if_vge.c revision 1.7
1/*	$OpenBSD: if_vge.c,v 1.7 2005/03/15 17:06:10 pvalchev Exp $	*/
2/*	$FreeBSD: if_vge.c,v 1.3 2004/09/11 22:13:25 wpaul Exp $	*/
3/*
4 * Copyright (c) 2004
5 *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 *    must display the following acknowledgement:
17 *	This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 *    may be used to endorse or promote products derived from this software
20 *    without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35/*
36 * VIA Networking Technologies VT612x PCI gigabit ethernet NIC driver.
37 *
38 * Written by Bill Paul <wpaul@windriver.com>
39 * Senior Networking Software Engineer
40 * Wind River Systems
41 *
42 * Ported to OpenBSD by Peter Valchev <pvalchev@openbsd.org>
43 */
44
45/*
46 * The VIA Networking VT6122 is a 32bit, 33/66Mhz PCI device that
47 * combines a tri-speed ethernet MAC and PHY, with the following
48 * features:
49 *
50 *	o Jumbo frame support up to 16K
51 *	o Transmit and receive flow control
52 *	o IPv4 checksum offload
53 *	o VLAN tag insertion and stripping
54 *	o TCP large send
55 *	o 64-bit multicast hash table filter
56 *	o 64 entry CAM filter
57 *	o 16K RX FIFO and 48K TX FIFO memory
58 *	o Interrupt moderation
59 *
60 * The VT6122 supports up to four transmit DMA queues. The descriptors
61 * in the transmit ring can address up to 7 data fragments; frames which
62 * span more than 7 data buffers must be coalesced, but in general the
63 * BSD TCP/IP stack rarely generates frames more than 2 or 3 fragments
64 * long. The receive descriptors address only a single buffer.
65 *
66 * There are two peculiar design issues with the VT6122. One is that
67 * receive data buffers must be aligned on a 32-bit boundary. This is
68 * not a problem where the VT6122 is used as a LOM device in x86-based
69 * systems, but on architectures that generate unaligned access traps, we
70 * have to do some copying.
71 *
72 * The other issue has to do with the way 64-bit addresses are handled.
73 * The DMA descriptors only allow you to specify 48 bits of addressing
74 * information. The remaining 16 bits are specified using one of the
75 * I/O registers. If you only have a 32-bit system, then this isn't
76 * an issue, but if you have a 64-bit system and more than 4GB of
77 * memory, you must have to make sure your network data buffers reside
78 * in the same 48-bit 'segment.'
79 *
80 * Special thanks to Ryan Fu at VIA Networking for providing documentation
81 * and sample NICs for testing.
82 */
83
84#include "bpfilter.h"
85#include "vlan.h"
86
87#include <sys/param.h>
88#include <sys/endian.h>
89#include <sys/systm.h>
90#include <sys/sockio.h>
91#include <sys/mbuf.h>
92#include <sys/malloc.h>
93#include <sys/kernel.h>
94#include <sys/device.h>
95#include <sys/socket.h>
96
97#include <net/if.h>
98#include <net/if_dl.h>
99#include <net/if_media.h>
100
101#ifdef INET
102#include <netinet/in.h>
103#include <netinet/in_systm.h>
104#include <netinet/in_var.h>
105#include <netinet/ip.h>
106#include <netinet/if_ether.h>
107#endif
108
109#if NVLAN > 0
110#include <net/if_types.h>
111#include <net/if_vlan_var.h>
112#endif
113
114#if NBPFILTER > 0
115#include <net/bpf.h>
116#endif
117
118#include <dev/mii/mii.h>
119#include <dev/mii/miivar.h>
120
121#include <dev/pci/pcireg.h>
122#include <dev/pci/pcivar.h>
123#include <dev/pci/pcidevs.h>
124
125#include <dev/pci/if_vgereg.h>
126#include <dev/pci/if_vgevar.h>
127
128int vge_probe		(struct device *, void *, void *);
129void vge_attach		(struct device *, struct device *, void *);
130
131int vge_encap		(struct vge_softc *, struct mbuf *, int);
132
133int vge_allocmem		(struct vge_softc *);
134int vge_newbuf		(struct vge_softc *, int, struct mbuf *);
135int vge_rx_list_init	(struct vge_softc *);
136int vge_tx_list_init	(struct vge_softc *);
137void vge_rxeof		(struct vge_softc *);
138void vge_txeof		(struct vge_softc *);
139int vge_intr		(void *);
140void vge_tick		(void *);
141void vge_start		(struct ifnet *);
142int vge_ioctl		(struct ifnet *, u_long, caddr_t);
143int vge_init		(struct ifnet *);
144void vge_stop		(struct vge_softc *);
145void vge_watchdog	(struct ifnet *);
146int vge_ifmedia_upd	(struct ifnet *);
147void vge_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
148
149void vge_eeprom_getword	(struct vge_softc *, int, u_int16_t *);
150void vge_read_eeprom	(struct vge_softc *, caddr_t, int, int, int);
151
152void vge_miipoll_start	(struct vge_softc *);
153void vge_miipoll_stop	(struct vge_softc *);
154int vge_miibus_readreg	(struct device *, int, int);
155void vge_miibus_writereg (struct device *, int, int, int);
156void vge_miibus_statchg	(struct device *);
157
158void vge_cam_clear	(struct vge_softc *);
159int vge_cam_set		(struct vge_softc *, uint8_t *);
160void vge_setmulti	(struct vge_softc *);
161void vge_reset		(struct vge_softc *);
162
163struct cfattach vge_ca = {
164	sizeof(struct vge_softc), vge_probe, vge_attach
165};
166
167struct cfdriver vge_cd = {
168	0, "vge", DV_IFNET
169};
170
171#define VGE_PCI_LOIO             0x10
172#define VGE_PCI_LOMEM            0x14
173
174int vge_debug = 0;
175#define DPRINTF(x)	if (vge_debug) printf x
176#define DPRINTFN(n, x)	if (vge_debug >= (n)) printf x
177
178const struct pci_matchid vge_devices[] = {
179	{ PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT612x },
180};
181
182/*
183 * Read a word of data stored in the EEPROM at address 'addr.'
184 */
185void
186vge_eeprom_getword(struct vge_softc *sc, int addr, u_int16_t *dest)
187{
188	register int		i;
189	u_int16_t		word = 0;
190
191	/*
192	 * Enter EEPROM embedded programming mode. In order to
193	 * access the EEPROM at all, we first have to set the
194	 * EELOAD bit in the CHIPCFG2 register.
195	 */
196	CSR_SETBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
197	CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
198
199	/* Select the address of the word we want to read */
200	CSR_WRITE_1(sc, VGE_EEADDR, addr);
201
202	/* Issue read command */
203	CSR_SETBIT_1(sc, VGE_EECMD, VGE_EECMD_ERD);
204
205	/* Wait for the done bit to be set. */
206	for (i = 0; i < VGE_TIMEOUT; i++) {
207		if (CSR_READ_1(sc, VGE_EECMD) & VGE_EECMD_EDONE)
208			break;
209	}
210
211	if (i == VGE_TIMEOUT) {
212		printf("%s: EEPROM read timed out\n", sc->vge_dev.dv_xname);
213		*dest = 0;
214		return;
215	}
216
217	/* Read the result */
218	word = CSR_READ_2(sc, VGE_EERDDAT);
219
220	/* Turn off EEPROM access mode. */
221	CSR_CLRBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
222	CSR_CLRBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
223
224	*dest = word;
225}
226
227/*
228 * Read a sequence of words from the EEPROM.
