if_vge.c revision 1.77
1/*	$OpenBSD: if_vge.c,v 1.77 2023/11/10 15:51:24 bluhm Exp $	*/
2/*	$FreeBSD: if_vge.c,v 1.3 2004/09/11 22:13:25 wpaul Exp $	*/
3/*
4 * Copyright (c) 2004
5 *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 *    must display the following acknowledgement:
17 *	This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 *    may be used to endorse or promote products derived from this software
20 *    without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35/*
36 * VIA Networking Technologies VT612x PCI gigabit ethernet NIC driver.
37 *
38 * Written by Bill Paul <wpaul@windriver.com>
39 * Senior Networking Software Engineer
40 * Wind River Systems
41 *
42 * Ported to OpenBSD by Peter Valchev <pvalchev@openbsd.org>
43 */
44
45/*
46 * The VIA Networking VT6122 is a 32bit, 33/66MHz PCI device that
47 * combines a tri-speed ethernet MAC and PHY, with the following
48 * features:
49 *
50 *	o Jumbo frame support up to 16K
51 *	o Transmit and receive flow control
52 *	o IPv4 checksum offload
53 *	o VLAN tag insertion and stripping
54 *	o TCP large send
55 *	o 64-bit multicast hash table filter
56 *	o 64 entry CAM filter
57 *	o 16K RX FIFO and 48K TX FIFO memory
58 *	o Interrupt moderation
59 *
60 * The VT6122 supports up to four transmit DMA queues. The descriptors
61 * in the transmit ring can address up to 7 data fragments; frames which
62 * span more than 7 data buffers must be coalesced, but in general the
63 * BSD TCP/IP stack rarely generates frames more than 2 or 3 fragments
64 * long. The receive descriptors address only a single buffer.
65 *
66 * There are two peculiar design issues with the VT6122. One is that
67 * receive data buffers must be aligned on a 32-bit boundary. This is
68 * not a problem where the VT6122 is used as a LOM device in x86-based
69 * systems, but on architectures that generate unaligned access traps, we
70 * have to do some copying.
71 *
72 * The other issue has to do with the way 64-bit addresses are handled.
73 * The DMA descriptors only allow you to specify 48 bits of addressing
74 * information. The remaining 16 bits are specified using one of the
75 * I/O registers. If you only have a 32-bit system, then this isn't
76 * an issue, but if you have a 64-bit system and more than 4GB of
77 * memory, you must have to make sure your network data buffers reside
78 * in the same 48-bit 'segment.'
79 *
80 * Special thanks to Ryan Fu at VIA Networking for providing documentation
81 * and sample NICs for testing.
82 */
83
84#include "bpfilter.h"
85#include "vlan.h"
86
87#include <sys/param.h>
88#include <sys/endian.h>
89#include <sys/systm.h>
90#include <sys/sockio.h>
91#include <sys/mbuf.h>
92#include <sys/malloc.h>
93#include <sys/kernel.h>
94#include <sys/device.h>
95#include <sys/timeout.h>
96#include <sys/socket.h>
97
98#include <net/if.h>
99#include <net/if_media.h>
100
101#include <netinet/in.h>
102#include <netinet/if_ether.h>
103
104#if NBPFILTER > 0
105#include <net/bpf.h>
106#endif
107
108#include <dev/mii/miivar.h>
109
110#include <dev/pci/pcireg.h>
111#include <dev/pci/pcivar.h>
112#include <dev/pci/pcidevs.h>
113
114#include <dev/pci/if_vgereg.h>
115#include <dev/pci/if_vgevar.h>
116
117int vge_probe		(struct device *, void *, void *);
118void vge_attach		(struct device *, struct device *, void *);
119int vge_detach		(struct device *, int);
120
121int vge_encap		(struct vge_softc *, struct mbuf *, int);
122
123int vge_allocmem		(struct vge_softc *);
124void vge_freemem	(struct vge_softc *);
125int vge_newbuf		(struct vge_softc *, int, struct mbuf *);
126int vge_rx_list_init	(struct vge_softc *);
127int vge_tx_list_init	(struct vge_softc *);
128void vge_rxeof		(struct vge_softc *);
129void vge_txeof		(struct vge_softc *);
130int vge_intr		(void *);
131void vge_tick		(void *);
132void vge_start		(struct ifnet *);
133int vge_ioctl		(struct ifnet *, u_long, caddr_t);
134int vge_init		(struct ifnet *);
135void vge_stop		(struct vge_softc *);
136void vge_watchdog	(struct ifnet *);
137int vge_ifmedia_upd	(struct ifnet *);
138void vge_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
139
140#ifdef VGE_EEPROM
141void vge_eeprom_getword	(struct vge_softc *, int, u_int16_t *);
142#endif
143void vge_read_eeprom	(struct vge_softc *, caddr_t, int, int, int);
144
145void vge_miipoll_start	(struct vge_softc *);
146void vge_miipoll_stop	(struct vge_softc *);
147int vge_miibus_readreg	(struct device *, int, int);
148void vge_miibus_writereg (struct device *, int, int, int);
149void vge_miibus_statchg	(struct device *);
150
151void vge_cam_clear	(struct vge_softc *);
152int vge_cam_set		(struct vge_softc *, uint8_t *);
153void vge_iff		(struct vge_softc *);
154void vge_reset		(struct vge_softc *);
155
156const struct cfattach vge_ca = {
157	sizeof(struct vge_softc), vge_probe, vge_attach, vge_detach
158};
159
160struct cfdriver vge_cd = {
161	NULL, "vge", DV_IFNET
162};
163
164#define VGE_PCI_LOIO             0x10
165#define VGE_PCI_LOMEM            0x14
166
167int vge_debug = 0;
168#define DPRINTF(x)	if (vge_debug) printf x
169#define DPRINTFN(n, x)	if (vge_debug >= (n)) printf x
170
171const struct pci_matchid vge_devices[] = {
172	{ PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT612X },
173};
174
175#ifdef VGE_EEPROM
176/*
177 * Read a word of data stored in the EEPROM at address 'addr.'
178 */
179void
180vge_eeprom_getword(struct vge_softc *sc, int addr, u_int16_t *dest)
181{
182	int			i;
183	u_int16_t		word = 0;
184
185	/*
186	 * Enter EEPROM embedded programming mode. In order to
187	 * access the EEPROM at all, we first have to set the
188	 * EELOAD bit in the CHIPCFG2 register.
189	 */
190	CSR_SETBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
191	CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
192
193	/* Select the address of the word we want to read */
194	CSR_WRITE_1(sc, VGE_EEADDR, addr);
195
196	/* Issue read command */
197	CSR_SETBIT_1(sc, VGE_EECMD, VGE_EECMD_ERD);
198
199	/* Wait for the done bit to be set. */
200	for (i = 0; i < VGE_TIMEOUT; i++) {
201		if (CSR_READ_1(sc, VGE_EECMD) & VGE_EECMD_EDONE)
202			break;
203	}
204
205	if (i == VGE_TIMEOUT) {
206		printf("%s: EEPROM read timed out\n", sc->vge_dev.dv_xname);
207		*dest = 0;
208		return;
209	}
210
211	/* Read the result */
212	word = CSR_READ_2(sc, VGE_EERDDAT);
213
214	/* Turn off EEPROM access mode. */
215	CSR_CLRBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
216	CSR_CLRBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
217
218	*dest = word;
219}
220#endif
221
222/*
223 * Read a sequence of words from the EEPROM.
