if_lge.c revision 1.21
1/*	$OpenBSD: if_lge.c,v 1.21 2005/07/02 23:10:11 brad Exp $	*/
2/*
3 * Copyright (c) 2001 Wind River Systems
4 * Copyright (c) 1997, 1998, 1999, 2000, 2001
5 *	Bill Paul <william.paul@windriver.com>.  All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 *    must display the following acknowledgement:
17 *	This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 *    may be used to endorse or promote products derived from this software
20 *    without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * $FreeBSD: src/sys/dev/lge/if_lge.c,v 1.6 2001/06/20 19:47:55 bmilekic Exp $
35 */
36
37/*
38 * Level 1 LXT1001 gigabit ethernet driver for FreeBSD. Public
39 * documentation not available, but ask me nicely.
40 *
41 * Written by Bill Paul <william.paul@windriver.com>
42 * Wind River Systems
43 */
44
45/*
46 * The Level 1 chip is used on some D-Link, SMC and Addtron NICs.
47 * It's a 64-bit PCI part that supports TCP/IP checksum offload,
48 * VLAN tagging/insertion, GMII and TBI (1000baseX) ports. There
49 * are three supported methods for data transfer between host and
50 * NIC: programmed I/O, traditional scatter/gather DMA and Packet
51 * Propulsion Technology (tm) DMA. The latter mechanism is a form
52 * of double buffer DMA where the packet data is copied to a
53 * pre-allocated DMA buffer who's physical address has been loaded
54 * into a table at device initialization time. The rationale is that
55 * the virtual to physical address translation needed for normal
56 * scatter/gather DMA is more expensive than the data copy needed
57 * for double buffering. This may be true in Windows NT and the like,
58 * but it isn't true for us, at least on the x86 arch. This driver
59 * uses the scatter/gather I/O method for both TX and RX.
60 *
61 * The LXT1001 only supports TCP/IP checksum offload on receive.
62 * Also, the VLAN tagging is done using a 16-entry table which allows
63 * the chip to perform hardware filtering based on VLAN tags. Sadly,
64 * our vlan support doesn't currently play well with this kind of
65 * hardware support.
66 *
67 * Special thanks to:
68 * - Jeff James at Intel, for arranging to have the LXT1001 manual
69 *   released (at long last)
70 * - Beny Chen at D-Link, for actually sending it to me
71 * - Brad Short and Keith Alexis at SMC, for sending me sample
72 *   SMC9462SX and SMC9462TX adapters for testing
73 * - Paul Saab at Y!, for not killing me (though it remains to be seen
74 *   if in fact he did me much of a favor)
75 */
76
77#include "bpfilter.h"
78
79#include <sys/param.h>
80#include <sys/systm.h>
81#include <sys/sockio.h>
82#include <sys/mbuf.h>
83#include <sys/malloc.h>
84#include <sys/kernel.h>
85#include <sys/device.h>
86#include <sys/socket.h>
87
88#include <net/if.h>
89#include <net/if_dl.h>
90#include <net/if_media.h>
91
92#ifdef INET
93#include <netinet/in.h>
94#include <netinet/in_systm.h>
95#include <netinet/in_var.h>
96#include <netinet/ip.h>
97#include <netinet/if_ether.h>
98#endif
99
100#if NVLAN > 0
101#include <net/if_types.h>
102#include <net/if_vlan_var.h>
103#endif
104
105#if NBPFILTER > 0
106#include <net/bpf.h>
107#endif
108
109#include <uvm/uvm_extern.h>              /* for vtophys */
110#include <uvm/uvm_pmap.h>            /* for vtophys */
111
112#include <dev/pci/pcireg.h>
113#include <dev/pci/pcivar.h>
114#include <dev/pci/pcidevs.h>
115
116#include <dev/mii/mii.h>
117#include <dev/mii/miivar.h>
118
119#define LGE_USEIOSPACE
120
121#include <dev/pci/if_lgereg.h>
122
123int lge_probe(struct device *, void *, void *);
124void lge_attach(struct device *, struct device *, void *);
125
126int lge_alloc_jumbo_mem(struct lge_softc *);
127void lge_free_jumbo_mem(struct lge_softc *);
128void *lge_jalloc(struct lge_softc *);
129void lge_jfree(caddr_t, u_int, void *);
130
131int lge_newbuf(struct lge_softc *, struct lge_rx_desc *,
132			     struct mbuf *);
133int lge_encap(struct lge_softc *, struct mbuf *, u_int32_t *);
134void lge_rxeof(struct lge_softc *, int);
135void lge_rxeoc(struct lge_softc *);
136void lge_txeof(struct lge_softc *);
137int lge_intr(void *);
138void lge_tick(void *);
139void lge_start(struct ifnet *);
140int lge_ioctl(struct ifnet *, u_long, caddr_t);
141void lge_init(void *);
142void lge_stop(struct lge_softc *);
143void lge_watchdog(struct ifnet *);
144void lge_shutdown(void *);
145int lge_ifmedia_upd(struct ifnet *);
146void lge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
147
148void lge_eeprom_getword(struct lge_softc *, int, u_int16_t *);
149void lge_read_eeprom(struct lge_softc *, caddr_t, int, int, int);
150
151int lge_miibus_readreg(struct device *, int, int);
152void lge_miibus_writereg(struct device *, int, int, int);
153void lge_miibus_statchg(struct device *);
154
155void lge_setmulti(struct lge_softc *);
156void lge_reset(struct lge_softc *);
157int lge_list_rx_init(struct lge_softc *);
158int lge_list_tx_init(struct lge_softc *);
159
160#ifdef LGE_USEIOSPACE
161#define LGE_RES			SYS_RES_IOPORT
162#define LGE_RID			LGE_PCI_LOIO
163#else
164#define LGE_RES			SYS_RES_MEMORY
165#define LGE_RID			LGE_PCI_LOMEM
166#endif
167
168#ifdef LGE_DEBUG
169#define DPRINTF(x)	if (lgedebug) printf x
170#define DPRINTFN(n,x)	if (lgedebug >= (n)) printf x
171int	lgedebug = 0;
172#else
173#define DPRINTF(x)
174#define DPRINTFN(n,x)
175#endif
176
177#define LGE_SETBIT(sc, reg, x)				\
178	CSR_WRITE_4(sc, reg,				\
179		CSR_READ_4(sc, reg) | (x))
180
181#define LGE_CLRBIT(sc, reg, x)				\
182	CSR_WRITE_4(sc, reg,				\
183		CSR_READ_4(sc, reg) & ~(x))
184
185#define SIO_SET(x)					\
186	CSR_WRITE_4(sc, LGE_MEAR, CSR_READ_4(sc, LGE_MEAR) | x)
187
188#define SIO_CLR(x)					\
189	CSR_WRITE_4(sc, LGE_MEAR, CSR_READ_4(sc, LGE_MEAR) & ~x)
190
191/*
192 * Read a word of data stored in the EEPROM at address 'addr.'
193 */
194void lge_eeprom_getword(sc, addr, dest)
195	struct lge_softc	*sc;
196	int			addr;
197	u_int16_t		*dest;
198{
199	register int		i;
200	u_int32_t		val;
201
202	CSR_WRITE_4(sc, LGE_EECTL, LGE_EECTL_CMD_READ|
203	    LGE_EECTL_SINGLEACCESS|((addr >> 1) << 8));
204
205	for (i = 0; i < LGE_TIMEOUT; i++)
206		if (!(CSR_READ_4(sc, LGE_EECTL) & LGE_EECTL_CMD_READ))
207			break;
208
209	if (i == LGE_TIMEOUT) {
210		printf("%s: EEPROM read timed out\n", sc->sc_dv.dv_xname);
211		return;
212	}
213
214	val = CSR_READ_4(sc, LGE_EEDATA);
215
216	if (addr & 1)
217		*dest = (val >> 16) & 0xFFFF;
218	else
219		*dest = val & 0xFFFF;
220
221	return;
222}
223
224/*
225 * Read a sequence of words from the EEPROM.
