if_vge.c revision 1.56
1/*	$OpenBSD: if_vge.c,v 1.56 2013/08/07 01:06:38 bluhm Exp $	*/
2/*	$FreeBSD: if_vge.c,v 1.3 2004/09/11 22:13:25 wpaul Exp $	*/
3/*
4 * Copyright (c) 2004
5 *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 *    must display the following acknowledgement:
17 *	This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 *    may be used to endorse or promote products derived from this software
20 *    without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35/*
36 * VIA Networking Technologies VT612x PCI gigabit ethernet NIC driver.
37 *
38 * Written by Bill Paul <wpaul@windriver.com>
39 * Senior Networking Software Engineer
40 * Wind River Systems
41 *
42 * Ported to OpenBSD by Peter Valchev <pvalchev@openbsd.org>
43 */
44
45/*
46 * The VIA Networking VT6122 is a 32bit, 33/66MHz PCI device that
47 * combines a tri-speed ethernet MAC and PHY, with the following
48 * features:
49 *
50 *	o Jumbo frame support up to 16K
51 *	o Transmit and receive flow control
52 *	o IPv4 checksum offload
53 *	o VLAN tag insertion and stripping
54 *	o TCP large send
55 *	o 64-bit multicast hash table filter
56 *	o 64 entry CAM filter
57 *	o 16K RX FIFO and 48K TX FIFO memory
58 *	o Interrupt moderation
59 *
60 * The VT6122 supports up to four transmit DMA queues. The descriptors
61 * in the transmit ring can address up to 7 data fragments; frames which
62 * span more than 7 data buffers must be coalesced, but in general the
63 * BSD TCP/IP stack rarely generates frames more than 2 or 3 fragments
64 * long. The receive descriptors address only a single buffer.
65 *
66 * There are two peculiar design issues with the VT6122. One is that
67 * receive data buffers must be aligned on a 32-bit boundary. This is
68 * not a problem where the VT6122 is used as a LOM device in x86-based
69 * systems, but on architectures that generate unaligned access traps, we
70 * have to do some copying.
71 *
72 * The other issue has to do with the way 64-bit addresses are handled.
73 * The DMA descriptors only allow you to specify 48 bits of addressing
74 * information. The remaining 16 bits are specified using one of the
75 * I/O registers. If you only have a 32-bit system, then this isn't
76 * an issue, but if you have a 64-bit system and more than 4GB of
77 * memory, you must have to make sure your network data buffers reside
78 * in the same 48-bit 'segment.'
79 *
80 * Special thanks to Ryan Fu at VIA Networking for providing documentation
81 * and sample NICs for testing.
82 */
83
84#include "bpfilter.h"
85#include "vlan.h"
86
87#include <sys/param.h>
88#include <sys/endian.h>
89#include <sys/systm.h>
90#include <sys/sockio.h>
91#include <sys/mbuf.h>
92#include <sys/malloc.h>
93#include <sys/kernel.h>
94#include <sys/device.h>
95#include <sys/timeout.h>
96#include <sys/socket.h>
97
98#include <net/if.h>
99#include <net/if_dl.h>
100#include <net/if_media.h>
101
102#ifdef INET
103#include <netinet/in.h>
104#include <netinet/in_systm.h>
105#include <netinet/ip.h>
106#include <netinet/if_ether.h>
107#endif
108
109#if NVLAN > 0
110#include <net/if_types.h>
111#include <net/if_vlan_var.h>
112#endif
113
114#if NBPFILTER > 0
115#include <net/bpf.h>
116#endif
117
118#include <dev/mii/mii.h>
119#include <dev/mii/miivar.h>
120
121#include <dev/pci/pcireg.h>
122#include <dev/pci/pcivar.h>
123#include <dev/pci/pcidevs.h>
124
125#include <dev/pci/if_vgereg.h>
126#include <dev/pci/if_vgevar.h>
127
128int vge_probe		(struct device *, void *, void *);
129void vge_attach		(struct device *, struct device *, void *);
130int vge_detach		(struct device *, int);
131
132int vge_encap		(struct vge_softc *, struct mbuf *, int);
133
134int vge_allocmem		(struct vge_softc *);
135void vge_freemem	(struct vge_softc *);
136int vge_newbuf		(struct vge_softc *, int, struct mbuf *);
137int vge_rx_list_init	(struct vge_softc *);
138int vge_tx_list_init	(struct vge_softc *);
139void vge_rxeof		(struct vge_softc *);
140void vge_txeof		(struct vge_softc *);
141int vge_intr		(void *);
142void vge_tick		(void *);
143void vge_start		(struct ifnet *);
144int vge_ioctl		(struct ifnet *, u_long, caddr_t);
145int vge_init		(struct ifnet *);
146void vge_stop		(struct vge_softc *);
147void vge_watchdog	(struct ifnet *);
148int vge_ifmedia_upd	(struct ifnet *);
149void vge_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
150
151#ifdef VGE_EEPROM
152void vge_eeprom_getword	(struct vge_softc *, int, u_int16_t *);
153#endif
154void vge_read_eeprom	(struct vge_softc *, caddr_t, int, int, int);
155
156void vge_miipoll_start	(struct vge_softc *);
157void vge_miipoll_stop	(struct vge_softc *);
158int vge_miibus_readreg	(struct device *, int, int);
159void vge_miibus_writereg (struct device *, int, int, int);
160void vge_miibus_statchg	(struct device *);
161
162void vge_cam_clear	(struct vge_softc *);
163int vge_cam_set		(struct vge_softc *, uint8_t *);
164void vge_iff		(struct vge_softc *);
165void vge_reset		(struct vge_softc *);
166
167struct cfattach vge_ca = {
168	sizeof(struct vge_softc), vge_probe, vge_attach, vge_detach
169};
170
171struct cfdriver vge_cd = {
172	NULL, "vge", DV_IFNET
173};
174
175#define VGE_PCI_LOIO             0x10
176#define VGE_PCI_LOMEM            0x14
177
178int vge_debug = 0;
179#define DPRINTF(x)	if (vge_debug) printf x
180#define DPRINTFN(n, x)	if (vge_debug >= (n)) printf x
181
182const struct pci_matchid vge_devices[] = {
183	{ PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT612x },
184};
185
186#ifdef VGE_EEPROM
187/*
188 * Read a word of data stored in the EEPROM at address 'addr.'
189 */
190void
191vge_eeprom_getword(struct vge_softc *sc, int addr, u_int16_t *dest)
192{
193	int			i;
194	u_int16_t		word = 0;
195
196	/*
197	 * Enter EEPROM embedded programming mode. In order to
198	 * access the EEPROM at all, we first have to set the
199	 * EELOAD bit in the CHIPCFG2 register.
200	 */
201	CSR_SETBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
202	CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
203
204	/* Select the address of the word we want to read */
205	CSR_WRITE_1(sc, VGE_EEADDR, addr);
206
207	/* Issue read command */
208	CSR_SETBIT_1(sc, VGE_EECMD, VGE_EECMD_ERD);
209
210	/* Wait for the done bit to be set. */
211	for (i = 0; i < VGE_TIMEOUT; i++) {
212		if (CSR_READ_1(sc, VGE_EECMD) & VGE_EECMD_EDONE)
213			break;
214	}
215
216	if (i == VGE_TIMEOUT) {
217		printf("%s: EEPROM read timed out\n", sc->vge_dev.dv_xname);
218		*dest = 0;
219		return;
220	}
221
222	/* Read the result */
223	word = CSR_READ_2(sc, VGE_EERDDAT);
224
225	/* Turn off EEPROM access mode. */
226	CSR_CLRBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
227	CSR_CLRBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
228
229	*dest = word;
230}
231#endif
232
233/*
234 * Read a sequence of words from the EEPROM.
