1/*
2 * Copyright 2012-15 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 * Authors: AMD
23 *
24 */
25
26
27#include "reg_helper.h"
28#include "dcn10_optc.h"
29#include "dc.h"
30#include "dc_trace.h"
31
32#define REG(reg)\
33	optc1->tg_regs->reg
34
35#define CTX \
36	optc1->base.ctx
37
38#undef FN
39#define FN(reg_name, field_name) \
40	optc1->tg_shift->field_name, optc1->tg_mask->field_name
41
42#define STATIC_SCREEN_EVENT_MASK_RANGETIMING_DOUBLE_BUFFER_UPDATE_EN 0x100
43
44/**
45 * apply_front_porch_workaround() - This is a workaround for a bug that has
46 *                                  existed since R5xx and has not been fixed
47 *                                  keep Front porch at minimum 2 for Interlaced
48 *                                  mode or 1 for progressive.
49 *
50 * @timing: Timing parameters used to configure DCN blocks.
51 */
52static void apply_front_porch_workaround(struct dc_crtc_timing *timing)
53{
54	if (timing->flags.INTERLACE == 1) {
55		if (timing->v_front_porch < 2)
56			timing->v_front_porch = 2;
57	} else {
58		if (timing->v_front_porch < 1)
59			timing->v_front_porch = 1;
60	}
61}
62
63void optc1_program_global_sync(
64		struct timing_generator *optc,
65		int vready_offset,
66		int vstartup_start,
67		int vupdate_offset,
68		int vupdate_width)
69{
70	struct optc *optc1 = DCN10TG_FROM_TG(optc);
71
72	optc1->vready_offset = vready_offset;
73	optc1->vstartup_start = vstartup_start;
74	optc1->vupdate_offset = vupdate_offset;
75	optc1->vupdate_width = vupdate_width;
76
77	if (optc1->vstartup_start == 0) {
78		BREAK_TO_DEBUGGER();
79		return;
80	}
81
82	REG_SET(OTG_VSTARTUP_PARAM, 0,
83		VSTARTUP_START, optc1->vstartup_start);
84
85	REG_SET_2(OTG_VUPDATE_PARAM, 0,
86			VUPDATE_OFFSET, optc1->vupdate_offset,
87			VUPDATE_WIDTH, optc1->vupdate_width);
88
89	REG_SET(OTG_VREADY_PARAM, 0,
90			VREADY_OFFSET, optc1->vready_offset);
91}
92
93static void optc1_disable_stereo(struct timing_generator *optc)
94{
95	struct optc *optc1 = DCN10TG_FROM_TG(optc);
96
97	REG_SET(OTG_STEREO_CONTROL, 0,
98		OTG_STEREO_EN, 0);
99
100	REG_SET_2(OTG_3D_STRUCTURE_CONTROL, 0,
101		OTG_3D_STRUCTURE_EN, 0,
102		OTG_3D_STRUCTURE_STEREO_SEL_OVR, 0);
103}
104
105void optc1_setup_vertical_interrupt0(
106		struct timing_generator *optc,
107		uint32_t start_line,
108		uint32_t end_line)
109{
110	struct optc *optc1 = DCN10TG_FROM_TG(optc);
111
112	REG_SET_2(OTG_VERTICAL_INTERRUPT0_POSITION, 0,
113			OTG_VERTICAL_INTERRUPT0_LINE_START, start_line,
114			OTG_VERTICAL_INTERRUPT0_LINE_END, end_line);
115}
116
117void optc1_setup_vertical_interrupt1(
118		struct timing_generator *optc,
119		uint32_t start_line)
120{
121	struct optc *optc1 = DCN10TG_FROM_TG(optc);
122
123	REG_SET(OTG_VERTICAL_INTERRUPT1_POSITION, 0,
124				OTG_VERTICAL_INTERRUPT1_LINE_START, start_line);
125}
126
127void optc1_setup_vertical_interrupt2(
128		struct timing_generator *optc,
129		uint32_t start_line)
130{
131	struct optc *optc1 = DCN10TG_FROM_TG(optc);
132
133	REG_SET(OTG_VERTICAL_INTERRUPT2_POSITION, 0,
134			OTG_VERTICAL_INTERRUPT2_LINE_START, start_line);
135}
136
137/**
138 * optc1_program_timing() - used by mode timing set Program
139 *                          CRTC Timing Registers - OTG_H_*,
140 *                          OTG_V_*, Pixel repetition.
141 *                          Including SYNC. Call BIOS command table to program Timings.
142 *
143 * @optc: timing_generator instance.
144 * @dc_crtc_timing: Timing parameters used to configure DCN blocks.
145 * @vready_offset: Vready's starting position.
146 * @vstartup_start: Vstartup period.
147 * @vupdate_offset: Vupdate starting position.
148 * @vupdate_width: Vupdate duration.
149 * @signal: DC signal types.
150 * @use_vbios: to program timings from BIOS command table.
151 *
152 */
153void optc1_program_timing(
154	struct timing_generator *optc,
155	const struct dc_crtc_timing *dc_crtc_timing,
156	int vready_offset,
157	int vstartup_start,
158	int vupdate_offset,
159	int vupdate_width,
160	const enum amd_signal_type signal,
161	bool use_vbios)
162{
163	struct dc_crtc_timing patched_crtc_timing;
164	uint32_t asic_blank_end;
165	uint32_t asic_blank_start;
166	uint32_t v_total;
167	uint32_t v_sync_end;
168	uint32_t h_sync_polarity, v_sync_polarity;
169	uint32_t start_point = 0;
170	uint32_t field_num = 0;
171	enum h_timing_div_mode h_div = H_TIMING_NO_DIV;
172
173	struct optc *optc1 = DCN10TG_FROM_TG(optc);
174
175	optc1->signal = signal;
176	optc1->vready_offset = vready_offset;
177	optc1->vstartup_start = vstartup_start;
178	optc1->vupdate_offset = vupdate_offset;
179	optc1->vupdate_width = vupdate_width;
180	patched_crtc_timing = *dc_crtc_timing;
181	apply_front_porch_workaround(&patched_crtc_timing);
182	optc1->orginal_patched_timing = patched_crtc_timing;
183
184	/* Load horizontal timing */
185
186	/* CRTC_H_TOTAL = vesa.h_total - 1 */
187	REG_SET(OTG_H_TOTAL, 0,
188			OTG_H_TOTAL,  patched_crtc_timing.h_total - 1);
189
190	/* h_sync_start = 0, h_sync_end = vesa.h_sync_width */
191	REG_UPDATE_2(OTG_H_SYNC_A,
192			OTG_H_SYNC_A_START, 0,
193			OTG_H_SYNC_A_END, patched_crtc_timing.h_sync_width);
194
195	/* blank_start = line end - front porch */
196	asic_blank_start = patched_crtc_timing.h_total -
197			patched_crtc_timing.h_front_porch;
198
199	/* blank_end = blank_start - active */
200	asic_blank_end = asic_blank_start -
201			patched_crtc_timing.h_border_right -
202			patched_crtc_timing.h_addressable -
203			patched_crtc_timing.h_border_left;
204
205	REG_UPDATE_2(OTG_H_BLANK_START_END,
206			OTG_H_BLANK_START, asic_blank_start,
207			OTG_H_BLANK_END, asic_blank_end);
208
209	/* h_sync polarity */
210	h_sync_polarity = patched_crtc_timing.flags.HSYNC_POSITIVE_POLARITY ?
211			0 : 1;
212
213	REG_UPDATE(OTG_H_SYNC_A_CNTL,
214			OTG_H_SYNC_A_POL, h_sync_polarity);
215
216	v_total = patched_crtc_timing.v_total - 1;
217
218	REG_SET(OTG_V_TOTAL, 0,
219			OTG_V_TOTAL, v_total);
220
221	/* In case of V_TOTAL_CONTROL is on, make sure OTG_V_TOTAL_MAX and
222	 * OTG_V_TOTAL_MIN are equal to V_TOTAL.
223	 */
224	optc->funcs->set_vtotal_min_max(optc, v_total, v_total);
225
226	/* v_sync_start = 0, v_sync_end = v_sync_width */
227	v_sync_end = patched_crtc_timing.v_sync_width;
228
229	REG_UPDATE_2(OTG_V_SYNC_A,
230			OTG_V_SYNC_A_START, 0,
231			OTG_V_SYNC_A_END, v_sync_end);
232
233	/* blank_start = frame end - front porch */
234	asic_blank_start = patched_crtc_timing.v_total -
235			patched_crtc_timing.v_front_porch;
236
237	/* blank_end = blank_start - active */
238	asic_blank_end = asic_blank_start -
239			patched_crtc_timing.v_border_bottom -
240			patched_crtc_timing.v_addressable -
241			patched_crtc_timing.v_border_top;
242
243	REG_UPDATE_2(OTG_V_BLANK_START_END,
244			OTG_V_BLANK_START, asic_blank_start,
245			OTG_V_BLANK_END, asic_blank_end);
246
247	/* v_sync polarity */
248	v_sync_polarity = patched_crtc_timing.flags.VSYNC_POSITIVE_POLARITY ?
