if_lge.c revision 1.23
1/*	$OpenBSD: if_lge.c,v 1.23 2005/09/11 18:17:08 mickey Exp $	*/
2/*
3 * Copyright (c) 2001 Wind River Systems
4 * Copyright (c) 1997, 1998, 1999, 2000, 2001
5 *	Bill Paul <william.paul@windriver.com>.  All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 *    must display the following acknowledgement:
17 *	This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 *    may be used to endorse or promote products derived from this software
20 *    without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * $FreeBSD: src/sys/dev/lge/if_lge.c,v 1.6 2001/06/20 19:47:55 bmilekic Exp $
35 */
36
37/*
38 * Level 1 LXT1001 gigabit ethernet driver for FreeBSD. Public
39 * documentation not available, but ask me nicely.
40 *
41 * Written by Bill Paul <william.paul@windriver.com>
42 * Wind River Systems
43 */
44
45/*
46 * The Level 1 chip is used on some D-Link, SMC and Addtron NICs.
47 * It's a 64-bit PCI part that supports TCP/IP checksum offload,
48 * VLAN tagging/insertion, GMII and TBI (1000baseX) ports. There
49 * are three supported methods for data transfer between host and
50 * NIC: programmed I/O, traditional scatter/gather DMA and Packet
51 * Propulsion Technology (tm) DMA. The latter mechanism is a form
52 * of double buffer DMA where the packet data is copied to a
53 * pre-allocated DMA buffer who's physical address has been loaded
54 * into a table at device initialization time. The rationale is that
55 * the virtual to physical address translation needed for normal
56 * scatter/gather DMA is more expensive than the data copy needed
57 * for double buffering. This may be true in Windows NT and the like,
58 * but it isn't true for us, at least on the x86 arch. This driver
59 * uses the scatter/gather I/O method for both TX and RX.
60 *
61 * The LXT1001 only supports TCP/IP checksum offload on receive.
62 * Also, the VLAN tagging is done using a 16-entry table which allows
63 * the chip to perform hardware filtering based on VLAN tags. Sadly,
64 * our vlan support doesn't currently play well with this kind of
65 * hardware support.
66 *
67 * Special thanks to:
68 * - Jeff James at Intel, for arranging to have the LXT1001 manual
69 *   released (at long last)
70 * - Beny Chen at D-Link, for actually sending it to me
71 * - Brad Short and Keith Alexis at SMC, for sending me sample
72 *   SMC9462SX and SMC9462TX adapters for testing
73 * - Paul Saab at Y!, for not killing me (though it remains to be seen
74 *   if in fact he did me much of a favor)
75 */
76
77#include "bpfilter.h"
78
79#include <sys/param.h>
80#include <sys/systm.h>
81#include <sys/sockio.h>
82#include <sys/mbuf.h>
83#include <sys/malloc.h>
84#include <sys/kernel.h>
85#include <sys/device.h>
86#include <sys/socket.h>
87
88#include <net/if.h>
89#include <net/if_dl.h>
90#include <net/if_media.h>
91
92#ifdef INET
93#include <netinet/in.h>
94#include <netinet/in_systm.h>
95#include <netinet/in_var.h>
96#include <netinet/ip.h>
97#include <netinet/if_ether.h>
98#endif
99
100#if NVLAN > 0
101#include <net/if_types.h>
102#include <net/if_vlan_var.h>
103#endif
104
105#if NBPFILTER > 0
106#include <net/bpf.h>
107#endif
108
109#include <uvm/uvm_extern.h>              /* for vtophys */
110#include <uvm/uvm_pmap.h>            /* for vtophys */
111
112#include <dev/pci/pcireg.h>
113#include <dev/pci/pcivar.h>
114#include <dev/pci/pcidevs.h>
115
116#include <dev/mii/mii.h>
117#include <dev/mii/miivar.h>
118
119#define LGE_USEIOSPACE
120
121#include <dev/pci/if_lgereg.h>
122
123int lge_probe(struct device *, void *, void *);
124void lge_attach(struct device *, struct device *, void *);
125
126int lge_alloc_jumbo_mem(struct lge_softc *);
127void lge_free_jumbo_mem(struct lge_softc *);
128void *lge_jalloc(struct lge_softc *);
129void lge_jfree(caddr_t, u_int, void *);
130
131int lge_newbuf(struct lge_softc *, struct lge_rx_desc *,
132			     struct mbuf *);
133int lge_encap(struct lge_softc *, struct mbuf *, u_int32_t *);
134void lge_rxeof(struct lge_softc *, int);
135void lge_rxeoc(struct lge_softc *);
136void lge_txeof(struct lge_softc *);
137int lge_intr(void *);
138void lge_tick(void *);
139void lge_start(struct ifnet *);
140int lge_ioctl(struct ifnet *, u_long, caddr_t);
141void lge_init(void *);
142void lge_stop(struct lge_softc *);
143void lge_watchdog(struct ifnet *);
144void lge_shutdown(void *);
145int lge_ifmedia_upd(struct ifnet *);
146void lge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
147
148void lge_eeprom_getword(struct lge_softc *, int, u_int16_t *);
149void lge_read_eeprom(struct lge_softc *, caddr_t, int, int, int);
150
151int lge_miibus_readreg(struct device *, int, int);
152void lge_miibus_writereg(struct device *, int, int, int);
153void lge_miibus_statchg(struct device *);
154
155void lge_setmulti(struct lge_softc *);
156void lge_reset(struct lge_softc *);
157int lge_list_rx_init(struct lge_softc *);
158int lge_list_tx_init(struct lge_softc *);
159
160#ifdef LGE_USEIOSPACE
161#define LGE_RES			SYS_RES_IOPORT
162#define LGE_RID			LGE_PCI_LOIO
163#else
164#define LGE_RES			SYS_RES_MEMORY
165#define LGE_RID			LGE_PCI_LOMEM
166#endif
167
168#ifdef LGE_DEBUG
169#define DPRINTF(x)	if (lgedebug) printf x
170#define DPRINTFN(n,x)	if (lgedebug >= (n)) printf x
171int	lgedebug = 0;
172#else
173#define DPRINTF(x)
174#define DPRINTFN(n,x)
175#endif
176
177#define LGE_SETBIT(sc, reg, x)				\
178	CSR_WRITE_4(sc, reg,				\
179		CSR_READ_4(sc, reg) | (x))
180
181#define LGE_CLRBIT(sc, reg, x)				\
182	CSR_WRITE_4(sc, reg,				\
183		CSR_READ_4(sc, reg) & ~(x))
184
185#define SIO_SET(x)					\
186	CSR_WRITE_4(sc, LGE_MEAR, CSR_READ_4(sc, LGE_MEAR) | x)
187
188#define SIO_CLR(x)					\
189	CSR_WRITE_4(sc, LGE_MEAR, CSR_READ_4(sc, LGE_MEAR) & ~x)
190
191/*
192 * Read a word of data stored in the EEPROM at address 'addr.'
193 */
194void lge_eeprom_getword(sc, addr, dest)
195	struct lge_softc	*sc;
196	int			addr;
197	u_int16_t		*dest;
198{
199	register int		i;
200	u_int32_t		val;
201
202	CSR_WRITE_4(sc, LGE_EECTL, LGE_EECTL_CMD_READ|
203	    LGE_EECTL_SINGLEACCESS|((addr >> 1) << 8));
204
205	for (i = 0; i < LGE_TIMEOUT; i++)
206		if (!(CSR_READ_4(sc, LGE_EECTL) & LGE_EECTL_CMD_READ))
207			break;
208
209	if (i == LGE_TIMEOUT) {
210		printf("%s: EEPROM read timed out\n", sc->sc_dv.dv_xname);
211		return;
212	}
213
214	val = CSR_READ_4(sc, LGE_EEDATA);
215
216	if (addr & 1)
217		*dest = (val >> 16) & 0xFFFF;
218	else
219		*dest = val & 0xFFFF;
220
221	return;
222}
223
224/*
225 * Read a sequence of words from the EEPROM.
