1/*	$OpenBSD: if_lge.c,v 1.81 2024/05/24 06:02:53 jsg Exp $	*/
2/*
3 * Copyright (c) 2001 Wind River Systems
4 * Copyright (c) 1997, 1998, 1999, 2000, 2001
5 *	Bill Paul <william.paul@windriver.com>.  All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 *    must display the following acknowledgement:
17 *	This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 *    may be used to endorse or promote products derived from this software
20 *    without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * $FreeBSD: src/sys/dev/lge/if_lge.c,v 1.6 2001/06/20 19:47:55 bmilekic Exp $
35 */
36
37/*
38 * Level 1 LXT1001 gigabit ethernet driver for FreeBSD. Public
39 * documentation not available, but ask me nicely.
40 *
41 * Written by Bill Paul <william.paul@windriver.com>
42 * Wind River Systems
43 */
44
45/*
46 * The Level 1 chip is used on some D-Link, SMC and Addtron NICs.
47 * It's a 64-bit PCI part that supports TCP/IP checksum offload,
48 * VLAN tagging/insertion, GMII and TBI (1000baseX) ports. There
49 * are three supported methods for data transfer between host and
50 * NIC: programmed I/O, traditional scatter/gather DMA and Packet
51 * Propulsion Technology (tm) DMA. The latter mechanism is a form
52 * of double buffer DMA where the packet data is copied to a
53 * pre-allocated DMA buffer who's physical address has been loaded
54 * into a table at device initialization time. The rationale is that
55 * the virtual to physical address translation needed for normal
56 * scatter/gather DMA is more expensive than the data copy needed
57 * for double buffering. This may be true in Windows NT and the like,
58 * but it isn't true for us, at least on the x86 arch. This driver
59 * uses the scatter/gather I/O method for both TX and RX.
60 *
61 * The LXT1001 only supports TCP/IP checksum offload on receive.
62 * Also, the VLAN tagging is done using a 16-entry table which allows
63 * the chip to perform hardware filtering based on VLAN tags. Sadly,
64 * our vlan support doesn't currently play well with this kind of
65 * hardware support.
66 *
67 * Special thanks to:
68 * - Jeff James at Intel, for arranging to have the LXT1001 manual
69 *   released (at long last)
70 * - Beny Chen at D-Link, for actually sending it to me
71 * - Brad Short and Keith Alexis at SMC, for sending me sample
72 *   SMC9462SX and SMC9462TX adapters for testing
73 * - Paul Saab at Y!, for not killing me (though it remains to be seen
74 *   if in fact he did me much of a favor)
75 */
76
77#include "bpfilter.h"
78
79#include <sys/param.h>
80#include <sys/systm.h>
81#include <sys/sockio.h>
82#include <sys/mbuf.h>
83#include <sys/device.h>
84
85#include <net/if.h>
86#include <net/if_media.h>
87
88#include <netinet/in.h>
89#include <netinet/if_ether.h>
90
91#if NBPFILTER > 0
92#include <net/bpf.h>
93#endif
94
95#include <uvm/uvm_extern.h>              /* for vtophys */
96#define	VTOPHYS(v)	vtophys((vaddr_t)(v))
97
98#include <dev/pci/pcireg.h>
99#include <dev/pci/pcivar.h>
100#include <dev/pci/pcidevs.h>
101
102#include <dev/mii/miivar.h>
103
104#define LGE_USEIOSPACE
105
106#include <dev/pci/if_lgereg.h>
107
108int lge_probe(struct device *, void *, void *);
109void lge_attach(struct device *, struct device *, void *);
110
111const struct cfattach lge_ca = {
112	sizeof(struct lge_softc), lge_probe, lge_attach
113};
114
115struct cfdriver lge_cd = {
116	NULL, "lge", DV_IFNET
117};
118
119int lge_newbuf(struct lge_softc *, struct lge_rx_desc *,
120			     struct mbuf *);
121int lge_encap(struct lge_softc *, struct mbuf *, u_int32_t *);
122void lge_rxeof(struct lge_softc *, int);
123void lge_txeof(struct lge_softc *);
124int lge_intr(void *);
125void lge_tick(void *);
126void lge_start(struct ifnet *);
127int lge_ioctl(struct ifnet *, u_long, caddr_t);
128void lge_init(void *);
129void lge_stop(struct lge_softc *);
130void lge_watchdog(struct ifnet *);
131int lge_ifmedia_upd(struct ifnet *);
132void lge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
133
134void lge_eeprom_getword(struct lge_softc *, int, u_int16_t *);
135void lge_read_eeprom(struct lge_softc *, caddr_t, int, int, int);
136
137int lge_miibus_readreg(struct device *, int, int);
138void lge_miibus_writereg(struct device *, int, int, int);
139void lge_miibus_statchg(struct device *);
140
141void lge_setmulti(struct lge_softc *);
142void lge_reset(struct lge_softc *);
143int lge_list_rx_init(struct lge_softc *);
144int lge_list_tx_init(struct lge_softc *);
145
146#ifdef LGE_DEBUG
147#define DPRINTF(x)	if (lgedebug) printf x
148#define DPRINTFN(n,x)	if (lgedebug >= (n)) printf x
149int	lgedebug = 0;
150#else
151#define DPRINTF(x)
152#define DPRINTFN(n,x)
153#endif
154
155const struct pci_matchid lge_devices[] = {
156	{ PCI_VENDOR_LEVEL1, PCI_PRODUCT_LEVEL1_LXT1001 }
157};
158
159#define LGE_SETBIT(sc, reg, x)				\
160	CSR_WRITE_4(sc, reg,				\
161		CSR_READ_4(sc, reg) | (x))
162
163#define LGE_CLRBIT(sc, reg, x)				\
164	CSR_WRITE_4(sc, reg,				\
165		CSR_READ_4(sc, reg) & ~(x))
166
167#define SIO_SET(x)					\
168	CSR_WRITE_4(sc, LGE_MEAR, CSR_READ_4(sc, LGE_MEAR) | x)
169
170#define SIO_CLR(x)					\
171	CSR_WRITE_4(sc, LGE_MEAR, CSR_READ_4(sc, LGE_MEAR) & ~x)
172
173/*
174 * Read a word of data stored in the EEPROM at address 'addr.'