249			0 : 1;
250
251	REG_UPDATE(OTG_V_SYNC_A_CNTL,
252		OTG_V_SYNC_A_POL, v_sync_polarity);
253
254	if (optc1->signal == SIGNAL_TYPE_DISPLAY_PORT ||
255			optc1->signal == SIGNAL_TYPE_DISPLAY_PORT_MST ||
256			optc1->signal == SIGNAL_TYPE_EDP) {
257		start_point = 1;
258		if (patched_crtc_timing.flags.INTERLACE == 1)
259			field_num = 1;
260	}
261
262	/* Interlace */
263	if (REG(OTG_INTERLACE_CONTROL)) {
264		if (patched_crtc_timing.flags.INTERLACE == 1)
265			REG_UPDATE(OTG_INTERLACE_CONTROL,
266					OTG_INTERLACE_ENABLE, 1);
267		else
268			REG_UPDATE(OTG_INTERLACE_CONTROL,
269					OTG_INTERLACE_ENABLE, 0);
270	}
271
272	/* VTG enable set to 0 first VInit */
273	REG_UPDATE(CONTROL,
274			VTG0_ENABLE, 0);
275
276	/* original code is using VTG offset to address OTG reg, seems wrong */
277	REG_UPDATE_2(OTG_CONTROL,
278			OTG_START_POINT_CNTL, start_point,
279			OTG_FIELD_NUMBER_CNTL, field_num);
280
281	optc->funcs->program_global_sync(optc,
282			vready_offset,
283			vstartup_start,
284			vupdate_offset,
285			vupdate_width);
286
287	optc->funcs->set_vtg_params(optc, dc_crtc_timing, true);
288
289	/* TODO
290	 * patched_crtc_timing.flags.HORZ_COUNT_BY_TWO == 1
291	 * program_horz_count_by_2
292	 * for DVI 30bpp mode, 0 otherwise
293	 * program_horz_count_by_2(optc, &patched_crtc_timing);
294	 */
295
296	/* Enable stereo - only when we need to pack 3D frame. Other types
297	 * of stereo handled in explicit call
298	 */
299
300	if (optc1_is_two_pixels_per_containter(&patched_crtc_timing) || optc1->opp_count == 2)
301		h_div = H_TIMING_DIV_BY2;
302
303	if (REG(OPTC_DATA_FORMAT_CONTROL) && optc1->tg_mask->OPTC_DATA_FORMAT != 0) {
304		uint32_t data_fmt = 0;
305
306		if (patched_crtc_timing.pixel_encoding == PIXEL_ENCODING_YCBCR422)
307			data_fmt = 1;
308		else if (patched_crtc_timing.pixel_encoding == PIXEL_ENCODING_YCBCR420)
309			data_fmt = 2;
310
311		REG_UPDATE(OPTC_DATA_FORMAT_CONTROL, OPTC_DATA_FORMAT, data_fmt);
312	}
313
314	if (optc1->tg_mask->OTG_H_TIMING_DIV_MODE != 0) {
315		if (optc1->opp_count == 4)
316			h_div = H_TIMING_DIV_BY4;
317
318		REG_UPDATE(OTG_H_TIMING_CNTL,
319		OTG_H_TIMING_DIV_MODE, h_div);
320	} else {
321		REG_UPDATE(OTG_H_TIMING_CNTL,
322		OTG_H_TIMING_DIV_BY2, h_div);
323	}
324}
325
326/**
327 * optc1_set_vtg_params - Set Vertical Timing Generator (VTG) parameters
328 *
329 * @optc: timing_generator struct used to extract the optc parameters
330 * @dc_crtc_timing: Timing parameters configured
331 * @program_fp2: Boolean value indicating if FP2 will be programmed or not
332 *
333 * OTG is responsible for generating the global sync signals, including
334 * vertical timing information for each HUBP in the dcfclk domain. Each VTG is
335 * associated with one OTG that provides HUBP with vertical timing information
336 * (i.e., there is 1:1 correspondence between OTG and VTG). This function is
337 * responsible for setting the OTG parameters to the VTG during the pipe
338 * programming.
339 */
340void optc1_set_vtg_params(struct timing_generator *optc,
341		const struct dc_crtc_timing *dc_crtc_timing, bool program_fp2)
342{
343	struct dc_crtc_timing patched_crtc_timing;
344	uint32_t asic_blank_end;
345	uint32_t v_init;
346	uint32_t v_fp2 = 0;
347	int32_t vertical_line_start;
348
349	struct optc *optc1 = DCN10TG_FROM_TG(optc);
350
351	patched_crtc_timing = *dc_crtc_timing;
352	apply_front_porch_workaround(&patched_crtc_timing);
353
354	/* VCOUNT_INIT is the start of blank */
355	v_init = patched_crtc_timing.v_total - patched_crtc_timing.v_front_porch;
356
357	/* end of blank = v_init - active */
358	asic_blank_end = v_init -
359			patched_crtc_timing.v_border_bottom -
360			patched_crtc_timing.v_addressable -
361			patched_crtc_timing.v_border_top;
362
363	/* if VSTARTUP is before VSYNC, FP2 is the offset, otherwise 0 */
364	vertical_line_start = asic_blank_end - optc1->vstartup_start + 1;
365	if (vertical_line_start < 0)
366		v_fp2 = -vertical_line_start;
367
368	/* Interlace */
369	if (REG(OTG_INTERLACE_CONTROL)) {
370		if (patched_crtc_timing.flags.INTERLACE == 1) {
371			v_init = v_init / 2;
372			if ((optc1->vstartup_start/2)*2 > asic_blank_end)
373				v_fp2 = v_fp2 / 2;
374		}
375	}
376
377	if (program_fp2)
378		REG_UPDATE_2(CONTROL,
379				VTG0_FP2, v_fp2,
380				VTG0_VCOUNT_INIT, v_init);
381	else
382		REG_UPDATE(CONTROL, VTG0_VCOUNT_INIT, v_init);
383}
384
385void optc1_set_blank_data_double_buffer(struct timing_generator *optc, bool enable)
386{
387	struct optc *optc1 = DCN10TG_FROM_TG(optc);
388
389	uint32_t blank_data_double_buffer_enable = enable ? 1 : 0;
390
391	REG_UPDATE(OTG_DOUBLE_BUFFER_CONTROL,
392			OTG_BLANK_DATA_DOUBLE_BUFFER_EN, blank_data_double_buffer_enable);
393}
394
395/**
396 * optc1_set_timing_double_buffer() - DRR double buffering control
397 *
398 * Sets double buffer point for V_TOTAL, H_TOTAL, VTOTAL_MIN,
399 * VTOTAL_MAX, VTOTAL_MIN_SEL and VTOTAL_MAX_SEL registers.
400 *
401 * @optc: timing_generator instance.
402 * @enable: Enable DRR double buffering control if true, disable otherwise.
403 *
404 * Options: any time,  start of frame, dp start of frame (range timing)
405 */
406void optc1_set_timing_double_buffer(struct timing_generator *optc, bool enable)
407{
408	struct optc *optc1 = DCN10TG_FROM_TG(optc);
409	uint32_t mode = enable ? 2 : 0;
410
411	REG_UPDATE(OTG_DOUBLE_BUFFER_CONTROL,
412		   OTG_RANGE_TIMING_DBUF_UPDATE_MODE, mode);
413}
414
415/**
416 * optc1_unblank_crtc() - Call ASIC Control Object to UnBlank CRTC.
417 *
418 * @optc: timing_generator instance.
419 */
420static void optc1_unblank_crtc(struct timing_generator *optc)
421{
422	struct optc *optc1 = DCN10TG_FROM_TG(optc);
423
424	REG_UPDATE_2(OTG_BLANK_CONTROL,
425			OTG_BLANK_DATA_EN, 0,
426			OTG_BLANK_DE_MODE, 0);
427
428	/* W/A for automated testing
429	 * Automated testing will fail underflow test as there
430	 * sporadic underflows which occur during the optc blank
431	 * sequence.  As a w/a, clear underflow on unblank.
432	 * This prevents the failure, but will not mask actual
433	 * underflow that affect real use cases.
