1/* SPDX-License-Identifier: MIT */
2/*
3 * Copyright (C) 2017 Google, Inc.
4 * Copyright _ 2017-2019, Intel Corporation.
5 *
6 * Authors:
7 * Sean Paul <seanpaul@chromium.org>
8 * Ramalingam C <ramalingam.c@intel.com>
9 */
10
11#include <linux/component.h>
12#include <linux/i2c.h>
13#include <linux/random.h>
14
15#include <drm/display/drm_hdcp_helper.h>
16#include <drm/i915_component.h>
17
18#include "i915_drv.h"
19#include "i915_reg.h"
20#include "intel_connector.h"
21#include "intel_de.h"
22#include "intel_display_power.h"
23#include "intel_display_power_well.h"
24#include "intel_display_types.h"
25#include "intel_hdcp.h"
26#include "intel_hdcp_gsc.h"
27#include "intel_hdcp_regs.h"
28#include "intel_pcode.h"
29
30#define KEY_LOAD_TRIES	5
31#define HDCP2_LC_RETRY_CNT			3
32
33static int intel_conn_to_vcpi(struct drm_atomic_state *state,
34			      struct intel_connector *connector)
35{
36	struct drm_dp_mst_topology_mgr *mgr;
37	struct drm_dp_mst_atomic_payload *payload;
38	struct drm_dp_mst_topology_state *mst_state;
39	int vcpi = 0;
40
41	/* For HDMI this is forced to be 0x0. For DP SST also this is 0x0. */
42	if (!connector->port)
43		return 0;
44	mgr = connector->port->mgr;
45
46	drm_modeset_lock(&mgr->base.lock, state->acquire_ctx);
47	mst_state = to_drm_dp_mst_topology_state(mgr->base.state);
48	payload = drm_atomic_get_mst_payload_state(mst_state, connector->port);
49	if (drm_WARN_ON(mgr->dev, !payload))
50		goto out;
51
52	vcpi = payload->vcpi;
53	if (drm_WARN_ON(mgr->dev, vcpi < 0)) {
54		vcpi = 0;
55		goto out;
56	}
57out:
58	return vcpi;
59}
60
61/*
62 * intel_hdcp_required_content_stream selects the most highest common possible HDCP
63 * content_type for all streams in DP MST topology because security f/w doesn't
64 * have any provision to mark content_type for each stream separately, it marks
65 * all available streams with the content_type proivided at the time of port
66 * authentication. This may prohibit the userspace to use type1 content on
67 * HDCP 2.2 capable sink because of other sink are not capable of HDCP 2.2 in
68 * DP MST topology. Though it is not compulsory, security fw should change its
69 * policy to mark different content_types for different streams.
70 */
71static void
72intel_hdcp_required_content_stream(struct intel_digital_port *dig_port)
73{
74	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
75	bool enforce_type0 = false;
76	int k;
77
78	if (dig_port->hdcp_auth_status)
79		return;
80
81	if (!dig_port->hdcp_mst_type1_capable)
82		enforce_type0 = true;
83
84	/*
85	 * Apply common protection level across all streams in DP MST Topology.
86	 * Use highest supported content type for all streams in DP MST Topology.
87	 */
88	for (k = 0; k < data->k; k++)
89		data->streams[k].stream_type =
90			enforce_type0 ? DRM_MODE_HDCP_CONTENT_TYPE0 : DRM_MODE_HDCP_CONTENT_TYPE1;
91}
92
93static void intel_hdcp_prepare_streams(struct intel_connector *connector)
94{
95	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
96	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
97	struct intel_hdcp *hdcp = &connector->hdcp;
98
99	if (!intel_encoder_is_mst(intel_attached_encoder(connector))) {
100		data->streams[0].stream_type = hdcp->content_type;
101	} else {
102		intel_hdcp_required_content_stream(dig_port);
103	}
104}
105
106static
107bool intel_hdcp_is_ksv_valid(u8 *ksv)
108{
109	int i, ones = 0;
110	/* KSV has 20 1's and 20 0's */
111	for (i = 0; i < DRM_HDCP_KSV_LEN; i++)
112		ones += hweight8(ksv[i]);
113	if (ones != 20)
114		return false;
115
116	return true;
117}
118
119static
120int intel_hdcp_read_valid_bksv(struct intel_digital_port *dig_port,
121			       const struct intel_hdcp_shim *shim, u8 *bksv)
122{
123	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
124	int ret, i, tries = 2;
125
126	/* HDCP spec states that we must retry the bksv if it is invalid */
127	for (i = 0; i < tries; i++) {
128		ret = shim->read_bksv(dig_port, bksv);
129		if (ret)
130			return ret;
131		if (intel_hdcp_is_ksv_valid(bksv))
132			break;
133	}
134	if (i == tries) {
135		drm_dbg_kms(&i915->drm, "Bksv is invalid\n");
136		return -ENODEV;
137	}
138
139	return 0;
140}
141
142/* Is HDCP1.4 capable on Platform and Sink */
143bool intel_hdcp_capable(struct intel_connector *connector)
144{
145	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
146	const struct intel_hdcp_shim *shim = connector->hdcp.shim;
147	bool capable = false;
148	u8 bksv[5];
149
150	if (!shim)
151		return capable;
152
153	if (shim->hdcp_capable) {
154		shim->hdcp_capable(dig_port, &capable);
155	} else {
156		if (!intel_hdcp_read_valid_bksv(dig_port, shim, bksv))
157			capable = true;
158	}
159
160	return capable;
161}
162
163/* Is HDCP2.2 capable on Platform and Sink */
164bool intel_hdcp2_capable(struct intel_connector *connector)
165{
166	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
167	struct drm_i915_private *i915 = to_i915(connector->base.dev);
168	struct intel_hdcp *hdcp = &connector->hdcp;
169	bool capable = false;
170
171	/* I915 support for HDCP2.2 */
172	if (!hdcp->hdcp2_supported)
173		return false;
174
175	/* If MTL+ make sure gsc is loaded and proxy is setup */
176	if (intel_hdcp_gsc_cs_required(i915)) {
177		struct intel_gt *gt = i915->media_gt;
178		struct intel_gsc_uc *gsc = gt ? &gt->uc.gsc : NULL;
179
180		if (!gsc || !intel_uc_fw_is_running(&gsc->fw)) {
181			drm_dbg_kms(&i915->drm,
182				    "GSC components required for HDCP2.2 are not ready\n");
183			return false;
184		}
185	}
186
187	/* MEI/GSC interface is solid depending on which is used */
188	mutex_lock(&i915->display.hdcp.hdcp_mutex);
189	if (!i915->display.hdcp.comp_added ||  !i915->display.hdcp.arbiter) {
190		mutex_unlock(&i915->display.hdcp.hdcp_mutex);
191		return false;
192	}
193	mutex_unlock(&i915->display.hdcp.hdcp_mutex);
194
195	/* Sink's capability for HDCP2.2 */
196	hdcp->shim->hdcp_2_2_capable(dig_port, &capable);
197
198	return capable;
199}
200
201static bool intel_hdcp_in_use(struct drm_i915_private *i915,
202			      enum transcoder cpu_transcoder, enum port port)
203{
204	return intel_de_read(i915,
205			     HDCP_STATUS(i915, cpu_transcoder, port)) &
206		HDCP_STATUS_ENC;
207}
208
209static bool intel_hdcp2_in_use(struct drm_i915_private *i915,
210			       enum transcoder cpu_transcoder, enum port port)
211{
212	return intel_de_read(i915,
213			     HDCP2_STATUS(i915, cpu_transcoder, port)) &
214		LINK_ENCRYPTION_STATUS;
215}
216
217static int intel_hdcp_poll_ksv_fifo(struct intel_digital_port *dig_port,
218				    const struct intel_hdcp_shim *shim)
219{
220	int ret, read_ret;
221	bool ksv_ready;
222
223	/* Poll for ksv list ready (spec says max time allowed is 5s) */
224	ret = __wait_for(read_ret = shim->read_ksv_ready(dig_port,
225							 &ksv_ready),
226			 read_ret || ksv_ready, 5 * 1000 * 1000, 1000,
227			 100 * 1000);
228	if (ret)
229		return ret;
230	if (read_ret)
231		return read_ret;
232	if (!ksv_ready)
233		return -ETIMEDOUT;
234
235	return 0;
236}
237
238static bool hdcp_key_loadable(struct drm_i915_private *i915)
239{
240	enum i915_power_well_id id;
241	intel_wakeref_t wakeref;
242	bool enabled = false;
243
244	/*
245	 * On HSW and BDW, Display HW loads the Key as soon as Display resumes.
246	 * On all BXT+, SW can load the keys only when the PW#1 is turned on.
247	 */
248	if (IS_HASWELL(i915) || IS_BROADWELL(i915))
249		id = HSW_DISP_PW_GLOBAL;
250	else
251		id = SKL_DISP_PW_1;
252
253	/* PG1 (power well #1) needs to be enabled */
254	with_intel_runtime_pm(&i915->runtime_pm, wakeref)
255		enabled = intel_display_power_well_is_enabled(i915, id);
256
257	/*
258	 * Another req for hdcp key loadability is enabled state of pll for
259	 * cdclk. Without active crtc we wont land here. So we are assuming that
260	 * cdclk is already on.
261	 */
262
263	return enabled;
264}
265
266static void intel_hdcp_clear_keys(struct drm_i915_private *i915)
267{
268	intel_de_write(i915, HDCP_KEY_CONF, HDCP_CLEAR_KEYS_TRIGGER);
269	intel_de_write(i915, HDCP_KEY_STATUS,
270		       HDCP_KEY_LOAD_DONE | HDCP_KEY_LOAD_STATUS | HDCP_FUSE_IN_PROGRESS | HDCP_FUSE_ERROR | HDCP_FUSE_DONE);
271}
272
273static int intel_hdcp_load_keys(struct drm_i915_private *i915)
274{
275	int ret;
276	u32 val;
277
278	val = intel_de_read(i915, HDCP_KEY_STATUS);
279	if ((val & HDCP_KEY_LOAD_DONE) && (val & HDCP_KEY_LOAD_STATUS))
280		return 0;
281
282	/*
283	 * On HSW and BDW HW loads the HDCP1.4 Key when Display comes
284	 * out of reset. So if Key is not already loaded, its an error state.
285	 */
286	if (IS_HASWELL(i915) || IS_BROADWELL(i915))
287		if (!(intel_de_read(i915, HDCP_KEY_STATUS) & HDCP_KEY_LOAD_DONE))
288			return -ENXIO;
289
290	/*
291	 * Initiate loading the HDCP key from fuses.
292	 *
293	 * BXT+ platforms, HDCP key needs to be loaded by SW. Only display
294	 * version 9 platforms (minus BXT) differ in the key load trigger
295	 * process from other platforms. These platforms use the GT Driver
296	 * Mailbox interface.