229 */
230void
231vge_read_eeprom(struct vge_softc *sc, caddr_t dest, int off, int cnt,
232    int swap)
233{
234	int			i;
235	u_int16_t		word = 0, *ptr;
236
237	for (i = 0; i < cnt; i++) {
238		vge_eeprom_getword(sc, off + i, &word);
239		ptr = (u_int16_t *)(dest + (i * 2));
240		if (swap)
241			*ptr = ntohs(word);
242		else
243			*ptr = word;
244	}
245}
246
247void
248vge_miipoll_stop(struct vge_softc *sc)
249{
250	int			i;
251
252	CSR_WRITE_1(sc, VGE_MIICMD, 0);
253
254	for (i = 0; i < VGE_TIMEOUT; i++) {
255		DELAY(1);
256		if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
257			break;
258	}
259
260	if (i == VGE_TIMEOUT)
261		printf("%s: failed to idle MII autopoll\n", sc->vge_dev.dv_xname);
262}
263
264void
265vge_miipoll_start(struct vge_softc *sc)
266{
267	int			i;
268
269	/* First, make sure we're idle. */
270
271	CSR_WRITE_1(sc, VGE_MIICMD, 0);
272	CSR_WRITE_1(sc, VGE_MIIADDR, VGE_MIIADDR_SWMPL);
273
274	for (i = 0; i < VGE_TIMEOUT; i++) {
275		DELAY(1);
276		if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
277			break;
278	}
279
280	if (i == VGE_TIMEOUT) {
281		printf("%s: failed to idle MII autopoll\n", sc->vge_dev.dv_xname);
282		return;
283	}
284
285	/* Now enable auto poll mode. */
286
287	CSR_WRITE_1(sc, VGE_MIICMD, VGE_MIICMD_MAUTO);
288
289	/* And make sure it started. */
290
291	for (i = 0; i < VGE_TIMEOUT; i++) {
292		DELAY(1);
293		if ((CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL) == 0)
294			break;
295	}
296
297	if (i == VGE_TIMEOUT)
298		printf("%s: failed to start MII autopoll\n", sc->vge_dev.dv_xname);
299}
300
301int
302vge_miibus_readreg(struct device *dev, int phy, int reg)
303{
304	struct vge_softc	*sc = (struct vge_softc *)dev;
305	int			i, s;
306	u_int16_t		rval = 0;
307
308	if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F))
309		return(0);
310
311	s = splimp();
312
313	vge_miipoll_stop(sc);
314
315	/* Specify the register we want to read. */
316	CSR_WRITE_1(sc, VGE_MIIADDR, reg);
317
318	/* Issue read command. */
319	CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_RCMD);
320
321	/* Wait for the read command bit to self-clear. */
322	for (i = 0; i < VGE_TIMEOUT; i++) {
323		DELAY(1);
324		if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_RCMD) == 0)
325			break;
326	}
327
328	if (i == VGE_TIMEOUT)
329		printf("%s: MII read timed out\n", sc->vge_dev.dv_xname);
330	else
331		rval = CSR_READ_2(sc, VGE_MIIDATA);
332
333	vge_miipoll_start(sc);
334	splx(s);
335
336	return (rval);
337}
338
339void
340vge_miibus_writereg(struct device *dev, int phy, int reg, int data)
341{
342	struct vge_softc	*sc = (struct vge_softc *)dev;
343	int			i, s;
344
345	if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F))
346		return;
347
348	s = splimp();
349	vge_miipoll_stop(sc);
350
351	/* Specify the register we want to write. */
352	CSR_WRITE_1(sc, VGE_MIIADDR, reg);
353
354	/* Specify the data we want to write. */
355	CSR_WRITE_2(sc, VGE_MIIDATA, data);
356
357	/* Issue write command. */
358	CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_WCMD);
359
360	/* Wait for the write command bit to self-clear. */
361	for (i = 0; i < VGE_TIMEOUT; i++) {
362		DELAY(1);
363		if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_WCMD) == 0)
364			break;
365	}
366
367	if (i == VGE_TIMEOUT) {
368		printf("%s: MII write timed out\n", sc->vge_dev.dv_xname);
369	}
370
371	vge_miipoll_start(sc);
372	splx(s);
373}
374
375void
376vge_cam_clear(struct vge_softc *sc)
377{
378	int			i;
379
380	/*
381	 * Turn off all the mask bits. This tells the chip
382	 * that none of the entries in the CAM filter are valid.
383	 * desired entries will be enabled as we fill the filter in.
384	 */
385
386	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
387	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
388	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE);
389	for (i = 0; i < 8; i++)
390		CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
391
392	/* Clear the VLAN filter too. */
393
394	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|VGE_CAMADDR_AVSEL|0);
395	for (i = 0; i < 8; i++)
396		CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
397
398	CSR_WRITE_1(sc, VGE_CAMADDR, 0);
399	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
400	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
401
402	sc->vge_camidx = 0;
403}
404
405int
406vge_cam_set(struct vge_softc *sc, uint8_t *addr)
407{
408	int			i, error = 0;
409
410	if (sc->vge_camidx == VGE_CAM_MAXADDRS)
411		return(ENOSPC);
412
413	/* Select the CAM data page. */
414	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
415	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMDATA);
416
417	/* Set the filter entry we want to update and enable writing. */
418	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|sc->vge_camidx);
419
420	/* Write the address to the CAM registers */
421	for (i = 0; i < ETHER_ADDR_LEN; i++)
422		CSR_WRITE_1(sc, VGE_CAM0 + i, addr[i]);
423
424	/* Issue a write command. */
425	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_WRITE);
426
427	/* Wake for it to clear. */
428	for (i = 0; i < VGE_TIMEOUT; i++) {
429		DELAY(1);
430		if ((CSR_READ_1(sc, VGE_CAMCTL) & VGE_CAMCTL_WRITE) == 0)
431			break;
432	}
433
434	if (i == VGE_TIMEOUT) {
435		printf("%s: setting CAM filter failed\n", sc->vge_dev.dv_xname);
436		error = EIO;
437		goto fail;
438	}
439
440	/* Select the CAM mask page. */
441	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
442	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
443
444	/* Set the mask bit that enables this filter. */
445	CSR_SETBIT_1(sc, VGE_CAM0 + (sc->vge_camidx/8),
446	    1<<(sc->vge_camidx & 7));
447
448	sc->vge_camidx++;
449
450fail:
451	/* Turn off access to CAM. */
452	CSR_WRITE_1(sc, VGE_CAMADDR, 0);
453	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
454	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
455
456	return (error);
457}
458
459/*
460 * Program the multicast filter. We use the 64-entry CAM filter
461 * for perfect filtering. If there's more than 64 multicast addresses,
462 * we use the hash filter instead.
463 */
464void
465vge_setmulti(struct vge_softc *sc)
466{
467	struct arpcom		*ac = &sc->arpcom;
468	struct ifnet		*ifp = &ac->ac_if;
469	struct ether_multi	*enm;
470	struct ether_multistep	step;
471	u_int32_t		h = 0, hashes[2] = { 0, 0 };
472
473	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
474		CSR_WRITE_4(sc, VGE_MAR0, 0xFFFFFFFF);
475		CSR_WRITE_4(sc, VGE_MAR1, 0xFFFFFFFF);
476		return;
477	}
478	/* reset existing hash bits */
479	CSR_WRITE_4(sc, VGE_MAR0, 0);
480	CSR_WRITE_4(sc, VGE_MAR1, 0);
481
482	/* program new ones */
483	ETHER_FIRST_MULTI(step, ac, enm);
484	while (enm != NULL) {
485		if (bcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN))
486			ifp->if_flags |= IFF_ALLMULTI;
487		h = (ether_crc32_be(enm->enm_addrlo,
488		    ETHER_ADDR_LEN) >> 26) & 0x0000003F;
489		if (h < 32)
490			hashes[0] |= (1 << h);
491		else
492			hashes[1] |= (1 << (h - 32));
493		ETHER_NEXT_MULTI(step, enm);
494	}
495	CSR_WRITE_4(sc, VGE_MAR0, hashes[0]);
496	CSR_WRITE_4(sc, VGE_MAR1, hashes[1]);
497
498#ifdef CAM_FILTERING
499	struct ifnet		*ifp;
500	u_int32_t		h, hashes[2] = { 0, 0 };
501	int			mcnt = 0;
502	struct arpcom		*ac = &sc->arpcom;
503	struct ether_multi	*enm;
504	struct ether_multistep	step;
505
506	ifp = &sc->arpcom.ac_if;
507
508	/* First, zot all the multicast entries. */
509	vge_cam_clear(sc);
510	CSR_WRITE_4(sc, VGE_MAR0, 0);
511	CSR_WRITE_4(sc, VGE_MAR1, 0);
512
513	/*
514	 * If the user wants allmulti or promisc mode, enable reception
515	 * of all multicast frames.
516	 */
517	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
518		CSR_WRITE_4(sc, VGE_MAR0, 0xFFFFFFFF);
519		CSR_WRITE_4(sc, VGE_MAR1, 0xFFFFFFFF);
520		return;
521	}
522
523	ETHER_FIRST_MULTI(step, ac, enm);
524	while (enm != NULL) {
525		if (bcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
526			ifp->if_flags |= IFF_ALLMULTI;
527			mcnt = MAX_NUM_MULTICAST_ADDRESSES;
528		}
529		if (mcnt == MAX_NUM_MULTICAST_ADDRESSES)
530			break;
531
532		h = (ether_crc32_be(enm->enm_addrlo,
533		    ETHER_ADDR_LEN) >> 26) & 0x0000003F;
534		if (h < 32)
535			hashes[0] |= (1 << h);
536		else
537			hashes[1] |= (1 << (h - 32));
538		mcnt++;
539		ETHER_NEXT_MULTI(step, enm);
540	}
541
542	CSR_WRITE_4(sc, VGE_MAR0, hashes[0]);
543	CSR_WRITE_4(sc, VGE_MAR1, hashes[1]);
544#endif
545}
546
547void
548vge_reset(struct vge_softc *sc)
549{
550	register int		i;
551
552	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_SOFTRESET);
553
554	for (i = 0; i < VGE_TIMEOUT; i++) {
555		DELAY(5);
556		if ((CSR_READ_1(sc, VGE_CRS1) & VGE_CR1_SOFTRESET) == 0)
557			break;
558	}
559
560	if (i == VGE_TIMEOUT) {
561		printf("%s: soft reset timed out", sc->vge_dev.dv_xname);
562		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_STOP_FORCE);
563		DELAY(2000);
564	}
565
566	DELAY(5000);
567
568	CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_RELOAD);
569
570	for (i = 0; i < VGE_TIMEOUT; i++) {
571		DELAY(5);
572		if ((CSR_READ_1(sc, VGE_EECSR) & VGE_EECSR_RELOAD) == 0)
573			break;
574	}
575
576	if (i == VGE_TIMEOUT) {
577		printf("%s: EEPROM reload timed out\n", sc->vge_dev.dv_xname);
578		return;
579	}
580
581	CSR_CLRBIT_1(sc, VGE_CHIPCFG0, VGE_CHIPCFG0_PACPI);
582}
583
584/*
585 * Probe for a VIA gigabit chip. Check the PCI vendor and device
586 * IDs against our list and return a device name if we find a match.
