if_lge.c revision 1.69
1/*	$OpenBSD: if_lge.c,v 1.69 2015/11/20 03:35:23 dlg Exp $	*/
2/*
3 * Copyright (c) 2001 Wind River Systems
4 * Copyright (c) 1997, 1998, 1999, 2000, 2001
5 *	Bill Paul <william.paul@windriver.com>.  All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 *    must display the following acknowledgement:
17 *	This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 *    may be used to endorse or promote products derived from this software
20 *    without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * $FreeBSD: src/sys/dev/lge/if_lge.c,v 1.6 2001/06/20 19:47:55 bmilekic Exp $
35 */
36
37/*
38 * Level 1 LXT1001 gigabit ethernet driver for FreeBSD. Public
39 * documentation not available, but ask me nicely.
40 *
41 * Written by Bill Paul <william.paul@windriver.com>
42 * Wind River Systems
43 */
44
45/*
46 * The Level 1 chip is used on some D-Link, SMC and Addtron NICs.
47 * It's a 64-bit PCI part that supports TCP/IP checksum offload,
48 * VLAN tagging/insertion, GMII and TBI (1000baseX) ports. There
49 * are three supported methods for data transfer between host and
50 * NIC: programmed I/O, traditional scatter/gather DMA and Packet
51 * Propulsion Technology (tm) DMA. The latter mechanism is a form
52 * of double buffer DMA where the packet data is copied to a
53 * pre-allocated DMA buffer who's physical address has been loaded
54 * into a table at device initialization time. The rationale is that
55 * the virtual to physical address translation needed for normal
56 * scatter/gather DMA is more expensive than the data copy needed
57 * for double buffering. This may be true in Windows NT and the like,
58 * but it isn't true for us, at least on the x86 arch. This driver
59 * uses the scatter/gather I/O method for both TX and RX.
60 *
61 * The LXT1001 only supports TCP/IP checksum offload on receive.
62 * Also, the VLAN tagging is done using a 16-entry table which allows
63 * the chip to perform hardware filtering based on VLAN tags. Sadly,
64 * our vlan support doesn't currently play well with this kind of
65 * hardware support.
66 *
67 * Special thanks to:
68 * - Jeff James at Intel, for arranging to have the LXT1001 manual
69 *   released (at long last)
70 * - Beny Chen at D-Link, for actually sending it to me
71 * - Brad Short and Keith Alexis at SMC, for sending me sample
72 *   SMC9462SX and SMC9462TX adapters for testing
73 * - Paul Saab at Y!, for not killing me (though it remains to be seen
74 *   if in fact he did me much of a favor)
75 */
76
77#include "bpfilter.h"
78
79#include <sys/param.h>
80#include <sys/systm.h>
81#include <sys/sockio.h>
82#include <sys/mbuf.h>
83#include <sys/malloc.h>
84#include <sys/kernel.h>
85#include <sys/device.h>
86#include <sys/socket.h>
87
88#include <net/if.h>
89#include <net/if_dl.h>
90#include <net/if_media.h>
91
92#include <netinet/in.h>
93#include <netinet/if_ether.h>
94
95#if NBPFILTER > 0
96#include <net/bpf.h>
97#endif
98
99#include <uvm/uvm_extern.h>              /* for vtophys */
100#define	VTOPHYS(v)	vtophys((vaddr_t)(v))
101
102#include <dev/pci/pcireg.h>
103#include <dev/pci/pcivar.h>
104#include <dev/pci/pcidevs.h>
105
106#include <dev/mii/mii.h>
107#include <dev/mii/miivar.h>
108
109#define LGE_USEIOSPACE
110
111#include <dev/pci/if_lgereg.h>
112
113int lge_probe(struct device *, void *, void *);
114void lge_attach(struct device *, struct device *, void *);
115
116struct cfattach lge_ca = {
117	sizeof(struct lge_softc), lge_probe, lge_attach
118};
119
120struct cfdriver lge_cd = {
121	NULL, "lge", DV_IFNET
122};
123
124int lge_newbuf(struct lge_softc *, struct lge_rx_desc *,
125			     struct mbuf *);
126int lge_encap(struct lge_softc *, struct mbuf *, u_int32_t *);
127void lge_rxeof(struct lge_softc *, int);
128void lge_txeof(struct lge_softc *);
129int lge_intr(void *);
130void lge_tick(void *);
131void lge_start(struct ifnet *);
132int lge_ioctl(struct ifnet *, u_long, caddr_t);
133void lge_init(void *);
134void lge_stop(struct lge_softc *);
135void lge_watchdog(struct ifnet *);
136int lge_ifmedia_upd(struct ifnet *);
137void lge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
138
139void lge_eeprom_getword(struct lge_softc *, int, u_int16_t *);
140void lge_read_eeprom(struct lge_softc *, caddr_t, int, int, int);
141
142int lge_miibus_readreg(struct device *, int, int);
143void lge_miibus_writereg(struct device *, int, int, int);
144void lge_miibus_statchg(struct device *);
145
146void lge_setmulti(struct lge_softc *);
147void lge_reset(struct lge_softc *);
148int lge_list_rx_init(struct lge_softc *);
149int lge_list_tx_init(struct lge_softc *);
150
151#ifdef LGE_DEBUG
152#define DPRINTF(x)	if (lgedebug) printf x
153#define DPRINTFN(n,x)	if (lgedebug >= (n)) printf x
154int	lgedebug = 0;
155#else
156#define DPRINTF(x)
157#define DPRINTFN(n,x)
158#endif
159
160const struct pci_matchid lge_devices[] = {
161	{ PCI_VENDOR_LEVEL1, PCI_PRODUCT_LEVEL1_LXT1001 }
162};
163
164#define LGE_SETBIT(sc, reg, x)				\
165	CSR_WRITE_4(sc, reg,				\
166		CSR_READ_4(sc, reg) | (x))
167
168#define LGE_CLRBIT(sc, reg, x)				\
169	CSR_WRITE_4(sc, reg,				\
170		CSR_READ_4(sc, reg) & ~(x))
171
172#define SIO_SET(x)					\
173	CSR_WRITE_4(sc, LGE_MEAR, CSR_READ_4(sc, LGE_MEAR) | x)
174
175#define SIO_CLR(x)					\
176	CSR_WRITE_4(sc, LGE_MEAR, CSR_READ_4(sc, LGE_MEAR) & ~x)
177
178/*
179 * Read a word of data stored in the EEPROM at address 'addr.'