297	 */
298	if (DISPLAY_VER(i915) == 9 && !IS_BROXTON(i915)) {
299		ret = snb_pcode_write(&i915->uncore, SKL_PCODE_LOAD_HDCP_KEYS, 1);
300		if (ret) {
301			drm_err(&i915->drm,
302				"Failed to initiate HDCP key load (%d)\n",
303				ret);
304			return ret;
305		}
306	} else {
307		intel_de_write(i915, HDCP_KEY_CONF, HDCP_KEY_LOAD_TRIGGER);
308	}
309
310	/* Wait for the keys to load (500us) */
311	ret = __intel_wait_for_register(&i915->uncore, HDCP_KEY_STATUS,
312					HDCP_KEY_LOAD_DONE, HDCP_KEY_LOAD_DONE,
313					10, 1, &val);
314	if (ret)
315		return ret;
316	else if (!(val & HDCP_KEY_LOAD_STATUS))
317		return -ENXIO;
318
319	/* Send Aksv over to PCH display for use in authentication */
320	intel_de_write(i915, HDCP_KEY_CONF, HDCP_AKSV_SEND_TRIGGER);
321
322	return 0;
323}
324
325/* Returns updated SHA-1 index */
326static int intel_write_sha_text(struct drm_i915_private *i915, u32 sha_text)
327{
328	intel_de_write(i915, HDCP_SHA_TEXT, sha_text);
329	if (intel_de_wait_for_set(i915, HDCP_REP_CTL, HDCP_SHA1_READY, 1)) {
330		drm_err(&i915->drm, "Timed out waiting for SHA1 ready\n");
331		return -ETIMEDOUT;
332	}
333	return 0;
334}
335
336static
337u32 intel_hdcp_get_repeater_ctl(struct drm_i915_private *i915,
338				enum transcoder cpu_transcoder, enum port port)
339{
340	if (DISPLAY_VER(i915) >= 12) {
341		switch (cpu_transcoder) {
342		case TRANSCODER_A:
343			return HDCP_TRANSA_REP_PRESENT |
344			       HDCP_TRANSA_SHA1_M0;
345		case TRANSCODER_B:
346			return HDCP_TRANSB_REP_PRESENT |
347			       HDCP_TRANSB_SHA1_M0;
348		case TRANSCODER_C:
349			return HDCP_TRANSC_REP_PRESENT |
350			       HDCP_TRANSC_SHA1_M0;
351		case TRANSCODER_D:
352			return HDCP_TRANSD_REP_PRESENT |
353			       HDCP_TRANSD_SHA1_M0;
354		default:
355			drm_err(&i915->drm, "Unknown transcoder %d\n",
356				cpu_transcoder);
357			return -EINVAL;
358		}
359	}
360
361	switch (port) {
362	case PORT_A:
363		return HDCP_DDIA_REP_PRESENT | HDCP_DDIA_SHA1_M0;
364	case PORT_B:
365		return HDCP_DDIB_REP_PRESENT | HDCP_DDIB_SHA1_M0;
366	case PORT_C:
367		return HDCP_DDIC_REP_PRESENT | HDCP_DDIC_SHA1_M0;
368	case PORT_D:
369		return HDCP_DDID_REP_PRESENT | HDCP_DDID_SHA1_M0;
370	case PORT_E:
371		return HDCP_DDIE_REP_PRESENT | HDCP_DDIE_SHA1_M0;
372	default:
373		drm_err(&i915->drm, "Unknown port %d\n", port);
374		return -EINVAL;
375	}
376}
377
378static
379int intel_hdcp_validate_v_prime(struct intel_connector *connector,
380				const struct intel_hdcp_shim *shim,
381				u8 *ksv_fifo, u8 num_downstream, u8 *bstatus)
382{
383	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
384	struct drm_i915_private *i915 = to_i915(connector->base.dev);
385	enum transcoder cpu_transcoder = connector->hdcp.cpu_transcoder;
386	enum port port = dig_port->base.port;
387	u32 vprime, sha_text, sha_leftovers, rep_ctl;
388	int ret, i, j, sha_idx;
389
390	/* Process V' values from the receiver */
391	for (i = 0; i < DRM_HDCP_V_PRIME_NUM_PARTS; i++) {
392		ret = shim->read_v_prime_part(dig_port, i, &vprime);
393		if (ret)
394			return ret;
395		intel_de_write(i915, HDCP_SHA_V_PRIME(i), vprime);
396	}
397
398	/*
399	 * We need to write the concatenation of all device KSVs, BINFO (DP) ||
400	 * BSTATUS (HDMI), and M0 (which is added via HDCP_REP_CTL). This byte
401	 * stream is written via the HDCP_SHA_TEXT register in 32-bit
402	 * increments. Every 64 bytes, we need to write HDCP_REP_CTL again. This
403	 * index will keep track of our progress through the 64 bytes as well as
404	 * helping us work the 40-bit KSVs through our 32-bit register.
405	 *
406	 * NOTE: data passed via HDCP_SHA_TEXT should be big-endian
407	 */
408	sha_idx = 0;
409	sha_text = 0;
410	sha_leftovers = 0;
411	rep_ctl = intel_hdcp_get_repeater_ctl(i915, cpu_transcoder, port);
412	intel_de_write(i915, HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_32);
413	for (i = 0; i < num_downstream; i++) {
414		unsigned int sha_empty;
415		u8 *ksv = &ksv_fifo[i * DRM_HDCP_KSV_LEN];
416
417		/* Fill up the empty slots in sha_text and write it out */
418		sha_empty = sizeof(sha_text) - sha_leftovers;
419		for (j = 0; j < sha_empty; j++) {
420			u8 off = ((sizeof(sha_text) - j - 1 - sha_leftovers) * 8);
421			sha_text |= ksv[j] << off;
422		}
423
424		ret = intel_write_sha_text(i915, sha_text);
425		if (ret < 0)
426			return ret;
427
428		/* Programming guide writes this every 64 bytes */
429		sha_idx += sizeof(sha_text);
430		if (!(sha_idx % 64))
431			intel_de_write(i915, HDCP_REP_CTL,
432				       rep_ctl | HDCP_SHA1_TEXT_32);
433
434		/* Store the leftover bytes from the ksv in sha_text */
435		sha_leftovers = DRM_HDCP_KSV_LEN - sha_empty;
436		sha_text = 0;
437		for (j = 0; j < sha_leftovers; j++)
438			sha_text |= ksv[sha_empty + j] <<
439					((sizeof(sha_text) - j - 1) * 8);
440
441		/*
442		 * If we still have room in sha_text for more data, continue.
443		 * Otherwise, write it out immediately.
444		 */
445		if (sizeof(sha_text) > sha_leftovers)
446			continue;
447
448		ret = intel_write_sha_text(i915, sha_text);
449		if (ret < 0)
450			return ret;
451		sha_leftovers = 0;
452		sha_text = 0;
453		sha_idx += sizeof(sha_text);
454	}
455
456	/*
457	 * We need to write BINFO/BSTATUS, and M0 now. Depending on how many
458	 * bytes are leftover from the last ksv, we might be able to fit them
459	 * all in sha_text (first 2 cases), or we might need to split them up
460	 * into 2 writes (last 2 cases).
461	 */
462	if (sha_leftovers == 0) {
463		/* Write 16 bits of text, 16 bits of M0 */
464		intel_de_write(i915, HDCP_REP_CTL,
465			       rep_ctl | HDCP_SHA1_TEXT_16);
466		ret = intel_write_sha_text(i915,
467					   bstatus[0] << 8 | bstatus[1]);
468		if (ret < 0)
469			return ret;
470		sha_idx += sizeof(sha_text);
471
472		/* Write 32 bits of M0 */
473		intel_de_write(i915, HDCP_REP_CTL,
474			       rep_ctl | HDCP_SHA1_TEXT_0);
475		ret = intel_write_sha_text(i915, 0);
476		if (ret < 0)
477			return ret;
478		sha_idx += sizeof(sha_text);
479
480		/* Write 16 bits of M0 */
481		intel_de_write(i915, HDCP_REP_CTL,
482			       rep_ctl | HDCP_SHA1_TEXT_16);
483		ret = intel_write_sha_text(i915, 0);
484		if (ret < 0)
485			return ret;
486		sha_idx += sizeof(sha_text);
487
488	} else if (sha_leftovers == 1) {
489		/* Write 24 bits of text, 8 bits of M0 */
490		intel_de_write(i915, HDCP_REP_CTL,
491			       rep_ctl | HDCP_SHA1_TEXT_24);
492		sha_text |= bstatus[0] << 16 | bstatus[1] << 8;
493		/* Only 24-bits of data, must be in the LSB */
494		sha_text = (sha_text & 0xffffff00) >> 8;
495		ret = intel_write_sha_text(i915, sha_text);
496		if (ret < 0)
497			return ret;
498		sha_idx += sizeof(sha_text);
499
500		/* Write 32 bits of M0 */
501		intel_de_write(i915, HDCP_REP_CTL,
502			       rep_ctl | HDCP_SHA1_TEXT_0);
503		ret = intel_write_sha_text(i915, 0);
504		if (ret < 0)
505			return ret;
506		sha_idx += sizeof(sha_text);
507
508		/* Write 24 bits of M0 */
509		intel_de_write(i915, HDCP_REP_CTL,
510			       rep_ctl | HDCP_SHA1_TEXT_8);
511		ret = intel_write_sha_text(i915, 0);
512		if (ret < 0)
513			return ret;
514		sha_idx += sizeof(sha_text);
515
516	} else if (sha_leftovers == 2) {
517		/* Write 32 bits of text */
518		intel_de_write(i915, HDCP_REP_CTL,
519			       rep_ctl | HDCP_SHA1_TEXT_32);
520		sha_text |= bstatus[0] << 8 | bstatus[1];
521		ret = intel_write_sha_text(i915, sha_text);
522		if (ret < 0)
523			return ret;
524		sha_idx += sizeof(sha_text);
525
526		/* Write 64 bits of M0 */
527		intel_de_write(i915, HDCP_REP_CTL,
528			       rep_ctl | HDCP_SHA1_TEXT_0);
529		for (i = 0; i < 2; i++) {
530			ret = intel_write_sha_text(i915, 0);
531			if (ret < 0)
532				return ret;
533			sha_idx += sizeof(sha_text);
534		}
535
536		/*
537		 * Terminate the SHA-1 stream by hand. For the other leftover
538		 * cases this is appended by the hardware.
539		 */
540		intel_de_write(i915, HDCP_REP_CTL,
541			       rep_ctl | HDCP_SHA1_TEXT_32);
542		sha_text = DRM_HDCP_SHA1_TERMINATOR << 24;
543		ret = intel_write_sha_text(i915, sha_text);
544		if (ret < 0)
545			return ret;
546		sha_idx += sizeof(sha_text);
547	} else if (sha_leftovers == 3) {
548		/* Write 32 bits of text (filled from LSB) */
549		intel_de_write(i915, HDCP_REP_CTL,
550			       rep_ctl | HDCP_SHA1_TEXT_32);
551		sha_text |= bstatus[0];
552		ret = intel_write_sha_text(i915, sha_text);
553		if (ret < 0)
554			return ret;
555		sha_idx += sizeof(sha_text);
556
557		/* Write 8 bits of text (filled from LSB), 24 bits of M0 */
558		intel_de_write(i915, HDCP_REP_CTL,
559			       rep_ctl | HDCP_SHA1_TEXT_8);
560		ret = intel_write_sha_text(i915, bstatus[1]);
561		if (ret < 0)
562			return ret;
563		sha_idx += sizeof(sha_text);
564
565		/* Write 32 bits of M0 */
566		intel_de_write(i915, HDCP_REP_CTL,
567			       rep_ctl | HDCP_SHA1_TEXT_0);
568		ret = intel_write_sha_text(i915, 0);
569		if (ret < 0)
570			return ret;
571		sha_idx += sizeof(sha_text);
572
573		/* Write 8 bits of M0 */
574		intel_de_write(i915, HDCP_REP_CTL,
575			       rep_ctl | HDCP_SHA1_TEXT_24);
576		ret = intel_write_sha_text(i915, 0);
577		if (ret < 0)
578			return ret;
579		sha_idx += sizeof(sha_text);
580	} else {
581		drm_dbg_kms(&i915->drm, "Invalid number of leftovers %d\n",
582			    sha_leftovers);
583		return -EINVAL;
584	}
585
586	intel_de_write(i915, HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_32);
587	/* Fill up to 64-4 bytes with zeros (leave the last write for length) */
588	while ((sha_idx % 64) < (64 - sizeof(sha_text))) {
589		ret = intel_write_sha_text(i915, 0);
590		if (ret < 0)
591			return ret;
592		sha_idx += sizeof(sha_text);
593	}
594
595	/*
596	 * Last write gets the length of the concatenation in bits. That is:
597	 *  - 5 bytes per device
598	 *  - 10 bytes for BINFO/BSTATUS(2), M0(8)
599	 */
600	sha_text = (num_downstream * 5 + 10) * 8;
601	ret = intel_write_sha_text(i915, sha_text);
602	if (ret < 0)
603		return ret;
604
605	/* Tell the HW we're done with the hash and wait for it to ACK */
606	intel_de_write(i915, HDCP_REP_CTL,
607		       rep_ctl | HDCP_SHA1_COMPLETE_HASH);
608	if (intel_de_wait_for_set(i915, HDCP_REP_CTL,
609				  HDCP_SHA1_COMPLETE, 1)) {
610		drm_err(&i915->drm, "Timed out waiting for SHA1 complete\n");
611		return -ETIMEDOUT;
612	}
613	if (!(intel_de_read(i915, HDCP_REP_CTL) & HDCP_SHA1_V_MATCH)) {
614		drm_dbg_kms(&i915->drm, "SHA-1 mismatch, HDCP failed\n");
615		return -ENXIO;
616	}
617
618	return 0;
619}
620
621/* Implements Part 2 of the HDCP authorization procedure */
622static
623int intel_hdcp_auth_downstream(struct intel_connector *connector)
624{
625	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
626	struct drm_i915_private *i915 = to_i915(connector->base.dev);
627	const struct intel_hdcp_shim *shim = connector->hdcp.shim;
628	u8 bstatus[2], num_downstream, *ksv_fifo;
629	int ret, i, tries = 3;
630
631	ret = intel_hdcp_poll_ksv_fifo(dig_port, shim);
632	if (ret) {
633		drm_dbg_kms(&i915->drm,
634			    "KSV list failed to become ready (%d)\n", ret);
635		return ret;
636	}
637
638	ret = shim->read_bstatus(dig_port, bstatus);
639	if (ret)
640		return ret;
641
642	if (DRM_HDCP_MAX_DEVICE_EXCEEDED(bstatus[0]) ||
643	    DRM_HDCP_MAX_CASCADE_EXCEEDED(bstatus[1])) {
644		drm_dbg_kms(&i915->drm, "Max Topology Limit Exceeded\n");
645		return -EPERM;
646	}
647
648	/*
649	 * When repeater reports 0 device count, HDCP1.4 spec allows disabling
650	 * the HDCP encryption. That implies that repeater can't have its own
651	 * display. As there is no consumption of encrypted content in the
652	 * repeater with 0 downstream devices, we are failing the
653	 * authentication.