224 */
225void
226vge_read_eeprom(struct vge_softc *sc, caddr_t dest, int off, int cnt,
227    int swap)
228{
229	int			i;
230#ifdef VGE_EEPROM
231	u_int16_t		word = 0, *ptr;
232
233	for (i = 0; i < cnt; i++) {
234		vge_eeprom_getword(sc, off + i, &word);
235		ptr = (u_int16_t *)(dest + (i * 2));
236		if (swap)
237			*ptr = ntohs(word);
238		else
239			*ptr = word;
240	}
241#else
242	for (i = 0; i < ETHER_ADDR_LEN; i++)
243		dest[i] = CSR_READ_1(sc, VGE_PAR0 + i);
244#endif
245}
246
247void
248vge_miipoll_stop(struct vge_softc *sc)
249{
250	int			i;
251
252	CSR_WRITE_1(sc, VGE_MIICMD, 0);
253
254	for (i = 0; i < VGE_TIMEOUT; i++) {
255		DELAY(1);
256		if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
257			break;
258	}
259
260	if (i == VGE_TIMEOUT)
261		printf("%s: failed to idle MII autopoll\n", sc->vge_dev.dv_xname);
262}
263
264void
265vge_miipoll_start(struct vge_softc *sc)
266{
267	int			i;
268
269	/* First, make sure we're idle. */
270
271	CSR_WRITE_1(sc, VGE_MIICMD, 0);
272	CSR_WRITE_1(sc, VGE_MIIADDR, VGE_MIIADDR_SWMPL);
273
274	for (i = 0; i < VGE_TIMEOUT; i++) {
275		DELAY(1);
276		if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
277			break;
278	}
279
280	if (i == VGE_TIMEOUT) {
281		printf("%s: failed to idle MII autopoll\n", sc->vge_dev.dv_xname);
282		return;
283	}
284
285	/* Now enable auto poll mode. */
286
287	CSR_WRITE_1(sc, VGE_MIICMD, VGE_MIICMD_MAUTO);
288
289	/* And make sure it started. */
290
291	for (i = 0; i < VGE_TIMEOUT; i++) {
292		DELAY(1);
293		if ((CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL) == 0)
294			break;
295	}
296
297	if (i == VGE_TIMEOUT)
298		printf("%s: failed to start MII autopoll\n", sc->vge_dev.dv_xname);
299}
300
301int
302vge_miibus_readreg(struct device *dev, int phy, int reg)
303{
304	struct vge_softc	*sc = (struct vge_softc *)dev;
305	int			i, s;
306	u_int16_t		rval = 0;
307
308	if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F))
309		return(0);
310
311	s = splnet();
312
313	vge_miipoll_stop(sc);
314
315	/* Specify the register we want to read. */
316	CSR_WRITE_1(sc, VGE_MIIADDR, reg);
317
318	/* Issue read command. */
319	CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_RCMD);
320
321	/* Wait for the read command bit to self-clear. */
322	for (i = 0; i < VGE_TIMEOUT; i++) {
323		DELAY(1);
324		if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_RCMD) == 0)
325			break;
326	}
327
328	if (i == VGE_TIMEOUT)
329		printf("%s: MII read timed out\n", sc->vge_dev.dv_xname);
330	else
331		rval = CSR_READ_2(sc, VGE_MIIDATA);
332
333	vge_miipoll_start(sc);
334	splx(s);
335
336	return (rval);
337}
338
339void
340vge_miibus_writereg(struct device *dev, int phy, int reg, int data)
341{
342	struct vge_softc	*sc = (struct vge_softc *)dev;
343	int			i, s;
344
345	if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F))
346		return;
347
348	s = splnet();
349	vge_miipoll_stop(sc);
350
351	/* Specify the register we want to write. */
352	CSR_WRITE_1(sc, VGE_MIIADDR, reg);
353
354	/* Specify the data we want to write. */
355	CSR_WRITE_2(sc, VGE_MIIDATA, data);
356
357	/* Issue write command. */
358	CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_WCMD);
359
360	/* Wait for the write command bit to self-clear. */
361	for (i = 0; i < VGE_TIMEOUT; i++) {
362		DELAY(1);
363		if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_WCMD) == 0)
364			break;
365	}
366
367	if (i == VGE_TIMEOUT) {
368		printf("%s: MII write timed out\n", sc->vge_dev.dv_xname);
369	}
370
371	vge_miipoll_start(sc);
372	splx(s);
373}
374
375void
376vge_cam_clear(struct vge_softc *sc)
377{
378	int			i;
379
380	/*
381	 * Turn off all the mask bits. This tells the chip
382	 * that none of the entries in the CAM filter are valid.
383	 * desired entries will be enabled as we fill the filter in.
384	 */
385
386	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
387	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
388	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE);
389	for (i = 0; i < 8; i++)
390		CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
391
392	/* Clear the VLAN filter too. */
393
394	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|VGE_CAMADDR_AVSEL|0);
395	for (i = 0; i < 8; i++)
396		CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
397
398	CSR_WRITE_1(sc, VGE_CAMADDR, 0);
399	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
400	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
401
402	sc->vge_camidx = 0;
403}
404
405int
406vge_cam_set(struct vge_softc *sc, uint8_t *addr)
407{
408	int			i, error = 0;
409
410	if (sc->vge_camidx == VGE_CAM_MAXADDRS)
411		return(ENOSPC);
412
413	/* Select the CAM data page. */
414	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
415	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMDATA);
416
417	/* Set the filter entry we want to update and enable writing. */
418	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|sc->vge_camidx);
419
420	/* Write the address to the CAM registers */
421	for (i = 0; i < ETHER_ADDR_LEN; i++)
422		CSR_WRITE_1(sc, VGE_CAM0 + i, addr[i]);
423
424	/* Issue a write command. */
425	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_WRITE);
426
427	/* Wake for it to clear. */
428	for (i = 0; i < VGE_TIMEOUT; i++) {
429		DELAY(1);
430		if ((CSR_READ_1(sc, VGE_CAMCTL) & VGE_CAMCTL_WRITE) == 0)
431			break;
432	}
433
434	if (i == VGE_TIMEOUT) {
435		printf("%s: setting CAM filter failed\n", sc->vge_dev.dv_xname);
436		error = EIO;
437		goto fail;
438	}
439
440	/* Select the CAM mask page. */
441	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
442	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
443
444	/* Set the mask bit that enables this filter. */
445	CSR_SETBIT_1(sc, VGE_CAM0 + (sc->vge_camidx/8),
446	    1<<(sc->vge_camidx & 7));
447
448	sc->vge_camidx++;
449
450fail:
451	/* Turn off access to CAM. */
452	CSR_WRITE_1(sc, VGE_CAMADDR, 0);
453	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
454	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
455
456	return (error);
457}
458
459/*
460 * We use the 64-entry CAM filter for perfect filtering.
461 * If there's more than 64 multicast addresses, we use the
462 * hash filter instead.
463 */
464void
465vge_iff(struct vge_softc *sc)
466{
467	struct arpcom		*ac = &sc->arpcom;
468	struct ifnet		*ifp = &ac->ac_if;
469	struct ether_multi	*enm;
470	struct ether_multistep	step;
471	u_int32_t		h = 0, hashes[2];
472	u_int8_t		rxctl;
473	int			error;
474
475	vge_cam_clear(sc);
476	rxctl = CSR_READ_1(sc, VGE_RXCTL);
477	rxctl &= ~(VGE_RXCTL_RX_BCAST | VGE_RXCTL_RX_MCAST |
478	    VGE_RXCTL_RX_PROMISC | VGE_RXCTL_RX_UCAST);
479	bzero(hashes, sizeof(hashes));
480	ifp->if_flags &= ~IFF_ALLMULTI;
481
482	/*
483	 * Always accept broadcast frames.
484	 * Always accept frames destined to our station address.
485	 */
486	rxctl |= VGE_RXCTL_RX_BCAST | VGE_RXCTL_RX_UCAST;
487
488	if ((ifp->if_flags & IFF_PROMISC) == 0)
489		rxctl |= VGE_RXCTL_RX_MCAST;
490
491	if (ifp->if_flags & IFF_PROMISC || ac->ac_multirangecnt > 0) {
492		ifp->if_flags |= IFF_ALLMULTI;
493		if (ifp->if_flags & IFF_PROMISC)
494			rxctl |= VGE_RXCTL_RX_PROMISC;
495		hashes[0] = hashes[1] = 0xFFFFFFFF;
496	} else if (ac->ac_multicnt > VGE_CAM_MAXADDRS) {
497		ETHER_FIRST_MULTI(step, ac, enm);
498		while (enm != NULL) {
499			h = ether_crc32_be(enm->enm_addrlo,
500			    ETHER_ADDR_LEN) >> 26;
501
502			hashes[h >> 5] |= 1 << (h & 0x1f);
503
504			ETHER_NEXT_MULTI(step, enm);
505		}
506	} else {
507		ETHER_FIRST_MULTI(step, ac, enm);
508		while (enm != NULL) {
509			error = vge_cam_set(sc, enm->enm_addrlo);
510			if (error)
511				break;
512
513			ETHER_NEXT_MULTI(step, enm);
514		}
515	}
516
517	CSR_WRITE_4(sc, VGE_MAR0, hashes[0]);
518	CSR_WRITE_4(sc, VGE_MAR1, hashes[1]);
519	CSR_WRITE_1(sc, VGE_RXCTL, rxctl);
520}
521
522void
523vge_reset(struct vge_softc *sc)
524{
525	int			i;
526
527	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_SOFTRESET);
528
529	for (i = 0; i < VGE_TIMEOUT; i++) {
530		DELAY(5);
531		if ((CSR_READ_1(sc, VGE_CRS1) & VGE_CR1_SOFTRESET) == 0)
532			break;
533	}
534
535	if (i == VGE_TIMEOUT) {
536		printf("%s: soft reset timed out", sc->vge_dev.dv_xname);
537		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_STOP_FORCE);
538		DELAY(2000);
539	}
540
541	DELAY(5000);
542
543	CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_RELOAD);
544
545	for (i = 0; i < VGE_TIMEOUT; i++) {
546		DELAY(5);
547		if ((CSR_READ_1(sc, VGE_EECSR) & VGE_EECSR_RELOAD) == 0)
548			break;
549	}
550
551	CSR_CLRBIT_1(sc, VGE_CHIPCFG0, VGE_CHIPCFG0_PACPI);
552}
553
554/*
555 * Probe for a VIA gigabit chip. Check the PCI vendor and device
556 * IDs against our list and return a device name if we find a match.