175 */
176void
177lge_eeprom_getword(struct lge_softc *sc, int addr, u_int16_t *dest)
178{
179	int			i;
180	u_int32_t		val;
181
182	CSR_WRITE_4(sc, LGE_EECTL, LGE_EECTL_CMD_READ|
183	    LGE_EECTL_SINGLEACCESS|((addr >> 1) << 8));
184
185	for (i = 0; i < LGE_TIMEOUT; i++)
186		if (!(CSR_READ_4(sc, LGE_EECTL) & LGE_EECTL_CMD_READ))
187			break;
188
189	if (i == LGE_TIMEOUT) {
190		printf("%s: EEPROM read timed out\n", sc->sc_dv.dv_xname);
191		return;
192	}
193
194	val = CSR_READ_4(sc, LGE_EEDATA);
195
196	if (addr & 1)
197		*dest = (val >> 16) & 0xFFFF;
198	else
199		*dest = val & 0xFFFF;
200}
201
202/*
203 * Read a sequence of words from the EEPROM.
204 */
205void
206lge_read_eeprom(struct lge_softc *sc, caddr_t dest, int off,
207    int cnt, int swap)
208{
209	int			i;
210	u_int16_t		word = 0, *ptr;
211
212	for (i = 0; i < cnt; i++) {
213		lge_eeprom_getword(sc, off + i, &word);
214		ptr = (u_int16_t *)(dest + (i * 2));
215		if (swap)
216			*ptr = ntohs(word);
217		else
218			*ptr = word;
219	}
220}
221
222int
223lge_miibus_readreg(struct device *dev, int phy, int reg)
224{
225	struct lge_softc	*sc = (struct lge_softc *)dev;
226	int			i;
227
228	/*
229	 * If we have a non-PCS PHY, pretend that the internal
230	 * autoneg stuff at PHY address 0 isn't there so that
231	 * the miibus code will find only the GMII PHY.
232	 */
233	if (sc->lge_pcs == 0 && phy == 0)
234		return (0);
235
236	CSR_WRITE_4(sc, LGE_GMIICTL, (phy << 8) | reg | LGE_GMIICMD_READ);
237
238	for (i = 0; i < LGE_TIMEOUT; i++)
239		if (!(CSR_READ_4(sc, LGE_GMIICTL) & LGE_GMIICTL_CMDBUSY))
240			break;
241
242	if (i == LGE_TIMEOUT) {
243		printf("%s: PHY read timed out\n", sc->sc_dv.dv_xname);
244		return (0);
245	}
246
247	return (CSR_READ_4(sc, LGE_GMIICTL) >> 16);
248}
249
250void
251lge_miibus_writereg(struct device *dev, int phy, int reg, int data)
252{
253	struct lge_softc	*sc = (struct lge_softc *)dev;
254	int			i;
255
256	CSR_WRITE_4(sc, LGE_GMIICTL,
257	    (data << 16) | (phy << 8) | reg | LGE_GMIICMD_WRITE);
258
259	for (i = 0; i < LGE_TIMEOUT; i++)
260		if (!(CSR_READ_4(sc, LGE_GMIICTL) & LGE_GMIICTL_CMDBUSY))
261			break;
262
263	if (i == LGE_TIMEOUT) {
264		printf("%s: PHY write timed out\n", sc->sc_dv.dv_xname);
265	}
266}
267
268void
269lge_miibus_statchg(struct device *dev)
270{
271	struct lge_softc	*sc = (struct lge_softc *)dev;
272	struct mii_data		*mii = &sc->lge_mii;
273
274	LGE_CLRBIT(sc, LGE_GMIIMODE, LGE_GMIIMODE_SPEED);
275	switch (IFM_SUBTYPE(mii->mii_media_active)) {
276	case IFM_1000_T:
277	case IFM_1000_SX:
278		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_1000);
279		break;
280	case IFM_100_TX:
281		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_100);
282		break;
283	case IFM_10_T:
284		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_10);
285		break;
286	default:
287		/*
288		 * Choose something, even if it's wrong. Clearing
289		 * all the bits will hose autoneg on the internal
290		 * PHY.
291		 */
292		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_1000);
293		break;
294	}
295
296	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
297		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_GMIIMODE_FDX);
298	} else {
299		LGE_CLRBIT(sc, LGE_GMIIMODE, LGE_GMIIMODE_FDX);
300	}
301}
302
303void
304lge_setmulti(struct lge_softc *sc)
305{
306	struct arpcom		*ac = &sc->arpcom;
307	struct ifnet		*ifp = &ac->ac_if;
308	struct ether_multi      *enm;
309	struct ether_multistep  step;
310	u_int32_t		h = 0, hashes[2] = { 0, 0 };
311
312	/* Make sure multicast hash table is enabled. */
313	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_MCAST);
314
315	if (ac->ac_multirangecnt > 0)
316		ifp->if_flags |= IFF_ALLMULTI;
317
318	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
319		CSR_WRITE_4(sc, LGE_MAR0, 0xFFFFFFFF);
320		CSR_WRITE_4(sc, LGE_MAR1, 0xFFFFFFFF);
321		return;
322	}
323
324	/* first, zot all the existing hash bits */
325	CSR_WRITE_4(sc, LGE_MAR0, 0);
326	CSR_WRITE_4(sc, LGE_MAR1, 0);
327
328	/* now program new ones */
329	ETHER_FIRST_MULTI(step, ac, enm);
330	while (enm != NULL) {
331		h = (ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN) >> 26) &
332		    0x0000003F;
333		if (h < 32)
334			hashes[0] |= (1 << h);
335		else
336			hashes[1] |= (1 << (h - 32));
337		ETHER_NEXT_MULTI(step, enm);
338	}
339
340	CSR_WRITE_4(sc, LGE_MAR0, hashes[0]);
341	CSR_WRITE_4(sc, LGE_MAR1, hashes[1]);
342}
343
344void
345lge_reset(struct lge_softc *sc)
346{
347	int			i;
348
349	LGE_SETBIT(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL0|LGE_MODE1_SOFTRST);
350
351	for (i = 0; i < LGE_TIMEOUT; i++) {
352		if (!(CSR_READ_4(sc, LGE_MODE1) & LGE_MODE1_SOFTRST))
353			break;
354	}
355
356	if (i == LGE_TIMEOUT)
357		printf("%s: reset never completed\n", sc->sc_dv.dv_xname);
358
359	/* Wait a little while for the chip to get its brains in order. */
360	DELAY(1000);
361}
362
363/*
364 * Probe for a Level 1 chip. Check the PCI vendor and device
365 * IDs against our list and return a device name if we find a match.