654	 */
655	num_downstream = DRM_HDCP_NUM_DOWNSTREAM(bstatus[0]);
656	if (num_downstream == 0) {
657		drm_dbg_kms(&i915->drm,
658			    "Repeater with zero downstream devices\n");
659		return -EINVAL;
660	}
661
662	ksv_fifo = kcalloc(DRM_HDCP_KSV_LEN, num_downstream, GFP_KERNEL);
663	if (!ksv_fifo) {
664		drm_dbg_kms(&i915->drm, "Out of mem: ksv_fifo\n");
665		return -ENOMEM;
666	}
667
668	ret = shim->read_ksv_fifo(dig_port, num_downstream, ksv_fifo);
669	if (ret)
670		goto err;
671
672	if (drm_hdcp_check_ksvs_revoked(&i915->drm, ksv_fifo,
673					num_downstream) > 0) {
674		drm_err(&i915->drm, "Revoked Ksv(s) in ksv_fifo\n");
675		ret = -EPERM;
676		goto err;
677	}
678
679	/*
680	 * When V prime mismatches, DP Spec mandates re-read of
681	 * V prime atleast twice.
682	 */
683	for (i = 0; i < tries; i++) {
684		ret = intel_hdcp_validate_v_prime(connector, shim,
685						  ksv_fifo, num_downstream,
686						  bstatus);
687		if (!ret)
688			break;
689	}
690
691	if (i == tries) {
692		drm_dbg_kms(&i915->drm,
693			    "V Prime validation failed.(%d)\n", ret);
694		goto err;
695	}
696
697	drm_dbg_kms(&i915->drm, "HDCP is enabled (%d downstream devices)\n",
698		    num_downstream);
699	ret = 0;
700err:
701	kfree(ksv_fifo);
702	return ret;
703}
704
705/* Implements Part 1 of the HDCP authorization procedure */
706static int intel_hdcp_auth(struct intel_connector *connector)
707{
708	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
709	struct drm_i915_private *i915 = to_i915(connector->base.dev);
710	struct intel_hdcp *hdcp = &connector->hdcp;
711	const struct intel_hdcp_shim *shim = hdcp->shim;
712	enum transcoder cpu_transcoder = connector->hdcp.cpu_transcoder;
713	enum port port = dig_port->base.port;
714	unsigned long r0_prime_gen_start;
715	int ret, i, tries = 2;
716	union {
717		u32 reg[2];
718		u8 shim[DRM_HDCP_AN_LEN];
719	} an;
720	union {
721		u32 reg[2];
722		u8 shim[DRM_HDCP_KSV_LEN];
723	} bksv;
724	union {
725		u32 reg;
726		u8 shim[DRM_HDCP_RI_LEN];
727	} ri;
728	bool repeater_present, hdcp_capable;
729
730	/*
731	 * Detects whether the display is HDCP capable. Although we check for
732	 * valid Bksv below, the HDCP over DP spec requires that we check
733	 * whether the display supports HDCP before we write An. For HDMI
734	 * displays, this is not necessary.
735	 */
736	if (shim->hdcp_capable) {
737		ret = shim->hdcp_capable(dig_port, &hdcp_capable);
738		if (ret)
739			return ret;
740		if (!hdcp_capable) {
741			drm_dbg_kms(&i915->drm,
742				    "Panel is not HDCP capable\n");
743			return -EINVAL;
744		}
745	}
746
747	/* Initialize An with 2 random values and acquire it */
748	for (i = 0; i < 2; i++)
749		intel_de_write(i915,
750			       HDCP_ANINIT(i915, cpu_transcoder, port),
751			       get_random_u32());
752	intel_de_write(i915, HDCP_CONF(i915, cpu_transcoder, port),
753		       HDCP_CONF_CAPTURE_AN);
754
755	/* Wait for An to be acquired */
756	if (intel_de_wait_for_set(i915,
757				  HDCP_STATUS(i915, cpu_transcoder, port),
758				  HDCP_STATUS_AN_READY, 1)) {
759		drm_err(&i915->drm, "Timed out waiting for An\n");
760		return -ETIMEDOUT;
761	}
762
763	an.reg[0] = intel_de_read(i915,
764				  HDCP_ANLO(i915, cpu_transcoder, port));
765	an.reg[1] = intel_de_read(i915,
766				  HDCP_ANHI(i915, cpu_transcoder, port));
767	ret = shim->write_an_aksv(dig_port, an.shim);
768	if (ret)
769		return ret;
770
771	r0_prime_gen_start = jiffies;
772
773	memset(&bksv, 0, sizeof(bksv));
774
775	ret = intel_hdcp_read_valid_bksv(dig_port, shim, bksv.shim);
776	if (ret < 0)
777		return ret;
778
779	if (drm_hdcp_check_ksvs_revoked(&i915->drm, bksv.shim, 1) > 0) {
780		drm_err(&i915->drm, "BKSV is revoked\n");
781		return -EPERM;
782	}
783
784	intel_de_write(i915, HDCP_BKSVLO(i915, cpu_transcoder, port),
785		       bksv.reg[0]);
786	intel_de_write(i915, HDCP_BKSVHI(i915, cpu_transcoder, port),
787		       bksv.reg[1]);
788
789	ret = shim->repeater_present(dig_port, &repeater_present);
790	if (ret)
791		return ret;
792	if (repeater_present)
793		intel_de_write(i915, HDCP_REP_CTL,
794			       intel_hdcp_get_repeater_ctl(i915, cpu_transcoder, port));
795
796	ret = shim->toggle_signalling(dig_port, cpu_transcoder, true);
797	if (ret)
798		return ret;
799
800	intel_de_write(i915, HDCP_CONF(i915, cpu_transcoder, port),
801		       HDCP_CONF_AUTH_AND_ENC);
802
803	/* Wait for R0 ready */
804	if (wait_for(intel_de_read(i915, HDCP_STATUS(i915, cpu_transcoder, port)) &
805		     (HDCP_STATUS_R0_READY | HDCP_STATUS_ENC), 1)) {
806		drm_err(&i915->drm, "Timed out waiting for R0 ready\n");
807		return -ETIMEDOUT;
808	}
809
810	/*
811	 * Wait for R0' to become available. The spec says 100ms from Aksv, but
812	 * some monitors can take longer than this. We'll set the timeout at
813	 * 300ms just to be sure.
814	 *
815	 * On DP, there's an R0_READY bit available but no such bit
816	 * exists on HDMI. Since the upper-bound is the same, we'll just do
817	 * the stupid thing instead of polling on one and not the other.
818	 */
819	wait_remaining_ms_from_jiffies(r0_prime_gen_start, 300);
820
821	tries = 3;
822
823	/*
824	 * DP HDCP Spec mandates the two more reattempt to read R0, incase
825	 * of R0 mismatch.
826	 */
827	for (i = 0; i < tries; i++) {
828		ri.reg = 0;
829		ret = shim->read_ri_prime(dig_port, ri.shim);
830		if (ret)
831			return ret;
832		intel_de_write(i915,
833			       HDCP_RPRIME(i915, cpu_transcoder, port),
834			       ri.reg);
835
836		/* Wait for Ri prime match */
837		if (!wait_for(intel_de_read(i915, HDCP_STATUS(i915, cpu_transcoder, port)) &
838			      (HDCP_STATUS_RI_MATCH | HDCP_STATUS_ENC), 1))
839			break;
840	}
841
842	if (i == tries) {
843		drm_dbg_kms(&i915->drm,
844			    "Timed out waiting for Ri prime match (%x)\n",
845			    intel_de_read(i915,
846					  HDCP_STATUS(i915, cpu_transcoder, port)));
847		return -ETIMEDOUT;
848	}
849
850	/* Wait for encryption confirmation */
851	if (intel_de_wait_for_set(i915,
852				  HDCP_STATUS(i915, cpu_transcoder, port),
853				  HDCP_STATUS_ENC,
854				  HDCP_ENCRYPT_STATUS_CHANGE_TIMEOUT_MS)) {
855		drm_err(&i915->drm, "Timed out waiting for encryption\n");
856		return -ETIMEDOUT;
857	}
858
859	/* DP MST Auth Part 1 Step 2.a and Step 2.b */
860	if (shim->stream_encryption) {
861		ret = shim->stream_encryption(connector, true);
862		if (ret) {
863			drm_err(&i915->drm, "[%s:%d] Failed to enable HDCP 1.4 stream enc\n",
864				connector->base.name, connector->base.base.id);
865			return ret;
866		}
867		drm_dbg_kms(&i915->drm, "HDCP 1.4 transcoder: %s stream encrypted\n",
868			    transcoder_name(hdcp->stream_transcoder));
869	}
870
871	if (repeater_present)
872		return intel_hdcp_auth_downstream(connector);
873
874	drm_dbg_kms(&i915->drm, "HDCP is enabled (no repeater present)\n");
875	return 0;
876}
877
878static int _intel_hdcp_disable(struct intel_connector *connector)
879{
880	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
881	struct drm_i915_private *i915 = to_i915(connector->base.dev);
882	struct intel_hdcp *hdcp = &connector->hdcp;
883	enum port port = dig_port->base.port;
884	enum transcoder cpu_transcoder = hdcp->cpu_transcoder;
885	u32 repeater_ctl;
886	int ret;
887
888	drm_dbg_kms(&i915->drm, "[%s:%d] HDCP is being disabled...\n",
889		    connector->base.name, connector->base.base.id);
890
891	if (hdcp->shim->stream_encryption) {
892		ret = hdcp->shim->stream_encryption(connector, false);
893		if (ret) {
894			drm_err(&i915->drm, "[%s:%d] Failed to disable HDCP 1.4 stream enc\n",
895				connector->base.name, connector->base.base.id);
896			return ret;
897		}
898		drm_dbg_kms(&i915->drm, "HDCP 1.4 transcoder: %s stream encryption disabled\n",
899			    transcoder_name(hdcp->stream_transcoder));
900		/*
901		 * If there are other connectors on this port using HDCP,
902		 * don't disable it until it disabled HDCP encryption for
903		 * all connectors in MST topology.