226 */
227void lge_read_eeprom(sc, dest, off, cnt, swap)
228	struct lge_softc	*sc;
229	caddr_t			dest;
230	int			off;
231	int			cnt;
232	int			swap;
233{
234	int			i;
235	u_int16_t		word = 0, *ptr;
236
237	for (i = 0; i < cnt; i++) {
238		lge_eeprom_getword(sc, off + i, &word);
239		ptr = (u_int16_t *)(dest + (i * 2));
240		if (swap)
241			*ptr = ntohs(word);
242		else
243			*ptr = word;
244	}
245
246	return;
247}
248
249int lge_miibus_readreg(dev, phy, reg)
250	struct device *		dev;
251	int			phy, reg;
252{
253	struct lge_softc	*sc = (struct lge_softc *)dev;
254	int			i;
255
256	/*
257	 * If we have a non-PCS PHY, pretend that the internal
258	 * autoneg stuff at PHY address 0 isn't there so that
259	 * the miibus code will find only the GMII PHY.
260	 */
261	if (sc->lge_pcs == 0 && phy == 0)
262		return(0);
263
264	CSR_WRITE_4(sc, LGE_GMIICTL, (phy << 8) | reg | LGE_GMIICMD_READ);
265
266	for (i = 0; i < LGE_TIMEOUT; i++)
267		if (!(CSR_READ_4(sc, LGE_GMIICTL) & LGE_GMIICTL_CMDBUSY))
268			break;
269
270	if (i == LGE_TIMEOUT) {
271		printf("%s: PHY read timed out\n", sc->sc_dv.dv_xname);
272		return(0);
273	}
274
275	return(CSR_READ_4(sc, LGE_GMIICTL) >> 16);
276}
277
278void lge_miibus_writereg(dev, phy, reg, data)
279	struct device *		dev;
280	int			phy, reg, data;
281{
282	struct lge_softc	*sc = (struct lge_softc *)dev;
283	int			i;
284
285	CSR_WRITE_4(sc, LGE_GMIICTL,
286	    (data << 16) | (phy << 8) | reg | LGE_GMIICMD_WRITE);
287
288	for (i = 0; i < LGE_TIMEOUT; i++)
289		if (!(CSR_READ_4(sc, LGE_GMIICTL) & LGE_GMIICTL_CMDBUSY))
290			break;
291
292	if (i == LGE_TIMEOUT) {
293		printf("%s: PHY write timed out\n", sc->sc_dv.dv_xname);
294	}
295}
296
297void lge_miibus_statchg(dev)
298	struct device *		dev;
299{
300	struct lge_softc	*sc = (struct lge_softc *)dev;
301	struct mii_data		*mii = &sc->lge_mii;
302
303	LGE_CLRBIT(sc, LGE_GMIIMODE, LGE_GMIIMODE_SPEED);
304	switch (IFM_SUBTYPE(mii->mii_media_active)) {
305	case IFM_1000_T:
306	case IFM_1000_SX:
307		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_1000);
308		break;
309	case IFM_100_TX:
310		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_100);
311		break;
312	case IFM_10_T:
313		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_10);
314		break;
315	default:
316		/*
317		 * Choose something, even if it's wrong. Clearing
318		 * all the bits will hose autoneg on the internal
319		 * PHY.
320		 */
321		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_1000);
322		break;
323	}
324
325	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
326		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_GMIIMODE_FDX);
327	} else {
328		LGE_CLRBIT(sc, LGE_GMIIMODE, LGE_GMIIMODE_FDX);
329	}
330
331	return;
332}
333
334void lge_setmulti(sc)
335	struct lge_softc	*sc;
336{
337	struct arpcom		*ac = &sc->arpcom;
338	struct ifnet		*ifp = &ac->ac_if;
339	struct ether_multi      *enm;
340	struct ether_multistep  step;
341	u_int32_t		h = 0, hashes[2] = { 0, 0 };
342
343	/* Make sure multicast hash table is enabled. */
344	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_MCAST);
345
346allmulti:
347	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
348		CSR_WRITE_4(sc, LGE_MAR0, 0xFFFFFFFF);
349		CSR_WRITE_4(sc, LGE_MAR1, 0xFFFFFFFF);
350		return;
351	}
352
353	/* first, zot all the existing hash bits */
354	CSR_WRITE_4(sc, LGE_MAR0, 0);
355	CSR_WRITE_4(sc, LGE_MAR1, 0);
356
357	/* now program new ones */
358	ETHER_FIRST_MULTI(step, ac, enm);
359	while (enm != NULL) {
360		if (bcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
361			ifp->if_flags |= IFF_ALLMULTI;
362			goto allmulti;
363		}
364		h = (ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN) >> 26) &
365		    0x0000003F;
366		if (h < 32)
367			hashes[0] |= (1 << h);
368		else
369			hashes[1] |= (1 << (h - 32));
370		ETHER_NEXT_MULTI(step, enm);
371	}
372
373	CSR_WRITE_4(sc, LGE_MAR0, hashes[0]);
374	CSR_WRITE_4(sc, LGE_MAR1, hashes[1]);
375
376	return;
377}
378
379void lge_reset(sc)
380	struct lge_softc	*sc;
381{
382	register int		i;
383
384	LGE_SETBIT(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL0|LGE_MODE1_SOFTRST);
385
386	for (i = 0; i < LGE_TIMEOUT; i++) {
387		if (!(CSR_READ_4(sc, LGE_MODE1) & LGE_MODE1_SOFTRST))
388			break;
389	}
390
391	if (i == LGE_TIMEOUT)
392		printf("%s: reset never completed\n", sc->sc_dv.dv_xname);
393
394	/* Wait a little while for the chip to get its brains in order. */
395	DELAY(1000);
396
397        return;
398}
399
400/*
401 * Probe for a Level 1 chip. Check the PCI vendor and device
402 * IDs against our list and return a device name if we find a match.
403 */
404int lge_probe(parent, match, aux)
405	struct device *parent;
406	void *match;
407	void *aux;
408{
409	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
410
411	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_LEVEL1 &&
412	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_LEVEL1_LXT1001)
413		return (1);
414
415	return (0);
416}
417
418/*
419 * Attach the interface. Allocate softc structures, do ifmedia
420 * setup and ethernet/BPF attach.
421 */
422void lge_attach(parent, self, aux)
423	struct device *parent, *self;
424	void *aux;
425{
426	struct lge_softc	*sc = (struct lge_softc *)self;
427	struct pci_attach_args	*pa = aux;
428	pci_chipset_tag_t	pc = pa->pa_pc;
429	pci_intr_handle_t	ih;
430	const char		*intrstr = NULL;
431	bus_size_t		iosize;
432	bus_dma_segment_t	seg;
433	bus_dmamap_t		dmamap;
434	int			s, rseg;
435	u_char			eaddr[ETHER_ADDR_LEN];
436	u_int32_t		command;
437	struct ifnet		*ifp;
438	int			error = 0;
439	caddr_t			kva;
440
441	s = splimp();
442
443	bzero(sc, sizeof(struct lge_softc));
444
445	/*
446	 * Handle power management nonsense.
