if_lge.c revision 1.45
1/*	$OpenBSD: if_lge.c,v 1.45 2006/10/25 02:37:50 brad Exp $	*/
2/*
3 * Copyright (c) 2001 Wind River Systems
4 * Copyright (c) 1997, 1998, 1999, 2000, 2001
5 *	Bill Paul <william.paul@windriver.com>.  All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 *    must display the following acknowledgement:
17 *	This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 *    may be used to endorse or promote products derived from this software
20 *    without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * $FreeBSD: src/sys/dev/lge/if_lge.c,v 1.6 2001/06/20 19:47:55 bmilekic Exp $
35 */
36
37/*
38 * Level 1 LXT1001 gigabit ethernet driver for FreeBSD. Public
39 * documentation not available, but ask me nicely.
40 *
41 * Written by Bill Paul <william.paul@windriver.com>
42 * Wind River Systems
43 */
44
45/*
46 * The Level 1 chip is used on some D-Link, SMC and Addtron NICs.
47 * It's a 64-bit PCI part that supports TCP/IP checksum offload,
48 * VLAN tagging/insertion, GMII and TBI (1000baseX) ports. There
49 * are three supported methods for data transfer between host and
50 * NIC: programmed I/O, traditional scatter/gather DMA and Packet
51 * Propulsion Technology (tm) DMA. The latter mechanism is a form
52 * of double buffer DMA where the packet data is copied to a
53 * pre-allocated DMA buffer who's physical address has been loaded
54 * into a table at device initialization time. The rationale is that
55 * the virtual to physical address translation needed for normal
56 * scatter/gather DMA is more expensive than the data copy needed
57 * for double buffering. This may be true in Windows NT and the like,
58 * but it isn't true for us, at least on the x86 arch. This driver
59 * uses the scatter/gather I/O method for both TX and RX.
60 *
61 * The LXT1001 only supports TCP/IP checksum offload on receive.
62 * Also, the VLAN tagging is done using a 16-entry table which allows
63 * the chip to perform hardware filtering based on VLAN tags. Sadly,
64 * our vlan support doesn't currently play well with this kind of
65 * hardware support.
66 *
67 * Special thanks to:
68 * - Jeff James at Intel, for arranging to have the LXT1001 manual
69 *   released (at long last)
70 * - Beny Chen at D-Link, for actually sending it to me
71 * - Brad Short and Keith Alexis at SMC, for sending me sample
72 *   SMC9462SX and SMC9462TX adapters for testing
73 * - Paul Saab at Y!, for not killing me (though it remains to be seen
74 *   if in fact he did me much of a favor)
75 */
76
77#include "bpfilter.h"
78
79#include <sys/param.h>
80#include <sys/systm.h>
81#include <sys/sockio.h>
82#include <sys/mbuf.h>
83#include <sys/malloc.h>
84#include <sys/kernel.h>
85#include <sys/device.h>
86#include <sys/socket.h>
87
88#include <net/if.h>
89#include <net/if_dl.h>
90#include <net/if_media.h>
91
92#ifdef INET
93#include <netinet/in.h>
94#include <netinet/in_systm.h>
95#include <netinet/in_var.h>
96#include <netinet/ip.h>
97#include <netinet/if_ether.h>
98#endif
99
100#if NBPFILTER > 0
101#include <net/bpf.h>
102#endif
103
104#include <uvm/uvm_extern.h>              /* for vtophys */
105#define	VTOPHYS(v)	vtophys((vaddr_t)(v))
106
107#include <dev/pci/pcireg.h>
108#include <dev/pci/pcivar.h>
109#include <dev/pci/pcidevs.h>
110
111#include <dev/mii/mii.h>
112#include <dev/mii/miivar.h>
113
114#define LGE_USEIOSPACE
115
116#include <dev/pci/if_lgereg.h>
117
118int lge_probe(struct device *, void *, void *);
119void lge_attach(struct device *, struct device *, void *);
120
121struct cfattach lge_ca = {
122	sizeof(struct lge_softc), lge_probe, lge_attach
123};
124
125struct cfdriver lge_cd = {
126	0, "lge", DV_IFNET
127};
128
129int lge_alloc_jumbo_mem(struct lge_softc *);
130void *lge_jalloc(struct lge_softc *);
131void lge_jfree(caddr_t, u_int, void *);
132
133int lge_newbuf(struct lge_softc *, struct lge_rx_desc *,
134			     struct mbuf *);
135int lge_encap(struct lge_softc *, struct mbuf *, u_int32_t *);
136void lge_rxeof(struct lge_softc *, int);
137void lge_txeof(struct lge_softc *);
138int lge_intr(void *);
139void lge_tick(void *);
140void lge_start(struct ifnet *);
141int lge_ioctl(struct ifnet *, u_long, caddr_t);
142void lge_init(void *);
143void lge_stop(struct lge_softc *);
144void lge_watchdog(struct ifnet *);
145void lge_shutdown(void *);
146int lge_ifmedia_upd(struct ifnet *);
147void lge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
148
149void lge_eeprom_getword(struct lge_softc *, int, u_int16_t *);
150void lge_read_eeprom(struct lge_softc *, caddr_t, int, int, int);
151
152int lge_miibus_readreg(struct device *, int, int);
153void lge_miibus_writereg(struct device *, int, int, int);
154void lge_miibus_statchg(struct device *);
155
156void lge_setmulti(struct lge_softc *);
157void lge_reset(struct lge_softc *);
158int lge_list_rx_init(struct lge_softc *);
159int lge_list_tx_init(struct lge_softc *);
160
161#ifdef LGE_DEBUG
162#define DPRINTF(x)	if (lgedebug) printf x
163#define DPRINTFN(n,x)	if (lgedebug >= (n)) printf x
164int	lgedebug = 0;
165#else
166#define DPRINTF(x)
167#define DPRINTFN(n,x)
168#endif
169
170const struct pci_matchid lge_devices[] = {
171	{ PCI_VENDOR_LEVEL1, PCI_PRODUCT_LEVEL1_LXT1001 }
172};
173
174#define LGE_SETBIT(sc, reg, x)				\
175	CSR_WRITE_4(sc, reg,				\
176		CSR_READ_4(sc, reg) | (x))
177
178#define LGE_CLRBIT(sc, reg, x)				\
179	CSR_WRITE_4(sc, reg,				\
180		CSR_READ_4(sc, reg) & ~(x))
181
182#define SIO_SET(x)					\
183	CSR_WRITE_4(sc, LGE_MEAR, CSR_READ_4(sc, LGE_MEAR) | x)
184
185#define SIO_CLR(x)					\
186	CSR_WRITE_4(sc, LGE_MEAR, CSR_READ_4(sc, LGE_MEAR) & ~x)
187
188/*
189 * Read a word of data stored in the EEPROM at address 'addr.'