226 */
227void lge_read_eeprom(sc, dest, off, cnt, swap)
228	struct lge_softc	*sc;
229	caddr_t			dest;
230	int			off;
231	int			cnt;
232	int			swap;
233{
234	int			i;
235	u_int16_t		word = 0, *ptr;
236
237	for (i = 0; i < cnt; i++) {
238		lge_eeprom_getword(sc, off + i, &word);
239		ptr = (u_int16_t *)(dest + (i * 2));
240		if (swap)
241			*ptr = ntohs(word);
242		else
243			*ptr = word;
244	}
245
246	return;
247}
248
249int lge_miibus_readreg(dev, phy, reg)
250	struct device *		dev;
251	int			phy, reg;
252{
253	struct lge_softc	*sc = (struct lge_softc *)dev;
254	int			i;
255
256	/*
257	 * If we have a non-PCS PHY, pretend that the internal
258	 * autoneg stuff at PHY address 0 isn't there so that
259	 * the miibus code will find only the GMII PHY.
260	 */
261	if (sc->lge_pcs == 0 && phy == 0)
262		return(0);
263
264	CSR_WRITE_4(sc, LGE_GMIICTL, (phy << 8) | reg | LGE_GMIICMD_READ);
265
266	for (i = 0; i < LGE_TIMEOUT; i++)
267		if (!(CSR_READ_4(sc, LGE_GMIICTL) & LGE_GMIICTL_CMDBUSY))
268			break;
269
270	if (i == LGE_TIMEOUT) {
271		printf("%s: PHY read timed out\n", sc->sc_dv.dv_xname);
272		return(0);
273	}
274
275	return(CSR_READ_4(sc, LGE_GMIICTL) >> 16);
276}
277
278void lge_miibus_writereg(dev, phy, reg, data)
279	struct device *		dev;
280	int			phy, reg, data;
281{
282	struct lge_softc	*sc = (struct lge_softc *)dev;
283	int			i;
284
285	CSR_WRITE_4(sc, LGE_GMIICTL,
286	    (data << 16) | (phy << 8) | reg | LGE_GMIICMD_WRITE);
287
288	for (i = 0; i < LGE_TIMEOUT; i++)
289		if (!(CSR_READ_4(sc, LGE_GMIICTL) & LGE_GMIICTL_CMDBUSY))
290			break;
291
292	if (i == LGE_TIMEOUT) {
293		printf("%s: PHY write timed out\n", sc->sc_dv.dv_xname);
294	}
295}
296
297void lge_miibus_statchg(dev)
298	struct device *		dev;
299{
300	struct lge_softc	*sc = (struct lge_softc *)dev;
301	struct mii_data		*mii = &sc->lge_mii;
302
303	LGE_CLRBIT(sc, LGE_GMIIMODE, LGE_GMIIMODE_SPEED);
304	switch (IFM_SUBTYPE(mii->mii_media_active)) {
305	case IFM_1000_T:
306	case IFM_1000_SX:
307		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_1000);
308		break;
309	case IFM_100_TX:
310		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_100);
311		break;
312	case IFM_10_T:
313		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_10);
314		break;
315	default:
316		/*
317		 * Choose something, even if it's wrong. Clearing
318		 * all the bits will hose autoneg on the internal
319		 * PHY.
320		 */
321		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_1000);
322		break;
323	}
324
325	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
326		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_GMIIMODE_FDX);
327	} else {
328		LGE_CLRBIT(sc, LGE_GMIIMODE, LGE_GMIIMODE_FDX);
329	}
330
331	return;
332}
333
334void lge_setmulti(sc)
335	struct lge_softc	*sc;
336{
337	struct arpcom		*ac = &sc->arpcom;
338	struct ifnet		*ifp = &ac->ac_if;
339	struct ether_multi      *enm;
340	struct ether_multistep  step;
341	u_int32_t		h = 0, hashes[2] = { 0, 0 };
342
343	/* Make sure multicast hash table is enabled. */
344	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_MCAST);
345
346allmulti:
347	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
348		CSR_WRITE_4(sc, LGE_MAR0, 0xFFFFFFFF);
349		CSR_WRITE_4(sc, LGE_MAR1, 0xFFFFFFFF);
350		return;
351	}
352
353	/* first, zot all the existing hash bits */
354	CSR_WRITE_4(sc, LGE_MAR0, 0);
355	CSR_WRITE_4(sc, LGE_MAR1, 0);
356
357	/* now program new ones */
358	ETHER_FIRST_MULTI(step, ac, enm);
359	while (enm != NULL) {
360		if (bcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
361			ifp->if_flags |= IFF_ALLMULTI;
362			goto allmulti;
363		}
364		h = (ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN) >> 26) &
365		    0x0000003F;
366		if (h < 32)
367			hashes[0] |= (1 << h);
368		else
369			hashes[1] |= (1 << (h - 32));
370		ETHER_NEXT_MULTI(step, enm);
371	}
372
373	CSR_WRITE_4(sc, LGE_MAR0, hashes[0]);
374	CSR_WRITE_4(sc, LGE_MAR1, hashes[1]);
375
376	return;
377}
378
379void lge_reset(sc)
380	struct lge_softc	*sc;
381{
382	register int		i;
383
384	LGE_SETBIT(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL0|LGE_MODE1_SOFTRST);
385
386	for (i = 0; i < LGE_TIMEOUT; i++) {
387		if (!(CSR_READ_4(sc, LGE_MODE1) & LGE_MODE1_SOFTRST))
388			break;
389	}
390
391	if (i == LGE_TIMEOUT)
392		printf("%s: reset never completed\n", sc->sc_dv.dv_xname);
393
394	/* Wait a little while for the chip to get its brains in order. */
395	DELAY(1000);
396
397        return;
398}
399
400/*
401 * Probe for a Level 1 chip. Check the PCI vendor and device
402 * IDs against our list and return a device name if we find a match.
403 */
404int lge_probe(parent, match, aux)
405	struct device *parent;
406	void *match;
407	void *aux;
408{
409	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
410
411	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_LEVEL1 &&
412	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_LEVEL1_LXT1001)
413		return (1);
414
415	return (0);
416}
417
418/*
419 * Attach the interface. Allocate softc structures, do ifmedia
420 * setup and ethernet/BPF attach.
421 */
422void lge_attach(parent, self, aux)
423	struct device *parent, *self;
424	void *aux;
425{
426	struct lge_softc	*sc = (struct lge_softc *)self;
427	struct pci_attach_args	*pa = aux;
428	pci_chipset_tag_t	pc = pa->pa_pc;
429	pci_intr_handle_t	ih;
430	const char		*intrstr = NULL;
431	bus_addr_t		iobase;
432	bus_size_t		iosize;
433	bus_dma_segment_t	seg;
434	bus_dmamap_t		dmamap;
435	int			s, rseg;
436	u_char			eaddr[ETHER_ADDR_LEN];
437	u_int32_t		command;
438	struct ifnet		*ifp;
439	int			error = 0;
440	caddr_t			kva;
441
442	s = splimp();
443
444	bzero(sc, sizeof(struct lge_softc));
445
446	/*
447	 * Handle power management nonsense.