366 */
367int
368lge_probe(struct device *parent, void *match, void *aux)
369{
370	return (pci_matchbyid((struct pci_attach_args *)aux, lge_devices,
371	    nitems(lge_devices)));
372}
373
374/*
375 * Attach the interface. Allocate softc structures, do ifmedia
376 * setup and ethernet/BPF attach.
377 */
378void
379lge_attach(struct device *parent, struct device *self, void *aux)
380{
381	struct lge_softc	*sc = (struct lge_softc *)self;
382	struct pci_attach_args	*pa = aux;
383	pci_chipset_tag_t	pc = pa->pa_pc;
384	pci_intr_handle_t	ih;
385	const char		*intrstr = NULL;
386	bus_size_t		size;
387	bus_dma_segment_t	seg;
388	bus_dmamap_t		dmamap;
389	int			rseg;
390	u_char			eaddr[ETHER_ADDR_LEN];
391#ifndef LGE_USEIOSPACE
392	pcireg_t		memtype;
393#endif
394	struct ifnet		*ifp;
395	caddr_t			kva;
396
397	pci_set_powerstate(pa->pa_pc, pa->pa_tag, PCI_PMCSR_STATE_D0);
398
399	/*
400	 * Map control/status registers.
401	 */
402	DPRINTFN(5, ("Map control/status regs\n"));
403
404	DPRINTFN(5, ("pci_mapreg_map\n"));
405#ifdef LGE_USEIOSPACE
406	if (pci_mapreg_map(pa, LGE_PCI_LOIO, PCI_MAPREG_TYPE_IO, 0,
407	    &sc->lge_btag, &sc->lge_bhandle, NULL, &size, 0)) {
408		printf(": can't map i/o space\n");
409		return;
410	}
411#else
412	memtype = pci_mapreg_type(pc, pa->pa_tag, LGE_PCI_LOMEM);
413	if (pci_mapreg_map(pa, LGE_PCI_LOMEM, memtype, 0, &sc->lge_btag,
414	    &sc->lge_bhandle, NULL, &size, 0)) {
415		printf(": can't map mem space\n");
416		return;
417	}
418#endif
419
420	DPRINTFN(5, ("pci_intr_map\n"));
421	if (pci_intr_map(pa, &ih)) {
422		printf(": couldn't map interrupt\n");
423		goto fail_1;
424	}
425
426	DPRINTFN(5, ("pci_intr_string\n"));
427	intrstr = pci_intr_string(pc, ih);
428	DPRINTFN(5, ("pci_intr_establish\n"));
429	sc->lge_intrhand = pci_intr_establish(pc, ih, IPL_NET, lge_intr, sc,
430					      sc->sc_dv.dv_xname);
431	if (sc->lge_intrhand == NULL) {
432		printf(": couldn't establish interrupt");
433		if (intrstr != NULL)
434			printf(" at %s", intrstr);
435		printf("\n");
436		goto fail_1;
437	}
438	printf(": %s", intrstr);
439
440	/* Reset the adapter. */
441	DPRINTFN(5, ("lge_reset\n"));
442	lge_reset(sc);
443
444	/*
445	 * Get station address from the EEPROM.
446	 */
447	DPRINTFN(5, ("lge_read_eeprom\n"));
448	lge_read_eeprom(sc, (caddr_t)&eaddr[0], LGE_EE_NODEADDR_0, 1, 0);
449	lge_read_eeprom(sc, (caddr_t)&eaddr[2], LGE_EE_NODEADDR_1, 1, 0);
450	lge_read_eeprom(sc, (caddr_t)&eaddr[4], LGE_EE_NODEADDR_2, 1, 0);
451
452	/*
453	 * A Level 1 chip was detected. Inform the world.