447	 */
448	DPRINTFN(5, ("Preparing for conf read\n"));
449	command = pci_conf_read(pc, pa->pa_tag, LGE_PCI_CAPID) & 0x000000FF;
450	if (command == 0x01) {
451		command = pci_conf_read(pc, pa->pa_tag, LGE_PCI_PWRMGMTCTRL);
452		if (command & LGE_PSTATE_MASK) {
453			pcireg_t	iobase, membase, irq;
454
455			/* Save important PCI config data. */
456			iobase = pci_conf_read(pc, pa->pa_tag, LGE_PCI_LOIO);
457			membase = pci_conf_read(pc, pa->pa_tag, LGE_PCI_LOMEM);
458			irq = pci_conf_read(pc, pa->pa_tag, LGE_PCI_INTLINE);
459
460			/* Reset the power state. */
461			printf("%s: chip is in D%d power mode "
462			       "-- setting to D0\n", sc->sc_dv.dv_xname,
463			       command & LGE_PSTATE_MASK);
464			command &= 0xFFFFFFFC;
465			pci_conf_write(pc, pa->pa_tag,
466				       LGE_PCI_PWRMGMTCTRL, command);
467
468			/* Restore PCI config data. */
469			pci_conf_write(pc, pa->pa_tag, LGE_PCI_LOIO, iobase);
470			pci_conf_write(pc, pa->pa_tag, LGE_PCI_LOMEM, membase);
471			pci_conf_write(pc, pa->pa_tag, LGE_PCI_INTLINE, irq);
472		}
473	}
474
475	/*
476	 * Map control/status registers.
477	 */
478	DPRINTFN(5, ("Map control/status regs\n"));
479	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
480
481#ifdef LGE_USEIOSPACE
482	if (!(command & PCI_COMMAND_IO_ENABLE)) {
483		printf("%s: failed to enable I/O ports!\n",
484		       sc->sc_dv.dv_xname);
485		error = ENXIO;
486		goto fail;
487	}
488	/*
489	 * Map control/status registers.
490	 */
491	DPRINTFN(5, ("pci_mapreg_map\n"));
492	if (pci_mapreg_map(pa, LGE_PCI_LOIO, PCI_MAPREG_TYPE_IO, 0,
493	    &sc->lge_btag, &sc->lge_bhandle, NULL, &iosize, 0)) {
494		printf(": can't map i/o space\n");
495		goto fail;
496	}
497#else
498	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
499		printf("%s: failed to enable memory mapping!\n",
500		       sc->sc_dv.dv_xname);
501		error = ENXIO;
502		goto fail;
503	}
504	DPRINTFN(5, ("pci_mapreg_map\n"));
505	if (pci_mapreg_map(pa, LGE_PCI_LOMEM, PCI_MAPREG_TYPE_MEM, 0,
506	    &sc->lge_btag, &sc->lge_bhandle, NULL, &iosize, 0)) {
507		printf(": can't map mem space\n");
508		goto fail;
509	}
510#endif
511
512	DPRINTFN(5, ("pci_intr_map\n"));
513	if (pci_intr_map(pa, &ih)) {
514		printf(": couldn't map interrupt\n");
515		goto fail_1;
516	}
517
518	DPRINTFN(5, ("pci_intr_string\n"));
519	intrstr = pci_intr_string(pc, ih);
520	DPRINTFN(5, ("pci_intr_establish\n"));
521	sc->lge_intrhand = pci_intr_establish(pc, ih, IPL_NET, lge_intr, sc,
522					      sc->sc_dv.dv_xname);
523	if (sc->lge_intrhand == NULL) {
524		printf(": couldn't establish interrupt");
525		if (intrstr != NULL)
526			printf(" at %s", intrstr);
527		printf("\n");
528		goto fail_1;
529	}
530	printf(": %s", intrstr);
531
532	/* Reset the adapter. */
533	DPRINTFN(5, ("lge_reset\n"));
534	lge_reset(sc);
535
536	/*
537	 * Get station address from the EEPROM.
538	 */
539	DPRINTFN(5, ("lge_read_eeprom\n"));
540	lge_read_eeprom(sc, (caddr_t)&eaddr[0], LGE_EE_NODEADDR_0, 1, 0);
541	lge_read_eeprom(sc, (caddr_t)&eaddr[2], LGE_EE_NODEADDR_1, 1, 0);
542	lge_read_eeprom(sc, (caddr_t)&eaddr[4], LGE_EE_NODEADDR_2, 1, 0);
543
544	/*
545	 * A Level 1 chip was detected. Inform the world.
546	 */
547	printf(": address: %s\n", ether_sprintf(eaddr));
548
549	bcopy(eaddr, (char *)&sc->arpcom.ac_enaddr, ETHER_ADDR_LEN);
550
551	sc->sc_dmatag = pa->pa_dmat;
552	DPRINTFN(5, ("bus_dmamem_alloc\n"));
553	if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct lge_list_data),
554			     PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
555		printf("%s: can't alloc rx buffers\n", sc->sc_dv.dv_xname);
556		goto fail_1;
557	}
558	DPRINTFN(5, ("bus_dmamem_map\n"));
559	if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
560			   sizeof(struct lge_list_data), &kva,
561			   BUS_DMA_NOWAIT)) {
562		printf("%s: can't map dma buffers (%d bytes)\n",
563		       sc->sc_dv.dv_xname, sizeof(struct lge_list_data));
564		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
565		goto fail_1;
566	}
567	DPRINTFN(5, ("bus_dmamem_create\n"));
568	if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct lge_list_data), 1,
569			      sizeof(struct lge_list_data), 0,
570			      BUS_DMA_NOWAIT, &dmamap)) {
571		printf("%s: can't create dma map\n", sc->sc_dv.dv_xname);
572		bus_dmamem_unmap(sc->sc_dmatag, kva,
573				 sizeof(struct lge_list_data));
574		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
575		goto fail_1;
576	}
577	DPRINTFN(5, ("bus_dmamem_load\n"));
578	if (bus_dmamap_load(sc->sc_dmatag, dmamap, kva,
579			    sizeof(struct lge_list_data), NULL,
580			    BUS_DMA_NOWAIT)) {
581		bus_dmamap_destroy(sc->sc_dmatag, dmamap);
582		bus_dmamem_unmap(sc->sc_dmatag, kva,
583				 sizeof(struct lge_list_data));
584		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
585		goto fail_1;
586	}
587
588	DPRINTFN(5, ("bzero\n"));
589	sc->lge_ldata = (struct lge_list_data *)kva;
590	bzero(sc->lge_ldata, sizeof(struct lge_list_data));
591
592	/* Try to allocate memory for jumbo buffers. */
593	DPRINTFN(5, ("lge_alloc_jumbo_mem\n"));
594	if (lge_alloc_jumbo_mem(sc)) {
595		printf("%s: jumbo buffer allocation failed\n",
596		       sc->sc_dv.dv_xname);
597		goto fail_1;
598	}
599
600	ifp = &sc->arpcom.ac_if;
601	ifp->if_softc = sc;
602	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
603	ifp->if_ioctl = lge_ioctl;
604	ifp->if_start = lge_start;
605	ifp->if_watchdog = lge_watchdog;
606	ifp->if_baudrate = 1000000000;
607	IFQ_SET_MAXLEN(&ifp->if_snd, LGE_TX_LIST_CNT - 1);
608	IFQ_SET_READY(&ifp->if_snd);
609	DPRINTFN(5, ("bcopy\n"));
610	bcopy(sc->sc_dv.dv_xname, ifp->if_xname, IFNAMSIZ);
611
612	if (CSR_READ_4(sc, LGE_GMIIMODE) & LGE_GMIIMODE_PCSENH)
613		sc->lge_pcs = 1;
614	else
615		sc->lge_pcs = 0;
616
617	/*
618	 * Do MII setup.