448	 */
449	DPRINTFN(5, ("Preparing for conf read\n"));
450	command = pci_conf_read(pc, pa->pa_tag, LGE_PCI_CAPID) & 0x000000FF;
451	if (command == 0x01) {
452		command = pci_conf_read(pc, pa->pa_tag, LGE_PCI_PWRMGMTCTRL);
453		if (command & LGE_PSTATE_MASK) {
454			u_int32_t		iobase, membase, irq;
455
456			/* Save important PCI config data. */
457			iobase = pci_conf_read(pc, pa->pa_tag, LGE_PCI_LOIO);
458			membase = pci_conf_read(pc, pa->pa_tag, LGE_PCI_LOMEM);
459			irq = pci_conf_read(pc, pa->pa_tag, LGE_PCI_INTLINE);
460
461			/* Reset the power state. */
462			printf("%s: chip is in D%d power mode "
463			       "-- setting to D0\n", sc->sc_dv.dv_xname,
464			       command & LGE_PSTATE_MASK);
465			command &= 0xFFFFFFFC;
466			pci_conf_write(pc, pa->pa_tag,
467				       LGE_PCI_PWRMGMTCTRL, command);
468
469			/* Restore PCI config data. */
470			pci_conf_write(pc, pa->pa_tag, LGE_PCI_LOIO, iobase);
471			pci_conf_write(pc, pa->pa_tag, LGE_PCI_LOMEM, membase);
472			pci_conf_write(pc, pa->pa_tag, LGE_PCI_INTLINE, irq);
473		}
474	}
475
476	/*
477	 * Map control/status registers.
478	 */
479	DPRINTFN(5, ("Map control/status regs\n"));
480	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
481	command |= PCI_COMMAND_IO_ENABLE | PCI_COMMAND_MEM_ENABLE |
482	  PCI_COMMAND_MASTER_ENABLE;
483	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
484	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
485
486#ifdef LGE_USEIOSPACE
487	if (!(command & PCI_COMMAND_IO_ENABLE)) {
488		printf("%s: failed to enable I/O ports!\n",
489		       sc->sc_dv.dv_xname);
490		error = ENXIO;
491		goto fail;
492	}
493	/*
494	 * Map control/status registers.
495	 */
496	DPRINTFN(5, ("pci_io_find\n"));
497	if (pci_io_find(pc, pa->pa_tag, LGE_PCI_LOIO, &iobase, &iosize)) {
498		printf(": can't find i/o space\n");
499		goto fail;
500	}
501	DPRINTFN(5, ("bus_space_map\n"));
502	if (bus_space_map(pa->pa_iot, iobase, iosize, 0, &sc->lge_bhandle)) {
503		printf(": can't map i/o space\n");
504		goto fail;
505	}
506	sc->lge_btag = pa->pa_iot;
507#else
508	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
509		printf("%s: failed to enable memory mapping!\n",
510		       sc->sc_dv.dv_xname);
511		error = ENXIO;
512		goto fail;
513	}
514	DPRINTFN(5, ("pci_mem_find\n"));
515	if (pci_mem_find(pc, pa->pa_tag, LGE_PCI_LOMEM, &iobase,
516			 &iosize, NULL)) {
517		printf(": can't find mem space\n");
518		goto fail;
519	}
520	DPRINTFN(5, ("bus_space_map\n"));
521	if (bus_space_map(pa->pa_memt, iobase, iosize, 0, &sc->lge_bhandle)) {
522		printf(": can't map mem space\n");
523		goto fail;
524	}
525
526	sc->lge_btag = pa->pa_memt;
527#endif
528
529	DPRINTFN(5, ("pci_intr_map\n"));
530	if (pci_intr_map(pa, &ih)) {
531		printf(": couldn't map interrupt\n");
532		goto fail;
533	}
534
535	DPRINTFN(5, ("pci_intr_string\n"));
536	intrstr = pci_intr_string(pc, ih);
537	DPRINTFN(5, ("pci_intr_establish\n"));
538	sc->lge_intrhand = pci_intr_establish(pc, ih, IPL_NET, lge_intr, sc,
539					      sc->sc_dv.dv_xname);
540	if (sc->lge_intrhand == NULL) {
541		printf(": couldn't establish interrupt");
542		if (intrstr != NULL)
543			printf(" at %s", intrstr);
544		printf("\n");
545		goto fail;
546	}
547	printf(": %s", intrstr);
548
549	/* Reset the adapter. */
550	DPRINTFN(5, ("lge_reset\n"));
551	lge_reset(sc);
552
553	/*
554	 * Get station address from the EEPROM.
555	 */
556	DPRINTFN(5, ("lge_read_eeprom\n"));
557	lge_read_eeprom(sc, (caddr_t)&eaddr[0], LGE_EE_NODEADDR_0, 1, 0);
558	lge_read_eeprom(sc, (caddr_t)&eaddr[2], LGE_EE_NODEADDR_1, 1, 0);
559	lge_read_eeprom(sc, (caddr_t)&eaddr[4], LGE_EE_NODEADDR_2, 1, 0);
560
561	/*
562	 * A Level 1 chip was detected. Inform the world.
563	 */
564	printf(": address: %s\n", ether_sprintf(eaddr));
565
566	bcopy(eaddr, (char *)&sc->arpcom.ac_enaddr, ETHER_ADDR_LEN);
567
568	sc->sc_dmatag = pa->pa_dmat;
569	DPRINTFN(5, ("bus_dmamem_alloc\n"));
570	if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct lge_list_data),
571			     PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
572		printf("%s: can't alloc rx buffers\n", sc->sc_dv.dv_xname);
573		goto fail;
574	}
575	DPRINTFN(5, ("bus_dmamem_map\n"));
576	if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
577			   sizeof(struct lge_list_data), &kva,
578			   BUS_DMA_NOWAIT)) {
579		printf("%s: can't map dma buffers (%d bytes)\n",
580		       sc->sc_dv.dv_xname, sizeof(struct lge_list_data));
581		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
582		goto fail;
583	}
584	DPRINTFN(5, ("bus_dmamem_create\n"));
585	if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct lge_list_data), 1,
586			      sizeof(struct lge_list_data), 0,
587			      BUS_DMA_NOWAIT, &dmamap)) {
588		printf("%s: can't create dma map\n", sc->sc_dv.dv_xname);
589		bus_dmamem_unmap(sc->sc_dmatag, kva,
590				 sizeof(struct lge_list_data));
591		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
592		goto fail;
593	}
594	DPRINTFN(5, ("bus_dmamem_load\n"));
595	if (bus_dmamap_load(sc->sc_dmatag, dmamap, kva,
596			    sizeof(struct lge_list_data), NULL,
597			    BUS_DMA_NOWAIT)) {
598		bus_dmamap_destroy(sc->sc_dmatag, dmamap);
599		bus_dmamem_unmap(sc->sc_dmatag, kva,
600				 sizeof(struct lge_list_data));
601		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
602		goto fail;
603	}
604
605	DPRINTFN(5, ("bzero\n"));
606	sc->lge_ldata = (struct lge_list_data *)kva;
607	bzero(sc->lge_ldata, sizeof(struct lge_list_data));
608
609	/* Try to allocate memory for jumbo buffers. */
610	DPRINTFN(5, ("lge_alloc_jumbo_mem\n"));
611	if (lge_alloc_jumbo_mem(sc)) {
612		printf("%s: jumbo buffer allocation failed\n",
613		       sc->sc_dv.dv_xname);
614		goto fail;
615	}
616
617	ifp = &sc->arpcom.ac_if;
618	ifp->if_softc = sc;
619	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
620	ifp->if_ioctl = lge_ioctl;
621	ifp->if_start = lge_start;
622	ifp->if_watchdog = lge_watchdog;
623	ifp->if_baudrate = 1000000000;
624	IFQ_SET_MAXLEN(&ifp->if_snd, LGE_TX_LIST_CNT - 1);
625	IFQ_SET_READY(&ifp->if_snd);
626	DPRINTFN(5, ("bcopy\n"));
627	bcopy(sc->sc_dv.dv_xname, ifp->if_xname, IFNAMSIZ);
628
629	if (CSR_READ_4(sc, LGE_GMIIMODE) & LGE_GMIIMODE_PCSENH)
630		sc->lge_pcs = 1;
631	else
632		sc->lge_pcs = 0;
633
634	/*
635	 * Do MII setup.