454	 */
455	printf(", address %s\n", ether_sprintf(eaddr));
456
457	bcopy(eaddr, &sc->arpcom.ac_enaddr, ETHER_ADDR_LEN);
458
459	sc->sc_dmatag = pa->pa_dmat;
460	DPRINTFN(5, ("bus_dmamem_alloc\n"));
461	if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct lge_list_data),
462	    PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT | BUS_DMA_ZERO)) {
463		printf("%s: can't alloc rx buffers\n", sc->sc_dv.dv_xname);
464		goto fail_2;
465	}
466	DPRINTFN(5, ("bus_dmamem_map\n"));
467	if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
468			   sizeof(struct lge_list_data), &kva,
469			   BUS_DMA_NOWAIT)) {
470		printf("%s: can't map dma buffers (%zd bytes)\n",
471		       sc->sc_dv.dv_xname, sizeof(struct lge_list_data));
472		goto fail_3;
473	}
474	DPRINTFN(5, ("bus_dmamap_create\n"));
475	if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct lge_list_data), 1,
476			      sizeof(struct lge_list_data), 0,
477			      BUS_DMA_NOWAIT, &dmamap)) {
478		printf("%s: can't create dma map\n", sc->sc_dv.dv_xname);
479		goto fail_4;
480	}
481	DPRINTFN(5, ("bus_dmamap_load\n"));
482	if (bus_dmamap_load(sc->sc_dmatag, dmamap, kva,
483			    sizeof(struct lge_list_data), NULL,
484			    BUS_DMA_NOWAIT)) {
485		goto fail_5;
486	}
487
488	DPRINTFN(5, ("bzero\n"));
489	sc->lge_ldata = (struct lge_list_data *)kva;
490
491	ifp = &sc->arpcom.ac_if;
492	ifp->if_softc = sc;
493	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
494	ifp->if_ioctl = lge_ioctl;
495	ifp->if_start = lge_start;
496	ifp->if_watchdog = lge_watchdog;
497	ifp->if_hardmtu = LGE_JUMBO_MTU;
498	ifq_init_maxlen(&ifp->if_snd, LGE_TX_LIST_CNT - 1);
499	DPRINTFN(5, ("bcopy\n"));
500	bcopy(sc->sc_dv.dv_xname, ifp->if_xname, IFNAMSIZ);
501
502	ifp->if_capabilities = IFCAP_VLAN_MTU;
503
504	if (CSR_READ_4(sc, LGE_GMIIMODE) & LGE_GMIIMODE_PCSENH)
505		sc->lge_pcs = 1;
506	else
507		sc->lge_pcs = 0;
508
509	/*
510	 * Do MII setup.
511	 */
512	DPRINTFN(5, ("mii setup\n"));
513	sc->lge_mii.mii_ifp = ifp;
514	sc->lge_mii.mii_readreg = lge_miibus_readreg;
515	sc->lge_mii.mii_writereg = lge_miibus_writereg;
516	sc->lge_mii.mii_statchg = lge_miibus_statchg;
517	ifmedia_init(&sc->lge_mii.mii_media, 0, lge_ifmedia_upd,
518		     lge_ifmedia_sts);
519	mii_attach(&sc->sc_dv, &sc->lge_mii, 0xffffffff, MII_PHY_ANY,
520		   MII_OFFSET_ANY, 0);
521
522	if (LIST_FIRST(&sc->lge_mii.mii_phys) == NULL) {
523		printf("%s: no PHY found!\n", sc->sc_dv.dv_xname);
524		ifmedia_add(&sc->lge_mii.mii_media, IFM_ETHER|IFM_MANUAL,
525			    0, NULL);
526		ifmedia_set(&sc->lge_mii.mii_media, IFM_ETHER|IFM_MANUAL);
527	} else {
528		DPRINTFN(5, ("ifmedia_set\n"));
529		ifmedia_set(&sc->lge_mii.mii_media, IFM_ETHER|IFM_AUTO);
530	}
531
532	/*
533	 * Call MI attach routine.
534	 */
535	DPRINTFN(5, ("if_attach\n"));
536	if_attach(ifp);
537	DPRINTFN(5, ("ether_ifattach\n"));
538	ether_ifattach(ifp);
539	DPRINTFN(5, ("timeout_set\n"));
540	timeout_set(&sc->lge_timeout, lge_tick, sc);
541	timeout_add_sec(&sc->lge_timeout, 1);
542	return;
543
544fail_5:
545	bus_dmamap_destroy(sc->sc_dmatag, dmamap);
546
547fail_4:
548	bus_dmamem_unmap(sc->sc_dmatag, kva,
549	    sizeof(struct lge_list_data));
550
551fail_3:
552	bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
553
554fail_2:
555	pci_intr_disestablish(pc, sc->lge_intrhand);
556
557fail_1:
558	bus_space_unmap(sc->lge_btag, sc->lge_bhandle, size);
559}
560
561/*
562 * Initialize the transmit descriptors.
563 */
564int
565lge_list_tx_init(struct lge_softc *sc)
566{
567	struct lge_list_data	*ld;
568	struct lge_ring_data	*cd;
569	int			i;
570
571	cd = &sc->lge_cdata;
572	ld = sc->lge_ldata;
573	for (i = 0; i < LGE_TX_LIST_CNT; i++) {
574		ld->lge_tx_list[i].lge_mbuf = NULL;
575		ld->lge_tx_list[i].lge_ctl = 0;
576	}
577
578	cd->lge_tx_prod = cd->lge_tx_cons = 0;
579
580	return (0);
581}
582
583
584/*
585 * Initialize the RX descriptors and allocate mbufs for them. Note that
586 * we arrange the descriptors in a closed ring, so that the last descriptor
587 * points back to the first.
588 */
589int
590lge_list_rx_init(struct lge_softc *sc)
591{
592	struct lge_list_data	*ld;
593	struct lge_ring_data	*cd;
594	int			i;
595
596	ld = sc->lge_ldata;
597	cd = &sc->lge_cdata;
598
599	cd->lge_rx_prod = cd->lge_rx_cons = 0;
600
601	CSR_WRITE_4(sc, LGE_RXDESC_ADDR_HI, 0);
602
603	for (i = 0; i < LGE_RX_LIST_CNT; i++) {
604		if (CSR_READ_1(sc, LGE_RXCMDFREE_8BIT) == 0)
605			break;
606		if (lge_newbuf(sc, &ld->lge_rx_list[i], NULL) == ENOBUFS)
607			return (ENOBUFS);
608	}
609
610	/* Clear possible 'rx command queue empty' interrupt. */
611	CSR_READ_4(sc, LGE_ISR);
612
613	return (0);
614}
615
616/*
617 * Initialize a RX descriptor and attach a MBUF cluster.
