if_vge.c revision 1.31
1/*	$OpenBSD: if_vge.c,v 1.31 2006/11/23 02:00:54 brad Exp $	*/
2/*	$FreeBSD: if_vge.c,v 1.3 2004/09/11 22:13:25 wpaul Exp $	*/
3/*
4 * Copyright (c) 2004
5 *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 *    must display the following acknowledgement:
17 *	This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 *    may be used to endorse or promote products derived from this software
20 *    without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35/*
36 * VIA Networking Technologies VT612x PCI gigabit ethernet NIC driver.
37 *
38 * Written by Bill Paul <wpaul@windriver.com>
39 * Senior Networking Software Engineer
40 * Wind River Systems
41 *
42 * Ported to OpenBSD by Peter Valchev <pvalchev@openbsd.org>
43 */
44
45/*
46 * The VIA Networking VT6122 is a 32bit, 33/66MHz PCI device that
47 * combines a tri-speed ethernet MAC and PHY, with the following
48 * features:
49 *
50 *	o Jumbo frame support up to 16K
51 *	o Transmit and receive flow control
52 *	o IPv4 checksum offload
53 *	o VLAN tag insertion and stripping
54 *	o TCP large send
55 *	o 64-bit multicast hash table filter
56 *	o 64 entry CAM filter
57 *	o 16K RX FIFO and 48K TX FIFO memory
58 *	o Interrupt moderation
59 *
60 * The VT6122 supports up to four transmit DMA queues. The descriptors
61 * in the transmit ring can address up to 7 data fragments; frames which
62 * span more than 7 data buffers must be coalesced, but in general the
63 * BSD TCP/IP stack rarely generates frames more than 2 or 3 fragments
64 * long. The receive descriptors address only a single buffer.
65 *
66 * There are two peculiar design issues with the VT6122. One is that
67 * receive data buffers must be aligned on a 32-bit boundary. This is
68 * not a problem where the VT6122 is used as a LOM device in x86-based
69 * systems, but on architectures that generate unaligned access traps, we
70 * have to do some copying.
71 *
72 * The other issue has to do with the way 64-bit addresses are handled.
73 * The DMA descriptors only allow you to specify 48 bits of addressing
74 * information. The remaining 16 bits are specified using one of the
75 * I/O registers. If you only have a 32-bit system, then this isn't
76 * an issue, but if you have a 64-bit system and more than 4GB of
77 * memory, you must have to make sure your network data buffers reside
78 * in the same 48-bit 'segment.'
79 *
80 * Special thanks to Ryan Fu at VIA Networking for providing documentation
81 * and sample NICs for testing.
82 */
83
84#include "bpfilter.h"
85#include "vlan.h"
86
87#include <sys/param.h>
88#include <sys/endian.h>
89#include <sys/systm.h>
90#include <sys/sockio.h>
91#include <sys/mbuf.h>
92#include <sys/malloc.h>
93#include <sys/kernel.h>
94#include <sys/device.h>
95#include <sys/timeout.h>
96#include <sys/socket.h>
97
98#include <net/if.h>
99#include <net/if_dl.h>
100#include <net/if_media.h>
101
102#ifdef INET
103#include <netinet/in.h>
104#include <netinet/in_systm.h>
105#include <netinet/in_var.h>
106#include <netinet/ip.h>
107#include <netinet/if_ether.h>
108#endif
109
110#if NVLAN > 0
111#include <net/if_types.h>
112#include <net/if_vlan_var.h>
113#endif
114
115#if NBPFILTER > 0
116#include <net/bpf.h>
117#endif
118
119#include <dev/mii/mii.h>
120#include <dev/mii/miivar.h>
121
122#include <dev/pci/pcireg.h>
123#include <dev/pci/pcivar.h>
124#include <dev/pci/pcidevs.h>
125
126#include <dev/pci/if_vgereg.h>
127#include <dev/pci/if_vgevar.h>
128
129int vge_probe		(struct device *, void *, void *);
130void vge_attach		(struct device *, struct device *, void *);
131
132int vge_encap		(struct vge_softc *, struct mbuf *, int);
133
134int vge_allocmem		(struct vge_softc *);
135int vge_newbuf		(struct vge_softc *, int, struct mbuf *);
136int vge_rx_list_init	(struct vge_softc *);
137int vge_tx_list_init	(struct vge_softc *);
138void vge_rxeof		(struct vge_softc *);
139void vge_txeof		(struct vge_softc *);
140int vge_intr		(void *);
141void vge_tick		(void *);
142void vge_start		(struct ifnet *);
143int vge_ioctl		(struct ifnet *, u_long, caddr_t);
144int vge_init		(struct ifnet *);
145void vge_stop		(struct vge_softc *);
146void vge_watchdog	(struct ifnet *);
147int vge_ifmedia_upd	(struct ifnet *);
148void vge_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
149
150#ifdef VGE_EEPROM
151void vge_eeprom_getword	(struct vge_softc *, int, u_int16_t *);
152#endif
153void vge_read_eeprom	(struct vge_softc *, caddr_t, int, int, int);
154
155void vge_miipoll_start	(struct vge_softc *);
156void vge_miipoll_stop	(struct vge_softc *);
157int vge_miibus_readreg	(struct device *, int, int);
158void vge_miibus_writereg (struct device *, int, int, int);
159void vge_miibus_statchg	(struct device *);
160
161void vge_cam_clear	(struct vge_softc *);
162int vge_cam_set		(struct vge_softc *, uint8_t *);
163void vge_setmulti	(struct vge_softc *);
164void vge_reset		(struct vge_softc *);
165
166struct cfattach vge_ca = {
167	sizeof(struct vge_softc), vge_probe, vge_attach
168};
169
170struct cfdriver vge_cd = {
171	0, "vge", DV_IFNET
172};
173
174#define VGE_PCI_LOIO             0x10
175#define VGE_PCI_LOMEM            0x14
176
177int vge_debug = 0;
178#define DPRINTF(x)	if (vge_debug) printf x
179#define DPRINTFN(n, x)	if (vge_debug >= (n)) printf x
180
181const struct pci_matchid vge_devices[] = {
182	{ PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT612x },
183};
184
185#ifdef VGE_EEPROM
186/*
187 * Read a word of data stored in the EEPROM at address 'addr.'
188 */
189void
190vge_eeprom_getword(struct vge_softc *sc, int addr, u_int16_t *dest)
191{
192	int			i;
193	u_int16_t		word = 0;
194
195	/*
196	 * Enter EEPROM embedded programming mode. In order to
197	 * access the EEPROM at all, we first have to set the
198	 * EELOAD bit in the CHIPCFG2 register.
199	 */
200	CSR_SETBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
201	CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
202
203	/* Select the address of the word we want to read */
204	CSR_WRITE_1(sc, VGE_EEADDR, addr);
205
206	/* Issue read command */
207	CSR_SETBIT_1(sc, VGE_EECMD, VGE_EECMD_ERD);
208
209	/* Wait for the done bit to be set. */
210	for (i = 0; i < VGE_TIMEOUT; i++) {
211		if (CSR_READ_1(sc, VGE_EECMD) & VGE_EECMD_EDONE)
212			break;
213	}
214
215	if (i == VGE_TIMEOUT) {
216		printf("%s: EEPROM read timed out\n", sc->vge_dev.dv_xname);
217		*dest = 0;
218		return;
219	}
220
221	/* Read the result */
222	word = CSR_READ_2(sc, VGE_EERDDAT);
223
224	/* Turn off EEPROM access mode. */
225	CSR_CLRBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
226	CSR_CLRBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
227
228	*dest = word;
229}
230#endif
231
232/*
233 * Read a sequence of words from the EEPROM.