587 */
588int
589vge_probe(struct device *dev, void *match, void *aux)
590{
591	return (pci_matchbyid((struct pci_attach_args *)aux, vge_devices,
592	    sizeof(vge_devices)/sizeof(vge_devices[0])));
593}
594
595/*
596 * Allocate memory for RX/TX rings
597 */
598int
599vge_allocmem(struct vge_softc *sc)
600{
601	int			nseg, rseg;
602	int			i, error;
603
604	nseg = 32;
605
606	/* Allocate DMA'able memory for the TX ring */
607
608	error = bus_dmamap_create(sc->sc_dmat, VGE_TX_LIST_SZ, 1,
609	    VGE_TX_LIST_SZ, 0, BUS_DMA_ALLOCNOW,
610	    &sc->vge_ldata.vge_tx_list_map);
611	if (error)
612		return (ENOMEM);
613	error = bus_dmamem_alloc(sc->sc_dmat, VGE_TX_LIST_SZ,
614	    ETHER_ALIGN, 0,
615	    &sc->vge_ldata.vge_tx_listseg, 1, &rseg, BUS_DMA_NOWAIT);
616	if (error) {
617		printf("%s: can't alloc TX list\n", sc->vge_dev.dv_xname);
618		return (ENOMEM);
619	}
620
621	/* Load the map for the TX ring. */
622	error = bus_dmamem_map(sc->sc_dmat, &sc->vge_ldata.vge_tx_listseg,
623	     1, VGE_TX_LIST_SZ,
624	     (caddr_t *)&sc->vge_ldata.vge_tx_list, BUS_DMA_NOWAIT);
625	memset(sc->vge_ldata.vge_tx_list, 0, VGE_TX_LIST_SZ);
626	if (error) {
627		printf("%s: can't map TX dma buffers\n",
628		    sc->vge_dev.dv_xname);
629		bus_dmamem_free(sc->sc_dmat, &sc->vge_ldata.vge_tx_listseg, rseg);
630		return (ENOMEM);
631	}
632
633	error = bus_dmamap_load(sc->sc_dmat, sc->vge_ldata.vge_tx_list_map,
634	    sc->vge_ldata.vge_tx_list, VGE_TX_LIST_SZ, NULL, BUS_DMA_NOWAIT);
635	if (error) {
636		printf("%s: can't load TX dma map\n", sc->vge_dev.dv_xname);
637		bus_dmamap_destroy(sc->sc_dmat, sc->vge_ldata.vge_tx_list_map);
638		bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->vge_ldata.vge_tx_list,
639		    VGE_TX_LIST_SZ);
640		bus_dmamem_free(sc->sc_dmat, &sc->vge_ldata.vge_tx_listseg, rseg);
641		return (ENOMEM);
642	}
643
644	/* Create DMA maps for TX buffers */
645
646	for (i = 0; i < VGE_TX_DESC_CNT; i++) {
647		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES * nseg, nseg,
648		    MCLBYTES, 0, BUS_DMA_ALLOCNOW,
649		    &sc->vge_ldata.vge_tx_dmamap[i]);
650		if (error) {
651			printf("%s: can't create DMA map for TX\n",
652			    sc->vge_dev.dv_xname);
653			return (ENOMEM);
654		}
655	}
656
657	/* Allocate DMA'able memory for the RX ring */
658
659	error = bus_dmamap_create(sc->sc_dmat, VGE_RX_LIST_SZ, 1,
660	    VGE_RX_LIST_SZ, 0, BUS_DMA_ALLOCNOW,
661	    &sc->vge_ldata.vge_rx_list_map);
662	if (error)
663		return (ENOMEM);
664	error = bus_dmamem_alloc(sc->sc_dmat, VGE_RX_LIST_SZ, VGE_RING_ALIGN,
665	    0, &sc->vge_ldata.vge_rx_listseg, 1, &rseg, BUS_DMA_NOWAIT);
666	if (error) {
667		printf("%s: can't alloc RX list\n", sc->vge_dev.dv_xname);
668		return (ENOMEM);
669	}
670
671	/* Load the map for the RX ring. */
672
673	error = bus_dmamem_map(sc->sc_dmat, &sc->vge_ldata.vge_rx_listseg,
674	     1, VGE_RX_LIST_SZ,
675	     (caddr_t *)&sc->vge_ldata.vge_rx_list, BUS_DMA_NOWAIT);
676	memset(sc->vge_ldata.vge_rx_list, 0, VGE_RX_LIST_SZ);
677	if (error) {
678		printf("%s: can't map RX dma buffers\n",
679		    sc->vge_dev.dv_xname);
680		bus_dmamem_free(sc->sc_dmat, &sc->vge_ldata.vge_rx_listseg, rseg);
681		return (ENOMEM);
682	}
683	error = bus_dmamap_load(sc->sc_dmat, sc->vge_ldata.vge_rx_list_map,
684	    sc->vge_ldata.vge_rx_list, VGE_RX_LIST_SZ, NULL, BUS_DMA_NOWAIT);
685	if (error) {
686		printf("%s: can't load RX dma map\n", sc->vge_dev.dv_xname);
687		bus_dmamap_destroy(sc->sc_dmat, sc->vge_ldata.vge_rx_list_map);
688		bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->vge_ldata.vge_rx_list,
689		    VGE_RX_LIST_SZ);
690		bus_dmamem_free(sc->sc_dmat, &sc->vge_ldata.vge_rx_listseg, rseg);
691		return (ENOMEM);
692	}
693
694	/* Create DMA maps for RX buffers */
695
696	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
697		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES * nseg, nseg,
698		    MCLBYTES, 0, BUS_DMA_ALLOCNOW,
699		    &sc->vge_ldata.vge_rx_dmamap[i]);
700		if (error) {
701			printf("%s: can't create DMA map for RX\n",
702			    sc->vge_dev.dv_xname);
703			return (ENOMEM);
704		}
705	}
706
707	return (0);
708}
709
710/*
711 * Attach the interface. Allocate softc structures, do ifmedia
712 * setup and ethernet/BPF attach.
713 */
714void
715vge_attach(struct device *parent, struct device *self, void *aux)
716{
717	u_char			eaddr[ETHER_ADDR_LEN];
718	u_int16_t		as[3];
719	struct vge_softc	*sc = (struct vge_softc *)self;
720	struct pci_attach_args	*pa = aux;
721	pci_chipset_tag_t	pc = pa->pa_pc;
722	pci_intr_handle_t	ih;
723	const char		*intrstr = NULL;
724	struct ifnet		*ifp;
725	int			error = 0, i;
726	bus_size_t		iosize;
727	pcireg_t		command;
728
729	/*
730	 * Map control/status registers.
731	 */
732	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
733	command |= PCI_COMMAND_IO_ENABLE | PCI_COMMAND_MEM_ENABLE |
734	    PCI_COMMAND_MASTER_ENABLE;
735	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
736	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
737
738	if ((command & (PCI_COMMAND_IO_ENABLE | PCI_COMMAND_MEM_ENABLE)) == 0) {
739		printf(": neither i/o nor mem enabled\n");
740		return;
741	}
742
743	if (command & PCI_COMMAND_MEM_ENABLE) {
744		if (pci_mapreg_map(pa, VGE_PCI_LOMEM, PCI_MAPREG_TYPE_MEM, 0,
745		    &sc->vge_btag, &sc->vge_bhandle, NULL, &iosize, 0)) {
746			printf(": can't map mem space\n");
747			return;
748		}
749	} else {
750		if (pci_mapreg_map(pa, VGE_PCI_LOIO, PCI_MAPREG_TYPE_IO, 0,
751		    &sc->vge_btag, &sc->vge_bhandle, NULL, &iosize, 0)) {
752			printf(": can't map i/o space\n");
753			return;
754		}
755	}
756
757	/* Allocate interrupt */
758	if (pci_intr_map(pa, &ih)) {
759		printf(": couldn't map interrupt\n");
760		return;
761	}
762	intrstr = pci_intr_string(pc, ih);
763	sc->vge_intrhand = pci_intr_establish(pc, ih, IPL_NET, vge_intr, sc,
764	    sc->vge_dev.dv_xname);
765	if (sc->vge_intrhand == NULL) {
766		printf(": couldn't establish interrupt");
767		if (intrstr != NULL)
768			printf(" at %s", intrstr);
769		return;
770	}
771	printf(": %s", intrstr);
772
773	sc->sc_dmat = pa->pa_dmat;
774
775	/* Reset the adapter. */
776	vge_reset(sc);
777
778	/*
779	 * Get station address from the EEPROM.
