if_vge.c revision 1.70
1/*	$OpenBSD: if_vge.c,v 1.70 2016/04/13 10:34:32 mpi Exp $	*/
2/*	$FreeBSD: if_vge.c,v 1.3 2004/09/11 22:13:25 wpaul Exp $	*/
3/*
4 * Copyright (c) 2004
5 *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 *    must display the following acknowledgement:
17 *	This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 *    may be used to endorse or promote products derived from this software
20 *    without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35/*
36 * VIA Networking Technologies VT612x PCI gigabit ethernet NIC driver.
37 *
38 * Written by Bill Paul <wpaul@windriver.com>
39 * Senior Networking Software Engineer
40 * Wind River Systems
41 *
42 * Ported to OpenBSD by Peter Valchev <pvalchev@openbsd.org>
43 */
44
45/*
46 * The VIA Networking VT6122 is a 32bit, 33/66MHz PCI device that
47 * combines a tri-speed ethernet MAC and PHY, with the following
48 * features:
49 *
50 *	o Jumbo frame support up to 16K
51 *	o Transmit and receive flow control
52 *	o IPv4 checksum offload
53 *	o VLAN tag insertion and stripping
54 *	o TCP large send
55 *	o 64-bit multicast hash table filter
56 *	o 64 entry CAM filter
57 *	o 16K RX FIFO and 48K TX FIFO memory
58 *	o Interrupt moderation
59 *
60 * The VT6122 supports up to four transmit DMA queues. The descriptors
61 * in the transmit ring can address up to 7 data fragments; frames which
62 * span more than 7 data buffers must be coalesced, but in general the
63 * BSD TCP/IP stack rarely generates frames more than 2 or 3 fragments
64 * long. The receive descriptors address only a single buffer.
65 *
66 * There are two peculiar design issues with the VT6122. One is that
67 * receive data buffers must be aligned on a 32-bit boundary. This is
68 * not a problem where the VT6122 is used as a LOM device in x86-based
69 * systems, but on architectures that generate unaligned access traps, we
70 * have to do some copying.
71 *
72 * The other issue has to do with the way 64-bit addresses are handled.
73 * The DMA descriptors only allow you to specify 48 bits of addressing
74 * information. The remaining 16 bits are specified using one of the
75 * I/O registers. If you only have a 32-bit system, then this isn't
76 * an issue, but if you have a 64-bit system and more than 4GB of
77 * memory, you must have to make sure your network data buffers reside
78 * in the same 48-bit 'segment.'
79 *
80 * Special thanks to Ryan Fu at VIA Networking for providing documentation
81 * and sample NICs for testing.
82 */
83
84#include "bpfilter.h"
85#include "vlan.h"
86
87#include <sys/param.h>
88#include <sys/endian.h>
89#include <sys/systm.h>
90#include <sys/sockio.h>
91#include <sys/mbuf.h>
92#include <sys/malloc.h>
93#include <sys/kernel.h>
94#include <sys/device.h>
95#include <sys/timeout.h>
96#include <sys/socket.h>
97
98#include <net/if.h>
99#include <net/if_media.h>
100
101#include <netinet/in.h>
102#include <netinet/if_ether.h>
103
104#if NBPFILTER > 0
105#include <net/bpf.h>
106#endif
107
108#include <dev/mii/miivar.h>
109
110#include <dev/pci/pcireg.h>
111#include <dev/pci/pcivar.h>
112#include <dev/pci/pcidevs.h>
113
114#include <dev/pci/if_vgereg.h>
115#include <dev/pci/if_vgevar.h>
116
117int vge_probe		(struct device *, void *, void *);
118void vge_attach		(struct device *, struct device *, void *);
119int vge_detach		(struct device *, int);
120
121int vge_encap		(struct vge_softc *, struct mbuf *, int);
122
123int vge_allocmem		(struct vge_softc *);
124void vge_freemem	(struct vge_softc *);
125int vge_newbuf		(struct vge_softc *, int, struct mbuf *);
126int vge_rx_list_init	(struct vge_softc *);
127int vge_tx_list_init	(struct vge_softc *);
128void vge_rxeof		(struct vge_softc *);
129void vge_txeof		(struct vge_softc *);
130int vge_intr		(void *);
131void vge_tick		(void *);
132void vge_start		(struct ifnet *);
133int vge_ioctl		(struct ifnet *, u_long, caddr_t);
134int vge_init		(struct ifnet *);
135void vge_stop		(struct vge_softc *);
136void vge_watchdog	(struct ifnet *);
137int vge_ifmedia_upd	(struct ifnet *);
138void vge_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
139
140#ifdef VGE_EEPROM
141void vge_eeprom_getword	(struct vge_softc *, int, u_int16_t *);
142#endif
143void vge_read_eeprom	(struct vge_softc *, caddr_t, int, int, int);
144
145void vge_miipoll_start	(struct vge_softc *);
146void vge_miipoll_stop	(struct vge_softc *);
147int vge_miibus_readreg	(struct device *, int, int);
148void vge_miibus_writereg (struct device *, int, int, int);
149void vge_miibus_statchg	(struct device *);
150
151void vge_cam_clear	(struct vge_softc *);
152int vge_cam_set		(struct vge_softc *, uint8_t *);
153void vge_iff		(struct vge_softc *);
154void vge_reset		(struct vge_softc *);
155
156struct cfattach vge_ca = {
157	sizeof(struct vge_softc), vge_probe, vge_attach, vge_detach
158};
159
160struct cfdriver vge_cd = {
161	NULL, "vge", DV_IFNET
162};
163
164#define VGE_PCI_LOIO             0x10
165#define VGE_PCI_LOMEM            0x14
166
167int vge_debug = 0;
168#define DPRINTF(x)	if (vge_debug) printf x
169#define DPRINTFN(n, x)	if (vge_debug >= (n)) printf x
170
171const struct pci_matchid vge_devices[] = {
172	{ PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT612x },
173};
174
175#ifdef VGE_EEPROM
176/*
177 * Read a word of data stored in the EEPROM at address 'addr.'
178 */
179void
180vge_eeprom_getword(struct vge_softc *sc, int addr, u_int16_t *dest)
181{
182	int			i;
183	u_int16_t		word = 0;
184
185	/*
186	 * Enter EEPROM embedded programming mode. In order to
187	 * access the EEPROM at all, we first have to set the
188	 * EELOAD bit in the CHIPCFG2 register.
189	 */
190	CSR_SETBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
191	CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
192
193	/* Select the address of the word we want to read */
194	CSR_WRITE_1(sc, VGE_EEADDR, addr);
195
196	/* Issue read command */
197	CSR_SETBIT_1(sc, VGE_EECMD, VGE_EECMD_ERD);
198
199	/* Wait for the done bit to be set. */
200	for (i = 0; i < VGE_TIMEOUT; i++) {
201		if (CSR_READ_1(sc, VGE_EECMD) & VGE_EECMD_EDONE)
202			break;
203	}
204
205	if (i == VGE_TIMEOUT) {
206		printf("%s: EEPROM read timed out\n", sc->vge_dev.dv_xname);
207		*dest = 0;
208		return;
209	}
210
211	/* Read the result */
212	word = CSR_READ_2(sc, VGE_EERDDAT);
213
214	/* Turn off EEPROM access mode. */
215	CSR_CLRBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
216	CSR_CLRBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
217
218	*dest = word;
219}
220#endif
221
222/*
223 * Read a sequence of words from the EEPROM.