235 */
236void
237vge_read_eeprom(struct vge_softc *sc, caddr_t dest, int off, int cnt,
238    int swap)
239{
240	int			i;
241#ifdef VGE_EEPROM
242	u_int16_t		word = 0, *ptr;
243
244	for (i = 0; i < cnt; i++) {
245		vge_eeprom_getword(sc, off + i, &word);
246		ptr = (u_int16_t *)(dest + (i * 2));
247		if (swap)
248			*ptr = ntohs(word);
249		else
250			*ptr = word;
251	}
252#else
253	for (i = 0; i < ETHER_ADDR_LEN; i++)
254		dest[i] = CSR_READ_1(sc, VGE_PAR0 + i);
255#endif
256}
257
258void
259vge_miipoll_stop(struct vge_softc *sc)
260{
261	int			i;
262
263	CSR_WRITE_1(sc, VGE_MIICMD, 0);
264
265	for (i = 0; i < VGE_TIMEOUT; i++) {
266		DELAY(1);
267		if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
268			break;
269	}
270
271	if (i == VGE_TIMEOUT)
272		printf("%s: failed to idle MII autopoll\n", sc->vge_dev.dv_xname);
273}
274
275void
276vge_miipoll_start(struct vge_softc *sc)
277{
278	int			i;
279
280	/* First, make sure we're idle. */
281
282	CSR_WRITE_1(sc, VGE_MIICMD, 0);
283	CSR_WRITE_1(sc, VGE_MIIADDR, VGE_MIIADDR_SWMPL);
284
285	for (i = 0; i < VGE_TIMEOUT; i++) {
286		DELAY(1);
287		if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
288			break;
289	}
290
291	if (i == VGE_TIMEOUT) {
292		printf("%s: failed to idle MII autopoll\n", sc->vge_dev.dv_xname);
293		return;
294	}
295
296	/* Now enable auto poll mode. */
297
298	CSR_WRITE_1(sc, VGE_MIICMD, VGE_MIICMD_MAUTO);
299
300	/* And make sure it started. */
301
302	for (i = 0; i < VGE_TIMEOUT; i++) {
303		DELAY(1);
304		if ((CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL) == 0)
305			break;
306	}
307
308	if (i == VGE_TIMEOUT)
309		printf("%s: failed to start MII autopoll\n", sc->vge_dev.dv_xname);
310}
311
312int
313vge_miibus_readreg(struct device *dev, int phy, int reg)
314{
315	struct vge_softc	*sc = (struct vge_softc *)dev;
316	int			i, s;
317	u_int16_t		rval = 0;
318
319	if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F))
320		return(0);
321
322	s = splnet();
323
324	vge_miipoll_stop(sc);
325
326	/* Specify the register we want to read. */
327	CSR_WRITE_1(sc, VGE_MIIADDR, reg);
328
329	/* Issue read command. */
330	CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_RCMD);
331
332	/* Wait for the read command bit to self-clear. */
333	for (i = 0; i < VGE_TIMEOUT; i++) {
334		DELAY(1);
335		if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_RCMD) == 0)
336			break;
337	}
338
339	if (i == VGE_TIMEOUT)
340		printf("%s: MII read timed out\n", sc->vge_dev.dv_xname);
341	else
342		rval = CSR_READ_2(sc, VGE_MIIDATA);
343
344	vge_miipoll_start(sc);
345	splx(s);
346
347	return (rval);
348}
349
350void
351vge_miibus_writereg(struct device *dev, int phy, int reg, int data)
352{
353	struct vge_softc	*sc = (struct vge_softc *)dev;
354	int			i, s;
355
356	if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F))
357		return;
358
359	s = splnet();
360	vge_miipoll_stop(sc);
361
362	/* Specify the register we want to write. */
363	CSR_WRITE_1(sc, VGE_MIIADDR, reg);
364
365	/* Specify the data we want to write. */
366	CSR_WRITE_2(sc, VGE_MIIDATA, data);
367
368	/* Issue write command. */
369	CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_WCMD);
370
371	/* Wait for the write command bit to self-clear. */
372	for (i = 0; i < VGE_TIMEOUT; i++) {
373		DELAY(1);
374		if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_WCMD) == 0)
375			break;
376	}
377
378	if (i == VGE_TIMEOUT) {
379		printf("%s: MII write timed out\n", sc->vge_dev.dv_xname);
380	}
381
382	vge_miipoll_start(sc);
383	splx(s);
384}
385
386void
387vge_cam_clear(struct vge_softc *sc)
388{
389	int			i;
390
391	/*
392	 * Turn off all the mask bits. This tells the chip
393	 * that none of the entries in the CAM filter are valid.
394	 * desired entries will be enabled as we fill the filter in.
395	 */
396
397	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
398	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
399	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE);
400	for (i = 0; i < 8; i++)
401		CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
402
403	/* Clear the VLAN filter too. */
404
405	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|VGE_CAMADDR_AVSEL|0);
406	for (i = 0; i < 8; i++)
407		CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
408
409	CSR_WRITE_1(sc, VGE_CAMADDR, 0);
410	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
411	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
412
413	sc->vge_camidx = 0;
414}
415
416int
417vge_cam_set(struct vge_softc *sc, uint8_t *addr)
418{
419	int			i, error = 0;
420
421	if (sc->vge_camidx == VGE_CAM_MAXADDRS)
422		return(ENOSPC);
423
424	/* Select the CAM data page. */
425	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
426	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMDATA);
427
428	/* Set the filter entry we want to update and enable writing. */
429	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|sc->vge_camidx);
430
431	/* Write the address to the CAM registers */
432	for (i = 0; i < ETHER_ADDR_LEN; i++)
433		CSR_WRITE_1(sc, VGE_CAM0 + i, addr[i]);
434
435	/* Issue a write command. */
436	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_WRITE);
437
438	/* Wake for it to clear. */
439	for (i = 0; i < VGE_TIMEOUT; i++) {
440		DELAY(1);
441		if ((CSR_READ_1(sc, VGE_CAMCTL) & VGE_CAMCTL_WRITE) == 0)
442			break;
443	}
444
445	if (i == VGE_TIMEOUT) {
446		printf("%s: setting CAM filter failed\n", sc->vge_dev.dv_xname);
447		error = EIO;
448		goto fail;
449	}
450
451	/* Select the CAM mask page. */
452	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
453	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
454
455	/* Set the mask bit that enables this filter. */
456	CSR_SETBIT_1(sc, VGE_CAM0 + (sc->vge_camidx/8),
457	    1<<(sc->vge_camidx & 7));
458
459	sc->vge_camidx++;
460
461fail:
462	/* Turn off access to CAM. */
463	CSR_WRITE_1(sc, VGE_CAMADDR, 0);
464	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
465	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
466
467	return (error);
468}
469
470/*
471 * We use the 64-entry CAM filter for perfect filtering.
472 * If there's more than 64 multicast addresses, we use the
473 * hash filter instead.
474 */
475void
476vge_iff(struct vge_softc *sc)
477{
478	struct arpcom		*ac = &sc->arpcom;
479	struct ifnet		*ifp = &ac->ac_if;
480	struct ether_multi	*enm;
481	struct ether_multistep	step;
482	u_int32_t		h = 0, hashes[2];
483	u_int8_t		rxctl;
484	int			error;
485
486	vge_cam_clear(sc);
487	rxctl = CSR_READ_1(sc, VGE_RXCTL);
488	rxctl &= ~(VGE_RXCTL_RX_BCAST | VGE_RXCTL_RX_MCAST |
489	    VGE_RXCTL_RX_PROMISC | VGE_RXCTL_RX_UCAST);
490	bzero(hashes, sizeof(hashes));
491	ifp->if_flags &= ~IFF_ALLMULTI;
492
493	/*
494	 * Always accept broadcast frames.
495	 * Always accept frames destined to our station address.
496	 */
497	rxctl |= VGE_RXCTL_RX_BCAST | VGE_RXCTL_RX_UCAST;
498
499	if ((ifp->if_flags & IFF_PROMISC) == 0)
500		rxctl |= VGE_RXCTL_RX_MCAST;
501
502	if (ifp->if_flags & IFF_PROMISC || ac->ac_multirangecnt > 0) {
503		ifp->if_flags |= IFF_ALLMULTI;
504		if (ifp->if_flags & IFF_PROMISC)
505			rxctl |= VGE_RXCTL_RX_PROMISC;
506		hashes[0] = hashes[1] = 0xFFFFFFFF;
507	} else if (ac->ac_multicnt > VGE_CAM_MAXADDRS) {
508		ETHER_FIRST_MULTI(step, ac, enm);
509		while (enm != NULL) {
510			h = ether_crc32_be(enm->enm_addrlo,
511			    ETHER_ADDR_LEN) >> 26;
512
513			hashes[h >> 5] |= 1 << (h & 0x1f);
514
515			ETHER_NEXT_MULTI(step, enm);
516		}
517	} else {
518		ETHER_FIRST_MULTI(step, ac, enm);
519		while (enm != NULL) {
520			error = vge_cam_set(sc, enm->enm_addrlo);
521			if (error)
522				break;
523
524			ETHER_NEXT_MULTI(step, enm);
525		}
526	}
527
528	CSR_WRITE_4(sc, VGE_MAR0, hashes[0]);
529	CSR_WRITE_4(sc, VGE_MAR1, hashes[1]);
530	CSR_WRITE_1(sc, VGE_RXCTL, rxctl);
531}
532
533void
534vge_reset(struct vge_softc *sc)
535{
536	int			i;
537
538	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_SOFTRESET);
539
540	for (i = 0; i < VGE_TIMEOUT; i++) {
541		DELAY(5);
542		if ((CSR_READ_1(sc, VGE_CRS1) & VGE_CR1_SOFTRESET) == 0)
543			break;
544	}
545
546	if (i == VGE_TIMEOUT) {
547		printf("%s: soft reset timed out", sc->vge_dev.dv_xname);
548		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_STOP_FORCE);
549		DELAY(2000);
550	}
551
552	DELAY(5000);
553
554	CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_RELOAD);
555
556	for (i = 0; i < VGE_TIMEOUT; i++) {
557		DELAY(5);
558		if ((CSR_READ_1(sc, VGE_EECSR) & VGE_EECSR_RELOAD) == 0)
559			break;
560	}
561
562	CSR_CLRBIT_1(sc, VGE_CHIPCFG0, VGE_CHIPCFG0_PACPI);
563}
564
565/*
566 * Probe for a VIA gigabit chip. Check the PCI vendor and device
567 * IDs against our list and return a device name if we find a match.
