if_vge.c revision 1.41
1/*	$OpenBSD: if_vge.c,v 1.41 2008/10/22 05:31:29 brad Exp $	*/
2/*	$FreeBSD: if_vge.c,v 1.3 2004/09/11 22:13:25 wpaul Exp $	*/
3/*
4 * Copyright (c) 2004
5 *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 *    must display the following acknowledgement:
17 *	This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 *    may be used to endorse or promote products derived from this software
20 *    without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35/*
36 * VIA Networking Technologies VT612x PCI gigabit ethernet NIC driver.
37 *
38 * Written by Bill Paul <wpaul@windriver.com>
39 * Senior Networking Software Engineer
40 * Wind River Systems
41 *
42 * Ported to OpenBSD by Peter Valchev <pvalchev@openbsd.org>
43 */
44
45/*
46 * The VIA Networking VT6122 is a 32bit, 33/66MHz PCI device that
47 * combines a tri-speed ethernet MAC and PHY, with the following
48 * features:
49 *
50 *	o Jumbo frame support up to 16K
51 *	o Transmit and receive flow control
52 *	o IPv4 checksum offload
53 *	o VLAN tag insertion and stripping
54 *	o TCP large send
55 *	o 64-bit multicast hash table filter
56 *	o 64 entry CAM filter
57 *	o 16K RX FIFO and 48K TX FIFO memory
58 *	o Interrupt moderation
59 *
60 * The VT6122 supports up to four transmit DMA queues. The descriptors
61 * in the transmit ring can address up to 7 data fragments; frames which
62 * span more than 7 data buffers must be coalesced, but in general the
63 * BSD TCP/IP stack rarely generates frames more than 2 or 3 fragments
64 * long. The receive descriptors address only a single buffer.
65 *
66 * There are two peculiar design issues with the VT6122. One is that
67 * receive data buffers must be aligned on a 32-bit boundary. This is
68 * not a problem where the VT6122 is used as a LOM device in x86-based
69 * systems, but on architectures that generate unaligned access traps, we
70 * have to do some copying.
71 *
72 * The other issue has to do with the way 64-bit addresses are handled.
73 * The DMA descriptors only allow you to specify 48 bits of addressing
74 * information. The remaining 16 bits are specified using one of the
75 * I/O registers. If you only have a 32-bit system, then this isn't
76 * an issue, but if you have a 64-bit system and more than 4GB of
77 * memory, you must have to make sure your network data buffers reside
78 * in the same 48-bit 'segment.'
79 *
80 * Special thanks to Ryan Fu at VIA Networking for providing documentation
81 * and sample NICs for testing.
82 */
83
84#include "bpfilter.h"
85#include "vlan.h"
86
87#include <sys/param.h>
88#include <sys/endian.h>
89#include <sys/systm.h>
90#include <sys/sockio.h>
91#include <sys/mbuf.h>
92#include <sys/malloc.h>
93#include <sys/kernel.h>
94#include <sys/device.h>
95#include <sys/timeout.h>
96#include <sys/socket.h>
97
98#include <net/if.h>
99#include <net/if_dl.h>
100#include <net/if_media.h>
101
102#ifdef INET
103#include <netinet/in.h>
104#include <netinet/in_systm.h>
105#include <netinet/in_var.h>
106#include <netinet/ip.h>
107#include <netinet/if_ether.h>
108#endif
109
110#if NVLAN > 0
111#include <net/if_types.h>
112#include <net/if_vlan_var.h>
113#endif
114
115#if NBPFILTER > 0
116#include <net/bpf.h>
117#endif
118
119#include <dev/mii/mii.h>
120#include <dev/mii/miivar.h>
121
122#include <dev/pci/pcireg.h>
123#include <dev/pci/pcivar.h>
124#include <dev/pci/pcidevs.h>
125
126#include <dev/pci/if_vgereg.h>
127#include <dev/pci/if_vgevar.h>
128
129int vge_probe		(struct device *, void *, void *);
130void vge_attach		(struct device *, struct device *, void *);
131
132int vge_encap		(struct vge_softc *, struct mbuf *, int);
133
134int vge_allocmem		(struct vge_softc *);
135int vge_newbuf		(struct vge_softc *, int, struct mbuf *);
136int vge_rx_list_init	(struct vge_softc *);
137int vge_tx_list_init	(struct vge_softc *);
138void vge_rxeof		(struct vge_softc *);
139void vge_txeof		(struct vge_softc *);
140int vge_intr		(void *);
141void vge_tick		(void *);
142void vge_start		(struct ifnet *);
143int vge_ioctl		(struct ifnet *, u_long, caddr_t);
144int vge_init		(struct ifnet *);
145void vge_stop		(struct vge_softc *);
146void vge_watchdog	(struct ifnet *);
147int vge_ifmedia_upd	(struct ifnet *);
148void vge_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
149
150#ifdef VGE_EEPROM
151void vge_eeprom_getword	(struct vge_softc *, int, u_int16_t *);
152#endif
153void vge_read_eeprom	(struct vge_softc *, caddr_t, int, int, int);
154
155void vge_miipoll_start	(struct vge_softc *);
156void vge_miipoll_stop	(struct vge_softc *);
157int vge_miibus_readreg	(struct device *, int, int);
158void vge_miibus_writereg (struct device *, int, int, int);
159void vge_miibus_statchg	(struct device *);
160
161void vge_cam_clear	(struct vge_softc *);
162int vge_cam_set		(struct vge_softc *, uint8_t *);
163void vge_setmulti	(struct vge_softc *);
164void vge_reset		(struct vge_softc *);
165
166struct cfattach vge_ca = {
167	sizeof(struct vge_softc), vge_probe, vge_attach
168};
169
170struct cfdriver vge_cd = {
171	0, "vge", DV_IFNET
172};
173
174#define VGE_PCI_LOIO             0x10
175#define VGE_PCI_LOMEM            0x14
176
177int vge_debug = 0;
178#define DPRINTF(x)	if (vge_debug) printf x
179#define DPRINTFN(n, x)	if (vge_debug >= (n)) printf x
180
181const struct pci_matchid vge_devices[] = {
182	{ PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT612x },
183};
184
185#ifdef VGE_EEPROM
186/*
187 * Read a word of data stored in the EEPROM at address 'addr.'
188 */
189void
190vge_eeprom_getword(struct vge_softc *sc, int addr, u_int16_t *dest)
191{
192	int			i;
193	u_int16_t		word = 0;
194
195	/*
196	 * Enter EEPROM embedded programming mode. In order to
197	 * access the EEPROM at all, we first have to set the
198	 * EELOAD bit in the CHIPCFG2 register.
199	 */
200	CSR_SETBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
201	CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
202
203	/* Select the address of the word we want to read */
204	CSR_WRITE_1(sc, VGE_EEADDR, addr);
205
206	/* Issue read command */
207	CSR_SETBIT_1(sc, VGE_EECMD, VGE_EECMD_ERD);
208
209	/* Wait for the done bit to be set. */
210	for (i = 0; i < VGE_TIMEOUT; i++) {
211		if (CSR_READ_1(sc, VGE_EECMD) & VGE_EECMD_EDONE)
212			break;
213	}
214
215	if (i == VGE_TIMEOUT) {
216		printf("%s: EEPROM read timed out\n", sc->vge_dev.dv_xname);
217		*dest = 0;
218		return;
219	}
220
221	/* Read the result */
222	word = CSR_READ_2(sc, VGE_EERDDAT);
223
224	/* Turn off EEPROM access mode. */
225	CSR_CLRBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
226	CSR_CLRBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
227
228	*dest = word;
229}
230#endif
231
232/*
233 * Read a sequence of words from the EEPROM.