224 */
225void
226vge_read_eeprom(struct vge_softc *sc, caddr_t dest, int off, int cnt,
227    int swap)
228{
229	int			i;
230#ifdef VGE_EEPROM
231	u_int16_t		word = 0, *ptr;
232
233	for (i = 0; i < cnt; i++) {
234		vge_eeprom_getword(sc, off + i, &word);
235		ptr = (u_int16_t *)(dest + (i * 2));
236		if (swap)
237			*ptr = ntohs(word);
238		else
239			*ptr = word;
240	}
241#else
242	for (i = 0; i < ETHER_ADDR_LEN; i++)
243		dest[i] = CSR_READ_1(sc, VGE_PAR0 + i);
244#endif
245}
246
247void
248vge_miipoll_stop(struct vge_softc *sc)
249{
250	int			i;
251
252	CSR_WRITE_1(sc, VGE_MIICMD, 0);
253
254	for (i = 0; i < VGE_TIMEOUT; i++) {
255		DELAY(1);
256		if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
257			break;
258	}
259
260	if (i == VGE_TIMEOUT)
261		printf("%s: failed to idle MII autopoll\n", sc->vge_dev.dv_xname);
262}
263
264void
265vge_miipoll_start(struct vge_softc *sc)
266{
267	int			i;
268
269	/* First, make sure we're idle. */
270
271	CSR_WRITE_1(sc, VGE_MIICMD, 0);
272	CSR_WRITE_1(sc, VGE_MIIADDR, VGE_MIIADDR_SWMPL);
273
274	for (i = 0; i < VGE_TIMEOUT; i++) {
275		DELAY(1);
276		if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
277			break;
278	}
279
280	if (i == VGE_TIMEOUT) {
281		printf("%s: failed to idle MII autopoll\n", sc->vge_dev.dv_xname);
282		return;
283	}
284
285	/* Now enable auto poll mode. */
286
287	CSR_WRITE_1(sc, VGE_MIICMD, VGE_MIICMD_MAUTO);
288
289	/* And make sure it started. */
290
291	for (i = 0; i < VGE_TIMEOUT; i++) {
292		DELAY(1);
293		if ((CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL) == 0)
294			break;
295	}
296
297	if (i == VGE_TIMEOUT)
298		printf("%s: failed to start MII autopoll\n", sc->vge_dev.dv_xname);
299}
300
301int
302vge_miibus_readreg(struct device *dev, int phy, int reg)
303{
304	struct vge_softc	*sc = (struct vge_softc *)dev;
305	int			i, s;
306	u_int16_t		rval = 0;
307
308	if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F))
309		return(0);
310
311	s = splnet();
312
313	vge_miipoll_stop(sc);
314
315	/* Specify the register we want to read. */
316	CSR_WRITE_1(sc, VGE_MIIADDR, reg);
317
318	/* Issue read command. */
319	CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_RCMD);
320
321	/* Wait for the read command bit to self-clear. */
322	for (i = 0; i < VGE_TIMEOUT; i++) {
323		DELAY(1);
324		if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_RCMD) == 0)
325			break;
326	}
327
328	if (i == VGE_TIMEOUT)
329		printf("%s: MII read timed out\n", sc->vge_dev.dv_xname);
330	else
331		rval = CSR_READ_2(sc, VGE_MIIDATA);
332
333	vge_miipoll_start(sc);
334	splx(s);
335
336	return (rval);
337}
338
339void
340vge_miibus_writereg(struct device *dev, int phy, int reg, int data)
341{
342	struct vge_softc	*sc = (struct vge_softc *)dev;
343	int			i, s;
344
345	if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F))
346		return;
347
348	s = splnet();
349	vge_miipoll_stop(sc);
350
351	/* Specify the register we want to write. */
352	CSR_WRITE_1(sc, VGE_MIIADDR, reg);
353
354	/* Specify the data we want to write. */
355	CSR_WRITE_2(sc, VGE_MIIDATA, data);
356
357	/* Issue write command. */
358	CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_WCMD);
359
360	/* Wait for the write command bit to self-clear. */
361	for (i = 0; i < VGE_TIMEOUT; i++) {
362		DELAY(1);
363		if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_WCMD) == 0)
364			break;
365	}
366
367	if (i == VGE_TIMEOUT) {
368		printf("%s: MII write timed out\n", sc->vge_dev.dv_xname);
369	}
370
371	vge_miipoll_start(sc);
372	splx(s);
373}
374
375void
376vge_cam_clear(struct vge_softc *sc)
377{
378	int			i;
379
380	/*
381	 * Turn off all the mask bits. This tells the chip
382	 * that none of the entries in the CAM filter are valid.
383	 * desired entries will be enabled as we fill the filter in.
384	 */
385
386	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
387	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
388	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE);
389	for (i = 0; i < 8; i++)
390		CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
391
392	/* Clear the VLAN filter too. */
393
394	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|VGE_CAMADDR_AVSEL|0);
395	for (i = 0; i < 8; i++)
396		CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
397
398	CSR_WRITE_1(sc, VGE_CAMADDR, 0);
399	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
400	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
401
402	sc->vge_camidx = 0;
403}
404
405int
406vge_cam_set(struct vge_softc *sc, uint8_t *addr)
407{
408	int			i, error = 0;
409
410	if (sc->vge_camidx == VGE_CAM_MAXADDRS)
411		return(ENOSPC);
412
413	/* Select the CAM data page. */
414	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
415	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMDATA);
416
417	/* Set the filter entry we want to update and enable writing. */
418	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|sc->vge_camidx);
419
420	/* Write the address to the CAM registers */
421	for (i = 0; i < ETHER_ADDR_LEN; i++)
422		CSR_WRITE_1(sc, VGE_CAM0 + i, addr[i]);
423
424	/* Issue a write command. */
425	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_WRITE);
426
427	/* Wake for it to clear. */
428	for (i = 0; i < VGE_TIMEOUT; i++) {
429		DELAY(1);
430		if ((CSR_READ_1(sc, VGE_CAMCTL) & VGE_CAMCTL_WRITE) == 0)
431			break;
432	}
433
434	if (i == VGE_TIMEOUT) {
435		printf("%s: setting CAM filter failed\n", sc->vge_dev.dv_xname);
436		error = EIO;
437		goto fail;
438	}
439
440	/* Select the CAM mask page. */
441	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
442	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
443
444	/* Set the mask bit that enables this filter. */
445	CSR_SETBIT_1(sc, VGE_CAM0 + (sc->vge_camidx/8),
446	    1<<(sc->vge_camidx & 7));
447
448	sc->vge_camidx++;
449
450fail:
451	/* Turn off access to CAM. */
452	CSR_WRITE_1(sc, VGE_CAMADDR, 0);
453	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
454	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
455
456	return (error);
457}
458
459/*
460 * We use the 64-entry CAM filter for perfect filtering.
461 * If there's more than 64 multicast addresses, we use the
462 * hash filter instead.
463 */
464void
465vge_iff(struct vge_softc *sc)
466{
467	struct arpcom		*ac = &sc->arpcom;
468	struct ifnet		*ifp = &ac->ac_if;
469	struct ether_multi	*enm;
470	struct ether_multistep	step;
471	u_int32_t		h = 0, hashes[2];
472	u_int8_t		rxctl;
473	int			error;
474
475	vge_cam_clear(sc);
476	rxctl = CSR_READ_1(sc, VGE_RXCTL);
477	rxctl &= ~(VGE_RXCTL_RX_BCAST | VGE_RXCTL_RX_MCAST |
478	    VGE_RXCTL_RX_PROMISC | VGE_RXCTL_RX_UCAST);
479	bzero(hashes, sizeof(hashes));
480	ifp->if_flags &= ~IFF_ALLMULTI;
481
482	/*
483	 * Always accept broadcast frames.
484	 * Always accept frames destined to our station address.
485	 */
486	rxctl |= VGE_RXCTL_RX_BCAST | VGE_RXCTL_RX_UCAST;
487
488	if ((ifp->if_flags & IFF_PROMISC) == 0)
489		rxctl |= VGE_RXCTL_RX_MCAST;
490
491	if (ifp->if_flags & IFF_PROMISC || ac->ac_multirangecnt > 0) {
492		ifp->if_flags |= IFF_ALLMULTI;
493		if (ifp->if_flags & IFF_PROMISC)
494			rxctl |= VGE_RXCTL_RX_PROMISC;
495		hashes[0] = hashes[1] = 0xFFFFFFFF;
496	} else if (ac->ac_multicnt > VGE_CAM_MAXADDRS) {
497		ETHER_FIRST_MULTI(step, ac, enm);
498		while (enm != NULL) {
499			h = ether_crc32_be(enm->enm_addrlo,
500			    ETHER_ADDR_LEN) >> 26;
501
502			hashes[h >> 5] |= 1 << (h & 0x1f);
503
504			ETHER_NEXT_MULTI(step, enm);
505		}
506	} else {
507		ETHER_FIRST_MULTI(step, ac, enm);
508		while (enm != NULL) {
509			error = vge_cam_set(sc, enm->enm_addrlo);
510			if (error)
511				break;
512
513			ETHER_NEXT_MULTI(step, enm);
514		}
515	}
516
517	CSR_WRITE_4(sc, VGE_MAR0, hashes[0]);
518	CSR_WRITE_4(sc, VGE_MAR1, hashes[1]);
519	CSR_WRITE_1(sc, VGE_RXCTL, rxctl);
520}
521
522void
523vge_reset(struct vge_softc *sc)
524{
525	int			i;
526
527	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_SOFTRESET);
528
529	for (i = 0; i < VGE_TIMEOUT; i++) {
530		DELAY(5);
531		if ((CSR_READ_1(sc, VGE_CRS1) & VGE_CR1_SOFTRESET) == 0)
532			break;
533	}
534
535	if (i == VGE_TIMEOUT) {
536		printf("%s: soft reset timed out", sc->vge_dev.dv_xname);
537		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_STOP_FORCE);
538		DELAY(2000);
539	}
540
541	DELAY(5000);
542
543	CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_RELOAD);
544
545	for (i = 0; i < VGE_TIMEOUT; i++) {
546		DELAY(5);
547		if ((CSR_READ_1(sc, VGE_EECSR) & VGE_EECSR_RELOAD) == 0)
548			break;
549	}
550
551	CSR_CLRBIT_1(sc, VGE_CHIPCFG0, VGE_CHIPCFG0_PACPI);
552}
553
554/*
555 * Probe for a VIA gigabit chip. Check the PCI vendor and device
556 * IDs against our list and return a device name if we find a match.