190 */
191void
192lge_eeprom_getword(struct lge_softc *sc, int addr, u_int16_t *dest)
193{
194	int			i;
195	u_int32_t		val;
196
197	CSR_WRITE_4(sc, LGE_EECTL, LGE_EECTL_CMD_READ|
198	    LGE_EECTL_SINGLEACCESS|((addr >> 1) << 8));
199
200	for (i = 0; i < LGE_TIMEOUT; i++)
201		if (!(CSR_READ_4(sc, LGE_EECTL) & LGE_EECTL_CMD_READ))
202			break;
203
204	if (i == LGE_TIMEOUT) {
205		printf("%s: EEPROM read timed out\n", sc->sc_dv.dv_xname);
206		return;
207	}
208
209	val = CSR_READ_4(sc, LGE_EEDATA);
210
211	if (addr & 1)
212		*dest = (val >> 16) & 0xFFFF;
213	else
214		*dest = val & 0xFFFF;
215}
216
217/*
218 * Read a sequence of words from the EEPROM.
219 */
220void
221lge_read_eeprom(struct lge_softc *sc, caddr_t dest, int off,
222    int cnt, int swap)
223{
224	int			i;
225	u_int16_t		word = 0, *ptr;
226
227	for (i = 0; i < cnt; i++) {
228		lge_eeprom_getword(sc, off + i, &word);
229		ptr = (u_int16_t *)(dest + (i * 2));
230		if (swap)
231			*ptr = ntohs(word);
232		else
233			*ptr = word;
234	}
235}
236
237int
238lge_miibus_readreg(struct device *dev, int phy, int reg)
239{
240	struct lge_softc	*sc = (struct lge_softc *)dev;
241	int			i;
242
243	/*
244	 * If we have a non-PCS PHY, pretend that the internal
245	 * autoneg stuff at PHY address 0 isn't there so that
246	 * the miibus code will find only the GMII PHY.
247	 */
248	if (sc->lge_pcs == 0 && phy == 0)
249		return (0);
250
251	CSR_WRITE_4(sc, LGE_GMIICTL, (phy << 8) | reg | LGE_GMIICMD_READ);
252
253	for (i = 0; i < LGE_TIMEOUT; i++)
254		if (!(CSR_READ_4(sc, LGE_GMIICTL) & LGE_GMIICTL_CMDBUSY))
255			break;
256
257	if (i == LGE_TIMEOUT) {
258		printf("%s: PHY read timed out\n", sc->sc_dv.dv_xname);
259		return (0);
260	}
261
262	return (CSR_READ_4(sc, LGE_GMIICTL) >> 16);
263}
264
265void
266lge_miibus_writereg(struct device *dev, int phy, int reg, int data)
267{
268	struct lge_softc	*sc = (struct lge_softc *)dev;
269	int			i;
270
271	CSR_WRITE_4(sc, LGE_GMIICTL,
272	    (data << 16) | (phy << 8) | reg | LGE_GMIICMD_WRITE);
273
274	for (i = 0; i < LGE_TIMEOUT; i++)
275		if (!(CSR_READ_4(sc, LGE_GMIICTL) & LGE_GMIICTL_CMDBUSY))
276			break;
277
278	if (i == LGE_TIMEOUT) {
279		printf("%s: PHY write timed out\n", sc->sc_dv.dv_xname);
280	}
281}
282
283void
284lge_miibus_statchg(struct device *dev)
285{
286	struct lge_softc	*sc = (struct lge_softc *)dev;
287	struct mii_data		*mii = &sc->lge_mii;
288
289	LGE_CLRBIT(sc, LGE_GMIIMODE, LGE_GMIIMODE_SPEED);
290	switch (IFM_SUBTYPE(mii->mii_media_active)) {
291	case IFM_1000_T:
292	case IFM_1000_SX:
293		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_1000);
294		break;
295	case IFM_100_TX:
296		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_100);
297		break;
298	case IFM_10_T:
299		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_10);
300		break;
301	default:
302		/*
303		 * Choose something, even if it's wrong. Clearing
304		 * all the bits will hose autoneg on the internal
305		 * PHY.
306		 */
307		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_1000);
308		break;
309	}
310
311	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
312		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_GMIIMODE_FDX);
313	} else {
314		LGE_CLRBIT(sc, LGE_GMIIMODE, LGE_GMIIMODE_FDX);
315	}
316}
317
318void
319lge_setmulti(struct lge_softc *sc)
320{
321	struct arpcom		*ac = &sc->arpcom;
322	struct ifnet		*ifp = &ac->ac_if;
323	struct ether_multi      *enm;
324	struct ether_multistep  step;
325	u_int32_t		h = 0, hashes[2] = { 0, 0 };
326
327	/* Make sure multicast hash table is enabled. */
328	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_MCAST);
329
330allmulti:
331	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
332		CSR_WRITE_4(sc, LGE_MAR0, 0xFFFFFFFF);
333		CSR_WRITE_4(sc, LGE_MAR1, 0xFFFFFFFF);
334		return;
335	}
336
337	/* first, zot all the existing hash bits */
338	CSR_WRITE_4(sc, LGE_MAR0, 0);
339	CSR_WRITE_4(sc, LGE_MAR1, 0);
340
341	/* now program new ones */
342	ETHER_FIRST_MULTI(step, ac, enm);
343	while (enm != NULL) {
344		if (bcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
345			ifp->if_flags |= IFF_ALLMULTI;
346			goto allmulti;
347		}
348		h = (ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN) >> 26) &
349		    0x0000003F;
350		if (h < 32)
351			hashes[0] |= (1 << h);
352		else
353			hashes[1] |= (1 << (h - 32));
354		ETHER_NEXT_MULTI(step, enm);
355	}
356
357	CSR_WRITE_4(sc, LGE_MAR0, hashes[0]);
358	CSR_WRITE_4(sc, LGE_MAR1, hashes[1]);
359}
360
361void
362lge_reset(struct lge_softc *sc)
363{
364	int			i;
365
366	LGE_SETBIT(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL0|LGE_MODE1_SOFTRST);
367
368	for (i = 0; i < LGE_TIMEOUT; i++) {
369		if (!(CSR_READ_4(sc, LGE_MODE1) & LGE_MODE1_SOFTRST))
370			break;
371	}
372
373	if (i == LGE_TIMEOUT)
374		printf("%s: reset never completed\n", sc->sc_dv.dv_xname);
375
376	/* Wait a little while for the chip to get its brains in order. */
377	DELAY(1000);
378}
379
380/*
381 * Probe for a Level 1 chip. Check the PCI vendor and device
382 * IDs against our list and return a device name if we find a match.
383 */
384int
385lge_probe(struct device *parent, void *match, void *aux)
386{
387	return (pci_matchbyid((struct pci_attach_args *)aux, lge_devices,
388	    sizeof(lge_devices)/sizeof(lge_devices[0])));
389}
390
391/*
392 * Attach the interface. Allocate softc structures, do ifmedia
393 * setup and ethernet/BPF attach.
394 */
395void
396lge_attach(struct device *parent, struct device *self, void *aux)
397{
398	struct lge_softc	*sc = (struct lge_softc *)self;
399	struct pci_attach_args	*pa = aux;
400	pci_chipset_tag_t	pc = pa->pa_pc;
401	pci_intr_handle_t	ih;
402	const char		*intrstr = NULL;
403	bus_size_t		size;
404	bus_dma_segment_t	seg;
405	bus_dmamap_t		dmamap;
406	int			rseg;
407	u_char			eaddr[ETHER_ADDR_LEN];
408	pcireg_t		command;
409#ifndef LGE_USEIOSPACE
410	pcireg_t		memtype;
411#endif
412	struct ifnet		*ifp;
413	caddr_t			kva;
414
415	/*
416	 * Handle power management nonsense.
