1// SPDX-License-Identifier: MIT
2/*
3 * Copyright �� 2014-2019 Intel Corporation
4 */
5
6#include <linux/debugfs.h>
7#include <linux/string_helpers.h>
8
9#include "gt/intel_gt.h"
10#include "i915_drv.h"
11#include "i915_irq.h"
12#include "i915_memcpy.h"
13#include "intel_guc_capture.h"
14#include "intel_guc_log.h"
15#include "intel_guc_print.h"
16
17#if defined(CONFIG_DRM_I915_DEBUG_GUC)
18#define GUC_LOG_DEFAULT_CRASH_BUFFER_SIZE	SZ_2M
19#define GUC_LOG_DEFAULT_DEBUG_BUFFER_SIZE	SZ_16M
20#define GUC_LOG_DEFAULT_CAPTURE_BUFFER_SIZE	SZ_1M
21#elif defined(CONFIG_DRM_I915_DEBUG_GEM)
22#define GUC_LOG_DEFAULT_CRASH_BUFFER_SIZE	SZ_1M
23#define GUC_LOG_DEFAULT_DEBUG_BUFFER_SIZE	SZ_2M
24#define GUC_LOG_DEFAULT_CAPTURE_BUFFER_SIZE	SZ_1M
25#else
26#define GUC_LOG_DEFAULT_CRASH_BUFFER_SIZE	SZ_8K
27#define GUC_LOG_DEFAULT_DEBUG_BUFFER_SIZE	SZ_64K
28#define GUC_LOG_DEFAULT_CAPTURE_BUFFER_SIZE	SZ_1M
29#endif
30
31static void guc_log_copy_debuglogs_for_relay(struct intel_guc_log *log);
32
33struct guc_log_section {
34	u32 max;
35	u32 flag;
36	u32 default_val;
37	const char *name;
38};
39
40static void _guc_log_init_sizes(struct intel_guc_log *log)
41{
42	struct intel_guc *guc = log_to_guc(log);
43	static const struct guc_log_section sections[GUC_LOG_SECTIONS_LIMIT] = {
44		{
45			GUC_LOG_CRASH_MASK >> GUC_LOG_CRASH_SHIFT,
46			GUC_LOG_LOG_ALLOC_UNITS,
47			GUC_LOG_DEFAULT_CRASH_BUFFER_SIZE,
48			"crash dump"
49		},
50		{
51			GUC_LOG_DEBUG_MASK >> GUC_LOG_DEBUG_SHIFT,
52			GUC_LOG_LOG_ALLOC_UNITS,
53			GUC_LOG_DEFAULT_DEBUG_BUFFER_SIZE,
54			"debug",
55		},
56		{
57			GUC_LOG_CAPTURE_MASK >> GUC_LOG_CAPTURE_SHIFT,
58			GUC_LOG_CAPTURE_ALLOC_UNITS,
59			GUC_LOG_DEFAULT_CAPTURE_BUFFER_SIZE,
60			"capture",
61		}
62	};
63	int i;
64
65	for (i = 0; i < GUC_LOG_SECTIONS_LIMIT; i++)
66		log->sizes[i].bytes = sections[i].default_val;
67
68	/* If debug size > 1MB then bump default crash size to keep the same units */
69	if (log->sizes[GUC_LOG_SECTIONS_DEBUG].bytes >= SZ_1M &&
70	    GUC_LOG_DEFAULT_CRASH_BUFFER_SIZE < SZ_1M)
71		log->sizes[GUC_LOG_SECTIONS_CRASH].bytes = SZ_1M;
72
73	/* Prepare the GuC API structure fields: */
74	for (i = 0; i < GUC_LOG_SECTIONS_LIMIT; i++) {
75		/* Convert to correct units */
76		if ((log->sizes[i].bytes % SZ_1M) == 0) {
77			log->sizes[i].units = SZ_1M;
78			log->sizes[i].flag = sections[i].flag;
79		} else {
80			log->sizes[i].units = SZ_4K;
81			log->sizes[i].flag = 0;
82		}
83
84		if (!IS_ALIGNED(log->sizes[i].bytes, log->sizes[i].units))
85			guc_err(guc, "Mis-aligned log %s size: 0x%X vs 0x%X!\n",
86				sections[i].name, log->sizes[i].bytes, log->sizes[i].units);
87		log->sizes[i].count = log->sizes[i].bytes / log->sizes[i].units;
88
89		if (!log->sizes[i].count) {
90			guc_err(guc, "Zero log %s size!\n", sections[i].name);
91		} else {
92			/* Size is +1 unit */
93			log->sizes[i].count--;
94		}
95
96		/* Clip to field size */
97		if (log->sizes[i].count > sections[i].max) {
98			guc_err(guc, "log %s size too large: %d vs %d!\n",
99				sections[i].name, log->sizes[i].count + 1, sections[i].max + 1);
100			log->sizes[i].count = sections[i].max;
101		}
102	}
103
104	if (log->sizes[GUC_LOG_SECTIONS_CRASH].units != log->sizes[GUC_LOG_SECTIONS_DEBUG].units) {
105		guc_err(guc, "Unit mismatch for crash and debug sections: %d vs %d!\n",
106			log->sizes[GUC_LOG_SECTIONS_CRASH].units,
107			log->sizes[GUC_LOG_SECTIONS_DEBUG].units);