780	 */
781	vge_read_eeprom(sc, (caddr_t)as, VGE_EE_EADDR, 3, 0);
782	for (i = 0; i < 3; i++) {
783		eaddr[(i * 2) + 0] = as[i] & 0xff;
784		eaddr[(i * 2) + 1] = as[i] >> 8;
785	}
786
787	bcopy(eaddr, (char *)&sc->arpcom.ac_enaddr, ETHER_ADDR_LEN);
788
789	printf(", address %s\n",
790	    ether_sprintf(sc->arpcom.ac_enaddr));
791
792	error = vge_allocmem(sc);
793
794	if (error)
795		return;
796
797	ifp = &sc->arpcom.ac_if;
798	ifp->if_softc = sc;
799	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
800	ifp->if_ioctl = vge_ioctl;
801	ifp->if_start = vge_start;
802#ifdef VGE_CSUM_OFFLOAD
803	ifp->if_capabilities = IFCAP_VLAN_MTU;
804	ifp->if_hwassist = VGE_CSUM_FEATURES;
805	ifp->if_capabilities |= IFCAP_HWCSUM|IFCAP_VLAN_HWTAGGING;
806#endif
807	ifp->if_watchdog = vge_watchdog;
808	ifp->if_init = vge_init;
809	ifp->if_baudrate = 1000000000;
810	IFQ_SET_MAXLEN(&ifp->if_snd, VGE_IFQ_MAXLEN);
811	IFQ_SET_READY(&ifp->if_snd);
812
813	/* Set interface name */
814	strlcpy(ifp->if_xname, sc->vge_dev.dv_xname, IFNAMSIZ);
815
816	/* Do MII setup */
817	sc->sc_mii.mii_ifp = ifp;
818	sc->sc_mii.mii_readreg = vge_miibus_readreg;
819	sc->sc_mii.mii_writereg = vge_miibus_writereg;
820	sc->sc_mii.mii_statchg = vge_miibus_statchg;
821	ifmedia_init(&sc->sc_mii.mii_media, 0,
822	    vge_ifmedia_upd, vge_ifmedia_sts);
823	mii_attach(self, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
824	    MII_OFFSET_ANY, 0);
825	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
826		printf("%s: no PHY found!\n", sc->vge_dev.dv_xname);
827		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL,
828		    0, NULL);
829		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL);
830	} else
831		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
832
833	timeout_set(&sc->timer_handle, vge_tick, sc);
834
835	/*
836	 * Call MI attach routine.
837	 */
838	if_attach(ifp);
839	ether_ifattach(ifp);
840}
841
842int
843vge_newbuf(struct vge_softc *sc, int idx, struct mbuf *m)
844{
845	struct mbuf		*m_new = NULL;
846	struct vge_rx_desc	*r;
847	bus_dmamap_t		rxmap = sc->vge_ldata.vge_rx_dmamap[idx];
848	int			i;
849
850	if (m == NULL) {
851		/* Allocate a new mbuf */
852		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
853		if (m_new == NULL)
854			return (ENOBUFS);
855
856		/* Allocate a cluster */
857		MCLGET(m_new, M_DONTWAIT);
858		if (!(m_new->m_flags & M_EXT)) {
859			m_freem(m_new);
860			return (ENOBUFS);
861		}
862	} else
863		m_new->m_data = m_new->m_ext.ext_buf;
864
865	m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
866	/* Fix-up alignment so payload is doubleword-aligned */
867	/* XXX m_adj(m_new, ETHER_ALIGN); */
868
869	if (bus_dmamap_load_mbuf(sc->sc_dmat, rxmap, m_new, BUS_DMA_NOWAIT))
870		return (ENOBUFS);
871
872	if (rxmap->dm_nsegs > 1)
873		goto out;
874
875	/* Map the segments into RX descriptors */
876	r = &sc->vge_ldata.vge_rx_list[idx];
877
878	if (letoh32(r->vge_sts) & VGE_RDSTS_OWN) {
879		printf("%s: tried to map a busy RX descriptor\n",
880		    sc->vge_dev.dv_xname);
881		goto out;
882	}
883	r->vge_buflen = htole16(VGE_BUFLEN(rxmap->dm_segs[0].ds_len) | VGE_RXDESC_I);
884	r->vge_addrlo = htole32(VGE_ADDR_LO(rxmap->dm_segs[0].ds_addr));
885	r->vge_addrhi = htole16(VGE_ADDR_HI(rxmap->dm_segs[0].ds_addr) & 0xFFFF);
886	r->vge_sts = htole32(0);
887	r->vge_ctl = htole32(0);
888
889	/*
890	 * Note: the manual fails to document the fact that for
891	 * proper operation, the driver needs to replenish the RX
892	 * DMA ring 4 descriptors at a time (rather than one at a
893	 * time, like most chips). We can allocate the new buffers
894	 * but we should not set the OWN bits until we're ready
895	 * to hand back 4 of them in one shot.
896	 */
897#define VGE_RXCHUNK 4
898	sc->vge_rx_consumed++;
899	if (sc->vge_rx_consumed == VGE_RXCHUNK) {
900		for (i = idx; i != idx - sc->vge_rx_consumed; i--)
901			sc->vge_ldata.vge_rx_list[i].vge_sts |=
902			    htole32(VGE_RDSTS_OWN);
903		sc->vge_rx_consumed = 0;
904	}
905
906	sc->vge_ldata.vge_rx_mbuf[idx] = m_new;
907
908	bus_dmamap_sync(sc->sc_dmat, rxmap, 0,
909	    rxmap->dm_mapsize, BUS_DMASYNC_PREREAD);
910
911	return (0);
912out:
913	DPRINTF(("vge_newbuf: out of memory\n"));
914	if (m_new != NULL)
915		m_freem(m_new);
916	return (ENOMEM);
917}
918
919int
920vge_tx_list_init(struct vge_softc *sc)
921{
922	bzero ((char *)sc->vge_ldata.vge_tx_list, VGE_TX_LIST_SZ);
923	bzero ((char *)&sc->vge_ldata.vge_tx_mbuf,
924	    (VGE_TX_DESC_CNT * sizeof(struct mbuf *)));
925
926	bus_dmamap_sync(sc->sc_dmat,
927	    sc->vge_ldata.vge_tx_list_map, 0,
928	    sc->vge_ldata.vge_tx_list_map->dm_mapsize,
929	    BUS_DMASYNC_PREWRITE);
930	sc->vge_ldata.vge_tx_prodidx = 0;
931	sc->vge_ldata.vge_tx_considx = 0;
932	sc->vge_ldata.vge_tx_free = VGE_TX_DESC_CNT;
933
934	return (0);
935}
936
937/* Init RX descriptors and allocate mbufs with vge_newbuf()
938 * A ring is used, and last descriptor points to first. */
939int
940vge_rx_list_init(struct vge_softc *sc)
941{
942	int			i;
943
944	bzero ((char *)sc->vge_ldata.vge_rx_list, VGE_RX_LIST_SZ);
945	bzero ((char *)&sc->vge_ldata.vge_rx_mbuf,
946	    (VGE_RX_DESC_CNT * sizeof(struct mbuf *)));
947
948	sc->vge_rx_consumed = 0;
949
950	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
951		if (vge_newbuf(sc, i, NULL) == ENOBUFS)
952			return (ENOBUFS);
953	}
954
955	/* Flush the RX descriptors */
956
957	bus_dmamap_sync(sc->sc_dmat,
958	    sc->vge_ldata.vge_rx_list_map,
959	    0, sc->vge_ldata.vge_rx_list_map->dm_mapsize,
960	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
961
962	sc->vge_ldata.vge_rx_prodidx = 0;
963	sc->vge_rx_consumed = 0;
964	sc->vge_head = sc->vge_tail = NULL;
965
966	return (0);
967}
968
969/*
970 * RX handler. We support the reception of jumbo frames that have
971 * been fragmented across multiple 2K mbuf cluster buffers.