234 */
235void
236vge_read_eeprom(struct vge_softc *sc, caddr_t dest, int off, int cnt,
237    int swap)
238{
239	int			i;
240#ifdef VGE_EEPROM
241	u_int16_t		word = 0, *ptr;
242
243	for (i = 0; i < cnt; i++) {
244		vge_eeprom_getword(sc, off + i, &word);
245		ptr = (u_int16_t *)(dest + (i * 2));
246		if (swap)
247			*ptr = ntohs(word);
248		else
249			*ptr = word;
250	}
251#else
252	for (i = 0; i < ETHER_ADDR_LEN; i++)
253		dest[i] = CSR_READ_1(sc, VGE_PAR0 + i);
254#endif
255}
256
257void
258vge_miipoll_stop(struct vge_softc *sc)
259{
260	int			i;
261
262	CSR_WRITE_1(sc, VGE_MIICMD, 0);
263
264	for (i = 0; i < VGE_TIMEOUT; i++) {
265		DELAY(1);
266		if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
267			break;
268	}
269
270	if (i == VGE_TIMEOUT)
271		printf("%s: failed to idle MII autopoll\n", sc->vge_dev.dv_xname);
272}
273
274void
275vge_miipoll_start(struct vge_softc *sc)
276{
277	int			i;
278
279	/* First, make sure we're idle. */
280
281	CSR_WRITE_1(sc, VGE_MIICMD, 0);
282	CSR_WRITE_1(sc, VGE_MIIADDR, VGE_MIIADDR_SWMPL);
283
284	for (i = 0; i < VGE_TIMEOUT; i++) {
285		DELAY(1);
286		if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
287			break;
288	}
289
290	if (i == VGE_TIMEOUT) {
291		printf("%s: failed to idle MII autopoll\n", sc->vge_dev.dv_xname);
292		return;
293	}
294
295	/* Now enable auto poll mode. */
296
297	CSR_WRITE_1(sc, VGE_MIICMD, VGE_MIICMD_MAUTO);
298
299	/* And make sure it started. */
300
301	for (i = 0; i < VGE_TIMEOUT; i++) {
302		DELAY(1);
303		if ((CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL) == 0)
304			break;
305	}
306
307	if (i == VGE_TIMEOUT)
308		printf("%s: failed to start MII autopoll\n", sc->vge_dev.dv_xname);
309}
310
311int
312vge_miibus_readreg(struct device *dev, int phy, int reg)
313{
314	struct vge_softc	*sc = (struct vge_softc *)dev;
315	int			i, s;
316	u_int16_t		rval = 0;
317
318	if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F))
319		return(0);
320
321	s = splnet();
322
323	vge_miipoll_stop(sc);
324
325	/* Specify the register we want to read. */
326	CSR_WRITE_1(sc, VGE_MIIADDR, reg);
327
328	/* Issue read command. */
329	CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_RCMD);
330
331	/* Wait for the read command bit to self-clear. */
332	for (i = 0; i < VGE_TIMEOUT; i++) {
333		DELAY(1);
334		if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_RCMD) == 0)
335			break;
336	}
337
338	if (i == VGE_TIMEOUT)
339		printf("%s: MII read timed out\n", sc->vge_dev.dv_xname);
340	else
341		rval = CSR_READ_2(sc, VGE_MIIDATA);
342
343	vge_miipoll_start(sc);
344	splx(s);
345
346	return (rval);
347}
348
349void
350vge_miibus_writereg(struct device *dev, int phy, int reg, int data)
351{
352	struct vge_softc	*sc = (struct vge_softc *)dev;
353	int			i, s;
354
355	if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F))
356		return;
357
358	s = splnet();
359	vge_miipoll_stop(sc);
360
361	/* Specify the register we want to write. */
362	CSR_WRITE_1(sc, VGE_MIIADDR, reg);
363
364	/* Specify the data we want to write. */
365	CSR_WRITE_2(sc, VGE_MIIDATA, data);
366
367	/* Issue write command. */
368	CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_WCMD);
369
370	/* Wait for the write command bit to self-clear. */
371	for (i = 0; i < VGE_TIMEOUT; i++) {
372		DELAY(1);
373		if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_WCMD) == 0)
374			break;
375	}
376
377	if (i == VGE_TIMEOUT) {
378		printf("%s: MII write timed out\n", sc->vge_dev.dv_xname);
379	}
380
381	vge_miipoll_start(sc);
382	splx(s);
383}
384
385void
386vge_cam_clear(struct vge_softc *sc)
387{
388	int			i;
389
390	/*
391	 * Turn off all the mask bits. This tells the chip
392	 * that none of the entries in the CAM filter are valid.
393	 * desired entries will be enabled as we fill the filter in.
394	 */
395
396	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
397	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
398	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE);
399	for (i = 0; i < 8; i++)
400		CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
401
402	/* Clear the VLAN filter too. */
403
404	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|VGE_CAMADDR_AVSEL|0);
405	for (i = 0; i < 8; i++)
406		CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
407
408	CSR_WRITE_1(sc, VGE_CAMADDR, 0);
409	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
410	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
411
412	sc->vge_camidx = 0;
413}
414
415int
416vge_cam_set(struct vge_softc *sc, uint8_t *addr)
417{
418	int			i, error = 0;
419
420	if (sc->vge_camidx == VGE_CAM_MAXADDRS)
421		return(ENOSPC);
422
423	/* Select the CAM data page. */
424	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
425	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMDATA);
426
427	/* Set the filter entry we want to update and enable writing. */
428	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|sc->vge_camidx);
429
430	/* Write the address to the CAM registers */
431	for (i = 0; i < ETHER_ADDR_LEN; i++)
432		CSR_WRITE_1(sc, VGE_CAM0 + i, addr[i]);
433
434	/* Issue a write command. */
435	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_WRITE);
436
437	/* Wake for it to clear. */
438	for (i = 0; i < VGE_TIMEOUT; i++) {
439		DELAY(1);
440		if ((CSR_READ_1(sc, VGE_CAMCTL) & VGE_CAMCTL_WRITE) == 0)
441			break;
442	}
443
444	if (i == VGE_TIMEOUT) {
445		printf("%s: setting CAM filter failed\n", sc->vge_dev.dv_xname);
446		error = EIO;
447		goto fail;
448	}
449
450	/* Select the CAM mask page. */
451	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
452	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
453
454	/* Set the mask bit that enables this filter. */
455	CSR_SETBIT_1(sc, VGE_CAM0 + (sc->vge_camidx/8),
456	    1<<(sc->vge_camidx & 7));
457
458	sc->vge_camidx++;
459
460fail:
461	/* Turn off access to CAM. */
462	CSR_WRITE_1(sc, VGE_CAMADDR, 0);
463	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
464	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
465
466	return (error);
467}
468
469/*
470 * Program the multicast filter. We use the 64-entry CAM filter
471 * for perfect filtering. If there's more than 64 multicast addresses,
472 * we use the hash filter instead.
473 */
474void
475vge_setmulti(struct vge_softc *sc)
476{
477	struct arpcom		*ac = &sc->arpcom;
478	struct ifnet		*ifp = &ac->ac_if;
479	struct ether_multi	*enm;
480	struct ether_multistep	step;
481	int			error;
482	u_int32_t		h = 0, hashes[2] = { 0, 0 };
483
484	/* First, zot all the multicast entries. */
485	vge_cam_clear(sc);
486	CSR_WRITE_4(sc, VGE_MAR0, 0);
487	CSR_WRITE_4(sc, VGE_MAR1, 0);
488	ifp->if_flags &= ~IFF_ALLMULTI;
489
490	/*
491	 * If the user wants allmulti or promisc mode, enable reception
492	 * of all multicast frames.
493	 */
494	if (ifp->if_flags & IFF_PROMISC) {
495allmulti:
496		CSR_WRITE_4(sc, VGE_MAR0, 0xFFFFFFFF);
497		CSR_WRITE_4(sc, VGE_MAR1, 0xFFFFFFFF);
498		ifp->if_flags |= IFF_ALLMULTI;
499		return;
500	}
501
502	/* Now program new ones */
503	ETHER_FIRST_MULTI(step, ac, enm);
504	while (enm != NULL) {
505		if (bcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN))
506			goto allmulti;
507
508		error = vge_cam_set(sc, enm->enm_addrlo);
509		if (error)
510			break;
511
512		ETHER_NEXT_MULTI(step, enm);
513	}
514
515	/* If there were too many addresses, use the hash filter. */
516	if (error) {
517		vge_cam_clear(sc);
518
519		ETHER_FIRST_MULTI(step, ac, enm);
520		while (enm != NULL) {
521			h = ether_crc32_be(enm->enm_addrlo,
522			    ETHER_ADDR_LEN) >> 26;
523			hashes[h >> 5] |= 1 << (h & 0x1f);
524
525			ETHER_NEXT_MULTI(step, enm);
526		}
527
528		CSR_WRITE_4(sc, VGE_MAR0, hashes[0]);
529		CSR_WRITE_4(sc, VGE_MAR1, hashes[1]);
530	}
531}
532
533void
534vge_reset(struct vge_softc *sc)
535{
536	int			i;
537
538	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_SOFTRESET);
539
540	for (i = 0; i < VGE_TIMEOUT; i++) {
541		DELAY(5);
542		if ((CSR_READ_1(sc, VGE_CRS1) & VGE_CR1_SOFTRESET) == 0)
543			break;
544	}
545
546	if (i == VGE_TIMEOUT) {
547		printf("%s: soft reset timed out", sc->vge_dev.dv_xname);
548		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_STOP_FORCE);
549		DELAY(2000);
550	}
551
552	DELAY(5000);
553
554	CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_RELOAD);
555
556	for (i = 0; i < VGE_TIMEOUT; i++) {
557		DELAY(5);
558		if ((CSR_READ_1(sc, VGE_EECSR) & VGE_EECSR_RELOAD) == 0)
559			break;
560	}
561
562	if (i == VGE_TIMEOUT) {
563		printf("%s: EEPROM reload timed out\n", sc->vge_dev.dv_xname);
564		return;
565	}
566
567	CSR_CLRBIT_1(sc, VGE_CHIPCFG0, VGE_CHIPCFG0_PACPI);
568}
569
570/*
571 * Probe for a VIA gigabit chip. Check the PCI vendor and device
572 * IDs against our list and return a device name if we find a match.