108		log->sizes[GUC_LOG_SECTIONS_CRASH].units = log->sizes[GUC_LOG_SECTIONS_DEBUG].units;
109		log->sizes[GUC_LOG_SECTIONS_CRASH].count = 0;
110	}
111
112	log->sizes_initialised = true;
113}
114
115static void guc_log_init_sizes(struct intel_guc_log *log)
116{
117	if (log->sizes_initialised)
118		return;
119
120	_guc_log_init_sizes(log);
121}
122
123static u32 intel_guc_log_section_size_crash(struct intel_guc_log *log)
124{
125	guc_log_init_sizes(log);
126
127	return log->sizes[GUC_LOG_SECTIONS_CRASH].bytes;
128}
129
130static u32 intel_guc_log_section_size_debug(struct intel_guc_log *log)
131{
132	guc_log_init_sizes(log);
133
134	return log->sizes[GUC_LOG_SECTIONS_DEBUG].bytes;
135}
136
137u32 intel_guc_log_section_size_capture(struct intel_guc_log *log)
138{
139	guc_log_init_sizes(log);
140
141	return log->sizes[GUC_LOG_SECTIONS_CAPTURE].bytes;
142}
143
144static u32 intel_guc_log_size(struct intel_guc_log *log)
145{
146	/*
147	 *  GuC Log buffer Layout:
148	 *
149	 *  NB: Ordering must follow "enum guc_log_buffer_type".
150	 *
151	 *  +===============================+ 00B
152	 *  |      Debug state header       |
153	 *  +-------------------------------+ 32B
154	 *  |    Crash dump state header    |
155	 *  +-------------------------------+ 64B
156	 *  |     Capture state header      |
157	 *  +-------------------------------+ 96B
158	 *  |                               |
159	 *  +===============================+ PAGE_SIZE (4KB)
160	 *  |          Debug logs           |
161	 *  +===============================+ + DEBUG_SIZE
162	 *  |        Crash Dump logs        |
163	 *  +===============================+ + CRASH_SIZE
164	 *  |         Capture logs          |
165	 *  +===============================+ + CAPTURE_SIZE
166	 */
167	return PAGE_SIZE +
168		intel_guc_log_section_size_crash(log) +
169		intel_guc_log_section_size_debug(log) +
170		intel_guc_log_section_size_capture(log);
171}
172
173/**
174 * DOC: GuC firmware log
175 *
176 * Firmware log is enabled by setting i915.guc_log_level to the positive level.
177 * Log data is printed out via reading debugfs i915_guc_log_dump. Reading from
178 * i915_guc_load_status will print out firmware loading status and scratch
179 * registers value.
180 */
181
182static int guc_action_flush_log_complete(struct intel_guc *guc)
183{
184	u32 action[] = {
185		INTEL_GUC_ACTION_LOG_BUFFER_FILE_FLUSH_COMPLETE,
186		GUC_DEBUG_LOG_BUFFER
187	};
188
189	return intel_guc_send_nb(guc, action, ARRAY_SIZE(action), 0);
190}
191
192static int guc_action_flush_log(struct intel_guc *guc)
193{
194	u32 action[] = {
195		INTEL_GUC_ACTION_FORCE_LOG_BUFFER_FLUSH,
196		0
197	};
198
199	return intel_guc_send(guc, action, ARRAY_SIZE(action));
200}
201
202static int guc_action_control_log(struct intel_guc *guc, bool enable,
203				  bool default_logging, u32 verbosity)
204{
205	u32 action[] = {
206		INTEL_GUC_ACTION_UK_LOG_ENABLE_LOGGING,
207		(enable ? GUC_LOG_CONTROL_LOGGING_ENABLED : 0) |
208		(verbosity << GUC_LOG_CONTROL_VERBOSITY_SHIFT) |
209		(default_logging ? GUC_LOG_CONTROL_DEFAULT_LOGGING : 0)
210	};
211
212	GEM_BUG_ON(verbosity > GUC_LOG_VERBOSITY_MAX);
213
214	return intel_guc_send(guc, action, ARRAY_SIZE(action));
215}
216
217#ifdef __linux__
218
219/*
220 * Sub buffer switch callback. Called whenever relay has to switch to a new
221 * sub buffer, relay stays on the same sub buffer if 0 is returned.