619	 */
620	DPRINTFN(5, ("mii setup\n"));
621	sc->lge_mii.mii_ifp = ifp;
622	sc->lge_mii.mii_readreg = lge_miibus_readreg;
623	sc->lge_mii.mii_writereg = lge_miibus_writereg;
624	sc->lge_mii.mii_statchg = lge_miibus_statchg;
625	ifmedia_init(&sc->lge_mii.mii_media, 0, lge_ifmedia_upd,
626		     lge_ifmedia_sts);
627	mii_attach(&sc->sc_dv, &sc->lge_mii, 0xffffffff, MII_PHY_ANY,
628		   MII_OFFSET_ANY, 0);
629
630	if (LIST_FIRST(&sc->lge_mii.mii_phys) == NULL) {
631		printf("%s: no PHY found!\n", sc->sc_dv.dv_xname);
632		ifmedia_add(&sc->lge_mii.mii_media, IFM_ETHER|IFM_MANUAL,
633			    0, NULL);
634		ifmedia_set(&sc->lge_mii.mii_media, IFM_ETHER|IFM_MANUAL);
635	}
636	else
637		ifmedia_set(&sc->lge_mii.mii_media, IFM_ETHER|IFM_AUTO);
638
639	/*
640	 * Call MI attach routine.
641	 */
642	DPRINTFN(5, ("if_attach\n"));
643	if_attach(ifp);
644	DPRINTFN(5, ("ether_ifattach\n"));
645	ether_ifattach(ifp);
646	DPRINTFN(5, ("timeout_set\n"));
647	timeout_set(&sc->lge_timeout, lge_tick, sc);
648	timeout_add(&sc->lge_timeout, hz);
649
650fail_1:
651	bus_space_unmap(sc->lge_btag, sc->lge_bhandle, iosize);
652fail:
653	splx(s);
654}
655
656/*
657 * Initialize the transmit descriptors.
658 */
659int lge_list_tx_init(sc)
660	struct lge_softc	*sc;
661{
662	struct lge_list_data	*ld;
663	struct lge_ring_data	*cd;
664	int			i;
665
666	cd = &sc->lge_cdata;
667	ld = sc->lge_ldata;
668	for (i = 0; i < LGE_TX_LIST_CNT; i++) {
669		ld->lge_tx_list[i].lge_mbuf = NULL;
670		ld->lge_tx_list[i].lge_ctl = 0;
671	}
672
673	cd->lge_tx_prod = cd->lge_tx_cons = 0;
674
675	return(0);
676}
677
678
679/*
680 * Initialize the RX descriptors and allocate mbufs for them. Note that
681 * we arralge the descriptors in a closed ring, so that the last descriptor
682 * points back to the first.
683 */
684int lge_list_rx_init(sc)
685	struct lge_softc	*sc;
686{
687	struct lge_list_data	*ld;
688	struct lge_ring_data	*cd;
689	int			i;
690
691	ld = sc->lge_ldata;
692	cd = &sc->lge_cdata;
693
694	cd->lge_rx_prod = cd->lge_rx_cons = 0;
695
696	CSR_WRITE_4(sc, LGE_RXDESC_ADDR_HI, 0);
697
698	for (i = 0; i < LGE_RX_LIST_CNT; i++) {
699		if (CSR_READ_1(sc, LGE_RXCMDFREE_8BIT) == 0)
700			break;
701		if (lge_newbuf(sc, &ld->lge_rx_list[i], NULL) == ENOBUFS)
702			return(ENOBUFS);
703	}
704
705	/* Clear possible 'rx command queue empty' interrupt. */
706	CSR_READ_4(sc, LGE_ISR);
707
708	return(0);
709}
710
711/*
712 * Initialize an RX descriptor and attach an MBUF cluster.
713 */
714int lge_newbuf(sc, c, m)
715	struct lge_softc	*sc;
716	struct lge_rx_desc	*c;
717	struct mbuf		*m;
718{
719	struct mbuf		*m_new = NULL;
720	caddr_t			*buf = NULL;
721
722	if (m == NULL) {
723		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
724		if (m_new == NULL) {
725			return(ENOBUFS);
726		}
727
728		/* Allocate the jumbo buffer */
729		buf = lge_jalloc(sc);
730		if (buf == NULL) {
731			m_freem(m_new);
732			return(ENOBUFS);
733		}
734		/* Attach the buffer to the mbuf */
735		m_new->m_data = m_new->m_ext.ext_buf = (void *)buf;
736		m_new->m_flags |= M_EXT;
737		m_new->m_ext.ext_size = m_new->m_pkthdr.len =
738			m_new->m_len = LGE_JLEN;
739		m_new->m_ext.ext_free = lge_jfree;
740		m_new->m_ext.ext_arg = sc;
741		MCLINITREFERENCE(m_new);
742	} else {
743		m_new = m;
744		m_new->m_len = m_new->m_pkthdr.len = ETHER_MAX_LEN_JUMBO;
745		m_new->m_data = m_new->m_ext.ext_buf;
746	}
747
748	/*
749	 * Adjust alignment so packet payload begins on a
750	 * longword boundary. Mandatory for Alpha, useful on
751	 * x86 too.
752	*/
753	m_adj(m_new, ETHER_ALIGN);
754
755	c->lge_mbuf = m_new;
756	c->lge_fragptr_hi = 0;
757	c->lge_fragptr_lo = vtophys(mtod(m_new, caddr_t));
758	c->lge_fraglen = m_new->m_len;
759	c->lge_ctl = m_new->m_len | LGE_RXCTL_WANTINTR | LGE_FRAGCNT(1);
760	c->lge_sts = 0;
761
762	/*
763	 * Put this buffer in the RX command FIFO. To do this,
764	 * we just write the physical address of the descriptor
765	 * into the RX descriptor address registers. Note that
766	 * there are two registers, one high DWORD and one low
767	 * DWORD, which lets us specify a 64-bit address if
768	 * desired. We only use a 32-bit address for now.
769	 * Writing to the low DWORD register is what actually
770	 * causes the command to be issued, so we do that
771	 * last.