972 */
973void
974vge_rxeof(struct vge_softc *sc)
975{
976	struct mbuf		*m;
977	struct ifnet		*ifp;
978	int			i, total_len;
979	int			lim = 0;
980	struct vge_rx_desc	*cur_rx;
981	u_int32_t		rxstat, rxctl;
982
983	ifp = &sc->arpcom.ac_if;
984	i = sc->vge_ldata.vge_rx_prodidx;
985
986	/* Invalidate the descriptor memory */
987
988	bus_dmamap_sync(sc->sc_dmat,
989	    sc->vge_ldata.vge_rx_list_map,
990	    0, sc->vge_ldata.vge_rx_list_map->dm_mapsize,
991	    BUS_DMASYNC_POSTREAD);
992
993	while (!VGE_OWN(&sc->vge_ldata.vge_rx_list[i])) {
994		struct mbuf *m0 = NULL;
995
996		cur_rx = &sc->vge_ldata.vge_rx_list[i];
997		m = sc->vge_ldata.vge_rx_mbuf[i];
998		total_len = VGE_RXBYTES(cur_rx);
999		rxstat = letoh32(cur_rx->vge_sts);
1000		rxctl = letoh32(cur_rx->vge_ctl);
1001
1002		/* Invalidate the RX mbuf and unload its map */
1003
1004		bus_dmamap_sync(sc->sc_dmat,
1005		    sc->vge_ldata.vge_rx_dmamap[i],
1006		    0, sc->vge_ldata.vge_rx_dmamap[i]->dm_mapsize,
1007		    BUS_DMASYNC_POSTWRITE);
1008		bus_dmamap_unload(sc->sc_dmat,
1009		    sc->vge_ldata.vge_rx_dmamap[i]);
1010
1011		/*
1012		 * If the 'start of frame' bit is set, this indicates
1013		 * either the first fragment in a multi-fragment receive,
1014		 * or an intermediate fragment. Either way, we want to
1015		 * accumulate the buffers.
1016		 */
1017		if (rxstat & VGE_RXPKT_SOF) {
1018			DPRINTF(("vge_rxeof: SOF\n"));
1019			m->m_len = MCLBYTES;
1020			if (sc->vge_head == NULL)
1021				sc->vge_head = sc->vge_tail = m;
1022			else {
1023				m->m_flags &= ~M_PKTHDR;
1024				sc->vge_tail->m_next = m;
1025				sc->vge_tail = m;
1026			}
1027			vge_newbuf(sc, i, NULL);
1028			VGE_RX_DESC_INC(i);
1029			continue;
1030		}
1031
1032		/*
1033		 * Bad/error frames will have the RXOK bit cleared.
1034		 * However, there's one error case we want to allow:
1035		 * if a VLAN tagged frame arrives and the chip can't
1036		 * match it against the CAM filter, it considers this
1037		 * a 'VLAN CAM filter miss' and clears the 'RXOK' bit.
1038		 * We don't want to drop the frame though: our VLAN
1039		 * filtering is done in software.
1040		 */
1041		if (!(rxstat & VGE_RDSTS_RXOK) && !(rxstat & VGE_RDSTS_VIDM)
1042		    && !(rxstat & VGE_RDSTS_CSUMERR)) {
1043			ifp->if_ierrors++;
1044			/*
1045			 * If this is part of a multi-fragment packet,
1046			 * discard all the pieces.
1047			 */
1048			if (sc->vge_head != NULL) {
1049				m_freem(sc->vge_head);
1050				sc->vge_head = sc->vge_tail = NULL;
1051			}
1052			vge_newbuf(sc, i, m);
1053			VGE_RX_DESC_INC(i);
1054			continue;
1055		}
1056
1057		/*
1058		 * If allocating a replacement mbuf fails,
1059		 * reload the current one.
1060		 */
1061
1062		if (vge_newbuf(sc, i, NULL) == ENOBUFS) {
1063			if (sc->vge_head != NULL) {
1064				m_freem(sc->vge_head);
1065				sc->vge_head = sc->vge_tail = NULL;
1066			}
1067
1068			m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
1069			    total_len - ETHER_CRC_LEN + ETHER_ALIGN,
1070			    0, ifp, NULL);
1071			vge_newbuf(sc, i, m);
1072			if (m0 == NULL) {
1073				ifp->if_ierrors++;
1074				continue;
1075			}
1076			m_adj(m0, ETHER_ALIGN);
1077			m = m0;
1078
1079			VGE_RX_DESC_INC(i);
1080			continue;
1081		}
1082
1083		VGE_RX_DESC_INC(i);
1084
1085		if (sc->vge_head != NULL) {
1086			m->m_len = total_len % MCLBYTES;
1087			/*
1088			 * Special case: if there's 4 bytes or less
1089			 * in this buffer, the mbuf can be discarded:
1090			 * the last 4 bytes is the CRC, which we don't
1091			 * care about anyway.
1092			 */
1093			if (m->m_len <= ETHER_CRC_LEN) {
1094				sc->vge_tail->m_len -=
1095				    (ETHER_CRC_LEN - m->m_len);
1096				m_freem(m);
1097			} else {
1098				m->m_len -= ETHER_CRC_LEN;
1099				m->m_flags &= ~M_PKTHDR;
1100				sc->vge_tail->m_next = m;
1101			}
1102			m = sc->vge_head;
1103			sc->vge_head = sc->vge_tail = NULL;
1104			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1105		} else
1106			m->m_pkthdr.len = m->m_len =
1107			    (total_len - ETHER_CRC_LEN);
1108
1109#ifdef __STRICT_ALIGNMENT
1110		bcopy(m->m_data, m->m_data + ETHER_ALIGN,
1111		    total_len);
1112		m->m_data += ETHER_ALIGN;
1113#endif
1114		ifp->if_ipackets++;
1115		m->m_pkthdr.rcvif = ifp;
1116
1117		/* Do RX checksumming if enabled */
1118#ifdef VGE_CSUM_OFFLOAD
1119		if (ifp->if_capenable & IFCAP_RXCSUM) {
1120
1121			/* Check IP header checksum */
1122			if (rxctl & VGE_RDCTL_IPPKT)
1123				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1124			if (rxctl & VGE_RDCTL_IPCSUMOK)
1125				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1126
1127			/* Check TCP/UDP checksum */
1128			if (rxctl & (VGE_RDCTL_TCPPKT|VGE_RDCTL_UDPPKT) &&
1129			    rxctl & VGE_RDCTL_PROTOCSUMOK) {
1130				m->m_pkthdr.csum_flags |=
1131				    CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
1132				m->m_pkthdr.csum_data = 0xffff;
1133			}
1134		}
1135
1136		if (rxstat & VGE_RDSTS_VTAG)
1137			VLAN_INPUT_TAG(ifp, m,
1138			    ntohs((rxctl & VGE_RDCTL_VLANID)), continue);
1139#endif
1140
1141#if NBPFILTER > 0
1142		if (ifp->if_bpf)
1143			bpf_mtap(ifp->if_bpf, m);
1144#endif
1145		ether_input_mbuf(ifp, m);
1146
1147		lim++;
1148		if (lim == VGE_RX_DESC_CNT)
1149			break;
1150	}
1151
1152	/* Flush the RX DMA ring */
1153	bus_dmamap_sync(sc->sc_dmat,
1154	    sc->vge_ldata.vge_rx_list_map,
1155	    0, sc->vge_ldata.vge_rx_list_map->dm_mapsize,
1156	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1157
1158	sc->vge_ldata.vge_rx_prodidx = i;
1159	CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, lim);
1160}
1161
1162void
1163vge_txeof(struct vge_softc *sc)
1164{
1165	struct ifnet		*ifp;
1166	u_int32_t		txstat;
1167	int			idx;
1168
1169	ifp = &sc->arpcom.ac_if;
1170	idx = sc->vge_ldata.vge_tx_considx;
1171
1172	/* Invalidate the TX descriptor list */
1173
1174	bus_dmamap_sync(sc->sc_dmat,
1175	    sc->vge_ldata.vge_tx_list_map,
1176	    0, sc->vge_ldata.vge_tx_list_map->dm_mapsize,
1177	    BUS_DMASYNC_POSTREAD);
1178
1179	/* Transmitted frames can be now free'd from the TX list */
1180	while (idx != sc->vge_ldata.vge_tx_prodidx) {
1181		txstat = letoh32(sc->vge_ldata.vge_tx_list[idx].vge_sts);
1182		if (txstat & VGE_TDSTS_OWN)
1183			break;
1184
1185		m_freem(sc->vge_ldata.vge_tx_mbuf[idx]);
1186		sc->vge_ldata.vge_tx_mbuf[idx] = NULL;
1187		bus_dmamap_unload(sc->sc_dmat,
1188		    sc->vge_ldata.vge_tx_dmamap[idx]);
1189		if (txstat & (VGE_TDSTS_EXCESSCOLL|VGE_TDSTS_COLL))
1190			ifp->if_collisions++;
1191		if (txstat & VGE_TDSTS_TXERR)
1192			ifp->if_oerrors++;
1193		else
1194			ifp->if_opackets++;
1195
1196		sc->vge_ldata.vge_tx_free++;
1197		VGE_TX_DESC_INC(idx);
1198	}
1199
1200	/* No changes made to the TX ring, so no flush needed */
1201
1202	if (idx != sc->vge_ldata.vge_tx_considx) {
1203		sc->vge_ldata.vge_tx_considx = idx;
1204		ifp->if_flags &= ~IFF_OACTIVE;
1205		ifp->if_timer = 0;
1206	}
1207
1208	/*
1209	 * If not all descriptors have been released reaped yet,
1210	 * reload the timer so that we will eventually get another
1211	 * interrupt that will cause us to re-enter this routine.