222 */
223static int subbuf_start_callback(struct rchan_buf *buf,
224				 void *subbuf,
225				 void *prev_subbuf,
226				 size_t prev_padding)
227{
228	/*
229	 * Use no-overwrite mode by default, where relay will stop accepting
230	 * new data if there are no empty sub buffers left.
231	 * There is no strict synchronization enforced by relay between Consumer
232	 * and Producer. In overwrite mode, there is a possibility of getting
233	 * inconsistent/garbled data, the producer could be writing on to the
234	 * same sub buffer from which Consumer is reading. This can't be avoided
235	 * unless Consumer is fast enough and can always run in tandem with
236	 * Producer.
237	 */
238	if (relay_buf_full(buf))
239		return 0;
240
241	return 1;
242}
243
244/*
245 * file_create() callback. Creates relay file in debugfs.
246 */
247static struct dentry *create_buf_file_callback(const char *filename,
248					       struct dentry *parent,
249					       umode_t mode,
250					       struct rchan_buf *buf,
251					       int *is_global)
252{
253	struct dentry *buf_file;
254
255	/*
256	 * This to enable the use of a single buffer for the relay channel and
257	 * correspondingly have a single file exposed to User, through which
258	 * it can collect the logs in order without any post-processing.
259	 * Need to set 'is_global' even if parent is NULL for early logging.
260	 */
261	*is_global = 1;
262
263	if (!parent)
264		return NULL;
265
266	buf_file = debugfs_create_file(filename, mode,
267				       parent, buf, &relay_file_operations);
268	if (IS_ERR(buf_file))
269		return NULL;
270
271	return buf_file;
272}
273
274/*
275 * file_remove() default callback. Removes relay file in debugfs.
276 */
277static int remove_buf_file_callback(struct dentry *dentry)
278{
279	debugfs_remove(dentry);
280	return 0;
281}
282
283/* relay channel callbacks */
284static const struct rchan_callbacks relay_callbacks = {
285	.subbuf_start = subbuf_start_callback,
286	.create_buf_file = create_buf_file_callback,
287	.remove_buf_file = remove_buf_file_callback,
288};
289
290#endif /* __linux__ */
291
292static void guc_move_to_next_buf(struct intel_guc_log *log)
293{
294	STUB();
295#ifdef notyet
296	/*
297	 * Make sure the updates made in the sub buffer are visible when
298	 * Consumer sees the following update to offset inside the sub buffer.
299	 */
300	smp_wmb();
301
302	/* All data has been written, so now move the offset of sub buffer. */
303	relay_reserve(log->relay.channel, log->vma->obj->base.size -
304					  intel_guc_log_section_size_capture(log));
305
306	/* Switch to the next sub buffer */
307	relay_flush(log->relay.channel);
308#endif
309}
310
311static void *guc_get_write_buffer(struct intel_guc_log *log)
312{
313	STUB();
314	return NULL;
315#ifdef notyet
316	/*
317	 * Just get the base address of a new sub buffer and copy data into it
318	 * ourselves. NULL will be returned in no-overwrite mode, if all sub
319	 * buffers are full. Could have used the relay_write() to indirectly
320	 * copy the data, but that would have been bit convoluted, as we need to
321	 * write to only certain locations inside a sub buffer which cannot be
322	 * done without using relay_reserve() along with relay_write(). So its
323	 * better to use relay_reserve() alone.