234 */
235void
236vge_read_eeprom(struct vge_softc *sc, caddr_t dest, int off, int cnt,
237    int swap)
238{
239	int			i;
240#ifdef VGE_EEPROM
241	u_int16_t		word = 0, *ptr;
242
243	for (i = 0; i < cnt; i++) {
244		vge_eeprom_getword(sc, off + i, &word);
245		ptr = (u_int16_t *)(dest + (i * 2));
246		if (swap)
247			*ptr = ntohs(word);
248		else
249			*ptr = word;
250	}
251#else
252	for (i = 0; i < ETHER_ADDR_LEN; i++)
253		dest[i] = CSR_READ_1(sc, VGE_PAR0 + i);
254#endif
255}
256
257void
258vge_miipoll_stop(struct vge_softc *sc)
259{
260	int			i;
261
262	CSR_WRITE_1(sc, VGE_MIICMD, 0);
263
264	for (i = 0; i < VGE_TIMEOUT; i++) {
265		DELAY(1);
266		if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
267			break;
268	}
269
270	if (i == VGE_TIMEOUT)
271		printf("%s: failed to idle MII autopoll\n", sc->vge_dev.dv_xname);
272}
273
274void
275vge_miipoll_start(struct vge_softc *sc)
276{
277	int			i;
278
279	/* First, make sure we're idle. */
280
281	CSR_WRITE_1(sc, VGE_MIICMD, 0);
282	CSR_WRITE_1(sc, VGE_MIIADDR, VGE_MIIADDR_SWMPL);
283
284	for (i = 0; i < VGE_TIMEOUT; i++) {
285		DELAY(1);
286		if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
287			break;
288	}
289
290	if (i == VGE_TIMEOUT) {
291		printf("%s: failed to idle MII autopoll\n", sc->vge_dev.dv_xname);
292		return;
293	}
294
295	/* Now enable auto poll mode. */
296
297	CSR_WRITE_1(sc, VGE_MIICMD, VGE_MIICMD_MAUTO);
298
299	/* And make sure it started. */
300
301	for (i = 0; i < VGE_TIMEOUT; i++) {
302		DELAY(1);
303		if ((CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL) == 0)
304			break;
305	}
306
307	if (i == VGE_TIMEOUT)
308		printf("%s: failed to start MII autopoll\n", sc->vge_dev.dv_xname);
309}
310
311int
312vge_miibus_readreg(struct device *dev, int phy, int reg)
313{
314	struct vge_softc	*sc = (struct vge_softc *)dev;
315	int			i, s;
316	u_int16_t		rval = 0;
317
318	if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F))
319		return(0);
320
321	s = splnet();
322
323	vge_miipoll_stop(sc);
324
325	/* Specify the register we want to read. */
326	CSR_WRITE_1(sc, VGE_MIIADDR, reg);
327
328	/* Issue read command. */
329	CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_RCMD);
330
331	/* Wait for the read command bit to self-clear. */
332	for (i = 0; i < VGE_TIMEOUT; i++) {
333		DELAY(1);
334		if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_RCMD) == 0)
335			break;
336	}
337
338	if (i == VGE_TIMEOUT)
339		printf("%s: MII read timed out\n", sc->vge_dev.dv_xname);
340	else
341		rval = CSR_READ_2(sc, VGE_MIIDATA);
342
343	vge_miipoll_start(sc);
344	splx(s);
345
346	return (rval);
347}
348
349void
350vge_miibus_writereg(struct device *dev, int phy, int reg, int data)
351{
352	struct vge_softc	*sc = (struct vge_softc *)dev;
353	int			i, s;
354
355	if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F))
356		return;
357
358	s = splnet();
359	vge_miipoll_stop(sc);
360
361	/* Specify the register we want to write. */
362	CSR_WRITE_1(sc, VGE_MIIADDR, reg);
363
364	/* Specify the data we want to write. */
365	CSR_WRITE_2(sc, VGE_MIIDATA, data);
366
367	/* Issue write command. */
368	CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_WCMD);
369
370	/* Wait for the write command bit to self-clear. */
371	for (i = 0; i < VGE_TIMEOUT; i++) {
372		DELAY(1);
373		if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_WCMD) == 0)
374			break;
375	}
376
377	if (i == VGE_TIMEOUT) {
378		printf("%s: MII write timed out\n", sc->vge_dev.dv_xname);
379	}
380
381	vge_miipoll_start(sc);
382	splx(s);
383}
384
385void
386vge_cam_clear(struct vge_softc *sc)
387{
388	int			i;
389
390	/*
391	 * Turn off all the mask bits. This tells the chip
392	 * that none of the entries in the CAM filter are valid.
393	 * desired entries will be enabled as we fill the filter in.
394	 */
395
396	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
397	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
398	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE);
399	for (i = 0; i < 8; i++)
400		CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
401
402	/* Clear the VLAN filter too. */
403
404	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|VGE_CAMADDR_AVSEL|0);
405	for (i = 0; i < 8; i++)
406		CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
407
408	CSR_WRITE_1(sc, VGE_CAMADDR, 0);
409	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
410	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
411
412	sc->vge_camidx = 0;
413}
414
415int
416vge_cam_set(struct vge_softc *sc, uint8_t *addr)
417{
418	int			i, error = 0;
419
420	if (sc->vge_camidx == VGE_CAM_MAXADDRS)
421		return(ENOSPC);
422
423	/* Select the CAM data page. */
424	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
425	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMDATA);
426
427	/* Set the filter entry we want to update and enable writing. */
428	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|sc->vge_camidx);
429
430	/* Write the address to the CAM registers */
431	for (i = 0; i < ETHER_ADDR_LEN; i++)
432		CSR_WRITE_1(sc, VGE_CAM0 + i, addr[i]);
433
434	/* Issue a write command. */
435	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_WRITE);
436
437	/* Wake for it to clear. */
438	for (i = 0; i < VGE_TIMEOUT; i++) {
439		DELAY(1);
440		if ((CSR_READ_1(sc, VGE_CAMCTL) & VGE_CAMCTL_WRITE) == 0)
441			break;
442	}
443
444	if (i == VGE_TIMEOUT) {
445		printf("%s: setting CAM filter failed\n", sc->vge_dev.dv_xname);
446		error = EIO;
447		goto fail;
448	}
449
450	/* Select the CAM mask page. */
451	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
452	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
453
454	/* Set the mask bit that enables this filter. */
455	CSR_SETBIT_1(sc, VGE_CAM0 + (sc->vge_camidx/8),
456	    1<<(sc->vge_camidx & 7));
457
458	sc->vge_camidx++;
459
460fail:
461	/* Turn off access to CAM. */
462	CSR_WRITE_1(sc, VGE_CAMADDR, 0);
463	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
464	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
465
466	return (error);
467}
468
469/*
470 * Program the multicast filter. We use the 64-entry CAM filter
471 * for perfect filtering. If there's more than 64 multicast addresses,
472 * we use the hash filter instead.
473 */
474void
475vge_setmulti(struct vge_softc *sc)
476{
477	struct arpcom		*ac = &sc->arpcom;
478	struct ifnet		*ifp = &ac->ac_if;
479	struct ether_multi	*enm;
480	struct ether_multistep	step;
481	int			error;
482	u_int32_t		h = 0, hashes[2] = { 0, 0 };
483
484	/* First, zot all the multicast entries. */
485	vge_cam_clear(sc);
486	CSR_WRITE_4(sc, VGE_MAR0, 0);
487	CSR_WRITE_4(sc, VGE_MAR1, 0);
488	ifp->if_flags &= ~IFF_ALLMULTI;
489
490	/*
491	 * If the user wants allmulti or promisc mode, enable reception
492	 * of all multicast frames.
493	 */
494	if (ifp->if_flags & IFF_PROMISC) {
495allmulti:
496		CSR_WRITE_4(sc, VGE_MAR0, 0xFFFFFFFF);
497		CSR_WRITE_4(sc, VGE_MAR1, 0xFFFFFFFF);
498		ifp->if_flags |= IFF_ALLMULTI;
499		return;
500	}
501
502	/* Now program new ones */
503	ETHER_FIRST_MULTI(step, ac, enm);
504	while (enm != NULL) {
505		if (bcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN))
506			goto allmulti;
507
508		error = vge_cam_set(sc, enm->enm_addrlo);
509		if (error)
510			break;
511
512		ETHER_NEXT_MULTI(step, enm);
513	}
514
515	/* If there were too many addresses, use the hash filter. */
516	if (error) {
517		vge_cam_clear(sc);
518
519		ETHER_FIRST_MULTI(step, ac, enm);
520		while (enm != NULL) {
521			h = ether_crc32_be(enm->enm_addrlo,
522			    ETHER_ADDR_LEN) >> 26;
523			hashes[h >> 5] |= 1 << (h & 0x1f);
524
525			ETHER_NEXT_MULTI(step, enm);
526		}
527
528		CSR_WRITE_4(sc, VGE_MAR0, hashes[0]);
529		CSR_WRITE_4(sc, VGE_MAR1, hashes[1]);
530	}
531}
532
533void
534vge_reset(struct vge_softc *sc)
535{
536	int			i;
537
538	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_SOFTRESET);
539
540	for (i = 0; i < VGE_TIMEOUT; i++) {
541		DELAY(5);
542		if ((CSR_READ_1(sc, VGE_CRS1) & VGE_CR1_SOFTRESET) == 0)
543			break;
544	}
545
546	if (i == VGE_TIMEOUT) {
547		printf("%s: soft reset timed out", sc->vge_dev.dv_xname);
548		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_STOP_FORCE);
549		DELAY(2000);
550	}
551
552	DELAY(5000);
553
554	CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_RELOAD);
555
556	for (i = 0; i < VGE_TIMEOUT; i++) {
557		DELAY(5);
558		if ((CSR_READ_1(sc, VGE_EECSR) & VGE_EECSR_RELOAD) == 0)
559			break;
560	}
561
562	if (i == VGE_TIMEOUT) {
563		printf("%s: EEPROM reload timed out\n", sc->vge_dev.dv_xname);
564		return;
565	}
566
567	CSR_CLRBIT_1(sc, VGE_CHIPCFG0, VGE_CHIPCFG0_PACPI);
568}
569
570/*
571 * Probe for a VIA gigabit chip. Check the PCI vendor and device
572 * IDs against our list and return a device name if we find a match.