636	 */
637	DPRINTFN(5, ("mii setup\n"));
638	sc->lge_mii.mii_ifp = ifp;
639	sc->lge_mii.mii_readreg = lge_miibus_readreg;
640	sc->lge_mii.mii_writereg = lge_miibus_writereg;
641	sc->lge_mii.mii_statchg = lge_miibus_statchg;
642	ifmedia_init(&sc->lge_mii.mii_media, 0, lge_ifmedia_upd,
643		     lge_ifmedia_sts);
644	mii_attach(&sc->sc_dv, &sc->lge_mii, 0xffffffff, MII_PHY_ANY,
645		   MII_OFFSET_ANY, 0);
646
647	if (LIST_FIRST(&sc->lge_mii.mii_phys) == NULL) {
648		printf("%s: no PHY found!\n", sc->sc_dv.dv_xname);
649		ifmedia_add(&sc->lge_mii.mii_media, IFM_ETHER|IFM_MANUAL,
650			    0, NULL);
651		ifmedia_set(&sc->lge_mii.mii_media, IFM_ETHER|IFM_MANUAL);
652	}
653	else
654		ifmedia_set(&sc->lge_mii.mii_media, IFM_ETHER|IFM_AUTO);
655
656	/*
657	 * Call MI attach routine.
658	 */
659	DPRINTFN(5, ("if_attach\n"));
660	if_attach(ifp);
661	DPRINTFN(5, ("ether_ifattach\n"));
662	ether_ifattach(ifp);
663	DPRINTFN(5, ("timeout_set\n"));
664	timeout_set(&sc->lge_timeout, lge_tick, sc);
665	timeout_add(&sc->lge_timeout, hz);
666
667fail:
668	splx(s);
669}
670
671/*
672 * Initialize the transmit descriptors.
673 */
674int lge_list_tx_init(sc)
675	struct lge_softc	*sc;
676{
677	struct lge_list_data	*ld;
678	struct lge_ring_data	*cd;
679	int			i;
680
681	cd = &sc->lge_cdata;
682	ld = sc->lge_ldata;
683	for (i = 0; i < LGE_TX_LIST_CNT; i++) {
684		ld->lge_tx_list[i].lge_mbuf = NULL;
685		ld->lge_tx_list[i].lge_ctl = 0;
686	}
687
688	cd->lge_tx_prod = cd->lge_tx_cons = 0;
689
690	return(0);
691}
692
693
694/*
695 * Initialize the RX descriptors and allocate mbufs for them. Note that
696 * we arralge the descriptors in a closed ring, so that the last descriptor
697 * points back to the first.
698 */
699int lge_list_rx_init(sc)
700	struct lge_softc	*sc;
701{
702	struct lge_list_data	*ld;
703	struct lge_ring_data	*cd;
704	int			i;
705
706	ld = sc->lge_ldata;
707	cd = &sc->lge_cdata;
708
709	cd->lge_rx_prod = cd->lge_rx_cons = 0;
710
711	CSR_WRITE_4(sc, LGE_RXDESC_ADDR_HI, 0);
712
713	for (i = 0; i < LGE_RX_LIST_CNT; i++) {
714		if (CSR_READ_1(sc, LGE_RXCMDFREE_8BIT) == 0)
715			break;
716		if (lge_newbuf(sc, &ld->lge_rx_list[i], NULL) == ENOBUFS)
717			return(ENOBUFS);
718	}
719
720	/* Clear possible 'rx command queue empty' interrupt. */
721	CSR_READ_4(sc, LGE_ISR);
722
723	return(0);
724}
725
726/*
727 * Initialize an RX descriptor and attach an MBUF cluster.
728 */
729int lge_newbuf(sc, c, m)
730	struct lge_softc	*sc;
731	struct lge_rx_desc	*c;
732	struct mbuf		*m;
733{
734	struct mbuf		*m_new = NULL;
735	caddr_t			*buf = NULL;
736
737	if (m == NULL) {
738		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
739		if (m_new == NULL) {
740			return(ENOBUFS);
741		}
742
743		/* Allocate the jumbo buffer */
744		buf = lge_jalloc(sc);
745		if (buf == NULL) {
746			m_freem(m_new);
747			return(ENOBUFS);
748		}
749		/* Attach the buffer to the mbuf */
750		m_new->m_data = m_new->m_ext.ext_buf = (void *)buf;
751		m_new->m_flags |= M_EXT;
752		m_new->m_ext.ext_size = m_new->m_pkthdr.len =
753			m_new->m_len = LGE_JLEN;
754		m_new->m_ext.ext_free = lge_jfree;
755		m_new->m_ext.ext_arg = sc;
756		MCLINITREFERENCE(m_new);
757	} else {
758		m_new = m;
759		m_new->m_len = m_new->m_pkthdr.len = ETHER_MAX_LEN_JUMBO;
760		m_new->m_data = m_new->m_ext.ext_buf;
761	}
762
763	/*
764	 * Adjust alignment so packet payload begins on a
765	 * longword boundary. Mandatory for Alpha, useful on
766	 * x86 too.
767	*/
768	m_adj(m_new, ETHER_ALIGN);
769
770	c->lge_mbuf = m_new;
771	c->lge_fragptr_hi = 0;
772	c->lge_fragptr_lo = vtophys(mtod(m_new, caddr_t));
773	c->lge_fraglen = m_new->m_len;
774	c->lge_ctl = m_new->m_len | LGE_RXCTL_WANTINTR | LGE_FRAGCNT(1);
775	c->lge_sts = 0;
776
777	/*
778	 * Put this buffer in the RX command FIFO. To do this,
779	 * we just write the physical address of the descriptor
780	 * into the RX descriptor address registers. Note that
781	 * there are two registers, one high DWORD and one low
782	 * DWORD, which lets us specify a 64-bit address if
783	 * desired. We only use a 32-bit address for now.
784	 * Writing to the low DWORD register is what actually
785	 * causes the command to be issued, so we do that
786	 * last.