324	 */
325	return relay_reserve(log->relay.channel, 0);
326#endif
327}
328
329bool intel_guc_check_log_buf_overflow(struct intel_guc_log *log,
330				      enum guc_log_buffer_type type,
331				      unsigned int full_cnt)
332{
333	unsigned int prev_full_cnt = log->stats[type].sampled_overflow;
334	bool overflow = false;
335
336	if (full_cnt != prev_full_cnt) {
337		overflow = true;
338
339		log->stats[type].overflow = full_cnt;
340		log->stats[type].sampled_overflow += full_cnt - prev_full_cnt;
341
342		if (full_cnt < prev_full_cnt) {
343			/* buffer_full_cnt is a 4 bit counter */
344			log->stats[type].sampled_overflow += 16;
345		}
346
347		guc_notice_ratelimited(log_to_guc(log), "log buffer overflow\n");
348	}
349
350	return overflow;
351}
352
353unsigned int intel_guc_get_log_buffer_size(struct intel_guc_log *log,
354					   enum guc_log_buffer_type type)
355{
356	switch (type) {
357	case GUC_DEBUG_LOG_BUFFER:
358		return intel_guc_log_section_size_debug(log);
359	case GUC_CRASH_DUMP_LOG_BUFFER:
360		return intel_guc_log_section_size_crash(log);
361	case GUC_CAPTURE_LOG_BUFFER:
362		return intel_guc_log_section_size_capture(log);
363	default:
364		MISSING_CASE(type);
365	}
366
367	return 0;
368}
369
370size_t intel_guc_get_log_buffer_offset(struct intel_guc_log *log,
371				       enum guc_log_buffer_type type)
372{
373	enum guc_log_buffer_type i;
374	size_t offset = PAGE_SIZE;/* for the log_buffer_states */
375
376	for (i = GUC_DEBUG_LOG_BUFFER; i < GUC_MAX_LOG_BUFFER; ++i) {
377		if (i == type)
378			break;
379		offset += intel_guc_get_log_buffer_size(log, i);
380	}
381
382	return offset;
383}
384
385static void _guc_log_copy_debuglogs_for_relay(struct intel_guc_log *log)
386{
387	struct intel_guc *guc = log_to_guc(log);
388	unsigned int buffer_size, read_offset, write_offset, bytes_to_copy, full_cnt;
389	struct guc_log_buffer_state *log_buf_state, *log_buf_snapshot_state;
390	struct guc_log_buffer_state log_buf_state_local;
391	enum guc_log_buffer_type type;
392	void *src_data, *dst_data;
393	bool new_overflow;
394
395	mutex_lock(&log->relay.lock);
396
397	if (guc_WARN_ON(guc, !intel_guc_log_relay_created(log)))
398		goto out_unlock;
399
400	/* Get the pointer to shared GuC log buffer */
401	src_data = log->buf_addr;
402	log_buf_state = src_data;
403
404	/* Get the pointer to local buffer to store the logs */
405	log_buf_snapshot_state = dst_data = guc_get_write_buffer(log);
406
407	if (unlikely(!log_buf_snapshot_state)) {
408		/*
409		 * Used rate limited to avoid deluge of messages, logs might be
410		 * getting consumed by User at a slow rate.
411		 */
412		guc_err_ratelimited(guc, "no sub-buffer to copy general logs\n");
413		log->relay.full_count++;
414
415		goto out_unlock;
416	}
417
418	/* Actual logs are present from the 2nd page */
419	src_data += PAGE_SIZE;
420	dst_data += PAGE_SIZE;
421
422	/* For relay logging, we exclude error state capture */
423	for (type = GUC_DEBUG_LOG_BUFFER; type <= GUC_CRASH_DUMP_LOG_BUFFER; type++) {
424		/*
425		 * Make a copy of the state structure, inside GuC log buffer
426		 * (which is uncached mapped), on the stack to avoid reading
427		 * from it multiple times.
428		 */
429		memcpy(&log_buf_state_local, log_buf_state,
430		       sizeof(struct guc_log_buffer_state));
431		buffer_size = intel_guc_get_log_buffer_size(log, type);
432		read_offset = log_buf_state_local.read_ptr;
433		write_offset = log_buf_state_local.sampled_write_ptr;
434		full_cnt = log_buf_state_local.buffer_full_cnt;
435
436		/* Bookkeeping stuff */
437		log->stats[type].flush += log_buf_state_local.flush_to_file;
438		new_overflow = intel_guc_check_log_buf_overflow(log, type, full_cnt);
439
440		/* Update the state of shared log buffer */
441		log_buf_state->read_ptr = write_offset;
442		log_buf_state->flush_to_file = 0;
443		log_buf_state++;
444
445		/* First copy the state structure in snapshot buffer */
446		memcpy(log_buf_snapshot_state, &log_buf_state_local,
447		       sizeof(struct guc_log_buffer_state));
448
449		/*
450		 * The write pointer could have been updated by GuC firmware,
451		 * after sending the flush interrupt to Host, for consistency
452		 * set write pointer value to same value of sampled_write_ptr
453		 * in the snapshot buffer.