573 */
574int
575vge_probe(struct device *dev, void *match, void *aux)
576{
577	return (pci_matchbyid((struct pci_attach_args *)aux, vge_devices,
578	    sizeof(vge_devices)/sizeof(vge_devices[0])));
579}
580
581/*
582 * Allocate memory for RX/TX rings
583 */
584int
585vge_allocmem(struct vge_softc *sc)
586{
587	int			nseg, rseg;
588	int			i, error;
589
590	nseg = 32;
591
592	/* Allocate DMA'able memory for the TX ring */
593
594	error = bus_dmamap_create(sc->sc_dmat, VGE_TX_LIST_SZ, 1,
595	    VGE_TX_LIST_SZ, 0, BUS_DMA_ALLOCNOW,
596	    &sc->vge_ldata.vge_tx_list_map);
597	if (error)
598		return (ENOMEM);
599	error = bus_dmamem_alloc(sc->sc_dmat, VGE_TX_LIST_SZ,
600	    ETHER_ALIGN, 0,
601	    &sc->vge_ldata.vge_tx_listseg, 1, &rseg, BUS_DMA_NOWAIT);
602	if (error) {
603		printf("%s: can't alloc TX list\n", sc->vge_dev.dv_xname);
604		return (ENOMEM);
605	}
606
607	/* Load the map for the TX ring. */
608	error = bus_dmamem_map(sc->sc_dmat, &sc->vge_ldata.vge_tx_listseg,
609	     1, VGE_TX_LIST_SZ,
610	     (caddr_t *)&sc->vge_ldata.vge_tx_list, BUS_DMA_NOWAIT);
611	memset(sc->vge_ldata.vge_tx_list, 0, VGE_TX_LIST_SZ);
612	if (error) {
613		printf("%s: can't map TX dma buffers\n",
614		    sc->vge_dev.dv_xname);
615		bus_dmamem_free(sc->sc_dmat, &sc->vge_ldata.vge_tx_listseg, rseg);
616		return (ENOMEM);
617	}
618
619	error = bus_dmamap_load(sc->sc_dmat, sc->vge_ldata.vge_tx_list_map,
620	    sc->vge_ldata.vge_tx_list, VGE_TX_LIST_SZ, NULL, BUS_DMA_NOWAIT);
621	if (error) {
622		printf("%s: can't load TX dma map\n", sc->vge_dev.dv_xname);
623		bus_dmamap_destroy(sc->sc_dmat, sc->vge_ldata.vge_tx_list_map);
624		bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->vge_ldata.vge_tx_list,
625		    VGE_TX_LIST_SZ);
626		bus_dmamem_free(sc->sc_dmat, &sc->vge_ldata.vge_tx_listseg, rseg);
627		return (ENOMEM);
628	}
629
630	/* Create DMA maps for TX buffers */
631
632	for (i = 0; i < VGE_TX_DESC_CNT; i++) {
633		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES * nseg, nseg,
634		    MCLBYTES, 0, BUS_DMA_ALLOCNOW,
635		    &sc->vge_ldata.vge_tx_dmamap[i]);
636		if (error) {
637			printf("%s: can't create DMA map for TX\n",
638			    sc->vge_dev.dv_xname);
639			return (ENOMEM);
640		}
641	}
642
643	/* Allocate DMA'able memory for the RX ring */
644
645	error = bus_dmamap_create(sc->sc_dmat, VGE_RX_LIST_SZ, 1,
646	    VGE_RX_LIST_SZ, 0, BUS_DMA_ALLOCNOW,
647	    &sc->vge_ldata.vge_rx_list_map);
648	if (error)
649		return (ENOMEM);
650	error = bus_dmamem_alloc(sc->sc_dmat, VGE_RX_LIST_SZ, VGE_RING_ALIGN,
651	    0, &sc->vge_ldata.vge_rx_listseg, 1, &rseg, BUS_DMA_NOWAIT);
652	if (error) {
653		printf("%s: can't alloc RX list\n", sc->vge_dev.dv_xname);
654		return (ENOMEM);
655	}
656
657	/* Load the map for the RX ring. */
658
659	error = bus_dmamem_map(sc->sc_dmat, &sc->vge_ldata.vge_rx_listseg,
660	     1, VGE_RX_LIST_SZ,
661	     (caddr_t *)&sc->vge_ldata.vge_rx_list, BUS_DMA_NOWAIT);
662	memset(sc->vge_ldata.vge_rx_list, 0, VGE_RX_LIST_SZ);
663	if (error) {
664		printf("%s: can't map RX dma buffers\n",
665		    sc->vge_dev.dv_xname);
666		bus_dmamem_free(sc->sc_dmat, &sc->vge_ldata.vge_rx_listseg, rseg);
667		return (ENOMEM);
668	}
669	error = bus_dmamap_load(sc->sc_dmat, sc->vge_ldata.vge_rx_list_map,
670	    sc->vge_ldata.vge_rx_list, VGE_RX_LIST_SZ, NULL, BUS_DMA_NOWAIT);
671	if (error) {
672		printf("%s: can't load RX dma map\n", sc->vge_dev.dv_xname);
673		bus_dmamap_destroy(sc->sc_dmat, sc->vge_ldata.vge_rx_list_map);
674		bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->vge_ldata.vge_rx_list,
675		    VGE_RX_LIST_SZ);
676		bus_dmamem_free(sc->sc_dmat, &sc->vge_ldata.vge_rx_listseg, rseg);
677		return (ENOMEM);
678	}
679
680	/* Create DMA maps for RX buffers */
681
682	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
683		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES * nseg, nseg,
684		    MCLBYTES, 0, BUS_DMA_ALLOCNOW,
685		    &sc->vge_ldata.vge_rx_dmamap[i]);
686		if (error) {
687			printf("%s: can't create DMA map for RX\n",
688			    sc->vge_dev.dv_xname);
689			return (ENOMEM);
690		}
691	}
692
693	return (0);
694}
695
696/*
697 * Attach the interface. Allocate softc structures, do ifmedia
698 * setup and ethernet/BPF attach.
699 */
700void
701vge_attach(struct device *parent, struct device *self, void *aux)
702{
703	u_char			eaddr[ETHER_ADDR_LEN];
704	u_int16_t		as[3];
705	struct vge_softc	*sc = (struct vge_softc *)self;
706	struct pci_attach_args	*pa = aux;
707	pci_chipset_tag_t	pc = pa->pa_pc;
708	pci_intr_handle_t	ih;
709	const char		*intrstr = NULL;
710	struct ifnet		*ifp;
711	int			error = 0, i;
712	bus_size_t		iosize;
713
714	/*
715	 * Map control/status registers.
716	 */
717	if (pci_mapreg_map(pa, VGE_PCI_LOMEM, PCI_MAPREG_TYPE_MEM, 0,
718	    &sc->vge_btag, &sc->vge_bhandle, NULL, &iosize, 0)) {
719		if (pci_mapreg_map(pa, VGE_PCI_LOIO, PCI_MAPREG_TYPE_IO, 0,
720		    &sc->vge_btag, &sc->vge_bhandle, NULL, &iosize, 0)) {
721			printf(": can't map mem or i/o space\n");
722			return;
723		}
724	}
725
726	/* Allocate interrupt */
727	if (pci_intr_map(pa, &ih)) {
728		printf(": couldn't map interrupt\n");
729		return;
730	}
731	intrstr = pci_intr_string(pc, ih);
732	sc->vge_intrhand = pci_intr_establish(pc, ih, IPL_NET, vge_intr, sc,
733	    sc->vge_dev.dv_xname);
734	if (sc->vge_intrhand == NULL) {
735		printf(": couldn't establish interrupt");
736		if (intrstr != NULL)
737			printf(" at %s", intrstr);
738		return;
739	}
740	printf(": %s", intrstr);
741
742	sc->sc_dmat = pa->pa_dmat;
743
744	/* Reset the adapter. */
745	vge_reset(sc);
746
747	/*
748	 * Get station address from the EEPROM.