417	 */
418	DPRINTFN(5, ("Preparing for conf read\n"));
419	command = pci_conf_read(pc, pa->pa_tag, LGE_PCI_CAPID) & 0x000000FF;
420	if (command == 0x01) {
421		command = pci_conf_read(pc, pa->pa_tag, LGE_PCI_PWRMGMTCTRL);
422		if (command & LGE_PSTATE_MASK) {
423			pcireg_t	iobase, membase, irq;
424
425			/* Save important PCI config data. */
426			iobase = pci_conf_read(pc, pa->pa_tag, LGE_PCI_LOIO);
427			membase = pci_conf_read(pc, pa->pa_tag, LGE_PCI_LOMEM);
428			irq = pci_conf_read(pc, pa->pa_tag, LGE_PCI_INTLINE);
429
430			/* Reset the power state. */
431			printf("%s: chip is in D%d power mode "
432			       "-- setting to D0\n", sc->sc_dv.dv_xname,
433			       command & LGE_PSTATE_MASK);
434			command &= 0xFFFFFFFC;
435			pci_conf_write(pc, pa->pa_tag,
436				       LGE_PCI_PWRMGMTCTRL, command);
437
438			/* Restore PCI config data. */
439			pci_conf_write(pc, pa->pa_tag, LGE_PCI_LOIO, iobase);
440			pci_conf_write(pc, pa->pa_tag, LGE_PCI_LOMEM, membase);
441			pci_conf_write(pc, pa->pa_tag, LGE_PCI_INTLINE, irq);
442		}
443	}
444
445	/*
446	 * Map control/status registers.
447	 */
448	DPRINTFN(5, ("Map control/status regs\n"));
449
450	DPRINTFN(5, ("pci_mapreg_map\n"));
451#ifdef LGE_USEIOSPACE
452	if (pci_mapreg_map(pa, LGE_PCI_LOIO, PCI_MAPREG_TYPE_IO, 0,
453	    &sc->lge_btag, &sc->lge_bhandle, NULL, &size, 0)) {
454		printf(": can't map i/o space\n");
455		return;
456	}
457#else
458	memtype = pci_mapreg_type(pc, pa->pa_tag, LGE_PCI_LOMEM);
459	switch (memtype) {
460	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
461	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
462		if (pci_mapreg_map(pa, LGE_PCI_LOMEM,
463				   memtype, 0, &sc->lge_btag, &sc->lge_bhandle,
464				   NULL, &size, 0) == 0)
465			break;
466	default:
467		printf(": can't map mem space\n");
468		return;
469	}
470#endif
471
472	DPRINTFN(5, ("pci_intr_map\n"));
473	if (pci_intr_map(pa, &ih)) {
474		printf(": couldn't map interrupt\n");
475		goto fail_1;
476	}
477
478	DPRINTFN(5, ("pci_intr_string\n"));
479	intrstr = pci_intr_string(pc, ih);
480	DPRINTFN(5, ("pci_intr_establish\n"));
481	sc->lge_intrhand = pci_intr_establish(pc, ih, IPL_NET, lge_intr, sc,
482					      sc->sc_dv.dv_xname);
483	if (sc->lge_intrhand == NULL) {
484		printf(": couldn't establish interrupt");
485		if (intrstr != NULL)
486			printf(" at %s", intrstr);
487		printf("\n");
488		goto fail_1;
489	}
490	printf(": %s", intrstr);
491
492	/* Reset the adapter. */
493	DPRINTFN(5, ("lge_reset\n"));
494	lge_reset(sc);
495
496	/*
497	 * Get station address from the EEPROM.
498	 */
499	DPRINTFN(5, ("lge_read_eeprom\n"));
500	lge_read_eeprom(sc, (caddr_t)&eaddr[0], LGE_EE_NODEADDR_0, 1, 0);
501	lge_read_eeprom(sc, (caddr_t)&eaddr[2], LGE_EE_NODEADDR_1, 1, 0);
502	lge_read_eeprom(sc, (caddr_t)&eaddr[4], LGE_EE_NODEADDR_2, 1, 0);
503
504	/*
505	 * A Level 1 chip was detected. Inform the world.
506	 */
507	printf(", address %s\n", ether_sprintf(eaddr));
508
509	bcopy(eaddr, (char *)&sc->arpcom.ac_enaddr, ETHER_ADDR_LEN);
510
511	sc->sc_dmatag = pa->pa_dmat;
512	DPRINTFN(5, ("bus_dmamem_alloc\n"));
513	if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct lge_list_data),
514			     PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
515		printf("%s: can't alloc rx buffers\n", sc->sc_dv.dv_xname);
516		goto fail_2;
517	}
518	DPRINTFN(5, ("bus_dmamem_map\n"));
519	if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
520			   sizeof(struct lge_list_data), &kva,
521			   BUS_DMA_NOWAIT)) {
522		printf("%s: can't map dma buffers (%d bytes)\n",
523		       sc->sc_dv.dv_xname, sizeof(struct lge_list_data));
524		goto fail_3;
525	}
526	DPRINTFN(5, ("bus_dmamem_create\n"));
527	if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct lge_list_data), 1,
528			      sizeof(struct lge_list_data), 0,
529			      BUS_DMA_NOWAIT, &dmamap)) {
530		printf("%s: can't create dma map\n", sc->sc_dv.dv_xname);
531		goto fail_4;
532	}
533	DPRINTFN(5, ("bus_dmamem_load\n"));
534	if (bus_dmamap_load(sc->sc_dmatag, dmamap, kva,
535			    sizeof(struct lge_list_data), NULL,
536			    BUS_DMA_NOWAIT)) {
537		goto fail_5;
538	}
539
540	DPRINTFN(5, ("bzero\n"));
541	sc->lge_ldata = (struct lge_list_data *)kva;
542	bzero(sc->lge_ldata, sizeof(struct lge_list_data));
543
544	/* Try to allocate memory for jumbo buffers. */
545	DPRINTFN(5, ("lge_alloc_jumbo_mem\n"));
546	if (lge_alloc_jumbo_mem(sc)) {
547		printf("%s: jumbo buffer allocation failed\n",
548		       sc->sc_dv.dv_xname);
549		goto fail_5;
550	}
551
552	ifp = &sc->arpcom.ac_if;
553	ifp->if_softc = sc;
554	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
555	ifp->if_ioctl = lge_ioctl;
556	ifp->if_start = lge_start;
557	ifp->if_watchdog = lge_watchdog;
558	ifp->if_baudrate = 1000000000;
559	ifp->if_hardmtu = LGE_JUMBO_MTU;
560	IFQ_SET_MAXLEN(&ifp->if_snd, LGE_TX_LIST_CNT - 1);
561	IFQ_SET_READY(&ifp->if_snd);
562	DPRINTFN(5, ("bcopy\n"));
563	bcopy(sc->sc_dv.dv_xname, ifp->if_xname, IFNAMSIZ);
564
565	ifp->if_capabilities = IFCAP_VLAN_MTU;
566
567	if (CSR_READ_4(sc, LGE_GMIIMODE) & LGE_GMIIMODE_PCSENH)
568		sc->lge_pcs = 1;
569	else
570		sc->lge_pcs = 0;
571
572	/*
573	 * Do MII setup.