454		 */
455		log_buf_snapshot_state->write_ptr = write_offset;
456		log_buf_snapshot_state++;
457
458		/* Now copy the actual logs. */
459		if (unlikely(new_overflow)) {
460			/* copy the whole buffer in case of overflow */
461			read_offset = 0;
462			write_offset = buffer_size;
463		} else if (unlikely((read_offset > buffer_size) ||
464				    (write_offset > buffer_size))) {
465			guc_err(guc, "invalid log buffer state\n");
466			/* copy whole buffer as offsets are unreliable */
467			read_offset = 0;
468			write_offset = buffer_size;
469		}
470
471		/* Just copy the newly written data */
472		if (read_offset > write_offset) {
473			i915_memcpy_from_wc(dst_data, src_data, write_offset);
474			bytes_to_copy = buffer_size - read_offset;
475		} else {
476			bytes_to_copy = write_offset - read_offset;
477		}
478		i915_memcpy_from_wc(dst_data + read_offset,
479				    src_data + read_offset, bytes_to_copy);
480
481		src_data += buffer_size;
482		dst_data += buffer_size;
483	}
484
485	guc_move_to_next_buf(log);
486
487out_unlock:
488	mutex_unlock(&log->relay.lock);
489}
490
491static void copy_debug_logs_work(struct work_struct *work)
492{
493	struct intel_guc_log *log =
494		container_of(work, struct intel_guc_log, relay.flush_work);
495
496	guc_log_copy_debuglogs_for_relay(log);
497}
498
499static int guc_log_relay_map(struct intel_guc_log *log)
500{
501	lockdep_assert_held(&log->relay.lock);
502
503	if (!log->vma || !log->buf_addr)
504		return -ENODEV;
505
506	/*
507	 * WC vmalloc mapping of log buffer pages was done at
508	 * GuC Log Init time, but lets keep a ref for book-keeping
509	 */
510	i915_gem_object_get(log->vma->obj);
511	log->relay.buf_in_use = true;
512
513	return 0;
514}
515
516static void guc_log_relay_unmap(struct intel_guc_log *log)
517{
518	lockdep_assert_held(&log->relay.lock);
519
520	i915_gem_object_put(log->vma->obj);
521	log->relay.buf_in_use = false;
522}
523
524void intel_guc_log_init_early(struct intel_guc_log *log)
525{
526	rw_init(&log->relay.lock, "rllk");
527	INIT_WORK(&log->relay.flush_work, copy_debug_logs_work);
528	log->relay.started = false;
529}
530
531static int guc_log_relay_create(struct intel_guc_log *log)
532{
533	STUB();
534	return -ENOSYS;
535#ifdef notyet
536	struct intel_guc *guc = log_to_guc(log);
537	struct drm_i915_private *i915 = guc_to_gt(guc)->i915;
538	struct rchan *guc_log_relay_chan;
539	size_t n_subbufs, subbuf_size;
540	int ret;
541
542	lockdep_assert_held(&log->relay.lock);
543	GEM_BUG_ON(!log->vma);
544
545	 /*
546	  * Keep the size of sub buffers same as shared log buffer
547	  * but GuC log-events excludes the error-state-capture logs
548	  */
549	subbuf_size = log->vma->size - intel_guc_log_section_size_capture(log);
550
551	/*
552	 * Store up to 8 snapshots, which is large enough to buffer sufficient
553	 * boot time logs and provides enough leeway to User, in terms of
554	 * latency, for consuming the logs from relay. Also doesn't take
555	 * up too much memory.