180 */
181void
182lge_eeprom_getword(struct lge_softc *sc, int addr, u_int16_t *dest)
183{
184	int			i;
185	u_int32_t		val;
186
187	CSR_WRITE_4(sc, LGE_EECTL, LGE_EECTL_CMD_READ|
188	    LGE_EECTL_SINGLEACCESS|((addr >> 1) << 8));
189
190	for (i = 0; i < LGE_TIMEOUT; i++)
191		if (!(CSR_READ_4(sc, LGE_EECTL) & LGE_EECTL_CMD_READ))
192			break;
193
194	if (i == LGE_TIMEOUT) {
195		printf("%s: EEPROM read timed out\n", sc->sc_dv.dv_xname);
196		return;
197	}
198
199	val = CSR_READ_4(sc, LGE_EEDATA);
200
201	if (addr & 1)
202		*dest = (val >> 16) & 0xFFFF;
203	else
204		*dest = val & 0xFFFF;
205}
206
207/*
208 * Read a sequence of words from the EEPROM.
209 */
210void
211lge_read_eeprom(struct lge_softc *sc, caddr_t dest, int off,
212    int cnt, int swap)
213{
214	int			i;
215	u_int16_t		word = 0, *ptr;
216
217	for (i = 0; i < cnt; i++) {
218		lge_eeprom_getword(sc, off + i, &word);
219		ptr = (u_int16_t *)(dest + (i * 2));
220		if (swap)
221			*ptr = ntohs(word);
222		else
223			*ptr = word;
224	}
225}
226
227int
228lge_miibus_readreg(struct device *dev, int phy, int reg)
229{
230	struct lge_softc	*sc = (struct lge_softc *)dev;
231	int			i;
232
233	/*
234	 * If we have a non-PCS PHY, pretend that the internal
235	 * autoneg stuff at PHY address 0 isn't there so that
236	 * the miibus code will find only the GMII PHY.
237	 */
238	if (sc->lge_pcs == 0 && phy == 0)
239		return (0);
240
241	CSR_WRITE_4(sc, LGE_GMIICTL, (phy << 8) | reg | LGE_GMIICMD_READ);
242
243	for (i = 0; i < LGE_TIMEOUT; i++)
244		if (!(CSR_READ_4(sc, LGE_GMIICTL) & LGE_GMIICTL_CMDBUSY))
245			break;
246
247	if (i == LGE_TIMEOUT) {
248		printf("%s: PHY read timed out\n", sc->sc_dv.dv_xname);
249		return (0);
250	}
251
252	return (CSR_READ_4(sc, LGE_GMIICTL) >> 16);
253}
254
255void
256lge_miibus_writereg(struct device *dev, int phy, int reg, int data)
257{
258	struct lge_softc	*sc = (struct lge_softc *)dev;
259	int			i;
260
261	CSR_WRITE_4(sc, LGE_GMIICTL,
262	    (data << 16) | (phy << 8) | reg | LGE_GMIICMD_WRITE);
263
264	for (i = 0; i < LGE_TIMEOUT; i++)
265		if (!(CSR_READ_4(sc, LGE_GMIICTL) & LGE_GMIICTL_CMDBUSY))
266			break;
267
268	if (i == LGE_TIMEOUT) {
269		printf("%s: PHY write timed out\n", sc->sc_dv.dv_xname);
270	}
271}
272
273void
274lge_miibus_statchg(struct device *dev)
275{
276	struct lge_softc	*sc = (struct lge_softc *)dev;
277	struct mii_data		*mii = &sc->lge_mii;
278
279	LGE_CLRBIT(sc, LGE_GMIIMODE, LGE_GMIIMODE_SPEED);
280	switch (IFM_SUBTYPE(mii->mii_media_active)) {
281	case IFM_1000_T:
282	case IFM_1000_SX:
283		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_1000);
284		break;
285	case IFM_100_TX:
286		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_100);
287		break;
288	case IFM_10_T:
289		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_10);
290		break;
291	default:
292		/*
293		 * Choose something, even if it's wrong. Clearing
294		 * all the bits will hose autoneg on the internal
295		 * PHY.