557 */
558int
559vge_probe(struct device *dev, void *match, void *aux)
560{
561	return (pci_matchbyid((struct pci_attach_args *)aux, vge_devices,
562	    nitems(vge_devices)));
563}
564
565/*
566 * Allocate memory for RX/TX rings
567 */
568int
569vge_allocmem(struct vge_softc *sc)
570{
571	int			nseg, rseg;
572	int			i, error;
573
574	nseg = 32;
575
576	/* Allocate DMA'able memory for the TX ring */
577
578	error = bus_dmamap_create(sc->sc_dmat, VGE_TX_LIST_SZ, 1,
579	    VGE_TX_LIST_SZ, 0, BUS_DMA_ALLOCNOW,
580	    &sc->vge_ldata.vge_tx_list_map);
581	if (error)
582		return (ENOMEM);
583	error = bus_dmamem_alloc(sc->sc_dmat, VGE_TX_LIST_SZ,
584	    ETHER_ALIGN, 0,
585	    &sc->vge_ldata.vge_tx_listseg, 1, &rseg, BUS_DMA_NOWAIT);
586	if (error) {
587		printf("%s: can't alloc TX list\n", sc->vge_dev.dv_xname);
588		return (ENOMEM);
589	}
590
591	/* Load the map for the TX ring. */
592	error = bus_dmamem_map(sc->sc_dmat, &sc->vge_ldata.vge_tx_listseg,
593	     1, VGE_TX_LIST_SZ,
594	     (caddr_t *)&sc->vge_ldata.vge_tx_list, BUS_DMA_NOWAIT);
595	memset(sc->vge_ldata.vge_tx_list, 0, VGE_TX_LIST_SZ);
596	if (error) {
597		printf("%s: can't map TX dma buffers\n",
598		    sc->vge_dev.dv_xname);
599		bus_dmamem_free(sc->sc_dmat, &sc->vge_ldata.vge_tx_listseg, rseg);
600		return (ENOMEM);
601	}
602
603	error = bus_dmamap_load(sc->sc_dmat, sc->vge_ldata.vge_tx_list_map,
604	    sc->vge_ldata.vge_tx_list, VGE_TX_LIST_SZ, NULL, BUS_DMA_NOWAIT);
605	if (error) {
606		printf("%s: can't load TX dma map\n", sc->vge_dev.dv_xname);
607		bus_dmamap_destroy(sc->sc_dmat, sc->vge_ldata.vge_tx_list_map);
608		bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->vge_ldata.vge_tx_list,
609		    VGE_TX_LIST_SZ);
610		bus_dmamem_free(sc->sc_dmat, &sc->vge_ldata.vge_tx_listseg, rseg);
611		return (ENOMEM);
612	}
613
614	/* Create DMA maps for TX buffers */
615
616	for (i = 0; i < VGE_TX_DESC_CNT; i++) {
617		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES * nseg,
618		    VGE_TX_FRAGS, MCLBYTES, 0, BUS_DMA_ALLOCNOW,
619		    &sc->vge_ldata.vge_tx_dmamap[i]);
620		if (error) {
621			printf("%s: can't create DMA map for TX\n",
622			    sc->vge_dev.dv_xname);
623			return (ENOMEM);
624		}
625	}
626
627	/* Allocate DMA'able memory for the RX ring */
628
629	error = bus_dmamap_create(sc->sc_dmat, VGE_RX_LIST_SZ, 1,
630	    VGE_RX_LIST_SZ, 0, BUS_DMA_ALLOCNOW,
631	    &sc->vge_ldata.vge_rx_list_map);
632	if (error)
633		return (ENOMEM);
634	error = bus_dmamem_alloc(sc->sc_dmat, VGE_RX_LIST_SZ, VGE_RING_ALIGN,
635	    0, &sc->vge_ldata.vge_rx_listseg, 1, &rseg, BUS_DMA_NOWAIT);
636	if (error) {
637		printf("%s: can't alloc RX list\n", sc->vge_dev.dv_xname);
638		return (ENOMEM);
639	}
640
641	/* Load the map for the RX ring. */
642
643	error = bus_dmamem_map(sc->sc_dmat, &sc->vge_ldata.vge_rx_listseg,
644	     1, VGE_RX_LIST_SZ,
645	     (caddr_t *)&sc->vge_ldata.vge_rx_list, BUS_DMA_NOWAIT);
646	memset(sc->vge_ldata.vge_rx_list, 0, VGE_RX_LIST_SZ);
647	if (error) {
648		printf("%s: can't map RX dma buffers\n",
649		    sc->vge_dev.dv_xname);
650		bus_dmamem_free(sc->sc_dmat, &sc->vge_ldata.vge_rx_listseg, rseg);
651		return (ENOMEM);
652	}
653	error = bus_dmamap_load(sc->sc_dmat, sc->vge_ldata.vge_rx_list_map,
654	    sc->vge_ldata.vge_rx_list, VGE_RX_LIST_SZ, NULL, BUS_DMA_NOWAIT);
655	if (error) {
656		printf("%s: can't load RX dma map\n", sc->vge_dev.dv_xname);
657		bus_dmamap_destroy(sc->sc_dmat, sc->vge_ldata.vge_rx_list_map);
658		bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->vge_ldata.vge_rx_list,
659		    VGE_RX_LIST_SZ);
660		bus_dmamem_free(sc->sc_dmat, &sc->vge_ldata.vge_rx_listseg, rseg);
661		return (ENOMEM);
662	}
663
664	/* Create DMA maps for RX buffers */
665
666	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
667		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES * nseg, nseg,
668		    MCLBYTES, 0, BUS_DMA_ALLOCNOW,
669		    &sc->vge_ldata.vge_rx_dmamap[i]);
670		if (error) {
671			printf("%s: can't create DMA map for RX\n",
672			    sc->vge_dev.dv_xname);
673			return (ENOMEM);
674		}
675	}
676
677	return (0);
678}
679
680void
681vge_freemem(struct vge_softc *sc)
682{
683	int i;
684
685	for (i = 0; i < VGE_RX_DESC_CNT; i++)
686		bus_dmamap_destroy(sc->sc_dmat,
687		    sc->vge_ldata.vge_rx_dmamap[i]);
688
689	bus_dmamap_unload(sc->sc_dmat, sc->vge_ldata.vge_rx_list_map);
690	bus_dmamap_destroy(sc->sc_dmat, sc->vge_ldata.vge_rx_list_map);
691	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->vge_ldata.vge_rx_list,
692	    VGE_RX_LIST_SZ);
693	bus_dmamem_free(sc->sc_dmat, &sc->vge_ldata.vge_rx_listseg, 1);
694
695	for (i = 0; i < VGE_TX_DESC_CNT; i++)
696		bus_dmamap_destroy(sc->sc_dmat,
697		    sc->vge_ldata.vge_tx_dmamap[i]);
698
699	bus_dmamap_unload(sc->sc_dmat, sc->vge_ldata.vge_tx_list_map);
700	bus_dmamap_destroy(sc->sc_dmat, sc->vge_ldata.vge_tx_list_map);
701	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->vge_ldata.vge_tx_list,
702	    VGE_TX_LIST_SZ);
703	bus_dmamem_free(sc->sc_dmat, &sc->vge_ldata.vge_tx_listseg, 1);
704}
705
706/*
707 * Attach the interface. Allocate softc structures, do ifmedia
708 * setup and ethernet/BPF attach.
709 */
710void
711vge_attach(struct device *parent, struct device *self, void *aux)
712{
713	u_char			eaddr[ETHER_ADDR_LEN];
714	struct vge_softc	*sc = (struct vge_softc *)self;
715	struct pci_attach_args	*pa = aux;
716	pci_chipset_tag_t	pc = pa->pa_pc;
717	pci_intr_handle_t	ih;
718	const char		*intrstr = NULL;
719	struct ifnet		*ifp;
720	int			error = 0;
721
722	/*
723	 * Map control/status registers.