772	 */
773	CSR_WRITE_4(sc, LGE_RXDESC_ADDR_LO, vtophys(c));
774	LGE_INC(sc->lge_cdata.lge_rx_prod, LGE_RX_LIST_CNT);
775
776	return(0);
777}
778
779int lge_alloc_jumbo_mem(sc)
780	struct lge_softc	*sc;
781{
782	caddr_t			ptr, kva;
783	bus_dma_segment_t	seg;
784	bus_dmamap_t		dmamap;
785	int			i, rseg;
786	struct lge_jpool_entry   *entry;
787
788	/* Grab a big chunk o' storage. */
789	if (bus_dmamem_alloc(sc->sc_dmatag, LGE_JMEM, PAGE_SIZE, 0,
790			     &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
791		printf("%s: can't alloc rx buffers\n", sc->sc_dv.dv_xname);
792		return (ENOBUFS);
793	}
794	if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg, LGE_JMEM, &kva,
795			   BUS_DMA_NOWAIT)) {
796		printf("%s: can't map dma buffers (%d bytes)\n",
797		       sc->sc_dv.dv_xname, LGE_JMEM);
798		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
799		return (ENOBUFS);
800	}
801	if (bus_dmamap_create(sc->sc_dmatag, LGE_JMEM, 1,
802			      LGE_JMEM, 0, BUS_DMA_NOWAIT, &dmamap)) {
803		printf("%s: can't create dma map\n", sc->sc_dv.dv_xname);
804		bus_dmamem_unmap(sc->sc_dmatag, kva, LGE_JMEM);
805		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
806		return (ENOBUFS);
807	}
808	if (bus_dmamap_load(sc->sc_dmatag, dmamap, kva, LGE_JMEM,
809			    NULL, BUS_DMA_NOWAIT)) {
810		printf("%s: can't load dma map\n", sc->sc_dv.dv_xname);
811		bus_dmamap_destroy(sc->sc_dmatag, dmamap);
812		bus_dmamem_unmap(sc->sc_dmatag, kva, LGE_JMEM);
813		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
814		return (ENOBUFS);
815        }
816	sc->lge_cdata.lge_jumbo_buf = (caddr_t)kva;
817	DPRINTFN(1,("lge_jumbo_buf = 0x%08X\n", sc->lge_cdata.lge_jumbo_buf));
818	DPRINTFN(1,("LGE_JLEN = 0x%08X\n", LGE_JLEN));
819
820	LIST_INIT(&sc->lge_jfree_listhead);
821	LIST_INIT(&sc->lge_jinuse_listhead);
822
823	/*
824	 * Now divide it up into 9K pieces and save the addresses
825	 * in an array.
826	 */
827	ptr = sc->lge_cdata.lge_jumbo_buf;
828	for (i = 0; i < LGE_JSLOTS; i++) {
829		sc->lge_cdata.lge_jslots[i] = ptr;
830		ptr += LGE_JLEN;
831		entry = malloc(sizeof(struct lge_jpool_entry),
832		    M_DEVBUF, M_NOWAIT);
833		if (entry == NULL) {
834			bus_dmamap_unload(sc->sc_dmatag, dmamap);
835			bus_dmamap_destroy(sc->sc_dmatag, dmamap);
836			bus_dmamem_unmap(sc->sc_dmatag, kva, LGE_JMEM);
837			bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
838			sc->lge_cdata.lge_jumbo_buf = NULL;
839			printf("%s: no memory for jumbo buffer queue!\n",
840			       sc->sc_dv.dv_xname);
841			return(ENOBUFS);
842		}
843		entry->slot = i;
844		LIST_INSERT_HEAD(&sc->lge_jfree_listhead,
845				 entry, jpool_entries);
846	}
847
848	return(0);
849}
850
851/*
852 * Allocate a jumbo buffer.
853 */
854void *lge_jalloc(sc)
855	struct lge_softc	*sc;
856{
857	struct lge_jpool_entry   *entry;
858
859	entry = LIST_FIRST(&sc->lge_jfree_listhead);
860
861	if (entry == NULL) {
862#ifdef LGE_VERBOSE
863		printf("%s: no free jumbo buffers\n", sc->sc_dv.dv_xname);
864#endif
865		return(NULL);
866	}
867
868	LIST_REMOVE(entry, jpool_entries);
869	LIST_INSERT_HEAD(&sc->lge_jinuse_listhead, entry, jpool_entries);
870	return(sc->lge_cdata.lge_jslots[entry->slot]);
871}
872
873/*
874 * Release a jumbo buffer.
875 */
876void lge_jfree(buf, size, arg)
877	caddr_t		buf;
878	u_int		size;
879	void		*arg;
880{
881	struct lge_softc	*sc;
882	int		        i;
883	struct lge_jpool_entry   *entry;
884
885	/* Extract the softc struct pointer. */
886	sc = (struct lge_softc *)arg;
887
888	if (sc == NULL)
889		panic("lge_jfree: can't find softc pointer!");
890
891	/* calculate the slot this buffer belongs to */
892	i = ((vaddr_t)buf - (vaddr_t)sc->lge_cdata.lge_jumbo_buf) / LGE_JLEN;
893
894	if ((i < 0) || (i >= LGE_JSLOTS))
895		panic("lge_jfree: asked to free buffer that we don't manage!");
896
897	entry = LIST_FIRST(&sc->lge_jinuse_listhead);
898	if (entry == NULL)
899		panic("lge_jfree: buffer not in use!");
900	entry->slot = i;
901	LIST_REMOVE(entry, jpool_entries);
902	LIST_INSERT_HEAD(&sc->lge_jfree_listhead, entry, jpool_entries);
903
904	return;
905}
906
907/*
908 * A frame has been uploaded: pass the resulting mbuf chain up to
909 * the higher level protocols.
910 */
911void lge_rxeof(sc, cnt)
912	struct lge_softc	*sc;
913	int			cnt;
914{
915        struct mbuf		*m;
916        struct ifnet		*ifp;
917	struct lge_rx_desc	*cur_rx;
918	int			c, i, total_len = 0;
919	u_int32_t		rxsts, rxctl;
920
921	ifp = &sc->arpcom.ac_if;
922
923	/* Find out how many frames were processed. */
924	c = cnt;
925	i = sc->lge_cdata.lge_rx_cons;
926
927	/* Suck them in. */
928	while(c) {
929		struct mbuf		*m0 = NULL;
930
931		cur_rx = &sc->lge_ldata->lge_rx_list[i];
932		rxctl = cur_rx->lge_ctl;
933		rxsts = cur_rx->lge_sts;
934		m = cur_rx->lge_mbuf;
935		cur_rx->lge_mbuf = NULL;
936		total_len = LGE_RXBYTES(cur_rx);
937		LGE_INC(i, LGE_RX_LIST_CNT);
938		c--;
939
940		/*
941		 * If an error occurs, update stats, clear the
942		 * status word and leave the mbuf cluster in place:
943		 * it should simply get re-used next time this descriptor
944	 	 * comes up in the ring.
945		 */
946		if (rxctl & LGE_RXCTL_ERRMASK) {
947			ifp->if_ierrors++;
948			lge_newbuf(sc, &LGE_RXTAIL(sc), m);
949			continue;
950		}
951
952		if (lge_newbuf(sc, &LGE_RXTAIL(sc), NULL) == ENOBUFS) {
953			m0 = m_devget(mtod(m, char *), total_len, ETHER_ALIGN,
954			    ifp, NULL);
955			lge_newbuf(sc, &LGE_RXTAIL(sc), m);
956			if (m0 == NULL) {
957				ifp->if_ierrors++;
958				continue;
959			}
960			m = m0;
961		} else {
962			m->m_pkthdr.rcvif = ifp;
963			m->m_pkthdr.len = m->m_len = total_len;
964		}
965
966		ifp->if_ipackets++;
967
968#if NBPFILTER > 0
969		/*
970		 * Handle BPF listeners. Let the BPF user see the packet.