434	 */
435	optc1_clear_optc_underflow(optc);
436}
437
438/**
439 * optc1_blank_crtc() - Call ASIC Control Object to Blank CRTC.
440 *
441 * @optc: timing_generator instance.
442 */
443
444static void optc1_blank_crtc(struct timing_generator *optc)
445{
446	struct optc *optc1 = DCN10TG_FROM_TG(optc);
447
448	REG_UPDATE_2(OTG_BLANK_CONTROL,
449			OTG_BLANK_DATA_EN, 1,
450			OTG_BLANK_DE_MODE, 0);
451
452	optc1_set_blank_data_double_buffer(optc, false);
453}
454
455void optc1_set_blank(struct timing_generator *optc,
456		bool enable_blanking)
457{
458	if (enable_blanking)
459		optc1_blank_crtc(optc);
460	else
461		optc1_unblank_crtc(optc);
462}
463
464bool optc1_is_blanked(struct timing_generator *optc)
465{
466	struct optc *optc1 = DCN10TG_FROM_TG(optc);
467	uint32_t blank_en;
468	uint32_t blank_state;
469
470	REG_GET_2(OTG_BLANK_CONTROL,
471			OTG_BLANK_DATA_EN, &blank_en,
472			OTG_CURRENT_BLANK_STATE, &blank_state);
473
474	return blank_en && blank_state;
475}
476
477void optc1_enable_optc_clock(struct timing_generator *optc, bool enable)
478{
479	struct optc *optc1 = DCN10TG_FROM_TG(optc);
480
481	if (enable) {
482		REG_UPDATE_2(OPTC_INPUT_CLOCK_CONTROL,
483				OPTC_INPUT_CLK_EN, 1,
484				OPTC_INPUT_CLK_GATE_DIS, 1);
485
486		REG_WAIT(OPTC_INPUT_CLOCK_CONTROL,
487				OPTC_INPUT_CLK_ON, 1,
488				1, 1000);
489
490		/* Enable clock */
491		REG_UPDATE_2(OTG_CLOCK_CONTROL,
492				OTG_CLOCK_EN, 1,
493				OTG_CLOCK_GATE_DIS, 1);
494		REG_WAIT(OTG_CLOCK_CONTROL,
495				OTG_CLOCK_ON, 1,
496				1, 1000);
497	} else  {
498
499		//last chance to clear underflow, otherwise, it will always there due to clock is off.
500		if (optc->funcs->is_optc_underflow_occurred(optc) == true)
501			optc->funcs->clear_optc_underflow(optc);
502
503		REG_UPDATE_2(OTG_CLOCK_CONTROL,
504				OTG_CLOCK_GATE_DIS, 0,
505				OTG_CLOCK_EN, 0);
506
507		REG_UPDATE_2(OPTC_INPUT_CLOCK_CONTROL,
508				OPTC_INPUT_CLK_GATE_DIS, 0,
509				OPTC_INPUT_CLK_EN, 0);
510	}
511}
512
513/**
514 * optc1_enable_crtc() - Enable CRTC - call ASIC Control Object to enable Timing generator.
515 *
516 * @optc: timing_generator instance.
517 */
518static bool optc1_enable_crtc(struct timing_generator *optc)
519{
520	/* TODO FPGA wait for answer
521	 * OTG_MASTER_UPDATE_MODE != CRTC_MASTER_UPDATE_MODE
522	 * OTG_MASTER_UPDATE_LOCK != CRTC_MASTER_UPDATE_LOCK
523	 */
524	struct optc *optc1 = DCN10TG_FROM_TG(optc);
525
526	/* opp instance for OTG. For DCN1.0, ODM is remoed.
527	 * OPP and OPTC should 1:1 mapping
528	 */
529	REG_UPDATE(OPTC_DATA_SOURCE_SELECT,
530			OPTC_SRC_SEL, optc->inst);
531
532	/* VTG enable first is for HW workaround */
533	REG_UPDATE(CONTROL,
534			VTG0_ENABLE, 1);
535
536	REG_SEQ_START();
537
538	/* Enable CRTC */
539	REG_UPDATE_2(OTG_CONTROL,
540			OTG_DISABLE_POINT_CNTL, 3,
541			OTG_MASTER_EN, 1);
542
543	REG_SEQ_SUBMIT();
544	REG_SEQ_WAIT_DONE();
545
546	return true;
547}
548
549/* disable_crtc - call ASIC Control Object to disable Timing generator. */
550bool optc1_disable_crtc(struct timing_generator *optc)
551{
552	struct optc *optc1 = DCN10TG_FROM_TG(optc);
553
554	/* disable otg request until end of the first line
555	 * in the vertical blank region
556	 */
557	REG_UPDATE_2(OTG_CONTROL,
558			OTG_DISABLE_POINT_CNTL, 3,
559			OTG_MASTER_EN, 0);
560
561	REG_UPDATE(CONTROL,
562			VTG0_ENABLE, 0);
563
564	/* CRTC disabled, so disable  clock. */
565	REG_WAIT(OTG_CLOCK_CONTROL,
566			OTG_BUSY, 0,
567			1, 100000);
568
569	return true;
570}
571
572
573void optc1_program_blank_color(
574		struct timing_generator *optc,
575		const struct tg_color *black_color)
576{
577	struct optc *optc1 = DCN10TG_FROM_TG(optc);
578
579	REG_SET_3(OTG_BLACK_COLOR, 0,
580			OTG_BLACK_COLOR_B_CB, black_color->color_b_cb,
581			OTG_BLACK_COLOR_G_Y, black_color->color_g_y,
582			OTG_BLACK_COLOR_R_CR, black_color->color_r_cr);
583}
584
585bool optc1_validate_timing(
586	struct timing_generator *optc,
587	const struct dc_crtc_timing *timing)
588{
589	uint32_t v_blank;
590	uint32_t h_blank;
591	uint32_t min_v_blank;
592	struct optc *optc1 = DCN10TG_FROM_TG(optc);
593
594	ASSERT(timing != NULL);
595
596	v_blank = (timing->v_total - timing->v_addressable -
597					timing->v_border_top - timing->v_border_bottom);
598
599	h_blank = (timing->h_total - timing->h_addressable -
600		timing->h_border_right -
601		timing->h_border_left);
602
603	if (timing->timing_3d_format != TIMING_3D_FORMAT_NONE &&
604		timing->timing_3d_format != TIMING_3D_FORMAT_HW_FRAME_PACKING &&
605		timing->timing_3d_format != TIMING_3D_FORMAT_TOP_AND_BOTTOM &&
606		timing->timing_3d_format != TIMING_3D_FORMAT_SIDE_BY_SIDE &&
607		timing->timing_3d_format != TIMING_3D_FORMAT_FRAME_ALTERNATE &&
608		timing->timing_3d_format != TIMING_3D_FORMAT_INBAND_FA)
609		return false;
610
611	/* Temporarily blocking interlacing mode until it's supported */
612	if (timing->flags.INTERLACE == 1)
613		return false;
614
615	/* Check maximum number of pixels supported by Timing Generator
616	 * (Currently will never fail, in order to fail needs display which
617	 * needs more than 8192 horizontal and
618	 * more than 8192 vertical total pixels)
619	 */
620	if (timing->h_total > optc1->max_h_total ||
621		timing->v_total > optc1->max_v_total)
622		return false;
623
624
625	if (h_blank < optc1->min_h_blank)
626		return false;
627
628	if (timing->h_sync_width  < optc1->min_h_sync_width ||
629		 timing->v_sync_width  < optc1->min_v_sync_width)
630		return false;
631
632	min_v_blank = timing->flags.INTERLACE?optc1->min_v_blank_interlace:optc1->min_v_blank;
633
634	if (v_blank < min_v_blank)
635		return false;
636
637	return true;
638
639}
640
641/*
642 * get_vblank_counter
643 *
644 * @brief
645 * Get counter for vertical blanks. use register CRTC_STATUS_FRAME_COUNT which
646 * holds the counter of frames.
647 *
648 * @param
649 * struct timing_generator *optc - [in] timing generator which controls the
650 * desired CRTC
651 *
652 * @return
653 * Counter of frames, which should equal to number of vblanks.