557 */
558int
559vge_probe(struct device *dev, void *match, void *aux)
560{
561	return (pci_matchbyid((struct pci_attach_args *)aux, vge_devices,
562	    nitems(vge_devices)));
563}
564
565/*
566 * Allocate memory for RX/TX rings
567 */
568int
569vge_allocmem(struct vge_softc *sc)
570{
571	int			nseg, rseg;
572	int			i, error;
573
574	nseg = 32;
575
576	/* Allocate DMA'able memory for the TX ring */
577
578	error = bus_dmamap_create(sc->sc_dmat, VGE_TX_LIST_SZ, 1,
579	    VGE_TX_LIST_SZ, 0, BUS_DMA_ALLOCNOW,
580	    &sc->vge_ldata.vge_tx_list_map);
581	if (error)
582		return (ENOMEM);
583	error = bus_dmamem_alloc(sc->sc_dmat, VGE_TX_LIST_SZ,
584	    ETHER_ALIGN, 0,
585	    &sc->vge_ldata.vge_tx_listseg, 1, &rseg, BUS_DMA_NOWAIT);
586	if (error) {
587		printf("%s: can't alloc TX list\n", sc->vge_dev.dv_xname);
588		return (ENOMEM);
589	}
590
591	/* Load the map for the TX ring. */
592	error = bus_dmamem_map(sc->sc_dmat, &sc->vge_ldata.vge_tx_listseg,
593	     1, VGE_TX_LIST_SZ,
594	     (caddr_t *)&sc->vge_ldata.vge_tx_list, BUS_DMA_NOWAIT);
595	memset(sc->vge_ldata.vge_tx_list, 0, VGE_TX_LIST_SZ);
596	if (error) {
597		printf("%s: can't map TX dma buffers\n",
598		    sc->vge_dev.dv_xname);
599		bus_dmamem_free(sc->sc_dmat, &sc->vge_ldata.vge_tx_listseg, rseg);
600		return (ENOMEM);
601	}
602
603	error = bus_dmamap_load(sc->sc_dmat, sc->vge_ldata.vge_tx_list_map,
604	    sc->vge_ldata.vge_tx_list, VGE_TX_LIST_SZ, NULL, BUS_DMA_NOWAIT);
605	if (error) {
606		printf("%s: can't load TX dma map\n", sc->vge_dev.dv_xname);
607		bus_dmamap_destroy(sc->sc_dmat, sc->vge_ldata.vge_tx_list_map);
608		bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->vge_ldata.vge_tx_list,
609		    VGE_TX_LIST_SZ);
610		bus_dmamem_free(sc->sc_dmat, &sc->vge_ldata.vge_tx_listseg, rseg);
611		return (ENOMEM);
612	}
613
614	/* Create DMA maps for TX buffers */
615
616	for (i = 0; i < VGE_TX_DESC_CNT; i++) {
617		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES * nseg,
618		    VGE_TX_FRAGS, MCLBYTES, 0, BUS_DMA_ALLOCNOW,
619		    &sc->vge_ldata.vge_tx_dmamap[i]);
620		if (error) {
621			printf("%s: can't create DMA map for TX\n",
622			    sc->vge_dev.dv_xname);
623			return (ENOMEM);
624		}
625	}
626
627	/* Allocate DMA'able memory for the RX ring */
628
629	error = bus_dmamap_create(sc->sc_dmat, VGE_RX_LIST_SZ, 1,
630	    VGE_RX_LIST_SZ, 0, BUS_DMA_ALLOCNOW,
631	    &sc->vge_ldata.vge_rx_list_map);
632	if (error)
633		return (ENOMEM);
634	error = bus_dmamem_alloc(sc->sc_dmat, VGE_RX_LIST_SZ, VGE_RING_ALIGN,
635	    0, &sc->vge_ldata.vge_rx_listseg, 1, &rseg, BUS_DMA_NOWAIT);
636	if (error) {
637		printf("%s: can't alloc RX list\n", sc->vge_dev.dv_xname);
638		return (ENOMEM);
639	}
640
641	/* Load the map for the RX ring. */
642
643	error = bus_dmamem_map(sc->sc_dmat, &sc->vge_ldata.vge_rx_listseg,
644	     1, VGE_RX_LIST_SZ,
645	     (caddr_t *)&sc->vge_ldata.vge_rx_list, BUS_DMA_NOWAIT);
646	memset(sc->vge_ldata.vge_rx_list, 0, VGE_RX_LIST_SZ);
647	if (error) {
648		printf("%s: can't map RX dma buffers\n",
649		    sc->vge_dev.dv_xname);
650		bus_dmamem_free(sc->sc_dmat, &sc->vge_ldata.vge_rx_listseg, rseg);
651		return (ENOMEM);
652	}
653	error = bus_dmamap_load(sc->sc_dmat, sc->vge_ldata.vge_rx_list_map,
654	    sc->vge_ldata.vge_rx_list, VGE_RX_LIST_SZ, NULL, BUS_DMA_NOWAIT);
655	if (error) {
656		printf("%s: can't load RX dma map\n", sc->vge_dev.dv_xname);
657		bus_dmamap_destroy(sc->sc_dmat, sc->vge_ldata.vge_rx_list_map);
658		bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->vge_ldata.vge_rx_list,
659		    VGE_RX_LIST_SZ);
660		bus_dmamem_free(sc->sc_dmat, &sc->vge_ldata.vge_rx_listseg, rseg);
661		return (ENOMEM);
662	}
663
664	/* Create DMA maps for RX buffers */
665
666	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
667		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES * nseg, nseg,
668		    MCLBYTES, 0, BUS_DMA_ALLOCNOW,
669		    &sc->vge_ldata.vge_rx_dmamap[i]);
670		if (error) {
671			printf("%s: can't create DMA map for RX\n",
672			    sc->vge_dev.dv_xname);
673			return (ENOMEM);
674		}
675	}
676
677	return (0);
678}
679
680void
681vge_freemem(struct vge_softc *sc)
682{
683	int i;
684
685	for (i = 0; i < VGE_RX_DESC_CNT; i++)
686		bus_dmamap_destroy(sc->sc_dmat,
687		    sc->vge_ldata.vge_rx_dmamap[i]);
688
689	bus_dmamap_unload(sc->sc_dmat, sc->vge_ldata.vge_rx_list_map);
690	bus_dmamap_destroy(sc->sc_dmat, sc->vge_ldata.vge_rx_list_map);
691	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->vge_ldata.vge_rx_list,
692	    VGE_RX_LIST_SZ);
693	bus_dmamem_free(sc->sc_dmat, &sc->vge_ldata.vge_rx_listseg, 1);
694
695	for (i = 0; i < VGE_TX_DESC_CNT; i++)
696		bus_dmamap_destroy(sc->sc_dmat,
697		    sc->vge_ldata.vge_tx_dmamap[i]);
698
699	bus_dmamap_unload(sc->sc_dmat, sc->vge_ldata.vge_tx_list_map);
700	bus_dmamap_destroy(sc->sc_dmat, sc->vge_ldata.vge_tx_list_map);
701	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->vge_ldata.vge_tx_list,
702	    VGE_TX_LIST_SZ);
703	bus_dmamem_free(sc->sc_dmat, &sc->vge_ldata.vge_tx_listseg, 1);
704}
705
706/*
707 * Attach the interface. Allocate softc structures, do ifmedia
708 * setup and ethernet/BPF attach.
709 */
710void
711vge_attach(struct device *parent, struct device *self, void *aux)
712{
713	u_char			eaddr[ETHER_ADDR_LEN];
714	struct vge_softc	*sc = (struct vge_softc *)self;
715	struct pci_attach_args	*pa = aux;
716	pci_chipset_tag_t	pc = pa->pa_pc;
717	pci_intr_handle_t	ih;
718	const char		*intrstr = NULL;
719	struct ifnet		*ifp;
720	int			error = 0;
721
722	/*
723	 * Map control/status registers.