724	 */
725	if (pci_mapreg_map(pa, VGE_PCI_LOMEM, PCI_MAPREG_TYPE_MEM, 0,
726	    &sc->vge_btag, &sc->vge_bhandle, NULL, &sc->vge_bsize, 0)) {
727		if (pci_mapreg_map(pa, VGE_PCI_LOIO, PCI_MAPREG_TYPE_IO, 0,
728		    &sc->vge_btag, &sc->vge_bhandle, NULL, &sc->vge_bsize, 0)) {
729			printf(": can't map mem or i/o space\n");
730			return;
731		}
732	}
733
734	/* Allocate interrupt */
735	if (pci_intr_map(pa, &ih)) {
736		printf(": couldn't map interrupt\n");
737		return;
738	}
739	intrstr = pci_intr_string(pc, ih);
740	sc->vge_intrhand = pci_intr_establish(pc, ih, IPL_NET, vge_intr, sc,
741	    sc->vge_dev.dv_xname);
742	if (sc->vge_intrhand == NULL) {
743		printf(": couldn't establish interrupt");
744		if (intrstr != NULL)
745			printf(" at %s", intrstr);
746		return;
747	}
748	printf(": %s", intrstr);
749
750	sc->sc_dmat = pa->pa_dmat;
751	sc->sc_pc = pa->pa_pc;
752
753	/* Reset the adapter. */
754	vge_reset(sc);
755
756	/*
757	 * Get station address from the EEPROM.
758	 */
759	vge_read_eeprom(sc, eaddr, VGE_EE_EADDR, 3, 1);
760
761	bcopy(eaddr, &sc->arpcom.ac_enaddr, ETHER_ADDR_LEN);
762
763	printf(", address %s\n",
764	    ether_sprintf(sc->arpcom.ac_enaddr));
765
766	error = vge_allocmem(sc);
767
768	if (error)
769		return;
770
771	ifp = &sc->arpcom.ac_if;
772	ifp->if_softc = sc;
773	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
774	ifp->if_ioctl = vge_ioctl;
775	ifp->if_start = vge_start;
776	ifp->if_watchdog = vge_watchdog;
777#ifdef VGE_JUMBO
778	ifp->if_hardmtu = VGE_JUMBO_MTU;
779#endif
780	ifq_init_maxlen(&ifp->if_snd, VGE_IFQ_MAXLEN);
781
782	ifp->if_capabilities = IFCAP_VLAN_MTU | IFCAP_CSUM_IPv4 |
783				IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4;
784
785#if NVLAN > 0
786	ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING;
787#endif
788
789	/* Set interface name */
790	strlcpy(ifp->if_xname, sc->vge_dev.dv_xname, IFNAMSIZ);
791
792	/* Do MII setup */
793	sc->sc_mii.mii_ifp = ifp;
794	sc->sc_mii.mii_readreg = vge_miibus_readreg;
795	sc->sc_mii.mii_writereg = vge_miibus_writereg;
796	sc->sc_mii.mii_statchg = vge_miibus_statchg;
797	ifmedia_init(&sc->sc_mii.mii_media, 0,
798	    vge_ifmedia_upd, vge_ifmedia_sts);
799	mii_attach(self, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
800	    MII_OFFSET_ANY, MIIF_DOPAUSE);
801	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
802		printf("%s: no PHY found!\n", sc->vge_dev.dv_xname);
803		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL,
804		    0, NULL);
805		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL);
806	} else
807		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
808
809	timeout_set(&sc->timer_handle, vge_tick, sc);
810
811	/*
812	 * Call MI attach routine.
813	 */
814	if_attach(ifp);
815	ether_ifattach(ifp);
816}
817
818int
819vge_detach(struct device *self, int flags)
820{
821	struct vge_softc *sc = (void *)self;
822	struct ifnet *ifp = &sc->arpcom.ac_if;
823
824	pci_intr_disestablish(sc->sc_pc, sc->vge_intrhand);
825
826	vge_stop(sc);
827
828	/* Detach all PHYs */
829	mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
830
831	/* Delete any remaining media. */
832	ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
833
834	ether_ifdetach(ifp);
835	if_detach(ifp);
836
837	vge_freemem(sc);
838
839	bus_space_unmap(sc->vge_btag, sc->vge_bhandle, sc->vge_bsize);
840	return (0);
841}
842
843int
844vge_newbuf(struct vge_softc *sc, int idx, struct mbuf *m)
845{
846	struct mbuf		*m_new = NULL;
847	struct vge_rx_desc	*r;
848	bus_dmamap_t		rxmap = sc->vge_ldata.vge_rx_dmamap[idx];
849	int			i;
850
851	if (m == NULL) {
852		/* Allocate a new mbuf */
853		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
854		if (m_new == NULL)
855			return (ENOBUFS);
856
857		/* Allocate a cluster */
858		MCLGET(m_new, M_DONTWAIT);
859		if (!(m_new->m_flags & M_EXT)) {
860			m_freem(m_new);
861			return (ENOBUFS);
862		}
863
864		m = m_new;
865	} else
866		m->m_data = m->m_ext.ext_buf;
867
868	m->m_len = m->m_pkthdr.len = MCLBYTES;
869	/* Fix-up alignment so payload is doubleword-aligned */
870	/* XXX m_adj(m, ETHER_ALIGN); */
871
872	if (bus_dmamap_load_mbuf(sc->sc_dmat, rxmap, m, BUS_DMA_NOWAIT))
873		return (ENOBUFS);
874
875	if (rxmap->dm_nsegs > 1)
876		goto out;
877
878	/* Map the segments into RX descriptors */
879	r = &sc->vge_ldata.vge_rx_list[idx];
880
881	if (letoh32(r->vge_sts) & VGE_RDSTS_OWN) {
882		printf("%s: tried to map a busy RX descriptor\n",
883		    sc->vge_dev.dv_xname);
884		goto out;
885	}
886	r->vge_buflen = htole16(VGE_BUFLEN(rxmap->dm_segs[0].ds_len) | VGE_RXDESC_I);
887	r->vge_addrlo = htole32(VGE_ADDR_LO(rxmap->dm_segs[0].ds_addr));
888	r->vge_addrhi = htole16(VGE_ADDR_HI(rxmap->dm_segs[0].ds_addr) & 0xFFFF);
889	r->vge_sts = htole32(0);
890	r->vge_ctl = htole32(0);
891
892	/*
893	 * Note: the manual fails to document the fact that for
894	 * proper operation, the driver needs to replenish the RX
895	 * DMA ring 4 descriptors at a time (rather than one at a
896	 * time, like most chips). We can allocate the new buffers
897	 * but we should not set the OWN bits until we're ready
898	 * to hand back 4 of them in one shot.
899	 */
900#define VGE_RXCHUNK 4
901	sc->vge_rx_consumed++;
902	if (sc->vge_rx_consumed == VGE_RXCHUNK) {
903		for (i = idx; i != idx - sc->vge_rx_consumed; i--)
904			sc->vge_ldata.vge_rx_list[i].vge_sts |=
905			    htole32(VGE_RDSTS_OWN);
906		sc->vge_rx_consumed = 0;
907	}
908
909	sc->vge_ldata.vge_rx_mbuf[idx] = m;
910
911	bus_dmamap_sync(sc->sc_dmat, rxmap, 0,
912	    rxmap->dm_mapsize, BUS_DMASYNC_PREREAD);
913
914	return (0);
915out:
916	DPRINTF(("vge_newbuf: out of memory\n"));
917	if (m_new != NULL)
918		m_freem(m_new);
919	return (ENOMEM);
920}
921
922int
923vge_tx_list_init(struct vge_softc *sc)
924{
925	bzero(sc->vge_ldata.vge_tx_list, VGE_TX_LIST_SZ);
926	bzero(&sc->vge_ldata.vge_tx_mbuf,
927	    (VGE_TX_DESC_CNT * sizeof(struct mbuf *)));
928
929	bus_dmamap_sync(sc->sc_dmat,
930	    sc->vge_ldata.vge_tx_list_map, 0,
931	    sc->vge_ldata.vge_tx_list_map->dm_mapsize,
932	    BUS_DMASYNC_PREWRITE);
933	sc->vge_ldata.vge_tx_prodidx = 0;
934	sc->vge_ldata.vge_tx_considx = 0;
935	sc->vge_ldata.vge_tx_free = VGE_TX_DESC_CNT;
936
937	return (0);
938}
939
940/* Init RX descriptors and allocate mbufs with vge_newbuf()
941 * A ring is used, and last descriptor points to first. */
942int
943vge_rx_list_init(struct vge_softc *sc)
944{
945	int			i;
946
947	bzero(sc->vge_ldata.vge_rx_list, VGE_RX_LIST_SZ);
948	bzero(&sc->vge_ldata.vge_rx_mbuf,
949	    (VGE_RX_DESC_CNT * sizeof(struct mbuf *)));
950
951	sc->vge_rx_consumed = 0;
952
953	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
954		if (vge_newbuf(sc, i, NULL) == ENOBUFS)
955			return (ENOBUFS);
956	}
957
958	/* Flush the RX descriptors */
959
960	bus_dmamap_sync(sc->sc_dmat,
961	    sc->vge_ldata.vge_rx_list_map,
962	    0, sc->vge_ldata.vge_rx_list_map->dm_mapsize,
963	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
964
965	sc->vge_ldata.vge_rx_prodidx = 0;
966	sc->vge_rx_consumed = 0;
967	sc->vge_head = sc->vge_tail = NULL;
968
969	return (0);
970}
971
972/*
973 * RX handler. We support the reception of jumbo frames that have
974 * been fragmented across multiple 2K mbuf cluster buffers.