556	 */
557	n_subbufs = 8;
558
559	if (!guc->dbgfs_node)
560		return -ENOENT;
561
562	guc_log_relay_chan = relay_open("guc_log",
563					guc->dbgfs_node,
564					subbuf_size, n_subbufs,
565					&relay_callbacks, i915);
566	if (!guc_log_relay_chan) {
567		guc_err(guc, "Couldn't create relay channel for logging\n");
568
569		ret = -ENOMEM;
570		return ret;
571	}
572
573	GEM_BUG_ON(guc_log_relay_chan->subbuf_size < subbuf_size);
574	log->relay.channel = guc_log_relay_chan;
575
576	return 0;
577#endif
578}
579
580static void guc_log_relay_destroy(struct intel_guc_log *log)
581{
582	STUB();
583#ifdef notyet
584	lockdep_assert_held(&log->relay.lock);
585
586	relay_close(log->relay.channel);
587	log->relay.channel = NULL;
588#endif
589}
590
591static void guc_log_copy_debuglogs_for_relay(struct intel_guc_log *log)
592{
593	struct intel_guc *guc = log_to_guc(log);
594	struct drm_i915_private *i915 = guc_to_gt(guc)->i915;
595	intel_wakeref_t wakeref;
596
597	_guc_log_copy_debuglogs_for_relay(log);
598
599	/*
600	 * Generally device is expected to be active only at this
601	 * time, so get/put should be really quick.
602	 */
603	with_intel_runtime_pm(&i915->runtime_pm, wakeref)
604		guc_action_flush_log_complete(guc);
605}
606
607static u32 __get_default_log_level(struct intel_guc_log *log)
608{
609	struct intel_guc *guc = log_to_guc(log);
610	struct drm_i915_private *i915 = guc_to_gt(guc)->i915;
611
612	/* A negative value means "use platform/config default" */
613	if (i915->params.guc_log_level < 0) {
614		return (IS_ENABLED(CONFIG_DRM_I915_DEBUG) ||
615			IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) ?
616			GUC_LOG_LEVEL_MAX : GUC_LOG_LEVEL_NON_VERBOSE;
617	}
618
619	if (i915->params.guc_log_level > GUC_LOG_LEVEL_MAX) {
620		guc_warn(guc, "Log verbosity param out of range: %d > %d!\n",
621			 i915->params.guc_log_level, GUC_LOG_LEVEL_MAX);
622		return (IS_ENABLED(CONFIG_DRM_I915_DEBUG) ||
623			IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) ?
624			GUC_LOG_LEVEL_MAX : GUC_LOG_LEVEL_DISABLED;
625	}
626
627	GEM_BUG_ON(i915->params.guc_log_level < GUC_LOG_LEVEL_DISABLED);
628	GEM_BUG_ON(i915->params.guc_log_level > GUC_LOG_LEVEL_MAX);
629	return i915->params.guc_log_level;
630}
631
632int intel_guc_log_create(struct intel_guc_log *log)
633{
634	struct intel_guc *guc = log_to_guc(log);
635	struct i915_vma *vma;
636	void *vaddr;
637	u32 guc_log_size;
638	int ret;
639
640	GEM_BUG_ON(log->vma);
641
642	guc_log_size = intel_guc_log_size(log);
643
644	vma = intel_guc_allocate_vma(guc, guc_log_size);
645	if (IS_ERR(vma)) {
646		ret = PTR_ERR(vma);
647		goto err;
648	}
649
650	log->vma = vma;
651	/*
652	 * Create a WC (Uncached for read) vmalloc mapping up front immediate access to
653	 * data from memory during  critical events such as error capture
654	 */
655	vaddr = i915_gem_object_pin_map_unlocked(log->vma->obj, I915_MAP_WC);
656	if (IS_ERR(vaddr)) {
657		ret = PTR_ERR(vaddr);
658		i915_vma_unpin_and_release(&log->vma, 0);
659		goto err;
660	}
661	log->buf_addr = vaddr;
662
663	log->level = __get_default_log_level(log);
664	guc_dbg(guc, "guc_log_level=%d (%s, verbose:%s, verbosity:%d)\n",
665		log->level, str_enabled_disabled(log->level),
666		str_yes_no(GUC_LOG_LEVEL_IS_VERBOSE(log->level)),
667		GUC_LOG_LEVEL_TO_VERBOSITY(log->level));
668
669	return 0;
670
671err:
672	guc_err(guc, "Failed to allocate or map log buffer %pe\n", ERR_PTR(ret));
673	return ret;
674}
675
676void intel_guc_log_destroy(struct intel_guc_log *log)
677{
678	log->buf_addr = NULL;
679	i915_vma_unpin_and_release(&log->vma, I915_VMA_RELEASE_MAP);
680}
681
682int intel_guc_log_set_level(struct intel_guc_log *log, u32 level)
683{
684	struct intel_guc *guc = log_to_guc(log);
685	struct drm_i915_private *i915 = guc_to_gt(guc)->i915;
686	intel_wakeref_t wakeref;
687	int ret = 0;
688
689	BUILD_BUG_ON(GUC_LOG_VERBOSITY_MIN != 0);
690	GEM_BUG_ON(!log->vma);
691
692	/*
693	 * GuC is recognizing log levels starting from 0 to max, we're using 0
694	 * as indication that logging should be disabled.
