleep queue we drop the mutex. After sleeping we re-lock.
207 */
208int
209msleep(const volatile void *ident, struct mutex *mtx, int priority,
210    const char *wmesg, int timo)
211{
212	struct sleep_state sls;
213	int error, spl;
214#ifdef MULTIPROCESSOR
215	int hold_count;
216#endif
217
218	KASSERT((priority & ~(PRIMASK | PCATCH | PNORELOCK)) == 0);
219	KASSERT(ident != &nowake || ISSET(priority, PCATCH) || timo != 0);
220	KASSERT(mtx != NULL);
221
222	if (priority & PCATCH)
223		KERNEL_ASSERT_LOCKED();
224
225#ifdef DDB
226	if (cold == 2)
227		db_stack_dump();
228#endif
229	if (cold || panicstr) {
230		/*
231		 * After a panic, or during autoconfiguration,
232		 * just give interrupts a chance, then just return;
233		 * don't run any other procs or panic below,
234		 * in case this is the idle process and already asleep.
235		 */
236		spl = MUTEX_OLDIPL(mtx);
237		MUTEX_OLDIPL(mtx) = safepri;
238		mtx_leave(mtx);
239#ifdef MULTIPROCESSOR
240		if (_kernel_lock_held()) {
241			hold_count = __mp_release_all(&kernel_lock);
242			__mp_acquire_count(&kernel_lock, hold_count);
243		}
244#endif
245		if ((priority & PNORELOCK) == 0) {
246			mtx_enter(mtx);
247			MUTEX_OLDIPL(mtx) = spl;
248		} else
249			splx(spl);
250		return (0);
251	}
252
253	sleep_setup(&sls, ident, priority, wmesg, timo);
254
255	/* XXX - We need to make sure that the mutex doesn't
256	 * unblock splsched. This can be made a bit more
257	 * correct when the sched_lock is a mutex.
258	 */
259	spl = MUTEX_OLDIPL(mtx);
260	MUTEX_OLDIPL(mtx) = splsched();
261	mtx_leave(mtx);
262	/* signal may stop the process, release mutex before that */
263	error = sleep_finish(&sls, 1);
264
265	if ((priority & PNORELOCK) == 0) {
266		mtx_enter(mtx);
267		MUTEX_OLDIPL(mtx) = spl; /* put the ipl back */
268	} else
269		splx(spl);
270
271	return error;
272}
273
274int
275msleep_nsec(const volatile void *ident, struct mutex *mtx, int priority,
276    const char *wmesg, uint64_t nsecs)
277{
278	uint64_t to_ticks;
279
280	if (nsecs == INFSLP)
281		return msleep(ident, mtx, priority, wmesg, 0);
282#ifdef DIAGNOSTIC
283	if (nsecs == 0) {
284		log(LOG_WARNING,
285		    "%s: %s[%d]: %s: trying to sleep zero nanoseconds\n",
286		    __func__, curproc->p_p->ps_comm, curproc->p_p->ps_pid,
287		    wmesg);
288	}
289#endif
290	nsecs = MIN(nsecs, UINT64_MAX - tick_nsec);
291	to_ticks = (nsecs + tick_nsec - 1) / (tick_nsec + 1) + 1;
292	if (to_ticks > INT_MAX)
293		to_ticks = INT_MAX;
294	return msleep(ident, mtx, priority, wmesg, (int)to_ticks);
295}
296
297/*
298 * Same as tsleep, but if we have a rwlock provided, then once we've
299 * entered the sleep queue we drop the it. After sleeping we re-lock.