296		 */
297		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_1000);
298		break;
299	}
300
301	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
302		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_GMIIMODE_FDX);
303	} else {
304		LGE_CLRBIT(sc, LGE_GMIIMODE, LGE_GMIIMODE_FDX);
305	}
306}
307
308void
309lge_setmulti(struct lge_softc *sc)
310{
311	struct arpcom		*ac = &sc->arpcom;
312	struct ifnet		*ifp = &ac->ac_if;
313	struct ether_multi      *enm;
314	struct ether_multistep  step;
315	u_int32_t		h = 0, hashes[2] = { 0, 0 };
316
317	/* Make sure multicast hash table is enabled. */
318	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_MCAST);
319
320	if (ac->ac_multirangecnt > 0)
321		ifp->if_flags |= IFF_ALLMULTI;
322
323	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
324		CSR_WRITE_4(sc, LGE_MAR0, 0xFFFFFFFF);
325		CSR_WRITE_4(sc, LGE_MAR1, 0xFFFFFFFF);
326		return;
327	}
328
329	/* first, zot all the existing hash bits */
330	CSR_WRITE_4(sc, LGE_MAR0, 0);
331	CSR_WRITE_4(sc, LGE_MAR1, 0);
332
333	/* now program new ones */
334	ETHER_FIRST_MULTI(step, ac, enm);
335	while (enm != NULL) {
336		h = (ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN) >> 26) &
337		    0x0000003F;
338		if (h < 32)
339			hashes[0] |= (1 << h);
340		else
341			hashes[1] |= (1 << (h - 32));
342		ETHER_NEXT_MULTI(step, enm);
343	}
344
345	CSR_WRITE_4(sc, LGE_MAR0, hashes[0]);
346	CSR_WRITE_4(sc, LGE_MAR1, hashes[1]);
347}
348
349void
350lge_reset(struct lge_softc *sc)
351{
352	int			i;
353
354	LGE_SETBIT(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL0|LGE_MODE1_SOFTRST);
355
356	for (i = 0; i < LGE_TIMEOUT; i++) {
357		if (!(CSR_READ_4(sc, LGE_MODE1) & LGE_MODE1_SOFTRST))
358			break;
359	}
360
361	if (i == LGE_TIMEOUT)
362		printf("%s: reset never completed\n", sc->sc_dv.dv_xname);
363
364	/* Wait a little while for the chip to get its brains in order. */
365	DELAY(1000);
366}
367
368/*
369 * Probe for a Level 1 chip. Check the PCI vendor and device
370 * IDs against our list and return a device name if we find a match.
371 */
372int
373lge_probe(struct device *parent, void *match, void *aux)
374{
375	return (pci_matchbyid((struct pci_attach_args *)aux, lge_devices,
376	    nitems(lge_devices)));
377}
378
379/*
380 * Attach the interface. Allocate softc structures, do ifmedia
381 * setup and ethernet/BPF attach.
382 */
383void
384lge_attach(struct device *parent, struct device *self, void *aux)
385{
386	struct lge_softc	*sc = (struct lge_softc *)self;
387	struct pci_attach_args	*pa = aux;
388	pci_chipset_tag_t	pc = pa->pa_pc;
389	pci_intr_handle_t	ih;
390	const char		*intrstr = NULL;
391	bus_size_t		size;
392	bus_dma_segment_t	seg;
393	bus_dmamap_t		dmamap;
394	int			rseg;
395	u_char			eaddr[ETHER_ADDR_LEN];
396#ifndef LGE_USEIOSPACE
397	pcireg_t		memtype;
398#endif
399	struct ifnet		*ifp;
400	caddr_t			kva;
401
402	pci_set_powerstate(pa->pa_pc, pa->pa_tag, PCI_PMCSR_STATE_D0);
403
404	/*
405	 * Map control/status registers.
406	 */
407	DPRINTFN(5, ("Map control/status regs\n"));
408
409	DPRINTFN(5, ("pci_mapreg_map\n"));
410#ifdef LGE_USEIOSPACE
411	if (pci_mapreg_map(pa, LGE_PCI_LOIO, PCI_MAPREG_TYPE_IO, 0,
412	    &sc->lge_btag, &sc->lge_bhandle, NULL, &size, 0)) {
413		printf(": can't map i/o space\n");
414		return;
415	}
416#else
417	memtype = pci_mapreg_type(pc, pa->pa_tag, LGE_PCI_LOMEM);
418	if (pci_mapreg_map(pa, LGE_PCI_LOMEM, memtype, 0, &sc->lge_btag,
419	    &sc->lge_bhandle, NULL, &size, 0)) {
420		printf(": can't map mem space\n");
421		return;
422	}
423#endif
424
425	DPRINTFN(5, ("pci_intr_map\n"));
426	if (pci_intr_map(pa, &ih)) {
427		printf(": couldn't map interrupt\n");
428		goto fail_1;
429	}
430
431	DPRINTFN(5, ("pci_intr_string\n"));
432	intrstr = pci_intr_string(pc, ih);
433	DPRINTFN(5, ("pci_intr_establish\n"));
434	sc->lge_intrhand = pci_intr_establish(pc, ih, IPL_NET, lge_intr, sc,
435					      sc->sc_dv.dv_xname);
436	if (sc->lge_intrhand == NULL) {
437		printf(": couldn't establish interrupt");
438		if (intrstr != NULL)
439			printf(" at %s", intrstr);
440		printf("\n");
441		goto fail_1;
442	}
443	printf(": %s", intrstr);
444
445	/* Reset the adapter. */
446	DPRINTFN(5, ("lge_reset\n"));
447	lge_reset(sc);
448
449	/*
450	 * Get station address from the EEPROM.
451	 */
452	DPRINTFN(5, ("lge_read_eeprom\n"));
453	lge_read_eeprom(sc, (caddr_t)&eaddr[0], LGE_EE_NODEADDR_0, 1, 0);
454	lge_read_eeprom(sc, (caddr_t)&eaddr[2], LGE_EE_NODEADDR_1, 1, 0);
455	lge_read_eeprom(sc, (caddr_t)&eaddr[4], LGE_EE_NODEADDR_2, 1, 0);
456
457	/*
458	 * A Level 1 chip was detected. Inform the world.