695	 */
696	if (level < GUC_LOG_LEVEL_DISABLED || level > GUC_LOG_LEVEL_MAX)
697		return -EINVAL;
698
699	mutex_lock(&i915->drm.struct_mutex);
700
701	if (log->level == level)
702		goto out_unlock;
703
704	with_intel_runtime_pm(&i915->runtime_pm, wakeref)
705		ret = guc_action_control_log(guc,
706					     GUC_LOG_LEVEL_IS_VERBOSE(level),
707					     GUC_LOG_LEVEL_IS_ENABLED(level),
708					     GUC_LOG_LEVEL_TO_VERBOSITY(level));
709	if (ret) {
710		guc_dbg(guc, "guc_log_control action failed %pe\n", ERR_PTR(ret));
711		goto out_unlock;
712	}
713
714	log->level = level;
715
716out_unlock:
717	mutex_unlock(&i915->drm.struct_mutex);
718
719	return ret;
720}
721
722bool intel_guc_log_relay_created(const struct intel_guc_log *log)
723{
724	return log->buf_addr;
725}
726
727int intel_guc_log_relay_open(struct intel_guc_log *log)
728{
729	int ret;
730
731	if (!log->vma)
732		return -ENODEV;
733
734	mutex_lock(&log->relay.lock);
735
736	if (intel_guc_log_relay_created(log)) {
737		ret = -EEXIST;
738		goto out_unlock;
739	}
740
741	/*
742	 * We require SSE 4.1 for fast reads from the GuC log buffer and
743	 * it should be present on the chipsets supporting GuC based
744	 * submissions.
745	 */
746	if (!i915_has_memcpy_from_wc()) {
747		ret = -ENXIO;
748		goto out_unlock;
749	}
750
751	ret = guc_log_relay_create(log);
752	if (ret)
753		goto out_unlock;
754
755	ret = guc_log_relay_map(log);
756	if (ret)
757		goto out_relay;
758
759	mutex_unlock(&log->relay.lock);
760
761	return 0;
762
763out_relay:
764	guc_log_relay_destroy(log);
765out_unlock:
766	mutex_unlock(&log->relay.lock);
767
768	return ret;
769}
770
771int intel_guc_log_relay_start(struct intel_guc_log *log)
772{
773	if (log->relay.started)
774		return -EEXIST;
775
776	/*
777	 * When GuC is logging without us relaying to userspace, we're ignoring
778	 * the flush notification. This means that we need to unconditionally
779	 * flush on relay enabling, since GuC only notifies us once.
780	 */
781	queue_work(system_highpri_wq, &log->relay.flush_work);
782
783	log->relay.started = true;
784
785	return 0;
786}
787
788void intel_guc_log_relay_flush(struct intel_guc_log *log)
789{
790	struct intel_guc *guc = log_to_guc(log);
791	intel_wakeref_t wakeref;
792
793	if (!log->relay.started)
794		return;
795
796	/*
797	 * Before initiating the forceful flush, wait for any pending/ongoing
798	 * flush to complete otherwise forceful flush may not actually happen.
799	 */
800	flush_work(&log->relay.flush_work);
801
802	with_intel_runtime_pm(guc_to_gt(guc)->uncore->rpm, wakeref)
803		guc_action_flush_log(guc);
804
805	/* GuC would have updated log buffer by now, so copy it */
806	guc_log_copy_debuglogs_for_relay(log);
807}
808
809/*
810 * Stops the relay log. Called from intel_guc_log_relay_close(), so no
811 * possibility of race with start/flush since relay_write cannot race
812 * relay_close.