568 */
569int
570vge_probe(struct device *dev, void *match, void *aux)
571{
572	return (pci_matchbyid((struct pci_attach_args *)aux, vge_devices,
573	    nitems(vge_devices)));
574}
575
576/*
577 * Allocate memory for RX/TX rings
578 */
579int
580vge_allocmem(struct vge_softc *sc)
581{
582	int			nseg, rseg;
583	int			i, error;
584
585	nseg = 32;
586
587	/* Allocate DMA'able memory for the TX ring */
588
589	error = bus_dmamap_create(sc->sc_dmat, VGE_TX_LIST_SZ, 1,
590	    VGE_TX_LIST_SZ, 0, BUS_DMA_ALLOCNOW,
591	    &sc->vge_ldata.vge_tx_list_map);
592	if (error)
593		return (ENOMEM);
594	error = bus_dmamem_alloc(sc->sc_dmat, VGE_TX_LIST_SZ,
595	    ETHER_ALIGN, 0,
596	    &sc->vge_ldata.vge_tx_listseg, 1, &rseg, BUS_DMA_NOWAIT);
597	if (error) {
598		printf("%s: can't alloc TX list\n", sc->vge_dev.dv_xname);
599		return (ENOMEM);
600	}
601
602	/* Load the map for the TX ring. */
603	error = bus_dmamem_map(sc->sc_dmat, &sc->vge_ldata.vge_tx_listseg,
604	     1, VGE_TX_LIST_SZ,
605	     (caddr_t *)&sc->vge_ldata.vge_tx_list, BUS_DMA_NOWAIT);
606	memset(sc->vge_ldata.vge_tx_list, 0, VGE_TX_LIST_SZ);
607	if (error) {
608		printf("%s: can't map TX dma buffers\n",
609		    sc->vge_dev.dv_xname);
610		bus_dmamem_free(sc->sc_dmat, &sc->vge_ldata.vge_tx_listseg, rseg);
611		return (ENOMEM);
612	}
613
614	error = bus_dmamap_load(sc->sc_dmat, sc->vge_ldata.vge_tx_list_map,
615	    sc->vge_ldata.vge_tx_list, VGE_TX_LIST_SZ, NULL, BUS_DMA_NOWAIT);
616	if (error) {
617		printf("%s: can't load TX dma map\n", sc->vge_dev.dv_xname);
618		bus_dmamap_destroy(sc->sc_dmat, sc->vge_ldata.vge_tx_list_map);
619		bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->vge_ldata.vge_tx_list,
620		    VGE_TX_LIST_SZ);
621		bus_dmamem_free(sc->sc_dmat, &sc->vge_ldata.vge_tx_listseg, rseg);
622		return (ENOMEM);
623	}
624
625	/* Create DMA maps for TX buffers */
626
627	for (i = 0; i < VGE_TX_DESC_CNT; i++) {
628		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES * nseg, nseg,
629		    MCLBYTES, 0, BUS_DMA_ALLOCNOW,
630		    &sc->vge_ldata.vge_tx_dmamap[i]);
631		if (error) {
632			printf("%s: can't create DMA map for TX\n",
633			    sc->vge_dev.dv_xname);
634			return (ENOMEM);
635		}
636	}
637
638	/* Allocate DMA'able memory for the RX ring */
639
640	error = bus_dmamap_create(sc->sc_dmat, VGE_RX_LIST_SZ, 1,
641	    VGE_RX_LIST_SZ, 0, BUS_DMA_ALLOCNOW,
642	    &sc->vge_ldata.vge_rx_list_map);
643	if (error)
644		return (ENOMEM);
645	error = bus_dmamem_alloc(sc->sc_dmat, VGE_RX_LIST_SZ, VGE_RING_ALIGN,
646	    0, &sc->vge_ldata.vge_rx_listseg, 1, &rseg, BUS_DMA_NOWAIT);
647	if (error) {
648		printf("%s: can't alloc RX list\n", sc->vge_dev.dv_xname);
649		return (ENOMEM);
650	}
651
652	/* Load the map for the RX ring. */
653
654	error = bus_dmamem_map(sc->sc_dmat, &sc->vge_ldata.vge_rx_listseg,
655	     1, VGE_RX_LIST_SZ,
656	     (caddr_t *)&sc->vge_ldata.vge_rx_list, BUS_DMA_NOWAIT);
657	memset(sc->vge_ldata.vge_rx_list, 0, VGE_RX_LIST_SZ);
658	if (error) {
659		printf("%s: can't map RX dma buffers\n",
660		    sc->vge_dev.dv_xname);
661		bus_dmamem_free(sc->sc_dmat, &sc->vge_ldata.vge_rx_listseg, rseg);
662		return (ENOMEM);
663	}
664	error = bus_dmamap_load(sc->sc_dmat, sc->vge_ldata.vge_rx_list_map,
665	    sc->vge_ldata.vge_rx_list, VGE_RX_LIST_SZ, NULL, BUS_DMA_NOWAIT);
666	if (error) {
667		printf("%s: can't load RX dma map\n", sc->vge_dev.dv_xname);
668		bus_dmamap_destroy(sc->sc_dmat, sc->vge_ldata.vge_rx_list_map);
669		bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->vge_ldata.vge_rx_list,
670		    VGE_RX_LIST_SZ);
671		bus_dmamem_free(sc->sc_dmat, &sc->vge_ldata.vge_rx_listseg, rseg);
672		return (ENOMEM);
673	}
674
675	/* Create DMA maps for RX buffers */
676
677	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
678		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES * nseg, nseg,
679		    MCLBYTES, 0, BUS_DMA_ALLOCNOW,
680		    &sc->vge_ldata.vge_rx_dmamap[i]);
681		if (error) {
682			printf("%s: can't create DMA map for RX\n",
683			    sc->vge_dev.dv_xname);
684			return (ENOMEM);
685		}
686	}
687
688	return (0);
689}
690
691void
692vge_freemem(struct vge_softc *sc)
693{
694	int i;
695
696	for (i = 0; i < VGE_RX_DESC_CNT; i++)
697		bus_dmamap_destroy(sc->sc_dmat,
698		    sc->vge_ldata.vge_rx_dmamap[i]);
699
700	bus_dmamap_unload(sc->sc_dmat, sc->vge_ldata.vge_rx_list_map);
701	bus_dmamap_destroy(sc->sc_dmat, sc->vge_ldata.vge_rx_list_map);
702	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->vge_ldata.vge_rx_list,
703	    VGE_RX_LIST_SZ);
704	bus_dmamem_free(sc->sc_dmat, &sc->vge_ldata.vge_rx_listseg, 1);
705
706	for (i = 0; i < VGE_TX_DESC_CNT; i++)
707		bus_dmamap_destroy(sc->sc_dmat,
708		    sc->vge_ldata.vge_tx_dmamap[i]);
709
710	bus_dmamap_unload(sc->sc_dmat, sc->vge_ldata.vge_tx_list_map);
711	bus_dmamap_destroy(sc->sc_dmat, sc->vge_ldata.vge_tx_list_map);
712	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->vge_ldata.vge_tx_list,
713	    VGE_TX_LIST_SZ);
714	bus_dmamem_free(sc->sc_dmat, &sc->vge_ldata.vge_tx_listseg, 1);
715}
716
717/*
718 * Attach the interface. Allocate softc structures, do ifmedia
719 * setup and ethernet/BPF attach.
720 */
721void
722vge_attach(struct device *parent, struct device *self, void *aux)
723{
724	u_char			eaddr[ETHER_ADDR_LEN];
725	struct vge_softc	*sc = (struct vge_softc *)self;
726	struct pci_attach_args	*pa = aux;
727	pci_chipset_tag_t	pc = pa->pa_pc;
728	pci_intr_handle_t	ih;
729	const char		*intrstr = NULL;
730	struct ifnet		*ifp;
731	int			error = 0;
732
733	/*
734	 * Map control/status registers.