749	 */
750	vge_read_eeprom(sc, (caddr_t)as, VGE_EE_EADDR, 3, 0);
751	for (i = 0; i < 3; i++) {
752		eaddr[(i * 2) + 0] = as[i] & 0xff;
753		eaddr[(i * 2) + 1] = as[i] >> 8;
754	}
755
756	bcopy(eaddr, (char *)&sc->arpcom.ac_enaddr, ETHER_ADDR_LEN);
757
758	printf(", address %s\n",
759	    ether_sprintf(sc->arpcom.ac_enaddr));
760
761	error = vge_allocmem(sc);
762
763	if (error)
764		return;
765
766	ifp = &sc->arpcom.ac_if;
767	ifp->if_softc = sc;
768	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
769	ifp->if_ioctl = vge_ioctl;
770	ifp->if_start = vge_start;
771	ifp->if_watchdog = vge_watchdog;
772	ifp->if_init = vge_init;
773	ifp->if_baudrate = 1000000000;
774#ifdef VGE_JUMBO
775	ifp->if_hardmtu = VGE_JUMBO_MTU;
776#endif
777	IFQ_SET_MAXLEN(&ifp->if_snd, VGE_IFQ_MAXLEN);
778	IFQ_SET_READY(&ifp->if_snd);
779
780	ifp->if_capabilities = IFCAP_VLAN_MTU | IFCAP_CSUM_IPv4 |
781				IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4;
782
783#if NVLAN > 0
784	ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING;
785#endif
786
787	/* Set interface name */
788	strlcpy(ifp->if_xname, sc->vge_dev.dv_xname, IFNAMSIZ);
789
790	/* Do MII setup */
791	sc->sc_mii.mii_ifp = ifp;
792	sc->sc_mii.mii_readreg = vge_miibus_readreg;
793	sc->sc_mii.mii_writereg = vge_miibus_writereg;
794	sc->sc_mii.mii_statchg = vge_miibus_statchg;
795	ifmedia_init(&sc->sc_mii.mii_media, 0,
796	    vge_ifmedia_upd, vge_ifmedia_sts);
797	mii_attach(self, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
798	    MII_OFFSET_ANY, 0);
799	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
800		printf("%s: no PHY found!\n", sc->vge_dev.dv_xname);
801		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL,
802		    0, NULL);
803		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL);
804	} else
805		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
806
807	timeout_set(&sc->timer_handle, vge_tick, sc);
808
809	/*
810	 * Call MI attach routine.
811	 */
812	if_attach(ifp);
813	ether_ifattach(ifp);
814}
815
816int
817vge_newbuf(struct vge_softc *sc, int idx, struct mbuf *m)
818{
819	struct mbuf		*m_new = NULL;
820	struct vge_rx_desc	*r;
821	bus_dmamap_t		rxmap = sc->vge_ldata.vge_rx_dmamap[idx];
822	int			i;
823
824	if (m == NULL) {
825		/* Allocate a new mbuf */
826		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
827		if (m_new == NULL)
828			return (ENOBUFS);
829
830		/* Allocate a cluster */
831		MCLGET(m_new, M_DONTWAIT);
832		if (!(m_new->m_flags & M_EXT)) {
833			m_freem(m_new);
834			return (ENOBUFS);
835		}
836
837		m = m_new;
838	} else
839		m->m_data = m->m_ext.ext_buf;
840
841	m->m_len = m->m_pkthdr.len = MCLBYTES;
842	/* Fix-up alignment so payload is doubleword-aligned */
843	/* XXX m_adj(m, ETHER_ALIGN); */
844
845	if (bus_dmamap_load_mbuf(sc->sc_dmat, rxmap, m, BUS_DMA_NOWAIT))
846		return (ENOBUFS);
847
848	if (rxmap->dm_nsegs > 1)
849		goto out;
850
851	/* Map the segments into RX descriptors */
852	r = &sc->vge_ldata.vge_rx_list[idx];
853
854	if (letoh32(r->vge_sts) & VGE_RDSTS_OWN) {
855		printf("%s: tried to map a busy RX descriptor\n",
856		    sc->vge_dev.dv_xname);
857		goto out;
858	}
859	r->vge_buflen = htole16(VGE_BUFLEN(rxmap->dm_segs[0].ds_len) | VGE_RXDESC_I);
860	r->vge_addrlo = htole32(VGE_ADDR_LO(rxmap->dm_segs[0].ds_addr));
861	r->vge_addrhi = htole16(VGE_ADDR_HI(rxmap->dm_segs[0].ds_addr) & 0xFFFF);
862	r->vge_sts = htole32(0);
863	r->vge_ctl = htole32(0);
864
865	/*
866	 * Note: the manual fails to document the fact that for
867	 * proper operation, the driver needs to replenish the RX
868	 * DMA ring 4 descriptors at a time (rather than one at a
869	 * time, like most chips). We can allocate the new buffers
870	 * but we should not set the OWN bits until we're ready
871	 * to hand back 4 of them in one shot.
872	 */
873#define VGE_RXCHUNK 4
874	sc->vge_rx_consumed++;
875	if (sc->vge_rx_consumed == VGE_RXCHUNK) {
876		for (i = idx; i != idx - sc->vge_rx_consumed; i--)
877			sc->vge_ldata.vge_rx_list[i].vge_sts |=
878			    htole32(VGE_RDSTS_OWN);
879		sc->vge_rx_consumed = 0;
880	}
881
882	sc->vge_ldata.vge_rx_mbuf[idx] = m;
883
884	bus_dmamap_sync(sc->sc_dmat, rxmap, 0,
885	    rxmap->dm_mapsize, BUS_DMASYNC_PREREAD);
886
887	return (0);
888out:
889	DPRINTF(("vge_newbuf: out of memory\n"));
890	if (m_new != NULL)
891		m_freem(m_new);
892	return (ENOMEM);
893}
894
895int
896vge_tx_list_init(struct vge_softc *sc)
897{
898	bzero ((char *)sc->vge_ldata.vge_tx_list, VGE_TX_LIST_SZ);
899	bzero ((char *)&sc->vge_ldata.vge_tx_mbuf,
900	    (VGE_TX_DESC_CNT * sizeof(struct mbuf *)));
901
902	bus_dmamap_sync(sc->sc_dmat,
903	    sc->vge_ldata.vge_tx_list_map, 0,
904	    sc->vge_ldata.vge_tx_list_map->dm_mapsize,
905	    BUS_DMASYNC_PREWRITE);
906	sc->vge_ldata.vge_tx_prodidx = 0;
907	sc->vge_ldata.vge_tx_considx = 0;
908	sc->vge_ldata.vge_tx_free = VGE_TX_DESC_CNT;
909
910	return (0);
911}
912
913/* Init RX descriptors and allocate mbufs with vge_newbuf()
914 * A ring is used, and last descriptor points to first. */
915int
916vge_rx_list_init(struct vge_softc *sc)
917{
918	int			i;
919
920	bzero ((char *)sc->vge_ldata.vge_rx_list, VGE_RX_LIST_SZ);
921	bzero ((char *)&sc->vge_ldata.vge_rx_mbuf,
922	    (VGE_RX_DESC_CNT * sizeof(struct mbuf *)));
923
924	sc->vge_rx_consumed = 0;
925
926	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
927		if (vge_newbuf(sc, i, NULL) == ENOBUFS)
928			return (ENOBUFS);
929	}
930
931	/* Flush the RX descriptors */
932
933	bus_dmamap_sync(sc->sc_dmat,
934	    sc->vge_ldata.vge_rx_list_map,
935	    0, sc->vge_ldata.vge_rx_list_map->dm_mapsize,
936	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
937
938	sc->vge_ldata.vge_rx_prodidx = 0;
939	sc->vge_rx_consumed = 0;
940	sc->vge_head = sc->vge_tail = NULL;
941
942	return (0);
943}
944
945/*
946 * RX handler. We support the reception of jumbo frames that have
947 * been fragmented across multiple 2K mbuf cluster buffers.
948 */
949void
950vge_rxeof(struct vge_softc *sc)
951{
952	struct mbuf		*m;
953	struct ifnet		*ifp;
954	int			i, total_len;
955	int			lim = 0;
956	struct vge_rx_desc	*cur_rx;
957	u_int32_t		rxstat, rxctl;
958
959	ifp = &sc->arpcom.ac_if;
960	i = sc->vge_ldata.vge_rx_prodidx;
961
962	/* Invalidate the descriptor memory */
963
964	bus_dmamap_sync(sc->sc_dmat,
965	    sc->vge_ldata.vge_rx_list_map,
966	    0, sc->vge_ldata.vge_rx_list_map->dm_mapsize,
967	    BUS_DMASYNC_POSTREAD);
968
969	while (!VGE_OWN(&sc->vge_ldata.vge_rx_list[i])) {
970		struct mbuf *m0 = NULL;
971
972		cur_rx = &sc->vge_ldata.vge_rx_list[i];
973		m = sc->vge_ldata.vge_rx_mbuf[i];
974		total_len = VGE_RXBYTES(cur_rx);
975		rxstat = letoh32(cur_rx->vge_sts);
976		rxctl = letoh32(cur_rx->vge_ctl);
977
978		/* Invalidate the RX mbuf and unload its map */
979
980		bus_dmamap_sync(sc->sc_dmat,
981		    sc->vge_ldata.vge_rx_dmamap[i],
982		    0, sc->vge_ldata.vge_rx_dmamap[i]->dm_mapsize,
983		    BUS_DMASYNC_POSTWRITE);
984		bus_dmamap_unload(sc->sc_dmat,
985		    sc->vge_ldata.vge_rx_dmamap[i]);
986
987		/*
988		 * If the 'start of frame' bit is set, this indicates
989		 * either the first fragment in a multi-fragment receive,
990		 * or an intermediate fragment. Either way, we want to
991		 * accumulate the buffers.