813 */
814static void guc_log_relay_stop(struct intel_guc_log *log)
815{
816	struct intel_guc *guc = log_to_guc(log);
817	struct drm_i915_private *i915 = guc_to_gt(guc)->i915;
818
819	if (!log->relay.started)
820		return;
821
822	intel_synchronize_irq(i915);
823
824	flush_work(&log->relay.flush_work);
825
826	log->relay.started = false;
827}
828
829void intel_guc_log_relay_close(struct intel_guc_log *log)
830{
831	guc_log_relay_stop(log);
832
833	mutex_lock(&log->relay.lock);
834	GEM_BUG_ON(!intel_guc_log_relay_created(log));
835	guc_log_relay_unmap(log);
836	guc_log_relay_destroy(log);
837	mutex_unlock(&log->relay.lock);
838}
839
840void intel_guc_log_handle_flush_event(struct intel_guc_log *log)
841{
842	if (log->relay.started)
843		queue_work(system_highpri_wq, &log->relay.flush_work);
844}
845
846static const char *
847stringify_guc_log_type(enum guc_log_buffer_type type)
848{
849	switch (type) {
850	case GUC_DEBUG_LOG_BUFFER:
851		return "DEBUG";
852	case GUC_CRASH_DUMP_LOG_BUFFER:
853		return "CRASH";
854	case GUC_CAPTURE_LOG_BUFFER:
855		return "CAPTURE";
856	default:
857		MISSING_CASE(type);
858	}
859
860	return "";
861}
862
863/**
864 * intel_guc_log_info - dump information about GuC log relay
865 * @log: the GuC log
866 * @p: the &drm_printer
867 *
868 * Pretty printer for GuC log info
869 */
870void intel_guc_log_info(struct intel_guc_log *log, struct drm_printer *p)
871{
872	enum guc_log_buffer_type type;
873
874	if (!intel_guc_log_relay_created(log)) {
875		drm_puts(p, "GuC log relay not created\n");
876		return;
877	}
878
879	drm_puts(p, "GuC logging stats:\n");
880
881	drm_printf(p, "\tRelay full count: %u\n", log->relay.full_count);
882
883	for (type = GUC_DEBUG_LOG_BUFFER; type < GUC_MAX_LOG_BUFFER; type++) {
884		drm_printf(p, "\t%s:\tflush count %10u, overflow count %10u\n",
885			   stringify_guc_log_type(type),
886			   log->stats[type].flush,
887			   log->stats[type].sampled_overflow);
888	}
889}
890
891/**
892 * intel_guc_log_dump - dump the contents of the GuC log
893 * @log: the GuC log
894 * @p: the &drm_printer
895 * @dump_load_err: dump the log saved on GuC load error
896 *
897 * Pretty printer for the GuC log
898 */
899int intel_guc_log_dump(struct intel_guc_log *log, struct drm_printer *p,
900		       bool dump_load_err)
901{
902	struct intel_guc *guc = log_to_guc(log);
903	struct intel_uc *uc = container_of(guc, struct intel_uc, guc);
904	struct drm_i915_gem_object *obj = NULL;
905	void *map;
906	u32 *page;
907	int i, j;
908
909	if (!intel_guc_is_supported(guc))
910		return -ENODEV;
911
912	if (dump_load_err)
913		obj = uc->load_err_log;
914	else if (guc->log.vma)
915		obj = guc->log.vma->obj;
916
917	if (!obj)
918		return 0;
919
920	page = (u32 *)__get_free_page(GFP_KERNEL);
921	if (!page)
922		return -ENOMEM;
923
924	intel_guc_dump_time_info(guc, p);
925
926	map = i915_gem_object_pin_map_unlocked(obj, I915_MAP_WC);
927	if (IS_ERR(map)) {
928		guc_dbg(guc, "Failed to pin log object: %pe\n", map);
929		drm_puts(p, "(log data unaccessible)\n");
930		free_page((unsigned long)page);
931		return PTR_ERR(map);
932	}
933
934	for (i = 0; i < obj->base.size; i += PAGE_SIZE) {
935		if (!i915_memcpy_from_wc(page, map + i, PAGE_SIZE))
936			memcpy(page, map + i, PAGE_SIZE);
937
938		for (j = 0; j < PAGE_SIZE / sizeof(u32); j += 4)
939			drm_printf(p, "0x%08x 0x%08x 0x%08x 0x%08x\n",
940				   *(page + j + 0), *(page + j + 1),
941				   *(page + j + 2), *(page + j + 3));
942	}
943
944	drm_puts(p, "\n");
945
946	i915_gem_object_unpin_map(obj);
947	free_page((unsigned long)page);
948
949	return 0;
950}
951