654 */
655uint32_t optc1_get_vblank_counter(struct timing_generator *optc)
656{
657	struct optc *optc1 = DCN10TG_FROM_TG(optc);
658	uint32_t frame_count;
659
660	REG_GET(OTG_STATUS_FRAME_COUNT,
661		OTG_FRAME_COUNT, &frame_count);
662
663	return frame_count;
664}
665
666void optc1_lock(struct timing_generator *optc)
667{
668	struct optc *optc1 = DCN10TG_FROM_TG(optc);
669
670	REG_SET(OTG_GLOBAL_CONTROL0, 0,
671			OTG_MASTER_UPDATE_LOCK_SEL, optc->inst);
672	REG_SET(OTG_MASTER_UPDATE_LOCK, 0,
673			OTG_MASTER_UPDATE_LOCK, 1);
674
675	REG_WAIT(OTG_MASTER_UPDATE_LOCK,
676			UPDATE_LOCK_STATUS, 1,
677			1, 10);
678
679	TRACE_OPTC_LOCK_UNLOCK_STATE(optc1, optc->inst, true);
680}
681
682void optc1_unlock(struct timing_generator *optc)
683{
684	struct optc *optc1 = DCN10TG_FROM_TG(optc);
685
686	REG_SET(OTG_MASTER_UPDATE_LOCK, 0,
687			OTG_MASTER_UPDATE_LOCK, 0);
688
689	TRACE_OPTC_LOCK_UNLOCK_STATE(optc1, optc->inst, false);
690}
691
692void optc1_get_position(struct timing_generator *optc,
693		struct crtc_position *position)
694{
695	struct optc *optc1 = DCN10TG_FROM_TG(optc);
696
697	REG_GET_2(OTG_STATUS_POSITION,
698			OTG_HORZ_COUNT, &position->horizontal_count,
699			OTG_VERT_COUNT, &position->vertical_count);
700
701	REG_GET(OTG_NOM_VERT_POSITION,
702			OTG_VERT_COUNT_NOM, &position->nominal_vcount);
703}
704
705bool optc1_is_counter_moving(struct timing_generator *optc)
706{
707	struct crtc_position position1, position2;
708
709	optc->funcs->get_position(optc, &position1);
710	optc->funcs->get_position(optc, &position2);
711
712	if (position1.horizontal_count == position2.horizontal_count &&
713		position1.vertical_count == position2.vertical_count)
714		return false;
715	else
716		return true;
717}
718
719bool optc1_did_triggered_reset_occur(
720	struct timing_generator *optc)
721{
722	struct optc *optc1 = DCN10TG_FROM_TG(optc);
723	uint32_t occurred_force, occurred_vsync;
724
725	REG_GET(OTG_FORCE_COUNT_NOW_CNTL,
726		OTG_FORCE_COUNT_NOW_OCCURRED, &occurred_force);
727
728	REG_GET(OTG_VERT_SYNC_CONTROL,
729		OTG_FORCE_VSYNC_NEXT_LINE_OCCURRED, &occurred_vsync);
730
731	return occurred_vsync != 0 || occurred_force != 0;
732}
733
734void optc1_disable_reset_trigger(struct timing_generator *optc)
735{
736	struct optc *optc1 = DCN10TG_FROM_TG(optc);
737
738	REG_WRITE(OTG_TRIGA_CNTL, 0);
739
740	REG_SET(OTG_FORCE_COUNT_NOW_CNTL, 0,
741		OTG_FORCE_COUNT_NOW_CLEAR, 1);
742
743	REG_SET(OTG_VERT_SYNC_CONTROL, 0,
744		OTG_FORCE_VSYNC_NEXT_LINE_CLEAR, 1);
745}
746
747void optc1_enable_reset_trigger(struct timing_generator *optc, int source_tg_inst)
748{
749	struct optc *optc1 = DCN10TG_FROM_TG(optc);
750	uint32_t falling_edge;
751
752	REG_GET(OTG_V_SYNC_A_CNTL,
753			OTG_V_SYNC_A_POL, &falling_edge);
754
755	if (falling_edge)
756		REG_SET_3(OTG_TRIGA_CNTL, 0,
757				/* vsync signal from selected OTG pipe based
758				 * on OTG_TRIG_SOURCE_PIPE_SELECT setting
759				 */
760				OTG_TRIGA_SOURCE_SELECT, 20,
761				OTG_TRIGA_SOURCE_PIPE_SELECT, source_tg_inst,
762				/* always detect falling edge */
763				OTG_TRIGA_FALLING_EDGE_DETECT_CNTL, 1);
764	else
765		REG_SET_3(OTG_TRIGA_CNTL, 0,
766				/* vsync signal from selected OTG pipe based
767				 * on OTG_TRIG_SOURCE_PIPE_SELECT setting
768				 */
769				OTG_TRIGA_SOURCE_SELECT, 20,
770				OTG_TRIGA_SOURCE_PIPE_SELECT, source_tg_inst,
771				/* always detect rising edge */
772				OTG_TRIGA_RISING_EDGE_DETECT_CNTL, 1);
773
774	REG_SET(OTG_FORCE_COUNT_NOW_CNTL, 0,
775			/* force H count to H_TOTAL and V count to V_TOTAL in
776			 * progressive mode and V_TOTAL-1 in interlaced mode
777			 */
778			OTG_FORCE_COUNT_NOW_MODE, 2);
779}
780
781void optc1_enable_crtc_reset(
782		struct timing_generator *optc,
783		int source_tg_inst,
784		struct crtc_trigger_info *crtc_tp)
785{
786	struct optc *optc1 = DCN10TG_FROM_TG(optc);
787	uint32_t falling_edge = 0;
788	uint32_t rising_edge = 0;
789
790	switch (crtc_tp->event) {
791
792	case CRTC_EVENT_VSYNC_RISING:
793		rising_edge = 1;
794		break;
795
796	case CRTC_EVENT_VSYNC_FALLING:
797		falling_edge = 1;
798		break;
799	}
800
801	REG_SET_4(OTG_TRIGA_CNTL, 0,
802		 /* vsync signal from selected OTG pipe based
803		  * on OTG_TRIG_SOURCE_PIPE_SELECT setting
804		  */
805		  OTG_TRIGA_SOURCE_SELECT, 20,
806		  OTG_TRIGA_SOURCE_PIPE_SELECT, source_tg_inst,
807		  /* always detect falling edge */
808		  OTG_TRIGA_RISING_EDGE_DETECT_CNTL, rising_edge,
809		  OTG_TRIGA_FALLING_EDGE_DETECT_CNTL, falling_edge);
810
811	switch (crtc_tp->delay) {
812	case TRIGGER_DELAY_NEXT_LINE:
813		REG_SET(OTG_VERT_SYNC_CONTROL, 0,
814				OTG_AUTO_FORCE_VSYNC_MODE, 1);
815		break;
816	case TRIGGER_DELAY_NEXT_PIXEL:
817		REG_SET(OTG_FORCE_COUNT_NOW_CNTL, 0,
818			/* force H count to H_TOTAL and V count to V_TOTAL in
819			 * progressive mode and V_TOTAL-1 in interlaced mode
820			 */
821			OTG_FORCE_COUNT_NOW_MODE, 2);
822		break;
823	}
824}
825
826void optc1_wait_for_state(struct timing_generator *optc,
827		enum crtc_state state)
828{
829	struct optc *optc1 = DCN10TG_FROM_TG(optc);
830
831	switch (state) {
832	case CRTC_STATE_VBLANK:
833		REG_WAIT(OTG_STATUS,
834				OTG_V_BLANK, 1,
835				1, 100000); /* 1 vupdate at 10hz */
836		break;
837
838	case CRTC_STATE_VACTIVE:
839		REG_WAIT(OTG_STATUS,
840				OTG_V_ACTIVE_DISP, 1,
841				1, 100000); /* 1 vupdate at 10hz */
842		break;
843
844	default:
845		break;
846	}
847}
848
849void optc1_set_early_control(
850	struct timing_generator *optc,
851	uint32_t early_cntl)
852{
853	/* asic design change, do not need this control
854	 * empty for share caller logic
855	 */
856}
857
858
859void optc1_set_static_screen_control(
860	struct timing_generator *optc,
861	uint32_t event_triggers,
862	uint32_t num_frames)
863{
864	struct optc *optc1 = DCN10TG_FROM_TG(optc);
865
866	// By register spec, it only takes 8 bit value
867	if (num_frames > 0xFF)
868		num_frames = 0xFF;
869
870	/* Bit 8 is no longer applicable in RV for PSR case,
871	 * set bit 8 to 0 if given
872	 */
873	if ((event_triggers & STATIC_SCREEN_EVENT_MASK_RANGETIMING_DOUBLE_BUFFER_UPDATE_EN)
874			!= 0)
875		event_triggers = event_triggers &
876		~STATIC_SCREEN_EVENT_MASK_RANGETIMING_DOUBLE_BUFFER_UPDATE_EN;
877
878	REG_SET_2(OTG_STATIC_SCREEN_CONTROL, 0,
879			OTG_STATIC_SCREEN_EVENT_MASK, event_triggers,
880			OTG_STATIC_SCREEN_FRAME_COUNT, num_frames);
881}
882
883static void optc1_setup_manual_trigger(struct timing_generator *optc)
884{
885	struct optc *optc1 = DCN10TG_FROM_TG(optc);
886
887	REG_SET(OTG_GLOBAL_CONTROL2, 0,
888			MANUAL_FLOW_CONTROL_SEL, optc->inst);
889
890	REG_SET_8(OTG_TRIGA_CNTL, 0,
891			OTG_TRIGA_SOURCE_SELECT, 22,
892			OTG_TRIGA_SOURCE_PIPE_SELECT, optc->inst,
893			OTG_TRIGA_RISING_EDGE_DETECT_CNTL, 1,
894			OTG_TRIGA_FALLING_EDGE_DETECT_CNTL, 0,
895			OTG_TRIGA_POLARITY_SELECT, 0,
896			OTG_TRIGA_FREQUENCY_SELECT, 0,
897			OTG_TRIGA_DELAY, 0,
898			OTG_TRIGA_CLEAR, 1);
899}
900
901static void optc1_program_manual_trigger(struct timing_generator *optc)
902{
903	struct optc *optc1 = DCN10TG_FROM_TG(optc);
904
905	REG_SET(OTG_MANUAL_FLOW_CONTROL, 0,
906			MANUAL_FLOW_CONTROL, 1);
907
908	REG_SET(OTG_MANUAL_FLOW_CONTROL, 0,
909			MANUAL_FLOW_CONTROL, 0);
910}
911
912/**
913 * optc1_set_drr() - Program dynamic refresh rate registers m_OTGx_OTG_V_TOTAL_*.