574	 */
575	DPRINTFN(5, ("mii setup\n"));
576	sc->lge_mii.mii_ifp = ifp;
577	sc->lge_mii.mii_readreg = lge_miibus_readreg;
578	sc->lge_mii.mii_writereg = lge_miibus_writereg;
579	sc->lge_mii.mii_statchg = lge_miibus_statchg;
580	ifmedia_init(&sc->lge_mii.mii_media, 0, lge_ifmedia_upd,
581		     lge_ifmedia_sts);
582	mii_attach(&sc->sc_dv, &sc->lge_mii, 0xffffffff, MII_PHY_ANY,
583		   MII_OFFSET_ANY, 0);
584
585	if (LIST_FIRST(&sc->lge_mii.mii_phys) == NULL) {
586		printf("%s: no PHY found!\n", sc->sc_dv.dv_xname);
587		ifmedia_add(&sc->lge_mii.mii_media, IFM_ETHER|IFM_MANUAL,
588			    0, NULL);
589		ifmedia_set(&sc->lge_mii.mii_media, IFM_ETHER|IFM_MANUAL);
590	} else {
591		DPRINTFN(5, ("ifmedia_set\n"));
592		ifmedia_set(&sc->lge_mii.mii_media, IFM_ETHER|IFM_AUTO);
593	}
594
595	/*
596	 * Call MI attach routine.
597	 */
598	DPRINTFN(5, ("if_attach\n"));
599	if_attach(ifp);
600	DPRINTFN(5, ("ether_ifattach\n"));
601	ether_ifattach(ifp);
602	DPRINTFN(5, ("timeout_set\n"));
603	timeout_set(&sc->lge_timeout, lge_tick, sc);
604	timeout_add(&sc->lge_timeout, hz);
605	return;
606
607fail_5:
608	bus_dmamap_destroy(sc->sc_dmatag, dmamap);
609
610fail_4:
611	bus_dmamem_unmap(sc->sc_dmatag, kva,
612	    sizeof(struct lge_list_data));
613
614fail_3:
615	bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
616
617fail_2:
618	pci_intr_disestablish(pc, sc->lge_intrhand);
619
620fail_1:
621	bus_space_unmap(sc->lge_btag, sc->lge_bhandle, size);
622}
623
624/*
625 * Initialize the transmit descriptors.
626 */
627int
628lge_list_tx_init(struct lge_softc *sc)
629{
630	struct lge_list_data	*ld;
631	struct lge_ring_data	*cd;
632	int			i;
633
634	cd = &sc->lge_cdata;
635	ld = sc->lge_ldata;
636	for (i = 0; i < LGE_TX_LIST_CNT; i++) {
637		ld->lge_tx_list[i].lge_mbuf = NULL;
638		ld->lge_tx_list[i].lge_ctl = 0;
639	}
640
641	cd->lge_tx_prod = cd->lge_tx_cons = 0;
642
643	return (0);
644}
645
646
647/*
648 * Initialize the RX descriptors and allocate mbufs for them. Note that
649 * we arralge the descriptors in a closed ring, so that the last descriptor
650 * points back to the first.
651 */
652int
653lge_list_rx_init(struct lge_softc *sc)
654{
655	struct lge_list_data	*ld;
656	struct lge_ring_data	*cd;
657	int			i;
658
659	ld = sc->lge_ldata;
660	cd = &sc->lge_cdata;
661
662	cd->lge_rx_prod = cd->lge_rx_cons = 0;
663
664	CSR_WRITE_4(sc, LGE_RXDESC_ADDR_HI, 0);
665
666	for (i = 0; i < LGE_RX_LIST_CNT; i++) {
667		if (CSR_READ_1(sc, LGE_RXCMDFREE_8BIT) == 0)
668			break;
669		if (lge_newbuf(sc, &ld->lge_rx_list[i], NULL) == ENOBUFS)
670			return (ENOBUFS);
671	}
672
673	/* Clear possible 'rx command queue empty' interrupt. */
674	CSR_READ_4(sc, LGE_ISR);
675
676	return (0);
677}
678
679/*
680 * Initialize an RX descriptor and attach an MBUF cluster.
681 */
682int
683lge_newbuf(struct lge_softc *sc, struct lge_rx_desc *c, struct mbuf *m)
684{
685	struct mbuf		*m_new = NULL;
686
687	if (m == NULL) {
688		caddr_t buf = NULL;
689
690		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
691		if (m_new == NULL)
692			return (ENOBUFS);
693
694		/* Allocate the jumbo buffer */
695		buf = lge_jalloc(sc);
696		if (buf == NULL) {
697			m_freem(m_new);
698			return (ENOBUFS);
699		}
700
701		/* Attach the buffer to the mbuf */
702		m_new->m_len = m_new->m_pkthdr.len = LGE_JLEN;
703		MEXTADD(m_new, buf, LGE_JLEN, 0, lge_jfree, sc);
704	} else {
705		/*
706		 * We're re-using a previously allocated mbuf;
707		 * be sure to re-init pointers and lengths to
708		 * default values.
709		 */
710		m_new = m;
711		m_new->m_len = m_new->m_pkthdr.len = LGE_JLEN;
712		m_new->m_data = m_new->m_ext.ext_buf;
713	}
714
715	/*
716	 * Adjust alignment so packet payload begins on a
717	 * longword boundary. Mandatory for Alpha, useful on
718	 * x86 too.
719	*/
720	m_adj(m_new, ETHER_ALIGN);
721
722	c->lge_mbuf = m_new;
723	c->lge_fragptr_hi = 0;
724	c->lge_fragptr_lo = VTOPHYS(mtod(m_new, caddr_t));
725	c->lge_fraglen = m_new->m_len;
726	c->lge_ctl = m_new->m_len | LGE_RXCTL_WANTINTR | LGE_FRAGCNT(1);
727	c->lge_sts = 0;
728
729	/*
730	 * Put this buffer in the RX command FIFO. To do this,
731	 * we just write the physical address of the descriptor
732	 * into the RX descriptor address registers. Note that
733	 * there are two registers, one high DWORD and one low
734	 * DWORD, which lets us specify a 64-bit address if
735	 * desired. We only use a 32-bit address for now.
736	 * Writing to the low DWORD register is what actually
737	 * causes the command to be issued, so we do that
738	 * last.