573 */
574int
575vge_probe(struct device *dev, void *match, void *aux)
576{
577	return (pci_matchbyid((struct pci_attach_args *)aux, vge_devices,
578	    sizeof(vge_devices)/sizeof(vge_devices[0])));
579}
580
581/*
582 * Allocate memory for RX/TX rings
583 */
584int
585vge_allocmem(struct vge_softc *sc)
586{
587	int			nseg, rseg;
588	int			i, error;
589
590	nseg = 32;
591
592	/* Allocate DMA'able memory for the TX ring */
593
594	error = bus_dmamap_create(sc->sc_dmat, VGE_TX_LIST_SZ, 1,
595	    VGE_TX_LIST_SZ, 0, BUS_DMA_ALLOCNOW,
596	    &sc->vge_ldata.vge_tx_list_map);
597	if (error)
598		return (ENOMEM);
599	error = bus_dmamem_alloc(sc->sc_dmat, VGE_TX_LIST_SZ,
600	    ETHER_ALIGN, 0,
601	    &sc->vge_ldata.vge_tx_listseg, 1, &rseg, BUS_DMA_NOWAIT);
602	if (error) {
603		printf("%s: can't alloc TX list\n", sc->vge_dev.dv_xname);
604		return (ENOMEM);
605	}
606
607	/* Load the map for the TX ring. */
608	error = bus_dmamem_map(sc->sc_dmat, &sc->vge_ldata.vge_tx_listseg,
609	     1, VGE_TX_LIST_SZ,
610	     (caddr_t *)&sc->vge_ldata.vge_tx_list, BUS_DMA_NOWAIT);
611	memset(sc->vge_ldata.vge_tx_list, 0, VGE_TX_LIST_SZ);
612	if (error) {
613		printf("%s: can't map TX dma buffers\n",
614		    sc->vge_dev.dv_xname);
615		bus_dmamem_free(sc->sc_dmat, &sc->vge_ldata.vge_tx_listseg, rseg);
616		return (ENOMEM);
617	}
618
619	error = bus_dmamap_load(sc->sc_dmat, sc->vge_ldata.vge_tx_list_map,
620	    sc->vge_ldata.vge_tx_list, VGE_TX_LIST_SZ, NULL, BUS_DMA_NOWAIT);
621	if (error) {
622		printf("%s: can't load TX dma map\n", sc->vge_dev.dv_xname);
623		bus_dmamap_destroy(sc->sc_dmat, sc->vge_ldata.vge_tx_list_map);
624		bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->vge_ldata.vge_tx_list,
625		    VGE_TX_LIST_SZ);
626		bus_dmamem_free(sc->sc_dmat, &sc->vge_ldata.vge_tx_listseg, rseg);
627		return (ENOMEM);
628	}
629
630	/* Create DMA maps for TX buffers */
631
632	for (i = 0; i < VGE_TX_DESC_CNT; i++) {
633		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES * nseg, nseg,
634		    MCLBYTES, 0, BUS_DMA_ALLOCNOW,
635		    &sc->vge_ldata.vge_tx_dmamap[i]);
636		if (error) {
637			printf("%s: can't create DMA map for TX\n",
638			    sc->vge_dev.dv_xname);
639			return (ENOMEM);
640		}
641	}
642
643	/* Allocate DMA'able memory for the RX ring */
644
645	error = bus_dmamap_create(sc->sc_dmat, VGE_RX_LIST_SZ, 1,
646	    VGE_RX_LIST_SZ, 0, BUS_DMA_ALLOCNOW,
647	    &sc->vge_ldata.vge_rx_list_map);
648	if (error)
649		return (ENOMEM);
650	error = bus_dmamem_alloc(sc->sc_dmat, VGE_RX_LIST_SZ, VGE_RING_ALIGN,
651	    0, &sc->vge_ldata.vge_rx_listseg, 1, &rseg, BUS_DMA_NOWAIT);
652	if (error) {
653		printf("%s: can't alloc RX list\n", sc->vge_dev.dv_xname);
654		return (ENOMEM);
655	}
656
657	/* Load the map for the RX ring. */
658
659	error = bus_dmamem_map(sc->sc_dmat, &sc->vge_ldata.vge_rx_listseg,
660	     1, VGE_RX_LIST_SZ,
661	     (caddr_t *)&sc->vge_ldata.vge_rx_list, BUS_DMA_NOWAIT);
662	memset(sc->vge_ldata.vge_rx_list, 0, VGE_RX_LIST_SZ);
663	if (error) {
664		printf("%s: can't map RX dma buffers\n",
665		    sc->vge_dev.dv_xname);
666		bus_dmamem_free(sc->sc_dmat, &sc->vge_ldata.vge_rx_listseg, rseg);
667		return (ENOMEM);
668	}
669	error = bus_dmamap_load(sc->sc_dmat, sc->vge_ldata.vge_rx_list_map,
670	    sc->vge_ldata.vge_rx_list, VGE_RX_LIST_SZ, NULL, BUS_DMA_NOWAIT);
671	if (error) {
672		printf("%s: can't load RX dma map\n", sc->vge_dev.dv_xname);
673		bus_dmamap_destroy(sc->sc_dmat, sc->vge_ldata.vge_rx_list_map);
674		bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->vge_ldata.vge_rx_list,
675		    VGE_RX_LIST_SZ);
676		bus_dmamem_free(sc->sc_dmat, &sc->vge_ldata.vge_rx_listseg, rseg);
677		return (ENOMEM);
678	}
679
680	/* Create DMA maps for RX buffers */
681
682	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
683		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES * nseg, nseg,
684		    MCLBYTES, 0, BUS_DMA_ALLOCNOW,
685		    &sc->vge_ldata.vge_rx_dmamap[i]);
686		if (error) {
687			printf("%s: can't create DMA map for RX\n",
688			    sc->vge_dev.dv_xname);
689			return (ENOMEM);
690		}
691	}
692
693	return (0);
694}
695
696/*
697 * Attach the interface. Allocate softc structures, do ifmedia
698 * setup and ethernet/BPF attach.
699 */
700void
701vge_attach(struct device *parent, struct device *self, void *aux)
702{
703	u_char			eaddr[ETHER_ADDR_LEN];
704	u_int16_t		as[3];
705	struct vge_softc	*sc = (struct vge_softc *)self;
706	struct pci_attach_args	*pa = aux;
707	pci_chipset_tag_t	pc = pa->pa_pc;
708	pci_intr_handle_t	ih;
709	const char		*intrstr = NULL;
710	struct ifnet		*ifp;
711	int			error = 0, i;
712	bus_size_t		iosize;
713
714	/*
715	 * Map control/status registers.
716	 */
717	if (pci_mapreg_map(pa, VGE_PCI_LOMEM, PCI_MAPREG_TYPE_MEM, 0,
718	    &sc->vge_btag, &sc->vge_bhandle, NULL, &iosize, 0)) {
719		if (pci_mapreg_map(pa, VGE_PCI_LOIO, PCI_MAPREG_TYPE_IO, 0,
720		    &sc->vge_btag, &sc->vge_bhandle, NULL, &iosize, 0)) {
721			printf(": can't map mem or i/o space\n");
722			return;
723		}
724	}
725
726	/* Allocate interrupt */
727	if (pci_intr_map(pa, &ih)) {
728		printf(": couldn't map interrupt\n");
729		return;
730	}
731	intrstr = pci_intr_string(pc, ih);
732	sc->vge_intrhand = pci_intr_establish(pc, ih, IPL_NET, vge_intr, sc,
733	    sc->vge_dev.dv_xname);
734	if (sc->vge_intrhand == NULL) {
735		printf(": couldn't establish interrupt");
736		if (intrstr != NULL)
737			printf(" at %s", intrstr);
738		return;
739	}
740	printf(": %s", intrstr);
741
742	sc->sc_dmat = pa->pa_dmat;
743
744	/* Reset the adapter. */
745	vge_reset(sc);
746
747	/*
748	 * Get station address from the EEPROM.