992		 */
993		if (rxstat & VGE_RXPKT_SOF) {
994			DPRINTF(("vge_rxeof: SOF\n"));
995			m->m_len = MCLBYTES;
996			if (sc->vge_head == NULL)
997				sc->vge_head = sc->vge_tail = m;
998			else {
999				m->m_flags &= ~M_PKTHDR;
1000				sc->vge_tail->m_next = m;
1001				sc->vge_tail = m;
1002			}
1003			vge_newbuf(sc, i, NULL);
1004			VGE_RX_DESC_INC(i);
1005			continue;
1006		}
1007
1008		/*
1009		 * Bad/error frames will have the RXOK bit cleared.
1010		 * However, there's one error case we want to allow:
1011		 * if a VLAN tagged frame arrives and the chip can't
1012		 * match it against the CAM filter, it considers this
1013		 * a 'VLAN CAM filter miss' and clears the 'RXOK' bit.
1014		 * We don't want to drop the frame though: our VLAN
1015		 * filtering is done in software.
1016		 */
1017		if (!(rxstat & VGE_RDSTS_RXOK) && !(rxstat & VGE_RDSTS_VIDM)
1018		    && !(rxstat & VGE_RDSTS_CSUMERR)) {
1019			ifp->if_ierrors++;
1020			/*
1021			 * If this is part of a multi-fragment packet,
1022			 * discard all the pieces.
1023			 */
1024			if (sc->vge_head != NULL) {
1025				m_freem(sc->vge_head);
1026				sc->vge_head = sc->vge_tail = NULL;
1027			}
1028			vge_newbuf(sc, i, m);
1029			VGE_RX_DESC_INC(i);
1030			continue;
1031		}
1032
1033		/*
1034		 * If allocating a replacement mbuf fails,
1035		 * reload the current one.
1036		 */
1037
1038		if (vge_newbuf(sc, i, NULL) == ENOBUFS) {
1039			if (sc->vge_head != NULL) {
1040				m_freem(sc->vge_head);
1041				sc->vge_head = sc->vge_tail = NULL;
1042			}
1043
1044			m0 = m_devget(mtod(m, char *),
1045			    total_len - ETHER_CRC_LEN, ETHER_ALIGN, ifp, NULL);
1046			vge_newbuf(sc, i, m);
1047			if (m0 == NULL) {
1048				ifp->if_ierrors++;
1049				continue;
1050			}
1051			m = m0;
1052
1053			VGE_RX_DESC_INC(i);
1054			continue;
1055		}
1056
1057		VGE_RX_DESC_INC(i);
1058
1059		if (sc->vge_head != NULL) {
1060			m->m_len = total_len % MCLBYTES;
1061			/*
1062			 * Special case: if there's 4 bytes or less
1063			 * in this buffer, the mbuf can be discarded:
1064			 * the last 4 bytes is the CRC, which we don't
1065			 * care about anyway.
1066			 */
1067			if (m->m_len <= ETHER_CRC_LEN) {
1068				sc->vge_tail->m_len -=
1069				    (ETHER_CRC_LEN - m->m_len);
1070				m_freem(m);
1071			} else {
1072				m->m_len -= ETHER_CRC_LEN;
1073				m->m_flags &= ~M_PKTHDR;
1074				sc->vge_tail->m_next = m;
1075			}
1076			m = sc->vge_head;
1077			sc->vge_head = sc->vge_tail = NULL;
1078			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1079		} else
1080			m->m_pkthdr.len = m->m_len =
1081			    (total_len - ETHER_CRC_LEN);
1082
1083#ifdef __STRICT_ALIGNMENT
1084		bcopy(m->m_data, m->m_data + ETHER_ALIGN,
1085		    total_len);
1086		m->m_data += ETHER_ALIGN;
1087#endif
1088		ifp->if_ipackets++;
1089		m->m_pkthdr.rcvif = ifp;
1090
1091		/* Do RX checksumming */
1092
1093		/* Check IP header checksum */
1094		if ((rxctl & VGE_RDCTL_IPPKT) &&
1095		    (rxctl & VGE_RDCTL_IPCSUMOK))
1096			m->m_pkthdr.csum_flags |= M_IPV4_CSUM_IN_OK;
1097
1098		/* Check TCP/UDP checksum */
1099		if ((rxctl & (VGE_RDCTL_TCPPKT|VGE_RDCTL_UDPPKT)) &&
1100		    (rxctl & VGE_RDCTL_PROTOCSUMOK))
1101			m->m_pkthdr.csum_flags |= M_TCP_CSUM_IN_OK | M_UDP_CSUM_IN_OK;
1102
1103#if NVLAN > 0
1104		if (rxstat & VGE_RDSTS_VTAG) {
1105			m->m_pkthdr.ether_vtag = swap16(rxctl & VGE_RDCTL_VLANID);
1106			m->m_flags |= M_VLANTAG;
1107		}
1108#endif
1109
1110#if NBPFILTER > 0
1111		if (ifp->if_bpf)
1112			bpf_mtap(ifp->if_bpf, m, BPF_DIRECTION_IN);
1113#endif
1114		ether_input_mbuf(ifp, m);
1115
1116		lim++;
1117		if (lim == VGE_RX_DESC_CNT)
1118			break;
1119	}
1120
1121	/* Flush the RX DMA ring */
1122	bus_dmamap_sync(sc->sc_dmat,
1123	    sc->vge_ldata.vge_rx_list_map,
1124	    0, sc->vge_ldata.vge_rx_list_map->dm_mapsize,
1125	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1126
1127	sc->vge_ldata.vge_rx_prodidx = i;
1128	CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, lim);
1129}
1130
1131void
1132vge_txeof(struct vge_softc *sc)
1133{
1134	struct ifnet		*ifp;
1135	u_int32_t		txstat;
1136	int			idx;
1137
1138	ifp = &sc->arpcom.ac_if;
1139	idx = sc->vge_ldata.vge_tx_considx;
1140
1141	/* Invalidate the TX descriptor list */
1142
1143	bus_dmamap_sync(sc->sc_dmat,
1144	    sc->vge_ldata.vge_tx_list_map,
1145	    0, sc->vge_ldata.vge_tx_list_map->dm_mapsize,
1146	    BUS_DMASYNC_POSTREAD);
1147
1148	/* Transmitted frames can be now free'd from the TX list */
1149	while (idx != sc->vge_ldata.vge_tx_prodidx) {
1150		txstat = letoh32(sc->vge_ldata.vge_tx_list[idx].vge_sts);
1151		if (txstat & VGE_TDSTS_OWN)
1152			break;
1153
1154		m_freem(sc->vge_ldata.vge_tx_mbuf[idx]);
1155		sc->vge_ldata.vge_tx_mbuf[idx] = NULL;
1156		bus_dmamap_unload(sc->sc_dmat,
1157		    sc->vge_ldata.vge_tx_dmamap[idx]);
1158		if (txstat & (VGE_TDSTS_EXCESSCOLL|VGE_TDSTS_COLL))
1159			ifp->if_collisions++;
1160		if (txstat & VGE_TDSTS_TXERR)
1161			ifp->if_oerrors++;
1162		else
1163			ifp->if_opackets++;
1164
1165		sc->vge_ldata.vge_tx_free++;
1166		VGE_TX_DESC_INC(idx);
1167	}
1168
1169	/* No changes made to the TX ring, so no flush needed */
1170
1171	if (idx != sc->vge_ldata.vge_tx_considx) {
1172		sc->vge_ldata.vge_tx_considx = idx;
1173		ifp->if_flags &= ~IFF_OACTIVE;
1174		ifp->if_timer = 0;
1175	}
1176
1177	/*
1178	 * If not all descriptors have been released reaped yet,
1179	 * reload the timer so that we will eventually get another
1180	 * interrupt that will cause us to re-enter this routine.
1181	 * This is done in case the transmitter has gone idle.