735	 */
736	if (pci_mapreg_map(pa, VGE_PCI_LOMEM, PCI_MAPREG_TYPE_MEM, 0,
737	    &sc->vge_btag, &sc->vge_bhandle, NULL, &sc->vge_bsize, 0)) {
738		if (pci_mapreg_map(pa, VGE_PCI_LOIO, PCI_MAPREG_TYPE_IO, 0,
739		    &sc->vge_btag, &sc->vge_bhandle, NULL, &sc->vge_bsize, 0)) {
740			printf(": can't map mem or i/o space\n");
741			return;
742		}
743	}
744
745	/* Allocate interrupt */
746	if (pci_intr_map(pa, &ih)) {
747		printf(": couldn't map interrupt\n");
748		return;
749	}
750	intrstr = pci_intr_string(pc, ih);
751	sc->vge_intrhand = pci_intr_establish(pc, ih, IPL_NET, vge_intr, sc,
752	    sc->vge_dev.dv_xname);
753	if (sc->vge_intrhand == NULL) {
754		printf(": couldn't establish interrupt");
755		if (intrstr != NULL)
756			printf(" at %s", intrstr);
757		return;
758	}
759	printf(": %s", intrstr);
760
761	sc->sc_dmat = pa->pa_dmat;
762	sc->sc_pc = pa->pa_pc;
763
764	/* Reset the adapter. */
765	vge_reset(sc);
766
767	/*
768	 * Get station address from the EEPROM.
769	 */
770	vge_read_eeprom(sc, eaddr, VGE_EE_EADDR, 3, 1);
771
772	bcopy(eaddr, &sc->arpcom.ac_enaddr, ETHER_ADDR_LEN);
773
774	printf(", address %s\n",
775	    ether_sprintf(sc->arpcom.ac_enaddr));
776
777	error = vge_allocmem(sc);
778
779	if (error)
780		return;
781
782	ifp = &sc->arpcom.ac_if;
783	ifp->if_softc = sc;
784	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
785	ifp->if_ioctl = vge_ioctl;
786	ifp->if_start = vge_start;
787	ifp->if_watchdog = vge_watchdog;
788#ifdef VGE_JUMBO
789	ifp->if_hardmtu = VGE_JUMBO_MTU;
790#endif
791	IFQ_SET_MAXLEN(&ifp->if_snd, VGE_IFQ_MAXLEN);
792	IFQ_SET_READY(&ifp->if_snd);
793
794	ifp->if_capabilities = IFCAP_VLAN_MTU | IFCAP_CSUM_IPv4 |
795				IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4;
796
797#if NVLAN > 0
798	ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING;
799#endif
800
801	/* Set interface name */
802	strlcpy(ifp->if_xname, sc->vge_dev.dv_xname, IFNAMSIZ);
803
804	/* Do MII setup */
805	sc->sc_mii.mii_ifp = ifp;
806	sc->sc_mii.mii_readreg = vge_miibus_readreg;
807	sc->sc_mii.mii_writereg = vge_miibus_writereg;
808	sc->sc_mii.mii_statchg = vge_miibus_statchg;
809	ifmedia_init(&sc->sc_mii.mii_media, 0,
810	    vge_ifmedia_upd, vge_ifmedia_sts);
811	mii_attach(self, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
812	    MII_OFFSET_ANY, MIIF_DOPAUSE);
813	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
814		printf("%s: no PHY found!\n", sc->vge_dev.dv_xname);
815		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL,
816		    0, NULL);
817		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL);
818	} else
819		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
820
821	timeout_set(&sc->timer_handle, vge_tick, sc);
822
823	/*
824	 * Call MI attach routine.
825	 */
826	if_attach(ifp);
827	ether_ifattach(ifp);
828}
829
830int
831vge_detach(struct device *self, int flags)
832{
833	struct vge_softc *sc = (void *)self;
834	struct ifnet *ifp = &sc->arpcom.ac_if;
835
836	pci_intr_disestablish(sc->sc_pc, sc->vge_intrhand);
837
838	vge_stop(sc);
839
840	/* Detach all PHYs */
841	mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
842
843	/* Delete any remaining media. */
844	ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
845
846	ether_ifdetach(ifp);
847	if_detach(ifp);
848
849	vge_freemem(sc);
850
851	bus_space_unmap(sc->vge_btag, sc->vge_bhandle, sc->vge_bsize);
852	return (0);
853}
854
855int
856vge_newbuf(struct vge_softc *sc, int idx, struct mbuf *m)
857{
858	struct mbuf		*m_new = NULL;
859	struct vge_rx_desc	*r;
860	bus_dmamap_t		rxmap = sc->vge_ldata.vge_rx_dmamap[idx];
861	int			i;
862
863	if (m == NULL) {
864		/* Allocate a new mbuf */
865		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
866		if (m_new == NULL)
867			return (ENOBUFS);
868
869		/* Allocate a cluster */
870		MCLGET(m_new, M_DONTWAIT);
871		if (!(m_new->m_flags & M_EXT)) {
872			m_freem(m_new);
873			return (ENOBUFS);
874		}
875
876		m = m_new;
877	} else
878		m->m_data = m->m_ext.ext_buf;
879
880	m->m_len = m->m_pkthdr.len = MCLBYTES;
881	/* Fix-up alignment so payload is doubleword-aligned */
882	/* XXX m_adj(m, ETHER_ALIGN); */
883
884	if (bus_dmamap_load_mbuf(sc->sc_dmat, rxmap, m, BUS_DMA_NOWAIT))
885		return (ENOBUFS);
886
887	if (rxmap->dm_nsegs > 1)
888		goto out;
889
890	/* Map the segments into RX descriptors */
891	r = &sc->vge_ldata.vge_rx_list[idx];
892
893	if (letoh32(r->vge_sts) & VGE_RDSTS_OWN) {
894		printf("%s: tried to map a busy RX descriptor\n",
895		    sc->vge_dev.dv_xname);
896		goto out;
897	}
898	r->vge_buflen = htole16(VGE_BUFLEN(rxmap->dm_segs[0].ds_len) | VGE_RXDESC_I);
899	r->vge_addrlo = htole32(VGE_ADDR_LO(rxmap->dm_segs[0].ds_addr));
900	r->vge_addrhi = htole16(VGE_ADDR_HI(rxmap->dm_segs[0].ds_addr) & 0xFFFF);
901	r->vge_sts = htole32(0);
902	r->vge_ctl = htole32(0);
903
904	/*
905	 * Note: the manual fails to document the fact that for
906	 * proper operation, the driver needs to replenish the RX
907	 * DMA ring 4 descriptors at a time (rather than one at a
908	 * time, like most chips). We can allocate the new buffers
909	 * but we should not set the OWN bits until we're ready
910	 * to hand back 4 of them in one shot.
911	 */
912#define VGE_RXCHUNK 4
913	sc->vge_rx_consumed++;
914	if (sc->vge_rx_consumed == VGE_RXCHUNK) {
915		for (i = idx; i != idx - sc->vge_rx_consumed; i--)
916			sc->vge_ldata.vge_rx_list[i].vge_sts |=
917			    htole32(VGE_RDSTS_OWN);
918		sc->vge_rx_consumed = 0;
919	}
920
921	sc->vge_ldata.vge_rx_mbuf[idx] = m;
922
923	bus_dmamap_sync(sc->sc_dmat, rxmap, 0,
924	    rxmap->dm_mapsize, BUS_DMASYNC_PREREAD);
925
926	return (0);
927out:
928	DPRINTF(("vge_newbuf: out of memory\n"));
929	if (m_new != NULL)
930		m_freem(m_new);
931	return (ENOMEM);
932}
933
934int
935vge_tx_list_init(struct vge_softc *sc)
936{
937	bzero(sc->vge_ldata.vge_tx_list, VGE_TX_LIST_SZ);
938	bzero(&sc->vge_ldata.vge_tx_mbuf,
939	    (VGE_TX_DESC_CNT * sizeof(struct mbuf *)));
940
941	bus_dmamap_sync(sc->sc_dmat,
942	    sc->vge_ldata.vge_tx_list_map, 0,
943	    sc->vge_ldata.vge_tx_list_map->dm_mapsize,
944	    BUS_DMASYNC_PREWRITE);
945	sc->vge_ldata.vge_tx_prodidx = 0;
946	sc->vge_ldata.vge_tx_considx = 0;
947	sc->vge_ldata.vge_tx_free = VGE_TX_DESC_CNT;
948
949	return (0);
950}
951
952/* Init RX descriptors and allocate mbufs with vge_newbuf()
953 * A ring is used, and last descriptor points to first. */
954int
955vge_rx_list_init(struct vge_softc *sc)
956{
957	int			i;
958
959	bzero(sc->vge_ldata.vge_rx_list, VGE_RX_LIST_SZ);
960	bzero(&sc->vge_ldata.vge_rx_mbuf,
961	    (VGE_RX_DESC_CNT * sizeof(struct mbuf *)));
962
963	sc->vge_rx_consumed = 0;
964
965	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
966		if (vge_newbuf(sc, i, NULL) == ENOBUFS)
967			return (ENOBUFS);
968	}
969
970	/* Flush the RX descriptors */
971
972	bus_dmamap_sync(sc->sc_dmat,
973	    sc->vge_ldata.vge_rx_list_map,
974	    0, sc->vge_ldata.vge_rx_list_map->dm_mapsize,
975	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
976
977	sc->vge_ldata.vge_rx_prodidx = 0;
978	sc->vge_rx_consumed = 0;
979	sc->vge_head = sc->vge_tail = NULL;
980
981	return (0);
982}
983
984/*
985 * RX handler. We support the reception of jumbo frames that have
986 * been fragmented across multiple 2K mbuf cluster buffers.