749	 */
750	vge_read_eeprom(sc, (caddr_t)as, VGE_EE_EADDR, 3, 0);
751	for (i = 0; i < 3; i++) {
752		eaddr[(i * 2) + 0] = as[i] & 0xff;
753		eaddr[(i * 2) + 1] = as[i] >> 8;
754	}
755
756	bcopy(eaddr, (char *)&sc->arpcom.ac_enaddr, ETHER_ADDR_LEN);
757
758	printf(", address %s\n",
759	    ether_sprintf(sc->arpcom.ac_enaddr));
760
761	error = vge_allocmem(sc);
762
763	if (error)
764		return;
765
766	ifp = &sc->arpcom.ac_if;
767	ifp->if_softc = sc;
768	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
769	ifp->if_ioctl = vge_ioctl;
770	ifp->if_start = vge_start;
771	ifp->if_watchdog = vge_watchdog;
772	ifp->if_init = vge_init;
773	ifp->if_baudrate = 1000000000;
774#ifdef VGE_JUMBO
775	ifp->if_hardmtu = VGE_JUMBO_MTU;
776#endif
777	IFQ_SET_MAXLEN(&ifp->if_snd, VGE_IFQ_MAXLEN);
778	IFQ_SET_READY(&ifp->if_snd);
779
780	ifp->if_capabilities = IFCAP_VLAN_MTU | IFCAP_CSUM_IPv4 |
781				IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4;
782
783#ifdef VGE_VLAN
784	ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING;
785#endif
786
787	/* Set interface name */
788	strlcpy(ifp->if_xname, sc->vge_dev.dv_xname, IFNAMSIZ);
789
790	/* Do MII setup */
791	sc->sc_mii.mii_ifp = ifp;
792	sc->sc_mii.mii_readreg = vge_miibus_readreg;
793	sc->sc_mii.mii_writereg = vge_miibus_writereg;
794	sc->sc_mii.mii_statchg = vge_miibus_statchg;
795	ifmedia_init(&sc->sc_mii.mii_media, 0,
796	    vge_ifmedia_upd, vge_ifmedia_sts);
797	mii_attach(self, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
798	    MII_OFFSET_ANY, 0);
799	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
800		printf("%s: no PHY found!\n", sc->vge_dev.dv_xname);
801		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL,
802		    0, NULL);
803		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL);
804	} else
805		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
806
807	timeout_set(&sc->timer_handle, vge_tick, sc);
808
809	/*
810	 * Call MI attach routine.
811	 */
812	if_attach(ifp);
813	ether_ifattach(ifp);
814}
815
816int
817vge_newbuf(struct vge_softc *sc, int idx, struct mbuf *m)
818{
819	struct mbuf		*m_new = NULL;
820	struct vge_rx_desc	*r;
821	bus_dmamap_t		rxmap = sc->vge_ldata.vge_rx_dmamap[idx];
822	int			i;
823
824	if (m == NULL) {
825		/* Allocate a new mbuf */
826		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
827		if (m_new == NULL)
828			return (ENOBUFS);
829
830		/* Allocate a cluster */
831		MCLGET(m_new, M_DONTWAIT);
832		if (!(m_new->m_flags & M_EXT)) {
833			m_freem(m_new);
834			return (ENOBUFS);
835		}
836	} else
837		m_new->m_data = m_new->m_ext.ext_buf;
838
839	m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
840	/* Fix-up alignment so payload is doubleword-aligned */
841	/* XXX m_adj(m_new, ETHER_ALIGN); */
842
843	if (bus_dmamap_load_mbuf(sc->sc_dmat, rxmap, m_new, BUS_DMA_NOWAIT))
844		return (ENOBUFS);
845
846	if (rxmap->dm_nsegs > 1)
847		goto out;
848
849	/* Map the segments into RX descriptors */
850	r = &sc->vge_ldata.vge_rx_list[idx];
851
852	if (letoh32(r->vge_sts) & VGE_RDSTS_OWN) {
853		printf("%s: tried to map a busy RX descriptor\n",
854		    sc->vge_dev.dv_xname);
855		goto out;
856	}
857	r->vge_buflen = htole16(VGE_BUFLEN(rxmap->dm_segs[0].ds_len) | VGE_RXDESC_I);
858	r->vge_addrlo = htole32(VGE_ADDR_LO(rxmap->dm_segs[0].ds_addr));
859	r->vge_addrhi = htole16(VGE_ADDR_HI(rxmap->dm_segs[0].ds_addr) & 0xFFFF);
860	r->vge_sts = htole32(0);
861	r->vge_ctl = htole32(0);
862
863	/*
864	 * Note: the manual fails to document the fact that for
865	 * proper operation, the driver needs to replenish the RX
866	 * DMA ring 4 descriptors at a time (rather than one at a
867	 * time, like most chips). We can allocate the new buffers
868	 * but we should not set the OWN bits until we're ready
869	 * to hand back 4 of them in one shot.
870	 */
871#define VGE_RXCHUNK 4
872	sc->vge_rx_consumed++;
873	if (sc->vge_rx_consumed == VGE_RXCHUNK) {
874		for (i = idx; i != idx - sc->vge_rx_consumed; i--)
875			sc->vge_ldata.vge_rx_list[i].vge_sts |=
876			    htole32(VGE_RDSTS_OWN);
877		sc->vge_rx_consumed = 0;
878	}
879
880	sc->vge_ldata.vge_rx_mbuf[idx] = m_new;
881
882	bus_dmamap_sync(sc->sc_dmat, rxmap, 0,
883	    rxmap->dm_mapsize, BUS_DMASYNC_PREREAD);
884
885	return (0);
886out:
887	DPRINTF(("vge_newbuf: out of memory\n"));
888	if (m_new != NULL)
889		m_freem(m_new);
890	return (ENOMEM);
891}
892
893int
894vge_tx_list_init(struct vge_softc *sc)
895{
896	bzero ((char *)sc->vge_ldata.vge_tx_list, VGE_TX_LIST_SZ);
897	bzero ((char *)&sc->vge_ldata.vge_tx_mbuf,
898	    (VGE_TX_DESC_CNT * sizeof(struct mbuf *)));
899
900	bus_dmamap_sync(sc->sc_dmat,
901	    sc->vge_ldata.vge_tx_list_map, 0,
902	    sc->vge_ldata.vge_tx_list_map->dm_mapsize,
903	    BUS_DMASYNC_PREWRITE);
904	sc->vge_ldata.vge_tx_prodidx = 0;
905	sc->vge_ldata.vge_tx_considx = 0;
906	sc->vge_ldata.vge_tx_free = VGE_TX_DESC_CNT;
907
908	return (0);
909}
910
911/* Init RX descriptors and allocate mbufs with vge_newbuf()
912 * A ring is used, and last descriptor points to first. */
913int
914vge_rx_list_init(struct vge_softc *sc)
915{
916	int			i;
917
918	bzero ((char *)sc->vge_ldata.vge_rx_list, VGE_RX_LIST_SZ);
919	bzero ((char *)&sc->vge_ldata.vge_rx_mbuf,
920	    (VGE_RX_DESC_CNT * sizeof(struct mbuf *)));
921
922	sc->vge_rx_consumed = 0;
923
924	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
925		if (vge_newbuf(sc, i, NULL) == ENOBUFS)
926			return (ENOBUFS);
927	}
928
929	/* Flush the RX descriptors */
930
931	bus_dmamap_sync(sc->sc_dmat,
932	    sc->vge_ldata.vge_rx_list_map,
933	    0, sc->vge_ldata.vge_rx_list_map->dm_mapsize,
934	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
935
936	sc->vge_ldata.vge_rx_prodidx = 0;
937	sc->vge_rx_consumed = 0;
938	sc->vge_head = sc->vge_tail = NULL;
939
940	return (0);
941}
942
943/*
944 * RX handler. We support the reception of jumbo frames that have
945 * been fragmented across multiple 2K mbuf cluster buffers.
946 */
947void
948vge_rxeof(struct vge_softc *sc)
949{
950	struct mbuf		*m;
951	struct ifnet		*ifp;
952	int			i, total_len;
953	int			lim = 0;
954	struct vge_rx_desc	*cur_rx;
955	u_int32_t		rxstat, rxctl;
956
957	ifp = &sc->arpcom.ac_if;
958	i = sc->vge_ldata.vge_rx_prodidx;
959
960	/* Invalidate the descriptor memory */
961
962	bus_dmamap_sync(sc->sc_dmat,
963	    sc->vge_ldata.vge_rx_list_map,
964	    0, sc->vge_ldata.vge_rx_list_map->dm_mapsize,
965	    BUS_DMASYNC_POSTREAD);
966
967	while (!VGE_OWN(&sc->vge_ldata.vge_rx_list[i])) {
968		struct mbuf *m0 = NULL;
969
970		cur_rx = &sc->vge_ldata.vge_rx_list[i];
971		m = sc->vge_ldata.vge_rx_mbuf[i];
972		total_len = VGE_RXBYTES(cur_rx);
973		rxstat = letoh32(cur_rx->vge_sts);
974		rxctl = letoh32(cur_rx->vge_ctl);
975
976		/* Invalidate the RX mbuf and unload its map */
977
978		bus_dmamap_sync(sc->sc_dmat,
979		    sc->vge_ldata.vge_rx_dmamap[i],
980		    0, sc->vge_ldata.vge_rx_dmamap[i]->dm_mapsize,
981		    BUS_DMASYNC_POSTWRITE);
982		bus_dmamap_unload(sc->sc_dmat,
983		    sc->vge_ldata.vge_rx_dmamap[i]);
984
985		/*
986		 * If the 'start of frame' bit is set, this indicates
987		 * either the first fragment in a multi-fragment receive,
988		 * or an intermediate fragment. Either way, we want to
989		 * accumulate the buffers.