975 */
976void
977vge_rxeof(struct vge_softc *sc)
978{
979	struct mbuf_list	ml = MBUF_LIST_INITIALIZER();
980	struct mbuf		*m;
981	struct ifnet		*ifp;
982	int			i, total_len;
983	int			lim = 0;
984	struct vge_rx_desc	*cur_rx;
985	u_int32_t		rxstat, rxctl;
986
987	ifp = &sc->arpcom.ac_if;
988	i = sc->vge_ldata.vge_rx_prodidx;
989
990	/* Invalidate the descriptor memory */
991
992	bus_dmamap_sync(sc->sc_dmat,
993	    sc->vge_ldata.vge_rx_list_map,
994	    0, sc->vge_ldata.vge_rx_list_map->dm_mapsize,
995	    BUS_DMASYNC_POSTREAD);
996
997	while (!VGE_OWN(&sc->vge_ldata.vge_rx_list[i])) {
998		struct mbuf *m0 = NULL;
999
1000		cur_rx = &sc->vge_ldata.vge_rx_list[i];
1001		m = sc->vge_ldata.vge_rx_mbuf[i];
1002		total_len = VGE_RXBYTES(cur_rx);
1003		rxstat = letoh32(cur_rx->vge_sts);
1004		rxctl = letoh32(cur_rx->vge_ctl);
1005
1006		/* Invalidate the RX mbuf and unload its map */
1007
1008		bus_dmamap_sync(sc->sc_dmat,
1009		    sc->vge_ldata.vge_rx_dmamap[i],
1010		    0, sc->vge_ldata.vge_rx_dmamap[i]->dm_mapsize,
1011		    BUS_DMASYNC_POSTWRITE);
1012		bus_dmamap_unload(sc->sc_dmat,
1013		    sc->vge_ldata.vge_rx_dmamap[i]);
1014
1015		/*
1016		 * If the 'start of frame' bit is set, this indicates
1017		 * either the first fragment in a multi-fragment receive,
1018		 * or an intermediate fragment. Either way, we want to
1019		 * accumulate the buffers.
1020		 */
1021		if (rxstat & VGE_RXPKT_SOF) {
1022			DPRINTF(("vge_rxeof: SOF\n"));
1023			m->m_len = MCLBYTES;
1024			if (sc->vge_head == NULL)
1025				sc->vge_head = sc->vge_tail = m;
1026			else {
1027				m->m_flags &= ~M_PKTHDR;
1028				sc->vge_tail->m_next = m;
1029				sc->vge_tail = m;
1030			}
1031			vge_newbuf(sc, i, NULL);
1032			VGE_RX_DESC_INC(i);
1033			continue;
1034		}
1035
1036		/*
1037		 * Bad/error frames will have the RXOK bit cleared.
1038		 * However, there's one error case we want to allow:
1039		 * if a VLAN tagged frame arrives and the chip can't
1040		 * match it against the CAM filter, it considers this
1041		 * a 'VLAN CAM filter miss' and clears the 'RXOK' bit.
1042		 * We don't want to drop the frame though: our VLAN
1043		 * filtering is done in software.
1044		 */
1045		if (!(rxstat & VGE_RDSTS_RXOK) && !(rxstat & VGE_RDSTS_VIDM)
1046		    && !(rxstat & VGE_RDSTS_CSUMERR)) {
1047			ifp->if_ierrors++;
1048			/*
1049			 * If this is part of a multi-fragment packet,
1050			 * discard all the pieces.
1051			 */
1052			if (sc->vge_head != NULL) {
1053				m_freem(sc->vge_head);
1054				sc->vge_head = sc->vge_tail = NULL;
1055			}
1056			vge_newbuf(sc, i, m);
1057			VGE_RX_DESC_INC(i);
1058			continue;
1059		}
1060
1061		/*
1062		 * If allocating a replacement mbuf fails,
1063		 * reload the current one.
1064		 */
1065
1066		if (vge_newbuf(sc, i, NULL) == ENOBUFS) {
1067			if (sc->vge_head != NULL) {
1068				m_freem(sc->vge_head);
1069				sc->vge_head = sc->vge_tail = NULL;
1070			}
1071
1072			m0 = m_devget(mtod(m, char *),
1073			    total_len - ETHER_CRC_LEN, ETHER_ALIGN);
1074			vge_newbuf(sc, i, m);
1075			if (m0 == NULL) {
1076				ifp->if_ierrors++;
1077				continue;
1078			}
1079			m = m0;
1080
1081			VGE_RX_DESC_INC(i);
1082			continue;
1083		}
1084
1085		VGE_RX_DESC_INC(i);
1086
1087		if (sc->vge_head != NULL) {
1088			m->m_len = total_len % MCLBYTES;
1089			/*
1090			 * Special case: if there's 4 bytes or less
1091			 * in this buffer, the mbuf can be discarded:
1092			 * the last 4 bytes is the CRC, which we don't
1093			 * care about anyway.
1094			 */
1095			if (m->m_len <= ETHER_CRC_LEN) {
1096				sc->vge_tail->m_len -=
1097				    (ETHER_CRC_LEN - m->m_len);
1098				m_freem(m);
1099			} else {
1100				m->m_len -= ETHER_CRC_LEN;
1101				m->m_flags &= ~M_PKTHDR;
1102				sc->vge_tail->m_next = m;
1103			}
1104			m = sc->vge_head;
1105			sc->vge_head = sc->vge_tail = NULL;
1106			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1107		} else
1108			m->m_pkthdr.len = m->m_len =
1109			    (total_len - ETHER_CRC_LEN);
1110
1111#ifdef __STRICT_ALIGNMENT
1112		bcopy(m->m_data, m->m_data + ETHER_ALIGN, total_len);
1113		m->m_data += ETHER_ALIGN;
1114#endif
1115		/* Do RX checksumming */
1116
1117		/* Check IP header checksum */
1118		if ((rxctl & VGE_RDCTL_IPPKT) &&
1119		    (rxctl & VGE_RDCTL_IPCSUMOK))
1120			m->m_pkthdr.csum_flags |= M_IPV4_CSUM_IN_OK;
1121
1122		/* Check TCP/UDP checksum */
1123		if ((rxctl & (VGE_RDCTL_TCPPKT|VGE_RDCTL_UDPPKT)) &&
1124		    (rxctl & VGE_RDCTL_PROTOCSUMOK))
1125			m->m_pkthdr.csum_flags |= M_TCP_CSUM_IN_OK | M_UDP_CSUM_IN_OK;
1126
1127#if NVLAN > 0
1128		if (rxstat & VGE_RDSTS_VTAG) {
1129			m->m_pkthdr.ether_vtag = swap16(rxctl & VGE_RDCTL_VLANID);
1130			m->m_flags |= M_VLANTAG;
1131		}
1132#endif
1133
1134		ml_enqueue(&ml, m);
1135
1136		lim++;
1137		if (lim == VGE_RX_DESC_CNT)
1138			break;
1139	}
1140
1141	if_input(ifp, &ml);
1142
1143	/* Flush the RX DMA ring */
1144	bus_dmamap_sync(sc->sc_dmat,
1145	    sc->vge_ldata.vge_rx_list_map,
1146	    0, sc->vge_ldata.vge_rx_list_map->dm_mapsize,
1147	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1148
1149	sc->vge_ldata.vge_rx_prodidx = i;
1150	CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, lim);
1151}
1152
1153void
1154vge_txeof(struct vge_softc *sc)
1155{
1156	struct ifnet		*ifp;
1157	u_int32_t		txstat;
1158	int			idx;
1159
1160	ifp = &sc->arpcom.ac_if;
1161	idx = sc->vge_ldata.vge_tx_considx;
1162
1163	/* Invalidate the TX descriptor list */
1164
1165	bus_dmamap_sync(sc->sc_dmat,
1166	    sc->vge_ldata.vge_tx_list_map,
1167	    0, sc->vge_ldata.vge_tx_list_map->dm_mapsize,
1168	    BUS_DMASYNC_POSTREAD);
1169
1170	/* Transmitted frames can be now free'd from the TX list */
1171	while (idx != sc->vge_ldata.vge_tx_prodidx) {
1172		txstat = letoh32(sc->vge_ldata.vge_tx_list[idx].vge_sts);
1173		if (txstat & VGE_TDSTS_OWN)
1174			break;
1175
1176		m_freem(sc->vge_ldata.vge_tx_mbuf[idx]);
1177		sc->vge_ldata.vge_tx_mbuf[idx] = NULL;
1178		bus_dmamap_unload(sc->sc_dmat,
1179		    sc->vge_ldata.vge_tx_dmamap[idx]);
1180		if (txstat & (VGE_TDSTS_EXCESSCOLL|VGE_TDSTS_COLL))
1181			ifp->if_collisions++;
1182		if (txstat & VGE_TDSTS_TXERR)
1183			ifp->if_oerrors++;
1184
1185		sc->vge_ldata.vge_tx_free++;
1186		VGE_TX_DESC_INC(idx);
1187	}
1188
1189	/* No changes made to the TX ring, so no flush needed */
1190
1191	if (idx != sc->vge_ldata.vge_tx_considx) {
1192		sc->vge_ldata.vge_tx_considx = idx;
1193		ifq_clr_oactive(&ifp->if_snd);
1194		ifp->if_timer = 0;
1195	}
1196
1197	/*
1198	 * If not all descriptors have been released reaped yet,
1199	 * reload the timer so that we will eventually get another
1200	 * interrupt that will cause us to re-enter this routine.