904		 */
905		if (dig_port->num_hdcp_streams > 0)
906			return 0;
907	}
908
909	hdcp->hdcp_encrypted = false;
910	intel_de_write(i915, HDCP_CONF(i915, cpu_transcoder, port), 0);
911	if (intel_de_wait_for_clear(i915,
912				    HDCP_STATUS(i915, cpu_transcoder, port),
913				    ~0, HDCP_ENCRYPT_STATUS_CHANGE_TIMEOUT_MS)) {
914		drm_err(&i915->drm,
915			"Failed to disable HDCP, timeout clearing status\n");
916		return -ETIMEDOUT;
917	}
918
919	repeater_ctl = intel_hdcp_get_repeater_ctl(i915, cpu_transcoder,
920						   port);
921	intel_de_rmw(i915, HDCP_REP_CTL, repeater_ctl, 0);
922
923	ret = hdcp->shim->toggle_signalling(dig_port, cpu_transcoder, false);
924	if (ret) {
925		drm_err(&i915->drm, "Failed to disable HDCP signalling\n");
926		return ret;
927	}
928
929	drm_dbg_kms(&i915->drm, "HDCP is disabled\n");
930	return 0;
931}
932
933static int _intel_hdcp_enable(struct intel_connector *connector)
934{
935	struct drm_i915_private *i915 = to_i915(connector->base.dev);
936	struct intel_hdcp *hdcp = &connector->hdcp;
937	int i, ret, tries = 3;
938
939	drm_dbg_kms(&i915->drm, "[%s:%d] HDCP is being enabled...\n",
940		    connector->base.name, connector->base.base.id);
941
942	if (!hdcp_key_loadable(i915)) {
943		drm_err(&i915->drm, "HDCP key Load is not possible\n");
944		return -ENXIO;
945	}
946
947	for (i = 0; i < KEY_LOAD_TRIES; i++) {
948		ret = intel_hdcp_load_keys(i915);
949		if (!ret)
950			break;
951		intel_hdcp_clear_keys(i915);
952	}
953	if (ret) {
954		drm_err(&i915->drm, "Could not load HDCP keys, (%d)\n",
955			ret);
956		return ret;
957	}
958
959	/* Incase of authentication failures, HDCP spec expects reauth. */
960	for (i = 0; i < tries; i++) {
961		ret = intel_hdcp_auth(connector);
962		if (!ret) {
963			hdcp->hdcp_encrypted = true;
964			return 0;
965		}
966
967		drm_dbg_kms(&i915->drm, "HDCP Auth failure (%d)\n", ret);
968
969		/* Ensuring HDCP encryption and signalling are stopped. */
970		_intel_hdcp_disable(connector);
971	}
972
973	drm_dbg_kms(&i915->drm,
974		    "HDCP authentication failed (%d tries/%d)\n", tries, ret);
975	return ret;
976}
977
978static struct intel_connector *intel_hdcp_to_connector(struct intel_hdcp *hdcp)
979{
980	return container_of(hdcp, struct intel_connector, hdcp);
981}
982
983static void intel_hdcp_update_value(struct intel_connector *connector,
984				    u64 value, bool update_property)
985{
986	struct drm_device *dev = connector->base.dev;
987	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
988	struct intel_hdcp *hdcp = &connector->hdcp;
989	struct drm_i915_private *i915 = to_i915(connector->base.dev);
990
991	drm_WARN_ON(connector->base.dev, !mutex_is_locked(&hdcp->mutex));
992
993	if (hdcp->value == value)
994		return;
995
996	drm_WARN_ON(dev, !mutex_is_locked(&dig_port->hdcp_mutex));
997
998	if (hdcp->value == DRM_MODE_CONTENT_PROTECTION_ENABLED) {
999		if (!drm_WARN_ON(dev, dig_port->num_hdcp_streams == 0))
1000			dig_port->num_hdcp_streams--;
1001	} else if (value == DRM_MODE_CONTENT_PROTECTION_ENABLED) {
1002		dig_port->num_hdcp_streams++;
1003	}
1004
1005	hdcp->value = value;
1006	if (update_property) {
1007		drm_connector_get(&connector->base);
1008		queue_work(i915->unordered_wq, &hdcp->prop_work);
1009	}
1010}
1011
1012/* Implements Part 3 of the HDCP authorization procedure */
1013static int intel_hdcp_check_link(struct intel_connector *connector)
1014{
1015	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1016	struct drm_i915_private *i915 = to_i915(connector->base.dev);
1017	struct intel_hdcp *hdcp = &connector->hdcp;
1018	enum port port = dig_port->base.port;
1019	enum transcoder cpu_transcoder;
1020	int ret = 0;
1021
1022	mutex_lock(&hdcp->mutex);
1023	mutex_lock(&dig_port->hdcp_mutex);
1024
1025	cpu_transcoder = hdcp->cpu_transcoder;
1026
1027	/* Check_link valid only when HDCP1.4 is enabled */
1028	if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_ENABLED ||
1029	    !hdcp->hdcp_encrypted) {
1030		ret = -EINVAL;
1031		goto out;
1032	}
1033
1034	if (drm_WARN_ON(&i915->drm,
1035			!intel_hdcp_in_use(i915, cpu_transcoder, port))) {
1036		drm_err(&i915->drm,
1037			"%s:%d HDCP link stopped encryption,%x\n",
1038			connector->base.name, connector->base.base.id,
1039			intel_de_read(i915, HDCP_STATUS(i915, cpu_transcoder, port)));
1040		ret = -ENXIO;
1041		intel_hdcp_update_value(connector,
1042					DRM_MODE_CONTENT_PROTECTION_DESIRED,
1043					true);
1044		goto out;
1045	}
1046
1047	if (hdcp->shim->check_link(dig_port, connector)) {
1048		if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_UNDESIRED) {
1049			intel_hdcp_update_value(connector,
1050				DRM_MODE_CONTENT_PROTECTION_ENABLED, true);
1051		}
1052		goto out;
1053	}
1054
1055	drm_dbg_kms(&i915->drm,
1056		    "[%s:%d] HDCP link failed, retrying authentication\n",
1057		    connector->base.name, connector->base.base.id);
1058
1059	ret = _intel_hdcp_disable(connector);
1060	if (ret) {
1061		drm_err(&i915->drm, "Failed to disable hdcp (%d)\n", ret);
1062		intel_hdcp_update_value(connector,
1063					DRM_MODE_CONTENT_PROTECTION_DESIRED,
1064					true);
1065		goto out;
1066	}
1067
1068	ret = _intel_hdcp_enable(connector);
1069	if (ret) {
1070		drm_err(&i915->drm, "Failed to enable hdcp (%d)\n", ret);
1071		intel_hdcp_update_value(connector,
1072					DRM_MODE_CONTENT_PROTECTION_DESIRED,
1073					true);
1074		goto out;
1075	}
1076
1077out:
1078	mutex_unlock(&dig_port->hdcp_mutex);
1079	mutex_unlock(&hdcp->mutex);
1080	return ret;
1081}
1082
1083static void intel_hdcp_prop_work(struct work_struct *work)
1084{
1085	struct intel_hdcp *hdcp = container_of(work, struct intel_hdcp,
1086					       prop_work);
1087	struct intel_connector *connector = intel_hdcp_to_connector(hdcp);
1088	struct drm_i915_private *i915 = to_i915(connector->base.dev);
1089
1090	drm_modeset_lock(&i915->drm.mode_config.connection_mutex, NULL);
1091	mutex_lock(&hdcp->mutex);
1092
1093	/*
1094	 * This worker is only used to flip between ENABLED/DESIRED. Either of
1095	 * those to UNDESIRED is handled by core. If value == UNDESIRED,
1096	 * we're running just after hdcp has been disabled, so just exit
1097	 */
1098	if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_UNDESIRED)
1099		drm_hdcp_update_content_protection(&connector->base,
1100						   hdcp->value);
1101
1102	mutex_unlock(&hdcp->mutex);
1103	drm_modeset_unlock(&i915->drm.mode_config.connection_mutex);
1104
1105	drm_connector_put(&connector->base);
1106}
1107
1108bool is_hdcp_supported(struct drm_i915_private *i915, enum port port)
1109{
1110	return DISPLAY_RUNTIME_INFO(i915)->has_hdcp &&
1111		(DISPLAY_VER(i915) >= 12 || port < PORT_E);
1112}
1113
1114static int
1115hdcp2_prepare_ake_init(struct intel_connector *connector,
1116		       struct hdcp2_ake_init *ake_data)
1117{
1118	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1119	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1120	struct drm_i915_private *i915 = to_i915(connector->base.dev);
1121	struct i915_hdcp_arbiter *arbiter;
1122	int ret;
1123
1124	mutex_lock(&i915->display.hdcp.hdcp_mutex);
1125	arbiter = i915->display.hdcp.arbiter;
1126
1127	if (!arbiter || !arbiter->ops) {
1128		mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1129		return -EINVAL;
1130	}
1131
1132	ret = arbiter->ops->initiate_hdcp2_session(arbiter->hdcp_dev, data, ake_data);
1133	if (ret)
1134		drm_dbg_kms(&i915->drm, "Prepare_ake_init failed. %d\n",
1135			    ret);
1136	mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1137
1138	return ret;
1139}
1140
1141static int
1142hdcp2_verify_rx_cert_prepare_km(struct intel_connector *connector,
1143				struct hdcp2_ake_send_cert *rx_cert,
1144				bool *paired,
1145				struct hdcp2_ake_no_stored_km *ek_pub_km,
1146				size_t *msg_sz)
1147{
1148	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1149	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1150	struct drm_i915_private *i915 = to_i915(connector->base.dev);
1151	struct i915_hdcp_arbiter *arbiter;
1152	int ret;
1153
1154	mutex_lock(&i915->display.hdcp.hdcp_mutex);
1155	arbiter = i915->display.hdcp.arbiter;
1156
1157	if (!arbiter || !arbiter->ops) {
1158		mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1159		return -EINVAL;
1160	}
1161
1162	ret = arbiter->ops->verify_receiver_cert_prepare_km(arbiter->hdcp_dev, data,
1163							 rx_cert, paired,
1164							 ek_pub_km, msg_sz);
1165	if (ret < 0)
1166		drm_dbg_kms(&i915->drm, "Verify rx_cert failed. %d\n",
1167			    ret);
1168	mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1169
1170	return ret;
1171}
1172
1173static int hdcp2_verify_hprime(struct intel_connector *connector,
1174			       struct hdcp2_ake_send_hprime *rx_hprime)
1175{
1176	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1177	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1178	struct drm_i915_private *i915 = to_i915(connector->base.dev);
1179	struct i915_hdcp_arbiter *arbiter;
1180	int ret;
1181
1182	mutex_lock(&i915->display.hdcp.hdcp_mutex);
1183	arbiter = i915->display.hdcp.arbiter;
1184
1185	if (!arbiter || !arbiter->ops) {
1186		mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1187		return -EINVAL;
1188	}
1189
1190	ret = arbiter->ops->verify_hprime(arbiter->hdcp_dev, data, rx_hprime);
1191	if (ret < 0)
1192		drm_dbg_kms(&i915->drm, "Verify hprime failed. %d\n", ret);
1193	mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1194
1195	return ret;
1196}
1197
1198static int
1199hdcp2_store_pairing_info(struct intel_connector *connector,
1200			 struct hdcp2_ake_send_pairing_info *pairing_info)
1201{
1202	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1203	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1204	struct drm_i915_private *i915 = to_i915(connector->base.dev);
1205	struct i915_hdcp_arbiter *arbiter;
1206	int ret;
1207
1208	mutex_lock(&i915->display.hdcp.hdcp_mutex);
1209	arbiter = i915->display.hdcp.arbiter;
1210
1211	if (!arbiter || !arbiter->ops) {
1212		mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1213		return -EINVAL;
1214	}
1215
1216	ret = arbiter->ops->store_pairing_info(arbiter->hdcp_dev, data, pairing_info);
1217	if (ret < 0)
1218		drm_dbg_kms(&i915->drm, "Store pairing info failed. %d\n",
1219			    ret);
1220	mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1221
1222	return ret;
1223}
1224
1225static int
1226hdcp2_prepare_lc_init(struct intel_connector *connector,
1227		      struct hdcp2_lc_init *lc_init)
1228{
1229	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1230	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1231	struct drm_i915_private *i915 = to_i915(connector->base.dev);
1232	struct i915_hdcp_arbiter *arbiter;
1233	int ret;
1234
1235	mutex_lock(&i915->display.hdcp.hdcp_mutex);
1236	arbiter = i915->display.hdcp.arbiter;
1237
1238	if (!arbiter || !arbiter->ops) {
1239		mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1240		return -EINVAL;
1241	}
1242
1243	ret = arbiter->ops->initiate_locality_check(arbiter->hdcp_dev, data, lc_init);
1244	if (ret < 0)
1245		drm_dbg_kms(&i915->drm, "Prepare lc_init failed. %d\n",
1246			    ret);
1247	mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1248
1249	return ret;
1250}
1251
1252static int
1253hdcp2_verify_lprime(struct intel_connector *connector,
1254		    struct hdcp2_lc_send_lprime *rx_lprime)
1255{
1256	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1257	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1258	struct drm_i915_private *i915 = to_i915(connector->base.dev);
1259	struct i915_hdcp_arbiter *arbiter;
1260	int ret;
1261
1262	mutex_lock(&i915->display.hdcp.hdcp_mutex);
1263	arbiter = i915->display.hdcp.arbiter;
1264
1265	if (!arbiter || !arbiter->ops) {