990		 */
991		if (rxstat & VGE_RXPKT_SOF) {
992			DPRINTF(("vge_rxeof: SOF\n"));
993			m->m_len = MCLBYTES;
994			if (sc->vge_head == NULL)
995				sc->vge_head = sc->vge_tail = m;
996			else {
997				m->m_flags &= ~M_PKTHDR;
998				sc->vge_tail->m_next = m;
999				sc->vge_tail = m;
1000			}
1001			vge_newbuf(sc, i, NULL);
1002			VGE_RX_DESC_INC(i);
1003			continue;
1004		}
1005
1006		/*
1007		 * Bad/error frames will have the RXOK bit cleared.
1008		 * However, there's one error case we want to allow:
1009		 * if a VLAN tagged frame arrives and the chip can't
1010		 * match it against the CAM filter, it considers this
1011		 * a 'VLAN CAM filter miss' and clears the 'RXOK' bit.
1012		 * We don't want to drop the frame though: our VLAN
1013		 * filtering is done in software.
1014		 */
1015		if (!(rxstat & VGE_RDSTS_RXOK) && !(rxstat & VGE_RDSTS_VIDM)
1016		    && !(rxstat & VGE_RDSTS_CSUMERR)) {
1017			ifp->if_ierrors++;
1018			/*
1019			 * If this is part of a multi-fragment packet,
1020			 * discard all the pieces.
1021			 */
1022			if (sc->vge_head != NULL) {
1023				m_freem(sc->vge_head);
1024				sc->vge_head = sc->vge_tail = NULL;
1025			}
1026			vge_newbuf(sc, i, m);
1027			VGE_RX_DESC_INC(i);
1028			continue;
1029		}
1030
1031		/*
1032		 * If allocating a replacement mbuf fails,
1033		 * reload the current one.
1034		 */
1035
1036		if (vge_newbuf(sc, i, NULL) == ENOBUFS) {
1037			if (sc->vge_head != NULL) {
1038				m_freem(sc->vge_head);
1039				sc->vge_head = sc->vge_tail = NULL;
1040			}
1041
1042			m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
1043			    total_len - ETHER_CRC_LEN + ETHER_ALIGN,
1044			    0, ifp, NULL);
1045			vge_newbuf(sc, i, m);
1046			if (m0 == NULL) {
1047				ifp->if_ierrors++;
1048				continue;
1049			}
1050			m_adj(m0, ETHER_ALIGN);
1051			m = m0;
1052
1053			VGE_RX_DESC_INC(i);
1054			continue;
1055		}
1056
1057		VGE_RX_DESC_INC(i);
1058
1059		if (sc->vge_head != NULL) {
1060			m->m_len = total_len % MCLBYTES;
1061			/*
1062			 * Special case: if there's 4 bytes or less
1063			 * in this buffer, the mbuf can be discarded:
1064			 * the last 4 bytes is the CRC, which we don't
1065			 * care about anyway.
1066			 */
1067			if (m->m_len <= ETHER_CRC_LEN) {
1068				sc->vge_tail->m_len -=
1069				    (ETHER_CRC_LEN - m->m_len);
1070				m_freem(m);
1071			} else {
1072				m->m_len -= ETHER_CRC_LEN;
1073				m->m_flags &= ~M_PKTHDR;
1074				sc->vge_tail->m_next = m;
1075			}
1076			m = sc->vge_head;
1077			sc->vge_head = sc->vge_tail = NULL;
1078			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1079		} else
1080			m->m_pkthdr.len = m->m_len =
1081			    (total_len - ETHER_CRC_LEN);
1082
1083#ifdef __STRICT_ALIGNMENT
1084		bcopy(m->m_data, m->m_data + ETHER_ALIGN,
1085		    total_len);
1086		m->m_data += ETHER_ALIGN;
1087#endif
1088		ifp->if_ipackets++;
1089		m->m_pkthdr.rcvif = ifp;
1090
1091		/* Do RX checksumming */
1092
1093		/* Check IP header checksum */
1094		if ((rxctl & VGE_RDCTL_IPPKT) &&
1095		    (rxctl & VGE_RDCTL_IPCSUMOK))
1096			m->m_pkthdr.csum_flags |= M_IPV4_CSUM_IN_OK;
1097
1098		/* Check TCP/UDP checksum */
1099		if ((rxctl & (VGE_RDCTL_TCPPKT|VGE_RDCTL_UDPPKT)) &&
1100		    (rxctl & VGE_RDCTL_PROTOCSUMOK))
1101			m->m_pkthdr.csum_flags |= M_TCP_CSUM_IN_OK | M_UDP_CSUM_IN_OK;
1102
1103#if NBPFILTER > 0
1104		if (ifp->if_bpf)
1105			bpf_mtap(ifp->if_bpf, m, BPF_DIRECTION_IN);
1106#endif
1107		ether_input_mbuf(ifp, m);
1108
1109		lim++;
1110		if (lim == VGE_RX_DESC_CNT)
1111			break;
1112	}
1113
1114	/* Flush the RX DMA ring */
1115	bus_dmamap_sync(sc->sc_dmat,
1116	    sc->vge_ldata.vge_rx_list_map,
1117	    0, sc->vge_ldata.vge_rx_list_map->dm_mapsize,
1118	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1119
1120	sc->vge_ldata.vge_rx_prodidx = i;
1121	CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, lim);
1122}
1123
1124void
1125vge_txeof(struct vge_softc *sc)
1126{
1127	struct ifnet		*ifp;
1128	u_int32_t		txstat;
1129	int			idx;
1130
1131	ifp = &sc->arpcom.ac_if;
1132	idx = sc->vge_ldata.vge_tx_considx;
1133
1134	/* Invalidate the TX descriptor list */
1135
1136	bus_dmamap_sync(sc->sc_dmat,
1137	    sc->vge_ldata.vge_tx_list_map,
1138	    0, sc->vge_ldata.vge_tx_list_map->dm_mapsize,
1139	    BUS_DMASYNC_POSTREAD);
1140
1141	/* Transmitted frames can be now free'd from the TX list */
1142	while (idx != sc->vge_ldata.vge_tx_prodidx) {
1143		txstat = letoh32(sc->vge_ldata.vge_tx_list[idx].vge_sts);
1144		if (txstat & VGE_TDSTS_OWN)
1145			break;
1146
1147		m_freem(sc->vge_ldata.vge_tx_mbuf[idx]);
1148		sc->vge_ldata.vge_tx_mbuf[idx] = NULL;
1149		bus_dmamap_unload(sc->sc_dmat,
1150		    sc->vge_ldata.vge_tx_dmamap[idx]);
1151		if (txstat & (VGE_TDSTS_EXCESSCOLL|VGE_TDSTS_COLL))
1152			ifp->if_collisions++;
1153		if (txstat & VGE_TDSTS_TXERR)
1154			ifp->if_oerrors++;
1155		else
1156			ifp->if_opackets++;
1157
1158		sc->vge_ldata.vge_tx_free++;
1159		VGE_TX_DESC_INC(idx);
1160	}
1161
1162	/* No changes made to the TX ring, so no flush needed */
1163
1164	if (idx != sc->vge_ldata.vge_tx_considx) {
1165		sc->vge_ldata.vge_tx_considx = idx;
1166		ifp->if_flags &= ~IFF_OACTIVE;
1167		ifp->if_timer = 0;
1168	}
1169
1170	/*
1171	 * If not all descriptors have been released reaped yet,
1172	 * reload the timer so that we will eventually get another
1173	 * interrupt that will cause us to re-enter this routine.
1174	 * This is done in case the transmitter has gone idle.