739	 */
740	CSR_WRITE_4(sc, LGE_RXDESC_ADDR_LO, VTOPHYS(c));
741	LGE_INC(sc->lge_cdata.lge_rx_prod, LGE_RX_LIST_CNT);
742
743	return (0);
744}
745
746int
747lge_alloc_jumbo_mem(struct lge_softc *sc)
748{
749	caddr_t			ptr, kva;
750	bus_dma_segment_t	seg;
751	bus_dmamap_t		dmamap;
752	int			i, rseg, state, error;
753	struct lge_jpool_entry   *entry;
754
755	state = error = 0;
756
757	/* Grab a big chunk o' storage. */
758	if (bus_dmamem_alloc(sc->sc_dmatag, LGE_JMEM, PAGE_SIZE, 0,
759			     &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
760		printf("%s: can't alloc rx buffers\n", sc->sc_dv.dv_xname);
761		return (ENOBUFS);
762	}
763
764	state = 1;
765	if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg, LGE_JMEM, &kva,
766			   BUS_DMA_NOWAIT)) {
767		printf("%s: can't map dma buffers (%d bytes)\n",
768		       sc->sc_dv.dv_xname, LGE_JMEM);
769		error = ENOBUFS;
770		goto out;
771	}
772
773	state = 2;
774	if (bus_dmamap_create(sc->sc_dmatag, LGE_JMEM, 1,
775			      LGE_JMEM, 0, BUS_DMA_NOWAIT, &dmamap)) {
776		printf("%s: can't create dma map\n", sc->sc_dv.dv_xname);
777		error = ENOBUFS;
778		goto out;
779	}
780
781	state = 3;
782	if (bus_dmamap_load(sc->sc_dmatag, dmamap, kva, LGE_JMEM,
783			    NULL, BUS_DMA_NOWAIT)) {
784		printf("%s: can't load dma map\n", sc->sc_dv.dv_xname);
785		error = ENOBUFS;
786		goto out;
787        }
788
789	state = 4;
790	sc->lge_cdata.lge_jumbo_buf = (caddr_t)kva;
791	DPRINTFN(1,("lge_jumbo_buf = 0x%08X\n", sc->lge_cdata.lge_jumbo_buf));
792	DPRINTFN(1,("LGE_JLEN = 0x%08X\n", LGE_JLEN));
793
794	LIST_INIT(&sc->lge_jfree_listhead);
795	LIST_INIT(&sc->lge_jinuse_listhead);
796
797	/*
798	 * Now divide it up into 9K pieces and save the addresses
799	 * in an array.
800	 */
801	ptr = sc->lge_cdata.lge_jumbo_buf;
802	for (i = 0; i < LGE_JSLOTS; i++) {
803		sc->lge_cdata.lge_jslots[i] = ptr;
804		ptr += LGE_JLEN;
805		entry = malloc(sizeof(struct lge_jpool_entry),
806		    M_DEVBUF, M_NOWAIT);
807		if (entry == NULL) {
808			sc->lge_cdata.lge_jumbo_buf = NULL;
809			printf("%s: no memory for jumbo buffer queue!\n",
810			       sc->sc_dv.dv_xname);
811			error = ENOBUFS;
812			goto out;
813		}
814		entry->slot = i;
815		LIST_INSERT_HEAD(&sc->lge_jfree_listhead,
816				 entry, jpool_entries);
817	}
818out:
819	if (error != 0) {
820		switch (state) {
821		case 4:
822			bus_dmamap_unload(sc->sc_dmatag, dmamap);
823		case 3:
824			bus_dmamap_destroy(sc->sc_dmatag, dmamap);
825		case 2:
826			bus_dmamem_unmap(sc->sc_dmatag, kva, LGE_JMEM);
827		case 1:
828			bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
829			break;
830		default:
831			break;
832		}
833	}
834
835	return (error);
836}
837
838/*
839 * Allocate a jumbo buffer.
840 */
841void *
842lge_jalloc(struct lge_softc *sc)
843{
844	struct lge_jpool_entry   *entry;
845
846	entry = LIST_FIRST(&sc->lge_jfree_listhead);
847
848	if (entry == NULL)
849		return (NULL);
850
851	LIST_REMOVE(entry, jpool_entries);
852	LIST_INSERT_HEAD(&sc->lge_jinuse_listhead, entry, jpool_entries);
853	return (sc->lge_cdata.lge_jslots[entry->slot]);
854}
855
856/*
857 * Release a jumbo buffer.
858 */
859void
860lge_jfree(caddr_t buf, u_int size, void *arg)
861{
862	struct lge_softc	*sc;
863	int		        i;
864	struct lge_jpool_entry   *entry;
865
866	/* Extract the softc struct pointer. */
867	sc = (struct lge_softc *)arg;
868
869	if (sc == NULL)
870		panic("lge_jfree: can't find softc pointer!");
871
872	/* calculate the slot this buffer belongs to */
873	i = ((vaddr_t)buf - (vaddr_t)sc->lge_cdata.lge_jumbo_buf) / LGE_JLEN;
874
875	if ((i < 0) || (i >= LGE_JSLOTS))
876		panic("lge_jfree: asked to free buffer that we don't manage!");
877
878	entry = LIST_FIRST(&sc->lge_jinuse_listhead);
879	if (entry == NULL)
880		panic("lge_jfree: buffer not in use!");
881	entry->slot = i;
882	LIST_REMOVE(entry, jpool_entries);
883	LIST_INSERT_HEAD(&sc->lge_jfree_listhead, entry, jpool_entries);
884}
885
886/*
887 * A frame has been uploaded: pass the resulting mbuf chain up to
888 * the higher level protocols.
889 */
890void
891lge_rxeof(struct lge_softc *sc, int cnt)
892{
893        struct mbuf		*m;
894        struct ifnet		*ifp;
895	struct lge_rx_desc	*cur_rx;
896	int			c, i, total_len = 0;
897	u_int32_t		rxsts, rxctl;
898
899	ifp = &sc->arpcom.ac_if;
900
901	/* Find out how many frames were processed. */
902	c = cnt;
903	i = sc->lge_cdata.lge_rx_cons;
904
905	/* Suck them in. */
906	while(c) {
907		struct mbuf		*m0 = NULL;
908
909		cur_rx = &sc->lge_ldata->lge_rx_list[i];
910		rxctl = cur_rx->lge_ctl;
911		rxsts = cur_rx->lge_sts;
912		m = cur_rx->lge_mbuf;
913		cur_rx->lge_mbuf = NULL;
914		total_len = LGE_RXBYTES(cur_rx);
915		LGE_INC(i, LGE_RX_LIST_CNT);
916		c--;
917
918		/*
919		 * If an error occurs, update stats, clear the
920		 * status word and leave the mbuf cluster in place:
921		 * it should simply get re-used next time this descriptor
922	 	 * comes up in the ring.
923		 */
924		if (rxctl & LGE_RXCTL_ERRMASK) {
925			ifp->if_ierrors++;
926			lge_newbuf(sc, &LGE_RXTAIL(sc), m);
927			continue;
928		}
929
930		if (lge_newbuf(sc, &LGE_RXTAIL(sc), NULL) == ENOBUFS) {
931			m0 = m_devget(mtod(m, char *), total_len, ETHER_ALIGN,
932			    ifp, NULL);
933			lge_newbuf(sc, &LGE_RXTAIL(sc), m);
934			if (m0 == NULL) {
935				ifp->if_ierrors++;
936				continue;
937			}
938			m = m0;
939		} else {
940			m->m_pkthdr.rcvif = ifp;
941			m->m_pkthdr.len = m->m_len = total_len;
942		}
943
944		ifp->if_ipackets++;
945
946#if NBPFILTER > 0
947		/*
948		 * Handle BPF listeners. Let the BPF user see the packet.