1266		mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1267		return -EINVAL;
1268	}
1269
1270	ret = arbiter->ops->verify_lprime(arbiter->hdcp_dev, data, rx_lprime);
1271	if (ret < 0)
1272		drm_dbg_kms(&i915->drm, "Verify L_Prime failed. %d\n",
1273			    ret);
1274	mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1275
1276	return ret;
1277}
1278
1279static int hdcp2_prepare_skey(struct intel_connector *connector,
1280			      struct hdcp2_ske_send_eks *ske_data)
1281{
1282	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1283	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1284	struct drm_i915_private *i915 = to_i915(connector->base.dev);
1285	struct i915_hdcp_arbiter *arbiter;
1286	int ret;
1287
1288	mutex_lock(&i915->display.hdcp.hdcp_mutex);
1289	arbiter = i915->display.hdcp.arbiter;
1290
1291	if (!arbiter || !arbiter->ops) {
1292		mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1293		return -EINVAL;
1294	}
1295
1296	ret = arbiter->ops->get_session_key(arbiter->hdcp_dev, data, ske_data);
1297	if (ret < 0)
1298		drm_dbg_kms(&i915->drm, "Get session key failed. %d\n",
1299			    ret);
1300	mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1301
1302	return ret;
1303}
1304
1305static int
1306hdcp2_verify_rep_topology_prepare_ack(struct intel_connector *connector,
1307				      struct hdcp2_rep_send_receiverid_list
1308								*rep_topology,
1309				      struct hdcp2_rep_send_ack *rep_send_ack)
1310{
1311	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1312	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1313	struct drm_i915_private *i915 = to_i915(connector->base.dev);
1314	struct i915_hdcp_arbiter *arbiter;
1315	int ret;
1316
1317	mutex_lock(&i915->display.hdcp.hdcp_mutex);
1318	arbiter = i915->display.hdcp.arbiter;
1319
1320	if (!arbiter || !arbiter->ops) {
1321		mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1322		return -EINVAL;
1323	}
1324
1325	ret = arbiter->ops->repeater_check_flow_prepare_ack(arbiter->hdcp_dev,
1326							    data,
1327							    rep_topology,
1328							    rep_send_ack);
1329	if (ret < 0)
1330		drm_dbg_kms(&i915->drm,
1331			    "Verify rep topology failed. %d\n", ret);
1332	mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1333
1334	return ret;
1335}
1336
1337static int
1338hdcp2_verify_mprime(struct intel_connector *connector,
1339		    struct hdcp2_rep_stream_ready *stream_ready)
1340{
1341	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1342	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1343	struct drm_i915_private *i915 = to_i915(connector->base.dev);
1344	struct i915_hdcp_arbiter *arbiter;
1345	int ret;
1346
1347	mutex_lock(&i915->display.hdcp.hdcp_mutex);
1348	arbiter = i915->display.hdcp.arbiter;
1349
1350	if (!arbiter || !arbiter->ops) {
1351		mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1352		return -EINVAL;
1353	}
1354
1355	ret = arbiter->ops->verify_mprime(arbiter->hdcp_dev, data, stream_ready);
1356	if (ret < 0)
1357		drm_dbg_kms(&i915->drm, "Verify mprime failed. %d\n", ret);
1358	mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1359
1360	return ret;
1361}
1362
1363static int hdcp2_authenticate_port(struct intel_connector *connector)
1364{
1365	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1366	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1367	struct drm_i915_private *i915 = to_i915(connector->base.dev);
1368	struct i915_hdcp_arbiter *arbiter;
1369	int ret;
1370
1371	mutex_lock(&i915->display.hdcp.hdcp_mutex);
1372	arbiter = i915->display.hdcp.arbiter;
1373
1374	if (!arbiter || !arbiter->ops) {
1375		mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1376		return -EINVAL;
1377	}
1378
1379	ret = arbiter->ops->enable_hdcp_authentication(arbiter->hdcp_dev, data);
1380	if (ret < 0)
1381		drm_dbg_kms(&i915->drm, "Enable hdcp auth failed. %d\n",
1382			    ret);
1383	mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1384
1385	return ret;
1386}
1387
1388static int hdcp2_close_session(struct intel_connector *connector)
1389{
1390	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1391	struct drm_i915_private *i915 = to_i915(connector->base.dev);
1392	struct i915_hdcp_arbiter *arbiter;
1393	int ret;
1394
1395	mutex_lock(&i915->display.hdcp.hdcp_mutex);
1396	arbiter = i915->display.hdcp.arbiter;
1397
1398	if (!arbiter || !arbiter->ops) {
1399		mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1400		return -EINVAL;
1401	}
1402
1403	ret = arbiter->ops->close_hdcp_session(arbiter->hdcp_dev,
1404					     &dig_port->hdcp_port_data);
1405	mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1406
1407	return ret;
1408}
1409
1410static int hdcp2_deauthenticate_port(struct intel_connector *connector)
1411{
1412	return hdcp2_close_session(connector);
1413}
1414
1415/* Authentication flow starts from here */
1416static int hdcp2_authentication_key_exchange(struct intel_connector *connector)
1417{
1418	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1419	struct drm_i915_private *i915 = to_i915(connector->base.dev);
1420	struct intel_hdcp *hdcp = &connector->hdcp;
1421	union {
1422		struct hdcp2_ake_init ake_init;
1423		struct hdcp2_ake_send_cert send_cert;
1424		struct hdcp2_ake_no_stored_km no_stored_km;
1425		struct hdcp2_ake_send_hprime send_hprime;
1426		struct hdcp2_ake_send_pairing_info pairing_info;
1427	} msgs;
1428	const struct intel_hdcp_shim *shim = hdcp->shim;
1429	size_t size;
1430	int ret;
1431
1432	/* Init for seq_num */
1433	hdcp->seq_num_v = 0;
1434	hdcp->seq_num_m = 0;
1435
1436	ret = hdcp2_prepare_ake_init(connector, &msgs.ake_init);
1437	if (ret < 0)
1438		return ret;
1439
1440	ret = shim->write_2_2_msg(dig_port, &msgs.ake_init,
1441				  sizeof(msgs.ake_init));
1442	if (ret < 0)
1443		return ret;
1444
1445	ret = shim->read_2_2_msg(dig_port, HDCP_2_2_AKE_SEND_CERT,
1446				 &msgs.send_cert, sizeof(msgs.send_cert));
1447	if (ret < 0)
1448		return ret;
1449
1450	if (msgs.send_cert.rx_caps[0] != HDCP_2_2_RX_CAPS_VERSION_VAL) {
1451		drm_dbg_kms(&i915->drm, "cert.rx_caps dont claim HDCP2.2\n");
1452		return -EINVAL;
1453	}
1454
1455	hdcp->is_repeater = HDCP_2_2_RX_REPEATER(msgs.send_cert.rx_caps[2]);
1456
1457	if (drm_hdcp_check_ksvs_revoked(&i915->drm,
1458					msgs.send_cert.cert_rx.receiver_id,
1459					1) > 0) {
1460		drm_err(&i915->drm, "Receiver ID is revoked\n");
1461		return -EPERM;
1462	}
1463
1464	/*
1465	 * Here msgs.no_stored_km will hold msgs corresponding to the km
1466	 * stored also.
1467	 */
1468	ret = hdcp2_verify_rx_cert_prepare_km(connector, &msgs.send_cert,
1469					      &hdcp->is_paired,
1470					      &msgs.no_stored_km, &size);
1471	if (ret < 0)
1472		return ret;
1473
1474	ret = shim->write_2_2_msg(dig_port, &msgs.no_stored_km, size);
1475	if (ret < 0)
1476		return ret;
1477
1478	ret = shim->read_2_2_msg(dig_port, HDCP_2_2_AKE_SEND_HPRIME,
1479				 &msgs.send_hprime, sizeof(msgs.send_hprime));
1480	if (ret < 0)
1481		return ret;
1482
1483	ret = hdcp2_verify_hprime(connector, &msgs.send_hprime);
1484	if (ret < 0)
1485		return ret;
1486
1487	if (!hdcp->is_paired) {
1488		/* Pairing is required */
1489		ret = shim->read_2_2_msg(dig_port,
1490					 HDCP_2_2_AKE_SEND_PAIRING_INFO,
1491					 &msgs.pairing_info,
1492					 sizeof(msgs.pairing_info));
1493		if (ret < 0)
1494			return ret;
1495
1496		ret = hdcp2_store_pairing_info(connector, &msgs.pairing_info);
1497		if (ret < 0)
1498			return ret;
1499		hdcp->is_paired = true;
1500	}
1501
1502	return 0;
1503}
1504
1505static int hdcp2_locality_check(struct intel_connector *connector)
1506{
1507	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1508	struct intel_hdcp *hdcp = &connector->hdcp;
1509	union {
1510		struct hdcp2_lc_init lc_init;
1511		struct hdcp2_lc_send_lprime send_lprime;
1512	} msgs;
1513	const struct intel_hdcp_shim *shim = hdcp->shim;
1514	int tries = HDCP2_LC_RETRY_CNT, ret, i;
1515
1516	for (i = 0; i < tries; i++) {
1517		ret = hdcp2_prepare_lc_init(connector, &msgs.lc_init);
1518		if (ret < 0)
1519			continue;
1520
1521		ret = shim->write_2_2_msg(dig_port, &msgs.lc_init,
1522				      sizeof(msgs.lc_init));
1523		if (ret < 0)
1524			continue;
1525
1526		ret = shim->read_2_2_msg(dig_port,
1527					 HDCP_2_2_LC_SEND_LPRIME,
1528					 &msgs.send_lprime,
1529					 sizeof(msgs.send_lprime));
1530		if (ret < 0)
1531			continue;
1532
1533		ret = hdcp2_verify_lprime(connector, &msgs.send_lprime);
1534		if (!ret)
1535			break;
1536	}
1537
1538	return ret;
1539}
1540
1541static int hdcp2_session_key_exchange(struct intel_connector *connector)
1542{
1543	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1544	struct intel_hdcp *hdcp = &connector->hdcp;
1545	struct hdcp2_ske_send_eks send_eks;
1546	int ret;
1547
1548	ret = hdcp2_prepare_skey(connector, &send_eks);
1549	if (ret < 0)
1550		return ret;
1551
1552	ret = hdcp->shim->write_2_2_msg(dig_port, &send_eks,
1553					sizeof(send_eks));
1554	if (ret < 0)
1555		return ret;
1556
1557	return 0;
1558}
1559
1560static
1561int _hdcp2_propagate_stream_management_info(struct intel_connector *connector)
1562{
1563	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1564	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1565	struct intel_hdcp *hdcp = &connector->hdcp;
1566	union {
1567		struct hdcp2_rep_stream_manage stream_manage;
1568		struct hdcp2_rep_stream_ready stream_ready;
1569	} msgs;
1570	const struct intel_hdcp_shim *shim = hdcp->shim;
1571	int ret, streams_size_delta, i;
1572
1573	if (connector->hdcp.seq_num_m > HDCP_2_2_SEQ_NUM_MAX)
1574		return -ERANGE;
1575
1576	/* Prepare RepeaterAuth_Stream_Manage msg */
1577	msgs.stream_manage.msg_id = HDCP_2_2_REP_STREAM_MANAGE;
1578	drm_hdcp_cpu_to_be24(msgs.stream_manage.seq_num_m, hdcp->seq_num_m);
1579
1580	msgs.stream_manage.k = cpu_to_be16(data->k);
1581
1582	for (i = 0; i < data->k; i++) {
1583		msgs.stream_manage.streams[i].stream_id = data->streams[i].stream_id;
1584		msgs.stream_manage.streams[i].stream_type = data->streams[i].stream_type;
1585	}
1586
1587	streams_size_delta = (HDCP_2_2_MAX_CONTENT_STREAMS_CNT - data->k) *
1588				sizeof(struct hdcp2_streamid_type);
1589	/* Send it to Repeater */
1590	ret = shim->write_2_2_msg(dig_port, &msgs.stream_manage,
1591				  sizeof(msgs.stream_manage) - streams_size_delta);
1592	if (ret < 0)
1593		goto out;
1594
1595	ret = shim->read_2_2_msg(dig_port, HDCP_2_2_REP_STREAM_READY,
1596				 &msgs.stream_ready, sizeof(msgs.stream_ready));
1597	if (ret < 0)
1598		goto out;
1599
1600	data->seq_num_m = hdcp->seq_num_m;
1601
1602	ret = hdcp2_verify_mprime(connector, &msgs.stream_ready);
1603
1604out:
1605	hdcp->seq_num_m++;
1606
1607	return ret;
1608}
1609
1610static
1611int hdcp2_authenticate_repeater_topology(struct intel_connector *connector)
1612{
1613	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1614	struct drm_i915_private *i915 = to_i915(connector->base.dev);
1615	struct intel_hdcp *hdcp = &connector->hdcp;
1616	union {
1617		struct hdcp2_rep_send_receiverid_list recvid_list;
1618		struct hdcp2_rep_send_ack rep_ack;
1619	} msgs;
1620	const struct intel_hdcp_shim *shim = hdcp->shim;
1621	u32 seq_num_v, device_cnt;
1622	u8 *rx_info;
1623	int ret;
1624
1625	ret = shim->read_2_2_msg(dig_port, HDCP_2_2_REP_SEND_RECVID_LIST,
1626				 &msgs.recvid_list, sizeof(msgs.recvid_list));
1627	if (ret < 0)
1628		return ret;
1629
1630	rx_info = msgs.recvid_list.rx_info;
1631
1632	if (HDCP_2_2_MAX_CASCADE_EXCEEDED(rx_info[1]) ||
1633	    HDCP_2_2_MAX_DEVS_EXCEEDED(rx_info[1])) {
1634		drm_dbg_kms(&i915->drm, "Topology Max Size Exceeded\n");
1635		return -EINVAL;
1636	}
1637
1638	/*
1639	 * MST topology is not Type 1 capable if it contains a downstream
1640	 * device that is only HDCP 1.x or Legacy HDCP 2.0/2.1 compliant.