971		 */
972		if (ifp->if_bpf)
973			bpf_mtap(ifp->if_bpf, m);
974#endif
975
976		/* Do IP checksum checking. */
977#if 0
978		if (rxsts & LGE_RXSTS_ISIP)
979			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
980		if (!(rxsts & LGE_RXSTS_IPCSUMERR))
981			m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
982		if ((rxsts & LGE_RXSTS_ISTCP &&
983		    !(rxsts & LGE_RXSTS_TCPCSUMERR)) ||
984		    (rxsts & LGE_RXSTS_ISUDP &&
985		    !(rxsts & LGE_RXSTS_UDPCSUMERR))) {
986			m->m_pkthdr.csum_flags |=
987			    CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
988			m->m_pkthdr.csum_data = 0xffff;
989		}
990#endif
991
992		if (rxsts & LGE_RXSTS_ISIP) {
993			if (rxsts & LGE_RXSTS_IPCSUMERR)
994				m->m_pkthdr.csum_flags |= M_IPV4_CSUM_IN_BAD;
995			else
996				m->m_pkthdr.csum_flags |= M_IPV4_CSUM_IN_OK;
997		}
998		if (rxsts & LGE_RXSTS_ISTCP) {
999			if (rxsts & LGE_RXSTS_TCPCSUMERR)
1000				m->m_pkthdr.csum_flags |= M_TCP_CSUM_IN_BAD;
1001			else
1002				m->m_pkthdr.csum_flags |= M_TCP_CSUM_IN_OK;
1003		}
1004		if (rxsts & LGE_RXSTS_ISUDP) {
1005			if (rxsts & LGE_RXSTS_UDPCSUMERR)
1006				m->m_pkthdr.csum_flags |= M_UDP_CSUM_IN_BAD;
1007			else
1008				m->m_pkthdr.csum_flags |= M_UDP_CSUM_IN_OK;
1009		}
1010
1011		ether_input_mbuf(ifp, m);
1012	}
1013
1014	sc->lge_cdata.lge_rx_cons = i;
1015
1016	return;
1017}
1018
1019void lge_rxeoc(sc)
1020	struct lge_softc	*sc;
1021{
1022	struct ifnet		*ifp;
1023
1024	ifp = &sc->arpcom.ac_if;
1025	ifp->if_flags &= ~IFF_RUNNING;
1026	lge_init(sc);
1027	return;
1028}
1029
1030/*
1031 * A frame was downloaded to the chip. It's safe for us to clean up
1032 * the list buffers.
1033 */
1034
1035void lge_txeof(sc)
1036	struct lge_softc	*sc;
1037{
1038	struct lge_tx_desc	*cur_tx = NULL;
1039	struct ifnet		*ifp;
1040	u_int32_t		idx, txdone;
1041
1042	ifp = &sc->arpcom.ac_if;
1043
1044	/* Clear the timeout timer. */
1045	ifp->if_timer = 0;
1046
1047	/*
1048	 * Go through our tx list and free mbufs for those
1049	 * frames that have been transmitted.
1050	 */
1051	idx = sc->lge_cdata.lge_tx_cons;
1052	txdone = CSR_READ_1(sc, LGE_TXDMADONE_8BIT);
1053
1054	while (idx != sc->lge_cdata.lge_tx_prod && txdone) {
1055		cur_tx = &sc->lge_ldata->lge_tx_list[idx];
1056
1057		ifp->if_opackets++;
1058		if (cur_tx->lge_mbuf != NULL) {
1059			m_freem(cur_tx->lge_mbuf);
1060			cur_tx->lge_mbuf = NULL;
1061		}
1062		cur_tx->lge_ctl = 0;
1063
1064		txdone--;
1065		LGE_INC(idx, LGE_TX_LIST_CNT);
1066		ifp->if_timer = 0;
1067	}
1068
1069	sc->lge_cdata.lge_tx_cons = idx;
1070
1071	if (cur_tx != NULL)
1072		ifp->if_flags &= ~IFF_OACTIVE;
1073
1074	return;
1075}
1076
1077void lge_tick(xsc)
1078	void			*xsc;
1079{
1080	struct lge_softc	*sc = xsc;
1081	struct mii_data		*mii = &sc->lge_mii;
1082	struct ifnet		*ifp = &sc->arpcom.ac_if;
1083	int			s;
1084
1085	s = splimp();
1086
1087	CSR_WRITE_4(sc, LGE_STATSIDX, LGE_STATS_SINGLE_COLL_PKTS);
1088	ifp->if_collisions += CSR_READ_4(sc, LGE_STATSVAL);
1089	CSR_WRITE_4(sc, LGE_STATSIDX, LGE_STATS_MULTI_COLL_PKTS);
1090	ifp->if_collisions += CSR_READ_4(sc, LGE_STATSVAL);
1091
1092	if (!sc->lge_link) {
1093		mii_tick(mii);
1094		if (mii->mii_media_status & IFM_ACTIVE &&
1095		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1096			sc->lge_link++;
1097			if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX||
1098			    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T)
1099				printf("%s: gigabit link up\n",
1100				       sc->sc_dv.dv_xname);
1101			if (!IFQ_IS_EMPTY(&ifp->if_snd))
1102				lge_start(ifp);
1103		}
1104	}
1105
1106	timeout_add(&sc->lge_timeout, hz);
1107
1108	splx(s);
1109
1110	return;
1111}
1112
1113int lge_intr(arg)
1114	void			*arg;
1115{
1116	struct lge_softc	*sc;
1117	struct ifnet		*ifp;
1118	u_int32_t		status;
1119	int			claimed = 0;
1120
1121	sc = arg;
1122	ifp = &sc->arpcom.ac_if;
1123
1124	/* Supress unwanted interrupts */
1125	if (!(ifp->if_flags & IFF_UP)) {
1126		lge_stop(sc);
1127		return (0);
1128	}
1129
1130	for (;;) {
1131		/*
1132		 * Reading the ISR register clears all interrupts, and
1133		 * clears the 'interrupts enabled' bit in the IMR
1134		 * register.
1135		 */
1136		status = CSR_READ_4(sc, LGE_ISR);
1137
1138		if ((status & LGE_INTRS) == 0)
1139			break;
1140
1141		claimed = 1;
1142
1143		if ((status & (LGE_ISR_TXCMDFIFO_EMPTY|LGE_ISR_TXDMA_DONE)))
1144			lge_txeof(sc);
1145
1146		if (status & LGE_ISR_RXDMA_DONE)
1147			lge_rxeof(sc, LGE_RX_DMACNT(status));
1148
1149		if (status & LGE_ISR_RXCMDFIFO_EMPTY)
1150			lge_rxeoc(sc);
1151
1152		if (status & LGE_ISR_PHY_INTR) {
1153			sc->lge_link = 0;
1154			timeout_del(&sc->lge_timeout);
1155			lge_tick(sc);
1156		}
1157	}
1158
1159	/* Re-enable interrupts. */
1160	CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_SETRST_CTL0|LGE_IMR_INTR_ENB);
1161
1162	if (!IFQ_IS_EMPTY(&ifp->if_snd))
1163		lge_start(ifp);
1164
1165	return claimed;
1166}
1167
1168/*
1169 * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1170 * pointers to the fragment pointers.
1171 */
1172int lge_encap(sc, m_head, txidx)
1173	struct lge_softc	*sc;
1174	struct mbuf		*m_head;
1175	u_int32_t		*txidx;
1176{
1177	struct lge_frag		*f = NULL;
1178	struct lge_tx_desc	*cur_tx;
1179	struct mbuf		*m;
1180	int			frag = 0, tot_len = 0;
1181
1182	/*
1183 	 * Start packing the mbufs in this chain into
1184	 * the fragment pointers. Stop when we run out
1185 	 * of fragments or hit the end of the mbuf chain.