1182	 */
1183	if (sc->vge_ldata.vge_tx_free != VGE_TX_DESC_CNT)
1184		CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE);
1185}
1186
1187void
1188vge_tick(void *xsc)
1189{
1190	struct vge_softc	*sc = xsc;
1191	struct ifnet		*ifp = &sc->arpcom.ac_if;
1192	struct mii_data		*mii = &sc->sc_mii;
1193	int s;
1194
1195	s = splnet();
1196
1197	mii_tick(mii);
1198
1199	if (sc->vge_link) {
1200		if (!(mii->mii_media_status & IFM_ACTIVE)) {
1201			sc->vge_link = 0;
1202			ifp->if_link_state = LINK_STATE_DOWN;
1203			if_link_state_change(ifp);
1204		}
1205	} else {
1206		if (mii->mii_media_status & IFM_ACTIVE &&
1207		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1208			sc->vge_link = 1;
1209			if (mii->mii_media_status & IFM_FDX)
1210				ifp->if_link_state = LINK_STATE_FULL_DUPLEX;
1211			else
1212				ifp->if_link_state = LINK_STATE_HALF_DUPLEX;
1213			if_link_state_change(ifp);
1214			if (!IFQ_IS_EMPTY(&ifp->if_snd))
1215				vge_start(ifp);
1216		}
1217	}
1218	timeout_add_sec(&sc->timer_handle, 1);
1219	splx(s);
1220}
1221
1222int
1223vge_intr(void *arg)
1224{
1225	struct vge_softc	*sc = arg;
1226	struct ifnet		*ifp;
1227	u_int32_t		status;
1228	int			claimed = 0;
1229
1230	ifp = &sc->arpcom.ac_if;
1231
1232	if (!(ifp->if_flags & IFF_UP))
1233		return 0;
1234
1235	/* Disable interrupts */
1236	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
1237
1238	for (;;) {
1239		status = CSR_READ_4(sc, VGE_ISR);
1240		DPRINTFN(3, ("vge_intr: status=%#x\n", status));
1241
1242		/* If the card has gone away the read returns 0xffffffff. */
1243		if (status == 0xFFFFFFFF)
1244			break;
1245
1246		if (status) {
1247			CSR_WRITE_4(sc, VGE_ISR, status);
1248		}
1249
1250		if ((status & VGE_INTRS) == 0)
1251			break;
1252
1253		claimed = 1;
1254
1255		if (status & (VGE_ISR_RXOK|VGE_ISR_RXOK_HIPRIO))
1256			vge_rxeof(sc);
1257
1258		if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
1259			DPRINTFN(2, ("vge_intr: RX error, recovering\n"));
1260			vge_rxeof(sc);
1261			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1262			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1263		}
1264
1265		if (status & (VGE_ISR_TXOK0|VGE_ISR_TIMER0))
1266			vge_txeof(sc);
1267
1268		if (status & (VGE_ISR_TXDMA_STALL|VGE_ISR_RXDMA_STALL)) {
1269			DPRINTFN(2, ("DMA_STALL\n"));
1270			vge_init(ifp);
1271		}
1272
1273		if (status & VGE_ISR_LINKSTS) {
1274			timeout_del(&sc->timer_handle);
1275			vge_tick(sc);
1276		}
1277	}
1278
1279	/* Re-enable interrupts */
1280	CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
1281
1282	if (!IFQ_IS_EMPTY(&ifp->if_snd))
1283		vge_start(ifp);
1284
1285	return (claimed);
1286}
1287
1288/*
1289 * Encapsulate an mbuf chain into the TX ring by combining it w/
1290 * the descriptors.
1291 */
1292int
1293vge_encap(struct vge_softc *sc, struct mbuf *m_head, int idx)
1294{
1295	struct ifnet		*ifp = &sc->arpcom.ac_if;
1296	bus_dmamap_t		txmap;
1297	struct vge_tx_desc	*d = NULL;
1298	struct vge_tx_frag	*f;
1299	struct mbuf		*mnew = NULL;
1300	int			error, frag;
1301	u_int32_t		vge_flags;
1302
1303	vge_flags = 0;
1304
1305	if (m_head->m_pkthdr.csum_flags & M_IPV4_CSUM_OUT)
1306		vge_flags |= VGE_TDCTL_IPCSUM;
1307	if (m_head->m_pkthdr.csum_flags & M_TCPV4_CSUM_OUT)
1308		vge_flags |= VGE_TDCTL_TCPCSUM;
1309	if (m_head->m_pkthdr.csum_flags & M_UDPV4_CSUM_OUT)
1310		vge_flags |= VGE_TDCTL_UDPCSUM;
1311
1312	txmap = sc->vge_ldata.vge_tx_dmamap[idx];
1313repack:
1314	error = bus_dmamap_load_mbuf(sc->sc_dmat, txmap,
1315	    m_head, BUS_DMA_NOWAIT);
1316	if (error) {
1317		printf("%s: can't map mbuf (error %d)\n",
1318		    sc->vge_dev.dv_xname, error);
1319		return (ENOBUFS);
1320	}
1321
1322	d = &sc->vge_ldata.vge_tx_list[idx];
1323	/* If owned by chip, fail */
1324	if (letoh32(d->vge_sts) & VGE_TDSTS_OWN)
1325		return (ENOBUFS);
1326
1327	for (frag = 0; frag < txmap->dm_nsegs; frag++) {
1328		/* Check if we have used all 7 fragments. */
1329		if (frag == VGE_TX_FRAGS)
1330			break;
1331		f = &d->vge_frag[frag];
1332		f->vge_buflen = htole16(VGE_BUFLEN(txmap->dm_segs[frag].ds_len));
1333		f->vge_addrlo = htole32(VGE_ADDR_LO(txmap->dm_segs[frag].ds_addr));
1334		f->vge_addrhi = htole16(VGE_ADDR_HI(txmap->dm_segs[frag].ds_addr) & 0xFFFF);
1335	}
1336
1337	/*
1338	 * We used up all 7 fragments!  Now what we have to do is
1339	 * copy the data into a mbuf cluster and map that.
1340	 */
1341	if (frag == VGE_TX_FRAGS) {
1342		MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1343		if (mnew == NULL)
1344			return (ENOBUFS);
1345
1346		if (m_head->m_pkthdr.len > MHLEN) {
1347			MCLGET(mnew, M_DONTWAIT);
1348			if (!(mnew->m_flags & M_EXT)) {
1349				m_freem(mnew);
1350				return (ENOBUFS);
1351			}
1352		}
1353		m_copydata(m_head, 0, m_head->m_pkthdr.len,
1354		    mtod(mnew, caddr_t));
1355		mnew->m_pkthdr.len = mnew->m_len = m_head->m_pkthdr.len;
1356		IFQ_DEQUEUE(&ifp->if_snd, m_head);
1357		m_freem(m_head);
1358		m_head = mnew;
1359		goto repack;
1360	}
1361
1362	/* This chip does not do auto-padding */
1363	if (m_head->m_pkthdr.len < VGE_MIN_FRAMELEN) {
1364		f = &d->vge_frag[frag];
1365
1366		f->vge_buflen = htole16(VGE_BUFLEN(VGE_MIN_FRAMELEN -
1367		    m_head->m_pkthdr.len));
1368		f->vge_addrlo = htole32(VGE_ADDR_LO(txmap->dm_segs[0].ds_addr));
1369		f->vge_addrhi = htole16(VGE_ADDR_HI(txmap->dm_segs[0].ds_addr) & 0xFFFF);
1370		m_head->m_pkthdr.len = VGE_MIN_FRAMELEN;
1371		frag++;
1372	}
1373	/* For some reason, we need to tell the card fragment + 1 */
1374	frag++;
1375
1376	bus_dmamap_sync(sc->sc_dmat, txmap, 0, txmap->dm_mapsize,
1377	    BUS_DMASYNC_PREWRITE);
1378
1379	d->vge_sts = htole32(m_head->m_pkthdr.len << 16);
1380	d->vge_ctl = htole32(vge_flags|(frag << 28) | VGE_TD_LS_NORM);
1381
1382	if (m_head->m_pkthdr.len > ETHERMTU + ETHER_HDR_LEN)
1383		d->vge_ctl |= htole32(VGE_TDCTL_JUMBO);
1384
1385#if NVLAN > 0
1386	/* Set up hardware VLAN tagging. */
1387	if (m_head->m_flags & M_VLANTAG) {
1388		d->vge_ctl |= htole32(m_head->m_pkthdr.ether_vtag |
1389		    VGE_TDCTL_VTAG);
1390	}
1391#endif
1392
1393	sc->vge_ldata.vge_tx_dmamap[idx] = txmap;
1394	sc->vge_ldata.vge_tx_mbuf[idx] = m_head;
1395	sc->vge_ldata.vge_tx_free--;
1396	sc->vge_ldata.vge_tx_list[idx].vge_sts |= htole32(VGE_TDSTS_OWN);
1397
1398	idx++;
1399	if (mnew == NULL) {
1400		/* if mbuf is coalesced, it is already dequeued */
1401		IFQ_DEQUEUE(&ifp->if_snd, m_head);
1402	}
1403	return (0);
1404}
1405
1406/*
1407 * Main transmit routine.