914 *
915 * @optc: timing_generator instance.
916 * @params: parameters used for Dynamic Refresh Rate.
917 */
918void optc1_set_drr(
919	struct timing_generator *optc,
920	const struct drr_params *params)
921{
922	struct optc *optc1 = DCN10TG_FROM_TG(optc);
923
924	if (params != NULL &&
925		params->vertical_total_max > 0 &&
926		params->vertical_total_min > 0) {
927
928		if (params->vertical_total_mid != 0) {
929
930			REG_SET(OTG_V_TOTAL_MID, 0,
931				OTG_V_TOTAL_MID, params->vertical_total_mid - 1);
932
933			REG_UPDATE_2(OTG_V_TOTAL_CONTROL,
934					OTG_VTOTAL_MID_REPLACING_MAX_EN, 1,
935					OTG_VTOTAL_MID_FRAME_NUM,
936					(uint8_t)params->vertical_total_mid_frame_num);
937
938		}
939
940		optc->funcs->set_vtotal_min_max(optc, params->vertical_total_min - 1, params->vertical_total_max - 1);
941
942		REG_UPDATE_5(OTG_V_TOTAL_CONTROL,
943				OTG_V_TOTAL_MIN_SEL, 1,
944				OTG_V_TOTAL_MAX_SEL, 1,
945				OTG_FORCE_LOCK_ON_EVENT, 0,
946				OTG_SET_V_TOTAL_MIN_MASK_EN, 0,
947				OTG_SET_V_TOTAL_MIN_MASK, 0);
948	}
949
950	// Setup manual flow control for EOF via TRIG_A
951	optc->funcs->setup_manual_trigger(optc);
952}
953
954void optc1_set_vtotal_min_max(struct timing_generator *optc, int vtotal_min, int vtotal_max)
955{
956	struct optc *optc1 = DCN10TG_FROM_TG(optc);
957
958	REG_SET(OTG_V_TOTAL_MAX, 0,
959		OTG_V_TOTAL_MAX, vtotal_max);
960
961	REG_SET(OTG_V_TOTAL_MIN, 0,
962		OTG_V_TOTAL_MIN, vtotal_min);
963}
964
965static void optc1_set_test_pattern(
966	struct timing_generator *optc,
967	/* TODO: replace 'controller_dp_test_pattern' by 'test_pattern_mode'
968	 * because this is not DP-specific (which is probably somewhere in DP
969	 * encoder) */
970	enum controller_dp_test_pattern test_pattern,
971	enum dc_color_depth color_depth)
972{
973	struct optc *optc1 = DCN10TG_FROM_TG(optc);
974	enum test_pattern_color_format bit_depth;
975	enum test_pattern_dyn_range dyn_range;
976	enum test_pattern_mode mode;
977	uint32_t pattern_mask;
978	uint32_t pattern_data;
979	/* color ramp generator mixes 16-bits color */
980	uint32_t src_bpc = 16;
981	/* requested bpc */
982	uint32_t dst_bpc;
983	uint32_t index;
984	/* RGB values of the color bars.
985	 * Produce two RGB colors: RGB0 - white (all Fs)
986	 * and RGB1 - black (all 0s)
987	 * (three RGB components for two colors)
988	 */
989	uint16_t src_color[6] = {0xFFFF, 0xFFFF, 0xFFFF, 0x0000,
990						0x0000, 0x0000};
991	/* dest color (converted to the specified color format) */
992	uint16_t dst_color[6];
993	uint32_t inc_base;
994
995	/* translate to bit depth */
996	switch (color_depth) {
997	case COLOR_DEPTH_666:
998		bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_6;
999	break;
1000	case COLOR_DEPTH_888:
1001		bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_8;
1002	break;
1003	case COLOR_DEPTH_101010:
1004		bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_10;
1005	break;
1006	case COLOR_DEPTH_121212:
1007		bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_12;
1008	break;
1009	default:
1010		bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_8;
1011	break;
1012	}
1013
1014	switch (test_pattern) {
1015	case CONTROLLER_DP_TEST_PATTERN_COLORSQUARES:
1016	case CONTROLLER_DP_TEST_PATTERN_COLORSQUARES_CEA:
1017	{
1018		dyn_range = (test_pattern ==
1019				CONTROLLER_DP_TEST_PATTERN_COLORSQUARES_CEA ?
1020				TEST_PATTERN_DYN_RANGE_CEA :
1021				TEST_PATTERN_DYN_RANGE_VESA);
1022		mode = TEST_PATTERN_MODE_COLORSQUARES_RGB;
1023
1024		REG_UPDATE_2(OTG_TEST_PATTERN_PARAMETERS,
1025				OTG_TEST_PATTERN_VRES, 6,
1026				OTG_TEST_PATTERN_HRES, 6);
1027
1028		REG_UPDATE_4(OTG_TEST_PATTERN_CONTROL,
1029				OTG_TEST_PATTERN_EN, 1,
1030				OTG_TEST_PATTERN_MODE, mode,
1031				OTG_TEST_PATTERN_DYNAMIC_RANGE, dyn_range,
1032				OTG_TEST_PATTERN_COLOR_FORMAT, bit_depth);
1033	}
1034	break;
1035
1036	case CONTROLLER_DP_TEST_PATTERN_VERTICALBARS:
1037	case CONTROLLER_DP_TEST_PATTERN_HORIZONTALBARS:
1038	{
1039		mode = (test_pattern ==
1040			CONTROLLER_DP_TEST_PATTERN_VERTICALBARS ?
1041			TEST_PATTERN_MODE_VERTICALBARS :
1042			TEST_PATTERN_MODE_HORIZONTALBARS);
1043
1044		switch (bit_depth) {
1045		case TEST_PATTERN_COLOR_FORMAT_BPC_6:
1046			dst_bpc = 6;
1047		break;
1048		case TEST_PATTERN_COLOR_FORMAT_BPC_8:
1049			dst_bpc = 8;
1050		break;
1051		case TEST_PATTERN_COLOR_FORMAT_BPC_10:
1052			dst_bpc = 10;
1053		break;
1054		default:
1055			dst_bpc = 8;
1056		break;
1057		}
1058
1059		/* adjust color to the required colorFormat */
1060		for (index = 0; index < 6; index++) {
1061			/* dst = 2^dstBpc * src / 2^srcBpc = src >>
1062			 * (srcBpc - dstBpc);
1063			 */
1064			dst_color[index] =
1065				src_color[index] >> (src_bpc - dst_bpc);
1066		/* CRTC_TEST_PATTERN_DATA has 16 bits,
1067		 * lowest 6 are hardwired to ZERO
1068		 * color bits should be left aligned to MSB
1069		 * XXXXXXXXXX000000 for 10 bit,
1070		 * XXXXXXXX00000000 for 8 bit and XXXXXX0000000000 for 6
1071		 */
1072			dst_color[index] <<= (16 - dst_bpc);
1073		}
1074
1075		REG_WRITE(OTG_TEST_PATTERN_PARAMETERS, 0);
1076
1077		/* We have to write the mask before data, similar to pipeline.