1212	 * This is done in case the transmitter has gone idle.
1213	 */
1214	if (sc->vge_ldata.vge_tx_free != VGE_TX_DESC_CNT)
1215		CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE);
1216}
1217
1218void
1219vge_tick(void *xsc)
1220{
1221	struct vge_softc	*sc = xsc;
1222	struct ifnet		*ifp = &sc->arpcom.ac_if;
1223	struct mii_data		*mii = &sc->sc_mii;
1224	int s;
1225
1226	s = splimp();
1227
1228	mii_tick(mii);
1229
1230	if (sc->vge_link) {
1231		if (!(mii->mii_media_status & IFM_ACTIVE))
1232			sc->vge_link = 0;
1233	} else {
1234		if (mii->mii_media_status & IFM_ACTIVE &&
1235		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1236			sc->vge_link = 1;
1237			if (!IFQ_IS_EMPTY(&ifp->if_snd))
1238				vge_start(ifp);
1239		}
1240	}
1241	timeout_add(&sc->timer_handle, hz);
1242	splx(s);
1243}
1244
1245int
1246vge_intr(void *arg)
1247{
1248	struct vge_softc	*sc = arg;
1249	struct ifnet		*ifp;
1250	u_int32_t		status;
1251	int			claimed = 0;
1252
1253	ifp = &sc->arpcom.ac_if;
1254
1255	if (!(ifp->if_flags & IFF_UP))
1256		return 0;
1257
1258	/* Disable interrupts */
1259	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
1260
1261	for (;;) {
1262		status = CSR_READ_4(sc, VGE_ISR);
1263		DPRINTFN(3, ("vge_intr: status=%#x\n", status));
1264
1265		/* If the card has gone away the read returns 0xffffffff. */
1266		if (status == 0xFFFFFFFF)
1267			break;
1268
1269		if (status) {
1270			CSR_WRITE_4(sc, VGE_ISR, status);
1271		}
1272
1273		if ((status & VGE_INTRS) == 0)
1274			break;
1275
1276		claimed = 1;
1277
1278		if (status & (VGE_ISR_RXOK|VGE_ISR_RXOK_HIPRIO))
1279			vge_rxeof(sc);
1280
1281		if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
1282			DPRINTFN(2, ("vge_intr: RX error, recovering\n"));
1283			vge_rxeof(sc);
1284			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1285			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1286		}
1287
1288		if (status & (VGE_ISR_TXOK0|VGE_ISR_TIMER0))
1289			vge_txeof(sc);
1290
1291		if (status & (VGE_ISR_TXDMA_STALL|VGE_ISR_RXDMA_STALL)) {
1292			DPRINTFN(2, ("DMA_STALL\n"));
1293			vge_init(ifp);
1294		}
1295
1296		if (status & VGE_ISR_LINKSTS) {
1297			timeout_del(&sc->timer_handle);
1298			vge_tick(sc);
1299		}
1300	}
1301
1302	/* Re-enable interrupts */
1303	CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
1304
1305	if (!IFQ_IS_EMPTY(&ifp->if_snd))
1306		vge_start(ifp);
1307
1308	return (claimed);
1309}
1310
1311/*
1312 * Encapsulate an mbuf chain into the TX ring by combining it w/
1313 * the descriptors.
1314 */
1315int
1316vge_encap(struct vge_softc *sc, struct mbuf *m_head, int idx)
1317{
1318	bus_dmamap_t		txmap;
1319	struct vge_tx_desc	*d = NULL;
1320	struct vge_tx_frag	*f;
1321	int			error, frag;
1322
1323	txmap = sc->vge_ldata.vge_tx_dmamap[idx];
1324repack:
1325	error = bus_dmamap_load_mbuf(sc->sc_dmat, txmap,
1326	    m_head, BUS_DMA_NOWAIT);
1327	if (error) {
1328		printf("%s: can't map mbuf (error %d)\n",
1329		    sc->vge_dev.dv_xname, error);
1330		return (ENOBUFS);
1331	}
1332
1333	d = &sc->vge_ldata.vge_tx_list[idx];
1334	/* If owned by chip, fail */
1335	if (letoh32(d->vge_sts) & VGE_TDSTS_OWN)
1336		return (ENOBUFS);
1337
1338	for (frag = 0; frag < txmap->dm_nsegs; frag++) {
1339		/* Check if we have used all 7 fragments. */
1340		if (frag == VGE_TX_FRAGS)
1341			break;
1342		f = &d->vge_frag[frag];
1343		f->vge_buflen = htole16(VGE_BUFLEN(txmap->dm_segs[frag].ds_len));
1344		f->vge_addrlo = htole32(VGE_ADDR_LO(txmap->dm_segs[frag].ds_addr));
1345		f->vge_addrhi = htole16(VGE_ADDR_HI(txmap->dm_segs[frag].ds_addr) & 0xFFFF);
1346	}
1347
1348	/*
1349	 * We used up all 7 fragments!  Now what we have to do is
1350	 * copy the data into a mbuf cluster and map that.
1351	 */
1352	if (frag == VGE_TX_FRAGS) {
1353		struct mbuf *m = NULL;
1354
1355		MGETHDR(m, M_DONTWAIT, MT_DATA);
1356		if (m == NULL) {
1357			m_freem(m_head);
1358			return (ENOBUFS);
1359		}
1360		if (m_head->m_pkthdr.len > MHLEN) {
1361			MCLGET(m, M_DONTWAIT);
1362			if (!(m->m_flags & M_EXT)) {
1363				m_freem(m);
1364				m_freem(m_head);
1365				return (ENOBUFS);
1366			}
1367		}
1368		m_copydata(m_head, 0, m_head->m_pkthdr.len,
1369		    mtod(m, caddr_t));
1370		m->m_pkthdr.len = m->m_len = m_head->m_pkthdr.len;
1371		m_freem(m_head);
1372		m_head = m;
1373		goto repack;
1374	}
1375
1376	/* This chip does not do auto-padding */
1377	if (m_head->m_pkthdr.len < VGE_MIN_FRAMELEN) {
1378		f = &d->vge_frag[frag];
1379
1380		f->vge_buflen = htole16(VGE_BUFLEN(VGE_MIN_FRAMELEN -
1381		    m_head->m_pkthdr.len));
1382		f->vge_addrlo = htole32(VGE_ADDR_LO(txmap->dm_segs[0].ds_addr));
1383		f->vge_addrhi = htole16(VGE_ADDR_HI(txmap->dm_segs[0].ds_addr) & 0xFFFF);
1384		m_head->m_pkthdr.len = VGE_MIN_FRAMELEN;
1385		frag++;
1386	}
1387	/* For some reason, we need to tell the card fragment + 1 */
1388	frag++;
1389
1390	bus_dmamap_sync(sc->sc_dmat, txmap, 0, txmap->dm_mapsize,
1391	    BUS_DMASYNC_PREWRITE);
1392
1393	d->vge_sts = htole32(m_head->m_pkthdr.len << 16);
1394	d->vge_ctl = htole32((frag << 28) | VGE_TD_LS_NORM);
1395
1396	if (m_head->m_pkthdr.len > ETHERMTU + ETHER_HDR_LEN)
1397		d->vge_ctl |= htole32(VGE_TDCTL_JUMBO);
1398
1399	sc->vge_ldata.vge_tx_dmamap[idx] = txmap;
1400	sc->vge_ldata.vge_tx_mbuf[idx] = m_head;
1401	sc->vge_ldata.vge_tx_free--;
1402	sc->vge_ldata.vge_tx_list[idx].vge_sts |= htole32(VGE_TDSTS_OWN);
1403
1404	/*
1405	 * Set up hardware VLAN tagging.
1406	 */
1407#ifdef VGE_VLAN
1408	mtag = VLAN_OUTPUT_TAG(&sc->arpcom.ac_if, m_head);
1409	if (mtag != NULL)
1410		sc->vge_ldata.vge_tx_list[idx].vge_ctl |=
1411		    htole32(htons(VLAN_TAG_VALUE(mtag)) | VGE_TDCTL_VTAG);
1412#endif
1413
1414	idx++;
1415
1416	return (0);
1417}
1418
1419/*
1420 * Main transmit routine.