300 */
301int
302rwsleep(const volatile void *ident, struct rwlock *rwl, int priority,
303    const char *wmesg, int timo)
304{
305	struct sleep_state sls;
306	int error, status;
307
308	KASSERT((priority & ~(PRIMASK | PCATCH | PNORELOCK)) == 0);
309	KASSERT(ident != &nowake || ISSET(priority, PCATCH) || timo != 0);
310	rw_assert_anylock(rwl);
311	status = rw_status(rwl);
312
313	sleep_setup(&sls, ident, priority, wmesg, timo);
314
315	rw_exit(rwl);
316	/* signal may stop the process, release rwlock before that */
317	error = sleep_finish(&sls, 1);
318
319	if ((priority & PNORELOCK) == 0)
320		rw_enter(rwl, status);
321
322	return error;
323}
324
325int
326rwsleep_nsec(const volatile void *ident, struct rwlock *rwl, int priority,
327    const char *wmesg, uint64_t nsecs)
328{
329	uint64_t to_ticks;
330
331	if (nsecs == INFSLP)
332		return rwsleep(ident, rwl, priority, wmesg, 0);
333#ifdef DIAGNOSTIC
334	if (nsecs == 0) {
335		log(LOG_WARNING,
336		    "%s: %s[%d]: %s: trying to sleep zero nanoseconds\n",
337		    __func__, curproc->p_p->ps_comm, curproc->p_p->ps_pid,
338		    wmesg);
339	}
340#endif
341	nsecs = MIN(nsecs, UINT64_MAX - tick_nsec);
342	to_ticks = (nsecs + tick_nsec - 1) / (tick_nsec + 1) + 1;
343	if (to_ticks > INT_MAX)
344		to_ticks = INT_MAX;
345	return 	rwsleep(ident, rwl, priority, wmesg, (int)to_ticks);
346}
347
348void
349sleep_setup(struct sleep_state *sls, const volatile void *ident, int prio,
350    const char *wmesg, int timo)
351{
352	struct proc *p = curproc;
353
354#ifdef DIAGNOSTIC
355	if (p->p_flag & P_CANTSLEEP)
356		panic("sleep: %s failed insomnia", p->p_p->ps_comm);
357	if (ident == NULL)
358		panic("tsleep: no ident");
359	if (p->p_stat != SONPROC)
360		panic("tsleep: not SONPROC");
361#endif
362
363	sls->sls_catch = prio & PCATCH;
364	sls->sls_locked = 0;
365	sls->sls_timeout = 0;
366
367	/*
368	 * The kernel has to be locked for signal processing.
369	 * This is done here and not in sleep_finish() because
370	 * KERNEL_LOCK() has to be taken before SCHED_LOCK().
371	 */
372	if (sls->sls_catch != 0) {
373		KERNEL_LOCK();
374		sls->sls_locked = 1;
375	}
376
377	SCHED_LOCK(sls->sls_s);
378
379	TRACEPOINT(sched, sleep, NULL);
380
381	p->p_wchan = ident;
382	p->p_wmesg = wmesg;
383	p->p_slptime = 0;
384	p->p_slppri = prio & PRIMASK;
385	TAILQ_INSERT_TAIL(&slpque[LOOKUP(ident)], p, p_runq);
386
387	KASSERT((p->p_flag & P_TIMEOUT) == 0);
388	if (timo) {
389		sls->sls_timeout = 1;
390		timeout_add(&p->p_sleep_to, timo);
391	}
392}
393
394int
395sleep_finish(struct sleep_state *sls, int do_sleep)
396{
397	struct proc *p = curproc;
398	int error = 0, error1 = 0;
399
400	if (sls->sls_catch != 0) {
401		/* sleep_setup() has locked the kernel. */
402		KERNEL_ASSERT_LOCKED();
403
404		/*
405		 * We put ourselves on the sleep queue and start our
406		 * timeout before calling sleep_signal_check(), as we could
407		 * stop there, and a wakeup or a SIGCONT (or both) could
408		 * occur while we were stopped.  A SIGCONT would cause
409		 * us to be marked as SSLEEP without resuming us, thus
410		 * we must be ready for sleep when sleep_signal_check() is
411		 * called.
412		 * If the wakeup happens while we're stopped, p->p_wchan
413		 * will be NULL upon return from sleep_signal_check().  In
414		 * that case we need to unwind immediately.
415		 */
416		atomic_setbits_int(&p->p_flag, P_SINTR);
417		if ((error = sleep_signal_check()) != 0) {
418			p->p_stat = SONPROC;
419			sls->sls_catch = 0;
420			do_sleep = 0;
421		} else if (p->p_wchan == NULL) {
422			sls->sls_catch = 0;
423			do_sleep = 0;
424		}
425	}
426
427	if (do_sleep) {
428		p->p_stat = SSLEEP;
429		p->p_ru.ru_nvcsw++;
430		SCHED_ASSERT_LOCKED();
431		mi_switch();
432	} else {
433		unsleep(p);
434	}
435
436#ifdef DIAGNOSTIC
437	if (p->p_stat != SONPROC)
438		panic("sleep_finish !SONPROC");
439#endif
440
441	p->p_cpu->ci_schedstate.spc_curpriority = p->p_usrpri;
442	SCHED_UNLOCK(sls->sls_s);
443
444	/*
445	 * Even though this belongs to the signal handling part of sleep,
446	 * we need to clear it before the ktrace.