949		 */
950		if (ifp->if_bpf)
951			bpf_mtap(ifp->if_bpf, m, BPF_DIRECTION_IN);
952#endif
953
954		/* Do IP checksum checking. */
955		if (rxsts & LGE_RXSTS_ISIP) {
956			if (!(rxsts & LGE_RXSTS_IPCSUMERR))
957				m->m_pkthdr.csum_flags |= M_IPV4_CSUM_IN_OK;
958		}
959		if (rxsts & LGE_RXSTS_ISTCP) {
960			if (!(rxsts & LGE_RXSTS_TCPCSUMERR))
961				m->m_pkthdr.csum_flags |= M_TCP_CSUM_IN_OK;
962		}
963		if (rxsts & LGE_RXSTS_ISUDP) {
964			if (!(rxsts & LGE_RXSTS_UDPCSUMERR))
965				m->m_pkthdr.csum_flags |= M_UDP_CSUM_IN_OK;
966		}
967
968		ether_input_mbuf(ifp, m);
969	}
970
971	sc->lge_cdata.lge_rx_cons = i;
972}
973
974/*
975 * A frame was downloaded to the chip. It's safe for us to clean up
976 * the list buffers.
977 */
978
979void
980lge_txeof(struct lge_softc *sc)
981{
982	struct lge_tx_desc	*cur_tx = NULL;
983	struct ifnet		*ifp;
984	u_int32_t		idx, txdone;
985
986	ifp = &sc->arpcom.ac_if;
987
988	/* Clear the timeout timer. */
989	ifp->if_timer = 0;
990
991	/*
992	 * Go through our tx list and free mbufs for those
993	 * frames that have been transmitted.
994	 */
995	idx = sc->lge_cdata.lge_tx_cons;
996	txdone = CSR_READ_1(sc, LGE_TXDMADONE_8BIT);
997
998	while (idx != sc->lge_cdata.lge_tx_prod && txdone) {
999		cur_tx = &sc->lge_ldata->lge_tx_list[idx];
1000
1001		ifp->if_opackets++;
1002		if (cur_tx->lge_mbuf != NULL) {
1003			m_freem(cur_tx->lge_mbuf);
1004			cur_tx->lge_mbuf = NULL;
1005		}
1006		cur_tx->lge_ctl = 0;
1007
1008		txdone--;
1009		LGE_INC(idx, LGE_TX_LIST_CNT);
1010		ifp->if_timer = 0;
1011	}
1012
1013	sc->lge_cdata.lge_tx_cons = idx;
1014
1015	if (cur_tx != NULL)
1016		ifp->if_flags &= ~IFF_OACTIVE;
1017}
1018
1019void
1020lge_tick(void *xsc)
1021{
1022	struct lge_softc	*sc = xsc;
1023	struct mii_data		*mii = &sc->lge_mii;
1024	struct ifnet		*ifp = &sc->arpcom.ac_if;
1025	int			s;
1026
1027	s = splnet();
1028
1029	CSR_WRITE_4(sc, LGE_STATSIDX, LGE_STATS_SINGLE_COLL_PKTS);
1030	ifp->if_collisions += CSR_READ_4(sc, LGE_STATSVAL);
1031	CSR_WRITE_4(sc, LGE_STATSIDX, LGE_STATS_MULTI_COLL_PKTS);
1032	ifp->if_collisions += CSR_READ_4(sc, LGE_STATSVAL);
1033
1034	if (!sc->lge_link) {
1035		mii_tick(mii);
1036		if (mii->mii_media_status & IFM_ACTIVE &&
1037		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1038			sc->lge_link++;
1039			if (!IFQ_IS_EMPTY(&ifp->if_snd))
1040				lge_start(ifp);
1041		}
1042	}
1043
1044	timeout_add(&sc->lge_timeout, hz);
1045
1046	splx(s);
1047}
1048
1049int
1050lge_intr(void *arg)
1051{
1052	struct lge_softc	*sc;
1053	struct ifnet		*ifp;
1054	u_int32_t		status;
1055	int			claimed = 0;
1056
1057	sc = arg;
1058	ifp = &sc->arpcom.ac_if;
1059
1060	/* Supress unwanted interrupts */
1061	if (!(ifp->if_flags & IFF_UP)) {
1062		lge_stop(sc);
1063		return (0);
1064	}
1065
1066	for (;;) {
1067		/*
1068		 * Reading the ISR register clears all interrupts, and
1069		 * clears the 'interrupts enabled' bit in the IMR
1070		 * register.
1071		 */
1072		status = CSR_READ_4(sc, LGE_ISR);
1073
1074		if ((status & LGE_INTRS) == 0)
1075			break;
1076
1077		claimed = 1;
1078
1079		if ((status & (LGE_ISR_TXCMDFIFO_EMPTY|LGE_ISR_TXDMA_DONE)))
1080			lge_txeof(sc);
1081
1082		if (status & LGE_ISR_RXDMA_DONE)
1083			lge_rxeof(sc, LGE_RX_DMACNT(status));
1084
1085		if (status & LGE_ISR_RXCMDFIFO_EMPTY)
1086			lge_init(sc);
1087
1088		if (status & LGE_ISR_PHY_INTR) {
1089			sc->lge_link = 0;
1090			timeout_del(&sc->lge_timeout);
1091			lge_tick(sc);
1092		}
1093	}
1094
1095	/* Re-enable interrupts. */
1096	CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_SETRST_CTL0|LGE_IMR_INTR_ENB);
1097
1098	if (!IFQ_IS_EMPTY(&ifp->if_snd))
1099		lge_start(ifp);
1100
1101	return (claimed);
1102}
1103
1104/*
1105 * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1106 * pointers to the fragment pointers.
1107 */
1108int
1109lge_encap(struct lge_softc *sc, struct mbuf *m_head, u_int32_t *txidx)
1110{
1111	struct lge_frag		*f = NULL;
1112	struct lge_tx_desc	*cur_tx;
1113	struct mbuf		*m;
1114	int			frag = 0, tot_len = 0;
1115
1116	/*
1117 	 * Start packing the mbufs in this chain into
1118	 * the fragment pointers. Stop when we run out
1119 	 * of fragments or hit the end of the mbuf chain.