1175	 */
1176	if (sc->vge_ldata.vge_tx_free != VGE_TX_DESC_CNT)
1177		CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE);
1178}
1179
1180void
1181vge_tick(void *xsc)
1182{
1183	struct vge_softc	*sc = xsc;
1184	struct ifnet		*ifp = &sc->arpcom.ac_if;
1185	struct mii_data		*mii = &sc->sc_mii;
1186	int s;
1187
1188	s = splnet();
1189
1190	mii_tick(mii);
1191
1192	if (sc->vge_link) {
1193		if (!(mii->mii_media_status & IFM_ACTIVE))
1194			sc->vge_link = 0;
1195			ifp->if_link_state = LINK_STATE_DOWN;
1196			if_link_state_change(ifp);
1197	} else {
1198		if (mii->mii_media_status & IFM_ACTIVE &&
1199		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1200			sc->vge_link = 1;
1201			ifp->if_link_state = LINK_STATE_UP;
1202			if_link_state_change(ifp);
1203			if (!IFQ_IS_EMPTY(&ifp->if_snd))
1204				vge_start(ifp);
1205		}
1206	}
1207	timeout_add(&sc->timer_handle, hz);
1208	splx(s);
1209}
1210
1211int
1212vge_intr(void *arg)
1213{
1214	struct vge_softc	*sc = arg;
1215	struct ifnet		*ifp;
1216	u_int32_t		status;
1217	int			claimed = 0;
1218
1219	ifp = &sc->arpcom.ac_if;
1220
1221	if (!(ifp->if_flags & IFF_UP))
1222		return 0;
1223
1224	/* Disable interrupts */
1225	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
1226
1227	for (;;) {
1228		status = CSR_READ_4(sc, VGE_ISR);
1229		DPRINTFN(3, ("vge_intr: status=%#x\n", status));
1230
1231		/* If the card has gone away the read returns 0xffffffff. */
1232		if (status == 0xFFFFFFFF)
1233			break;
1234
1235		if (status) {
1236			CSR_WRITE_4(sc, VGE_ISR, status);
1237		}
1238
1239		if ((status & VGE_INTRS) == 0)
1240			break;
1241
1242		claimed = 1;
1243
1244		if (status & (VGE_ISR_RXOK|VGE_ISR_RXOK_HIPRIO))
1245			vge_rxeof(sc);
1246
1247		if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
1248			DPRINTFN(2, ("vge_intr: RX error, recovering\n"));
1249			vge_rxeof(sc);
1250			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1251			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1252		}
1253
1254		if (status & (VGE_ISR_TXOK0|VGE_ISR_TIMER0))
1255			vge_txeof(sc);
1256
1257		if (status & (VGE_ISR_TXDMA_STALL|VGE_ISR_RXDMA_STALL)) {
1258			DPRINTFN(2, ("DMA_STALL\n"));
1259			vge_init(ifp);
1260		}
1261
1262		if (status & VGE_ISR_LINKSTS) {
1263			timeout_del(&sc->timer_handle);
1264			vge_tick(sc);
1265		}
1266	}
1267
1268	/* Re-enable interrupts */
1269	CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
1270
1271	if (!IFQ_IS_EMPTY(&ifp->if_snd))
1272		vge_start(ifp);
1273
1274	return (claimed);
1275}
1276
1277/*
1278 * Encapsulate an mbuf chain into the TX ring by combining it w/
1279 * the descriptors.
1280 */
1281int
1282vge_encap(struct vge_softc *sc, struct mbuf *m_head, int idx)
1283{
1284	struct ifnet		*ifp = &sc->arpcom.ac_if;
1285	bus_dmamap_t		txmap;
1286	struct vge_tx_desc	*d = NULL;
1287	struct vge_tx_frag	*f;
1288	struct mbuf		*mnew = NULL;
1289	int			error, frag;
1290	u_int32_t		vge_flags;
1291#if NVLAN > 0
1292	struct ifvlan		*ifv = NULL;
1293
1294	if ((m_head->m_flags & (M_PROTO1|M_PKTHDR)) == (M_PROTO1|M_PKTHDR) &&
1295	    m_head->m_pkthdr.rcvif != NULL)
1296		ifv = m_head->m_pkthdr.rcvif->if_softc;
1297#endif
1298
1299	vge_flags = 0;
1300
1301	if (m_head->m_pkthdr.csum_flags & M_IPV4_CSUM_OUT)
1302		vge_flags |= VGE_TDCTL_IPCSUM;
1303	if (m_head->m_pkthdr.csum_flags & M_TCPV4_CSUM_OUT)
1304		vge_flags |= VGE_TDCTL_TCPCSUM;
1305	if (m_head->m_pkthdr.csum_flags & M_UDPV4_CSUM_OUT)
1306		vge_flags |= VGE_TDCTL_UDPCSUM;
1307
1308	txmap = sc->vge_ldata.vge_tx_dmamap[idx];
1309repack:
1310	error = bus_dmamap_load_mbuf(sc->sc_dmat, txmap,
1311	    m_head, BUS_DMA_NOWAIT);
1312	if (error) {
1313		printf("%s: can't map mbuf (error %d)\n",
1314		    sc->vge_dev.dv_xname, error);
1315		return (ENOBUFS);
1316	}
1317
1318	d = &sc->vge_ldata.vge_tx_list[idx];
1319	/* If owned by chip, fail */
1320	if (letoh32(d->vge_sts) & VGE_TDSTS_OWN)
1321		return (ENOBUFS);
1322
1323	for (frag = 0; frag < txmap->dm_nsegs; frag++) {
1324		/* Check if we have used all 7 fragments. */
1325		if (frag == VGE_TX_FRAGS)
1326			break;
1327		f = &d->vge_frag[frag];
1328		f->vge_buflen = htole16(VGE_BUFLEN(txmap->dm_segs[frag].ds_len));
1329		f->vge_addrlo = htole32(VGE_ADDR_LO(txmap->dm_segs[frag].ds_addr));
1330		f->vge_addrhi = htole16(VGE_ADDR_HI(txmap->dm_segs[frag].ds_addr) & 0xFFFF);
1331	}
1332
1333	/*
1334	 * We used up all 7 fragments!  Now what we have to do is
1335	 * copy the data into a mbuf cluster and map that.
1336	 */
1337	if (frag == VGE_TX_FRAGS) {
1338		MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1339		if (mnew == NULL)
1340			return (ENOBUFS);
1341
1342		if (m_head->m_pkthdr.len > MHLEN) {
1343			MCLGET(mnew, M_DONTWAIT);
1344			if (!(mnew->m_flags & M_EXT)) {
1345				m_freem(mnew);
1346				return (ENOBUFS);
1347			}
1348		}
1349		m_copydata(m_head, 0, m_head->m_pkthdr.len,
1350		    mtod(mnew, caddr_t));
1351		mnew->m_pkthdr.len = mnew->m_len = m_head->m_pkthdr.len;
1352		IFQ_DEQUEUE(&ifp->if_snd, m_head);
1353		m_freem(m_head);
1354		m_head = mnew;
1355		goto repack;
1356	}
1357
1358	/* This chip does not do auto-padding */
1359	if (m_head->m_pkthdr.len < VGE_MIN_FRAMELEN) {
1360		f = &d->vge_frag[frag];
1361
1362		f->vge_buflen = htole16(VGE_BUFLEN(VGE_MIN_FRAMELEN -
1363		    m_head->m_pkthdr.len));
1364		f->vge_addrlo = htole32(VGE_ADDR_LO(txmap->dm_segs[0].ds_addr));
1365		f->vge_addrhi = htole16(VGE_ADDR_HI(txmap->dm_segs[0].ds_addr) & 0xFFFF);
1366		m_head->m_pkthdr.len = VGE_MIN_FRAMELEN;
1367		frag++;
1368	}
1369	/* For some reason, we need to tell the card fragment + 1 */
1370	frag++;
1371
1372	bus_dmamap_sync(sc->sc_dmat, txmap, 0, txmap->dm_mapsize,
1373	    BUS_DMASYNC_PREWRITE);
1374
1375	d->vge_sts = htole32(m_head->m_pkthdr.len << 16);
1376	d->vge_ctl = htole32(vge_flags|(frag << 28) | VGE_TD_LS_NORM);
1377
1378	if (m_head->m_pkthdr.len > ETHERMTU + ETHER_HDR_LEN)
1379		d->vge_ctl |= htole32(VGE_TDCTL_JUMBO);
1380
1381	sc->vge_ldata.vge_tx_dmamap[idx] = txmap;
1382	sc->vge_ldata.vge_tx_mbuf[idx] = m_head;
1383	sc->vge_ldata.vge_tx_free--;
1384	sc->vge_ldata.vge_tx_list[idx].vge_sts |= htole32(VGE_TDSTS_OWN);
1385
1386	/*
1387	 * Set up hardware VLAN tagging.
1388	 */
1389#if NVLAN > 0
1390	if (ifv != NULL) {
1391		sc->vge_ldata.vge_tx_list[idx].vge_ctl |=
1392		    htole32(htons(ifv->ifv_tag) | VGE_TDCTL_VTAG);
1393	}
1394#endif
1395
1396	idx++;
1397	if (mnew == NULL) {
1398		/* if mbuf is coalesced, it is already dequeued */
1399		IFQ_DEQUEUE(&ifp->if_snd, m_head);
1400	}
1401	return (0);
1402}
1403
1404/*
1405 * Main transmit routine.