987 */
988void
989vge_rxeof(struct vge_softc *sc)
990{
991	struct mbuf		*m;
992	struct ifnet		*ifp;
993	int			i, total_len;
994	int			lim = 0;
995	struct vge_rx_desc	*cur_rx;
996	u_int32_t		rxstat, rxctl;
997
998	ifp = &sc->arpcom.ac_if;
999	i = sc->vge_ldata.vge_rx_prodidx;
1000
1001	/* Invalidate the descriptor memory */
1002
1003	bus_dmamap_sync(sc->sc_dmat,
1004	    sc->vge_ldata.vge_rx_list_map,
1005	    0, sc->vge_ldata.vge_rx_list_map->dm_mapsize,
1006	    BUS_DMASYNC_POSTREAD);
1007
1008	while (!VGE_OWN(&sc->vge_ldata.vge_rx_list[i])) {
1009		struct mbuf *m0 = NULL;
1010
1011		cur_rx = &sc->vge_ldata.vge_rx_list[i];
1012		m = sc->vge_ldata.vge_rx_mbuf[i];
1013		total_len = VGE_RXBYTES(cur_rx);
1014		rxstat = letoh32(cur_rx->vge_sts);
1015		rxctl = letoh32(cur_rx->vge_ctl);
1016
1017		/* Invalidate the RX mbuf and unload its map */
1018
1019		bus_dmamap_sync(sc->sc_dmat,
1020		    sc->vge_ldata.vge_rx_dmamap[i],
1021		    0, sc->vge_ldata.vge_rx_dmamap[i]->dm_mapsize,
1022		    BUS_DMASYNC_POSTWRITE);
1023		bus_dmamap_unload(sc->sc_dmat,
1024		    sc->vge_ldata.vge_rx_dmamap[i]);
1025
1026		/*
1027		 * If the 'start of frame' bit is set, this indicates
1028		 * either the first fragment in a multi-fragment receive,
1029		 * or an intermediate fragment. Either way, we want to
1030		 * accumulate the buffers.
1031		 */
1032		if (rxstat & VGE_RXPKT_SOF) {
1033			DPRINTF(("vge_rxeof: SOF\n"));
1034			m->m_len = MCLBYTES;
1035			if (sc->vge_head == NULL)
1036				sc->vge_head = sc->vge_tail = m;
1037			else {
1038				m->m_flags &= ~M_PKTHDR;
1039				sc->vge_tail->m_next = m;
1040				sc->vge_tail = m;
1041			}
1042			vge_newbuf(sc, i, NULL);
1043			VGE_RX_DESC_INC(i);
1044			continue;
1045		}
1046
1047		/*
1048		 * Bad/error frames will have the RXOK bit cleared.
1049		 * However, there's one error case we want to allow:
1050		 * if a VLAN tagged frame arrives and the chip can't
1051		 * match it against the CAM filter, it considers this
1052		 * a 'VLAN CAM filter miss' and clears the 'RXOK' bit.
1053		 * We don't want to drop the frame though: our VLAN
1054		 * filtering is done in software.
1055		 */
1056		if (!(rxstat & VGE_RDSTS_RXOK) && !(rxstat & VGE_RDSTS_VIDM)
1057		    && !(rxstat & VGE_RDSTS_CSUMERR)) {
1058			ifp->if_ierrors++;
1059			/*
1060			 * If this is part of a multi-fragment packet,
1061			 * discard all the pieces.
1062			 */
1063			if (sc->vge_head != NULL) {
1064				m_freem(sc->vge_head);
1065				sc->vge_head = sc->vge_tail = NULL;
1066			}
1067			vge_newbuf(sc, i, m);
1068			VGE_RX_DESC_INC(i);
1069			continue;
1070		}
1071
1072		/*
1073		 * If allocating a replacement mbuf fails,
1074		 * reload the current one.
1075		 */
1076
1077		if (vge_newbuf(sc, i, NULL) == ENOBUFS) {
1078			if (sc->vge_head != NULL) {
1079				m_freem(sc->vge_head);
1080				sc->vge_head = sc->vge_tail = NULL;
1081			}
1082
1083			m0 = m_devget(mtod(m, char *),
1084			    total_len - ETHER_CRC_LEN, ETHER_ALIGN, ifp, NULL);
1085			vge_newbuf(sc, i, m);
1086			if (m0 == NULL) {
1087				ifp->if_ierrors++;
1088				continue;
1089			}
1090			m = m0;
1091
1092			VGE_RX_DESC_INC(i);
1093			continue;
1094		}
1095
1096		VGE_RX_DESC_INC(i);
1097
1098		if (sc->vge_head != NULL) {
1099			m->m_len = total_len % MCLBYTES;
1100			/*
1101			 * Special case: if there's 4 bytes or less
1102			 * in this buffer, the mbuf can be discarded:
1103			 * the last 4 bytes is the CRC, which we don't
1104			 * care about anyway.
1105			 */
1106			if (m->m_len <= ETHER_CRC_LEN) {
1107				sc->vge_tail->m_len -=
1108				    (ETHER_CRC_LEN - m->m_len);
1109				m_freem(m);
1110			} else {
1111				m->m_len -= ETHER_CRC_LEN;
1112				m->m_flags &= ~M_PKTHDR;
1113				sc->vge_tail->m_next = m;
1114			}
1115			m = sc->vge_head;
1116			sc->vge_head = sc->vge_tail = NULL;
1117			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1118		} else
1119			m->m_pkthdr.len = m->m_len =
1120			    (total_len - ETHER_CRC_LEN);
1121
1122#ifdef __STRICT_ALIGNMENT
1123		bcopy(m->m_data, m->m_data + ETHER_ALIGN, total_len);
1124		m->m_data += ETHER_ALIGN;
1125#endif
1126		ifp->if_ipackets++;
1127		m->m_pkthdr.rcvif = ifp;
1128
1129		/* Do RX checksumming */
1130
1131		/* Check IP header checksum */
1132		if ((rxctl & VGE_RDCTL_IPPKT) &&
1133		    (rxctl & VGE_RDCTL_IPCSUMOK))
1134			m->m_pkthdr.csum_flags |= M_IPV4_CSUM_IN_OK;
1135
1136		/* Check TCP/UDP checksum */
1137		if ((rxctl & (VGE_RDCTL_TCPPKT|VGE_RDCTL_UDPPKT)) &&
1138		    (rxctl & VGE_RDCTL_PROTOCSUMOK))
1139			m->m_pkthdr.csum_flags |= M_TCP_CSUM_IN_OK | M_UDP_CSUM_IN_OK;
1140
1141#if NVLAN > 0
1142		if (rxstat & VGE_RDSTS_VTAG) {
1143			m->m_pkthdr.ether_vtag = swap16(rxctl & VGE_RDCTL_VLANID);
1144			m->m_flags |= M_VLANTAG;
1145		}
1146#endif
1147
1148#if NBPFILTER > 0
1149		if (ifp->if_bpf)
1150			bpf_mtap_ether(ifp->if_bpf, m, BPF_DIRECTION_IN);
1151#endif
1152		ether_input_mbuf(ifp, m);
1153
1154		lim++;
1155		if (lim == VGE_RX_DESC_CNT)
1156			break;
1157	}
1158
1159	/* Flush the RX DMA ring */
1160	bus_dmamap_sync(sc->sc_dmat,
1161	    sc->vge_ldata.vge_rx_list_map,
1162	    0, sc->vge_ldata.vge_rx_list_map->dm_mapsize,
1163	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1164
1165	sc->vge_ldata.vge_rx_prodidx = i;
1166	CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, lim);
1167}
1168
1169void
1170vge_txeof(struct vge_softc *sc)
1171{
1172	struct ifnet		*ifp;
1173	u_int32_t		txstat;
1174	int			idx;
1175
1176	ifp = &sc->arpcom.ac_if;
1177	idx = sc->vge_ldata.vge_tx_considx;
1178
1179	/* Invalidate the TX descriptor list */
1180
1181	bus_dmamap_sync(sc->sc_dmat,
1182	    sc->vge_ldata.vge_tx_list_map,
1183	    0, sc->vge_ldata.vge_tx_list_map->dm_mapsize,
1184	    BUS_DMASYNC_POSTREAD);
1185
1186	/* Transmitted frames can be now free'd from the TX list */
1187	while (idx != sc->vge_ldata.vge_tx_prodidx) {
1188		txstat = letoh32(sc->vge_ldata.vge_tx_list[idx].vge_sts);
1189		if (txstat & VGE_TDSTS_OWN)
1190			break;
1191
1192		m_freem(sc->vge_ldata.vge_tx_mbuf[idx]);
1193		sc->vge_ldata.vge_tx_mbuf[idx] = NULL;
1194		bus_dmamap_unload(sc->sc_dmat,
1195		    sc->vge_ldata.vge_tx_dmamap[idx]);
1196		if (txstat & (VGE_TDSTS_EXCESSCOLL|VGE_TDSTS_COLL))
1197			ifp->if_collisions++;
1198		if (txstat & VGE_TDSTS_TXERR)
1199			ifp->if_oerrors++;
1200		else
1201			ifp->if_opackets++;
1202
1203		sc->vge_ldata.vge_tx_free++;
1204		VGE_TX_DESC_INC(idx);
1205	}
1206
1207	/* No changes made to the TX ring, so no flush needed */
1208
1209	if (idx != sc->vge_ldata.vge_tx_considx) {
1210		sc->vge_ldata.vge_tx_considx = idx;
1211		ifp->if_flags &= ~IFF_OACTIVE;
1212		ifp->if_timer = 0;
1213	}
1214
1215	/*
1216	 * If not all descriptors have been released reaped yet,
1217	 * reload the timer so that we will eventually get another
1218	 * interrupt that will cause us to re-enter this routine.