447	 */
448	atomic_clearbits_int(&p->p_flag, P_SINTR);
449
450	if (sls->sls_timeout) {
451		if (p->p_flag & P_TIMEOUT) {
452			atomic_clearbits_int(&p->p_flag, P_TIMEOUT);
453			error1 = EWOULDBLOCK;
454		} else {
455			/* This must not sleep. */
456			timeout_del_barrier(&p->p_sleep_to);
457			KASSERT((p->p_flag & P_TIMEOUT) == 0);
458		}
459	}
460
461	/* Check if thread was woken up because of a unwind or signal */
462	if (sls->sls_catch != 0)
463		error = sleep_signal_check();
464
465	if (sls->sls_locked)
466		KERNEL_UNLOCK();
467
468	/* Signal errors are higher priority than timeouts. */
469	if (error == 0 && error1 != 0)
470		error = error1;
471
472	return error;
473}
474
475/*
476 * Check and handle signals and suspensions around a sleep cycle.
477 */
478int
479sleep_signal_check(void)
480{
481	struct proc *p = curproc;
482	struct sigctx ctx;
483	int err, sig;
484
485	if ((err = single_thread_check(p, 1)) != 0)
486		return err;
487	if ((sig = cursig(p, &ctx)) != 0) {
488		if (ctx.sig_intr)
489			return EINTR;
490		else
491			return ERESTART;
492	}
493	return 0;
494}
495
496int
497wakeup_proc(struct proc *p, const volatile void *chan)
498{
499	int s, awakened = 0;
500
501	SCHED_LOCK(s);
502	if (p->p_wchan != NULL &&
503	   ((chan == NULL) || (p->p_wchan == chan))) {
504		awakened = 1;
505		if (p->p_stat == SSLEEP)
506			setrunnable(p);
507		else
508			unsleep(p);
509	}
510	SCHED_UNLOCK(s);
511
512	return awakened;
513}
514
515
516/*
517 * Implement timeout for tsleep.
518 * If process hasn't been awakened (wchan non-zero),
519 * set timeout flag and undo the sleep.  If proc
520 * is stopped, just unsleep so it will remain stopped.
521 */
522void
523endtsleep(void *arg)
524{
525	struct proc *p = arg;
526	int s;
527
528	SCHED_LOCK(s);
529	if (wakeup_proc(p, NULL))
530		atomic_setbits_int(&p->p_flag, P_TIMEOUT);
531	SCHED_UNLOCK(s);
532}
533
534/*
535 * Remove a process from its wait queue
536 */
537void
538unsleep(struct proc *p)
539{
540	SCHED_ASSERT_LOCKED();
541
542	if (p->p_wchan != NULL) {
543		TAILQ_REMOVE(&slpque[LOOKUP(p->p_wchan)], p, p_runq);
544		p->p_wchan = NULL;
545		TRACEPOINT(sched, wakeup, p->p_tid + THREAD_PID_OFFSET,
546		    p->p_p->ps_pid);
547	}
548}
549
550/*
551 * Make a number of processes sleeping on the specified identifier runnable.
552 */
553void
554wakeup_n(const volatile void *ident, int n)
555{
556	struct slpque *qp;
557	struct proc *p;
558	struct proc *pnext;
559	int s;
560
561	SCHED_LOCK(s);
562	qp = &slpque[LOOKUP(ident)];
563	for (p = TAILQ_FIRST(qp); p != NULL && n != 0; p = pnext) {
564		pnext = TAILQ_NEXT(p, p_runq);
565		/*
566		 * This happens if wakeup(9) is called after enqueuing
567		 * itself on the sleep queue and both `ident' collide.
568		 */
569		if (p == curproc)
570			continue;
571#ifdef DIAGNOSTIC
572		if (p->p_stat != SSLEEP && p->p_stat != SSTOP)
573			panic("wakeup: p_stat is %d", (int)p->p_stat);
574#endif
575		if (wakeup_proc(p, ident))
576			--n;
577	}
578	SCHED_UNLOCK(s);
579}
580
581/*
582 * Make all processes sleeping on the specified identifier runnable.
583 */
584void
585wakeup(const volatile void *chan)
586{
587	wakeup_n(chan, -1);
588}
589
590int
591sys_sched_yield(struct proc *p, void *v, register_t *retval)
592{
593	struct proc *q;
594	uint8_t newprio;
595	int s;
596
597	SCHED_LOCK(s);
598	/*
599	 * If one of the threads of a multi-threaded process called
600	 * sched_yield(2), drop its priority to ensure its siblings
601	 * can make some progress.