459	 */
460	printf(", address %s\n", ether_sprintf(eaddr));
461
462	bcopy(eaddr, &sc->arpcom.ac_enaddr, ETHER_ADDR_LEN);
463
464	sc->sc_dmatag = pa->pa_dmat;
465	DPRINTFN(5, ("bus_dmamem_alloc\n"));
466	if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct lge_list_data),
467	    PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT | BUS_DMA_ZERO)) {
468		printf("%s: can't alloc rx buffers\n", sc->sc_dv.dv_xname);
469		goto fail_2;
470	}
471	DPRINTFN(5, ("bus_dmamem_map\n"));
472	if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
473			   sizeof(struct lge_list_data), &kva,
474			   BUS_DMA_NOWAIT)) {
475		printf("%s: can't map dma buffers (%zd bytes)\n",
476		       sc->sc_dv.dv_xname, sizeof(struct lge_list_data));
477		goto fail_3;
478	}
479	DPRINTFN(5, ("bus_dmamem_create\n"));
480	if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct lge_list_data), 1,
481			      sizeof(struct lge_list_data), 0,
482			      BUS_DMA_NOWAIT, &dmamap)) {
483		printf("%s: can't create dma map\n", sc->sc_dv.dv_xname);
484		goto fail_4;
485	}
486	DPRINTFN(5, ("bus_dmamem_load\n"));
487	if (bus_dmamap_load(sc->sc_dmatag, dmamap, kva,
488			    sizeof(struct lge_list_data), NULL,
489			    BUS_DMA_NOWAIT)) {
490		goto fail_5;
491	}
492
493	DPRINTFN(5, ("bzero\n"));
494	sc->lge_ldata = (struct lge_list_data *)kva;
495
496	ifp = &sc->arpcom.ac_if;
497	ifp->if_softc = sc;
498	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
499	ifp->if_ioctl = lge_ioctl;
500	ifp->if_start = lge_start;
501	ifp->if_watchdog = lge_watchdog;
502	ifp->if_hardmtu = LGE_JUMBO_MTU;
503	IFQ_SET_MAXLEN(&ifp->if_snd, LGE_TX_LIST_CNT - 1);
504	IFQ_SET_READY(&ifp->if_snd);
505	DPRINTFN(5, ("bcopy\n"));
506	bcopy(sc->sc_dv.dv_xname, ifp->if_xname, IFNAMSIZ);
507
508	ifp->if_capabilities = IFCAP_VLAN_MTU;
509
510	if (CSR_READ_4(sc, LGE_GMIIMODE) & LGE_GMIIMODE_PCSENH)
511		sc->lge_pcs = 1;
512	else
513		sc->lge_pcs = 0;
514
515	/*
516	 * Do MII setup.
517	 */
518	DPRINTFN(5, ("mii setup\n"));
519	sc->lge_mii.mii_ifp = ifp;
520	sc->lge_mii.mii_readreg = lge_miibus_readreg;
521	sc->lge_mii.mii_writereg = lge_miibus_writereg;
522	sc->lge_mii.mii_statchg = lge_miibus_statchg;
523	ifmedia_init(&sc->lge_mii.mii_media, 0, lge_ifmedia_upd,
524		     lge_ifmedia_sts);
525	mii_attach(&sc->sc_dv, &sc->lge_mii, 0xffffffff, MII_PHY_ANY,
526		   MII_OFFSET_ANY, 0);
527
528	if (LIST_FIRST(&sc->lge_mii.mii_phys) == NULL) {
529		printf("%s: no PHY found!\n", sc->sc_dv.dv_xname);
530		ifmedia_add(&sc->lge_mii.mii_media, IFM_ETHER|IFM_MANUAL,
531			    0, NULL);
532		ifmedia_set(&sc->lge_mii.mii_media, IFM_ETHER|IFM_MANUAL);
533	} else {
534		DPRINTFN(5, ("ifmedia_set\n"));
535		ifmedia_set(&sc->lge_mii.mii_media, IFM_ETHER|IFM_AUTO);
536	}
537
538	/*
539	 * Call MI attach routine.
540	 */
541	DPRINTFN(5, ("if_attach\n"));
542	if_attach(ifp);
543	DPRINTFN(5, ("ether_ifattach\n"));
544	ether_ifattach(ifp);
545	DPRINTFN(5, ("timeout_set\n"));
546	timeout_set(&sc->lge_timeout, lge_tick, sc);
547	timeout_add_sec(&sc->lge_timeout, 1);
548	return;
549
550fail_5:
551	bus_dmamap_destroy(sc->sc_dmatag, dmamap);
552
553fail_4:
554	bus_dmamem_unmap(sc->sc_dmatag, kva,
555	    sizeof(struct lge_list_data));
556
557fail_3:
558	bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
559
560fail_2:
561	pci_intr_disestablish(pc, sc->lge_intrhand);
562
563fail_1:
564	bus_space_unmap(sc->lge_btag, sc->lge_bhandle, size);
565}
566
567/*
568 * Initialize the transmit descriptors.
569 */
570int
571lge_list_tx_init(struct lge_softc *sc)
572{
573	struct lge_list_data	*ld;
574	struct lge_ring_data	*cd;
575	int			i;
576
577	cd = &sc->lge_cdata;
578	ld = sc->lge_ldata;
579	for (i = 0; i < LGE_TX_LIST_CNT; i++) {
580		ld->lge_tx_list[i].lge_mbuf = NULL;
581		ld->lge_tx_list[i].lge_ctl = 0;
582	}
583
584	cd->lge_tx_prod = cd->lge_tx_cons = 0;
585
586	return (0);
587}
588
589
590/*
591 * Initialize the RX descriptors and allocate mbufs for them. Note that
592 * we arrange the descriptors in a closed ring, so that the last descriptor
593 * points back to the first.
594 */
595int
596lge_list_rx_init(struct lge_softc *sc)
597{
598	struct lge_list_data	*ld;
599	struct lge_ring_data	*cd;
600	int			i;
601
602	ld = sc->lge_ldata;
603	cd = &sc->lge_cdata;
604
605	cd->lge_rx_prod = cd->lge_rx_cons = 0;
606
607	CSR_WRITE_4(sc, LGE_RXDESC_ADDR_HI, 0);
608
609	for (i = 0; i < LGE_RX_LIST_CNT; i++) {
610		if (CSR_READ_1(sc, LGE_RXCMDFREE_8BIT) == 0)
611			break;
612		if (lge_newbuf(sc, &ld->lge_rx_list[i], NULL) == ENOBUFS)
613			return (ENOBUFS);
614	}
615
616	/* Clear possible 'rx command queue empty' interrupt. */
617	CSR_READ_4(sc, LGE_ISR);
618
619	return (0);
620}
621
622/*
623 * Initialize a RX descriptor and attach a MBUF cluster.