1078		 * For example, for 8 bpc, if we want RGB0 to be magenta,
1079		 * and RGB1 to be cyan,
1080		 * we need to make 7 writes:
1081		 * MASK   DATA
1082		 * 000001 00000000 00000000                     set mask to R0
1083		 * 000010 11111111 00000000     R0 255, 0xFF00, set mask to G0
1084		 * 000100 00000000 00000000     G0 0,   0x0000, set mask to B0
1085		 * 001000 11111111 00000000     B0 255, 0xFF00, set mask to R1
1086		 * 010000 00000000 00000000     R1 0,   0x0000, set mask to G1
1087		 * 100000 11111111 00000000     G1 255, 0xFF00, set mask to B1
1088		 * 100000 11111111 00000000     B1 255, 0xFF00
1089		 *
1090		 * we will make a loop of 6 in which we prepare the mask,
1091		 * then write, then prepare the color for next write.
1092		 * first iteration will write mask only,
1093		 * but each next iteration color prepared in
1094		 * previous iteration will be written within new mask,
1095		 * the last component will written separately,
1096		 * mask is not changing between 6th and 7th write
1097		 * and color will be prepared by last iteration
1098		 */
1099
1100		/* write color, color values mask in CRTC_TEST_PATTERN_MASK
1101		 * is B1, G1, R1, B0, G0, R0
1102		 */
1103		pattern_data = 0;
1104		for (index = 0; index < 6; index++) {
1105			/* prepare color mask, first write PATTERN_DATA
1106			 * will have all zeros
1107			 */
1108			pattern_mask = (1 << index);
1109
1110			/* write color component */
1111			REG_SET_2(OTG_TEST_PATTERN_COLOR, 0,
1112					OTG_TEST_PATTERN_MASK, pattern_mask,
1113					OTG_TEST_PATTERN_DATA, pattern_data);
1114
1115			/* prepare next color component,
1116			 * will be written in the next iteration
1117			 */
1118			pattern_data = dst_color[index];
1119		}
1120		/* write last color component,
1121		 * it's been already prepared in the loop
1122		 */
1123		REG_SET_2(OTG_TEST_PATTERN_COLOR, 0,
1124				OTG_TEST_PATTERN_MASK, pattern_mask,
1125				OTG_TEST_PATTERN_DATA, pattern_data);
1126
1127		/* enable test pattern */
1128		REG_UPDATE_4(OTG_TEST_PATTERN_CONTROL,
1129				OTG_TEST_PATTERN_EN, 1,
1130				OTG_TEST_PATTERN_MODE, mode,
1131				OTG_TEST_PATTERN_DYNAMIC_RANGE, 0,
1132				OTG_TEST_PATTERN_COLOR_FORMAT, bit_depth);
1133	}
1134	break;
1135
1136	case CONTROLLER_DP_TEST_PATTERN_COLORRAMP:
1137	{
1138		mode = (bit_depth ==
1139			TEST_PATTERN_COLOR_FORMAT_BPC_10 ?
1140			TEST_PATTERN_MODE_DUALRAMP_RGB :
1141			TEST_PATTERN_MODE_SINGLERAMP_RGB);
1142
1143		switch (bit_depth) {
1144		case TEST_PATTERN_COLOR_FORMAT_BPC_6:
1145			dst_bpc = 6;
1146		break;
1147		case TEST_PATTERN_COLOR_FORMAT_BPC_8:
1148			dst_bpc = 8;
1149		break;
1150		case TEST_PATTERN_COLOR_FORMAT_BPC_10:
1151			dst_bpc = 10;
1152		break;
1153		default:
1154			dst_bpc = 8;
1155		break;
1156		}
1157
1158		/* increment for the first ramp for one color gradation
1159		 * 1 gradation for 6-bit color is 2^10
1160		 * gradations in 16-bit color
1161		 */
1162		inc_base = (src_bpc - dst_bpc);
1163
1164		switch (bit_depth) {
1165		case TEST_PATTERN_COLOR_FORMAT_BPC_6:
1166		{
1167			REG_UPDATE_5(OTG_TEST_PATTERN_PARAMETERS,
1168					OTG_TEST_PATTERN_INC0, inc_base,
1169					OTG_TEST_PATTERN_INC1, 0,
1170					OTG_TEST_PATTERN_HRES, 6,
1171					OTG_TEST_PATTERN_VRES, 6,
1172					OTG_TEST_PATTERN_RAMP0_OFFSET, 0);
1173		}
1174		break;
1175		case TEST_PATTERN_COLOR_FORMAT_BPC_8:
1176		{
1177			REG_UPDATE_5(OTG_TEST_PATTERN_PARAMETERS,
1178					OTG_TEST_PATTERN_INC0, inc_base,
1179					OTG_TEST_PATTERN_INC1, 0,
1180					OTG_TEST_PATTERN_HRES, 8,
1181					OTG_TEST_PATTERN_VRES, 6,
1182					OTG_TEST_PATTERN_RAMP0_OFFSET, 0);
1183		}
1184		break;
1185		case TEST_PATTERN_COLOR_FORMAT_BPC_10:
1186		{
1187			REG_UPDATE_5(OTG_TEST_PATTERN_PARAMETERS,
1188					OTG_TEST_PATTERN_INC0, inc_base,
1189					OTG_TEST_PATTERN_INC1, inc_base + 2,
1190					OTG_TEST_PATTERN_HRES, 8,
1191					OTG_TEST_PATTERN_VRES, 5,
1192					OTG_TEST_PATTERN_RAMP0_OFFSET, 384 << 6);
1193		}
1194		break;
1195		default:
1196		break;
1197		}
1198
1199		REG_WRITE(OTG_TEST_PATTERN_COLOR, 0);
1200
1201		/* enable test pattern */
1202		REG_WRITE(OTG_TEST_PATTERN_CONTROL, 0);
1203
1204		REG_SET_4(OTG_TEST_PATTERN_CONTROL, 0,
1205				OTG_TEST_PATTERN_EN, 1,
1206				OTG_TEST_PATTERN_MODE, mode,
1207				OTG_TEST_PATTERN_DYNAMIC_RANGE, 0,
1208				OTG_TEST_PATTERN_COLOR_FORMAT, bit_depth);
1209	}
1210	break;
1211	case CONTROLLER_DP_TEST_PATTERN_VIDEOMODE:
1212	{
1213		REG_WRITE(OTG_TEST_PATTERN_CONTROL, 0);
1214		REG_WRITE(OTG_TEST_PATTERN_COLOR, 0);
1215		REG_WRITE(OTG_TEST_PATTERN_PARAMETERS, 0);
1216	}
1217	break;
1218	default:
1219		break;
1220
1221	}
1222}
1223
1224void optc1_get_crtc_scanoutpos(
1225	struct timing_generator *optc,
1226	uint32_t *v_blank_start,
1227	uint32_t *v_blank_end,
1228	uint32_t *h_position,
1229	uint32_t *v_position)
1230{
1231	struct optc *optc1 = DCN10TG_FROM_TG(optc);
1232	struct crtc_position position;
1233
1234	REG_GET_2(OTG_V_BLANK_START_END,
1235			OTG_V_BLANK_START, v_blank_start,
1236			OTG_V_BLANK_END, v_blank_end);
1237
1238	optc1_get_position(optc, &position);
1239
1240	*h_position = position.horizontal_count;
1241	*v_position = position.vertical_count;
1242}
1243
1244static void optc1_enable_stereo(struct timing_generator *optc,
1245	const struct dc_crtc_timing *timing, struct crtc_stereo_flags *flags)
1246{
1247	struct optc *optc1 = DCN10TG_FROM_TG(optc);
1248
1249	if (flags) {
1250		uint32_t stereo_en;
1251		stereo_en = flags->FRAME_PACKED == 0 ? 1 : 0;
1252
1253		if (flags->PROGRAM_STEREO)
1254			REG_UPDATE_3(OTG_STEREO_CONTROL,
1255				OTG_STEREO_EN, stereo_en,
1256				OTG_STEREO_SYNC_OUTPUT_LINE_NUM, 0,
1257				OTG_STEREO_SYNC_OUTPUT_POLARITY, flags->RIGHT_EYE_POLARITY == 0 ? 0 : 1);
1258
1259		if (flags->PROGRAM_POLARITY)
1260			REG_UPDATE(OTG_STEREO_CONTROL,
1261				OTG_STEREO_EYE_FLAG_POLARITY,
1262				flags->RIGHT_EYE_POLARITY == 0 ? 0 : 1);
1263
1264		if (flags->DISABLE_STEREO_DP_SYNC)
1265			REG_UPDATE(OTG_STEREO_CONTROL,
1266				OTG_DISABLE_STEREOSYNC_OUTPUT_FOR_DP, 1);
1267
1268		if (flags->PROGRAM_STEREO)
1269			REG_UPDATE_2(OTG_3D_STRUCTURE_CONTROL,
1270				OTG_3D_STRUCTURE_EN, flags->FRAME_PACKED,
1271				OTG_3D_STRUCTURE_STEREO_SEL_OVR, flags->FRAME_PACKED);
1272
1273	}
1274}
1275
1276void optc1_program_stereo(struct timing_generator *optc,
1277	const struct dc_crtc_timing *timing, struct crtc_stereo_flags *flags)
1278{
1279	if (flags->PROGRAM_STEREO)
1280		optc1_enable_stereo(optc, timing, flags);
1281	else
1282		optc1_disable_stereo(optc);
1283}
1284
1285
1286bool optc1_is_stereo_left_eye(struct timing_generator *optc)