724	 */
725	if (pci_mapreg_map(pa, VGE_PCI_LOMEM, PCI_MAPREG_TYPE_MEM, 0,
726	    &sc->vge_btag, &sc->vge_bhandle, NULL, &sc->vge_bsize, 0)) {
727		if (pci_mapreg_map(pa, VGE_PCI_LOIO, PCI_MAPREG_TYPE_IO, 0,
728		    &sc->vge_btag, &sc->vge_bhandle, NULL, &sc->vge_bsize, 0)) {
729			printf(": can't map mem or i/o space\n");
730			return;
731		}
732	}
733
734	/* Allocate interrupt */
735	if (pci_intr_map(pa, &ih)) {
736		printf(": couldn't map interrupt\n");
737		return;
738	}
739	intrstr = pci_intr_string(pc, ih);
740	sc->vge_intrhand = pci_intr_establish(pc, ih, IPL_NET, vge_intr, sc,
741	    sc->vge_dev.dv_xname);
742	if (sc->vge_intrhand == NULL) {
743		printf(": couldn't establish interrupt");
744		if (intrstr != NULL)
745			printf(" at %s", intrstr);
746		return;
747	}
748	printf(": %s", intrstr);
749
750	sc->sc_dmat = pa->pa_dmat;
751	sc->sc_pc = pa->pa_pc;
752
753	/* Reset the adapter. */
754	vge_reset(sc);
755
756	/*
757	 * Get station address from the EEPROM.
758	 */
759	vge_read_eeprom(sc, eaddr, VGE_EE_EADDR, 3, 1);
760
761	bcopy(eaddr, &sc->arpcom.ac_enaddr, ETHER_ADDR_LEN);
762
763	printf(", address %s\n",
764	    ether_sprintf(sc->arpcom.ac_enaddr));
765
766	error = vge_allocmem(sc);
767
768	if (error)
769		return;
770
771	ifp = &sc->arpcom.ac_if;
772	ifp->if_softc = sc;
773	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
774	ifp->if_ioctl = vge_ioctl;
775	ifp->if_start = vge_start;
776	ifp->if_watchdog = vge_watchdog;
777#ifdef VGE_JUMBO
778	ifp->if_hardmtu = VGE_JUMBO_MTU;
779#endif
780	IFQ_SET_MAXLEN(&ifp->if_snd, VGE_IFQ_MAXLEN);
781
782	ifp->if_capabilities = IFCAP_VLAN_MTU | IFCAP_CSUM_IPv4 |
783				IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4;
784
785#if NVLAN > 0
786	ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING;
787#endif
788
789	/* Set interface name */
790	strlcpy(ifp->if_xname, sc->vge_dev.dv_xname, IFNAMSIZ);
791
792	/* Do MII setup */
793	sc->sc_mii.mii_ifp = ifp;
794	sc->sc_mii.mii_readreg = vge_miibus_readreg;
795	sc->sc_mii.mii_writereg = vge_miibus_writereg;
796	sc->sc_mii.mii_statchg = vge_miibus_statchg;
797	ifmedia_init(&sc->sc_mii.mii_media, 0,
798	    vge_ifmedia_upd, vge_ifmedia_sts);
799	mii_attach(self, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
800	    MII_OFFSET_ANY, MIIF_DOPAUSE);
801	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
802		printf("%s: no PHY found!\n", sc->vge_dev.dv_xname);
803		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL,
804		    0, NULL);
805		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL);
806	} else
807		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
808
809	timeout_set(&sc->timer_handle, vge_tick, sc);
810
811	/*
812	 * Call MI attach routine.
813	 */
814	if_attach(ifp);
815	ether_ifattach(ifp);
816}
817
818int
819vge_detach(struct device *self, int flags)
820{
821	struct vge_softc *sc = (void *)self;
822	struct ifnet *ifp = &sc->arpcom.ac_if;
823
824	pci_intr_disestablish(sc->sc_pc, sc->vge_intrhand);
825
826	vge_stop(sc);
827
828	/* Detach all PHYs */
829	mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
830
831	/* Delete any remaining media. */
832	ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
833
834	ether_ifdetach(ifp);
835	if_detach(ifp);
836
837	vge_freemem(sc);
838
839	bus_space_unmap(sc->vge_btag, sc->vge_bhandle, sc->vge_bsize);
840	return (0);
841}
842
843int
844vge_newbuf(struct vge_softc *sc, int idx, struct mbuf *m)
845{
846	struct mbuf		*m_new = NULL;
847	struct vge_rx_desc	*r;
848	bus_dmamap_t		rxmap = sc->vge_ldata.vge_rx_dmamap[idx];
849	int			i;
850
851	if (m == NULL) {
852		/* Allocate a new mbuf */
853		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
854		if (m_new == NULL)
855			return (ENOBUFS);
856
857		/* Allocate a cluster */
858		MCLGET(m_new, M_DONTWAIT);
859		if (!(m_new->m_flags & M_EXT)) {
860			m_freem(m_new);
861			return (ENOBUFS);
862		}
863
864		m = m_new;
865	} else
866		m->m_data = m->m_ext.ext_buf;
867
868	m->m_len = m->m_pkthdr.len = MCLBYTES;
869	/* Fix-up alignment so payload is doubleword-aligned */
870	/* XXX m_adj(m, ETHER_ALIGN); */
871
872	if (bus_dmamap_load_mbuf(sc->sc_dmat, rxmap, m, BUS_DMA_NOWAIT))
873		return (ENOBUFS);
874
875	if (rxmap->dm_nsegs > 1)
876		goto out;
877
878	/* Map the segments into RX descriptors */
879	r = &sc->vge_ldata.vge_rx_list[idx];
880
881	if (letoh32(r->vge_sts) & VGE_RDSTS_OWN) {
882		printf("%s: tried to map a busy RX descriptor\n",
883		    sc->vge_dev.dv_xname);
884		goto out;
885	}
886	r->vge_buflen = htole16(VGE_BUFLEN(rxmap->dm_segs[0].ds_len) | VGE_RXDESC_I);
887	r->vge_addrlo = htole32(VGE_ADDR_LO(rxmap->dm_segs[0].ds_addr));
888	r->vge_addrhi = htole16(VGE_ADDR_HI(rxmap->dm_segs[0].ds_addr) & 0xFFFF);
889	r->vge_sts = htole32(0);
890	r->vge_ctl = htole32(0);
891
892	/*
893	 * Note: the manual fails to document the fact that for
894	 * proper operation, the driver needs to replenish the RX
895	 * DMA ring 4 descriptors at a time (rather than one at a
896	 * time, like most chips). We can allocate the new buffers
897	 * but we should not set the OWN bits until we're ready
898	 * to hand back 4 of them in one shot.
899	 */
900#define VGE_RXCHUNK 4
901	sc->vge_rx_consumed++;
902	if (sc->vge_rx_consumed == VGE_RXCHUNK) {
903		for (i = idx; i != idx - sc->vge_rx_consumed; i--)
904			sc->vge_ldata.vge_rx_list[i].vge_sts |=
905			    htole32(VGE_RDSTS_OWN);
906		sc->vge_rx_consumed = 0;
907	}
908
909	sc->vge_ldata.vge_rx_mbuf[idx] = m;
910
911	bus_dmamap_sync(sc->sc_dmat, rxmap, 0,
912	    rxmap->dm_mapsize, BUS_DMASYNC_PREREAD);
913
914	return (0);
915out:
916	DPRINTF(("vge_newbuf: out of memory\n"));
917	if (m_new != NULL)
918		m_freem(m_new);
919	return (ENOMEM);
920}
921
922int
923vge_tx_list_init(struct vge_softc *sc)
924{
925	bzero(sc->vge_ldata.vge_tx_list, VGE_TX_LIST_SZ);
926	bzero(&sc->vge_ldata.vge_tx_mbuf,
927	    (VGE_TX_DESC_CNT * sizeof(struct mbuf *)));
928
929	bus_dmamap_sync(sc->sc_dmat,
930	    sc->vge_ldata.vge_tx_list_map, 0,
931	    sc->vge_ldata.vge_tx_list_map->dm_mapsize,
932	    BUS_DMASYNC_PREWRITE);
933	sc->vge_ldata.vge_tx_prodidx = 0;
934	sc->vge_ldata.vge_tx_considx = 0;
935	sc->vge_ldata.vge_tx_free = VGE_TX_DESC_CNT;
936
937	return (0);
938}
939
940/* Init RX descriptors and allocate mbufs with vge_newbuf()
941 * A ring is used, and last descriptor points to first. */
942int
943vge_rx_list_init(struct vge_softc *sc)
944{
945	int			i;
946
947	bzero(sc->vge_ldata.vge_rx_list, VGE_RX_LIST_SZ);
948	bzero(&sc->vge_ldata.vge_rx_mbuf,
949	    (VGE_RX_DESC_CNT * sizeof(struct mbuf *)));
950
951	sc->vge_rx_consumed = 0;
952
953	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
954		if (vge_newbuf(sc, i, NULL) == ENOBUFS)
955			return (ENOBUFS);
956	}
957
958	/* Flush the RX descriptors */
959
960	bus_dmamap_sync(sc->sc_dmat,
961	    sc->vge_ldata.vge_rx_list_map,
962	    0, sc->vge_ldata.vge_rx_list_map->dm_mapsize,
963	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
964
965	sc->vge_ldata.vge_rx_prodidx = 0;
966	sc->vge_rx_consumed = 0;
967	sc->vge_head = sc->vge_tail = NULL;
968
969	return (0);
970}
971
972/*
973 * RX handler. We support the reception of jumbo frames that have
974 * been fragmented across multiple 2K mbuf cluster buffers.