624 */
625int
626lge_newbuf(struct lge_softc *sc, struct lge_rx_desc *c, struct mbuf *m)
627{
628	struct mbuf		*m_new = NULL;
629
630	if (m == NULL) {
631		m_new = MCLGETI(NULL, LGE_JLEN, NULL, M_DONTWAIT);
632		if (m_new == NULL)
633			return (ENOBUFS);
634	} else {
635		/*
636		 * We're re-using a previously allocated mbuf;
637		 * be sure to re-init pointers and lengths to
638		 * default values.
639		 */
640		m_new = m;
641		m_new->m_data = m_new->m_ext.ext_buf;
642	}
643	m_new->m_len = m_new->m_pkthdr.len = LGE_JLEN;
644
645	/*
646	 * Adjust alignment so packet payload begins on a
647	 * longword boundary. Mandatory for Alpha, useful on
648	 * x86 too.
649	*/
650	m_adj(m_new, ETHER_ALIGN);
651
652	c->lge_mbuf = m_new;
653	c->lge_fragptr_hi = 0;
654	c->lge_fragptr_lo = VTOPHYS(mtod(m_new, caddr_t));
655	c->lge_fraglen = m_new->m_len;
656	c->lge_ctl = m_new->m_len | LGE_RXCTL_WANTINTR | LGE_FRAGCNT(1);
657	c->lge_sts = 0;
658
659	/*
660	 * Put this buffer in the RX command FIFO. To do this,
661	 * we just write the physical address of the descriptor
662	 * into the RX descriptor address registers. Note that
663	 * there are two registers, one high DWORD and one low
664	 * DWORD, which lets us specify a 64-bit address if
665	 * desired. We only use a 32-bit address for now.
666	 * Writing to the low DWORD register is what actually
667	 * causes the command to be issued, so we do that
668	 * last.
669	 */
670	CSR_WRITE_4(sc, LGE_RXDESC_ADDR_LO, VTOPHYS(c));
671	LGE_INC(sc->lge_cdata.lge_rx_prod, LGE_RX_LIST_CNT);
672
673	return (0);
674}
675
676/*
677 * A frame has been uploaded: pass the resulting mbuf chain up to
678 * the higher level protocols.
679 */
680void
681lge_rxeof(struct lge_softc *sc, int cnt)
682{
683	struct mbuf_list	ml = MBUF_LIST_INITIALIZER();
684        struct mbuf		*m;
685        struct ifnet		*ifp;
686	struct lge_rx_desc	*cur_rx;
687	int			c, i, total_len = 0;
688	u_int32_t		rxsts, rxctl;
689
690	ifp = &sc->arpcom.ac_if;
691
692	/* Find out how many frames were processed. */
693	c = cnt;
694	i = sc->lge_cdata.lge_rx_cons;
695
696	/* Suck them in. */
697	while(c) {
698		struct mbuf		*m0 = NULL;
699
700		cur_rx = &sc->lge_ldata->lge_rx_list[i];
701		rxctl = cur_rx->lge_ctl;
702		rxsts = cur_rx->lge_sts;
703		m = cur_rx->lge_mbuf;
704		cur_rx->lge_mbuf = NULL;
705		total_len = LGE_RXBYTES(cur_rx);
706		LGE_INC(i, LGE_RX_LIST_CNT);
707		c--;
708
709		/*
710		 * If an error occurs, update stats, clear the
711		 * status word and leave the mbuf cluster in place:
712		 * it should simply get re-used next time this descriptor
713	 	 * comes up in the ring.
714		 */
715		if (rxctl & LGE_RXCTL_ERRMASK) {
716			ifp->if_ierrors++;
717			lge_newbuf(sc, &LGE_RXTAIL(sc), m);
718			continue;
719		}
720
721		if (lge_newbuf(sc, &LGE_RXTAIL(sc), NULL) == ENOBUFS) {
722			m0 = m_devget(mtod(m, char *), total_len, ETHER_ALIGN);
723			lge_newbuf(sc, &LGE_RXTAIL(sc), m);
724			if (m0 == NULL) {
725				ifp->if_ierrors++;
726				continue;
727			}
728			m = m0;
729		} else {
730			m->m_pkthdr.len = m->m_len = total_len;
731		}
732
733		/* Do IP checksum checking. */
734		if (rxsts & LGE_RXSTS_ISIP) {
735			if (!(rxsts & LGE_RXSTS_IPCSUMERR))
736				m->m_pkthdr.csum_flags |= M_IPV4_CSUM_IN_OK;
737		}
738		if (rxsts & LGE_RXSTS_ISTCP) {
739			if (!(rxsts & LGE_RXSTS_TCPCSUMERR))
740				m->m_pkthdr.csum_flags |= M_TCP_CSUM_IN_OK;
741		}
742		if (rxsts & LGE_RXSTS_ISUDP) {
743			if (!(rxsts & LGE_RXSTS_UDPCSUMERR))
744				m->m_pkthdr.csum_flags |= M_UDP_CSUM_IN_OK;
745		}
746
747		ml_enqueue(&ml, m);
748	}
749
750	if_input(ifp, &ml);
751
752	sc->lge_cdata.lge_rx_cons = i;
753}
754
755/*
756 * A frame was downloaded to the chip. It's safe for us to clean up
757 * the list buffers.
758 */
759
760void
761lge_txeof(struct lge_softc *sc)
762{
763	struct lge_tx_desc	*cur_tx = NULL;
764	struct ifnet		*ifp;
765	u_int32_t		idx, txdone;
766
767	ifp = &sc->arpcom.ac_if;
768
769	/* Clear the timeout timer. */
770	ifp->if_timer = 0;
771
772	/*
773	 * Go through our tx list and free mbufs for those
774	 * frames that have been transmitted.