787	 */
788	CSR_WRITE_4(sc, LGE_RXDESC_ADDR_LO, vtophys(c));
789	LGE_INC(sc->lge_cdata.lge_rx_prod, LGE_RX_LIST_CNT);
790
791	return(0);
792}
793
794int lge_alloc_jumbo_mem(sc)
795	struct lge_softc	*sc;
796{
797	caddr_t			ptr, kva;
798	bus_dma_segment_t	seg;
799	bus_dmamap_t		dmamap;
800	int			i, rseg;
801	struct lge_jpool_entry   *entry;
802
803	/* Grab a big chunk o' storage. */
804	if (bus_dmamem_alloc(sc->sc_dmatag, LGE_JMEM, PAGE_SIZE, 0,
805			     &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
806		printf("%s: can't alloc rx buffers\n", sc->sc_dv.dv_xname);
807		return (ENOBUFS);
808	}
809	if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg, LGE_JMEM, &kva,
810			   BUS_DMA_NOWAIT)) {
811		printf("%s: can't map dma buffers (%d bytes)\n",
812		       sc->sc_dv.dv_xname, LGE_JMEM);
813		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
814		return (ENOBUFS);
815	}
816	if (bus_dmamap_create(sc->sc_dmatag, LGE_JMEM, 1,
817			      LGE_JMEM, 0, BUS_DMA_NOWAIT, &dmamap)) {
818		printf("%s: can't create dma map\n", sc->sc_dv.dv_xname);
819		bus_dmamem_unmap(sc->sc_dmatag, kva, LGE_JMEM);
820		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
821		return (ENOBUFS);
822	}
823	if (bus_dmamap_load(sc->sc_dmatag, dmamap, kva, LGE_JMEM,
824			    NULL, BUS_DMA_NOWAIT)) {
825		printf("%s: can't load dma map\n", sc->sc_dv.dv_xname);
826		bus_dmamap_destroy(sc->sc_dmatag, dmamap);
827		bus_dmamem_unmap(sc->sc_dmatag, kva, LGE_JMEM);
828		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
829		return (ENOBUFS);
830        }
831	sc->lge_cdata.lge_jumbo_buf = (caddr_t)kva;
832	DPRINTFN(1,("lge_jumbo_buf = 0x%08X\n", sc->lge_cdata.lge_jumbo_buf));
833	DPRINTFN(1,("LGE_JLEN = 0x%08X\n", LGE_JLEN));
834
835	LIST_INIT(&sc->lge_jfree_listhead);
836	LIST_INIT(&sc->lge_jinuse_listhead);
837
838	/*
839	 * Now divide it up into 9K pieces and save the addresses
840	 * in an array.
841	 */
842	ptr = sc->lge_cdata.lge_jumbo_buf;
843	for (i = 0; i < LGE_JSLOTS; i++) {
844		sc->lge_cdata.lge_jslots[i] = ptr;
845		ptr += LGE_JLEN;
846		entry = malloc(sizeof(struct lge_jpool_entry),
847		    M_DEVBUF, M_NOWAIT);
848		if (entry == NULL) {
849			bus_dmamap_unload(sc->sc_dmatag, dmamap);
850			bus_dmamap_destroy(sc->sc_dmatag, dmamap);
851			bus_dmamem_unmap(sc->sc_dmatag, kva, LGE_JMEM);
852			bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
853			sc->lge_cdata.lge_jumbo_buf = NULL;
854			printf("%s: no memory for jumbo buffer queue!\n",
855			       sc->sc_dv.dv_xname);
856			return(ENOBUFS);
857		}
858		entry->slot = i;
859		LIST_INSERT_HEAD(&sc->lge_jfree_listhead,
860				 entry, jpool_entries);
861	}
862
863	return(0);
864}
865
866/*
867 * Allocate a jumbo buffer.
868 */
869void *lge_jalloc(sc)
870	struct lge_softc	*sc;
871{
872	struct lge_jpool_entry   *entry;
873
874	entry = LIST_FIRST(&sc->lge_jfree_listhead);
875
876	if (entry == NULL) {
877#ifdef LGE_VERBOSE
878		printf("%s: no free jumbo buffers\n", sc->sc_dv.dv_xname);
879#endif
880		return(NULL);
881	}
882
883	LIST_REMOVE(entry, jpool_entries);
884	LIST_INSERT_HEAD(&sc->lge_jinuse_listhead, entry, jpool_entries);
885	return(sc->lge_cdata.lge_jslots[entry->slot]);
886}
887
888/*
889 * Release a jumbo buffer.
890 */
891void lge_jfree(buf, size, arg)
892	caddr_t		buf;
893	u_int		size;
894	void		*arg;
895{
896	struct lge_softc	*sc;
897	int		        i;
898	struct lge_jpool_entry   *entry;
899
900	/* Extract the softc struct pointer. */
901	sc = (struct lge_softc *)arg;
902
903	if (sc == NULL)
904		panic("lge_jfree: can't find softc pointer!");
905
906	/* calculate the slot this buffer belongs to */
907	i = ((vaddr_t)buf - (vaddr_t)sc->lge_cdata.lge_jumbo_buf) / LGE_JLEN;
908
909	if ((i < 0) || (i >= LGE_JSLOTS))
910		panic("lge_jfree: asked to free buffer that we don't manage!");
911
912	entry = LIST_FIRST(&sc->lge_jinuse_listhead);
913	if (entry == NULL)
914		panic("lge_jfree: buffer not in use!");
915	entry->slot = i;
916	LIST_REMOVE(entry, jpool_entries);
917	LIST_INSERT_HEAD(&sc->lge_jfree_listhead, entry, jpool_entries);
918
919	return;
920}
921
922/*
923 * A frame has been uploaded: pass the resulting mbuf chain up to
924 * the higher level protocols.
925 */
926void lge_rxeof(sc, cnt)
927	struct lge_softc	*sc;
928	int			cnt;
929{
930        struct mbuf		*m;
931        struct ifnet		*ifp;
932	struct lge_rx_desc	*cur_rx;
933	int			c, i, total_len = 0;
934	u_int32_t		rxsts, rxctl;
935
936	ifp = &sc->arpcom.ac_if;
937
938	/* Find out how many frames were processed. */
939	c = cnt;
940	i = sc->lge_cdata.lge_rx_cons;
941
942	/* Suck them in. */
943	while(c) {
944		struct mbuf		*m0 = NULL;
945
946		cur_rx = &sc->lge_ldata->lge_rx_list[i];
947		rxctl = cur_rx->lge_ctl;
948		rxsts = cur_rx->lge_sts;
949		m = cur_rx->lge_mbuf;
950		cur_rx->lge_mbuf = NULL;
951		total_len = LGE_RXBYTES(cur_rx);
952		LGE_INC(i, LGE_RX_LIST_CNT);
953		c--;
954
955		/*
956		 * If an error occurs, update stats, clear the
957		 * status word and leave the mbuf cluster in place:
958		 * it should simply get re-used next time this descriptor
959	 	 * comes up in the ring.
960		 */
961		if (rxctl & LGE_RXCTL_ERRMASK) {
962			ifp->if_ierrors++;
963			lge_newbuf(sc, &LGE_RXTAIL(sc), m);
964			continue;
965		}
966
967		if (lge_newbuf(sc, &LGE_RXTAIL(sc), NULL) == ENOBUFS) {
968			m0 = m_devget(mtod(m, char *), total_len, ETHER_ALIGN,
969			    ifp, NULL);
970			lge_newbuf(sc, &LGE_RXTAIL(sc), m);
971			if (m0 == NULL) {
972				ifp->if_ierrors++;
973				continue;
974			}
975			m = m0;
976		} else {
977			m->m_pkthdr.rcvif = ifp;
978			m->m_pkthdr.len = m->m_len = total_len;
979		}
980
981		ifp->if_ipackets++;
982
983#if NBPFILTER > 0
984		/*
985		 * Handle BPF listeners. Let the BPF user see the packet.