1201	 * This is done in case the transmitter has gone idle.
1202	 */
1203	if (sc->vge_ldata.vge_tx_free != VGE_TX_DESC_CNT)
1204		CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE);
1205}
1206
1207void
1208vge_tick(void *xsc)
1209{
1210	struct vge_softc	*sc = xsc;
1211	struct ifnet		*ifp = &sc->arpcom.ac_if;
1212	struct mii_data		*mii = &sc->sc_mii;
1213	int s;
1214
1215	s = splnet();
1216
1217	mii_tick(mii);
1218
1219	if (sc->vge_link) {
1220		if (!(mii->mii_media_status & IFM_ACTIVE)) {
1221			sc->vge_link = 0;
1222			ifp->if_link_state = LINK_STATE_DOWN;
1223			if_link_state_change(ifp);
1224		}
1225	} else {
1226		if (mii->mii_media_status & IFM_ACTIVE &&
1227		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1228			sc->vge_link = 1;
1229			if (mii->mii_media_status & IFM_FDX)
1230				ifp->if_link_state = LINK_STATE_FULL_DUPLEX;
1231			else
1232				ifp->if_link_state = LINK_STATE_HALF_DUPLEX;
1233			if_link_state_change(ifp);
1234			if (!ifq_empty(&ifp->if_snd))
1235				vge_start(ifp);
1236		}
1237	}
1238	timeout_add_sec(&sc->timer_handle, 1);
1239	splx(s);
1240}
1241
1242int
1243vge_intr(void *arg)
1244{
1245	struct vge_softc	*sc = arg;
1246	struct ifnet		*ifp;
1247	u_int32_t		status;
1248	int			claimed = 0;
1249
1250	ifp = &sc->arpcom.ac_if;
1251
1252	if (!(ifp->if_flags & IFF_UP))
1253		return 0;
1254
1255	/* Disable interrupts */
1256	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
1257
1258	for (;;) {
1259		status = CSR_READ_4(sc, VGE_ISR);
1260		DPRINTFN(3, ("vge_intr: status=%#x\n", status));
1261
1262		/* If the card has gone away the read returns 0xffffffff. */
1263		if (status == 0xFFFFFFFF)
1264			break;
1265
1266		if (status) {
1267			CSR_WRITE_4(sc, VGE_ISR, status);
1268		}
1269
1270		if ((status & VGE_INTRS) == 0)
1271			break;
1272
1273		claimed = 1;
1274
1275		if (status & (VGE_ISR_RXOK|VGE_ISR_RXOK_HIPRIO))
1276			vge_rxeof(sc);
1277
1278		if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
1279			DPRINTFN(2, ("vge_intr: RX error, recovering\n"));
1280			vge_rxeof(sc);
1281			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1282			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1283		}
1284
1285		if (status & (VGE_ISR_TXOK0|VGE_ISR_TIMER0))
1286			vge_txeof(sc);
1287
1288		if (status & (VGE_ISR_TXDMA_STALL|VGE_ISR_RXDMA_STALL)) {
1289			DPRINTFN(2, ("DMA_STALL\n"));
1290			vge_init(ifp);
1291		}
1292
1293		if (status & VGE_ISR_LINKSTS) {
1294			timeout_del(&sc->timer_handle);
1295			vge_tick(sc);
1296		}
1297	}
1298
1299	/* Re-enable interrupts */
1300	CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
1301
1302	if (!ifq_empty(&ifp->if_snd))
1303		vge_start(ifp);
1304
1305	return (claimed);
1306}
1307
1308/*
1309 * Encapsulate an mbuf chain into the TX ring by combining it w/
1310 * the descriptors.
1311 */
1312int
1313vge_encap(struct vge_softc *sc, struct mbuf *m_head, int idx)
1314{
1315	bus_dmamap_t		txmap;
1316	struct vge_tx_desc	*d = NULL;
1317	struct vge_tx_frag	*f;
1318	int			error, frag;
1319	u_int32_t		vge_flags;
1320	unsigned int		len;
1321
1322	vge_flags = 0;
1323
1324	if (m_head->m_pkthdr.csum_flags & M_IPV4_CSUM_OUT)
1325		vge_flags |= VGE_TDCTL_IPCSUM;
1326	if (m_head->m_pkthdr.csum_flags & M_TCP_CSUM_OUT)
1327		vge_flags |= VGE_TDCTL_TCPCSUM;
1328	if (m_head->m_pkthdr.csum_flags & M_UDP_CSUM_OUT)
1329		vge_flags |= VGE_TDCTL_UDPCSUM;
1330
1331	txmap = sc->vge_ldata.vge_tx_dmamap[idx];
1332	error = bus_dmamap_load_mbuf(sc->sc_dmat, txmap,
1333	    m_head, BUS_DMA_NOWAIT);
1334	switch (error) {
1335	case 0:
1336		break;
1337	case EFBIG: /* mbuf chain is too fragmented */
1338		if ((error = m_defrag(m_head, M_DONTWAIT)) == 0 &&
1339		    (error = bus_dmamap_load_mbuf(sc->sc_dmat, txmap, m_head,
1340		    BUS_DMA_NOWAIT)) == 0)
1341			break;
1342	default:
1343		return (error);
1344        }
1345
1346	d = &sc->vge_ldata.vge_tx_list[idx];
1347	/* If owned by chip, fail */
1348	if (letoh32(d->vge_sts) & VGE_TDSTS_OWN)
1349		return (ENOBUFS);
1350
1351	for (frag = 0; frag < txmap->dm_nsegs; frag++) {
1352		f = &d->vge_frag[frag];
1353		f->vge_buflen = htole16(VGE_BUFLEN(txmap->dm_segs[frag].ds_len));
1354		f->vge_addrlo = htole32(VGE_ADDR_LO(txmap->dm_segs[frag].ds_addr));
1355		f->vge_addrhi = htole16(VGE_ADDR_HI(txmap->dm_segs[frag].ds_addr) & 0xFFFF);
1356	}
1357
1358	/* This chip does not do auto-padding */
1359	if (m_head->m_pkthdr.len < VGE_MIN_FRAMELEN) {
1360		f = &d->vge_frag[frag];
1361
1362		f->vge_buflen = htole16(VGE_BUFLEN(VGE_MIN_FRAMELEN -
1363		    m_head->m_pkthdr.len));
1364		f->vge_addrlo = htole32(VGE_ADDR_LO(txmap->dm_segs[0].ds_addr));
1365		f->vge_addrhi = htole16(VGE_ADDR_HI(txmap->dm_segs[0].ds_addr) & 0xFFFF);
1366		len = VGE_MIN_FRAMELEN;
1367		frag++;
1368	} else
1369		len = m_head->m_pkthdr.len;
1370
1371	/* For some reason, we need to tell the card fragment + 1 */
1372	frag++;
1373
1374	bus_dmamap_sync(sc->sc_dmat, txmap, 0, txmap->dm_mapsize,
1375	    BUS_DMASYNC_PREWRITE);
1376
1377	d->vge_sts = htole32(len << 16);
1378	d->vge_ctl = htole32(vge_flags|(frag << 28) | VGE_TD_LS_NORM);
1379
1380	if (len > ETHERMTU + ETHER_HDR_LEN)
1381		d->vge_ctl |= htole32(VGE_TDCTL_JUMBO);
1382
1383#if NVLAN > 0
1384	/* Set up hardware VLAN tagging. */
1385	if (m_head->m_flags & M_VLANTAG) {
1386		d->vge_ctl |= htole32(m_head->m_pkthdr.ether_vtag |
1387		    VGE_TDCTL_VTAG);
1388	}
1389#endif
1390
1391	sc->vge_ldata.vge_tx_dmamap[idx] = txmap;
1392	sc->vge_ldata.vge_tx_mbuf[idx] = m_head;
1393	sc->vge_ldata.vge_tx_free--;
1394	sc->vge_ldata.vge_tx_list[idx].vge_sts |= htole32(VGE_TDSTS_OWN);
1395
1396	idx++;
1397	return (0);
1398}
1399
1400/*
1401 * Main transmit routine.