1421 */
1422void
1423vge_start(struct ifnet *ifp)
1424{
1425	struct vge_softc	*sc;
1426	struct mbuf		*m_head = NULL;
1427	int			idx, pidx = 0;
1428
1429	sc = ifp->if_softc;
1430
1431	if (!sc->vge_link || ifp->if_flags & IFF_OACTIVE)
1432		return;
1433
1434	if (IFQ_IS_EMPTY(&ifp->if_snd))
1435		return;
1436
1437	idx = sc->vge_ldata.vge_tx_prodidx;
1438
1439	pidx = idx - 1;
1440	if (pidx < 0)
1441		pidx = VGE_TX_DESC_CNT - 1;
1442
1443	while (sc->vge_ldata.vge_tx_mbuf[idx] == NULL) {
1444		IFQ_DEQUEUE(&ifp->if_snd, m_head);
1445		if (m_head == NULL)
1446			break;
1447
1448		/*
1449		 * If there's a BPF listener, bounce a copy of this frame
1450		 * to him.
1451		 */
1452#if NBPFILTER > 0
1453		if (ifp->if_bpf)
1454			bpf_mtap(ifp->if_bpf, m_head);
1455#endif
1456
1457		if (vge_encap(sc, m_head, idx)) {
1458			IF_PREPEND(&ifp->if_snd, m_head);
1459			ifp->if_flags |= IFF_OACTIVE;
1460			break;
1461		}
1462
1463		sc->vge_ldata.vge_tx_list[pidx].vge_frag[0].vge_buflen |=
1464		    htole16(VGE_TXDESC_Q);
1465
1466		pidx = idx;
1467		VGE_TX_DESC_INC(idx);
1468	}
1469
1470	if (idx == sc->vge_ldata.vge_tx_prodidx) {
1471		return;
1472	}
1473
1474	/* Flush the TX descriptors */
1475
1476	bus_dmamap_sync(sc->sc_dmat,
1477	    sc->vge_ldata.vge_tx_list_map,
1478	    0, sc->vge_ldata.vge_tx_list_map->dm_mapsize,
1479	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1480
1481	/* Issue a transmit command. */
1482	CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_WAK0);
1483
1484	sc->vge_ldata.vge_tx_prodidx = idx;
1485
1486	/*
1487	 * Use the countdown timer for interrupt moderation.
1488	 * 'TX done' interrupts are disabled. Instead, we reset the
1489	 * countdown timer, which will begin counting until it hits
1490	 * the value in the SSTIMER register, and then trigger an
1491	 * interrupt. Each time we set the TIMER0_ENABLE bit, the
1492	 * the timer count is reloaded. Only when the transmitter
1493	 * is idle will the timer hit 0 and an interrupt fire.
1494	 */
1495	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE);
1496
1497	/*
1498	 * Set a timeout in case the chip goes out to lunch.
1499	 */
1500	ifp->if_timer = 5;
1501}
1502
1503int
1504vge_init(struct ifnet *ifp)
1505{
1506	struct vge_softc	*sc = ifp->if_softc;
1507	int			i;
1508
1509	/*
1510	 * Cancel pending I/O and free all RX/TX buffers.
1511	 */
1512	vge_stop(sc);
1513	vge_reset(sc);
1514
1515	/* Initialize RX descriptors list */
1516	if (vge_rx_list_init(sc) == ENOBUFS) {
1517		printf("%s: init failed: no memory for RX buffers\n",
1518		    sc->vge_dev.dv_xname);
1519		vge_stop(sc);
1520		return (ENOBUFS);
1521	}
1522	/* Initialize TX descriptors */
1523	if (vge_tx_list_init(sc) == ENOBUFS) {
1524		printf("%s: init failed: no memory for TX buffers\n",
1525		    sc->vge_dev.dv_xname);
1526		vge_stop(sc);
1527		return (ENOBUFS);
1528	}
1529
1530	/* Set our station address */
1531	for (i = 0; i < ETHER_ADDR_LEN; i++)
1532		CSR_WRITE_1(sc, VGE_PAR0 + i, sc->arpcom.ac_enaddr[i]);
1533
1534	/*
1535	 * Set receive FIFO threshold. Also allow transmission and
1536	 * reception of VLAN tagged frames.
1537	 */
1538	CSR_CLRBIT_1(sc, VGE_RXCFG, VGE_RXCFG_FIFO_THR|VGE_RXCFG_VTAGOPT);
1539	CSR_SETBIT_1(sc, VGE_RXCFG, VGE_RXFIFOTHR_128BYTES|VGE_VTAG_OPT2);
1540
1541	/* Set DMA burst length */
1542	CSR_CLRBIT_1(sc, VGE_DMACFG0, VGE_DMACFG0_BURSTLEN);
1543	CSR_SETBIT_1(sc, VGE_DMACFG0, VGE_DMABURST_128);
1544
1545	CSR_SETBIT_1(sc, VGE_TXCFG, VGE_TXCFG_ARB_PRIO|VGE_TXCFG_NONBLK);
1546
1547	/* Set collision backoff algorithm */
1548	CSR_CLRBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_CRANDOM|
1549	    VGE_CHIPCFG1_CAP|VGE_CHIPCFG1_MBA|VGE_CHIPCFG1_BAKOPT);
1550	CSR_SETBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_OFSET);
1551
1552	/* Disable LPSEL field in priority resolution */
1553	CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_LPSEL_DIS);
1554
1555	/*
1556	 * Load the addresses of the DMA queues into the chip.
1557	 * Note that we only use one transmit queue.
1558	 */
1559
1560	CSR_WRITE_4(sc, VGE_TXDESC_ADDR_LO0,
1561	    VGE_ADDR_LO(sc->vge_ldata.vge_tx_listseg.ds_addr));
1562	CSR_WRITE_2(sc, VGE_TXDESCNUM, VGE_TX_DESC_CNT - 1);
1563
1564	CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO,
1565	    VGE_ADDR_LO(sc->vge_ldata.vge_rx_listseg.ds_addr));
1566	CSR_WRITE_2(sc, VGE_RXDESCNUM, VGE_RX_DESC_CNT - 1);
1567	CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, VGE_RX_DESC_CNT);
1568
1569	/* Enable and wake up the RX descriptor queue */
1570	CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1571	CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1572
1573	/* Enable the TX descriptor queue */
1574	CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_RUN0);
1575
1576	/* Set up the receive filter -- allow large frames for VLANs. */
1577	CSR_WRITE_1(sc, VGE_RXCTL, VGE_RXCTL_RX_UCAST|VGE_RXCTL_RX_GIANT);
1578
1579	/* If we want promiscuous mode, set the allframes bit. */
1580	if (ifp->if_flags & IFF_PROMISC) {
1581		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_PROMISC);
1582	}
1583
1584	/* Set capture broadcast bit to capture broadcast frames. */
1585	if (ifp->if_flags & IFF_BROADCAST) {
1586		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_BCAST);
1587	}
1588
1589	/* Set multicast bit to capture multicast frames. */
1590	if (ifp->if_flags & IFF_MULTICAST) {
1591		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_MCAST);
1592	}
1593
1594	/* Init the cam filter. */
1595#ifdef CAM_FILTERING
1596	vge_cam_clear(sc);
1597#endif
1598
1599	/* Init the multicast filter. */
1600	vge_setmulti(sc);
1601
1602	/* Enable flow control */
1603
1604	CSR_WRITE_1(sc, VGE_CRS2, 0x8B);
1605
1606	/* Enable jumbo frame reception (if desired) */
1607
1608	/* Start the MAC. */
1609	CSR_WRITE_1(sc, VGE_CRC0, VGE_CR0_STOP);
1610	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_NOPOLL);
1611	CSR_WRITE_1(sc, VGE_CRS0,
1612	    VGE_CR0_TX_ENABLE|VGE_CR0_RX_ENABLE|VGE_CR0_START);
1613
1614	/*
1615	 * Configure one-shot timer for microsecond
1616	 * resulution and load it for 500 usecs.
1617	 */
1618	CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_TIMER0_RES);
1619	CSR_WRITE_2(sc, VGE_SSTIMER, 400);
1620
1621	/*
1622	 * Configure interrupt moderation for receive. Enable
1623	 * the holdoff counter and load it, and set the RX
1624	 * suppression count to the number of descriptors we
1625	 * want to allow before triggering an interrupt.
1626	 * The holdoff timer is in units of 20 usecs.