618 */
619int
620lge_newbuf(struct lge_softc *sc, struct lge_rx_desc *c, struct mbuf *m)
621{
622	struct mbuf		*m_new = NULL;
623
624	if (m == NULL) {
625		m_new = MCLGETL(NULL, M_DONTWAIT, LGE_JLEN);
626		if (m_new == NULL)
627			return (ENOBUFS);
628	} else {
629		/*
630		 * We're re-using a previously allocated mbuf;
631		 * be sure to re-init pointers and lengths to
632		 * default values.
633		 */
634		m_new = m;
635		m_new->m_data = m_new->m_ext.ext_buf;
636	}
637	m_new->m_len = m_new->m_pkthdr.len = LGE_JLEN;
638
639	/*
640	 * Adjust alignment so packet payload begins on a
641	 * longword boundary. Mandatory for Alpha, useful on
642	 * x86 too.
643	*/
644	m_adj(m_new, ETHER_ALIGN);
645
646	c->lge_mbuf = m_new;
647	c->lge_fragptr_hi = 0;
648	c->lge_fragptr_lo = VTOPHYS(mtod(m_new, caddr_t));
649	c->lge_fraglen = m_new->m_len;
650	c->lge_ctl = m_new->m_len | LGE_RXCTL_WANTINTR | LGE_FRAGCNT(1);
651	c->lge_sts = 0;
652
653	/*
654	 * Put this buffer in the RX command FIFO. To do this,
655	 * we just write the physical address of the descriptor
656	 * into the RX descriptor address registers. Note that
657	 * there are two registers, one high DWORD and one low
658	 * DWORD, which lets us specify a 64-bit address if
659	 * desired. We only use a 32-bit address for now.
660	 * Writing to the low DWORD register is what actually
661	 * causes the command to be issued, so we do that
662	 * last.
663	 */
664	CSR_WRITE_4(sc, LGE_RXDESC_ADDR_LO, VTOPHYS(c));
665	LGE_INC(sc->lge_cdata.lge_rx_prod, LGE_RX_LIST_CNT);
666
667	return (0);
668}
669
670/*
671 * A frame has been uploaded: pass the resulting mbuf chain up to
672 * the higher level protocols.
673 */
674void
675lge_rxeof(struct lge_softc *sc, int cnt)
676{
677	struct mbuf_list	ml = MBUF_LIST_INITIALIZER();
678        struct mbuf		*m;
679        struct ifnet		*ifp;
680	struct lge_rx_desc	*cur_rx;
681	int			c, i, total_len = 0;
682	u_int32_t		rxsts, rxctl;
683
684	ifp = &sc->arpcom.ac_if;
685
686	/* Find out how many frames were processed. */
687	c = cnt;
688	i = sc->lge_cdata.lge_rx_cons;
689
690	/* Suck them in. */
691	while(c) {
692		struct mbuf		*m0 = NULL;
693
694		cur_rx = &sc->lge_ldata->lge_rx_list[i];
695		rxctl = cur_rx->lge_ctl;
696		rxsts = cur_rx->lge_sts;
697		m = cur_rx->lge_mbuf;
698		cur_rx->lge_mbuf = NULL;
699		total_len = LGE_RXBYTES(cur_rx);
700		LGE_INC(i, LGE_RX_LIST_CNT);
701		c--;
702
703		/*
704		 * If an error occurs, update stats, clear the
705		 * status word and leave the mbuf cluster in place:
706		 * it should simply get re-used next time this descriptor
707	 	 * comes up in the ring.
708		 */
709		if (rxctl & LGE_RXCTL_ERRMASK) {
710			ifp->if_ierrors++;
711			lge_newbuf(sc, &LGE_RXTAIL(sc), m);
712			continue;
713		}
714
715		if (lge_newbuf(sc, &LGE_RXTAIL(sc), NULL) == ENOBUFS) {
716			m0 = m_devget(mtod(m, char *), total_len, ETHER_ALIGN);
717			lge_newbuf(sc, &LGE_RXTAIL(sc), m);
718			if (m0 == NULL) {
719				ifp->if_ierrors++;
720				continue;
721			}
722			m = m0;
723		} else {
724			m->m_pkthdr.len = m->m_len = total_len;
725		}
726
727		/* Do IP checksum checking. */
728		if (rxsts & LGE_RXSTS_ISIP) {
729			if (!(rxsts & LGE_RXSTS_IPCSUMERR))
730				m->m_pkthdr.csum_flags |= M_IPV4_CSUM_IN_OK;
731		}
732		if (rxsts & LGE_RXSTS_ISTCP) {
733			if (!(rxsts & LGE_RXSTS_TCPCSUMERR))
734				m->m_pkthdr.csum_flags |= M_TCP_CSUM_IN_OK;
735		}
736		if (rxsts & LGE_RXSTS_ISUDP) {
737			if (!(rxsts & LGE_RXSTS_UDPCSUMERR))
738				m->m_pkthdr.csum_flags |= M_UDP_CSUM_IN_OK;
739		}
740
741		ml_enqueue(&ml, m);
742	}
743
744	if_input(ifp, &ml);
745
746	sc->lge_cdata.lge_rx_cons = i;
747}
748
749/*
750 * A frame was downloaded to the chip. It's safe for us to clean up
751 * the list buffers.
752 */
753
754void
755lge_txeof(struct lge_softc *sc)
756{
757	struct lge_tx_desc	*cur_tx = NULL;
758	struct ifnet		*ifp;
759	u_int32_t		idx, txdone;
760
761	ifp = &sc->arpcom.ac_if;
762
763	/* Clear the timeout timer. */
764	ifp->if_timer = 0;
765
766	/*
767	 * Go through our tx list and free mbufs for those
768	 * frames that have been transmitted.