1186	 */
1187	m = m_head;
1188	cur_tx = &sc->lge_ldata->lge_tx_list[*txidx];
1189	frag = 0;
1190
1191	for (m = m_head; m != NULL; m = m->m_next) {
1192		if (m->m_len != 0) {
1193			tot_len += m->m_len;
1194			f = &cur_tx->lge_frags[frag];
1195			f->lge_fraglen = m->m_len;
1196			f->lge_fragptr_lo = vtophys(mtod(m, vaddr_t));
1197			f->lge_fragptr_hi = 0;
1198			frag++;
1199		}
1200	}
1201
1202	if (m != NULL)
1203		return(ENOBUFS);
1204
1205	cur_tx->lge_mbuf = m_head;
1206	cur_tx->lge_ctl = LGE_TXCTL_WANTINTR|LGE_FRAGCNT(frag)|tot_len;
1207	LGE_INC((*txidx), LGE_TX_LIST_CNT);
1208
1209	/* Queue for transmit */
1210	CSR_WRITE_4(sc, LGE_TXDESC_ADDR_LO, vtophys(cur_tx));
1211
1212	return(0);
1213}
1214
1215/*
1216 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1217 * to the mbuf data regions directly in the transmit lists. We also save a
1218 * copy of the pointers since the transmit list fragment pointers are
1219 * physical addresses.
1220 */
1221
1222void lge_start(ifp)
1223	struct ifnet		*ifp;
1224{
1225	struct lge_softc	*sc;
1226	struct mbuf		*m_head = NULL;
1227	u_int32_t		idx;
1228	int			pkts = 0;
1229
1230	sc = ifp->if_softc;
1231
1232	if (!sc->lge_link)
1233		return;
1234
1235	idx = sc->lge_cdata.lge_tx_prod;
1236
1237	if (ifp->if_flags & IFF_OACTIVE)
1238		return;
1239
1240	while(sc->lge_ldata->lge_tx_list[idx].lge_mbuf == NULL) {
1241		if (CSR_READ_1(sc, LGE_TXCMDFREE_8BIT) == 0)
1242			break;
1243
1244		IFQ_POLL(&ifp->if_snd, m_head);
1245		if (m_head == NULL)
1246			break;
1247
1248		if (lge_encap(sc, m_head, &idx)) {
1249			ifp->if_flags |= IFF_OACTIVE;
1250			break;
1251		}
1252
1253		/* now we are committed to transmit the packet */
1254		IFQ_DEQUEUE(&ifp->if_snd, m_head);
1255		pkts++;
1256
1257#if NBPFILTER > 0
1258		/*
1259		 * If there's a BPF listener, bounce a copy of this frame
1260		 * to him.
1261		 */
1262		if (ifp->if_bpf)
1263			bpf_mtap(ifp->if_bpf, m_head);
1264#endif
1265	}
1266	if (pkts == 0)
1267		return;
1268
1269	sc->lge_cdata.lge_tx_prod = idx;
1270
1271	/*
1272	 * Set a timeout in case the chip goes out to lunch.
1273	 */
1274	ifp->if_timer = 5;
1275
1276	return;
1277}
1278
1279void lge_init(xsc)
1280	void			*xsc;
1281{
1282	struct lge_softc	*sc = xsc;
1283	struct ifnet		*ifp = &sc->arpcom.ac_if;
1284	int			s;
1285
1286	if (ifp->if_flags & IFF_RUNNING)
1287		return;
1288
1289	s = splimp();
1290
1291	/*
1292	 * Cancel pending I/O and free all RX/TX buffers.
1293	 */
1294	lge_stop(sc);
1295	lge_reset(sc);
1296
1297	/* Set MAC address */
1298	CSR_WRITE_4(sc, LGE_PAR0, *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
1299	CSR_WRITE_4(sc, LGE_PAR1, *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
1300
1301	/* Init circular RX list. */
1302	if (lge_list_rx_init(sc) == ENOBUFS) {
1303		printf("%s: initialization failed: no "
1304		       "memory for rx buffers\n", sc->sc_dv.dv_xname);
1305		lge_stop(sc);
1306		splx(s);
1307		return;
1308	}
1309
1310	/*
1311	 * Init tx descriptors.
1312	 */
1313	lge_list_tx_init(sc);
1314
1315	/* Set initial value for MODE1 register. */
1316	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_UCAST|
1317	    LGE_MODE1_TX_CRC|LGE_MODE1_TXPAD|
1318	    LGE_MODE1_RX_FLOWCTL|LGE_MODE1_SETRST_CTL0|
1319	    LGE_MODE1_SETRST_CTL1|LGE_MODE1_SETRST_CTL2);
1320
1321	 /* If we want promiscuous mode, set the allframes bit. */
1322	if (ifp->if_flags & IFF_PROMISC) {
1323		CSR_WRITE_4(sc, LGE_MODE1,
1324		    LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_PROMISC);
1325	} else {
1326		CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_PROMISC);
1327	}
1328
1329	/*
1330	 * Set the capture broadcast bit to capture broadcast frames.
1331	 */
1332	if (ifp->if_flags & IFF_BROADCAST) {
1333		CSR_WRITE_4(sc, LGE_MODE1,
1334		    LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_BCAST);
1335	} else {
1336		CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_BCAST);
1337	}
1338
1339	/* Packet padding workaround? */
1340	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_RMVPAD);
1341
1342	/* No error frames */
1343	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_ERRPKTS);
1344
1345	/* Receive large frames */
1346	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_GIANTS);
1347
1348	/* Workaround: disable RX/TX flow control */
1349	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_TX_FLOWCTL);
1350	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_FLOWCTL);
1351
1352	/* Make sure to strip CRC from received frames */
1353	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_CRC);
1354
1355	/* Turn off magic packet mode */
1356	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_MPACK_ENB);
1357
1358	/* Turn off all VLAN stuff */
1359	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_VLAN_RX|LGE_MODE1_VLAN_TX|
1360	    LGE_MODE1_VLAN_STRIP|LGE_MODE1_VLAN_INSERT);
1361
1362	/* Workarond: FIFO overflow */
1363	CSR_WRITE_2(sc, LGE_RXFIFO_HIWAT, 0x3FFF);
1364	CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_SETRST_CTL1|LGE_IMR_RXFIFO_WAT);
1365
1366	/*
1367	 * Load the multicast filter.
1368	 */
1369	lge_setmulti(sc);
1370
1371	/*
1372	 * Enable hardware checksum validation for all received IPv4
1373	 * packets, do not reject packets with bad checksums.
1374	 */
1375	CSR_WRITE_4(sc, LGE_MODE2, LGE_MODE2_RX_IPCSUM|
1376	    LGE_MODE2_RX_TCPCSUM|LGE_MODE2_RX_UDPCSUM|
1377	    LGE_MODE2_RX_ERRCSUM);
1378
1379	/*
1380	 * Enable the delivery of PHY interrupts based on
1381	 * link/speed/duplex status chalges.
1382	 */
1383	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL0|LGE_MODE1_GMIIPOLL);
1384
1385	/* Enable receiver and transmitter. */
1386	CSR_WRITE_4(sc, LGE_RXDESC_ADDR_HI, 0);
1387	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_ENB);
1388
1389	CSR_WRITE_4(sc, LGE_TXDESC_ADDR_HI, 0);
1390	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_TX_ENB);
1391
1392	/*
1393	 * Enable interrupts.
1394	 */
1395	CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_SETRST_CTL0|
1396	    LGE_IMR_SETRST_CTL1|LGE_IMR_INTR_ENB|LGE_INTRS);
1397
1398	lge_ifmedia_upd(ifp);
1399
1400	ifp->if_flags |= IFF_RUNNING;
1401	ifp->if_flags &= ~IFF_OACTIVE;
1402
1403	splx(s);
1404
1405	timeout_add(&sc->lge_timeout, hz);
1406
1407	return;
1408}
1409
1410/*
1411 * Set media options.