986		 */
987		if (ifp->if_bpf)
988			bpf_mtap(ifp->if_bpf, m);
989#endif
990
991		/* Do IP checksum checking. */
992#if 0
993		if (rxsts & LGE_RXSTS_ISIP)
994			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
995		if (!(rxsts & LGE_RXSTS_IPCSUMERR))
996			m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
997		if ((rxsts & LGE_RXSTS_ISTCP &&
998		    !(rxsts & LGE_RXSTS_TCPCSUMERR)) ||
999		    (rxsts & LGE_RXSTS_ISUDP &&
1000		    !(rxsts & LGE_RXSTS_UDPCSUMERR))) {
1001			m->m_pkthdr.csum_flags |=
1002			    CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
1003			m->m_pkthdr.csum_data = 0xffff;
1004		}
1005#endif
1006
1007		if (rxsts & LGE_RXSTS_ISIP) {
1008			if (rxsts & LGE_RXSTS_IPCSUMERR)
1009				m->m_pkthdr.csum_flags |= M_IPV4_CSUM_IN_BAD;
1010			else
1011				m->m_pkthdr.csum_flags |= M_IPV4_CSUM_IN_OK;
1012		}
1013		if (rxsts & LGE_RXSTS_ISTCP) {
1014			if (rxsts & LGE_RXSTS_TCPCSUMERR)
1015				m->m_pkthdr.csum_flags |= M_TCP_CSUM_IN_BAD;
1016			else
1017				m->m_pkthdr.csum_flags |= M_TCP_CSUM_IN_OK;
1018		}
1019		if (rxsts & LGE_RXSTS_ISUDP) {
1020			if (rxsts & LGE_RXSTS_UDPCSUMERR)
1021				m->m_pkthdr.csum_flags |= M_UDP_CSUM_IN_BAD;
1022			else
1023				m->m_pkthdr.csum_flags |= M_UDP_CSUM_IN_OK;
1024		}
1025
1026		ether_input_mbuf(ifp, m);
1027	}
1028
1029	sc->lge_cdata.lge_rx_cons = i;
1030
1031	return;
1032}
1033
1034void lge_rxeoc(sc)
1035	struct lge_softc	*sc;
1036{
1037	struct ifnet		*ifp;
1038
1039	ifp = &sc->arpcom.ac_if;
1040	ifp->if_flags &= ~IFF_RUNNING;
1041	lge_init(sc);
1042	return;
1043}
1044
1045/*
1046 * A frame was downloaded to the chip. It's safe for us to clean up
1047 * the list buffers.
1048 */
1049
1050void lge_txeof(sc)
1051	struct lge_softc	*sc;
1052{
1053	struct lge_tx_desc	*cur_tx = NULL;
1054	struct ifnet		*ifp;
1055	u_int32_t		idx, txdone;
1056
1057	ifp = &sc->arpcom.ac_if;
1058
1059	/* Clear the timeout timer. */
1060	ifp->if_timer = 0;
1061
1062	/*
1063	 * Go through our tx list and free mbufs for those
1064	 * frames that have been transmitted.
1065	 */
1066	idx = sc->lge_cdata.lge_tx_cons;
1067	txdone = CSR_READ_1(sc, LGE_TXDMADONE_8BIT);
1068
1069	while (idx != sc->lge_cdata.lge_tx_prod && txdone) {
1070		cur_tx = &sc->lge_ldata->lge_tx_list[idx];
1071
1072		ifp->if_opackets++;
1073		if (cur_tx->lge_mbuf != NULL) {
1074			m_freem(cur_tx->lge_mbuf);
1075			cur_tx->lge_mbuf = NULL;
1076		}
1077		cur_tx->lge_ctl = 0;
1078
1079		txdone--;
1080		LGE_INC(idx, LGE_TX_LIST_CNT);
1081		ifp->if_timer = 0;
1082	}
1083
1084	sc->lge_cdata.lge_tx_cons = idx;
1085
1086	if (cur_tx != NULL)
1087		ifp->if_flags &= ~IFF_OACTIVE;
1088
1089	return;
1090}
1091
1092void lge_tick(xsc)
1093	void			*xsc;
1094{
1095	struct lge_softc	*sc = xsc;
1096	struct mii_data		*mii = &sc->lge_mii;
1097	struct ifnet		*ifp = &sc->arpcom.ac_if;
1098	int			s;
1099
1100	s = splimp();
1101
1102	CSR_WRITE_4(sc, LGE_STATSIDX, LGE_STATS_SINGLE_COLL_PKTS);
1103	ifp->if_collisions += CSR_READ_4(sc, LGE_STATSVAL);
1104	CSR_WRITE_4(sc, LGE_STATSIDX, LGE_STATS_MULTI_COLL_PKTS);
1105	ifp->if_collisions += CSR_READ_4(sc, LGE_STATSVAL);
1106
1107	if (!sc->lge_link) {
1108		mii_tick(mii);
1109		if (mii->mii_media_status & IFM_ACTIVE &&
1110		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1111			sc->lge_link++;
1112			if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX||
1113			    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T)
1114				printf("%s: gigabit link up\n",
1115				       sc->sc_dv.dv_xname);
1116			if (!IFQ_IS_EMPTY(&ifp->if_snd))
1117				lge_start(ifp);
1118		}
1119	}
1120
1121	timeout_add(&sc->lge_timeout, hz);
1122
1123	splx(s);
1124
1125	return;
1126}
1127
1128int lge_intr(arg)
1129	void			*arg;
1130{
1131	struct lge_softc	*sc;
1132	struct ifnet		*ifp;
1133	u_int32_t		status;
1134	int			claimed = 0;
1135
1136	sc = arg;
1137	ifp = &sc->arpcom.ac_if;
1138
1139	/* Supress unwanted interrupts */
1140	if (!(ifp->if_flags & IFF_UP)) {
1141		lge_stop(sc);
1142		return (0);
1143	}
1144
1145	for (;;) {
1146		/*
1147		 * Reading the ISR register clears all interrupts, and
1148		 * clears the 'interrupts enabled' bit in the IMR
1149		 * register.
1150		 */
1151		status = CSR_READ_4(sc, LGE_ISR);
1152
1153		if ((status & LGE_INTRS) == 0)
1154			break;
1155
1156		claimed = 1;
1157
1158		if ((status & (LGE_ISR_TXCMDFIFO_EMPTY|LGE_ISR_TXDMA_DONE)))
1159			lge_txeof(sc);
1160
1161		if (status & LGE_ISR_RXDMA_DONE)
1162			lge_rxeof(sc, LGE_RX_DMACNT(status));
1163
1164		if (status & LGE_ISR_RXCMDFIFO_EMPTY)
1165			lge_rxeoc(sc);
1166
1167		if (status & LGE_ISR_PHY_INTR) {
1168			sc->lge_link = 0;
1169			timeout_del(&sc->lge_timeout);
1170			lge_tick(sc);
1171		}
1172	}
1173
1174	/* Re-enable interrupts. */
1175	CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_SETRST_CTL0|LGE_IMR_INTR_ENB);
1176
1177	if (!IFQ_IS_EMPTY(&ifp->if_snd))
1178		lge_start(ifp);
1179
1180	return claimed;
1181}
1182
1183/*
1184 * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1185 * pointers to the fragment pointers.
1186 */
1187int lge_encap(sc, m_head, txidx)
1188	struct lge_softc	*sc;
1189	struct mbuf		*m_head;
1190	u_int32_t		*txidx;
1191{
1192	struct lge_frag		*f = NULL;
1193	struct lge_tx_desc	*cur_tx;
1194	struct mbuf		*m;
1195	int			frag = 0, tot_len = 0;
1196
1197	/*
1198 	 * Start packing the mbufs in this chain into
1199	 * the fragment pointers. Stop when we run out
1200 	 * of fragments or hit the end of the mbuf chain.