1287{
1288	bool ret = false;
1289	uint32_t left_eye = 0;
1290	struct optc *optc1 = DCN10TG_FROM_TG(optc);
1291
1292	REG_GET(OTG_STEREO_STATUS,
1293		OTG_STEREO_CURRENT_EYE, &left_eye);
1294	if (left_eye == 1)
1295		ret = true;
1296	else
1297		ret = false;
1298
1299	return ret;
1300}
1301
1302bool optc1_get_hw_timing(struct timing_generator *tg,
1303		struct dc_crtc_timing *hw_crtc_timing)
1304{
1305	struct dcn_otg_state s = {0};
1306
1307	if (tg == NULL || hw_crtc_timing == NULL)
1308		return false;
1309
1310	optc1_read_otg_state(DCN10TG_FROM_TG(tg), &s);
1311
1312	hw_crtc_timing->h_total = s.h_total + 1;
1313	hw_crtc_timing->h_addressable = s.h_total - ((s.h_total - s.h_blank_start) + s.h_blank_end);
1314	hw_crtc_timing->h_front_porch = s.h_total + 1 - s.h_blank_start;
1315	hw_crtc_timing->h_sync_width = s.h_sync_a_end - s.h_sync_a_start;
1316
1317	hw_crtc_timing->v_total = s.v_total + 1;
1318	hw_crtc_timing->v_addressable = s.v_total - ((s.v_total - s.v_blank_start) + s.v_blank_end);
1319	hw_crtc_timing->v_front_porch = s.v_total + 1 - s.v_blank_start;
1320	hw_crtc_timing->v_sync_width = s.v_sync_a_end - s.v_sync_a_start;
1321
1322	return true;
1323}
1324
1325
1326void optc1_read_otg_state(struct optc *optc1,
1327		struct dcn_otg_state *s)
1328{
1329	REG_GET(OTG_CONTROL,
1330			OTG_MASTER_EN, &s->otg_enabled);
1331
1332	REG_GET_2(OTG_V_BLANK_START_END,
1333			OTG_V_BLANK_START, &s->v_blank_start,
1334			OTG_V_BLANK_END, &s->v_blank_end);
1335
1336	REG_GET(OTG_V_SYNC_A_CNTL,
1337			OTG_V_SYNC_A_POL, &s->v_sync_a_pol);
1338
1339	REG_GET(OTG_V_TOTAL,
1340			OTG_V_TOTAL, &s->v_total);
1341
1342	REG_GET(OTG_V_TOTAL_MAX,
1343			OTG_V_TOTAL_MAX, &s->v_total_max);
1344
1345	REG_GET(OTG_V_TOTAL_MIN,
1346			OTG_V_TOTAL_MIN, &s->v_total_min);
1347
1348	REG_GET(OTG_V_TOTAL_CONTROL,
1349			OTG_V_TOTAL_MAX_SEL, &s->v_total_max_sel);
1350
1351	REG_GET(OTG_V_TOTAL_CONTROL,
1352			OTG_V_TOTAL_MIN_SEL, &s->v_total_min_sel);
1353
1354	REG_GET_2(OTG_V_SYNC_A,
1355			OTG_V_SYNC_A_START, &s->v_sync_a_start,
1356			OTG_V_SYNC_A_END, &s->v_sync_a_end);
1357
1358	REG_GET_2(OTG_H_BLANK_START_END,
1359			OTG_H_BLANK_START, &s->h_blank_start,
1360			OTG_H_BLANK_END, &s->h_blank_end);
1361
1362	REG_GET_2(OTG_H_SYNC_A,
1363			OTG_H_SYNC_A_START, &s->h_sync_a_start,
1364			OTG_H_SYNC_A_END, &s->h_sync_a_end);
1365
1366	REG_GET(OTG_H_SYNC_A_CNTL,
1367			OTG_H_SYNC_A_POL, &s->h_sync_a_pol);
1368
1369	REG_GET(OTG_H_TOTAL,
1370			OTG_H_TOTAL, &s->h_total);
1371
1372	REG_GET(OPTC_INPUT_GLOBAL_CONTROL,
1373			OPTC_UNDERFLOW_OCCURRED_STATUS, &s->underflow_occurred_status);
1374
1375	REG_GET(OTG_VERTICAL_INTERRUPT1_CONTROL,
1376			OTG_VERTICAL_INTERRUPT1_INT_ENABLE, &s->vertical_interrupt1_en);
1377
1378	REG_GET(OTG_VERTICAL_INTERRUPT1_POSITION,
1379				OTG_VERTICAL_INTERRUPT1_LINE_START, &s->vertical_interrupt1_line);
1380
1381	REG_GET(OTG_VERTICAL_INTERRUPT2_CONTROL,
1382			OTG_VERTICAL_INTERRUPT2_INT_ENABLE, &s->vertical_interrupt2_en);
1383
1384	REG_GET(OTG_VERTICAL_INTERRUPT2_POSITION,
1385			OTG_VERTICAL_INTERRUPT2_LINE_START, &s->vertical_interrupt2_line);
1386}
1387
1388bool optc1_get_otg_active_size(struct timing_generator *optc,
1389		uint32_t *otg_active_width,
1390		uint32_t *otg_active_height)
1391{
1392	uint32_t otg_enabled;
1393	uint32_t v_blank_start;
1394	uint32_t v_blank_end;
1395	uint32_t h_blank_start;
1396	uint32_t h_blank_end;
1397	struct optc *optc1 = DCN10TG_FROM_TG(optc);
1398
1399
1400	REG_GET(OTG_CONTROL,
1401			OTG_MASTER_EN, &otg_enabled);
1402
1403	if (otg_enabled == 0)
1404		return false;
1405
1406	REG_GET_2(OTG_V_BLANK_START_END,
1407			OTG_V_BLANK_START, &v_blank_start,
1408			OTG_V_BLANK_END, &v_blank_end);
1409
1410	REG_GET_2(OTG_H_BLANK_START_END,
1411			OTG_H_BLANK_START, &h_blank_start,
1412			OTG_H_BLANK_END, &h_blank_end);
1413
1414	*otg_active_width = v_blank_start - v_blank_end;
1415	*otg_active_height = h_blank_start - h_blank_end;
1416	return true;
1417}
1418
1419void optc1_clear_optc_underflow(struct timing_generator *optc)
1420{
1421	struct optc *optc1 = DCN10TG_FROM_TG(optc);
1422
1423	REG_UPDATE(OPTC_INPUT_GLOBAL_CONTROL, OPTC_UNDERFLOW_CLEAR, 1);
1424}
1425
1426void optc1_tg_init(struct timing_generator *optc)
1427{
1428	optc1_set_blank_data_double_buffer(optc, true);
1429	optc1_set_timing_double_buffer(optc, true);
1430	optc1_clear_optc_underflow(optc);
1431}
1432
1433bool optc1_is_tg_enabled(struct timing_generator *optc)
1434{
1435	struct optc *optc1 = DCN10TG_FROM_TG(optc);
1436	uint32_t otg_enabled = 0;
1437
1438	REG_GET(OTG_CONTROL, OTG_MASTER_EN, &otg_enabled);
1439
1440	return (otg_enabled != 0);
1441
1442}
1443
1444bool optc1_is_optc_underflow_occurred(struct timing_generator *optc)
1445{
1446	struct optc *optc1 = DCN10TG_FROM_TG(optc);
1447	uint32_t underflow_occurred = 0;
1448
1449	REG_GET(OPTC_INPUT_GLOBAL_CONTROL,
1450			OPTC_UNDERFLOW_OCCURRED_STATUS,
1451			&underflow_occurred);
1452
1453	return (underflow_occurred == 1);
1454}
1455
1456bool optc1_configure_crc(struct timing_generator *optc,
1457			  const struct crc_params *params)
1458{
1459	struct optc *optc1 = DCN10TG_FROM_TG(optc);
1460
1461	/* Cannot configure crc on a CRTC that is disabled */
1462	if (!optc1_is_tg_enabled(optc))
1463		return false;
1464
1465	REG_WRITE(OTG_CRC_CNTL, 0);
1466
1467	if (!params->enable)
1468		return true;
1469
1470	/* Program frame boundaries */
1471	/* Window A x axis start and end. */
1472	REG_UPDATE_2(OTG_CRC0_WINDOWA_X_CONTROL,
1473			OTG_CRC0_WINDOWA_X_START, params->windowa_x_start,
1474			OTG_CRC0_WINDOWA_X_END, params->windowa_x_end);
1475
1476	/* Window A y axis start and end. */
1477	REG_UPDATE_2(OTG_CRC0_WINDOWA_Y_CONTROL,
1478			OTG_CRC0_WINDOWA_Y_START, params->windowa_y_start,
1479			OTG_CRC0_WINDOWA_Y_END, params->windowa_y_end);
1480
1481	/* Window B x axis start and end. */
1482	REG_UPDATE_2(OTG_CRC0_WINDOWB_X_CONTROL,
1483			OTG_CRC0_WINDOWB_X_START, params->windowb_x_start,
1484			OTG_CRC0_WINDOWB_X_END, params->windowb_x_end);
1485
1486	/* Window B y axis start and end. */
1487	REG_UPDATE_2(OTG_CRC0_WINDOWB_Y_CONTROL,
1488			OTG_CRC0_WINDOWB_Y_START, params->windowb_y_start,
1489			OTG_CRC0_WINDOWB_Y_END, params->windowb_y_end);
1490
1491	/* Set crc mode and selection, and enable. Only using CRC0*/
1492	REG_UPDATE_3(OTG_CRC_CNTL,
1493			OTG_CRC_CONT_EN, params->continuous_mode ? 1 : 0,
1494			OTG_CRC0_SELECT, params->selection,
1495			OTG_CRC_EN, 1);
1496
1497	return true;
1498}
1499
1500/**
1501 * optc1_get_crc - Capture CRC result per component
1502 *
1503 * @optc: timing_generator instance.