975 */
976void
977vge_rxeof(struct vge_softc *sc)
978{
979	struct mbuf_list	ml = MBUF_LIST_INITIALIZER();
980	struct mbuf		*m;
981	struct ifnet		*ifp;
982	int			i, total_len;
983	int			lim = 0;
984	struct vge_rx_desc	*cur_rx;
985	u_int32_t		rxstat, rxctl;
986
987	ifp = &sc->arpcom.ac_if;
988	i = sc->vge_ldata.vge_rx_prodidx;
989
990	/* Invalidate the descriptor memory */
991
992	bus_dmamap_sync(sc->sc_dmat,
993	    sc->vge_ldata.vge_rx_list_map,
994	    0, sc->vge_ldata.vge_rx_list_map->dm_mapsize,
995	    BUS_DMASYNC_POSTREAD);
996
997	while (!VGE_OWN(&sc->vge_ldata.vge_rx_list[i])) {
998		struct mbuf *m0 = NULL;
999
1000		cur_rx = &sc->vge_ldata.vge_rx_list[i];
1001		m = sc->vge_ldata.vge_rx_mbuf[i];
1002		total_len = VGE_RXBYTES(cur_rx);
1003		rxstat = letoh32(cur_rx->vge_sts);
1004		rxctl = letoh32(cur_rx->vge_ctl);
1005
1006		/* Invalidate the RX mbuf and unload its map */
1007
1008		bus_dmamap_sync(sc->sc_dmat,
1009		    sc->vge_ldata.vge_rx_dmamap[i],
1010		    0, sc->vge_ldata.vge_rx_dmamap[i]->dm_mapsize,
1011		    BUS_DMASYNC_POSTWRITE);
1012		bus_dmamap_unload(sc->sc_dmat,
1013		    sc->vge_ldata.vge_rx_dmamap[i]);
1014
1015		/*
1016		 * If the 'start of frame' bit is set, this indicates
1017		 * either the first fragment in a multi-fragment receive,
1018		 * or an intermediate fragment. Either way, we want to
1019		 * accumulate the buffers.
1020		 */
1021		if (rxstat & VGE_RXPKT_SOF) {
1022			DPRINTF(("vge_rxeof: SOF\n"));
1023			m->m_len = MCLBYTES;
1024			if (sc->vge_head == NULL)
1025				sc->vge_head = sc->vge_tail = m;
1026			else {
1027				m->m_flags &= ~M_PKTHDR;
1028				sc->vge_tail->m_next = m;
1029				sc->vge_tail = m;
1030			}
1031			vge_newbuf(sc, i, NULL);
1032			VGE_RX_DESC_INC(i);
1033			continue;
1034		}
1035
1036		/*
1037		 * Bad/error frames will have the RXOK bit cleared.
1038		 * However, there's one error case we want to allow:
1039		 * if a VLAN tagged frame arrives and the chip can't
1040		 * match it against the CAM filter, it considers this
1041		 * a 'VLAN CAM filter miss' and clears the 'RXOK' bit.
1042		 * We don't want to drop the frame though: our VLAN
1043		 * filtering is done in software.
1044		 */
1045		if (!(rxstat & VGE_RDSTS_RXOK) && !(rxstat & VGE_RDSTS_VIDM)
1046		    && !(rxstat & VGE_RDSTS_CSUMERR)) {
1047			ifp->if_ierrors++;
1048			/*
1049			 * If this is part of a multi-fragment packet,
1050			 * discard all the pieces.
1051			 */
1052			if (sc->vge_head != NULL) {
1053				m_freem(sc->vge_head);
1054				sc->vge_head = sc->vge_tail = NULL;
1055			}
1056			vge_newbuf(sc, i, m);
1057			VGE_RX_DESC_INC(i);
1058			continue;
1059		}
1060
1061		/*
1062		 * If allocating a replacement mbuf fails,
1063		 * reload the current one.
1064		 */
1065
1066		if (vge_newbuf(sc, i, NULL) == ENOBUFS) {
1067			if (sc->vge_head != NULL) {
1068				m_freem(sc->vge_head);
1069				sc->vge_head = sc->vge_tail = NULL;
1070			}
1071
1072			m0 = m_devget(mtod(m, char *),
1073			    total_len - ETHER_CRC_LEN, ETHER_ALIGN);
1074			vge_newbuf(sc, i, m);
1075			if (m0 == NULL) {
1076				ifp->if_ierrors++;
1077				continue;
1078			}
1079			m = m0;
1080
1081			VGE_RX_DESC_INC(i);
1082			continue;
1083		}
1084
1085		VGE_RX_DESC_INC(i);
1086
1087		if (sc->vge_head != NULL) {
1088			m->m_len = total_len % MCLBYTES;
1089			/*
1090			 * Special case: if there's 4 bytes or less
1091			 * in this buffer, the mbuf can be discarded:
1092			 * the last 4 bytes is the CRC, which we don't
1093			 * care about anyway.
1094			 */
1095			if (m->m_len <= ETHER_CRC_LEN) {
1096				sc->vge_tail->m_len -=
1097				    (ETHER_CRC_LEN - m->m_len);
1098				m_freem(m);
1099			} else {
1100				m->m_len -= ETHER_CRC_LEN;
1101				m->m_flags &= ~M_PKTHDR;
1102				sc->vge_tail->m_next = m;
1103			}
1104			m = sc->vge_head;
1105			sc->vge_head = sc->vge_tail = NULL;
1106			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1107		} else
1108			m->m_pkthdr.len = m->m_len =
1109			    (total_len - ETHER_CRC_LEN);
1110
1111#ifdef __STRICT_ALIGNMENT
1112		bcopy(m->m_data, m->m_data + ETHER_ALIGN, total_len);
1113		m->m_data += ETHER_ALIGN;
1114#endif
1115		/* Do RX checksumming */
1116
1117		/* Check IP header checksum */
1118		if ((rxctl & VGE_RDCTL_IPPKT) &&
1119		    (rxctl & VGE_RDCTL_IPCSUMOK))
1120			m->m_pkthdr.csum_flags |= M_IPV4_CSUM_IN_OK;
1121
1122		/* Check TCP/UDP checksum */
1123		if ((rxctl & (VGE_RDCTL_TCPPKT|VGE_RDCTL_UDPPKT)) &&
1124		    (rxctl & VGE_RDCTL_PROTOCSUMOK))
1125			m->m_pkthdr.csum_flags |= M_TCP_CSUM_IN_OK | M_UDP_CSUM_IN_OK;
1126
1127#if NVLAN > 0
1128		if (rxstat & VGE_RDSTS_VTAG) {
1129			m->m_pkthdr.ether_vtag = swap16(rxctl & VGE_RDCTL_VLANID);
1130			m->m_flags |= M_VLANTAG;
1131		}
1132#endif
1133
1134		ml_enqueue(&ml, m);
1135
1136		lim++;
1137		if (lim == VGE_RX_DESC_CNT)
1138			break;
1139	}
1140
1141	if_input(ifp, &ml);
1142
1143	/* Flush the RX DMA ring */
1144	bus_dmamap_sync(sc->sc_dmat,
1145	    sc->vge_ldata.vge_rx_list_map,
1146	    0, sc->vge_ldata.vge_rx_list_map->dm_mapsize,
1147	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1148
1149	sc->vge_ldata.vge_rx_prodidx = i;
1150	CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, lim);
1151}
1152
1153void
1154vge_txeof(struct vge_softc *sc)
1155{
1156	struct ifnet		*ifp;
1157	u_int32_t		txstat;
1158	int			idx;
1159
1160	ifp = &sc->arpcom.ac_if;
1161	idx = sc->vge_ldata.vge_tx_considx;
1162
1163	/* Invalidate the TX descriptor list */
1164
1165	bus_dmamap_sync(sc->sc_dmat,
1166	    sc->vge_ldata.vge_tx_list_map,
1167	    0, sc->vge_ldata.vge_tx_list_map->dm_mapsize,
1168	    BUS_DMASYNC_POSTREAD);
1169
1170	/* Transmitted frames can be now free'd from the TX list */
1171	while (idx != sc->vge_ldata.vge_tx_prodidx) {
1172		txstat = letoh32(sc->vge_ldata.vge_tx_list[idx].vge_sts);
1173		if (txstat & VGE_TDSTS_OWN)
1174			break;
1175
1176		m_freem(sc->vge_ldata.vge_tx_mbuf[idx]);
1177		sc->vge_ldata.vge_tx_mbuf[idx] = NULL;
1178		bus_dmamap_unload(sc->sc_dmat,
1179		    sc->vge_ldata.vge_tx_dmamap[idx]);
1180		if (txstat & (VGE_TDSTS_EXCESSCOLL|VGE_TDSTS_COLL))
1181			ifp->if_collisions++;
1182		if (txstat & VGE_TDSTS_TXERR)
1183			ifp->if_oerrors++;
1184		else
1185			ifp->if_opackets++;
1186
1187		sc->vge_ldata.vge_tx_free++;
1188		VGE_TX_DESC_INC(idx);
1189	}
1190
1191	/* No changes made to the TX ring, so no flush needed */
1192
1193	if (idx != sc->vge_ldata.vge_tx_considx) {
1194		sc->vge_ldata.vge_tx_considx = idx;
1195		ifq_clr_oactive(&ifp->if_snd);
1196		ifp->if_timer = 0;
1197	}
1198
1199	/*
1200	 * If not all descriptors have been released reaped yet,
1201	 * reload the timer so that we will eventually get another
1202	 * interrupt that will cause us to re-enter this routine.