1408 */
1409void
1410vge_start(struct ifnet *ifp)
1411{
1412	struct vge_softc	*sc;
1413	struct mbuf		*m_head = NULL;
1414	int			idx, pidx = 0;
1415
1416	sc = ifp->if_softc;
1417
1418	if (!sc->vge_link || ifp->if_flags & IFF_OACTIVE)
1419		return;
1420
1421	if (IFQ_IS_EMPTY(&ifp->if_snd))
1422		return;
1423
1424	idx = sc->vge_ldata.vge_tx_prodidx;
1425
1426	pidx = idx - 1;
1427	if (pidx < 0)
1428		pidx = VGE_TX_DESC_CNT - 1;
1429
1430	while (sc->vge_ldata.vge_tx_mbuf[idx] == NULL) {
1431		IFQ_POLL(&ifp->if_snd, m_head);
1432		if (m_head == NULL)
1433			break;
1434
1435		/*
1436		 * If there's a BPF listener, bounce a copy of this frame
1437		 * to him.
1438		 */
1439#if NBPFILTER > 0
1440		if (ifp->if_bpf)
1441			bpf_mtap(ifp->if_bpf, m_head, BPF_DIRECTION_OUT);
1442#endif
1443
1444		if (vge_encap(sc, m_head, idx)) {
1445			ifp->if_flags |= IFF_OACTIVE;
1446			break;
1447		}
1448
1449		sc->vge_ldata.vge_tx_list[pidx].vge_frag[0].vge_buflen |=
1450		    htole16(VGE_TXDESC_Q);
1451
1452		pidx = idx;
1453		VGE_TX_DESC_INC(idx);
1454	}
1455
1456	if (idx == sc->vge_ldata.vge_tx_prodidx) {
1457		return;
1458	}
1459
1460	/* Flush the TX descriptors */
1461
1462	bus_dmamap_sync(sc->sc_dmat,
1463	    sc->vge_ldata.vge_tx_list_map,
1464	    0, sc->vge_ldata.vge_tx_list_map->dm_mapsize,
1465	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1466
1467	/* Issue a transmit command. */
1468	CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_WAK0);
1469
1470	sc->vge_ldata.vge_tx_prodidx = idx;
1471
1472	/*
1473	 * Use the countdown timer for interrupt moderation.
1474	 * 'TX done' interrupts are disabled. Instead, we reset the
1475	 * countdown timer, which will begin counting until it hits
1476	 * the value in the SSTIMER register, and then trigger an
1477	 * interrupt. Each time we set the TIMER0_ENABLE bit, the
1478	 * the timer count is reloaded. Only when the transmitter
1479	 * is idle will the timer hit 0 and an interrupt fire.
1480	 */
1481	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE);
1482
1483	/*
1484	 * Set a timeout in case the chip goes out to lunch.
1485	 */
1486	ifp->if_timer = 5;
1487}
1488
1489int
1490vge_init(struct ifnet *ifp)
1491{
1492	struct vge_softc	*sc = ifp->if_softc;
1493	int			i;
1494
1495	/*
1496	 * Cancel pending I/O and free all RX/TX buffers.
1497	 */
1498	vge_stop(sc);
1499	vge_reset(sc);
1500
1501	/* Initialize RX descriptors list */
1502	if (vge_rx_list_init(sc) == ENOBUFS) {
1503		printf("%s: init failed: no memory for RX buffers\n",
1504		    sc->vge_dev.dv_xname);
1505		vge_stop(sc);
1506		return (ENOBUFS);
1507	}
1508	/* Initialize TX descriptors */
1509	if (vge_tx_list_init(sc) == ENOBUFS) {
1510		printf("%s: init failed: no memory for TX buffers\n",
1511		    sc->vge_dev.dv_xname);
1512		vge_stop(sc);
1513		return (ENOBUFS);
1514	}
1515
1516	/* Set our station address */
1517	for (i = 0; i < ETHER_ADDR_LEN; i++)
1518		CSR_WRITE_1(sc, VGE_PAR0 + i, sc->arpcom.ac_enaddr[i]);
1519
1520	/* Set receive FIFO threshold */
1521	CSR_CLRBIT_1(sc, VGE_RXCFG, VGE_RXCFG_FIFO_THR);
1522	CSR_SETBIT_1(sc, VGE_RXCFG, VGE_RXFIFOTHR_128BYTES);
1523
1524	if (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) {
1525		/*
1526		 * Allow transmission and reception of VLAN tagged
1527		 * frames.
1528		 */
1529		CSR_CLRBIT_1(sc, VGE_RXCFG, VGE_RXCFG_VTAGOPT);
1530		CSR_SETBIT_1(sc, VGE_RXCFG, VGE_VTAG_OPT2);
1531	}
1532
1533	/* Set DMA burst length */
1534	CSR_CLRBIT_1(sc, VGE_DMACFG0, VGE_DMACFG0_BURSTLEN);
1535	CSR_SETBIT_1(sc, VGE_DMACFG0, VGE_DMABURST_128);
1536
1537	CSR_SETBIT_1(sc, VGE_TXCFG, VGE_TXCFG_ARB_PRIO|VGE_TXCFG_NONBLK);
1538
1539	/* Set collision backoff algorithm */
1540	CSR_CLRBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_CRANDOM|
1541	    VGE_CHIPCFG1_CAP|VGE_CHIPCFG1_MBA|VGE_CHIPCFG1_BAKOPT);
1542	CSR_SETBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_OFSET);
1543
1544	/* Disable LPSEL field in priority resolution */
1545	CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_LPSEL_DIS);
1546
1547	/*
1548	 * Load the addresses of the DMA queues into the chip.
1549	 * Note that we only use one transmit queue.
1550	 */
1551
1552	CSR_WRITE_4(sc, VGE_TXDESC_ADDR_LO0,
1553	    VGE_ADDR_LO(sc->vge_ldata.vge_tx_listseg.ds_addr));
1554	CSR_WRITE_2(sc, VGE_TXDESCNUM, VGE_TX_DESC_CNT - 1);
1555
1556	CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO,
1557	    VGE_ADDR_LO(sc->vge_ldata.vge_rx_listseg.ds_addr));
1558	CSR_WRITE_2(sc, VGE_RXDESCNUM, VGE_RX_DESC_CNT - 1);
1559	CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, VGE_RX_DESC_CNT);
1560
1561	/* Enable and wake up the RX descriptor queue */
1562	CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1563	CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1564
1565	/* Enable the TX descriptor queue */
1566	CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_RUN0);
1567
1568	/* Set up the receive filter -- allow large frames for VLANs. */
1569	CSR_WRITE_1(sc, VGE_RXCTL, VGE_RXCTL_RX_UCAST|VGE_RXCTL_RX_GIANT);
1570
1571	/* If we want promiscuous mode, set the allframes bit. */
1572	if (ifp->if_flags & IFF_PROMISC) {
1573		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_PROMISC);
1574	}
1575
1576	/* Set capture broadcast bit to capture broadcast frames. */
1577	if (ifp->if_flags & IFF_BROADCAST) {
1578		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_BCAST);
1579	}
1580
1581	/* Set multicast bit to capture multicast frames. */
1582	if (ifp->if_flags & IFF_MULTICAST) {
1583		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_MCAST);
1584	}
1585
1586	/* Init the cam filter. */
1587	vge_cam_clear(sc);
1588
1589	/* Init the multicast filter. */
1590	vge_setmulti(sc);
1591
1592	/* Enable flow control */
1593
1594	CSR_WRITE_1(sc, VGE_CRS2, 0x8B);
1595
1596	/* Enable jumbo frame reception (if desired) */
1597
1598	/* Start the MAC. */
1599	CSR_WRITE_1(sc, VGE_CRC0, VGE_CR0_STOP);
1600	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_NOPOLL);
1601	CSR_WRITE_1(sc, VGE_CRS0,
1602	    VGE_CR0_TX_ENABLE|VGE_CR0_RX_ENABLE|VGE_CR0_START);
1603
1604	/*
1605	 * Configure one-shot timer for microsecond
1606	 * resulution and load it for 500 usecs.
1607	 */
1608	CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_TIMER0_RES);
1609	CSR_WRITE_2(sc, VGE_SSTIMER, 400);
1610
1611	/*
1612	 * Configure interrupt moderation for receive. Enable
1613	 * the holdoff counter and load it, and set the RX
1614	 * suppression count to the number of descriptors we
1615	 * want to allow before triggering an interrupt.
1616	 * The holdoff timer is in units of 20 usecs.