775	 */
776	idx = sc->lge_cdata.lge_tx_cons;
777	txdone = CSR_READ_1(sc, LGE_TXDMADONE_8BIT);
778
779	while (idx != sc->lge_cdata.lge_tx_prod && txdone) {
780		cur_tx = &sc->lge_ldata->lge_tx_list[idx];
781
782		ifp->if_opackets++;
783		if (cur_tx->lge_mbuf != NULL) {
784			m_freem(cur_tx->lge_mbuf);
785			cur_tx->lge_mbuf = NULL;
786		}
787		cur_tx->lge_ctl = 0;
788
789		txdone--;
790		LGE_INC(idx, LGE_TX_LIST_CNT);
791		ifp->if_timer = 0;
792	}
793
794	sc->lge_cdata.lge_tx_cons = idx;
795
796	if (cur_tx != NULL)
797		ifp->if_flags &= ~IFF_OACTIVE;
798}
799
800void
801lge_tick(void *xsc)
802{
803	struct lge_softc	*sc = xsc;
804	struct mii_data		*mii = &sc->lge_mii;
805	struct ifnet		*ifp = &sc->arpcom.ac_if;
806	int			s;
807
808	s = splnet();
809
810	CSR_WRITE_4(sc, LGE_STATSIDX, LGE_STATS_SINGLE_COLL_PKTS);
811	ifp->if_collisions += CSR_READ_4(sc, LGE_STATSVAL);
812	CSR_WRITE_4(sc, LGE_STATSIDX, LGE_STATS_MULTI_COLL_PKTS);
813	ifp->if_collisions += CSR_READ_4(sc, LGE_STATSVAL);
814
815	if (!sc->lge_link) {
816		mii_tick(mii);
817		if (mii->mii_media_status & IFM_ACTIVE &&
818		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
819			sc->lge_link++;
820			if (!IFQ_IS_EMPTY(&ifp->if_snd))
821				lge_start(ifp);
822		}
823	}
824
825	timeout_add_sec(&sc->lge_timeout, 1);
826
827	splx(s);
828}
829
830int
831lge_intr(void *arg)
832{
833	struct lge_softc	*sc;
834	struct ifnet		*ifp;
835	u_int32_t		status;
836	int			claimed = 0;
837
838	sc = arg;
839	ifp = &sc->arpcom.ac_if;
840
841	/* Suppress unwanted interrupts */
842	if (!(ifp->if_flags & IFF_UP)) {
843		lge_stop(sc);
844		return (0);
845	}
846
847	for (;;) {
848		/*
849		 * Reading the ISR register clears all interrupts, and
850		 * clears the 'interrupts enabled' bit in the IMR
851		 * register.
852		 */
853		status = CSR_READ_4(sc, LGE_ISR);
854
855		if ((status & LGE_INTRS) == 0)
856			break;
857
858		claimed = 1;
859
860		if ((status & (LGE_ISR_TXCMDFIFO_EMPTY|LGE_ISR_TXDMA_DONE)))
861			lge_txeof(sc);
862
863		if (status & LGE_ISR_RXDMA_DONE)
864			lge_rxeof(sc, LGE_RX_DMACNT(status));
865
866		if (status & LGE_ISR_RXCMDFIFO_EMPTY)
867			lge_init(sc);
868
869		if (status & LGE_ISR_PHY_INTR) {
870			sc->lge_link = 0;
871			timeout_del(&sc->lge_timeout);
872			lge_tick(sc);
873		}
874	}
875
876	/* Re-enable interrupts. */
877	CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_SETRST_CTL0|LGE_IMR_INTR_ENB);
878
879	if (!IFQ_IS_EMPTY(&ifp->if_snd))
880		lge_start(ifp);
881
882	return (claimed);
883}
884
885/*
886 * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
887 * pointers to the fragment pointers.
888 */
889int
890lge_encap(struct lge_softc *sc, struct mbuf *m_head, u_int32_t *txidx)
891{
892	struct lge_frag		*f = NULL;
893	struct lge_tx_desc	*cur_tx;
894	struct mbuf		*m;
895	int			frag = 0, tot_len = 0;
896
897	/*
898 	 * Start packing the mbufs in this chain into
899	 * the fragment pointers. Stop when we run out
900 	 * of fragments or hit the end of the mbuf chain.
901	 */
902	m = m_head;
903	cur_tx = &sc->lge_ldata->lge_tx_list[*txidx];
904	frag = 0;
905
906	for (m = m_head; m != NULL; m = m->m_next) {
907		if (m->m_len != 0) {
908			tot_len += m->m_len;
909			f = &cur_tx->lge_frags[frag];
910			f->lge_fraglen = m->m_len;
911			f->lge_fragptr_lo = VTOPHYS(mtod(m, vaddr_t));
912			f->lge_fragptr_hi = 0;
913			frag++;
914		}
915	}
916
917	if (m != NULL)
918		return (ENOBUFS);
919
920	cur_tx->lge_mbuf = m_head;
921	cur_tx->lge_ctl = LGE_TXCTL_WANTINTR|LGE_FRAGCNT(frag)|tot_len;
922	LGE_INC((*txidx), LGE_TX_LIST_CNT);
923
924	/* Queue for transmit */
925	CSR_WRITE_4(sc, LGE_TXDESC_ADDR_LO, VTOPHYS(cur_tx));
926
927	return (0);
928}
929
930/*
931 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
932 * to the mbuf data regions directly in the transmit lists. We also save a
933 * copy of the pointers since the transmit list fragment pointers are
934 * physical addresses.