1203	 * This is done in case the transmitter has gone idle.
1204	 */
1205	if (sc->vge_ldata.vge_tx_free != VGE_TX_DESC_CNT)
1206		CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE);
1207}
1208
1209void
1210vge_tick(void *xsc)
1211{
1212	struct vge_softc	*sc = xsc;
1213	struct ifnet		*ifp = &sc->arpcom.ac_if;
1214	struct mii_data		*mii = &sc->sc_mii;
1215	int s;
1216
1217	s = splnet();
1218
1219	mii_tick(mii);
1220
1221	if (sc->vge_link) {
1222		if (!(mii->mii_media_status & IFM_ACTIVE)) {
1223			sc->vge_link = 0;
1224			ifp->if_link_state = LINK_STATE_DOWN;
1225			if_link_state_change(ifp);
1226		}
1227	} else {
1228		if (mii->mii_media_status & IFM_ACTIVE &&
1229		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1230			sc->vge_link = 1;
1231			if (mii->mii_media_status & IFM_FDX)
1232				ifp->if_link_state = LINK_STATE_FULL_DUPLEX;
1233			else
1234				ifp->if_link_state = LINK_STATE_HALF_DUPLEX;
1235			if_link_state_change(ifp);
1236			if (!IFQ_IS_EMPTY(&ifp->if_snd))
1237				vge_start(ifp);
1238		}
1239	}
1240	timeout_add_sec(&sc->timer_handle, 1);
1241	splx(s);
1242}
1243
1244int
1245vge_intr(void *arg)
1246{
1247	struct vge_softc	*sc = arg;
1248	struct ifnet		*ifp;
1249	u_int32_t		status;
1250	int			claimed = 0;
1251
1252	ifp = &sc->arpcom.ac_if;
1253
1254	if (!(ifp->if_flags & IFF_UP))
1255		return 0;
1256
1257	/* Disable interrupts */
1258	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
1259
1260	for (;;) {
1261		status = CSR_READ_4(sc, VGE_ISR);
1262		DPRINTFN(3, ("vge_intr: status=%#x\n", status));
1263
1264		/* If the card has gone away the read returns 0xffffffff. */
1265		if (status == 0xFFFFFFFF)
1266			break;
1267
1268		if (status) {
1269			CSR_WRITE_4(sc, VGE_ISR, status);
1270		}
1271
1272		if ((status & VGE_INTRS) == 0)
1273			break;
1274
1275		claimed = 1;
1276
1277		if (status & (VGE_ISR_RXOK|VGE_ISR_RXOK_HIPRIO))
1278			vge_rxeof(sc);
1279
1280		if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
1281			DPRINTFN(2, ("vge_intr: RX error, recovering\n"));
1282			vge_rxeof(sc);
1283			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1284			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1285		}
1286
1287		if (status & (VGE_ISR_TXOK0|VGE_ISR_TIMER0))
1288			vge_txeof(sc);
1289
1290		if (status & (VGE_ISR_TXDMA_STALL|VGE_ISR_RXDMA_STALL)) {
1291			DPRINTFN(2, ("DMA_STALL\n"));
1292			vge_init(ifp);
1293		}
1294
1295		if (status & VGE_ISR_LINKSTS) {
1296			timeout_del(&sc->timer_handle);
1297			vge_tick(sc);
1298		}
1299	}
1300
1301	/* Re-enable interrupts */
1302	CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
1303
1304	if (!IFQ_IS_EMPTY(&ifp->if_snd))
1305		vge_start(ifp);
1306
1307	return (claimed);
1308}
1309
1310/*
1311 * Encapsulate an mbuf chain into the TX ring by combining it w/
1312 * the descriptors.
1313 */
1314int
1315vge_encap(struct vge_softc *sc, struct mbuf *m_head, int idx)
1316{
1317	bus_dmamap_t		txmap;
1318	struct vge_tx_desc	*d = NULL;
1319	struct vge_tx_frag	*f;
1320	int			error, frag;
1321	u_int32_t		vge_flags;
1322	unsigned int		len;
1323
1324	vge_flags = 0;
1325
1326	if (m_head->m_pkthdr.csum_flags & M_IPV4_CSUM_OUT)
1327		vge_flags |= VGE_TDCTL_IPCSUM;
1328	if (m_head->m_pkthdr.csum_flags & M_TCP_CSUM_OUT)
1329		vge_flags |= VGE_TDCTL_TCPCSUM;
1330	if (m_head->m_pkthdr.csum_flags & M_UDP_CSUM_OUT)
1331		vge_flags |= VGE_TDCTL_UDPCSUM;
1332
1333	txmap = sc->vge_ldata.vge_tx_dmamap[idx];
1334	error = bus_dmamap_load_mbuf(sc->sc_dmat, txmap,
1335	    m_head, BUS_DMA_NOWAIT);
1336	switch (error) {
1337	case 0:
1338		break;
1339	case EFBIG: /* mbuf chain is too fragmented */
1340		if ((error = m_defrag(m_head, M_DONTWAIT)) == 0 &&
1341		    (error = bus_dmamap_load_mbuf(sc->sc_dmat, txmap, m_head,
1342		    BUS_DMA_NOWAIT)) == 0)
1343			break;
1344	default:
1345		return (error);
1346        }
1347
1348	d = &sc->vge_ldata.vge_tx_list[idx];
1349	/* If owned by chip, fail */
1350	if (letoh32(d->vge_sts) & VGE_TDSTS_OWN)
1351		return (ENOBUFS);
1352
1353	for (frag = 0; frag < txmap->dm_nsegs; frag++) {
1354		f = &d->vge_frag[frag];
1355		f->vge_buflen = htole16(VGE_BUFLEN(txmap->dm_segs[frag].ds_len));
1356		f->vge_addrlo = htole32(VGE_ADDR_LO(txmap->dm_segs[frag].ds_addr));
1357		f->vge_addrhi = htole16(VGE_ADDR_HI(txmap->dm_segs[frag].ds_addr) & 0xFFFF);
1358	}
1359
1360	/* This chip does not do auto-padding */
1361	if (m_head->m_pkthdr.len < VGE_MIN_FRAMELEN) {
1362		f = &d->vge_frag[frag];
1363
1364		f->vge_buflen = htole16(VGE_BUFLEN(VGE_MIN_FRAMELEN -
1365		    m_head->m_pkthdr.len));
1366		f->vge_addrlo = htole32(VGE_ADDR_LO(txmap->dm_segs[0].ds_addr));
1367		f->vge_addrhi = htole16(VGE_ADDR_HI(txmap->dm_segs[0].ds_addr) & 0xFFFF);
1368		len = VGE_MIN_FRAMELEN;
1369		frag++;
1370	} else
1371		len = m_head->m_pkthdr.len;
1372
1373	/* For some reason, we need to tell the card fragment + 1 */
1374	frag++;
1375
1376	bus_dmamap_sync(sc->sc_dmat, txmap, 0, txmap->dm_mapsize,
1377	    BUS_DMASYNC_PREWRITE);
1378
1379	d->vge_sts = htole32(len << 16);
1380	d->vge_ctl = htole32(vge_flags|(frag << 28) | VGE_TD_LS_NORM);
1381
1382	if (len > ETHERMTU + ETHER_HDR_LEN)
1383		d->vge_ctl |= htole32(VGE_TDCTL_JUMBO);
1384
1385#if NVLAN > 0
1386	/* Set up hardware VLAN tagging. */
1387	if (m_head->m_flags & M_VLANTAG) {
1388		d->vge_ctl |= htole32(m_head->m_pkthdr.ether_vtag |
1389		    VGE_TDCTL_VTAG);
1390	}
1391#endif
1392
1393	sc->vge_ldata.vge_tx_dmamap[idx] = txmap;
1394	sc->vge_ldata.vge_tx_mbuf[idx] = m_head;
1395	sc->vge_ldata.vge_tx_free--;
1396	sc->vge_ldata.vge_tx_list[idx].vge_sts |= htole32(VGE_TDSTS_OWN);
1397
1398	idx++;
1399	return (0);
1400}
1401
1402/*
1403 * Main transmit routine.