1219	 * This is done in case the transmitter has gone idle.
1220	 */
1221	if (sc->vge_ldata.vge_tx_free != VGE_TX_DESC_CNT)
1222		CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE);
1223}
1224
1225void
1226vge_tick(void *xsc)
1227{
1228	struct vge_softc	*sc = xsc;
1229	struct ifnet		*ifp = &sc->arpcom.ac_if;
1230	struct mii_data		*mii = &sc->sc_mii;
1231	int s;
1232
1233	s = splnet();
1234
1235	mii_tick(mii);
1236
1237	if (sc->vge_link) {
1238		if (!(mii->mii_media_status & IFM_ACTIVE)) {
1239			sc->vge_link = 0;
1240			ifp->if_link_state = LINK_STATE_DOWN;
1241			if_link_state_change(ifp);
1242		}
1243	} else {
1244		if (mii->mii_media_status & IFM_ACTIVE &&
1245		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1246			sc->vge_link = 1;
1247			if (mii->mii_media_status & IFM_FDX)
1248				ifp->if_link_state = LINK_STATE_FULL_DUPLEX;
1249			else
1250				ifp->if_link_state = LINK_STATE_HALF_DUPLEX;
1251			if_link_state_change(ifp);
1252			if (!IFQ_IS_EMPTY(&ifp->if_snd))
1253				vge_start(ifp);
1254		}
1255	}
1256	timeout_add_sec(&sc->timer_handle, 1);
1257	splx(s);
1258}
1259
1260int
1261vge_intr(void *arg)
1262{
1263	struct vge_softc	*sc = arg;
1264	struct ifnet		*ifp;
1265	u_int32_t		status;
1266	int			claimed = 0;
1267
1268	ifp = &sc->arpcom.ac_if;
1269
1270	if (!(ifp->if_flags & IFF_UP))
1271		return 0;
1272
1273	/* Disable interrupts */
1274	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
1275
1276	for (;;) {
1277		status = CSR_READ_4(sc, VGE_ISR);
1278		DPRINTFN(3, ("vge_intr: status=%#x\n", status));
1279
1280		/* If the card has gone away the read returns 0xffffffff. */
1281		if (status == 0xFFFFFFFF)
1282			break;
1283
1284		if (status) {
1285			CSR_WRITE_4(sc, VGE_ISR, status);
1286		}
1287
1288		if ((status & VGE_INTRS) == 0)
1289			break;
1290
1291		claimed = 1;
1292
1293		if (status & (VGE_ISR_RXOK|VGE_ISR_RXOK_HIPRIO))
1294			vge_rxeof(sc);
1295
1296		if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
1297			DPRINTFN(2, ("vge_intr: RX error, recovering\n"));
1298			vge_rxeof(sc);
1299			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1300			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1301		}
1302
1303		if (status & (VGE_ISR_TXOK0|VGE_ISR_TIMER0))
1304			vge_txeof(sc);
1305
1306		if (status & (VGE_ISR_TXDMA_STALL|VGE_ISR_RXDMA_STALL)) {
1307			DPRINTFN(2, ("DMA_STALL\n"));
1308			vge_init(ifp);
1309		}
1310
1311		if (status & VGE_ISR_LINKSTS) {
1312			timeout_del(&sc->timer_handle);
1313			vge_tick(sc);
1314		}
1315	}
1316
1317	/* Re-enable interrupts */
1318	CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
1319
1320	if (!IFQ_IS_EMPTY(&ifp->if_snd))
1321		vge_start(ifp);
1322
1323	return (claimed);
1324}
1325
1326/*
1327 * Encapsulate an mbuf chain into the TX ring by combining it w/
1328 * the descriptors.
1329 */
1330int
1331vge_encap(struct vge_softc *sc, struct mbuf *m_head, int idx)
1332{
1333	struct ifnet		*ifp = &sc->arpcom.ac_if;
1334	bus_dmamap_t		txmap;
1335	struct vge_tx_desc	*d = NULL;
1336	struct vge_tx_frag	*f;
1337	struct mbuf		*mnew = NULL;
1338	int			error, frag;
1339	u_int32_t		vge_flags;
1340
1341	vge_flags = 0;
1342
1343	if (m_head->m_pkthdr.csum_flags & M_IPV4_CSUM_OUT)
1344		vge_flags |= VGE_TDCTL_IPCSUM;
1345	if (m_head->m_pkthdr.csum_flags & M_TCP_CSUM_OUT)
1346		vge_flags |= VGE_TDCTL_TCPCSUM;
1347	if (m_head->m_pkthdr.csum_flags & M_UDP_CSUM_OUT)
1348		vge_flags |= VGE_TDCTL_UDPCSUM;
1349
1350	txmap = sc->vge_ldata.vge_tx_dmamap[idx];
1351repack:
1352	error = bus_dmamap_load_mbuf(sc->sc_dmat, txmap,
1353	    m_head, BUS_DMA_NOWAIT);
1354	if (error) {
1355		printf("%s: can't map mbuf (error %d)\n",
1356		    sc->vge_dev.dv_xname, error);
1357		return (ENOBUFS);
1358	}
1359
1360	d = &sc->vge_ldata.vge_tx_list[idx];
1361	/* If owned by chip, fail */
1362	if (letoh32(d->vge_sts) & VGE_TDSTS_OWN)
1363		return (ENOBUFS);
1364
1365	for (frag = 0; frag < txmap->dm_nsegs; frag++) {
1366		/* Check if we have used all 7 fragments. */
1367		if (frag == VGE_TX_FRAGS)
1368			break;
1369		f = &d->vge_frag[frag];
1370		f->vge_buflen = htole16(VGE_BUFLEN(txmap->dm_segs[frag].ds_len));
1371		f->vge_addrlo = htole32(VGE_ADDR_LO(txmap->dm_segs[frag].ds_addr));
1372		f->vge_addrhi = htole16(VGE_ADDR_HI(txmap->dm_segs[frag].ds_addr) & 0xFFFF);
1373	}
1374
1375	/*
1376	 * We used up all 7 fragments!  Now what we have to do is
1377	 * copy the data into a mbuf cluster and map that.
1378	 */
1379	if (frag == VGE_TX_FRAGS) {
1380		MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1381		if (mnew == NULL)
1382			return (ENOBUFS);
1383
1384		if (m_head->m_pkthdr.len > MHLEN) {
1385			MCLGET(mnew, M_DONTWAIT);
1386			if (!(mnew->m_flags & M_EXT)) {
1387				m_freem(mnew);
1388				return (ENOBUFS);
1389			}
1390		}
1391		m_copydata(m_head, 0, m_head->m_pkthdr.len,
1392		    mtod(mnew, caddr_t));
1393		mnew->m_pkthdr.len = mnew->m_len = m_head->m_pkthdr.len;
1394		IFQ_DEQUEUE(&ifp->if_snd, m_head);
1395		m_freem(m_head);
1396		m_head = mnew;
1397		goto repack;
1398	}
1399
1400	/* This chip does not do auto-padding */
1401	if (m_head->m_pkthdr.len < VGE_MIN_FRAMELEN) {
1402		f = &d->vge_frag[frag];
1403
1404		f->vge_buflen = htole16(VGE_BUFLEN(VGE_MIN_FRAMELEN -
1405		    m_head->m_pkthdr.len));
1406		f->vge_addrlo = htole32(VGE_ADDR_LO(txmap->dm_segs[0].ds_addr));
1407		f->vge_addrhi = htole16(VGE_ADDR_HI(txmap->dm_segs[0].ds_addr) & 0xFFFF);
1408		m_head->m_pkthdr.len = VGE_MIN_FRAMELEN;
1409		frag++;
1410	}
1411	/* For some reason, we need to tell the card fragment + 1 */
1412	frag++;
1413
1414	bus_dmamap_sync(sc->sc_dmat, txmap, 0, txmap->dm_mapsize,
1415	    BUS_DMASYNC_PREWRITE);
1416
1417	d->vge_sts = htole32(m_head->m_pkthdr.len << 16);
1418	d->vge_ctl = htole32(vge_flags|(frag << 28) | VGE_TD_LS_NORM);
1419
1420	if (m_head->m_pkthdr.len > ETHERMTU + ETHER_HDR_LEN)
1421		d->vge_ctl |= htole32(VGE_TDCTL_JUMBO);
1422
1423#if NVLAN > 0
1424	/* Set up hardware VLAN tagging. */
1425	if (m_head->m_flags & M_VLANTAG) {
1426		d->vge_ctl |= htole32(m_head->m_pkthdr.ether_vtag |
1427		    VGE_TDCTL_VTAG);
1428	}
1429#endif
1430
1431	sc->vge_ldata.vge_tx_dmamap[idx] = txmap;
1432	sc->vge_ldata.vge_tx_mbuf[idx] = m_head;
1433	sc->vge_ldata.vge_tx_free--;
1434	sc->vge_ldata.vge_tx_list[idx].vge_sts |= htole32(VGE_TDSTS_OWN);
1435
1436	idx++;
1437	if (mnew == NULL) {
1438		/* if mbuf is coalesced, it is already dequeued */
1439		IFQ_DEQUEUE(&ifp->if_snd, m_head);
1440	}
1441	return (0);
1442}
1443
1444/*
1445 * Main transmit routine.