1406 */
1407void
1408vge_start(struct ifnet *ifp)
1409{
1410	struct vge_softc	*sc;
1411	struct mbuf		*m_head = NULL;
1412	int			idx, pidx = 0;
1413
1414	sc = ifp->if_softc;
1415
1416	if (!sc->vge_link || ifp->if_flags & IFF_OACTIVE)
1417		return;
1418
1419	if (IFQ_IS_EMPTY(&ifp->if_snd))
1420		return;
1421
1422	idx = sc->vge_ldata.vge_tx_prodidx;
1423
1424	pidx = idx - 1;
1425	if (pidx < 0)
1426		pidx = VGE_TX_DESC_CNT - 1;
1427
1428	while (sc->vge_ldata.vge_tx_mbuf[idx] == NULL) {
1429		IFQ_POLL(&ifp->if_snd, m_head);
1430		if (m_head == NULL)
1431			break;
1432
1433		/*
1434		 * If there's a BPF listener, bounce a copy of this frame
1435		 * to him.
1436		 */
1437#if NBPFILTER > 0
1438		if (ifp->if_bpf)
1439			bpf_mtap(ifp->if_bpf, m_head, BPF_DIRECTION_OUT);
1440#endif
1441
1442		if (vge_encap(sc, m_head, idx)) {
1443			ifp->if_flags |= IFF_OACTIVE;
1444			break;
1445		}
1446
1447		sc->vge_ldata.vge_tx_list[pidx].vge_frag[0].vge_buflen |=
1448		    htole16(VGE_TXDESC_Q);
1449
1450		pidx = idx;
1451		VGE_TX_DESC_INC(idx);
1452	}
1453
1454	if (idx == sc->vge_ldata.vge_tx_prodidx) {
1455		return;
1456	}
1457
1458	/* Flush the TX descriptors */
1459
1460	bus_dmamap_sync(sc->sc_dmat,
1461	    sc->vge_ldata.vge_tx_list_map,
1462	    0, sc->vge_ldata.vge_tx_list_map->dm_mapsize,
1463	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1464
1465	/* Issue a transmit command. */
1466	CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_WAK0);
1467
1468	sc->vge_ldata.vge_tx_prodidx = idx;
1469
1470	/*
1471	 * Use the countdown timer for interrupt moderation.
1472	 * 'TX done' interrupts are disabled. Instead, we reset the
1473	 * countdown timer, which will begin counting until it hits
1474	 * the value in the SSTIMER register, and then trigger an
1475	 * interrupt. Each time we set the TIMER0_ENABLE bit, the
1476	 * the timer count is reloaded. Only when the transmitter
1477	 * is idle will the timer hit 0 and an interrupt fire.
1478	 */
1479	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE);
1480
1481	/*
1482	 * Set a timeout in case the chip goes out to lunch.
1483	 */
1484	ifp->if_timer = 5;
1485}
1486
1487int
1488vge_init(struct ifnet *ifp)
1489{
1490	struct vge_softc	*sc = ifp->if_softc;
1491	int			i;
1492
1493	/*
1494	 * Cancel pending I/O and free all RX/TX buffers.
1495	 */
1496	vge_stop(sc);
1497	vge_reset(sc);
1498
1499	/* Initialize RX descriptors list */
1500	if (vge_rx_list_init(sc) == ENOBUFS) {
1501		printf("%s: init failed: no memory for RX buffers\n",
1502		    sc->vge_dev.dv_xname);
1503		vge_stop(sc);
1504		return (ENOBUFS);
1505	}
1506	/* Initialize TX descriptors */
1507	if (vge_tx_list_init(sc) == ENOBUFS) {
1508		printf("%s: init failed: no memory for TX buffers\n",
1509		    sc->vge_dev.dv_xname);
1510		vge_stop(sc);
1511		return (ENOBUFS);
1512	}
1513
1514	/* Set our station address */
1515	for (i = 0; i < ETHER_ADDR_LEN; i++)
1516		CSR_WRITE_1(sc, VGE_PAR0 + i, sc->arpcom.ac_enaddr[i]);
1517
1518	/*
1519	 * Set receive FIFO threshold. Also allow transmission and
1520	 * reception of VLAN tagged frames.
1521	 */
1522	CSR_CLRBIT_1(sc, VGE_RXCFG, VGE_RXCFG_FIFO_THR|VGE_RXCFG_VTAGOPT);
1523	CSR_SETBIT_1(sc, VGE_RXCFG, VGE_RXFIFOTHR_128BYTES|VGE_VTAG_OPT2);
1524
1525	/* Set DMA burst length */
1526	CSR_CLRBIT_1(sc, VGE_DMACFG0, VGE_DMACFG0_BURSTLEN);
1527	CSR_SETBIT_1(sc, VGE_DMACFG0, VGE_DMABURST_128);
1528
1529	CSR_SETBIT_1(sc, VGE_TXCFG, VGE_TXCFG_ARB_PRIO|VGE_TXCFG_NONBLK);
1530
1531	/* Set collision backoff algorithm */
1532	CSR_CLRBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_CRANDOM|
1533	    VGE_CHIPCFG1_CAP|VGE_CHIPCFG1_MBA|VGE_CHIPCFG1_BAKOPT);
1534	CSR_SETBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_OFSET);
1535
1536	/* Disable LPSEL field in priority resolution */
1537	CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_LPSEL_DIS);
1538
1539	/*
1540	 * Load the addresses of the DMA queues into the chip.
1541	 * Note that we only use one transmit queue.
1542	 */
1543
1544	CSR_WRITE_4(sc, VGE_TXDESC_ADDR_LO0,
1545	    VGE_ADDR_LO(sc->vge_ldata.vge_tx_listseg.ds_addr));
1546	CSR_WRITE_2(sc, VGE_TXDESCNUM, VGE_TX_DESC_CNT - 1);
1547
1548	CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO,
1549	    VGE_ADDR_LO(sc->vge_ldata.vge_rx_listseg.ds_addr));
1550	CSR_WRITE_2(sc, VGE_RXDESCNUM, VGE_RX_DESC_CNT - 1);
1551	CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, VGE_RX_DESC_CNT);
1552
1553	/* Enable and wake up the RX descriptor queue */
1554	CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1555	CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1556
1557	/* Enable the TX descriptor queue */
1558	CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_RUN0);
1559
1560	/* Set up the receive filter -- allow large frames for VLANs. */
1561	CSR_WRITE_1(sc, VGE_RXCTL, VGE_RXCTL_RX_UCAST|VGE_RXCTL_RX_GIANT);
1562
1563	/* If we want promiscuous mode, set the allframes bit. */
1564	if (ifp->if_flags & IFF_PROMISC) {
1565		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_PROMISC);
1566	}
1567
1568	/* Set capture broadcast bit to capture broadcast frames. */
1569	if (ifp->if_flags & IFF_BROADCAST) {
1570		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_BCAST);
1571	}
1572
1573	/* Set multicast bit to capture multicast frames. */
1574	if (ifp->if_flags & IFF_MULTICAST) {
1575		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_MCAST);
1576	}
1577
1578	/* Init the cam filter. */
1579	vge_cam_clear(sc);
1580
1581	/* Init the multicast filter. */
1582	vge_setmulti(sc);
1583
1584	/* Enable flow control */
1585
1586	CSR_WRITE_1(sc, VGE_CRS2, 0x8B);
1587
1588	/* Enable jumbo frame reception (if desired) */
1589
1590	/* Start the MAC. */
1591	CSR_WRITE_1(sc, VGE_CRC0, VGE_CR0_STOP);
1592	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_NOPOLL);
1593	CSR_WRITE_1(sc, VGE_CRS0,
1594	    VGE_CR0_TX_ENABLE|VGE_CR0_RX_ENABLE|VGE_CR0_START);
1595
1596	/*
1597	 * Configure one-shot timer for microsecond
1598	 * resulution and load it for 500 usecs.
1599	 */
1600	CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_TIMER0_RES);
1601	CSR_WRITE_2(sc, VGE_SSTIMER, 400);
1602
1603	/*
1604	 * Configure interrupt moderation for receive. Enable
1605	 * the holdoff counter and load it, and set the RX
1606	 * suppression count to the number of descriptors we
1607	 * want to allow before triggering an interrupt.
1608	 * The holdoff timer is in units of 20 usecs.