1404 */
1405void
1406vge_start(struct ifnet *ifp)
1407{
1408	struct vge_softc	*sc;
1409	struct mbuf		*m_head = NULL;
1410	int			idx, pidx = 0;
1411
1412	sc = ifp->if_softc;
1413
1414	if (!sc->vge_link || ifq_is_oactive(&ifp->if_snd))
1415		return;
1416
1417	if (IFQ_IS_EMPTY(&ifp->if_snd))
1418		return;
1419
1420	idx = sc->vge_ldata.vge_tx_prodidx;
1421
1422	pidx = idx - 1;
1423	if (pidx < 0)
1424		pidx = VGE_TX_DESC_CNT - 1;
1425
1426	for (;;) {
1427		if (sc->vge_ldata.vge_tx_mbuf[idx] != NULL) {
1428			ifq_set_oactive(&ifp->if_snd);
1429			break;
1430		}
1431
1432		IFQ_DEQUEUE(&ifp->if_snd, m_head);
1433		if (m_head == NULL)
1434			break;
1435
1436		if (vge_encap(sc, m_head, idx)) {
1437			m_freem(m_head);
1438			ifp->if_oerrors++;
1439			continue;
1440		}
1441
1442		/*
1443		 * If there's a BPF listener, bounce a copy of this frame
1444		 * to him.
1445		 */
1446#if NBPFILTER > 0
1447		if (ifp->if_bpf)
1448			bpf_mtap_ether(ifp->if_bpf, m_head, BPF_DIRECTION_OUT);
1449#endif
1450
1451		sc->vge_ldata.vge_tx_list[pidx].vge_frag[0].vge_buflen |=
1452		    htole16(VGE_TXDESC_Q);
1453
1454		pidx = idx;
1455		VGE_TX_DESC_INC(idx);
1456	}
1457
1458	if (idx == sc->vge_ldata.vge_tx_prodidx) {
1459		return;
1460	}
1461
1462	/* Flush the TX descriptors */
1463
1464	bus_dmamap_sync(sc->sc_dmat,
1465	    sc->vge_ldata.vge_tx_list_map,
1466	    0, sc->vge_ldata.vge_tx_list_map->dm_mapsize,
1467	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1468
1469	/* Issue a transmit command. */
1470	CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_WAK0);
1471
1472	sc->vge_ldata.vge_tx_prodidx = idx;
1473
1474	/*
1475	 * Use the countdown timer for interrupt moderation.
1476	 * 'TX done' interrupts are disabled. Instead, we reset the
1477	 * countdown timer, which will begin counting until it hits
1478	 * the value in the SSTIMER register, and then trigger an
1479	 * interrupt. Each time we set the TIMER0_ENABLE bit, the
1480	 * the timer count is reloaded. Only when the transmitter
1481	 * is idle will the timer hit 0 and an interrupt fire.
1482	 */
1483	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE);
1484
1485	/*
1486	 * Set a timeout in case the chip goes out to lunch.
1487	 */
1488	ifp->if_timer = 5;
1489}
1490
1491int
1492vge_init(struct ifnet *ifp)
1493{
1494	struct vge_softc	*sc = ifp->if_softc;
1495	int			i;
1496
1497	/*
1498	 * Cancel pending I/O and free all RX/TX buffers.
1499	 */
1500	vge_stop(sc);
1501	vge_reset(sc);
1502
1503	/* Initialize RX descriptors list */
1504	if (vge_rx_list_init(sc) == ENOBUFS) {
1505		printf("%s: init failed: no memory for RX buffers\n",
1506		    sc->vge_dev.dv_xname);
1507		vge_stop(sc);
1508		return (ENOBUFS);
1509	}
1510	/* Initialize TX descriptors */
1511	if (vge_tx_list_init(sc) == ENOBUFS) {
1512		printf("%s: init failed: no memory for TX buffers\n",
1513		    sc->vge_dev.dv_xname);
1514		vge_stop(sc);
1515		return (ENOBUFS);
1516	}
1517
1518	/* Set our station address */
1519	for (i = 0; i < ETHER_ADDR_LEN; i++)
1520		CSR_WRITE_1(sc, VGE_PAR0 + i, sc->arpcom.ac_enaddr[i]);
1521
1522	/* Set receive FIFO threshold */
1523	CSR_CLRBIT_1(sc, VGE_RXCFG, VGE_RXCFG_FIFO_THR);
1524	CSR_SETBIT_1(sc, VGE_RXCFG, VGE_RXFIFOTHR_128BYTES);
1525
1526	if (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) {
1527		/*
1528		 * Allow transmission and reception of VLAN tagged
1529		 * frames.
1530		 */
1531		CSR_CLRBIT_1(sc, VGE_RXCFG, VGE_RXCFG_VTAGOPT);
1532		CSR_SETBIT_1(sc, VGE_RXCFG, VGE_VTAG_OPT2);
1533	}
1534
1535	/* Set DMA burst length */
1536	CSR_CLRBIT_1(sc, VGE_DMACFG0, VGE_DMACFG0_BURSTLEN);
1537	CSR_SETBIT_1(sc, VGE_DMACFG0, VGE_DMABURST_128);
1538
1539	CSR_SETBIT_1(sc, VGE_TXCFG, VGE_TXCFG_ARB_PRIO|VGE_TXCFG_NONBLK);
1540
1541	/* Set collision backoff algorithm */
1542	CSR_CLRBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_CRANDOM|
1543	    VGE_CHIPCFG1_CAP|VGE_CHIPCFG1_MBA|VGE_CHIPCFG1_BAKOPT);
1544	CSR_SETBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_OFSET);
1545
1546	/* Disable LPSEL field in priority resolution */
1547	CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_LPSEL_DIS);
1548
1549	/*
1550	 * Load the addresses of the DMA queues into the chip.
1551	 * Note that we only use one transmit queue.
1552	 */
1553	CSR_WRITE_4(sc, VGE_TXDESC_ADDR_LO0,
1554	    VGE_ADDR_LO(sc->vge_ldata.vge_tx_listseg.ds_addr));
1555	CSR_WRITE_2(sc, VGE_TXDESCNUM, VGE_TX_DESC_CNT - 1);
1556
1557	CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO,
1558	    VGE_ADDR_LO(sc->vge_ldata.vge_rx_listseg.ds_addr));
1559	CSR_WRITE_2(sc, VGE_RXDESCNUM, VGE_RX_DESC_CNT - 1);
1560	CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, VGE_RX_DESC_CNT);
1561
1562	/* Enable and wake up the RX descriptor queue */
1563	CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1564	CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1565
1566	/* Enable the TX descriptor queue */
1567	CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_RUN0);
1568
1569	/* Set up the receive filter -- allow large frames for VLANs. */
1570	CSR_WRITE_1(sc, VGE_RXCTL, VGE_RXCTL_RX_GIANT);
1571
1572	/* Program promiscuous mode and multicast filters. */
1573	vge_iff(sc);
1574
1575	/* Initialize pause timer. */
1576	CSR_WRITE_2(sc, VGE_TX_PAUSE_TIMER, 0xFFFF);
1577	/*
1578	 * Initialize flow control parameters.
1579	 *  TX XON high threshold : 48
1580	 *  TX pause low threshold : 24
1581	 *  Disable half-duplex flow control
1582	 */
1583	CSR_WRITE_1(sc, VGE_CRC2, 0xFF);
1584	CSR_WRITE_1(sc, VGE_CRS2, VGE_CR2_XON_ENABLE | 0x0B);
1585
1586	/* Enable jumbo frame reception (if desired) */
1587
1588	/* Start the MAC. */
1589	CSR_WRITE_1(sc, VGE_CRC0, VGE_CR0_STOP);
1590	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_NOPOLL);
1591	CSR_WRITE_1(sc, VGE_CRS0,
1592	    VGE_CR0_TX_ENABLE|VGE_CR0_RX_ENABLE|VGE_CR0_START);
1593
1594	/*
1595	 * Configure one-shot timer for microsecond
1596	 * resulution and load it for 500 usecs.