1412 */
1413int lge_ifmedia_upd(ifp)
1414	struct ifnet		*ifp;
1415{
1416	struct lge_softc	*sc = ifp->if_softc;
1417	struct mii_data		*mii = &sc->lge_mii;
1418
1419	sc->lge_link = 0;
1420	if (mii->mii_instance) {
1421		struct mii_softc	*miisc;
1422		for (miisc = LIST_FIRST(&mii->mii_phys); miisc != NULL;
1423		    miisc = LIST_NEXT(miisc, mii_list))
1424			mii_phy_reset(miisc);
1425	}
1426	mii_mediachg(mii);
1427
1428	return(0);
1429}
1430
1431/*
1432 * Report current media status.
1433 */
1434void lge_ifmedia_sts(ifp, ifmr)
1435	struct ifnet		*ifp;
1436	struct ifmediareq	*ifmr;
1437{
1438	struct lge_softc	*sc = ifp->if_softc;
1439	struct mii_data		*mii = &sc->lge_mii;
1440
1441	mii_pollstat(mii);
1442	ifmr->ifm_active = mii->mii_media_active;
1443	ifmr->ifm_status = mii->mii_media_status;
1444
1445	return;
1446}
1447
1448int lge_ioctl(ifp, command, data)
1449	struct ifnet		*ifp;
1450	u_long			command;
1451	caddr_t			data;
1452{
1453	struct lge_softc	*sc = ifp->if_softc;
1454	struct ifreq		*ifr = (struct ifreq *) data;
1455	struct ifaddr		*ifa = (struct ifaddr *)data;
1456	struct mii_data		*mii;
1457	int			s, error = 0;
1458
1459	s = splimp();
1460
1461	switch(command) {
1462	case SIOCSIFADDR:
1463		ifp->if_flags |= IFF_UP;
1464		switch (ifa->ifa_addr->sa_family) {
1465#ifdef INET
1466		case AF_INET:
1467			lge_init(sc);
1468			arp_ifinit(&sc->arpcom, ifa);
1469			break;
1470#endif /* INET */
1471		default:
1472			lge_init(sc);
1473			break;
1474                }
1475		break;
1476	case SIOCSIFMTU:
1477		if (ifr->ifr_mtu > ETHERMTU_JUMBO)
1478			error = EINVAL;
1479		else
1480			ifp->if_mtu = ifr->ifr_mtu;
1481		break;
1482	case SIOCSIFFLAGS:
1483		if (ifp->if_flags & IFF_UP) {
1484			if (ifp->if_flags & IFF_RUNNING &&
1485			    ifp->if_flags & IFF_PROMISC &&
1486			    !(sc->lge_if_flags & IFF_PROMISC)) {
1487				CSR_WRITE_4(sc, LGE_MODE1,
1488				    LGE_MODE1_SETRST_CTL1|
1489				    LGE_MODE1_RX_PROMISC);
1490			} else if (ifp->if_flags & IFF_RUNNING &&
1491			    !(ifp->if_flags & IFF_PROMISC) &&
1492			    sc->lge_if_flags & IFF_PROMISC) {
1493				CSR_WRITE_4(sc, LGE_MODE1,
1494				    LGE_MODE1_RX_PROMISC);
1495			} else {
1496				ifp->if_flags &= ~IFF_RUNNING;
1497				lge_init(sc);
1498			}
1499		} else {
1500			if (ifp->if_flags & IFF_RUNNING)
1501				lge_stop(sc);
1502		}
1503		sc->lge_if_flags = ifp->if_flags;
1504		error = 0;
1505		break;
1506	case SIOCADDMULTI:
1507	case SIOCDELMULTI:
1508		error = (command == SIOCADDMULTI)
1509			? ether_addmulti(ifr, &sc->arpcom)
1510			: ether_delmulti(ifr, &sc->arpcom);
1511
1512		if (error == ENETRESET) {
1513			if (ifp->if_flags & IFF_RUNNING)
1514				lge_setmulti(sc);
1515			error = 0;
1516		}
1517		break;
1518	case SIOCGIFMEDIA:
1519	case SIOCSIFMEDIA:
1520		mii = &sc->lge_mii;
1521		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1522		break;
1523	default:
1524		error = EINVAL;
1525		break;
1526	}
1527
1528	splx(s);
1529
1530	return(error);
1531}
1532
1533void lge_watchdog(ifp)
1534	struct ifnet		*ifp;
1535{
1536	struct lge_softc	*sc;
1537
1538	sc = ifp->if_softc;
1539
1540	ifp->if_oerrors++;
1541	printf("%s: watchdog timeout\n", sc->sc_dv.dv_xname);
1542
1543	lge_stop(sc);
1544	lge_reset(sc);
1545	ifp->if_flags &= ~IFF_RUNNING;
1546	lge_init(sc);
1547
1548	if (!IFQ_IS_EMPTY(&ifp->if_snd))
1549		lge_start(ifp);
1550
1551	return;
1552}
1553
1554/*
1555 * Stop the adapter and free any mbufs allocated to the
1556 * RX and TX lists.
1557 */
1558void lge_stop(sc)
1559	struct lge_softc	*sc;
1560{
1561	register int		i;
1562	struct ifnet		*ifp;
1563
1564	ifp = &sc->arpcom.ac_if;
1565	ifp->if_timer = 0;
1566	timeout_del(&sc->lge_timeout);
1567
1568	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1569
1570	CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_INTR_ENB);
1571
1572	/* Disable receiver and transmitter. */
1573	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_ENB|LGE_MODE1_TX_ENB);
1574	sc->lge_link = 0;
1575
1576	/*
1577	 * Free data in the RX lists.
1578	 */
1579	for (i = 0; i < LGE_RX_LIST_CNT; i++) {
1580		if (sc->lge_ldata->lge_rx_list[i].lge_mbuf != NULL) {
1581			m_freem(sc->lge_ldata->lge_rx_list[i].lge_mbuf);
1582			sc->lge_ldata->lge_rx_list[i].lge_mbuf = NULL;
1583		}
1584	}
1585	bzero((char *)&sc->lge_ldata->lge_rx_list,
1586		sizeof(sc->lge_ldata->lge_rx_list));
1587
1588	/*
1589	 * Free the TX list buffers.
1590	 */
1591	for (i = 0; i < LGE_TX_LIST_CNT; i++) {
1592		if (sc->lge_ldata->lge_tx_list[i].lge_mbuf != NULL) {
1593			m_freem(sc->lge_ldata->lge_tx_list[i].lge_mbuf);
1594			sc->lge_ldata->lge_tx_list[i].lge_mbuf = NULL;
1595		}
1596	}
1597
1598	bzero((char *)&sc->lge_ldata->lge_tx_list,
1599		sizeof(sc->lge_ldata->lge_tx_list));
1600
1601	return;
1602}
1603
1604/*
1605 * Stop all chip I/O so that the kernel's probe routines don't
1606 * get confused by errant DMAs when rebooting.
1607 */
1608void lge_shutdown(xsc)
1609	void *xsc;
1610{
1611	struct lge_softc	*sc = (struct lge_softc *)xsc;
1612
1613	lge_reset(sc);
1614	lge_stop(sc);
1615
1616	return;
1617}
1618
1619struct cfattach lge_ca = {
1620	sizeof(struct lge_softc), lge_probe, lge_attach
1621};
1622
1623struct cfdriver lge_cd = {
1624	0, "lge", DV_IFNET
1625};
1626