1641	 */
1642	dig_port->hdcp_mst_type1_capable =
1643		!HDCP_2_2_HDCP1_DEVICE_CONNECTED(rx_info[1]) &&
1644		!HDCP_2_2_HDCP_2_0_REP_CONNECTED(rx_info[1]);
1645
1646	/* Converting and Storing the seq_num_v to local variable as DWORD */
1647	seq_num_v =
1648		drm_hdcp_be24_to_cpu((const u8 *)msgs.recvid_list.seq_num_v);
1649
1650	if (!hdcp->hdcp2_encrypted && seq_num_v) {
1651		drm_dbg_kms(&i915->drm,
1652			    "Non zero Seq_num_v at first RecvId_List msg\n");
1653		return -EINVAL;
1654	}
1655
1656	if (seq_num_v < hdcp->seq_num_v) {
1657		/* Roll over of the seq_num_v from repeater. Reauthenticate. */
1658		drm_dbg_kms(&i915->drm, "Seq_num_v roll over.\n");
1659		return -EINVAL;
1660	}
1661
1662	device_cnt = (HDCP_2_2_DEV_COUNT_HI(rx_info[0]) << 4 |
1663		      HDCP_2_2_DEV_COUNT_LO(rx_info[1]));
1664	if (drm_hdcp_check_ksvs_revoked(&i915->drm,
1665					msgs.recvid_list.receiver_ids,
1666					device_cnt) > 0) {
1667		drm_err(&i915->drm, "Revoked receiver ID(s) is in list\n");
1668		return -EPERM;
1669	}
1670
1671	ret = hdcp2_verify_rep_topology_prepare_ack(connector,
1672						    &msgs.recvid_list,
1673						    &msgs.rep_ack);
1674	if (ret < 0)
1675		return ret;
1676
1677	hdcp->seq_num_v = seq_num_v;
1678	ret = shim->write_2_2_msg(dig_port, &msgs.rep_ack,
1679				  sizeof(msgs.rep_ack));
1680	if (ret < 0)
1681		return ret;
1682
1683	return 0;
1684}
1685
1686static int hdcp2_authenticate_sink(struct intel_connector *connector)
1687{
1688	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1689	struct drm_i915_private *i915 = to_i915(connector->base.dev);
1690	struct intel_hdcp *hdcp = &connector->hdcp;
1691	const struct intel_hdcp_shim *shim = hdcp->shim;
1692	int ret;
1693
1694	ret = hdcp2_authentication_key_exchange(connector);
1695	if (ret < 0) {
1696		drm_dbg_kms(&i915->drm, "AKE Failed. Err : %d\n", ret);
1697		return ret;
1698	}
1699
1700	ret = hdcp2_locality_check(connector);
1701	if (ret < 0) {
1702		drm_dbg_kms(&i915->drm,
1703			    "Locality Check failed. Err : %d\n", ret);
1704		return ret;
1705	}
1706
1707	ret = hdcp2_session_key_exchange(connector);
1708	if (ret < 0) {
1709		drm_dbg_kms(&i915->drm, "SKE Failed. Err : %d\n", ret);
1710		return ret;
1711	}
1712
1713	if (shim->config_stream_type) {
1714		ret = shim->config_stream_type(dig_port,
1715					       hdcp->is_repeater,
1716					       hdcp->content_type);
1717		if (ret < 0)
1718			return ret;
1719	}
1720
1721	if (hdcp->is_repeater) {
1722		ret = hdcp2_authenticate_repeater_topology(connector);
1723		if (ret < 0) {
1724			drm_dbg_kms(&i915->drm,
1725				    "Repeater Auth Failed. Err: %d\n", ret);
1726			return ret;
1727		}
1728	}
1729
1730	return ret;
1731}
1732
1733static int hdcp2_enable_stream_encryption(struct intel_connector *connector)
1734{
1735	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1736	struct drm_i915_private *i915 = to_i915(connector->base.dev);
1737	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1738	struct intel_hdcp *hdcp = &connector->hdcp;
1739	enum transcoder cpu_transcoder = hdcp->cpu_transcoder;
1740	enum port port = dig_port->base.port;
1741	int ret = 0;
1742
1743	if (!(intel_de_read(i915, HDCP2_STATUS(i915, cpu_transcoder, port)) &
1744			    LINK_ENCRYPTION_STATUS)) {
1745		drm_err(&i915->drm, "[%s:%d] HDCP 2.2 Link is not encrypted\n",
1746			connector->base.name, connector->base.base.id);
1747		ret = -EPERM;
1748		goto link_recover;
1749	}
1750
1751	if (hdcp->shim->stream_2_2_encryption) {
1752		ret = hdcp->shim->stream_2_2_encryption(connector, true);
1753		if (ret) {
1754			drm_err(&i915->drm, "[%s:%d] Failed to enable HDCP 2.2 stream enc\n",
1755				connector->base.name, connector->base.base.id);
1756			return ret;
1757		}
1758		drm_dbg_kms(&i915->drm, "HDCP 2.2 transcoder: %s stream encrypted\n",
1759			    transcoder_name(hdcp->stream_transcoder));
1760	}
1761
1762	return 0;
1763
1764link_recover:
1765	if (hdcp2_deauthenticate_port(connector) < 0)
1766		drm_dbg_kms(&i915->drm, "Port deauth failed.\n");
1767
1768	dig_port->hdcp_auth_status = false;
1769	data->k = 0;
1770
1771	return ret;
1772}
1773
1774static int hdcp2_enable_encryption(struct intel_connector *connector)
1775{
1776	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1777	struct drm_i915_private *i915 = to_i915(connector->base.dev);
1778	struct intel_hdcp *hdcp = &connector->hdcp;
1779	enum port port = dig_port->base.port;
1780	enum transcoder cpu_transcoder = hdcp->cpu_transcoder;
1781	int ret;
1782
1783	drm_WARN_ON(&i915->drm,
1784		    intel_de_read(i915, HDCP2_STATUS(i915, cpu_transcoder, port)) &
1785		    LINK_ENCRYPTION_STATUS);
1786	if (hdcp->shim->toggle_signalling) {
1787		ret = hdcp->shim->toggle_signalling(dig_port, cpu_transcoder,
1788						    true);
1789		if (ret) {
1790			drm_err(&i915->drm,
1791				"Failed to enable HDCP signalling. %d\n",
1792				ret);
1793			return ret;
1794		}
1795	}
1796
1797	if (intel_de_read(i915, HDCP2_STATUS(i915, cpu_transcoder, port)) &
1798	    LINK_AUTH_STATUS)
1799		/* Link is Authenticated. Now set for Encryption */
1800		intel_de_rmw(i915, HDCP2_CTL(i915, cpu_transcoder, port),
1801			     0, CTL_LINK_ENCRYPTION_REQ);
1802
1803	ret = intel_de_wait_for_set(i915,
1804				    HDCP2_STATUS(i915, cpu_transcoder,
1805						 port),
1806				    LINK_ENCRYPTION_STATUS,
1807				    HDCP_ENCRYPT_STATUS_CHANGE_TIMEOUT_MS);
1808	dig_port->hdcp_auth_status = true;
1809
1810	return ret;
1811}
1812
1813static int hdcp2_disable_encryption(struct intel_connector *connector)
1814{
1815	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1816	struct drm_i915_private *i915 = to_i915(connector->base.dev);
1817	struct intel_hdcp *hdcp = &connector->hdcp;
1818	enum port port = dig_port->base.port;
1819	enum transcoder cpu_transcoder = hdcp->cpu_transcoder;
1820	int ret;
1821
1822	drm_WARN_ON(&i915->drm, !(intel_de_read(i915, HDCP2_STATUS(i915, cpu_transcoder, port)) &
1823				      LINK_ENCRYPTION_STATUS));
1824
1825	intel_de_rmw(i915, HDCP2_CTL(i915, cpu_transcoder, port),
1826		     CTL_LINK_ENCRYPTION_REQ, 0);
1827
1828	ret = intel_de_wait_for_clear(i915,
1829				      HDCP2_STATUS(i915, cpu_transcoder,
1830						   port),
1831				      LINK_ENCRYPTION_STATUS,
1832				      HDCP_ENCRYPT_STATUS_CHANGE_TIMEOUT_MS);
1833	if (ret == -ETIMEDOUT)
1834		drm_dbg_kms(&i915->drm, "Disable Encryption Timedout");
1835
1836	if (hdcp->shim->toggle_signalling) {
1837		ret = hdcp->shim->toggle_signalling(dig_port, cpu_transcoder,
1838						    false);
1839		if (ret) {
1840			drm_err(&i915->drm,
1841				"Failed to disable HDCP signalling. %d\n",
1842				ret);
1843			return ret;
1844		}
1845	}
1846
1847	return ret;
1848}
1849
1850static int
1851hdcp2_propagate_stream_management_info(struct intel_connector *connector)
1852{
1853	struct drm_i915_private *i915 = to_i915(connector->base.dev);
1854	int i, tries = 3, ret;
1855
1856	if (!connector->hdcp.is_repeater)
1857		return 0;
1858
1859	for (i = 0; i < tries; i++) {
1860		ret = _hdcp2_propagate_stream_management_info(connector);
1861		if (!ret)
1862			break;
1863
1864		/* Lets restart the auth incase of seq_num_m roll over */
1865		if (connector->hdcp.seq_num_m > HDCP_2_2_SEQ_NUM_MAX) {
1866			drm_dbg_kms(&i915->drm,
1867				    "seq_num_m roll over.(%d)\n", ret);
1868			break;
1869		}
1870
1871		drm_dbg_kms(&i915->drm,
1872			    "HDCP2 stream management %d of %d Failed.(%d)\n",
1873			    i + 1, tries, ret);
1874	}
1875
1876	return ret;
1877}
1878
1879static int hdcp2_authenticate_and_encrypt(struct intel_connector *connector)
1880{
1881	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1882	struct drm_i915_private *i915 = to_i915(connector->base.dev);
1883	int ret = 0, i, tries = 3;
1884
1885	for (i = 0; i < tries && !dig_port->hdcp_auth_status; i++) {
1886		ret = hdcp2_authenticate_sink(connector);
1887		if (!ret) {
1888			intel_hdcp_prepare_streams(connector);
1889
1890			ret = hdcp2_propagate_stream_management_info(connector);
1891			if (ret) {
1892				drm_dbg_kms(&i915->drm,
1893					    "Stream management failed.(%d)\n",
1894					    ret);
1895				break;
1896			}
1897
1898			ret = hdcp2_authenticate_port(connector);
1899			if (!ret)
1900				break;
1901			drm_dbg_kms(&i915->drm, "HDCP2 port auth failed.(%d)\n",
1902				    ret);
1903		}
1904
1905		/* Clearing the mei hdcp session */
1906		drm_dbg_kms(&i915->drm, "HDCP2.2 Auth %d of %d Failed.(%d)\n",
1907			    i + 1, tries, ret);
1908		if (hdcp2_deauthenticate_port(connector) < 0)
1909			drm_dbg_kms(&i915->drm, "Port deauth failed.\n");
1910	}
1911
1912	if (!ret && !dig_port->hdcp_auth_status) {
1913		/*
1914		 * Ensuring the required 200mSec min time interval between
1915		 * Session Key Exchange and encryption.