1402 */
1403void
1404vge_start(struct ifnet *ifp)
1405{
1406	struct vge_softc	*sc;
1407	struct mbuf		*m_head = NULL;
1408	int			idx, pidx = 0;
1409
1410	sc = ifp->if_softc;
1411
1412	if (!sc->vge_link || ifq_is_oactive(&ifp->if_snd))
1413		return;
1414
1415	if (ifq_empty(&ifp->if_snd))
1416		return;
1417
1418	idx = sc->vge_ldata.vge_tx_prodidx;
1419
1420	pidx = idx - 1;
1421	if (pidx < 0)
1422		pidx = VGE_TX_DESC_CNT - 1;
1423
1424	for (;;) {
1425		if (sc->vge_ldata.vge_tx_mbuf[idx] != NULL) {
1426			ifq_set_oactive(&ifp->if_snd);
1427			break;
1428		}
1429
1430		m_head = ifq_dequeue(&ifp->if_snd);
1431		if (m_head == NULL)
1432			break;
1433
1434		if (vge_encap(sc, m_head, idx)) {
1435			m_freem(m_head);
1436			ifp->if_oerrors++;
1437			continue;
1438		}
1439
1440		/*
1441		 * If there's a BPF listener, bounce a copy of this frame
1442		 * to him.
1443		 */
1444#if NBPFILTER > 0
1445		if (ifp->if_bpf)
1446			bpf_mtap_ether(ifp->if_bpf, m_head, BPF_DIRECTION_OUT);
1447#endif
1448
1449		sc->vge_ldata.vge_tx_list[pidx].vge_frag[0].vge_buflen |=
1450		    htole16(VGE_TXDESC_Q);
1451
1452		pidx = idx;
1453		VGE_TX_DESC_INC(idx);
1454	}
1455
1456	if (idx == sc->vge_ldata.vge_tx_prodidx) {
1457		return;
1458	}
1459
1460	/* Flush the TX descriptors */
1461
1462	bus_dmamap_sync(sc->sc_dmat,
1463	    sc->vge_ldata.vge_tx_list_map,
1464	    0, sc->vge_ldata.vge_tx_list_map->dm_mapsize,
1465	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1466
1467	/* Issue a transmit command. */
1468	CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_WAK0);
1469
1470	sc->vge_ldata.vge_tx_prodidx = idx;
1471
1472	/*
1473	 * Use the countdown timer for interrupt moderation.
1474	 * 'TX done' interrupts are disabled. Instead, we reset the
1475	 * countdown timer, which will begin counting until it hits
1476	 * the value in the SSTIMER register, and then trigger an
1477	 * interrupt. Each time we set the TIMER0_ENABLE bit, the
1478	 * the timer count is reloaded. Only when the transmitter
1479	 * is idle will the timer hit 0 and an interrupt fire.
1480	 */
1481	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE);
1482
1483	/*
1484	 * Set a timeout in case the chip goes out to lunch.
1485	 */
1486	ifp->if_timer = 5;
1487}
1488
1489int
1490vge_init(struct ifnet *ifp)
1491{
1492	struct vge_softc	*sc = ifp->if_softc;
1493	int			i;
1494
1495	/*
1496	 * Cancel pending I/O and free all RX/TX buffers.
1497	 */
1498	vge_stop(sc);
1499	vge_reset(sc);
1500
1501	/* Initialize RX descriptors list */
1502	if (vge_rx_list_init(sc) == ENOBUFS) {
1503		printf("%s: init failed: no memory for RX buffers\n",
1504		    sc->vge_dev.dv_xname);
1505		vge_stop(sc);
1506		return (ENOBUFS);
1507	}
1508	/* Initialize TX descriptors */
1509	if (vge_tx_list_init(sc) == ENOBUFS) {
1510		printf("%s: init failed: no memory for TX buffers\n",
1511		    sc->vge_dev.dv_xname);
1512		vge_stop(sc);
1513		return (ENOBUFS);
1514	}
1515
1516	/* Set our station address */
1517	for (i = 0; i < ETHER_ADDR_LEN; i++)
1518		CSR_WRITE_1(sc, VGE_PAR0 + i, sc->arpcom.ac_enaddr[i]);
1519
1520	/* Set receive FIFO threshold */
1521	CSR_CLRBIT_1(sc, VGE_RXCFG, VGE_RXCFG_FIFO_THR);
1522	CSR_SETBIT_1(sc, VGE_RXCFG, VGE_RXFIFOTHR_128BYTES);
1523
1524	if (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) {
1525		/*
1526		 * Allow transmission and reception of VLAN tagged
1527		 * frames.
1528		 */
1529		CSR_CLRBIT_1(sc, VGE_RXCFG, VGE_RXCFG_VTAGOPT);
1530		CSR_SETBIT_1(sc, VGE_RXCFG, VGE_VTAG_OPT2);
1531	}
1532
1533	/* Set DMA burst length */
1534	CSR_CLRBIT_1(sc, VGE_DMACFG0, VGE_DMACFG0_BURSTLEN);
1535	CSR_SETBIT_1(sc, VGE_DMACFG0, VGE_DMABURST_128);
1536
1537	CSR_SETBIT_1(sc, VGE_TXCFG, VGE_TXCFG_ARB_PRIO|VGE_TXCFG_NONBLK);
1538
1539	/* Set collision backoff algorithm */
1540	CSR_CLRBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_CRANDOM|
1541	    VGE_CHIPCFG1_CAP|VGE_CHIPCFG1_MBA|VGE_CHIPCFG1_BAKOPT);
1542	CSR_SETBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_OFSET);
1543
1544	/* Disable LPSEL field in priority resolution */
1545	CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_LPSEL_DIS);
1546
1547	/*
1548	 * Load the addresses of the DMA queues into the chip.
1549	 * Note that we only use one transmit queue.
1550	 */
1551	CSR_WRITE_4(sc, VGE_TXDESC_ADDR_LO0,
1552	    VGE_ADDR_LO(sc->vge_ldata.vge_tx_listseg.ds_addr));
1553	CSR_WRITE_2(sc, VGE_TXDESCNUM, VGE_TX_DESC_CNT - 1);
1554
1555	CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO,
1556	    VGE_ADDR_LO(sc->vge_ldata.vge_rx_listseg.ds_addr));
1557	CSR_WRITE_2(sc, VGE_RXDESCNUM, VGE_RX_DESC_CNT - 1);
1558	CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, VGE_RX_DESC_CNT);
1559
1560	/* Enable and wake up the RX descriptor queue */
1561	CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1562	CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1563
1564	/* Enable the TX descriptor queue */
1565	CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_RUN0);
1566
1567	/* Set up the receive filter -- allow large frames for VLANs. */
1568	CSR_WRITE_1(sc, VGE_RXCTL, VGE_RXCTL_RX_GIANT);
1569
1570	/* Program promiscuous mode and multicast filters. */
1571	vge_iff(sc);
1572
1573	/* Initialize pause timer. */
1574	CSR_WRITE_2(sc, VGE_TX_PAUSE_TIMER, 0xFFFF);
1575	/*
1576	 * Initialize flow control parameters.
1577	 *  TX XON high threshold : 48
1578	 *  TX pause low threshold : 24
1579	 *  Disable half-duplex flow control
1580	 */
1581	CSR_WRITE_1(sc, VGE_CRC2, 0xFF);
1582	CSR_WRITE_1(sc, VGE_CRS2, VGE_CR2_XON_ENABLE | 0x0B);
1583
1584	/* Enable jumbo frame reception (if desired) */
1585
1586	/* Start the MAC. */
1587	CSR_WRITE_1(sc, VGE_CRC0, VGE_CR0_STOP);
1588	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_NOPOLL);
1589	CSR_WRITE_1(sc, VGE_CRS0,
1590	    VGE_CR0_TX_ENABLE|VGE_CR0_RX_ENABLE|VGE_CR0_START);
1591
1592	/*
1593	 * Configure one-shot timer for microsecond
1594	 * resolution and load it for 500 usecs.