1597	 */
1598	CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_TIMER0_RES);
1599	CSR_WRITE_2(sc, VGE_SSTIMER, 400);
1600
1601	/*
1602	 * Configure interrupt moderation for receive. Enable
1603	 * the holdoff counter and load it, and set the RX
1604	 * suppression count to the number of descriptors we
1605	 * want to allow before triggering an interrupt.
1606	 * The holdoff timer is in units of 20 usecs.
1607	 */
1608
1609#ifdef notyet
1610	CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_TXINTSUP_DISABLE);
1611	/* Select the interrupt holdoff timer page. */
1612	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
1613	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_INTHLDOFF);
1614	CSR_WRITE_1(sc, VGE_INTHOLDOFF, 10); /* ~200 usecs */
1615
1616	/* Enable use of the holdoff timer. */
1617	CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_HOLDOFF);
1618	CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_SC_RELOAD);
1619
1620	/* Select the RX suppression threshold page. */
1621	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
1622	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_RXSUPPTHR);
1623	CSR_WRITE_1(sc, VGE_RXSUPPTHR, 64); /* interrupt after 64 packets */
1624
1625	/* Restore the page select bits. */
1626	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
1627	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
1628#endif
1629
1630	/*
1631	 * Enable interrupts.
1632	 */
1633	CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
1634	CSR_WRITE_4(sc, VGE_ISR, 0);
1635	CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
1636
1637	/* Restore BMCR state */
1638	mii_mediachg(&sc->sc_mii);
1639
1640	ifp->if_flags |= IFF_RUNNING;
1641	ifq_clr_oactive(&ifp->if_snd);
1642
1643	sc->vge_link = 0;
1644
1645	if (!timeout_pending(&sc->timer_handle))
1646		timeout_add_sec(&sc->timer_handle, 1);
1647
1648	return (0);
1649}
1650
1651/*
1652 * Set media options.
1653 */
1654int
1655vge_ifmedia_upd(struct ifnet *ifp)
1656{
1657	struct vge_softc *sc = ifp->if_softc;
1658
1659	return (mii_mediachg(&sc->sc_mii));
1660}
1661
1662/*
1663 * Report current media status.
1664 */
1665void
1666vge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1667{
1668	struct vge_softc *sc = ifp->if_softc;
1669
1670	mii_pollstat(&sc->sc_mii);
1671	ifmr->ifm_active = sc->sc_mii.mii_media_active;
1672	ifmr->ifm_status = sc->sc_mii.mii_media_status;
1673}
1674
1675void
1676vge_miibus_statchg(struct device *dev)
1677{
1678	struct vge_softc	*sc = (struct vge_softc *)dev;
1679	struct mii_data		*mii;
1680	struct ifmedia_entry	*ife;
1681
1682	mii = &sc->sc_mii;
1683	ife = mii->mii_media.ifm_cur;
1684
1685	/*
1686	 * If the user manually selects a media mode, we need to turn
1687	 * on the forced MAC mode bit in the DIAGCTL register. If the
1688	 * user happens to choose a full duplex mode, we also need to
1689	 * set the 'force full duplex' bit. This applies only to
1690	 * 10Mbps and 100Mbps speeds. In autoselect mode, forced MAC
1691	 * mode is disabled, and in 1000baseT mode, full duplex is
1692	 * always implied, so we turn on the forced mode bit but leave
1693	 * the FDX bit cleared.
1694	 */
1695
1696	switch (IFM_SUBTYPE(ife->ifm_media)) {
1697	case IFM_AUTO:
1698		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
1699		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
1700		break;
1701	case IFM_1000_T:
1702		CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
1703		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
1704		break;
1705	case IFM_100_TX:
1706	case IFM_10_T:
1707		CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
1708		if ((ife->ifm_media & IFM_GMASK) == IFM_FDX) {
1709			CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
1710		} else {
1711			CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
1712		}
1713		break;
1714	default:
1715		printf("%s: unknown media type: %llx\n",
1716		    sc->vge_dev.dv_xname, IFM_SUBTYPE(ife->ifm_media));
1717		break;
1718	}
1719
1720	/*
1721	 * 802.3x flow control
1722	*/
1723	CSR_WRITE_1(sc, VGE_CRC2, VGE_CR2_FDX_TXFLOWCTL_ENABLE |
1724	    VGE_CR2_FDX_RXFLOWCTL_ENABLE);
1725	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1726		CSR_WRITE_1(sc, VGE_CRS2, VGE_CR2_FDX_TXFLOWCTL_ENABLE);
1727	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1728		CSR_WRITE_1(sc, VGE_CRS2, VGE_CR2_FDX_RXFLOWCTL_ENABLE);
1729}
1730
1731int
1732vge_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1733{
1734	struct vge_softc	*sc = ifp->if_softc;
1735	struct ifreq		*ifr = (struct ifreq *) data;
1736	int			s, error = 0;
1737
1738	s = splnet();
1739
1740	switch (command) {
1741	case SIOCSIFADDR:
1742		ifp->if_flags |= IFF_UP;
1743		if (!(ifp->if_flags & IFF_RUNNING))
1744			vge_init(ifp);
1745		break;
1746
1747	case SIOCSIFFLAGS:
1748		if (ifp->if_flags & IFF_UP) {
1749			if (ifp->if_flags & IFF_RUNNING)
1750				error = ENETRESET;
1751			else
1752				vge_init(ifp);
1753		} else {
1754			if (ifp->if_flags & IFF_RUNNING)
1755				vge_stop(sc);
1756		}
1757		break;
1758
1759	case SIOCGIFMEDIA:
1760	case SIOCSIFMEDIA:
1761		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, command);
1762		break;
1763
1764	default:
1765		error = ether_ioctl(ifp, &sc->arpcom, command, data);
1766	}
1767
1768	if (error == ENETRESET) {
1769		if (ifp->if_flags & IFF_RUNNING)
1770			vge_iff(sc);
1771		error = 0;
1772	}
1773
1774	splx(s);
1775	return (error);
1776}
1777
1778void
1779vge_watchdog(struct ifnet *ifp)
1780{
1781	struct vge_softc *sc = ifp->if_softc;
1782	int s;
1783
1784	s = splnet();
1785	printf("%s: watchdog timeout\n", sc->vge_dev.dv_xname);
1786	ifp->if_oerrors++;
1787
1788	vge_txeof(sc);
1789	vge_rxeof(sc);
1790
1791	vge_init(ifp);
1792
1793	splx(s);
1794}
1795
1796/*
1797 * Stop the adapter and free any mbufs allocated to the
1798 * RX and TX lists.
1799 */
1800void
1801vge_stop(struct vge_softc *sc)
1802{
1803	int			i;
1804	struct ifnet		*ifp;
1805
1806	ifp = &sc->arpcom.ac_if;
1807	ifp->if_timer = 0;
1808
1809	timeout_del(&sc->timer_handle);
1810
1811	ifp->if_flags &= ~IFF_RUNNING;
1812	ifq_clr_oactive(&ifp->if_snd);
1813
1814	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
1815	CSR_WRITE_1(sc, VGE_CRS0, VGE_CR0_STOP);
1816	CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
1817	CSR_WRITE_2(sc, VGE_TXQCSRC, 0xFFFF);
1818	CSR_WRITE_1(sc, VGE_RXQCSRC, 0xFF);
1819	CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO, 0);
1820
1821	if (sc->vge_head != NULL) {
1822		m_freem(sc->vge_head);
1823		sc->vge_head = sc->vge_tail = NULL;
1824	}
1825
1826	/* Free the TX list buffers. */
1827	for (i = 0; i < VGE_TX_DESC_CNT; i++) {
1828		if (sc->vge_ldata.vge_tx_mbuf[i] != NULL) {
1829			bus_dmamap_unload(sc->sc_dmat,
1830			    sc->vge_ldata.vge_tx_dmamap[i]);
1831			m_freem(sc->vge_ldata.vge_tx_mbuf[i]);
1832			sc->vge_ldata.vge_tx_mbuf[i] = NULL;
1833		}
1834	}
1835
1836	/* Free the RX list buffers. */
1837	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
1838		if (sc->vge_ldata.vge_rx_mbuf[i] != NULL) {
1839			bus_dmamap_unload(sc->sc_dmat,
1840			    sc->vge_ldata.vge_rx_dmamap[i]);
1841			m_freem(sc->vge_ldata.vge_rx_mbuf[i]);
1842			sc->vge_ldata.vge_rx_mbuf[i] = NULL;
1843		}
1844	}
1845}
1846