935 */
936
937void
938lge_start(struct ifnet *ifp)
939{
940	struct lge_softc	*sc;
941	struct mbuf		*m_head = NULL;
942	u_int32_t		idx;
943	int			pkts = 0;
944
945	sc = ifp->if_softc;
946
947	if (!sc->lge_link)
948		return;
949
950	idx = sc->lge_cdata.lge_tx_prod;
951
952	if (ifp->if_flags & IFF_OACTIVE)
953		return;
954
955	while(sc->lge_ldata->lge_tx_list[idx].lge_mbuf == NULL) {
956		if (CSR_READ_1(sc, LGE_TXCMDFREE_8BIT) == 0)
957			break;
958
959		m_head = ifq_deq_begin(&ifp->if_snd);
960		if (m_head == NULL)
961			break;
962
963		if (lge_encap(sc, m_head, &idx)) {
964			ifq_deq_rollback(&ifp->if_snd, m_head);
965			ifp->if_flags |= IFF_OACTIVE;
966			break;
967		}
968
969		/* now we are committed to transmit the packet */
970		ifq_deq_commit(&ifp->if_snd, m_head);
971		pkts++;
972
973#if NBPFILTER > 0
974		/*
975		 * If there's a BPF listener, bounce a copy of this frame
976		 * to him.
977		 */
978		if (ifp->if_bpf)
979			bpf_mtap(ifp->if_bpf, m_head, BPF_DIRECTION_OUT);
980#endif
981	}
982	if (pkts == 0)
983		return;
984
985	sc->lge_cdata.lge_tx_prod = idx;
986
987	/*
988	 * Set a timeout in case the chip goes out to lunch.
989	 */
990	ifp->if_timer = 5;
991}
992
993void
994lge_init(void *xsc)
995{
996	struct lge_softc	*sc = xsc;
997	struct ifnet		*ifp = &sc->arpcom.ac_if;
998	int			s;
999
1000	s = splnet();
1001
1002	/*
1003	 * Cancel pending I/O and free all RX/TX buffers.
1004	 */
1005	lge_stop(sc);
1006	lge_reset(sc);
1007
1008	/* Set MAC address */
1009	CSR_WRITE_4(sc, LGE_PAR0, *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
1010	CSR_WRITE_4(sc, LGE_PAR1, *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
1011
1012	/* Init circular RX list. */
1013	if (lge_list_rx_init(sc) == ENOBUFS) {
1014		printf("%s: initialization failed: no "
1015		       "memory for rx buffers\n", sc->sc_dv.dv_xname);
1016		lge_stop(sc);
1017		splx(s);
1018		return;
1019	}
1020
1021	/*
1022	 * Init tx descriptors.
1023	 */
1024	lge_list_tx_init(sc);
1025
1026	/* Set initial value for MODE1 register. */
1027	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_UCAST|
1028	    LGE_MODE1_TX_CRC|LGE_MODE1_TXPAD|
1029	    LGE_MODE1_RX_FLOWCTL|LGE_MODE1_SETRST_CTL0|
1030	    LGE_MODE1_SETRST_CTL1|LGE_MODE1_SETRST_CTL2);
1031
1032	 /* If we want promiscuous mode, set the allframes bit. */
1033	if (ifp->if_flags & IFF_PROMISC) {
1034		CSR_WRITE_4(sc, LGE_MODE1,
1035		    LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_PROMISC);
1036	} else {
1037		CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_PROMISC);
1038	}
1039
1040	/*
1041	 * Set the capture broadcast bit to capture broadcast frames.
1042	 */
1043	if (ifp->if_flags & IFF_BROADCAST) {
1044		CSR_WRITE_4(sc, LGE_MODE1,
1045		    LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_BCAST);
1046	} else {
1047		CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_BCAST);
1048	}
1049
1050	/* Packet padding workaround? */
1051	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_RMVPAD);
1052
1053	/* No error frames */
1054	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_ERRPKTS);
1055
1056	/* Receive large frames */
1057	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_GIANTS);
1058
1059	/* Workaround: disable RX/TX flow control */
1060	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_TX_FLOWCTL);
1061	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_FLOWCTL);
1062
1063	/* Make sure to strip CRC from received frames */
1064	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_CRC);
1065
1066	/* Turn off magic packet mode */
1067	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_MPACK_ENB);
1068
1069	/* Turn off all VLAN stuff */
1070	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_VLAN_RX|LGE_MODE1_VLAN_TX|
1071	    LGE_MODE1_VLAN_STRIP|LGE_MODE1_VLAN_INSERT);
1072
1073	/* Workarond: FIFO overflow */
1074	CSR_WRITE_2(sc, LGE_RXFIFO_HIWAT, 0x3FFF);
1075	CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_SETRST_CTL1|LGE_IMR_RXFIFO_WAT);
1076
1077	/*
1078	 * Load the multicast filter.
1079	 */
1080	lge_setmulti(sc);
1081
1082	/*
1083	 * Enable hardware checksum validation for all received IPv4
1084	 * packets, do not reject packets with bad checksums.
1085	 */
1086	CSR_WRITE_4(sc, LGE_MODE2, LGE_MODE2_RX_IPCSUM|
1087	    LGE_MODE2_RX_TCPCSUM|LGE_MODE2_RX_UDPCSUM|
1088	    LGE_MODE2_RX_ERRCSUM);
1089
1090	/*
1091	 * Enable the delivery of PHY interrupts based on
1092	 * link/speed/duplex status chalges.
1093	 */
1094	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL0|LGE_MODE1_GMIIPOLL);
1095
1096	/* Enable receiver and transmitter. */
1097	CSR_WRITE_4(sc, LGE_RXDESC_ADDR_HI, 0);
1098	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_ENB);
1099
1100	CSR_WRITE_4(sc, LGE_TXDESC_ADDR_HI, 0);
1101	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_TX_ENB);
1102
1103	/*
1104	 * Enable interrupts.
1105	 */
1106	CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_SETRST_CTL0|
1107	    LGE_IMR_SETRST_CTL1|LGE_IMR_INTR_ENB|LGE_INTRS);
1108
1109	lge_ifmedia_upd(ifp);
1110
1111	ifp->if_flags |= IFF_RUNNING;
1112	ifp->if_flags &= ~IFF_OACTIVE;
1113
1114	splx(s);
1115
1116	timeout_add_sec(&sc->lge_timeout, 1);
1117}
1118
1119/*
1120 * Set media options.