769	 */
770	idx = sc->lge_cdata.lge_tx_cons;
771	txdone = CSR_READ_1(sc, LGE_TXDMADONE_8BIT);
772
773	while (idx != sc->lge_cdata.lge_tx_prod && txdone) {
774		cur_tx = &sc->lge_ldata->lge_tx_list[idx];
775
776		if (cur_tx->lge_mbuf != NULL) {
777			m_freem(cur_tx->lge_mbuf);
778			cur_tx->lge_mbuf = NULL;
779		}
780		cur_tx->lge_ctl = 0;
781
782		txdone--;
783		LGE_INC(idx, LGE_TX_LIST_CNT);
784		ifp->if_timer = 0;
785	}
786
787	sc->lge_cdata.lge_tx_cons = idx;
788
789	if (cur_tx != NULL)
790		ifq_clr_oactive(&ifp->if_snd);
791}
792
793void
794lge_tick(void *xsc)
795{
796	struct lge_softc	*sc = xsc;
797	struct mii_data		*mii = &sc->lge_mii;
798	struct ifnet		*ifp = &sc->arpcom.ac_if;
799	int			s;
800
801	s = splnet();
802
803	CSR_WRITE_4(sc, LGE_STATSIDX, LGE_STATS_SINGLE_COLL_PKTS);
804	ifp->if_collisions += CSR_READ_4(sc, LGE_STATSVAL);
805	CSR_WRITE_4(sc, LGE_STATSIDX, LGE_STATS_MULTI_COLL_PKTS);
806	ifp->if_collisions += CSR_READ_4(sc, LGE_STATSVAL);
807
808	if (!sc->lge_link) {
809		mii_tick(mii);
810		if (mii->mii_media_status & IFM_ACTIVE &&
811		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
812			sc->lge_link++;
813			if (!ifq_empty(&ifp->if_snd))
814				lge_start(ifp);
815		}
816	}
817
818	timeout_add_sec(&sc->lge_timeout, 1);
819
820	splx(s);
821}
822
823int
824lge_intr(void *arg)
825{
826	struct lge_softc	*sc;
827	struct ifnet		*ifp;
828	u_int32_t		status;
829	int			claimed = 0;
830
831	sc = arg;
832	ifp = &sc->arpcom.ac_if;
833
834	/* Suppress unwanted interrupts */
835	if (!(ifp->if_flags & IFF_UP)) {
836		lge_stop(sc);
837		return (0);
838	}
839
840	for (;;) {
841		/*
842		 * Reading the ISR register clears all interrupts, and
843		 * clears the 'interrupts enabled' bit in the IMR
844		 * register.
845		 */
846		status = CSR_READ_4(sc, LGE_ISR);
847
848		if ((status & LGE_INTRS) == 0)
849			break;
850
851		claimed = 1;
852
853		if ((status & (LGE_ISR_TXCMDFIFO_EMPTY|LGE_ISR_TXDMA_DONE)))
854			lge_txeof(sc);
855
856		if (status & LGE_ISR_RXDMA_DONE)
857			lge_rxeof(sc, LGE_RX_DMACNT(status));
858
859		if (status & LGE_ISR_RXCMDFIFO_EMPTY)
860			lge_init(sc);
861
862		if (status & LGE_ISR_PHY_INTR) {
863			sc->lge_link = 0;
864			timeout_del(&sc->lge_timeout);
865			lge_tick(sc);
866		}
867	}
868
869	/* Re-enable interrupts. */
870	CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_SETRST_CTL0|LGE_IMR_INTR_ENB);
871
872	if (!ifq_empty(&ifp->if_snd))
873		lge_start(ifp);
874
875	return (claimed);
876}
877
878/*
879 * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
880 * pointers to the fragment pointers.
881 */
882int
883lge_encap(struct lge_softc *sc, struct mbuf *m_head, u_int32_t *txidx)
884{
885	struct lge_frag		*f = NULL;
886	struct lge_tx_desc	*cur_tx;
887	struct mbuf		*m;
888	int			frag = 0, tot_len = 0;
889
890	/*
891 	 * Start packing the mbufs in this chain into
892	 * the fragment pointers. Stop when we run out
893 	 * of fragments or hit the end of the mbuf chain.
894	 */
895	m = m_head;
896	cur_tx = &sc->lge_ldata->lge_tx_list[*txidx];
897	frag = 0;
898
899	for (m = m_head; m != NULL; m = m->m_next) {
900		if (m->m_len != 0) {
901			tot_len += m->m_len;
902			f = &cur_tx->lge_frags[frag];
903			f->lge_fraglen = m->m_len;
904			f->lge_fragptr_lo = VTOPHYS(mtod(m, vaddr_t));
905			f->lge_fragptr_hi = 0;
906			frag++;
907		}
908	}
909
910	if (m != NULL)
911		return (ENOBUFS);
912
913	cur_tx->lge_mbuf = m_head;
914	cur_tx->lge_ctl = LGE_TXCTL_WANTINTR|LGE_FRAGCNT(frag)|tot_len;
915	LGE_INC((*txidx), LGE_TX_LIST_CNT);
916
917	/* Queue for transmit */
918	CSR_WRITE_4(sc, LGE_TXDESC_ADDR_LO, VTOPHYS(cur_tx));
919
920	return (0);
921}
922
923/*
924 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
925 * to the mbuf data regions directly in the transmit lists. We also save a
926 * copy of the pointers since the transmit list fragment pointers are
927 * physical addresses.