1120	 */
1121	m = m_head;
1122	cur_tx = &sc->lge_ldata->lge_tx_list[*txidx];
1123	frag = 0;
1124
1125	for (m = m_head; m != NULL; m = m->m_next) {
1126		if (m->m_len != 0) {
1127			tot_len += m->m_len;
1128			f = &cur_tx->lge_frags[frag];
1129			f->lge_fraglen = m->m_len;
1130			f->lge_fragptr_lo = VTOPHYS(mtod(m, vaddr_t));
1131			f->lge_fragptr_hi = 0;
1132			frag++;
1133		}
1134	}
1135
1136	if (m != NULL)
1137		return (ENOBUFS);
1138
1139	cur_tx->lge_mbuf = m_head;
1140	cur_tx->lge_ctl = LGE_TXCTL_WANTINTR|LGE_FRAGCNT(frag)|tot_len;
1141	LGE_INC((*txidx), LGE_TX_LIST_CNT);
1142
1143	/* Queue for transmit */
1144	CSR_WRITE_4(sc, LGE_TXDESC_ADDR_LO, VTOPHYS(cur_tx));
1145
1146	return (0);
1147}
1148
1149/*
1150 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1151 * to the mbuf data regions directly in the transmit lists. We also save a
1152 * copy of the pointers since the transmit list fragment pointers are
1153 * physical addresses.
1154 */
1155
1156void
1157lge_start(struct ifnet *ifp)
1158{
1159	struct lge_softc	*sc;
1160	struct mbuf		*m_head = NULL;
1161	u_int32_t		idx;
1162	int			pkts = 0;
1163
1164	sc = ifp->if_softc;
1165
1166	if (!sc->lge_link)
1167		return;
1168
1169	idx = sc->lge_cdata.lge_tx_prod;
1170
1171	if (ifp->if_flags & IFF_OACTIVE)
1172		return;
1173
1174	while(sc->lge_ldata->lge_tx_list[idx].lge_mbuf == NULL) {
1175		if (CSR_READ_1(sc, LGE_TXCMDFREE_8BIT) == 0)
1176			break;
1177
1178		IFQ_POLL(&ifp->if_snd, m_head);
1179		if (m_head == NULL)
1180			break;
1181
1182		if (lge_encap(sc, m_head, &idx)) {
1183			ifp->if_flags |= IFF_OACTIVE;
1184			break;
1185		}
1186
1187		/* now we are committed to transmit the packet */
1188		IFQ_DEQUEUE(&ifp->if_snd, m_head);
1189		pkts++;
1190
1191#if NBPFILTER > 0
1192		/*
1193		 * If there's a BPF listener, bounce a copy of this frame
1194		 * to him.
1195		 */
1196		if (ifp->if_bpf)
1197			bpf_mtap(ifp->if_bpf, m_head, BPF_DIRECTION_OUT);
1198#endif
1199	}
1200	if (pkts == 0)
1201		return;
1202
1203	sc->lge_cdata.lge_tx_prod = idx;
1204
1205	/*
1206	 * Set a timeout in case the chip goes out to lunch.
1207	 */
1208	ifp->if_timer = 5;
1209}
1210
1211void
1212lge_init(void *xsc)
1213{
1214	struct lge_softc	*sc = xsc;
1215	struct ifnet		*ifp = &sc->arpcom.ac_if;
1216	int			s;
1217
1218	s = splnet();
1219
1220	/*
1221	 * Cancel pending I/O and free all RX/TX buffers.
1222	 */
1223	lge_stop(sc);
1224	lge_reset(sc);
1225
1226	/* Set MAC address */
1227	CSR_WRITE_4(sc, LGE_PAR0, *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
1228	CSR_WRITE_4(sc, LGE_PAR1, *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
1229
1230	/* Init circular RX list. */
1231	if (lge_list_rx_init(sc) == ENOBUFS) {
1232		printf("%s: initialization failed: no "
1233		       "memory for rx buffers\n", sc->sc_dv.dv_xname);
1234		lge_stop(sc);
1235		splx(s);
1236		return;
1237	}
1238
1239	/*
1240	 * Init tx descriptors.
1241	 */
1242	lge_list_tx_init(sc);
1243
1244	/* Set initial value for MODE1 register. */
1245	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_UCAST|
1246	    LGE_MODE1_TX_CRC|LGE_MODE1_TXPAD|
1247	    LGE_MODE1_RX_FLOWCTL|LGE_MODE1_SETRST_CTL0|
1248	    LGE_MODE1_SETRST_CTL1|LGE_MODE1_SETRST_CTL2);
1249
1250	 /* If we want promiscuous mode, set the allframes bit. */
1251	if (ifp->if_flags & IFF_PROMISC) {
1252		CSR_WRITE_4(sc, LGE_MODE1,
1253		    LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_PROMISC);
1254	} else {
1255		CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_PROMISC);
1256	}
1257
1258	/*
1259	 * Set the capture broadcast bit to capture broadcast frames.
1260	 */
1261	if (ifp->if_flags & IFF_BROADCAST) {
1262		CSR_WRITE_4(sc, LGE_MODE1,
1263		    LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_BCAST);
1264	} else {
1265		CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_BCAST);
1266	}
1267
1268	/* Packet padding workaround? */
1269	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_RMVPAD);
1270
1271	/* No error frames */
1272	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_ERRPKTS);
1273
1274	/* Receive large frames */
1275	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_GIANTS);
1276
1277	/* Workaround: disable RX/TX flow control */
1278	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_TX_FLOWCTL);
1279	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_FLOWCTL);
1280
1281	/* Make sure to strip CRC from received frames */
1282	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_CRC);
1283
1284	/* Turn off magic packet mode */
1285	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_MPACK_ENB);
1286
1287	/* Turn off all VLAN stuff */
1288	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_VLAN_RX|LGE_MODE1_VLAN_TX|
1289	    LGE_MODE1_VLAN_STRIP|LGE_MODE1_VLAN_INSERT);
1290
1291	/* Workarond: FIFO overflow */
1292	CSR_WRITE_2(sc, LGE_RXFIFO_HIWAT, 0x3FFF);
1293	CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_SETRST_CTL1|LGE_IMR_RXFIFO_WAT);
1294
1295	/*
1296	 * Load the multicast filter.
1297	 */
1298	lge_setmulti(sc);
1299
1300	/*
1301	 * Enable hardware checksum validation for all received IPv4
1302	 * packets, do not reject packets with bad checksums.
1303	 */
1304	CSR_WRITE_4(sc, LGE_MODE2, LGE_MODE2_RX_IPCSUM|
1305	    LGE_MODE2_RX_TCPCSUM|LGE_MODE2_RX_UDPCSUM|
1306	    LGE_MODE2_RX_ERRCSUM);
1307
1308	/*
1309	 * Enable the delivery of PHY interrupts based on
1310	 * link/speed/duplex status chalges.
1311	 */
1312	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL0|LGE_MODE1_GMIIPOLL);
1313
1314	/* Enable receiver and transmitter. */
1315	CSR_WRITE_4(sc, LGE_RXDESC_ADDR_HI, 0);
1316	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_ENB);
1317
1318	CSR_WRITE_4(sc, LGE_TXDESC_ADDR_HI, 0);
1319	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_TX_ENB);
1320
1321	/*
1322	 * Enable interrupts.
1323	 */
1324	CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_SETRST_CTL0|
1325	    LGE_IMR_SETRST_CTL1|LGE_IMR_INTR_ENB|LGE_INTRS);
1326
1327	lge_ifmedia_upd(ifp);
1328
1329	ifp->if_flags |= IFF_RUNNING;
1330	ifp->if_flags &= ~IFF_OACTIVE;
1331
1332	splx(s);
1333
1334	timeout_add(&sc->lge_timeout, hz);
1335}
1336
1337/*
1338 * Set media options.