1595	 */
1596	CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_TIMER0_RES);
1597	CSR_WRITE_2(sc, VGE_SSTIMER, 400);
1598
1599	/*
1600	 * Configure interrupt moderation for receive. Enable
1601	 * the holdoff counter and load it, and set the RX
1602	 * suppression count to the number of descriptors we
1603	 * want to allow before triggering an interrupt.
1604	 * The holdoff timer is in units of 20 usecs.
1605	 */
1606
1607#ifdef notyet
1608	CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_TXINTSUP_DISABLE);
1609	/* Select the interrupt holdoff timer page. */
1610	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
1611	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_INTHLDOFF);
1612	CSR_WRITE_1(sc, VGE_INTHOLDOFF, 10); /* ~200 usecs */
1613
1614	/* Enable use of the holdoff timer. */
1615	CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_HOLDOFF);
1616	CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_SC_RELOAD);
1617
1618	/* Select the RX suppression threshold page. */
1619	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
1620	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_RXSUPPTHR);
1621	CSR_WRITE_1(sc, VGE_RXSUPPTHR, 64); /* interrupt after 64 packets */
1622
1623	/* Restore the page select bits. */
1624	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
1625	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
1626#endif
1627
1628	/*
1629	 * Enable interrupts.
1630	 */
1631	CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
1632	CSR_WRITE_4(sc, VGE_ISR, 0);
1633	CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
1634
1635	/* Restore BMCR state */
1636	mii_mediachg(&sc->sc_mii);
1637
1638	ifp->if_flags |= IFF_RUNNING;
1639	ifq_clr_oactive(&ifp->if_snd);
1640
1641	sc->vge_link = 0;
1642
1643	if (!timeout_pending(&sc->timer_handle))
1644		timeout_add_sec(&sc->timer_handle, 1);
1645
1646	return (0);
1647}
1648
1649/*
1650 * Set media options.
1651 */
1652int
1653vge_ifmedia_upd(struct ifnet *ifp)
1654{
1655	struct vge_softc *sc = ifp->if_softc;
1656
1657	return (mii_mediachg(&sc->sc_mii));
1658}
1659
1660/*
1661 * Report current media status.
1662 */
1663void
1664vge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1665{
1666	struct vge_softc *sc = ifp->if_softc;
1667
1668	mii_pollstat(&sc->sc_mii);
1669	ifmr->ifm_active = sc->sc_mii.mii_media_active;
1670	ifmr->ifm_status = sc->sc_mii.mii_media_status;
1671}
1672
1673void
1674vge_miibus_statchg(struct device *dev)
1675{
1676	struct vge_softc	*sc = (struct vge_softc *)dev;
1677	struct mii_data		*mii;
1678	struct ifmedia_entry	*ife;
1679
1680	mii = &sc->sc_mii;
1681	ife = mii->mii_media.ifm_cur;
1682
1683	/*
1684	 * If the user manually selects a media mode, we need to turn
1685	 * on the forced MAC mode bit in the DIAGCTL register. If the
1686	 * user happens to choose a full duplex mode, we also need to
1687	 * set the 'force full duplex' bit. This applies only to
1688	 * 10Mbps and 100Mbps speeds. In autoselect mode, forced MAC
1689	 * mode is disabled, and in 1000baseT mode, full duplex is
1690	 * always implied, so we turn on the forced mode bit but leave
1691	 * the FDX bit cleared.
1692	 */
1693
1694	switch (IFM_SUBTYPE(ife->ifm_media)) {
1695	case IFM_AUTO:
1696		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
1697		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
1698		break;
1699	case IFM_1000_T:
1700		CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
1701		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
1702		break;
1703	case IFM_100_TX:
1704	case IFM_10_T:
1705		CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
1706		if ((ife->ifm_media & IFM_GMASK) == IFM_FDX) {
1707			CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
1708		} else {
1709			CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
1710		}
1711		break;
1712	default:
1713		printf("%s: unknown media type: %llx\n",
1714		    sc->vge_dev.dv_xname, IFM_SUBTYPE(ife->ifm_media));
1715		break;
1716	}
1717
1718	/*
1719	 * 802.3x flow control
1720	*/
1721	CSR_WRITE_1(sc, VGE_CRC2, VGE_CR2_FDX_TXFLOWCTL_ENABLE |
1722	    VGE_CR2_FDX_RXFLOWCTL_ENABLE);
1723	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1724		CSR_WRITE_1(sc, VGE_CRS2, VGE_CR2_FDX_TXFLOWCTL_ENABLE);
1725	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1726		CSR_WRITE_1(sc, VGE_CRS2, VGE_CR2_FDX_RXFLOWCTL_ENABLE);
1727}
1728
1729int
1730vge_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1731{
1732	struct vge_softc	*sc = ifp->if_softc;
1733	struct ifreq		*ifr = (struct ifreq *) data;
1734	int			s, error = 0;
1735
1736	s = splnet();
1737
1738	switch (command) {
1739	case SIOCSIFADDR:
1740		ifp->if_flags |= IFF_UP;
1741		if (!(ifp->if_flags & IFF_RUNNING))
1742			vge_init(ifp);
1743		break;
1744
1745	case SIOCSIFFLAGS:
1746		if (ifp->if_flags & IFF_UP) {
1747			if (ifp->if_flags & IFF_RUNNING)
1748				error = ENETRESET;
1749			else
1750				vge_init(ifp);
1751		} else {
1752			if (ifp->if_flags & IFF_RUNNING)
1753				vge_stop(sc);
1754		}
1755		break;
1756
1757	case SIOCGIFMEDIA:
1758	case SIOCSIFMEDIA:
1759		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, command);
1760		break;
1761
1762	default:
1763		error = ether_ioctl(ifp, &sc->arpcom, command, data);
1764	}
1765
1766	if (error == ENETRESET) {
1767		if (ifp->if_flags & IFF_RUNNING)
1768			vge_iff(sc);
1769		error = 0;
1770	}
1771
1772	splx(s);
1773	return (error);
1774}
1775
1776void
1777vge_watchdog(struct ifnet *ifp)
1778{
1779	struct vge_softc *sc = ifp->if_softc;
1780	int s;
1781
1782	s = splnet();
1783	printf("%s: watchdog timeout\n", sc->vge_dev.dv_xname);
1784	ifp->if_oerrors++;
1785
1786	vge_txeof(sc);
1787	vge_rxeof(sc);
1788
1789	vge_init(ifp);
1790
1791	splx(s);
1792}
1793
1794/*
1795 * Stop the adapter and free any mbufs allocated to the
1796 * RX and TX lists.
1797 */
1798void
1799vge_stop(struct vge_softc *sc)
1800{
1801	int			i;
1802	struct ifnet		*ifp;
1803
1804	ifp = &sc->arpcom.ac_if;
1805	ifp->if_timer = 0;
1806
1807	timeout_del(&sc->timer_handle);
1808
1809	ifp->if_flags &= ~IFF_RUNNING;
1810	ifq_clr_oactive(&ifp->if_snd);
1811
1812	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
1813	CSR_WRITE_1(sc, VGE_CRS0, VGE_CR0_STOP);
1814	CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
1815	CSR_WRITE_2(sc, VGE_TXQCSRC, 0xFFFF);
1816	CSR_WRITE_1(sc, VGE_RXQCSRC, 0xFF);
1817	CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO, 0);
1818
1819	if (sc->vge_head != NULL) {
1820		m_freem(sc->vge_head);
1821		sc->vge_head = sc->vge_tail = NULL;
1822	}
1823
1824	/* Free the TX list buffers. */
1825	for (i = 0; i < VGE_TX_DESC_CNT; i++) {
1826		if (sc->vge_ldata.vge_tx_mbuf[i] != NULL) {
1827			bus_dmamap_unload(sc->sc_dmat,
1828			    sc->vge_ldata.vge_tx_dmamap[i]);
1829			m_freem(sc->vge_ldata.vge_tx_mbuf[i]);
1830			sc->vge_ldata.vge_tx_mbuf[i] = NULL;
1831		}
1832	}
1833
1834	/* Free the RX list buffers. */
1835	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
1836		if (sc->vge_ldata.vge_rx_mbuf[i] != NULL) {
1837			bus_dmamap_unload(sc->sc_dmat,
1838			    sc->vge_ldata.vge_rx_dmamap[i]);
1839			m_freem(sc->vge_ldata.vge_rx_mbuf[i]);
1840			sc->vge_ldata.vge_rx_mbuf[i] = NULL;
1841		}
1842	}
1843}
1844