928 */
929
930void
931lge_start(struct ifnet *ifp)
932{
933	struct lge_softc	*sc;
934	struct mbuf		*m_head = NULL;
935	u_int32_t		idx;
936	int			pkts = 0;
937
938	sc = ifp->if_softc;
939
940	if (!sc->lge_link)
941		return;
942
943	idx = sc->lge_cdata.lge_tx_prod;
944
945	if (ifq_is_oactive(&ifp->if_snd))
946		return;
947
948	while(sc->lge_ldata->lge_tx_list[idx].lge_mbuf == NULL) {
949		if (CSR_READ_1(sc, LGE_TXCMDFREE_8BIT) == 0)
950			break;
951
952		m_head = ifq_deq_begin(&ifp->if_snd);
953		if (m_head == NULL)
954			break;
955
956		if (lge_encap(sc, m_head, &idx)) {
957			ifq_deq_rollback(&ifp->if_snd, m_head);
958			ifq_set_oactive(&ifp->if_snd);
959			break;
960		}
961
962		/* now we are committed to transmit the packet */
963		ifq_deq_commit(&ifp->if_snd, m_head);
964		pkts++;
965
966#if NBPFILTER > 0
967		/*
968		 * If there's a BPF listener, bounce a copy of this frame
969		 * to him.
970		 */
971		if (ifp->if_bpf)
972			bpf_mtap(ifp->if_bpf, m_head, BPF_DIRECTION_OUT);
973#endif
974	}
975	if (pkts == 0)
976		return;
977
978	sc->lge_cdata.lge_tx_prod = idx;
979
980	/*
981	 * Set a timeout in case the chip goes out to lunch.
982	 */
983	ifp->if_timer = 5;
984}
985
986void
987lge_init(void *xsc)
988{
989	struct lge_softc	*sc = xsc;
990	struct ifnet		*ifp = &sc->arpcom.ac_if;
991	int			s;
992
993	s = splnet();
994
995	/*
996	 * Cancel pending I/O and free all RX/TX buffers.
997	 */
998	lge_stop(sc);
999	lge_reset(sc);
1000
1001	/* Set MAC address */
1002	CSR_WRITE_4(sc, LGE_PAR0, *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
1003	CSR_WRITE_4(sc, LGE_PAR1, *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
1004
1005	/* Init circular RX list. */
1006	if (lge_list_rx_init(sc) == ENOBUFS) {
1007		printf("%s: initialization failed: no "
1008		       "memory for rx buffers\n", sc->sc_dv.dv_xname);
1009		lge_stop(sc);
1010		splx(s);
1011		return;
1012	}
1013
1014	/*
1015	 * Init tx descriptors.
1016	 */
1017	lge_list_tx_init(sc);
1018
1019	/* Set initial value for MODE1 register. */
1020	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_UCAST|
1021	    LGE_MODE1_TX_CRC|LGE_MODE1_TXPAD|
1022	    LGE_MODE1_RX_FLOWCTL|LGE_MODE1_SETRST_CTL0|
1023	    LGE_MODE1_SETRST_CTL1|LGE_MODE1_SETRST_CTL2);
1024
1025	 /* If we want promiscuous mode, set the allframes bit. */
1026	if (ifp->if_flags & IFF_PROMISC) {
1027		CSR_WRITE_4(sc, LGE_MODE1,
1028		    LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_PROMISC);
1029	} else {
1030		CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_PROMISC);
1031	}
1032
1033	/*
1034	 * Set the capture broadcast bit to capture broadcast frames.
1035	 */
1036	if (ifp->if_flags & IFF_BROADCAST) {
1037		CSR_WRITE_4(sc, LGE_MODE1,
1038		    LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_BCAST);
1039	} else {
1040		CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_BCAST);
1041	}
1042
1043	/* Packet padding workaround? */
1044	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_RMVPAD);
1045
1046	/* No error frames */
1047	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_ERRPKTS);
1048
1049	/* Receive large frames */
1050	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_GIANTS);
1051
1052	/* Workaround: disable RX/TX flow control */
1053	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_TX_FLOWCTL);
1054	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_FLOWCTL);
1055
1056	/* Make sure to strip CRC from received frames */
1057	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_CRC);
1058
1059	/* Turn off magic packet mode */
1060	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_MPACK_ENB);
1061
1062	/* Turn off all VLAN stuff */
1063	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_VLAN_RX|LGE_MODE1_VLAN_TX|
1064	    LGE_MODE1_VLAN_STRIP|LGE_MODE1_VLAN_INSERT);
1065
1066	/* Workarond: FIFO overflow */
1067	CSR_WRITE_2(sc, LGE_RXFIFO_HIWAT, 0x3FFF);
1068	CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_SETRST_CTL1|LGE_IMR_RXFIFO_WAT);
1069
1070	/*
1071	 * Load the multicast filter.
1072	 */
1073	lge_setmulti(sc);
1074
1075	/*
1076	 * Enable hardware checksum validation for all received IPv4
1077	 * packets, do not reject packets with bad checksums.
1078	 */
1079	CSR_WRITE_4(sc, LGE_MODE2, LGE_MODE2_RX_IPCSUM|
1080	    LGE_MODE2_RX_TCPCSUM|LGE_MODE2_RX_UDPCSUM|
1081	    LGE_MODE2_RX_ERRCSUM);
1082
1083	/*
1084	 * Enable the delivery of PHY interrupts based on
1085	 * link/speed/duplex status changes.
1086	 */
1087	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL0|LGE_MODE1_GMIIPOLL);
1088
1089	/* Enable receiver and transmitter. */
1090	CSR_WRITE_4(sc, LGE_RXDESC_ADDR_HI, 0);
1091	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_ENB);
1092
1093	CSR_WRITE_4(sc, LGE_TXDESC_ADDR_HI, 0);
1094	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_TX_ENB);
1095
1096	/*
1097	 * Enable interrupts.
1098	 */
1099	CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_SETRST_CTL0|
1100	    LGE_IMR_SETRST_CTL1|LGE_IMR_INTR_ENB|LGE_INTRS);
1101
1102	lge_ifmedia_upd(ifp);
1103
1104	ifp->if_flags |= IFF_RUNNING;
1105	ifq_clr_oactive(&ifp->if_snd);
1106
1107	splx(s);
1108
1109	timeout_add_sec(&sc->lge_timeout, 1);
1110}
1111
1112/*
1113 * Set media options.