1916		 */
1917		drm_msleep(HDCP_2_2_DELAY_BEFORE_ENCRYPTION_EN);
1918		ret = hdcp2_enable_encryption(connector);
1919		if (ret < 0) {
1920			drm_dbg_kms(&i915->drm,
1921				    "Encryption Enable Failed.(%d)\n", ret);
1922			if (hdcp2_deauthenticate_port(connector) < 0)
1923				drm_dbg_kms(&i915->drm, "Port deauth failed.\n");
1924		}
1925	}
1926
1927	if (!ret)
1928		ret = hdcp2_enable_stream_encryption(connector);
1929
1930	return ret;
1931}
1932
1933static int _intel_hdcp2_enable(struct intel_connector *connector)
1934{
1935	struct drm_i915_private *i915 = to_i915(connector->base.dev);
1936	struct intel_hdcp *hdcp = &connector->hdcp;
1937	int ret;
1938
1939	drm_dbg_kms(&i915->drm, "[%s:%d] HDCP2.2 is being enabled. Type: %d\n",
1940		    connector->base.name, connector->base.base.id,
1941		    hdcp->content_type);
1942
1943	ret = hdcp2_authenticate_and_encrypt(connector);
1944	if (ret) {
1945		drm_dbg_kms(&i915->drm, "HDCP2 Type%d  Enabling Failed. (%d)\n",
1946			    hdcp->content_type, ret);
1947		return ret;
1948	}
1949
1950	drm_dbg_kms(&i915->drm, "[%s:%d] HDCP2.2 is enabled. Type %d\n",
1951		    connector->base.name, connector->base.base.id,
1952		    hdcp->content_type);
1953
1954	hdcp->hdcp2_encrypted = true;
1955	return 0;
1956}
1957
1958static int
1959_intel_hdcp2_disable(struct intel_connector *connector, bool hdcp2_link_recovery)
1960{
1961	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1962	struct drm_i915_private *i915 = to_i915(connector->base.dev);
1963	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1964	struct intel_hdcp *hdcp = &connector->hdcp;
1965	int ret;
1966
1967	drm_dbg_kms(&i915->drm, "[%s:%d] HDCP2.2 is being Disabled\n",
1968		    connector->base.name, connector->base.base.id);
1969
1970	if (hdcp->shim->stream_2_2_encryption) {
1971		ret = hdcp->shim->stream_2_2_encryption(connector, false);
1972		if (ret) {
1973			drm_err(&i915->drm, "[%s:%d] Failed to disable HDCP 2.2 stream enc\n",
1974				connector->base.name, connector->base.base.id);
1975			return ret;
1976		}
1977		drm_dbg_kms(&i915->drm, "HDCP 2.2 transcoder: %s stream encryption disabled\n",
1978			    transcoder_name(hdcp->stream_transcoder));
1979
1980		if (dig_port->num_hdcp_streams > 0 && !hdcp2_link_recovery)
1981			return 0;
1982	}
1983
1984	ret = hdcp2_disable_encryption(connector);
1985
1986	if (hdcp2_deauthenticate_port(connector) < 0)
1987		drm_dbg_kms(&i915->drm, "Port deauth failed.\n");
1988
1989	connector->hdcp.hdcp2_encrypted = false;
1990	dig_port->hdcp_auth_status = false;
1991	data->k = 0;
1992
1993	return ret;
1994}
1995
1996/* Implements the Link Integrity Check for HDCP2.2 */
1997static int intel_hdcp2_check_link(struct intel_connector *connector)
1998{
1999	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
2000	struct drm_i915_private *i915 = to_i915(connector->base.dev);
2001	struct intel_hdcp *hdcp = &connector->hdcp;
2002	enum port port = dig_port->base.port;
2003	enum transcoder cpu_transcoder;
2004	int ret = 0;
2005
2006	mutex_lock(&hdcp->mutex);
2007	mutex_lock(&dig_port->hdcp_mutex);
2008	cpu_transcoder = hdcp->cpu_transcoder;
2009
2010	/* hdcp2_check_link is expected only when HDCP2.2 is Enabled */
2011	if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_ENABLED ||
2012	    !hdcp->hdcp2_encrypted) {
2013		ret = -EINVAL;
2014		goto out;
2015	}
2016
2017	if (drm_WARN_ON(&i915->drm,
2018			!intel_hdcp2_in_use(i915, cpu_transcoder, port))) {
2019		drm_err(&i915->drm,
2020			"HDCP2.2 link stopped the encryption, %x\n",
2021			intel_de_read(i915, HDCP2_STATUS(i915, cpu_transcoder, port)));
2022		ret = -ENXIO;
2023		_intel_hdcp2_disable(connector, true);
2024		intel_hdcp_update_value(connector,
2025					DRM_MODE_CONTENT_PROTECTION_DESIRED,
2026					true);
2027		goto out;
2028	}
2029
2030	ret = hdcp->shim->check_2_2_link(dig_port, connector);
2031	if (ret == HDCP_LINK_PROTECTED) {
2032		if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_UNDESIRED) {
2033			intel_hdcp_update_value(connector,
2034					DRM_MODE_CONTENT_PROTECTION_ENABLED,
2035					true);
2036		}
2037		goto out;
2038	}
2039
2040	if (ret == HDCP_TOPOLOGY_CHANGE) {
2041		if (hdcp->value == DRM_MODE_CONTENT_PROTECTION_UNDESIRED)
2042			goto out;
2043
2044		drm_dbg_kms(&i915->drm,
2045			    "HDCP2.2 Downstream topology change\n");
2046		ret = hdcp2_authenticate_repeater_topology(connector);
2047		if (!ret) {
2048			intel_hdcp_update_value(connector,
2049					DRM_MODE_CONTENT_PROTECTION_ENABLED,
2050					true);
2051			goto out;
2052		}
2053		drm_dbg_kms(&i915->drm,
2054			    "[%s:%d] Repeater topology auth failed.(%d)\n",
2055			    connector->base.name, connector->base.base.id,
2056			    ret);
2057	} else {
2058		drm_dbg_kms(&i915->drm,
2059			    "[%s:%d] HDCP2.2 link failed, retrying auth\n",
2060			    connector->base.name, connector->base.base.id);
2061	}
2062
2063	ret = _intel_hdcp2_disable(connector, true);
2064	if (ret) {
2065		drm_err(&i915->drm,
2066			"[%s:%d] Failed to disable hdcp2.2 (%d)\n",
2067			connector->base.name, connector->base.base.id, ret);
2068		intel_hdcp_update_value(connector,
2069				DRM_MODE_CONTENT_PROTECTION_DESIRED, true);
2070		goto out;
2071	}
2072
2073	ret = _intel_hdcp2_enable(connector);
2074	if (ret) {
2075		drm_dbg_kms(&i915->drm,
2076			    "[%s:%d] Failed to enable hdcp2.2 (%d)\n",
2077			    connector->base.name, connector->base.base.id,
2078			    ret);
2079		intel_hdcp_update_value(connector,
2080					DRM_MODE_CONTENT_PROTECTION_DESIRED,
2081					true);
2082		goto out;
2083	}
2084
2085out:
2086	mutex_unlock(&dig_port->hdcp_mutex);
2087	mutex_unlock(&hdcp->mutex);
2088	return ret;
2089}
2090
2091static void intel_hdcp_check_work(struct work_struct *work)
2092{
2093	struct intel_hdcp *hdcp = container_of(to_delayed_work(work),
2094					       struct intel_hdcp,
2095					       check_work);
2096	struct intel_connector *connector = intel_hdcp_to_connector(hdcp);
2097	struct drm_i915_private *i915 = to_i915(connector->base.dev);
2098
2099	if (drm_connector_is_unregistered(&connector->base))
2100		return;
2101
2102	if (!intel_hdcp2_check_link(connector))
2103		queue_delayed_work(i915->unordered_wq, &hdcp->check_work,
2104				   DRM_HDCP2_CHECK_PERIOD_MS);
2105	else if (!intel_hdcp_check_link(connector))
2106		queue_delayed_work(i915->unordered_wq, &hdcp->check_work,
2107				   DRM_HDCP_CHECK_PERIOD_MS);
2108}
2109
2110#ifdef notyet
2111static int i915_hdcp_component_bind(struct device *i915_kdev,
2112				    struct device *mei_kdev, void *data)
2113{
2114	struct drm_i915_private *i915 = kdev_to_i915(i915_kdev);
2115
2116	drm_dbg(&i915->drm, "I915 HDCP comp bind\n");
2117	mutex_lock(&i915->display.hdcp.hdcp_mutex);
2118	i915->display.hdcp.arbiter = (struct i915_hdcp_arbiter *)data;
2119	i915->display.hdcp.arbiter->hdcp_dev = mei_kdev;
2120	mutex_unlock(&i915->display.hdcp.hdcp_mutex);
2121
2122	return 0;
2123}
2124
2125static void i915_hdcp_component_unbind(struct device *i915_kdev,
2126				       struct device *mei_kdev, void *data)
2127{
2128	struct drm_i915_private *i915 = kdev_to_i915(i915_kdev);
2129
2130	drm_dbg(&i915->drm, "I915 HDCP comp unbind\n");
2131	mutex_lock(&i915->display.hdcp.hdcp_mutex);
2132	i915->display.hdcp.arbiter = NULL;
2133	mutex_unlock(&i915->display.hdcp.hdcp_mutex);
2134}
2135
2136static const struct component_ops i915_hdcp_ops = {
2137	.bind   = i915_hdcp_component_bind,
2138	.unbind = i915_hdcp_component_unbind,
2139};
2140
2141static enum hdcp_ddi intel_get_hdcp_ddi_index(enum port port)
2142{
2143	switch (port) {
2144	case PORT_A:
2145		return HDCP_DDI_A;
2146	case PORT_B ... PORT_F:
2147		return (enum hdcp_ddi)port;
2148	default:
2149		return HDCP_DDI_INVALID_PORT;
2150	}
2151}
2152
2153static enum hdcp_transcoder intel_get_hdcp_transcoder(enum transcoder cpu_transcoder)
2154{
2155	switch (cpu_transcoder) {
2156	case TRANSCODER_A ... TRANSCODER_D:
2157		return (enum hdcp_transcoder)(cpu_transcoder | 0x10);
2158	default: /* eDP, DSI TRANSCODERS are non HDCP capable */
2159		return HDCP_INVALID_TRANSCODER;
2160	}
2161}
2162#endif /* notyet */
2163
2164static int initialize_hdcp_port_data(struct intel_connector *connector,
2165				     struct intel_digital_port *dig_port,
2166				     const struct intel_hdcp_shim *shim)
2167{
2168	STUB();
2169	return -ENOSYS;
2170#ifdef notyet
2171	struct drm_i915_private *i915 = to_i915(connector->base.dev);
2172	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
2173	enum port port = dig_port->base.port;
2174
2175	if (DISPLAY_VER(i915) < 12)
2176		data->hdcp_ddi = intel_get_hdcp_ddi_index(port);
2177	else
2178		/*
2179		 * As per ME FW API expectation, for GEN 12+, hdcp_ddi is filled
2180		 * with zero(INVALID PORT index).
2181		 */
2182		data->hdcp_ddi = HDCP_DDI_INVALID_PORT;
2183
2184	/*
2185	 * As associated transcoder is set and modified at modeset, here hdcp_transcoder
2186	 * is initialized to zero (invalid transcoder index). This will be
2187	 * retained for <Gen12 forever.
2188	 */
2189	data->hdcp_transcoder = HDCP_INVALID_TRANSCODER;
2190
2191	data->port_type = (u8)HDCP_PORT_TYPE_INTEGRATED;
2192	data->protocol = (u8)shim->protocol;
2193
2194	if (!data->streams)
2195		data->streams = kcalloc(INTEL_NUM_PIPES(i915),
2196					sizeof(struct hdcp2_streamid_type),
2197					GFP_KERNEL);
2198	if (!data->streams) {
2199		drm_err(&i915->drm, "Out of Memory\n");
2200		return -ENOMEM;
2201	}
2202
2203	return 0;
2204#endif
2205}
2206
2207static bool is_hdcp2_supported(struct drm_i915_private *i915)
2208{
2209	if (intel_hdcp_gsc_cs_required(i915))
2210		return true;
2211
2212	if (!IS_ENABLED(CONFIG_INTEL_MEI_HDCP))
2213		return false;
2214
2215	return (DISPLAY_VER(i915) >= 10 ||
2216		IS_KABYLAKE(i915) ||
2217		IS_COFFEELAKE(i915) ||
2218		IS_COMETLAKE(i915));
2219}
2220
2221void intel_hdcp_component_init(struct drm_i915_private *i915)
2222{
2223	int ret;
2224
2225	if (!is_hdcp2_supported(i915))
2226		return;
2227
2228	STUB();
2229#ifdef notyet
2230	mutex_lock(&i915->display.hdcp.hdcp_mutex);
2231	drm_WARN_ON(&i915->drm, i915->display.hdcp.comp_added);
2232
2233	i915->display.hdcp.comp_added = true;
2234	mutex_unlock(&i915->display.hdcp.hdcp_mutex);
2235	if (intel_hdcp_gsc_cs_required(i915))
2236		ret = intel_hdcp_gsc_init(i915);
2237	else
2238		ret = component_add_typed(i915->drm.dev, &i915_hdcp_ops,
2239					  I915_COMPONENT_HDCP);
2240
2241	if (ret < 0) {
2242		drm_dbg_kms(&i915->drm, "Failed at fw component add(%d)\n",
2243			    ret);
2244		mutex_lock(&i915->display.hdcp.hdcp_mutex);
2245		i915->display.hdcp.comp_added = false;
2246		mutex_unlock(&i915->display.hdcp.hdcp_mutex);
2247		return;
2248	}
2249#endif
2250}
2251
2252static void intel_hdcp2_init(struct intel_connector *connector,
2253			     struct intel_digital_port *dig_port,
2254			     const struct intel_hdcp_shim *shim)
2255{
2256	struct drm_i915_private *i915 = to_i915(connector->base.dev);
2257	struct intel_hdcp *hdcp = &connector->hdcp;
2258	int ret;
2259
2260	ret = initialize_hdcp_port_data(connector, dig_port, shim);
2261	if (ret) {
2262		drm_dbg_kms(&i915->drm, "Mei hdcp data init failed\n");
2263		return;
2264	}
2265
2266	hdcp->hdcp2_supported = true;
2267}
2268
2269int intel_hdcp_init(struct intel_connector *connector,
2270		    struct intel_digital_port *dig_port,
2271		    const struct intel_hdcp_shim *shim)
2272{
2273	struct drm_i915_private *i915 = to_i915(connector->base.dev);
2274	struct intel_hdcp *hdcp = &connector->hdcp;
2275	int ret;
2276
2277	if (!shim)
2278		return -EINVAL;
2279
2280	if (is_hdcp2_supported(i915))
2281		intel_hdcp2_init(connector, dig_port, shim);
2282
2283	ret =
2284	drm_connector_attach_content_protection_property(&connector->base,
2285							 hdcp->hdcp2_supported);
2286	if (ret) {
2287		hdcp->hdcp2_supported = false;
2288		kfree(dig_port->hdcp_port_data.streams);
2289		return ret;
2290	}
2291
2292	hdcp->shim = shim;
2293	rw_init(&hdcp->mutex, "ihdcp");
2294	INIT_DELAYED_WORK(&hdcp->check_work, intel_hdcp_check_work);
2295	INIT_WORK(&hdcp->prop_work, intel_hdcp_prop_work);
2296	init_waitqueue_head(&hdcp->cp_irq_queue);
2297
2298	return 0;
2299}
2300
2301static int
2302intel_hdcp_set_streams(struct intel_digital_port *dig_port,
2303		       struct intel_atomic_state *state)
2304{
2305	struct drm_connector_list_iter conn_iter;
2306	struct intel_digital_port *conn_dig_port;
2307	struct intel_connector *connector;
2308	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
2309	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
2310
2311	if (!intel_encoder_is_mst(&dig_port->base)) {
2312		data->k = 1;
2313		data->streams[0].stream_id = 0;
2314		return 0;
2315	}
2316
2317	data->k = 0;
2318
2319	drm_connector_list_iter_begin(&i915->drm, &conn_iter);
2320	for_each_intel_connector_iter(connector, &conn_iter) {
2321		if (connector->base.status == connector_status_disconnected)
2322			continue;
2323
2324		if (!intel_encoder_is_mst(intel_attached_encoder(connector)))
2325			continue;
2326
2327		conn_dig_port = intel_attached_dig_port(connector);
2328		if (conn_dig_port != dig_port)
2329			continue;
2330
2331		data->streams[data->k].stream_id =
2332			intel_conn_to_vcpi(&state->base, connector);
2333		data->k++;
2334
2335		/* if there is only one active stream */
2336		if (dig_port->dp.active_mst_links <= 1)
2337			break;
2338	}
2339	drm_connector_list_iter_end(&conn_iter);
2340
2341	if (drm_WARN_ON(&i915->drm, data->k > INTEL_NUM_PIPES(i915) || data->k == 0))
2342		return -EINVAL;
2343
2344	return 0;
2345}
2346
2347int intel_hdcp_enable(struct intel_atomic_state *state,
2348		      struct intel_encoder *encoder,
2349		      const struct intel_crtc_state *pipe_config,
2350		      const struct drm_connector_state *conn_state)
2351{
2352	STUB();
2353	return -ENOSYS;
2354#ifdef notyet
2355	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2356	struct intel_connector *connector =
2357		to_intel_connector(conn_state->connector);
2358	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
2359	struct intel_hdcp *hdcp = &connector->hdcp;
2360	unsigned long check_link_interval = DRM_HDCP_CHECK_PERIOD_MS;
2361	int ret = -EINVAL;
2362
2363	if (!hdcp->shim)
2364		return -ENOENT;
2365
2366	if (!connector->encoder) {
2367		drm_err(&i915->drm, "[%s:%d] encoder is not initialized\n",
2368			connector->base.name, connector->base.base.id);
2369		return -ENODEV;
2370	}
2371
2372	mutex_lock(&hdcp->mutex);
2373	mutex_lock(&dig_port->hdcp_mutex);
2374	drm_WARN_ON(&i915->drm,
2375		    hdcp->value == DRM_MODE_CONTENT_PROTECTION_ENABLED);
2376	hdcp->content_type = (u8)conn_state->hdcp_content_type;
2377
2378	if (intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DP_MST)) {
2379		hdcp->cpu_transcoder = pipe_config->mst_master_transcoder;
2380		hdcp->stream_transcoder = pipe_config->cpu_transcoder;
2381	} else {
2382		hdcp->cpu_transcoder = pipe_config->cpu_transcoder;
2383		hdcp->stream_transcoder = INVALID_TRANSCODER;
2384	}
2385
2386	if (DISPLAY_VER(i915) >= 12)
2387		dig_port->hdcp_port_data.hdcp_transcoder =
2388			intel_get_hdcp_transcoder(hdcp->cpu_transcoder);
2389
2390	/*
2391	 * Considering that HDCP2.2 is more secure than HDCP1.4, If the setup
2392	 * is capable of HDCP2.2, it is preferred to use HDCP2.2.