602	 */
603	newprio = p->p_usrpri;
604	TAILQ_FOREACH(q, &p->p_p->ps_threads, p_thr_link)
605		newprio = max(newprio, q->p_runpri);
606	setrunqueue(p->p_cpu, p, newprio);
607	p->p_ru.ru_nvcsw++;
608	mi_switch();
609	SCHED_UNLOCK(s);
610
611	return (0);
612}
613
614int
615thrsleep_unlock(void *lock)
616{
617	static _atomic_lock_t unlocked = _ATOMIC_LOCK_UNLOCKED;
618	_atomic_lock_t *atomiclock = lock;
619
620	if (!lock)
621		return 0;
622
623	return copyout(&unlocked, atomiclock, sizeof(unlocked));
624}
625
626struct tslpentry {
627	TAILQ_ENTRY(tslpentry)	tslp_link;
628	long			tslp_ident;
629};
630
631/* thrsleep queue shared between processes */
632static struct tslpqueue thrsleep_queue = TAILQ_HEAD_INITIALIZER(thrsleep_queue);
633static struct rwlock thrsleep_lock = RWLOCK_INITIALIZER("thrsleeplk");
634
635int
636thrsleep(struct proc *p, struct sys___thrsleep_args *v)
637{
638	struct sys___thrsleep_args /* {
639		syscallarg(const volatile void *) ident;
640		syscallarg(clockid_t) clock_id;
641		syscallarg(const struct timespec *) tp;
642		syscallarg(void *) lock;
643		syscallarg(const int *) abort;
644	} */ *uap = v;
645	long ident = (long)SCARG(uap, ident);
646	struct tslpentry entry;
647	struct tslpqueue *queue;
648	struct rwlock *qlock;
649	struct timespec *tsp = (struct timespec *)SCARG(uap, tp);
650	void *lock = SCARG(uap, lock);
651	uint64_t nsecs = INFSLP;
652	int abort = 0, error;
653	clockid_t clock_id = SCARG(uap, clock_id);
654
655	if (ident == 0)
656		return (EINVAL);
657	if (tsp != NULL) {
658		struct timespec now;
659
660		if ((error = clock_gettime(p, clock_id, &now)))
661			return (error);
662#ifdef KTRACE
663		if (KTRPOINT(p, KTR_STRUCT))
664			ktrabstimespec(p, tsp);
665#endif
666
667		if (timespeccmp(tsp, &now, <=)) {
668			/* already passed: still do the unlock */
669			if ((error = thrsleep_unlock(lock)))
670				return (error);
671			return (EWOULDBLOCK);
672		}
673
674		timespecsub(tsp, &now, tsp);
675		nsecs = MIN(TIMESPEC_TO_NSEC(tsp), MAXTSLP);
676	}
677
678	if (ident == -1) {
679		queue = &thrsleep_queue;
680		qlock = &thrsleep_lock;
681	} else {
682		queue = &p->p_p->ps_tslpqueue;
683		qlock = &p->p_p->ps_lock;
684	}
685
686	/* Interlock with wakeup. */
687	entry.tslp_ident = ident;
688	rw_enter_write(qlock);
689	TAILQ_INSERT_TAIL(queue, &entry, tslp_link);
690	rw_exit_write(qlock);
691
692	error = thrsleep_unlock(lock);
693
694	if (error == 0 && SCARG(uap, abort) != NULL)
695		error = copyin(SCARG(uap, abort), &abort, sizeof(abort));
696
697	rw_enter_write(qlock);
698	if (error != 0)
699		goto out;
700	if (abort != 0) {
701		error = EINTR;
702		goto out;
703	}
704	if (entry.tslp_ident != 0) {
705		error = rwsleep_nsec(&entry, qlock, PWAIT|PCATCH, "thrsleep",
706		    nsecs);
707	}
708
709out:
710	if (entry.tslp_ident != 0)
711		TAILQ_REMOVE(queue, &entry, tslp_link);
712	rw_exit_write(qlock);
713
714	if (error == ERESTART)
715		error = ECANCELED;
716
717	return (error);
718
719}
720
721int
722sys___thrsleep(struct proc *p, void *v, register_t *retval)
723{
724	struct sys___thrsleep_args /* {
725		syscallarg(const volatile void *) ident;
726		syscallarg(clockid_t) clock_id;
727		syscallarg(struct timespec *) tp;
728		syscallarg(void *) lock;
729		syscallarg(const int *) abort;
730	} */ *uap = v;
731	struct timespec ts;
732	int error;
733
734	if (SCARG(uap, tp) != NULL) {
735		if ((error = copyin(SCARG(uap, tp), &ts, sizeof(ts)))) {
736			*retval = error;
737			return 0;
738		}
739		if (!timespecisvalid(&ts)) {
740			*retval = EINVAL;
741			return 0;
742		}
743		SCARG(uap, tp) = &ts;
744	}
745
746	*retval = thrsleep(p, uap);
747	return 0;
748}
749
750int
751sys___thrwakeup(struct proc *p, void *v, register_t *retval)
752{
753	struct sys___thrwakeup_args /* {
754		syscallarg(const volatile void *) ident;
755		syscallarg(int) n;
756	} */ *uap = v;
757	struct tslpentry *entry, *tmp;
758	struct tslpqueue *queue;
759	struct rwlock *qlock;
760	long ident = (long)SCARG(uap, ident);
761	int n = SCARG(uap, n);
762	int found = 0;
763
764	if (ident == 0)
765		*retval = EINVAL;
766	else {
767		if (ident == -1) {
768			queue = &thrsleep_queue;
769			qlock = &thrsleep_lock;
770			/*
771			 * Wake up all waiters with ident -1. This is needed
772			 * because ident -1 can be shared by multiple userspace
773			 * lock state machines concurrently. The implementation
774			 * has no way to direct the wakeup to a particular
775			 * state machine.