1339 */
1340int
1341lge_ifmedia_upd(struct ifnet *ifp)
1342{
1343	struct lge_softc	*sc = ifp->if_softc;
1344	struct mii_data		*mii = &sc->lge_mii;
1345
1346	sc->lge_link = 0;
1347	if (mii->mii_instance) {
1348		struct mii_softc *miisc;
1349		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
1350			mii_phy_reset(miisc);
1351	}
1352	mii_mediachg(mii);
1353
1354	return (0);
1355}
1356
1357/*
1358 * Report current media status.
1359 */
1360void
1361lge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1362{
1363	struct lge_softc	*sc = ifp->if_softc;
1364	struct mii_data		*mii = &sc->lge_mii;
1365
1366	mii_pollstat(mii);
1367	ifmr->ifm_active = mii->mii_media_active;
1368	ifmr->ifm_status = mii->mii_media_status;
1369}
1370
1371int
1372lge_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1373{
1374	struct lge_softc	*sc = ifp->if_softc;
1375	struct ifreq		*ifr = (struct ifreq *) data;
1376	struct ifaddr		*ifa = (struct ifaddr *)data;
1377	struct mii_data		*mii;
1378	int			s, error = 0;
1379
1380	s = splnet();
1381
1382	switch(command) {
1383	case SIOCSIFADDR:
1384		ifp->if_flags |= IFF_UP;
1385		if (!(ifp->if_flags & IFF_RUNNING))
1386			lge_init(sc);
1387#ifdef INET
1388		if (ifa->ifa_addr->sa_family == AF_INET)
1389			arp_ifinit(&sc->arpcom, ifa);
1390#endif /* INET */
1391		break;
1392	case SIOCSIFMTU:
1393		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ifp->if_hardmtu)
1394			error = EINVAL;
1395		else if (ifp->if_mtu != ifr->ifr_mtu)
1396			ifp->if_mtu = ifr->ifr_mtu;
1397		break;
1398	case SIOCSIFFLAGS:
1399		if (ifp->if_flags & IFF_UP) {
1400			if (ifp->if_flags & IFF_RUNNING &&
1401			    ifp->if_flags & IFF_PROMISC &&
1402			    !(sc->lge_if_flags & IFF_PROMISC)) {
1403				CSR_WRITE_4(sc, LGE_MODE1,
1404				    LGE_MODE1_SETRST_CTL1|
1405				    LGE_MODE1_RX_PROMISC);
1406				lge_setmulti(sc);
1407			} else if (ifp->if_flags & IFF_RUNNING &&
1408			    !(ifp->if_flags & IFF_PROMISC) &&
1409			    sc->lge_if_flags & IFF_PROMISC) {
1410				CSR_WRITE_4(sc, LGE_MODE1,
1411				    LGE_MODE1_RX_PROMISC);
1412				lge_setmulti(sc);
1413			} else if (ifp->if_flags & IFF_RUNNING &&
1414			    (ifp->if_flags ^ sc->lge_if_flags) & IFF_ALLMULTI) {
1415				lge_setmulti(sc);
1416			} else {
1417				if (!(ifp->if_flags & IFF_RUNNING))
1418					lge_init(sc);
1419			}
1420		} else {
1421			if (ifp->if_flags & IFF_RUNNING)
1422				lge_stop(sc);
1423		}
1424		sc->lge_if_flags = ifp->if_flags;
1425		break;
1426	case SIOCADDMULTI:
1427	case SIOCDELMULTI:
1428		error = (command == SIOCADDMULTI)
1429			? ether_addmulti(ifr, &sc->arpcom)
1430			: ether_delmulti(ifr, &sc->arpcom);
1431
1432		if (error == ENETRESET) {
1433			if (ifp->if_flags & IFF_RUNNING)
1434				lge_setmulti(sc);
1435			error = 0;
1436		}
1437		break;
1438	case SIOCGIFMEDIA:
1439	case SIOCSIFMEDIA:
1440		mii = &sc->lge_mii;
1441		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1442		break;
1443	default:
1444		error = ENOTTY;
1445		break;
1446	}
1447
1448	splx(s);
1449
1450	return (error);
1451}
1452
1453void
1454lge_watchdog(struct ifnet *ifp)
1455{
1456	struct lge_softc	*sc;
1457
1458	sc = ifp->if_softc;
1459
1460	ifp->if_oerrors++;
1461	printf("%s: watchdog timeout\n", sc->sc_dv.dv_xname);
1462
1463	lge_stop(sc);
1464	lge_reset(sc);
1465	lge_init(sc);
1466
1467	if (!IFQ_IS_EMPTY(&ifp->if_snd))
1468		lge_start(ifp);
1469}
1470
1471/*
1472 * Stop the adapter and free any mbufs allocated to the
1473 * RX and TX lists.
1474 */
1475void
1476lge_stop(struct lge_softc *sc)
1477{
1478	int			i;
1479	struct ifnet		*ifp;
1480
1481	ifp = &sc->arpcom.ac_if;
1482	ifp->if_timer = 0;
1483	timeout_del(&sc->lge_timeout);
1484
1485	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1486
1487	CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_INTR_ENB);
1488
1489	/* Disable receiver and transmitter. */
1490	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_ENB|LGE_MODE1_TX_ENB);
1491	sc->lge_link = 0;
1492
1493	/*
1494	 * Free data in the RX lists.
1495	 */
1496	for (i = 0; i < LGE_RX_LIST_CNT; i++) {
1497		if (sc->lge_ldata->lge_rx_list[i].lge_mbuf != NULL) {
1498			m_freem(sc->lge_ldata->lge_rx_list[i].lge_mbuf);
1499			sc->lge_ldata->lge_rx_list[i].lge_mbuf = NULL;
1500		}
1501	}
1502	bzero((char *)&sc->lge_ldata->lge_rx_list,
1503		sizeof(sc->lge_ldata->lge_rx_list));
1504
1505	/*
1506	 * Free the TX list buffers.
1507	 */
1508	for (i = 0; i < LGE_TX_LIST_CNT; i++) {
1509		if (sc->lge_ldata->lge_tx_list[i].lge_mbuf != NULL) {
1510			m_freem(sc->lge_ldata->lge_tx_list[i].lge_mbuf);
1511			sc->lge_ldata->lge_tx_list[i].lge_mbuf = NULL;
1512		}
1513	}
1514
1515	bzero((char *)&sc->lge_ldata->lge_tx_list,
1516		sizeof(sc->lge_ldata->lge_tx_list));
1517}
1518
1519/*
1520 * Stop all chip I/O so that the kernel's probe routines don't
1521 * get confused by errant DMAs when rebooting.
1522 */
1523void
1524lge_shutdown(void *xsc)
1525{
1526	struct lge_softc	*sc = (struct lge_softc *)xsc;
1527
1528	lge_reset(sc);
1529	lge_stop(sc);
1530}
1531