1114 */
1115int
1116lge_ifmedia_upd(struct ifnet *ifp)
1117{
1118	struct lge_softc	*sc = ifp->if_softc;
1119	struct mii_data		*mii = &sc->lge_mii;
1120
1121	sc->lge_link = 0;
1122	if (mii->mii_instance) {
1123		struct mii_softc *miisc;
1124		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
1125			mii_phy_reset(miisc);
1126	}
1127	mii_mediachg(mii);
1128
1129	return (0);
1130}
1131
1132/*
1133 * Report current media status.
1134 */
1135void
1136lge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1137{
1138	struct lge_softc	*sc = ifp->if_softc;
1139	struct mii_data		*mii = &sc->lge_mii;
1140
1141	mii_pollstat(mii);
1142	ifmr->ifm_active = mii->mii_media_active;
1143	ifmr->ifm_status = mii->mii_media_status;
1144}
1145
1146int
1147lge_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1148{
1149	struct lge_softc	*sc = ifp->if_softc;
1150	struct ifreq		*ifr = (struct ifreq *) data;
1151	struct mii_data		*mii;
1152	int			s, error = 0;
1153
1154	s = splnet();
1155
1156	switch(command) {
1157	case SIOCSIFADDR:
1158		ifp->if_flags |= IFF_UP;
1159		if (!(ifp->if_flags & IFF_RUNNING))
1160			lge_init(sc);
1161		break;
1162
1163	case SIOCSIFFLAGS:
1164		if (ifp->if_flags & IFF_UP) {
1165			if (ifp->if_flags & IFF_RUNNING &&
1166			    ifp->if_flags & IFF_PROMISC &&
1167			    !(sc->lge_if_flags & IFF_PROMISC)) {
1168				CSR_WRITE_4(sc, LGE_MODE1,
1169				    LGE_MODE1_SETRST_CTL1|
1170				    LGE_MODE1_RX_PROMISC);
1171				lge_setmulti(sc);
1172			} else if (ifp->if_flags & IFF_RUNNING &&
1173			    !(ifp->if_flags & IFF_PROMISC) &&
1174			    sc->lge_if_flags & IFF_PROMISC) {
1175				CSR_WRITE_4(sc, LGE_MODE1,
1176				    LGE_MODE1_RX_PROMISC);
1177				lge_setmulti(sc);
1178			} else if (ifp->if_flags & IFF_RUNNING &&
1179			    (ifp->if_flags ^ sc->lge_if_flags) & IFF_ALLMULTI) {
1180				lge_setmulti(sc);
1181			} else {
1182				if (!(ifp->if_flags & IFF_RUNNING))
1183					lge_init(sc);
1184			}
1185		} else {
1186			if (ifp->if_flags & IFF_RUNNING)
1187				lge_stop(sc);
1188		}
1189		sc->lge_if_flags = ifp->if_flags;
1190		break;
1191
1192	case SIOCGIFMEDIA:
1193	case SIOCSIFMEDIA:
1194		mii = &sc->lge_mii;
1195		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1196		break;
1197
1198	default:
1199		error = ether_ioctl(ifp, &sc->arpcom, command, data);
1200	}
1201
1202	if (error == ENETRESET) {
1203		if (ifp->if_flags & IFF_RUNNING)
1204			lge_setmulti(sc);
1205		error = 0;
1206	}
1207
1208	splx(s);
1209	return (error);
1210}
1211
1212void
1213lge_watchdog(struct ifnet *ifp)
1214{
1215	struct lge_softc	*sc;
1216
1217	sc = ifp->if_softc;
1218
1219	ifp->if_oerrors++;
1220	printf("%s: watchdog timeout\n", sc->sc_dv.dv_xname);
1221
1222	lge_stop(sc);
1223	lge_reset(sc);
1224	lge_init(sc);
1225
1226	if (!ifq_empty(&ifp->if_snd))
1227		lge_start(ifp);
1228}
1229
1230/*
1231 * Stop the adapter and free any mbufs allocated to the
1232 * RX and TX lists.
1233 */
1234void
1235lge_stop(struct lge_softc *sc)
1236{
1237	int			i;
1238	struct ifnet		*ifp;
1239
1240	ifp = &sc->arpcom.ac_if;
1241	ifp->if_timer = 0;
1242	timeout_del(&sc->lge_timeout);
1243
1244	ifp->if_flags &= ~IFF_RUNNING;
1245	ifq_clr_oactive(&ifp->if_snd);
1246
1247	CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_INTR_ENB);
1248
1249	/* Disable receiver and transmitter. */
1250	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_ENB|LGE_MODE1_TX_ENB);
1251	sc->lge_link = 0;
1252
1253	/*
1254	 * Free data in the RX lists.
1255	 */
1256	for (i = 0; i < LGE_RX_LIST_CNT; i++) {
1257		if (sc->lge_ldata->lge_rx_list[i].lge_mbuf != NULL) {
1258			m_freem(sc->lge_ldata->lge_rx_list[i].lge_mbuf);
1259			sc->lge_ldata->lge_rx_list[i].lge_mbuf = NULL;
1260		}
1261	}
1262	bzero(&sc->lge_ldata->lge_rx_list, sizeof(sc->lge_ldata->lge_rx_list));
1263
1264	/*
1265	 * Free the TX list buffers.
1266	 */
1267	for (i = 0; i < LGE_TX_LIST_CNT; i++) {
1268		if (sc->lge_ldata->lge_tx_list[i].lge_mbuf != NULL) {
1269			m_freem(sc->lge_ldata->lge_tx_list[i].lge_mbuf);
1270			sc->lge_ldata->lge_tx_list[i].lge_mbuf = NULL;
1271		}
1272	}
1273
1274	bzero(&sc->lge_ldata->lge_tx_list, sizeof(sc->lge_ldata->lge_tx_list));
1275}
1276