1609	 */
1610
1611#ifdef notyet
1612	CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_TXINTSUP_DISABLE);
1613	/* Select the interrupt holdoff timer page. */
1614	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
1615	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_INTHLDOFF);
1616	CSR_WRITE_1(sc, VGE_INTHOLDOFF, 10); /* ~200 usecs */
1617
1618	/* Enable use of the holdoff timer. */
1619	CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_HOLDOFF);
1620	CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_SC_RELOAD);
1621
1622	/* Select the RX suppression threshold page. */
1623	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
1624	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_RXSUPPTHR);
1625	CSR_WRITE_1(sc, VGE_RXSUPPTHR, 64); /* interrupt after 64 packets */
1626
1627	/* Restore the page select bits. */
1628	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
1629	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
1630#endif
1631
1632	/*
1633	 * Enable interrupts.
1634	 */
1635	CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
1636	CSR_WRITE_4(sc, VGE_ISR, 0);
1637	CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
1638
1639	/* Restore BMCR state */
1640	mii_mediachg(&sc->sc_mii);
1641
1642	ifp->if_flags |= IFF_RUNNING;
1643	ifp->if_flags &= ~IFF_OACTIVE;
1644
1645	sc->vge_if_flags = 0;
1646	sc->vge_link = 0;
1647
1648	if (!timeout_pending(&sc->timer_handle))
1649		timeout_add(&sc->timer_handle, hz);
1650
1651	return (0);
1652}
1653
1654/*
1655 * Set media options.
1656 */
1657int
1658vge_ifmedia_upd(struct ifnet *ifp)
1659{
1660	struct vge_softc *sc = ifp->if_softc;
1661
1662	return (mii_mediachg(&sc->sc_mii));
1663}
1664
1665/*
1666 * Report current media status.
1667 */
1668void
1669vge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1670{
1671	struct vge_softc *sc = ifp->if_softc;
1672
1673	mii_pollstat(&sc->sc_mii);
1674	ifmr->ifm_active = sc->sc_mii.mii_media_active;
1675	ifmr->ifm_status = sc->sc_mii.mii_media_status;
1676}
1677
1678void
1679vge_miibus_statchg(struct device *dev)
1680{
1681	struct vge_softc	*sc = (struct vge_softc *)dev;
1682	struct mii_data		*mii;
1683	struct ifmedia_entry	*ife;
1684
1685	mii = &sc->sc_mii;
1686	ife = mii->mii_media.ifm_cur;
1687
1688	/*
1689	 * If the user manually selects a media mode, we need to turn
1690	 * on the forced MAC mode bit in the DIAGCTL register. If the
1691	 * user happens to choose a full duplex mode, we also need to
1692	 * set the 'force full duplex' bit. This applies only to
1693	 * 10Mbps and 100Mbps speeds. In autoselect mode, forced MAC
1694	 * mode is disabled, and in 1000baseT mode, full duplex is
1695	 * always implied, so we turn on the forced mode bit but leave
1696	 * the FDX bit cleared.
1697	 */
1698
1699	switch (IFM_SUBTYPE(ife->ifm_media)) {
1700	case IFM_AUTO:
1701		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
1702		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
1703		break;
1704	case IFM_1000_T:
1705		CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
1706		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
1707		break;
1708	case IFM_100_TX:
1709	case IFM_10_T:
1710		CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
1711		if ((ife->ifm_media & IFM_GMASK) == IFM_FDX) {
1712			CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
1713		} else {
1714			CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
1715		}
1716		break;
1717	default:
1718		printf("%s: unknown media type: %x\n",
1719		    sc->vge_dev.dv_xname, IFM_SUBTYPE(ife->ifm_media));
1720		break;
1721	}
1722}
1723
1724int
1725vge_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1726{
1727	struct vge_softc	*sc = ifp->if_softc;
1728	struct ifreq		*ifr = (struct ifreq *) data;
1729	struct ifaddr		*ifa = (struct ifaddr *) data;
1730	int			s, error = 0;
1731
1732	s = splnet();
1733
1734	if ((error = ether_ioctl(ifp, &sc->arpcom, command, data)) > 0) {
1735		splx(s);
1736		return (error);
1737	}
1738
1739	switch (command) {
1740	case SIOCSIFADDR:
1741		ifp->if_flags |= IFF_UP;
1742		switch (ifa->ifa_addr->sa_family) {
1743#ifdef INET
1744		case AF_INET:
1745			vge_init(ifp);
1746			arp_ifinit(&sc->arpcom, ifa);
1747			break;
1748#endif
1749		default:
1750			vge_init(ifp);
1751			break;
1752		}
1753		break;
1754	case SIOCSIFMTU:
1755		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ifp->if_hardmtu)
1756			error = EINVAL;
1757		else if (ifp->if_mtu != ifr->ifr_mtu)
1758			ifp->if_mtu = ifr->ifr_mtu;
1759		break;
1760	case SIOCSIFFLAGS:
1761		if (ifp->if_flags & IFF_UP) {
1762			if (ifp->if_flags & IFF_RUNNING &&
1763			    ifp->if_flags & IFF_PROMISC &&
1764			    !(sc->vge_if_flags & IFF_PROMISC)) {
1765				CSR_SETBIT_1(sc, VGE_RXCTL,
1766				    VGE_RXCTL_RX_PROMISC);
1767				vge_setmulti(sc);
1768			} else if (ifp->if_flags & IFF_RUNNING &&
1769			    !(ifp->if_flags & IFF_PROMISC) &&
1770			    sc->vge_if_flags & IFF_PROMISC) {
1771				CSR_CLRBIT_1(sc, VGE_RXCTL,
1772				    VGE_RXCTL_RX_PROMISC);
1773				vge_setmulti(sc);
1774                        } else
1775				vge_init(ifp);
1776		} else {
1777			if (ifp->if_flags & IFF_RUNNING)
1778				vge_stop(sc);
1779		}
1780		sc->vge_if_flags = ifp->if_flags;
1781		break;
1782	case SIOCADDMULTI:
1783	case SIOCDELMULTI:
1784		error = (command == SIOCADDMULTI) ?
1785		    ether_addmulti(ifr, &sc->arpcom) :
1786		    ether_delmulti(ifr, &sc->arpcom);
1787
1788		if (error == ENETRESET) {
1789			if (ifp->if_flags & IFF_RUNNING)
1790				vge_setmulti(sc);
1791			error = 0;
1792		}
1793		break;
1794	case SIOCGIFMEDIA:
1795	case SIOCSIFMEDIA:
1796		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, command);
1797		break;
1798	default:
1799		error = ENOTTY;
1800		break;
1801	}
1802
1803	splx(s);
1804	return (error);
1805}
1806
1807void
1808vge_watchdog(struct ifnet *ifp)
1809{
1810	struct vge_softc *sc = ifp->if_softc;
1811	int s;
1812
1813	s = splnet();
1814	printf("%s: watchdog timeout\n", sc->vge_dev.dv_xname);
1815	ifp->if_oerrors++;
1816
1817	vge_txeof(sc);
1818	vge_rxeof(sc);
1819
1820	vge_init(ifp);
1821
1822	splx(s);
1823}
1824
1825/*
1826 * Stop the adapter and free any mbufs allocated to the
1827 * RX and TX lists.
1828 */
1829void
1830vge_stop(struct vge_softc *sc)
1831{
1832	int			i;
1833	struct ifnet		*ifp;
1834
1835	ifp = &sc->arpcom.ac_if;
1836	ifp->if_timer = 0;
1837	if (timeout_pending(&sc->timer_handle))
1838		timeout_del(&sc->timer_handle);
1839
1840	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1841
1842	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
1843	CSR_WRITE_1(sc, VGE_CRS0, VGE_CR0_STOP);
1844	CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
1845	CSR_WRITE_2(sc, VGE_TXQCSRC, 0xFFFF);
1846	CSR_WRITE_1(sc, VGE_RXQCSRC, 0xFF);
1847	CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO, 0);
1848
1849	if (sc->vge_head != NULL) {
1850		m_freem(sc->vge_head);
1851		sc->vge_head = sc->vge_tail = NULL;
1852	}
1853
1854	/* Free the TX list buffers. */
1855	for (i = 0; i < VGE_TX_DESC_CNT; i++) {
1856		if (sc->vge_ldata.vge_tx_mbuf[i] != NULL) {
1857			bus_dmamap_unload(sc->sc_dmat,
1858			    sc->vge_ldata.vge_tx_dmamap[i]);
1859			m_freem(sc->vge_ldata.vge_tx_mbuf[i]);
1860			sc->vge_ldata.vge_tx_mbuf[i] = NULL;
1861		}
1862	}
1863
1864	/* Free the RX list buffers. */
1865	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
1866		if (sc->vge_ldata.vge_rx_mbuf[i] != NULL) {
1867			bus_dmamap_unload(sc->sc_dmat,
1868			    sc->vge_ldata.vge_rx_dmamap[i]);
1869			m_freem(sc->vge_ldata.vge_rx_mbuf[i]);
1870			sc->vge_ldata.vge_rx_mbuf[i] = NULL;
1871		}
1872	}
1873}
1874