1446 */
1447void
1448vge_start(struct ifnet *ifp)
1449{
1450	struct vge_softc	*sc;
1451	struct mbuf		*m_head = NULL;
1452	int			idx, pidx = 0;
1453
1454	sc = ifp->if_softc;
1455
1456	if (!sc->vge_link || ifp->if_flags & IFF_OACTIVE)
1457		return;
1458
1459	if (IFQ_IS_EMPTY(&ifp->if_snd))
1460		return;
1461
1462	idx = sc->vge_ldata.vge_tx_prodidx;
1463
1464	pidx = idx - 1;
1465	if (pidx < 0)
1466		pidx = VGE_TX_DESC_CNT - 1;
1467
1468	while (sc->vge_ldata.vge_tx_mbuf[idx] == NULL) {
1469		IFQ_POLL(&ifp->if_snd, m_head);
1470		if (m_head == NULL)
1471			break;
1472
1473		/*
1474		 * If there's a BPF listener, bounce a copy of this frame
1475		 * to him.
1476		 */
1477#if NBPFILTER > 0
1478		if (ifp->if_bpf)
1479			bpf_mtap_ether(ifp->if_bpf, m_head, BPF_DIRECTION_OUT);
1480#endif
1481
1482		if (vge_encap(sc, m_head, idx)) {
1483			ifp->if_flags |= IFF_OACTIVE;
1484			break;
1485		}
1486
1487		sc->vge_ldata.vge_tx_list[pidx].vge_frag[0].vge_buflen |=
1488		    htole16(VGE_TXDESC_Q);
1489
1490		pidx = idx;
1491		VGE_TX_DESC_INC(idx);
1492	}
1493
1494	if (idx == sc->vge_ldata.vge_tx_prodidx) {
1495		return;
1496	}
1497
1498	/* Flush the TX descriptors */
1499
1500	bus_dmamap_sync(sc->sc_dmat,
1501	    sc->vge_ldata.vge_tx_list_map,
1502	    0, sc->vge_ldata.vge_tx_list_map->dm_mapsize,
1503	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1504
1505	/* Issue a transmit command. */
1506	CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_WAK0);
1507
1508	sc->vge_ldata.vge_tx_prodidx = idx;
1509
1510	/*
1511	 * Use the countdown timer for interrupt moderation.
1512	 * 'TX done' interrupts are disabled. Instead, we reset the
1513	 * countdown timer, which will begin counting until it hits
1514	 * the value in the SSTIMER register, and then trigger an
1515	 * interrupt. Each time we set the TIMER0_ENABLE bit, the
1516	 * the timer count is reloaded. Only when the transmitter
1517	 * is idle will the timer hit 0 and an interrupt fire.
1518	 */
1519	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE);
1520
1521	/*
1522	 * Set a timeout in case the chip goes out to lunch.
1523	 */
1524	ifp->if_timer = 5;
1525}
1526
1527int
1528vge_init(struct ifnet *ifp)
1529{
1530	struct vge_softc	*sc = ifp->if_softc;
1531	int			i;
1532
1533	/*
1534	 * Cancel pending I/O and free all RX/TX buffers.
1535	 */
1536	vge_stop(sc);
1537	vge_reset(sc);
1538
1539	/* Initialize RX descriptors list */
1540	if (vge_rx_list_init(sc) == ENOBUFS) {
1541		printf("%s: init failed: no memory for RX buffers\n",
1542		    sc->vge_dev.dv_xname);
1543		vge_stop(sc);
1544		return (ENOBUFS);
1545	}
1546	/* Initialize TX descriptors */
1547	if (vge_tx_list_init(sc) == ENOBUFS) {
1548		printf("%s: init failed: no memory for TX buffers\n",
1549		    sc->vge_dev.dv_xname);
1550		vge_stop(sc);
1551		return (ENOBUFS);
1552	}
1553
1554	/* Set our station address */
1555	for (i = 0; i < ETHER_ADDR_LEN; i++)
1556		CSR_WRITE_1(sc, VGE_PAR0 + i, sc->arpcom.ac_enaddr[i]);
1557
1558	/* Set receive FIFO threshold */
1559	CSR_CLRBIT_1(sc, VGE_RXCFG, VGE_RXCFG_FIFO_THR);
1560	CSR_SETBIT_1(sc, VGE_RXCFG, VGE_RXFIFOTHR_128BYTES);
1561
1562	if (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) {
1563		/*
1564		 * Allow transmission and reception of VLAN tagged
1565		 * frames.
1566		 */
1567		CSR_CLRBIT_1(sc, VGE_RXCFG, VGE_RXCFG_VTAGOPT);
1568		CSR_SETBIT_1(sc, VGE_RXCFG, VGE_VTAG_OPT2);
1569	}
1570
1571	/* Set DMA burst length */
1572	CSR_CLRBIT_1(sc, VGE_DMACFG0, VGE_DMACFG0_BURSTLEN);
1573	CSR_SETBIT_1(sc, VGE_DMACFG0, VGE_DMABURST_128);
1574
1575	CSR_SETBIT_1(sc, VGE_TXCFG, VGE_TXCFG_ARB_PRIO|VGE_TXCFG_NONBLK);
1576
1577	/* Set collision backoff algorithm */
1578	CSR_CLRBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_CRANDOM|
1579	    VGE_CHIPCFG1_CAP|VGE_CHIPCFG1_MBA|VGE_CHIPCFG1_BAKOPT);
1580	CSR_SETBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_OFSET);
1581
1582	/* Disable LPSEL field in priority resolution */
1583	CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_LPSEL_DIS);
1584
1585	/*
1586	 * Load the addresses of the DMA queues into the chip.
1587	 * Note that we only use one transmit queue.
1588	 */
1589	CSR_WRITE_4(sc, VGE_TXDESC_ADDR_LO0,
1590	    VGE_ADDR_LO(sc->vge_ldata.vge_tx_listseg.ds_addr));
1591	CSR_WRITE_2(sc, VGE_TXDESCNUM, VGE_TX_DESC_CNT - 1);
1592
1593	CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO,
1594	    VGE_ADDR_LO(sc->vge_ldata.vge_rx_listseg.ds_addr));
1595	CSR_WRITE_2(sc, VGE_RXDESCNUM, VGE_RX_DESC_CNT - 1);
1596	CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, VGE_RX_DESC_CNT);
1597
1598	/* Enable and wake up the RX descriptor queue */
1599	CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1600	CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1601
1602	/* Enable the TX descriptor queue */
1603	CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_RUN0);
1604
1605	/* Set up the receive filter -- allow large frames for VLANs. */
1606	CSR_WRITE_1(sc, VGE_RXCTL, VGE_RXCTL_RX_GIANT);
1607
1608	/* Program promiscuous mode and multicast filters. */
1609	vge_iff(sc);
1610
1611	/* Initialize pause timer. */
1612	CSR_WRITE_2(sc, VGE_TX_PAUSE_TIMER, 0xFFFF);
1613	/*
1614	 * Initialize flow control parameters.
1615	 *  TX XON high threshold : 48
1616	 *  TX pause low threshold : 24
1617	 *  Disable half-duplex flow control
1618	 */
1619	CSR_WRITE_1(sc, VGE_CRC2, 0xFF);
1620	CSR_WRITE_1(sc, VGE_CRS2, VGE_CR2_XON_ENABLE | 0x0B);
1621
1622	/* Enable jumbo frame reception (if desired) */
1623
1624	/* Start the MAC. */
1625	CSR_WRITE_1(sc, VGE_CRC0, VGE_CR0_STOP);
1626	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_NOPOLL);
1627	CSR_WRITE_1(sc, VGE_CRS0,
1628	    VGE_CR0_TX_ENABLE|VGE_CR0_RX_ENABLE|VGE_CR0_START);
1629
1630	/*
1631	 * Configure one-shot timer for microsecond
1632	 * resulution and load it for 500 usecs.