1617	 */
1618
1619#ifdef notyet
1620	CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_TXINTSUP_DISABLE);
1621	/* Select the interrupt holdoff timer page. */
1622	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
1623	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_INTHLDOFF);
1624	CSR_WRITE_1(sc, VGE_INTHOLDOFF, 10); /* ~200 usecs */
1625
1626	/* Enable use of the holdoff timer. */
1627	CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_HOLDOFF);
1628	CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_SC_RELOAD);
1629
1630	/* Select the RX suppression threshold page. */
1631	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
1632	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_RXSUPPTHR);
1633	CSR_WRITE_1(sc, VGE_RXSUPPTHR, 64); /* interrupt after 64 packets */
1634
1635	/* Restore the page select bits. */
1636	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
1637	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
1638#endif
1639
1640	/*
1641	 * Enable interrupts.
1642	 */
1643	CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
1644	CSR_WRITE_4(sc, VGE_ISR, 0);
1645	CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
1646
1647	/* Restore BMCR state */
1648	mii_mediachg(&sc->sc_mii);
1649
1650	ifp->if_flags |= IFF_RUNNING;
1651	ifp->if_flags &= ~IFF_OACTIVE;
1652
1653	sc->vge_if_flags = 0;
1654	sc->vge_link = 0;
1655
1656	if (!timeout_pending(&sc->timer_handle))
1657		timeout_add_sec(&sc->timer_handle, 1);
1658
1659	return (0);
1660}
1661
1662/*
1663 * Set media options.
1664 */
1665int
1666vge_ifmedia_upd(struct ifnet *ifp)
1667{
1668	struct vge_softc *sc = ifp->if_softc;
1669
1670	return (mii_mediachg(&sc->sc_mii));
1671}
1672
1673/*
1674 * Report current media status.
1675 */
1676void
1677vge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1678{
1679	struct vge_softc *sc = ifp->if_softc;
1680
1681	mii_pollstat(&sc->sc_mii);
1682	ifmr->ifm_active = sc->sc_mii.mii_media_active;
1683	ifmr->ifm_status = sc->sc_mii.mii_media_status;
1684}
1685
1686void
1687vge_miibus_statchg(struct device *dev)
1688{
1689	struct vge_softc	*sc = (struct vge_softc *)dev;
1690	struct mii_data		*mii;
1691	struct ifmedia_entry	*ife;
1692
1693	mii = &sc->sc_mii;
1694	ife = mii->mii_media.ifm_cur;
1695
1696	/*
1697	 * If the user manually selects a media mode, we need to turn
1698	 * on the forced MAC mode bit in the DIAGCTL register. If the
1699	 * user happens to choose a full duplex mode, we also need to
1700	 * set the 'force full duplex' bit. This applies only to
1701	 * 10Mbps and 100Mbps speeds. In autoselect mode, forced MAC
1702	 * mode is disabled, and in 1000baseT mode, full duplex is
1703	 * always implied, so we turn on the forced mode bit but leave
1704	 * the FDX bit cleared.
1705	 */
1706
1707	switch (IFM_SUBTYPE(ife->ifm_media)) {
1708	case IFM_AUTO:
1709		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
1710		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
1711		break;
1712	case IFM_1000_T:
1713		CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
1714		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
1715		break;
1716	case IFM_100_TX:
1717	case IFM_10_T:
1718		CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
1719		if ((ife->ifm_media & IFM_GMASK) == IFM_FDX) {
1720			CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
1721		} else {
1722			CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
1723		}
1724		break;
1725	default:
1726		printf("%s: unknown media type: %x\n",
1727		    sc->vge_dev.dv_xname, IFM_SUBTYPE(ife->ifm_media));
1728		break;
1729	}
1730}
1731
1732int
1733vge_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1734{
1735	struct vge_softc	*sc = ifp->if_softc;
1736	struct ifreq		*ifr = (struct ifreq *) data;
1737	struct ifaddr		*ifa = (struct ifaddr *) data;
1738	int			s, error = 0;
1739
1740	s = splnet();
1741
1742	switch (command) {
1743	case SIOCSIFADDR:
1744		ifp->if_flags |= IFF_UP;
1745		switch (ifa->ifa_addr->sa_family) {
1746#ifdef INET
1747		case AF_INET:
1748			vge_init(ifp);
1749			arp_ifinit(&sc->arpcom, ifa);
1750			break;
1751#endif
1752		default:
1753			vge_init(ifp);
1754			break;
1755		}
1756		break;
1757	case SIOCSIFMTU:
1758		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ifp->if_hardmtu)
1759			error = EINVAL;
1760		else if (ifp->if_mtu != ifr->ifr_mtu)
1761			ifp->if_mtu = ifr->ifr_mtu;
1762		break;
1763	case SIOCSIFFLAGS:
1764		if (ifp->if_flags & IFF_UP) {
1765			if (ifp->if_flags & IFF_RUNNING &&
1766			    ifp->if_flags & IFF_PROMISC &&
1767			    !(sc->vge_if_flags & IFF_PROMISC)) {
1768				CSR_SETBIT_1(sc, VGE_RXCTL,
1769				    VGE_RXCTL_RX_PROMISC);
1770				vge_setmulti(sc);
1771			} else if (ifp->if_flags & IFF_RUNNING &&
1772			    !(ifp->if_flags & IFF_PROMISC) &&
1773			    sc->vge_if_flags & IFF_PROMISC) {
1774				CSR_CLRBIT_1(sc, VGE_RXCTL,
1775				    VGE_RXCTL_RX_PROMISC);
1776				vge_setmulti(sc);
1777                        } else
1778				vge_init(ifp);
1779		} else {
1780			if (ifp->if_flags & IFF_RUNNING)
1781				vge_stop(sc);
1782		}
1783		sc->vge_if_flags = ifp->if_flags;
1784		break;
1785	case SIOCADDMULTI:
1786	case SIOCDELMULTI:
1787		error = (command == SIOCADDMULTI) ?
1788		    ether_addmulti(ifr, &sc->arpcom) :
1789		    ether_delmulti(ifr, &sc->arpcom);
1790
1791		if (error == ENETRESET) {
1792			if (ifp->if_flags & IFF_RUNNING)
1793				vge_setmulti(sc);
1794			error = 0;
1795		}
1796		break;
1797	case SIOCGIFMEDIA:
1798	case SIOCSIFMEDIA:
1799		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, command);
1800		break;
1801	default:
1802		error = ether_ioctl(ifp, &sc->arpcom, command, data);
1803	}
1804
1805	splx(s);
1806	return (error);
1807}
1808
1809void
1810vge_watchdog(struct ifnet *ifp)
1811{
1812	struct vge_softc *sc = ifp->if_softc;
1813	int s;
1814
1815	s = splnet();
1816	printf("%s: watchdog timeout\n", sc->vge_dev.dv_xname);
1817	ifp->if_oerrors++;
1818
1819	vge_txeof(sc);
1820	vge_rxeof(sc);
1821
1822	vge_init(ifp);
1823
1824	splx(s);
1825}
1826
1827/*
1828 * Stop the adapter and free any mbufs allocated to the
1829 * RX and TX lists.
1830 */
1831void
1832vge_stop(struct vge_softc *sc)
1833{
1834	int			i;
1835	struct ifnet		*ifp;
1836
1837	ifp = &sc->arpcom.ac_if;
1838	ifp->if_timer = 0;
1839
1840	timeout_del(&sc->timer_handle);
1841
1842	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1843
1844	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
1845	CSR_WRITE_1(sc, VGE_CRS0, VGE_CR0_STOP);
1846	CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
1847	CSR_WRITE_2(sc, VGE_TXQCSRC, 0xFFFF);
1848	CSR_WRITE_1(sc, VGE_RXQCSRC, 0xFF);
1849	CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO, 0);
1850
1851	if (sc->vge_head != NULL) {
1852		m_freem(sc->vge_head);
1853		sc->vge_head = sc->vge_tail = NULL;
1854	}
1855
1856	/* Free the TX list buffers. */
1857	for (i = 0; i < VGE_TX_DESC_CNT; i++) {
1858		if (sc->vge_ldata.vge_tx_mbuf[i] != NULL) {
1859			bus_dmamap_unload(sc->sc_dmat,
1860			    sc->vge_ldata.vge_tx_dmamap[i]);
1861			m_freem(sc->vge_ldata.vge_tx_mbuf[i]);
1862			sc->vge_ldata.vge_tx_mbuf[i] = NULL;
1863		}
1864	}
1865
1866	/* Free the RX list buffers. */
1867	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
1868		if (sc->vge_ldata.vge_rx_mbuf[i] != NULL) {
1869			bus_dmamap_unload(sc->sc_dmat,
1870			    sc->vge_ldata.vge_rx_dmamap[i]);
1871			m_freem(sc->vge_ldata.vge_rx_mbuf[i]);
1872			sc->vge_ldata.vge_rx_mbuf[i] = NULL;
1873		}
1874	}
1875}
1876