1201	 */
1202	m = m_head;
1203	cur_tx = &sc->lge_ldata->lge_tx_list[*txidx];
1204	frag = 0;
1205
1206	for (m = m_head; m != NULL; m = m->m_next) {
1207		if (m->m_len != 0) {
1208			tot_len += m->m_len;
1209			f = &cur_tx->lge_frags[frag];
1210			f->lge_fraglen = m->m_len;
1211			f->lge_fragptr_lo = vtophys(mtod(m, vaddr_t));
1212			f->lge_fragptr_hi = 0;
1213			frag++;
1214		}
1215	}
1216
1217	if (m != NULL)
1218		return(ENOBUFS);
1219
1220	cur_tx->lge_mbuf = m_head;
1221	cur_tx->lge_ctl = LGE_TXCTL_WANTINTR|LGE_FRAGCNT(frag)|tot_len;
1222	LGE_INC((*txidx), LGE_TX_LIST_CNT);
1223
1224	/* Queue for transmit */
1225	CSR_WRITE_4(sc, LGE_TXDESC_ADDR_LO, vtophys(cur_tx));
1226
1227	return(0);
1228}
1229
1230/*
1231 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1232 * to the mbuf data regions directly in the transmit lists. We also save a
1233 * copy of the pointers since the transmit list fragment pointers are
1234 * physical addresses.
1235 */
1236
1237void lge_start(ifp)
1238	struct ifnet		*ifp;
1239{
1240	struct lge_softc	*sc;
1241	struct mbuf		*m_head = NULL;
1242	u_int32_t		idx;
1243	int			pkts = 0;
1244
1245	sc = ifp->if_softc;
1246
1247	if (!sc->lge_link)
1248		return;
1249
1250	idx = sc->lge_cdata.lge_tx_prod;
1251
1252	if (ifp->if_flags & IFF_OACTIVE)
1253		return;
1254
1255	while(sc->lge_ldata->lge_tx_list[idx].lge_mbuf == NULL) {
1256		if (CSR_READ_1(sc, LGE_TXCMDFREE_8BIT) == 0)
1257			break;
1258
1259		IFQ_POLL(&ifp->if_snd, m_head);
1260		if (m_head == NULL)
1261			break;
1262
1263		if (lge_encap(sc, m_head, &idx)) {
1264			ifp->if_flags |= IFF_OACTIVE;
1265			break;
1266		}
1267
1268		/* now we are committed to transmit the packet */
1269		IFQ_DEQUEUE(&ifp->if_snd, m_head);
1270		pkts++;
1271
1272#if NBPFILTER > 0
1273		/*
1274		 * If there's a BPF listener, bounce a copy of this frame
1275		 * to him.
1276		 */
1277		if (ifp->if_bpf)
1278			bpf_mtap(ifp->if_bpf, m_head);
1279#endif
1280	}
1281	if (pkts == 0)
1282		return;
1283
1284	sc->lge_cdata.lge_tx_prod = idx;
1285
1286	/*
1287	 * Set a timeout in case the chip goes out to lunch.
1288	 */
1289	ifp->if_timer = 5;
1290
1291	return;
1292}
1293
1294void lge_init(xsc)
1295	void			*xsc;
1296{
1297	struct lge_softc	*sc = xsc;
1298	struct ifnet		*ifp = &sc->arpcom.ac_if;
1299	int			s;
1300
1301	if (ifp->if_flags & IFF_RUNNING)
1302		return;
1303
1304	s = splimp();
1305
1306	/*
1307	 * Cancel pending I/O and free all RX/TX buffers.
1308	 */
1309	lge_stop(sc);
1310	lge_reset(sc);
1311
1312	/* Set MAC address */
1313	CSR_WRITE_4(sc, LGE_PAR0, *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
1314	CSR_WRITE_4(sc, LGE_PAR1, *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
1315
1316	/* Init circular RX list. */
1317	if (lge_list_rx_init(sc) == ENOBUFS) {
1318		printf("%s: initialization failed: no "
1319		       "memory for rx buffers\n", sc->sc_dv.dv_xname);
1320		lge_stop(sc);
1321		splx(s);
1322		return;
1323	}
1324
1325	/*
1326	 * Init tx descriptors.
1327	 */
1328	lge_list_tx_init(sc);
1329
1330	/* Set initial value for MODE1 register. */
1331	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_UCAST|
1332	    LGE_MODE1_TX_CRC|LGE_MODE1_TXPAD|
1333	    LGE_MODE1_RX_FLOWCTL|LGE_MODE1_SETRST_CTL0|
1334	    LGE_MODE1_SETRST_CTL1|LGE_MODE1_SETRST_CTL2);
1335
1336	 /* If we want promiscuous mode, set the allframes bit. */
1337	if (ifp->if_flags & IFF_PROMISC) {
1338		CSR_WRITE_4(sc, LGE_MODE1,
1339		    LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_PROMISC);
1340	} else {
1341		CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_PROMISC);
1342	}
1343
1344	/*
1345	 * Set the capture broadcast bit to capture broadcast frames.
1346	 */
1347	if (ifp->if_flags & IFF_BROADCAST) {
1348		CSR_WRITE_4(sc, LGE_MODE1,
1349		    LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_BCAST);
1350	} else {
1351		CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_BCAST);
1352	}
1353
1354	/* Packet padding workaround? */
1355	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_RMVPAD);
1356
1357	/* No error frames */
1358	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_ERRPKTS);
1359
1360	/* Receive large frames */
1361	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_GIANTS);
1362
1363	/* Workaround: disable RX/TX flow control */
1364	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_TX_FLOWCTL);
1365	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_FLOWCTL);
1366
1367	/* Make sure to strip CRC from received frames */
1368	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_CRC);
1369
1370	/* Turn off magic packet mode */
1371	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_MPACK_ENB);
1372
1373	/* Turn off all VLAN stuff */
1374	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_VLAN_RX|LGE_MODE1_VLAN_TX|
1375	    LGE_MODE1_VLAN_STRIP|LGE_MODE1_VLAN_INSERT);
1376
1377	/* Workarond: FIFO overflow */
1378	CSR_WRITE_2(sc, LGE_RXFIFO_HIWAT, 0x3FFF);
1379	CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_SETRST_CTL1|LGE_IMR_RXFIFO_WAT);
1380
1381	/*
1382	 * Load the multicast filter.
1383	 */
1384	lge_setmulti(sc);
1385
1386	/*
1387	 * Enable hardware checksum validation for all received IPv4
1388	 * packets, do not reject packets with bad checksums.
1389	 */
1390	CSR_WRITE_4(sc, LGE_MODE2, LGE_MODE2_RX_IPCSUM|
1391	    LGE_MODE2_RX_TCPCSUM|LGE_MODE2_RX_UDPCSUM|
1392	    LGE_MODE2_RX_ERRCSUM);
1393
1394	/*
1395	 * Enable the delivery of PHY interrupts based on
1396	 * link/speed/duplex status chalges.
1397	 */
1398	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL0|LGE_MODE1_GMIIPOLL);
1399
1400	/* Enable receiver and transmitter. */
1401	CSR_WRITE_4(sc, LGE_RXDESC_ADDR_HI, 0);
1402	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_ENB);
1403
1404	CSR_WRITE_4(sc, LGE_TXDESC_ADDR_HI, 0);
1405	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_TX_ENB);
1406
1407	/*
1408	 * Enable interrupts.
1409	 */
1410	CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_SETRST_CTL0|
1411	    LGE_IMR_SETRST_CTL1|LGE_IMR_INTR_ENB|LGE_INTRS);
1412
1413	lge_ifmedia_upd(ifp);
1414
1415	ifp->if_flags |= IFF_RUNNING;
1416	ifp->if_flags &= ~IFF_OACTIVE;
1417
1418	splx(s);
1419
1420	timeout_add(&sc->lge_timeout, hz);
1421
1422	return;
1423}
1424
1425/*
1426 * Set media options.