1633	 */
1634	CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_TIMER0_RES);
1635	CSR_WRITE_2(sc, VGE_SSTIMER, 400);
1636
1637	/*
1638	 * Configure interrupt moderation for receive. Enable
1639	 * the holdoff counter and load it, and set the RX
1640	 * suppression count to the number of descriptors we
1641	 * want to allow before triggering an interrupt.
1642	 * The holdoff timer is in units of 20 usecs.
1643	 */
1644
1645#ifdef notyet
1646	CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_TXINTSUP_DISABLE);
1647	/* Select the interrupt holdoff timer page. */
1648	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
1649	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_INTHLDOFF);
1650	CSR_WRITE_1(sc, VGE_INTHOLDOFF, 10); /* ~200 usecs */
1651
1652	/* Enable use of the holdoff timer. */
1653	CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_HOLDOFF);
1654	CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_SC_RELOAD);
1655
1656	/* Select the RX suppression threshold page. */
1657	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
1658	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_RXSUPPTHR);
1659	CSR_WRITE_1(sc, VGE_RXSUPPTHR, 64); /* interrupt after 64 packets */
1660
1661	/* Restore the page select bits. */
1662	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
1663	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
1664#endif
1665
1666	/*
1667	 * Enable interrupts.
1668	 */
1669	CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
1670	CSR_WRITE_4(sc, VGE_ISR, 0);
1671	CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
1672
1673	/* Restore BMCR state */
1674	mii_mediachg(&sc->sc_mii);
1675
1676	ifp->if_flags |= IFF_RUNNING;
1677	ifp->if_flags &= ~IFF_OACTIVE;
1678
1679	sc->vge_link = 0;
1680
1681	if (!timeout_pending(&sc->timer_handle))
1682		timeout_add_sec(&sc->timer_handle, 1);
1683
1684	return (0);
1685}
1686
1687/*
1688 * Set media options.
1689 */
1690int
1691vge_ifmedia_upd(struct ifnet *ifp)
1692{
1693	struct vge_softc *sc = ifp->if_softc;
1694
1695	return (mii_mediachg(&sc->sc_mii));
1696}
1697
1698/*
1699 * Report current media status.
1700 */
1701void
1702vge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1703{
1704	struct vge_softc *sc = ifp->if_softc;
1705
1706	mii_pollstat(&sc->sc_mii);
1707	ifmr->ifm_active = sc->sc_mii.mii_media_active;
1708	ifmr->ifm_status = sc->sc_mii.mii_media_status;
1709}
1710
1711void
1712vge_miibus_statchg(struct device *dev)
1713{
1714	struct vge_softc	*sc = (struct vge_softc *)dev;
1715	struct mii_data		*mii;
1716	struct ifmedia_entry	*ife;
1717
1718	mii = &sc->sc_mii;
1719	ife = mii->mii_media.ifm_cur;
1720
1721	/*
1722	 * If the user manually selects a media mode, we need to turn
1723	 * on the forced MAC mode bit in the DIAGCTL register. If the
1724	 * user happens to choose a full duplex mode, we also need to
1725	 * set the 'force full duplex' bit. This applies only to
1726	 * 10Mbps and 100Mbps speeds. In autoselect mode, forced MAC
1727	 * mode is disabled, and in 1000baseT mode, full duplex is
1728	 * always implied, so we turn on the forced mode bit but leave
1729	 * the FDX bit cleared.
1730	 */
1731
1732	switch (IFM_SUBTYPE(ife->ifm_media)) {
1733	case IFM_AUTO:
1734		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
1735		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
1736		break;
1737	case IFM_1000_T:
1738		CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
1739		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
1740		break;
1741	case IFM_100_TX:
1742	case IFM_10_T:
1743		CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
1744		if ((ife->ifm_media & IFM_GMASK) == IFM_FDX) {
1745			CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
1746		} else {
1747			CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
1748		}
1749		break;
1750	default:
1751		printf("%s: unknown media type: %x\n",
1752		    sc->vge_dev.dv_xname, IFM_SUBTYPE(ife->ifm_media));
1753		break;
1754	}
1755
1756	/*
1757	 * 802.3x flow control
1758	*/
1759	CSR_WRITE_1(sc, VGE_CRC2, VGE_CR2_FDX_TXFLOWCTL_ENABLE |
1760	    VGE_CR2_FDX_RXFLOWCTL_ENABLE);
1761	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1762		CSR_WRITE_1(sc, VGE_CRS2, VGE_CR2_FDX_TXFLOWCTL_ENABLE);
1763	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1764		CSR_WRITE_1(sc, VGE_CRS2, VGE_CR2_FDX_RXFLOWCTL_ENABLE);
1765}
1766
1767int
1768vge_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1769{
1770	struct vge_softc	*sc = ifp->if_softc;
1771	struct ifaddr		*ifa = (struct ifaddr *) data;
1772	struct ifreq		*ifr = (struct ifreq *) data;
1773	int			s, error = 0;
1774
1775	s = splnet();
1776
1777	switch (command) {
1778	case SIOCSIFADDR:
1779		ifp->if_flags |= IFF_UP;
1780		if (!(ifp->if_flags & IFF_RUNNING))
1781			vge_init(ifp);
1782#ifdef INET
1783		if (ifa->ifa_addr->sa_family == AF_INET)
1784			arp_ifinit(&sc->arpcom, ifa);
1785#endif
1786		break;
1787
1788	case SIOCSIFFLAGS:
1789		if (ifp->if_flags & IFF_UP) {
1790			if (ifp->if_flags & IFF_RUNNING)
1791				error = ENETRESET;
1792			else
1793				vge_init(ifp);
1794		} else {
1795			if (ifp->if_flags & IFF_RUNNING)
1796				vge_stop(sc);
1797		}
1798		break;
1799
1800	case SIOCGIFMEDIA:
1801	case SIOCSIFMEDIA:
1802		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, command);
1803		break;
1804
1805	default:
1806		error = ether_ioctl(ifp, &sc->arpcom, command, data);
1807	}
1808
1809	if (error == ENETRESET) {
1810		if (ifp->if_flags & IFF_RUNNING)
1811			vge_iff(sc);
1812		error = 0;
1813	}
1814
1815	splx(s);
1816	return (error);
1817}
1818
1819void
1820vge_watchdog(struct ifnet *ifp)
1821{
1822	struct vge_softc *sc = ifp->if_softc;
1823	int s;
1824
1825	s = splnet();
1826	printf("%s: watchdog timeout\n", sc->vge_dev.dv_xname);
1827	ifp->if_oerrors++;
1828
1829	vge_txeof(sc);
1830	vge_rxeof(sc);
1831
1832	vge_init(ifp);
1833
1834	splx(s);
1835}
1836
1837/*
1838 * Stop the adapter and free any mbufs allocated to the
1839 * RX and TX lists.
1840 */
1841void
1842vge_stop(struct vge_softc *sc)
1843{
1844	int			i;
1845	struct ifnet		*ifp;
1846
1847	ifp = &sc->arpcom.ac_if;
1848	ifp->if_timer = 0;
1849
1850	timeout_del(&sc->timer_handle);
1851
1852	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1853
1854	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
1855	CSR_WRITE_1(sc, VGE_CRS0, VGE_CR0_STOP);
1856	CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
1857	CSR_WRITE_2(sc, VGE_TXQCSRC, 0xFFFF);
1858	CSR_WRITE_1(sc, VGE_RXQCSRC, 0xFF);
1859	CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO, 0);
1860
1861	if (sc->vge_head != NULL) {
1862		m_freem(sc->vge_head);
1863		sc->vge_head = sc->vge_tail = NULL;
1864	}
1865
1866	/* Free the TX list buffers. */
1867	for (i = 0; i < VGE_TX_DESC_CNT; i++) {
1868		if (sc->vge_ldata.vge_tx_mbuf[i] != NULL) {
1869			bus_dmamap_unload(sc->sc_dmat,
1870			    sc->vge_ldata.vge_tx_dmamap[i]);
1871			m_freem(sc->vge_ldata.vge_tx_mbuf[i]);
1872			sc->vge_ldata.vge_tx_mbuf[i] = NULL;
1873		}
1874	}
1875
1876	/* Free the RX list buffers. */
1877	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
1878		if (sc->vge_ldata.vge_rx_mbuf[i] != NULL) {
1879			bus_dmamap_unload(sc->sc_dmat,
1880			    sc->vge_ldata.vge_rx_dmamap[i]);
1881			m_freem(sc->vge_ldata.vge_rx_mbuf[i]);
1882			sc->vge_ldata.vge_rx_mbuf[i] = NULL;
1883		}
1884	}
1885}
1886