1627	 */
1628
1629#ifdef notyet
1630	CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_TXINTSUP_DISABLE);
1631	/* Select the interrupt holdoff timer page. */
1632	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
1633	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_INTHLDOFF);
1634	CSR_WRITE_1(sc, VGE_INTHOLDOFF, 10); /* ~200 usecs */
1635
1636	/* Enable use of the holdoff timer. */
1637	CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_HOLDOFF);
1638	CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_SC_RELOAD);
1639
1640	/* Select the RX suppression threshold page. */
1641	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
1642	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_RXSUPPTHR);
1643	CSR_WRITE_1(sc, VGE_RXSUPPTHR, 64); /* interrupt after 64 packets */
1644
1645	/* Restore the page select bits. */
1646	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
1647	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
1648#endif
1649
1650	/*
1651	 * Enable interrupts.
1652	 */
1653	CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
1654	CSR_WRITE_4(sc, VGE_ISR, 0);
1655	CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
1656
1657	/* Restore BMCR state */
1658	mii_mediachg(&sc->sc_mii);
1659
1660	ifp->if_flags |= IFF_RUNNING;
1661	ifp->if_flags &= ~IFF_OACTIVE;
1662
1663	sc->vge_if_flags = 0;
1664	sc->vge_link = 0;
1665
1666	if (!timeout_pending(&sc->timer_handle))
1667		timeout_add(&sc->timer_handle, hz);
1668
1669	return (0);
1670}
1671
1672/*
1673 * Set media options.
1674 */
1675int
1676vge_ifmedia_upd(struct ifnet *ifp)
1677{
1678	struct vge_softc *sc = ifp->if_softc;
1679
1680	return (mii_mediachg(&sc->sc_mii));
1681}
1682
1683/*
1684 * Report current media status.
1685 */
1686void
1687vge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1688{
1689	struct vge_softc *sc = ifp->if_softc;
1690
1691	mii_pollstat(&sc->sc_mii);
1692	ifmr->ifm_active = sc->sc_mii.mii_media_active;
1693	ifmr->ifm_status = sc->sc_mii.mii_media_status;
1694}
1695
1696void
1697vge_miibus_statchg(struct device *dev)
1698{
1699	struct vge_softc	*sc = (struct vge_softc *)dev;
1700	struct mii_data		*mii;
1701	struct ifmedia_entry	*ife;
1702
1703	mii = &sc->sc_mii;
1704	ife = mii->mii_media.ifm_cur;
1705
1706	/*
1707	 * If the user manually selects a media mode, we need to turn
1708	 * on the forced MAC mode bit in the DIAGCTL register. If the
1709	 * user happens to choose a full duplex mode, we also need to
1710	 * set the 'force full duplex' bit. This applies only to
1711	 * 10Mbps and 100Mbps speeds. In autoselect mode, forced MAC
1712	 * mode is disabled, and in 1000baseT mode, full duplex is
1713	 * always implied, so we turn on the forced mode bit but leave
1714	 * the FDX bit cleared.
1715	 */
1716
1717	switch (IFM_SUBTYPE(ife->ifm_media)) {
1718	case IFM_AUTO:
1719		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
1720		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
1721		break;
1722	case IFM_1000_T:
1723		CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
1724		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
1725		break;
1726	case IFM_100_TX:
1727	case IFM_10_T:
1728		CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
1729		if ((ife->ifm_media & IFM_GMASK) == IFM_FDX) {
1730			CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
1731		} else {
1732			CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
1733		}
1734		break;
1735	default:
1736		printf("%s: unknown media type: %x\n",
1737		    sc->vge_dev.dv_xname, IFM_SUBTYPE(ife->ifm_media));
1738		break;
1739	}
1740}
1741
1742int
1743vge_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1744{
1745	struct vge_softc	*sc = ifp->if_softc;
1746	struct ifreq		*ifr = (struct ifreq *) data;
1747	struct ifaddr		*ifa = (struct ifaddr *) data;
1748	int			s, error = 0;
1749
1750	s = splimp();
1751
1752	if ((error = ether_ioctl(ifp, &sc->arpcom, command, data)) > 0) {
1753		splx(s);
1754		return (error);
1755	}
1756
1757	switch (command) {
1758	case SIOCSIFADDR:
1759		ifp->if_flags |= IFF_UP;
1760		switch (ifa->ifa_addr->sa_family) {
1761#ifdef INET
1762		case AF_INET:
1763			vge_init(ifp);
1764			arp_ifinit(&sc->arpcom, ifa);
1765			break;
1766#endif
1767		default:
1768			vge_init(ifp);
1769			break;
1770		}
1771#if 0 /* XXX mtu gets reset to 0 at ifconfig up for some reason with this */
1772	case SIOCSIFMTU:
1773		if (ifr->ifr_mtu > ETHERMTU_JUMBO)
1774			error = EINVAL;
1775		else
1776			ifp->if_mtu = ifr->ifr_mtu;
1777		break;
1778#endif
1779	case SIOCSIFFLAGS:
1780		if (ifp->if_flags & IFF_UP) {
1781			if (ifp->if_flags & IFF_RUNNING &&
1782			    ifp->if_flags & IFF_PROMISC &&
1783			    !(sc->vge_if_flags & IFF_PROMISC)) {
1784				CSR_SETBIT_1(sc, VGE_RXCTL,
1785				    VGE_RXCTL_RX_PROMISC);
1786				vge_setmulti(sc);
1787			} else if (ifp->if_flags & IFF_RUNNING &&
1788			    !(ifp->if_flags & IFF_PROMISC) &&
1789			    sc->vge_if_flags & IFF_PROMISC) {
1790				CSR_CLRBIT_1(sc, VGE_RXCTL,
1791				    VGE_RXCTL_RX_PROMISC);
1792				vge_setmulti(sc);
1793                        } else
1794				vge_init(ifp);
1795		} else {
1796			if (ifp->if_flags & IFF_RUNNING)
1797				vge_stop(sc);
1798		}
1799		sc->vge_if_flags = ifp->if_flags;
1800		break;
1801	case SIOCADDMULTI:
1802	case SIOCDELMULTI:
1803		error = (command == SIOCADDMULTI) ?
1804		    ether_addmulti(ifr, &sc->arpcom) :
1805		    ether_delmulti(ifr, &sc->arpcom);
1806
1807		if (error == ENETRESET) {
1808			if (ifp->if_flags & IFF_RUNNING)
1809				vge_setmulti(sc);
1810			error = 0;
1811		}
1812		break;
1813	case SIOCGIFMEDIA:
1814	case SIOCSIFMEDIA:
1815		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, command);
1816		break;
1817	default:
1818		error = EINVAL;
1819		break;
1820	}
1821
1822	splx(s);
1823	return (error);
1824}
1825
1826void
1827vge_watchdog(struct ifnet *ifp)
1828{
1829	struct vge_softc *sc = ifp->if_softc;
1830	int s;
1831
1832	s = splnet();
1833	printf("%s: watchdog timeout\n", sc->vge_dev.dv_xname);
1834	ifp->if_oerrors++;
1835
1836	vge_txeof(sc);
1837	vge_rxeof(sc);
1838
1839	vge_init(ifp);
1840
1841	splx(s);
1842}
1843
1844/*
1845 * Stop the adapter and free any mbufs allocated to the
1846 * RX and TX lists.
1847 */
1848void
1849vge_stop(struct vge_softc *sc)
1850{
1851	register int		i;
1852	struct ifnet		*ifp;
1853
1854	ifp = &sc->arpcom.ac_if;
1855	ifp->if_timer = 0;
1856	if (timeout_pending(&sc->timer_handle))
1857		timeout_del(&sc->timer_handle);
1858
1859	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1860
1861	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
1862	CSR_WRITE_1(sc, VGE_CRS0, VGE_CR0_STOP);
1863	CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
1864	CSR_WRITE_2(sc, VGE_TXQCSRC, 0xFFFF);
1865	CSR_WRITE_1(sc, VGE_RXQCSRC, 0xFF);
1866	CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO, 0);
1867
1868	if (sc->vge_head != NULL) {
1869		m_freem(sc->vge_head);
1870		sc->vge_head = sc->vge_tail = NULL;
1871	}
1872
1873	/* Free the TX list buffers. */
1874	for (i = 0; i < VGE_TX_DESC_CNT; i++) {
1875		if (sc->vge_ldata.vge_tx_mbuf[i] != NULL) {
1876			bus_dmamap_unload(sc->sc_dmat,
1877			    sc->vge_ldata.vge_tx_dmamap[i]);
1878			m_freem(sc->vge_ldata.vge_tx_mbuf[i]);
1879			sc->vge_ldata.vge_tx_mbuf[i] = NULL;
1880		}
1881	}
1882
1883	/* Free the RX list buffers. */
1884	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
1885		if (sc->vge_ldata.vge_rx_mbuf[i] != NULL) {
1886			bus_dmamap_unload(sc->sc_dmat,
1887			    sc->vge_ldata.vge_rx_dmamap[i]);
1888			m_freem(sc->vge_ldata.vge_rx_mbuf[i]);
1889			sc->vge_ldata.vge_rx_mbuf[i] = NULL;
1890		}
1891	}
1892}
1893