1504 * @r_cr: 16-bit primary CRC signature for red data.
1505 * @g_y: 16-bit primary CRC signature for green data.
1506 * @b_cb: 16-bit primary CRC signature for blue data.
1507 *
1508 * This function reads the CRC signature from the OPTC registers. Notice that
1509 * we have three registers to keep the CRC result per color component (RGB).
1510 *
1511 * Returns:
1512 * If CRC is disabled, return false; otherwise, return true, and the CRC
1513 * results in the parameters.
1514 */
1515bool optc1_get_crc(struct timing_generator *optc,
1516		   uint32_t *r_cr, uint32_t *g_y, uint32_t *b_cb)
1517{
1518	uint32_t field = 0;
1519	struct optc *optc1 = DCN10TG_FROM_TG(optc);
1520
1521	REG_GET(OTG_CRC_CNTL, OTG_CRC_EN, &field);
1522
1523	/* Early return if CRC is not enabled for this CRTC */
1524	if (!field)
1525		return false;
1526
1527	/* OTG_CRC0_DATA_RG has the CRC16 results for the red and green component */
1528	REG_GET_2(OTG_CRC0_DATA_RG,
1529		  CRC0_R_CR, r_cr,
1530		  CRC0_G_Y, g_y);
1531
1532	/* OTG_CRC0_DATA_B has the CRC16 results for the blue component */
1533	REG_GET(OTG_CRC0_DATA_B,
1534		CRC0_B_CB, b_cb);
1535
1536	return true;
1537}
1538
1539static const struct timing_generator_funcs dcn10_tg_funcs = {
1540		.validate_timing = optc1_validate_timing,
1541		.program_timing = optc1_program_timing,
1542		.setup_vertical_interrupt0 = optc1_setup_vertical_interrupt0,
1543		.setup_vertical_interrupt1 = optc1_setup_vertical_interrupt1,
1544		.setup_vertical_interrupt2 = optc1_setup_vertical_interrupt2,
1545		.program_global_sync = optc1_program_global_sync,
1546		.enable_crtc = optc1_enable_crtc,
1547		.disable_crtc = optc1_disable_crtc,
1548		/* used by enable_timing_synchronization. Not need for FPGA */
1549		.is_counter_moving = optc1_is_counter_moving,
1550		.get_position = optc1_get_position,
1551		.get_frame_count = optc1_get_vblank_counter,
1552		.get_scanoutpos = optc1_get_crtc_scanoutpos,
1553		.get_otg_active_size = optc1_get_otg_active_size,
1554		.set_early_control = optc1_set_early_control,
1555		/* used by enable_timing_synchronization. Not need for FPGA */
1556		.wait_for_state = optc1_wait_for_state,
1557		.set_blank = optc1_set_blank,
1558		.is_blanked = optc1_is_blanked,
1559		.set_blank_color = optc1_program_blank_color,
1560		.did_triggered_reset_occur = optc1_did_triggered_reset_occur,
1561		.enable_reset_trigger = optc1_enable_reset_trigger,
1562		.enable_crtc_reset = optc1_enable_crtc_reset,
1563		.disable_reset_trigger = optc1_disable_reset_trigger,
1564		.lock = optc1_lock,
1565		.unlock = optc1_unlock,
1566		.enable_optc_clock = optc1_enable_optc_clock,
1567		.set_drr = optc1_set_drr,
1568		.get_last_used_drr_vtotal = NULL,
1569		.set_vtotal_min_max = optc1_set_vtotal_min_max,
1570		.set_static_screen_control = optc1_set_static_screen_control,
1571		.set_test_pattern = optc1_set_test_pattern,
1572		.program_stereo = optc1_program_stereo,
1573		.is_stereo_left_eye = optc1_is_stereo_left_eye,
1574		.set_blank_data_double_buffer = optc1_set_blank_data_double_buffer,
1575		.tg_init = optc1_tg_init,
1576		.is_tg_enabled = optc1_is_tg_enabled,
1577		.is_optc_underflow_occurred = optc1_is_optc_underflow_occurred,
1578		.clear_optc_underflow = optc1_clear_optc_underflow,
1579		.get_crc = optc1_get_crc,
1580		.configure_crc = optc1_configure_crc,
1581		.set_vtg_params = optc1_set_vtg_params,
1582		.program_manual_trigger = optc1_program_manual_trigger,
1583		.setup_manual_trigger = optc1_setup_manual_trigger,
1584		.get_hw_timing = optc1_get_hw_timing,
1585};
1586
1587void dcn10_timing_generator_init(struct optc *optc1)
1588{
1589	optc1->base.funcs = &dcn10_tg_funcs;
1590
1591	optc1->max_h_total = optc1->tg_mask->OTG_H_TOTAL + 1;
1592	optc1->max_v_total = optc1->tg_mask->OTG_V_TOTAL + 1;
1593
1594	optc1->min_h_blank = 32;
1595	optc1->min_v_blank = 3;
1596	optc1->min_v_blank_interlace = 5;
1597	optc1->min_h_sync_width = 4;
1598	optc1->min_v_sync_width = 1;
1599}
1600
1601/* "Containter" vs. "pixel" is a concept within HW blocks, mostly those closer to the back-end. It works like this:
1602 *
1603 * - In most of the formats (RGB or YCbCr 4:4:4, 4:2:2 uncompressed and DSC 4:2:2 Simple) pixel rate is the same as
1604 *   containter rate.
1605 *
1606 * - In 4:2:0 (DSC or uncompressed) there are two pixels per container, hence the target container rate has to be
1607 *   halved to maintain the correct pixel rate.
1608 *
1609 * - Unlike 4:2:2 uncompressed, DSC 4:2:2 Native also has two pixels per container (this happens when DSC is applied
1610 *   to it) and has to be treated the same as 4:2:0, i.e. target containter rate has to be halved in this case as well.
1611 *
1612 */
1613bool optc1_is_two_pixels_per_containter(const struct dc_crtc_timing *timing)
1614{
1615	bool two_pix = timing->pixel_encoding == PIXEL_ENCODING_YCBCR420;
1616
1617	two_pix = two_pix || (timing->flags.DSC && timing->pixel_encoding == PIXEL_ENCODING_YCBCR422
1618			&& !timing->dsc_cfg.ycbcr422_simple);
1619	return two_pix;
1620}
1621
1622