1427 */
1428int lge_ifmedia_upd(ifp)
1429	struct ifnet		*ifp;
1430{
1431	struct lge_softc	*sc = ifp->if_softc;
1432	struct mii_data		*mii = &sc->lge_mii;
1433
1434	sc->lge_link = 0;
1435	if (mii->mii_instance) {
1436		struct mii_softc	*miisc;
1437		for (miisc = LIST_FIRST(&mii->mii_phys); miisc != NULL;
1438		    miisc = LIST_NEXT(miisc, mii_list))
1439			mii_phy_reset(miisc);
1440	}
1441	mii_mediachg(mii);
1442
1443	return(0);
1444}
1445
1446/*
1447 * Report current media status.
1448 */
1449void lge_ifmedia_sts(ifp, ifmr)
1450	struct ifnet		*ifp;
1451	struct ifmediareq	*ifmr;
1452{
1453	struct lge_softc	*sc = ifp->if_softc;
1454	struct mii_data		*mii = &sc->lge_mii;
1455
1456	mii_pollstat(mii);
1457	ifmr->ifm_active = mii->mii_media_active;
1458	ifmr->ifm_status = mii->mii_media_status;
1459
1460	return;
1461}
1462
1463int lge_ioctl(ifp, command, data)
1464	struct ifnet		*ifp;
1465	u_long			command;
1466	caddr_t			data;
1467{
1468	struct lge_softc	*sc = ifp->if_softc;
1469	struct ifreq		*ifr = (struct ifreq *) data;
1470	struct ifaddr		*ifa = (struct ifaddr *)data;
1471	struct mii_data		*mii;
1472	int			s, error = 0;
1473
1474	s = splimp();
1475
1476	switch(command) {
1477	case SIOCSIFADDR:
1478		ifp->if_flags |= IFF_UP;
1479		switch (ifa->ifa_addr->sa_family) {
1480#ifdef INET
1481		case AF_INET:
1482			lge_init(sc);
1483			arp_ifinit(&sc->arpcom, ifa);
1484			break;
1485#endif /* INET */
1486		default:
1487			lge_init(sc);
1488			break;
1489                }
1490		break;
1491	case SIOCSIFMTU:
1492		if (ifr->ifr_mtu > ETHERMTU_JUMBO)
1493			error = EINVAL;
1494		else
1495			ifp->if_mtu = ifr->ifr_mtu;
1496		break;
1497	case SIOCSIFFLAGS:
1498		if (ifp->if_flags & IFF_UP) {
1499			if (ifp->if_flags & IFF_RUNNING &&
1500			    ifp->if_flags & IFF_PROMISC &&
1501			    !(sc->lge_if_flags & IFF_PROMISC)) {
1502				CSR_WRITE_4(sc, LGE_MODE1,
1503				    LGE_MODE1_SETRST_CTL1|
1504				    LGE_MODE1_RX_PROMISC);
1505			} else if (ifp->if_flags & IFF_RUNNING &&
1506			    !(ifp->if_flags & IFF_PROMISC) &&
1507			    sc->lge_if_flags & IFF_PROMISC) {
1508				CSR_WRITE_4(sc, LGE_MODE1,
1509				    LGE_MODE1_RX_PROMISC);
1510			} else {
1511				ifp->if_flags &= ~IFF_RUNNING;
1512				lge_init(sc);
1513			}
1514		} else {
1515			if (ifp->if_flags & IFF_RUNNING)
1516				lge_stop(sc);
1517		}
1518		sc->lge_if_flags = ifp->if_flags;
1519		error = 0;
1520		break;
1521	case SIOCADDMULTI:
1522	case SIOCDELMULTI:
1523		error = (command == SIOCADDMULTI)
1524			? ether_addmulti(ifr, &sc->arpcom)
1525			: ether_delmulti(ifr, &sc->arpcom);
1526
1527		if (error == ENETRESET) {
1528			if (ifp->if_flags & IFF_RUNNING)
1529				lge_setmulti(sc);
1530			error = 0;
1531		}
1532		break;
1533	case SIOCGIFMEDIA:
1534	case SIOCSIFMEDIA:
1535		mii = &sc->lge_mii;
1536		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1537		break;
1538	default:
1539		error = EINVAL;
1540		break;
1541	}
1542
1543	splx(s);
1544
1545	return(error);
1546}
1547
1548void lge_watchdog(ifp)
1549	struct ifnet		*ifp;
1550{
1551	struct lge_softc	*sc;
1552
1553	sc = ifp->if_softc;
1554
1555	ifp->if_oerrors++;
1556	printf("%s: watchdog timeout\n", sc->sc_dv.dv_xname);
1557
1558	lge_stop(sc);
1559	lge_reset(sc);
1560	ifp->if_flags &= ~IFF_RUNNING;
1561	lge_init(sc);
1562
1563	if (!IFQ_IS_EMPTY(&ifp->if_snd))
1564		lge_start(ifp);
1565
1566	return;
1567}
1568
1569/*
1570 * Stop the adapter and free any mbufs allocated to the
1571 * RX and TX lists.
1572 */
1573void lge_stop(sc)
1574	struct lge_softc	*sc;
1575{
1576	register int		i;
1577	struct ifnet		*ifp;
1578
1579	ifp = &sc->arpcom.ac_if;
1580	ifp->if_timer = 0;
1581	timeout_del(&sc->lge_timeout);
1582
1583	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1584
1585	CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_INTR_ENB);
1586
1587	/* Disable receiver and transmitter. */
1588	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_ENB|LGE_MODE1_TX_ENB);
1589	sc->lge_link = 0;
1590
1591	/*
1592	 * Free data in the RX lists.
1593	 */
1594	for (i = 0; i < LGE_RX_LIST_CNT; i++) {
1595		if (sc->lge_ldata->lge_rx_list[i].lge_mbuf != NULL) {
1596			m_freem(sc->lge_ldata->lge_rx_list[i].lge_mbuf);
1597			sc->lge_ldata->lge_rx_list[i].lge_mbuf = NULL;
1598		}
1599	}
1600	bzero((char *)&sc->lge_ldata->lge_rx_list,
1601		sizeof(sc->lge_ldata->lge_rx_list));
1602
1603	/*
1604	 * Free the TX list buffers.
1605	 */
1606	for (i = 0; i < LGE_TX_LIST_CNT; i++) {
1607		if (sc->lge_ldata->lge_tx_list[i].lge_mbuf != NULL) {
1608			m_freem(sc->lge_ldata->lge_tx_list[i].lge_mbuf);
1609			sc->lge_ldata->lge_tx_list[i].lge_mbuf = NULL;
1610		}
1611	}
1612
1613	bzero((char *)&sc->lge_ldata->lge_tx_list,
1614		sizeof(sc->lge_ldata->lge_tx_list));
1615
1616	return;
1617}
1618
1619/*
1620 * Stop all chip I/O so that the kernel's probe routines don't
1621 * get confused by errant DMAs when rebooting.
1622 */
1623void lge_shutdown(xsc)
1624	void *xsc;
1625{
1626	struct lge_softc	*sc = (struct lge_softc *)xsc;
1627
1628	lge_reset(sc);
1629	lge_stop(sc);
1630
1631	return;
1632}
1633
1634struct cfattach lge_ca = {
1635	sizeof(struct lge_softc), lge_probe, lge_attach
1636};
1637
1638struct cfdriver lge_cd = {
1639	0, "lge", DV_IFNET
1640};
1641