776			 */
777			n = 0;
778		} else {
779			queue = &p->p_p->ps_tslpqueue;
780			qlock = &p->p_p->ps_lock;
781		}
782
783		rw_enter_write(qlock);
784		TAILQ_FOREACH_SAFE(entry, queue, tslp_link, tmp) {
785			if (entry->tslp_ident == ident) {
786				TAILQ_REMOVE(queue, entry, tslp_link);
787				entry->tslp_ident = 0;
788				wakeup_one(entry);
789				if (++found == n)
790					break;
791			}
792		}
793		rw_exit_write(qlock);
794
795		if (ident == -1)
796			*retval = 0;
797		else
798			*retval = found ? 0 : ESRCH;
799	}
800
801	return (0);
802}
803
804void
805refcnt_init(struct refcnt *r)
806{
807	atomic_store_int(&r->r_refs, 1);
808}
809
810void
811refcnt_take(struct refcnt *r)
812{
813	u_int refs;
814
815	refs = atomic_inc_int_nv(&r->r_refs);
816	KASSERT(refs != 0);
817	(void)refs;
818}
819
820int
821refcnt_rele(struct refcnt *r)
822{
823	u_int refs;
824
825	membar_exit_before_atomic();
826	refs = atomic_dec_int_nv(&r->r_refs);
827	KASSERT(refs != ~0);
828	if (refs == 0) {
829		membar_enter_after_atomic();
830		return (1);
831	}
832	return (0);
833}
834
835void
836refcnt_rele_wake(struct refcnt *r)
837{
838	if (refcnt_rele(r))
839		wakeup_one(r);
840}
841
842void
843refcnt_finalize(struct refcnt *r, const char *wmesg)
844{
845	struct sleep_state sls;
846	u_int refs;
847
848	membar_exit_before_atomic();
849	refs = atomic_dec_int_nv(&r->r_refs);
850	KASSERT(refs != ~0);
851	while (refs) {
852		sleep_setup(&sls, r, PWAIT, wmesg, 0);
853		refs = atomic_load_int(&r->r_refs);
854		sleep_finish(&sls, refs);
855	}
856	/* Order subsequent loads and stores after refs == 0 load. */
857	membar_sync();
858}
859
860int
861refcnt_shared(struct refcnt *r)
862{
863	u_int refs;
864
865	refs = atomic_load_int(&r->r_refs);
866	return (refs > 1);
867}
868
869unsigned int
870refcnt_read(struct refcnt *r)
871{
872	u_int refs;
873
874	refs = atomic_load_int(&r->r_refs);
875	return (refs);
876}
877
878void
879cond_init(struct cond *c)
880{
881	atomic_store_int(&c->c_wait, 1);
882}
883
884void
885cond_signal(struct cond *c)
886{
887	atomic_store_int(&c->c_wait, 0);
888
889	wakeup_one(c);
890}
891
892void
893cond_wait(struct cond *c, const char *wmesg)
894{
895	struct sleep_state sls;
896	unsigned int wait;
897
898	wait = atomic_load_int(&c->c_wait);
899	while (wait) {
900		sleep_setup(&sls, c, PWAIT, wmesg, 0);
901		wait = atomic_load_int(&c->c_wait);
902		sleep_finish(&sls, wait);
903	}
904}
905