2393	 */
2394	if (intel_hdcp2_capable(connector)) {
2395		ret = intel_hdcp_set_streams(dig_port, state);
2396		if (!ret) {
2397			ret = _intel_hdcp2_enable(connector);
2398			if (!ret)
2399				check_link_interval =
2400					DRM_HDCP2_CHECK_PERIOD_MS;
2401		} else {
2402			drm_dbg_kms(&i915->drm,
2403				    "Set content streams failed: (%d)\n",
2404				    ret);
2405		}
2406	}
2407
2408	/*
2409	 * When HDCP2.2 fails and Content Type is not Type1, HDCP1.4 will
2410	 * be attempted.
2411	 */
2412	if (ret && intel_hdcp_capable(connector) &&
2413	    hdcp->content_type != DRM_MODE_HDCP_CONTENT_TYPE1) {
2414		ret = _intel_hdcp_enable(connector);
2415	}
2416
2417	if (!ret) {
2418		queue_delayed_work(i915->unordered_wq, &hdcp->check_work,
2419				   check_link_interval);
2420		intel_hdcp_update_value(connector,
2421					DRM_MODE_CONTENT_PROTECTION_ENABLED,
2422					true);
2423	}
2424
2425	mutex_unlock(&dig_port->hdcp_mutex);
2426	mutex_unlock(&hdcp->mutex);
2427	return ret;
2428#endif
2429}
2430
2431int intel_hdcp_disable(struct intel_connector *connector)
2432{
2433	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
2434	struct intel_hdcp *hdcp = &connector->hdcp;
2435	int ret = 0;
2436
2437	if (!hdcp->shim)
2438		return -ENOENT;
2439
2440	mutex_lock(&hdcp->mutex);
2441	mutex_lock(&dig_port->hdcp_mutex);
2442
2443	if (hdcp->value == DRM_MODE_CONTENT_PROTECTION_UNDESIRED)
2444		goto out;
2445
2446	intel_hdcp_update_value(connector,
2447				DRM_MODE_CONTENT_PROTECTION_UNDESIRED, false);
2448	if (hdcp->hdcp2_encrypted)
2449		ret = _intel_hdcp2_disable(connector, false);
2450	else if (hdcp->hdcp_encrypted)
2451		ret = _intel_hdcp_disable(connector);
2452
2453out:
2454	mutex_unlock(&dig_port->hdcp_mutex);
2455	mutex_unlock(&hdcp->mutex);
2456	cancel_delayed_work_sync(&hdcp->check_work);
2457	return ret;
2458}
2459
2460void intel_hdcp_update_pipe(struct intel_atomic_state *state,
2461			    struct intel_encoder *encoder,
2462			    const struct intel_crtc_state *crtc_state,
2463			    const struct drm_connector_state *conn_state)
2464{
2465	struct intel_connector *connector =
2466				to_intel_connector(conn_state->connector);
2467	struct intel_hdcp *hdcp = &connector->hdcp;
2468	bool content_protection_type_changed, desired_and_not_enabled = false;
2469	struct drm_i915_private *i915 = to_i915(connector->base.dev);
2470
2471	if (!connector->hdcp.shim)
2472		return;
2473
2474	content_protection_type_changed =
2475		(conn_state->hdcp_content_type != hdcp->content_type &&
2476		 conn_state->content_protection !=
2477		 DRM_MODE_CONTENT_PROTECTION_UNDESIRED);
2478
2479	/*
2480	 * During the HDCP encryption session if Type change is requested,
2481	 * disable the HDCP and reenable it with new TYPE value.
2482	 */
2483	if (conn_state->content_protection ==
2484	    DRM_MODE_CONTENT_PROTECTION_UNDESIRED ||
2485	    content_protection_type_changed)
2486		intel_hdcp_disable(connector);
2487
2488	/*
2489	 * Mark the hdcp state as DESIRED after the hdcp disable of type
2490	 * change procedure.
2491	 */
2492	if (content_protection_type_changed) {
2493		mutex_lock(&hdcp->mutex);
2494		hdcp->value = DRM_MODE_CONTENT_PROTECTION_DESIRED;
2495		drm_connector_get(&connector->base);
2496		queue_work(i915->unordered_wq, &hdcp->prop_work);
2497		mutex_unlock(&hdcp->mutex);
2498	}
2499
2500	if (conn_state->content_protection ==
2501	    DRM_MODE_CONTENT_PROTECTION_DESIRED) {
2502		mutex_lock(&hdcp->mutex);
2503		/* Avoid enabling hdcp, if it already ENABLED */
2504		desired_and_not_enabled =
2505			hdcp->value != DRM_MODE_CONTENT_PROTECTION_ENABLED;
2506		mutex_unlock(&hdcp->mutex);
2507		/*
2508		 * If HDCP already ENABLED and CP property is DESIRED, schedule
2509		 * prop_work to update correct CP property to user space.
2510		 */
2511		if (!desired_and_not_enabled && !content_protection_type_changed) {
2512			drm_connector_get(&connector->base);
2513			queue_work(i915->unordered_wq, &hdcp->prop_work);
2514		}
2515	}
2516
2517	if (desired_and_not_enabled || content_protection_type_changed)
2518		intel_hdcp_enable(state, encoder, crtc_state, conn_state);
2519}
2520
2521void intel_hdcp_component_fini(struct drm_i915_private *i915)
2522{
2523	mutex_lock(&i915->display.hdcp.hdcp_mutex);
2524	if (!i915->display.hdcp.comp_added) {
2525		mutex_unlock(&i915->display.hdcp.hdcp_mutex);
2526		return;
2527	}
2528
2529	i915->display.hdcp.comp_added = false;
2530	mutex_unlock(&i915->display.hdcp.hdcp_mutex);
2531
2532	if (intel_hdcp_gsc_cs_required(i915))
2533		intel_hdcp_gsc_fini(i915);
2534	else
2535		component_del(i915->drm.dev, &i915_hdcp_ops);
2536}
2537
2538void intel_hdcp_cleanup(struct intel_connector *connector)
2539{
2540	struct intel_hdcp *hdcp = &connector->hdcp;
2541
2542	if (!hdcp->shim)
2543		return;
2544
2545	/*
2546	 * If the connector is registered, it's possible userspace could kick
2547	 * off another HDCP enable, which would re-spawn the workers.
2548	 */
2549	drm_WARN_ON(connector->base.dev,
2550		connector->base.registration_state == DRM_CONNECTOR_REGISTERED);
2551
2552	/*
2553	 * Now that the connector is not registered, check_work won't be run,
2554	 * but cancel any outstanding instances of it
2555	 */
2556	cancel_delayed_work_sync(&hdcp->check_work);
2557
2558	/*
2559	 * We don't cancel prop_work in the same way as check_work since it
2560	 * requires connection_mutex which could be held while calling this
2561	 * function. Instead, we rely on the connector references grabbed before
2562	 * scheduling prop_work to ensure the connector is alive when prop_work
2563	 * is run. So if we're in the destroy path (which is where this
2564	 * function should be called), we're "guaranteed" that prop_work is not
2565	 * active (tl;dr This Should Never Happen).
2566	 */
2567	drm_WARN_ON(connector->base.dev, work_pending(&hdcp->prop_work));
2568
2569	mutex_lock(&hdcp->mutex);
2570	hdcp->shim = NULL;
2571	mutex_unlock(&hdcp->mutex);
2572}
2573
2574void intel_hdcp_atomic_check(struct drm_connector *connector,
2575			     struct drm_connector_state *old_state,
2576			     struct drm_connector_state *new_state)
2577{
2578	u64 old_cp = old_state->content_protection;
2579	u64 new_cp = new_state->content_protection;
2580	struct drm_crtc_state *crtc_state;
2581
2582	if (!new_state->crtc) {
2583		/*
2584		 * If the connector is being disabled with CP enabled, mark it
2585		 * desired so it's re-enabled when the connector is brought back
2586		 */
2587		if (old_cp == DRM_MODE_CONTENT_PROTECTION_ENABLED)
2588			new_state->content_protection =
2589				DRM_MODE_CONTENT_PROTECTION_DESIRED;
2590		return;
2591	}
2592
2593	crtc_state = drm_atomic_get_new_crtc_state(new_state->state,
2594						   new_state->crtc);
2595	/*
2596	 * Fix the HDCP uapi content protection state in case of modeset.
2597	 * FIXME: As per HDCP content protection property uapi doc, an uevent()
2598	 * need to be sent if there is transition from ENABLED->DESIRED.
2599	 */
2600	if (drm_atomic_crtc_needs_modeset(crtc_state) &&
2601	    (old_cp == DRM_MODE_CONTENT_PROTECTION_ENABLED &&
2602	    new_cp != DRM_MODE_CONTENT_PROTECTION_UNDESIRED))
2603		new_state->content_protection =
2604			DRM_MODE_CONTENT_PROTECTION_DESIRED;
2605
2606	/*
2607	 * Nothing to do if the state didn't change, or HDCP was activated since
2608	 * the last commit. And also no change in hdcp content type.
2609	 */
2610	if (old_cp == new_cp ||
2611	    (old_cp == DRM_MODE_CONTENT_PROTECTION_DESIRED &&
2612	     new_cp == DRM_MODE_CONTENT_PROTECTION_ENABLED)) {
2613		if (old_state->hdcp_content_type ==
2614				new_state->hdcp_content_type)
2615			return;
2616	}
2617
2618	crtc_state->mode_changed = true;
2619}
2620
2621/* Handles the CP_IRQ raised from the DP HDCP sink */
2622void intel_hdcp_handle_cp_irq(struct intel_connector *connector)
2623{
2624	struct intel_hdcp *hdcp = &connector->hdcp;
2625	struct drm_i915_private *i915 = to_i915(connector->base.dev);
2626
2627	if (!hdcp->shim)
2628		return;
2629
2630	atomic_inc(&connector->hdcp.cp_irq_count);
2631	wake_up_all(&connector->hdcp.cp_irq_queue);
2632
2633	queue_delayed_work(i915->unordered_wq, &hdcp->check_work, 0);
2634}
2635