1121 */
1122int
1123lge_ifmedia_upd(struct ifnet *ifp)
1124{
1125	struct lge_softc	*sc = ifp->if_softc;
1126	struct mii_data		*mii = &sc->lge_mii;
1127
1128	sc->lge_link = 0;
1129	if (mii->mii_instance) {
1130		struct mii_softc *miisc;
1131		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
1132			mii_phy_reset(miisc);
1133	}
1134	mii_mediachg(mii);
1135
1136	return (0);
1137}
1138
1139/*
1140 * Report current media status.
1141 */
1142void
1143lge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1144{
1145	struct lge_softc	*sc = ifp->if_softc;
1146	struct mii_data		*mii = &sc->lge_mii;
1147
1148	mii_pollstat(mii);
1149	ifmr->ifm_active = mii->mii_media_active;
1150	ifmr->ifm_status = mii->mii_media_status;
1151}
1152
1153int
1154lge_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1155{
1156	struct lge_softc	*sc = ifp->if_softc;
1157	struct ifreq		*ifr = (struct ifreq *) data;
1158	struct mii_data		*mii;
1159	int			s, error = 0;
1160
1161	s = splnet();
1162
1163	switch(command) {
1164	case SIOCSIFADDR:
1165		ifp->if_flags |= IFF_UP;
1166		if (!(ifp->if_flags & IFF_RUNNING))
1167			lge_init(sc);
1168		break;
1169
1170	case SIOCSIFFLAGS:
1171		if (ifp->if_flags & IFF_UP) {
1172			if (ifp->if_flags & IFF_RUNNING &&
1173			    ifp->if_flags & IFF_PROMISC &&
1174			    !(sc->lge_if_flags & IFF_PROMISC)) {
1175				CSR_WRITE_4(sc, LGE_MODE1,
1176				    LGE_MODE1_SETRST_CTL1|
1177				    LGE_MODE1_RX_PROMISC);
1178				lge_setmulti(sc);
1179			} else if (ifp->if_flags & IFF_RUNNING &&
1180			    !(ifp->if_flags & IFF_PROMISC) &&
1181			    sc->lge_if_flags & IFF_PROMISC) {
1182				CSR_WRITE_4(sc, LGE_MODE1,
1183				    LGE_MODE1_RX_PROMISC);
1184				lge_setmulti(sc);
1185			} else if (ifp->if_flags & IFF_RUNNING &&
1186			    (ifp->if_flags ^ sc->lge_if_flags) & IFF_ALLMULTI) {
1187				lge_setmulti(sc);
1188			} else {
1189				if (!(ifp->if_flags & IFF_RUNNING))
1190					lge_init(sc);
1191			}
1192		} else {
1193			if (ifp->if_flags & IFF_RUNNING)
1194				lge_stop(sc);
1195		}
1196		sc->lge_if_flags = ifp->if_flags;
1197		break;
1198
1199	case SIOCGIFMEDIA:
1200	case SIOCSIFMEDIA:
1201		mii = &sc->lge_mii;
1202		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1203		break;
1204
1205	default:
1206		error = ether_ioctl(ifp, &sc->arpcom, command, data);
1207	}
1208
1209	if (error == ENETRESET) {
1210		if (ifp->if_flags & IFF_RUNNING)
1211			lge_setmulti(sc);
1212		error = 0;
1213	}
1214
1215	splx(s);
1216	return (error);
1217}
1218
1219void
1220lge_watchdog(struct ifnet *ifp)
1221{
1222	struct lge_softc	*sc;
1223
1224	sc = ifp->if_softc;
1225
1226	ifp->if_oerrors++;
1227	printf("%s: watchdog timeout\n", sc->sc_dv.dv_xname);
1228
1229	lge_stop(sc);
1230	lge_reset(sc);
1231	lge_init(sc);
1232
1233	if (!IFQ_IS_EMPTY(&ifp->if_snd))
1234		lge_start(ifp);
1235}
1236
1237/*
1238 * Stop the adapter and free any mbufs allocated to the
1239 * RX and TX lists.
1240 */
1241void
1242lge_stop(struct lge_softc *sc)
1243{
1244	int			i;
1245	struct ifnet		*ifp;
1246
1247	ifp = &sc->arpcom.ac_if;
1248	ifp->if_timer = 0;
1249	timeout_del(&sc->lge_timeout);
1250
1251	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1252
1253	CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_INTR_ENB);
1254
1255	/* Disable receiver and transmitter. */
1256	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_ENB|LGE_MODE1_TX_ENB);
1257	sc->lge_link = 0;
1258
1259	/*
1260	 * Free data in the RX lists.
1261	 */
1262	for (i = 0; i < LGE_RX_LIST_CNT; i++) {
1263		if (sc->lge_ldata->lge_rx_list[i].lge_mbuf != NULL) {
1264			m_freem(sc->lge_ldata->lge_rx_list[i].lge_mbuf);
1265			sc->lge_ldata->lge_rx_list[i].lge_mbuf = NULL;
1266		}
1267	}
1268	bzero(&sc->lge_ldata->lge_rx_list, sizeof(sc->lge_ldata->lge_rx_list));
1269
1270	/*
1271	 * Free the TX list buffers.
1272	 */
1273	for (i = 0; i < LGE_TX_LIST_CNT; i++) {
1274		if (sc->lge_ldata->lge_tx_list[i].lge_mbuf != NULL) {
1275			m_freem(sc->lge_ldata->lge_tx_list[i].lge_mbuf);
1276			sc->lge_ldata->lge_tx_list[i].lge_mbuf = NULL;
1277		}
1278	}
1279
1280	bzero(&sc->lge_ldata->lge_tx_list, sizeof(sc->lge_ldata->lge_tx_list));
1281}
1282