1/*
2 * Copyright 2012-15 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 * Authors: AMD
23 *
24 */
25
26#include "dm_services.h"
27
28#include "resource.h"
29#include "include/irq_service_interface.h"
30#include "link_encoder.h"
31#include "stream_encoder.h"
32#include "opp.h"
33#include "timing_generator.h"
34#include "transform.h"
35#include "dccg.h"
36#include "dchubbub.h"
37#include "dpp.h"
38#include "core_types.h"
39#include "set_mode_types.h"
40#include "virtual/virtual_stream_encoder.h"
41#include "dpcd_defs.h"
42#include "link_enc_cfg.h"
43#include "link.h"
44#include "virtual/virtual_link_hwss.h"
45#include "link/hwss/link_hwss_dio.h"
46#include "link/hwss/link_hwss_dpia.h"
47#include "link/hwss/link_hwss_hpo_dp.h"
48#include "link/hwss/link_hwss_dio_fixed_vs_pe_retimer.h"
49#include "link/hwss/link_hwss_hpo_fixed_vs_pe_retimer_dp.h"
50
51#if defined(CONFIG_DRM_AMD_DC_SI)
52#include "dce60/dce60_resource.h"
53#endif
54#include "dce80/dce80_resource.h"
55#include "dce100/dce100_resource.h"
56#include "dce110/dce110_resource.h"
57#include "dce112/dce112_resource.h"
58#include "dce120/dce120_resource.h"
59#include "dcn10/dcn10_resource.h"
60#include "dcn20/dcn20_resource.h"
61#include "dcn21/dcn21_resource.h"
62#include "dcn201/dcn201_resource.h"
63#include "dcn30/dcn30_resource.h"
64#include "dcn301/dcn301_resource.h"
65#include "dcn302/dcn302_resource.h"
66#include "dcn303/dcn303_resource.h"
67#include "dcn31/dcn31_resource.h"
68#include "dcn314/dcn314_resource.h"
69#include "dcn315/dcn315_resource.h"
70#include "dcn316/dcn316_resource.h"
71#include "../dcn32/dcn32_resource.h"
72#include "../dcn321/dcn321_resource.h"
73
74#define VISUAL_CONFIRM_BASE_DEFAULT 3
75#define VISUAL_CONFIRM_BASE_MIN 1
76#define VISUAL_CONFIRM_BASE_MAX 10
77/* we choose 240 because it is a common denominator of common v addressable
78 * such as 2160, 1440, 1200, 960. So we take 1/240 portion of v addressable as
79 * the visual confirm dpp offset height. So visual confirm height can stay
80 * relatively the same independent from timing used.
81 */
82#define VISUAL_CONFIRM_DPP_OFFSET_DENO 240
83
84#define DC_LOGGER_INIT(logger)
85
86#define UNABLE_TO_SPLIT -1
87
88enum dce_version resource_parse_asic_id(struct hw_asic_id asic_id)
89{
90	enum dce_version dc_version = DCE_VERSION_UNKNOWN;
91
92	switch (asic_id.chip_family) {
93
94#if defined(CONFIG_DRM_AMD_DC_SI)
95	case FAMILY_SI:
96		if (ASIC_REV_IS_TAHITI_P(asic_id.hw_internal_rev) ||
97		    ASIC_REV_IS_PITCAIRN_PM(asic_id.hw_internal_rev) ||
98		    ASIC_REV_IS_CAPEVERDE_M(asic_id.hw_internal_rev))
99			dc_version = DCE_VERSION_6_0;
100		else if (ASIC_REV_IS_OLAND_M(asic_id.hw_internal_rev))
101			dc_version = DCE_VERSION_6_4;
102		else
103			dc_version = DCE_VERSION_6_1;
104		break;
105#endif
106	case FAMILY_CI:
107		dc_version = DCE_VERSION_8_0;
108		break;
109	case FAMILY_KV:
110		if (ASIC_REV_IS_KALINDI(asic_id.hw_internal_rev) ||
111		    ASIC_REV_IS_BHAVANI(asic_id.hw_internal_rev) ||
112		    ASIC_REV_IS_GODAVARI(asic_id.hw_internal_rev))
113			dc_version = DCE_VERSION_8_3;
114		else
115			dc_version = DCE_VERSION_8_1;
116		break;
117	case FAMILY_CZ:
118		dc_version = DCE_VERSION_11_0;
119		break;
120
121	case FAMILY_VI:
122		if (ASIC_REV_IS_TONGA_P(asic_id.hw_internal_rev) ||
123				ASIC_REV_IS_FIJI_P(asic_id.hw_internal_rev)) {
124			dc_version = DCE_VERSION_10_0;
125			break;
126		}
127		if (ASIC_REV_IS_POLARIS10_P(asic_id.hw_internal_rev) ||
128				ASIC_REV_IS_POLARIS11_M(asic_id.hw_internal_rev) ||
129				ASIC_REV_IS_POLARIS12_V(asic_id.hw_internal_rev)) {
130			dc_version = DCE_VERSION_11_2;
131		}
132		if (ASIC_REV_IS_VEGAM(asic_id.hw_internal_rev))
133			dc_version = DCE_VERSION_11_22;
134		break;
135	case FAMILY_AI:
136		if (ASICREV_IS_VEGA20_P(asic_id.hw_internal_rev))
137			dc_version = DCE_VERSION_12_1;
138		else
139			dc_version = DCE_VERSION_12_0;
140		break;
141	case FAMILY_RV:
142		dc_version = DCN_VERSION_1_0;
143		if (ASICREV_IS_RAVEN2(asic_id.hw_internal_rev))
144			dc_version = DCN_VERSION_1_01;
145		if (ASICREV_IS_RENOIR(asic_id.hw_internal_rev))
146			dc_version = DCN_VERSION_2_1;
147		if (ASICREV_IS_GREEN_SARDINE(asic_id.hw_internal_rev))
148			dc_version = DCN_VERSION_2_1;
149		break;
150
151	case FAMILY_NV:
152		dc_version = DCN_VERSION_2_0;
153		if (asic_id.chip_id == DEVICE_ID_NV_13FE || asic_id.chip_id == DEVICE_ID_NV_143F) {
154			dc_version = DCN_VERSION_2_01;
155			break;
156		}
157		if (ASICREV_IS_SIENNA_CICHLID_P(asic_id.hw_internal_rev))
158			dc_version = DCN_VERSION_3_0;
159		if (ASICREV_IS_DIMGREY_CAVEFISH_P(asic_id.hw_internal_rev))
160			dc_version = DCN_VERSION_3_02;
161		if (ASICREV_IS_BEIGE_GOBY_P(asic_id.hw_internal_rev))
162			dc_version = DCN_VERSION_3_03;
163		break;
164
165	case FAMILY_VGH:
166		dc_version = DCN_VERSION_3_01;
167		break;
168
169	case FAMILY_YELLOW_CARP:
170		if (ASICREV_IS_YELLOW_CARP(asic_id.hw_internal_rev))
171			dc_version = DCN_VERSION_3_1;
172		break;
173	case AMDGPU_FAMILY_GC_10_3_6:
174		if (ASICREV_IS_GC_10_3_6(asic_id.hw_internal_rev))
175			dc_version = DCN_VERSION_3_15;
176		break;
177	case AMDGPU_FAMILY_GC_10_3_7:
178		if (ASICREV_IS_GC_10_3_7(asic_id.hw_internal_rev))
179			dc_version = DCN_VERSION_3_16;
180		break;
181	case AMDGPU_FAMILY_GC_11_0_0:
182		dc_version = DCN_VERSION_3_2;
183		if (ASICREV_IS_GC_11_0_2(asic_id.hw_internal_rev))
184			dc_version = DCN_VERSION_3_21;
185		break;
186	case AMDGPU_FAMILY_GC_11_0_1:
187		dc_version = DCN_VERSION_3_14;
188		break;
189	default:
190		dc_version = DCE_VERSION_UNKNOWN;
191		break;
192	}
193	return dc_version;
194}
195
196struct resource_pool *dc_create_resource_pool(struct dc  *dc,
197					      const struct dc_init_data *init_data,
198					      enum dce_version dc_version)
199{
200	struct resource_pool *res_pool = NULL;
201
202	switch (dc_version) {
203#if defined(CONFIG_DRM_AMD_DC_SI)
204	case DCE_VERSION_6_0:
205		res_pool = dce60_create_resource_pool(
206			init_data->num_virtual_links, dc);
207		break;
208	case DCE_VERSION_6_1:
209		res_pool = dce61_create_resource_pool(
210			init_data->num_virtual_links, dc);
211		break;
212	case DCE_VERSION_6_4:
213		res_pool = dce64_create_resource_pool(
214			init_data->num_virtual_links, dc);
215		break;
216#endif
217	case DCE_VERSION_8_0:
218		res_pool = dce80_create_resource_pool(
219				init_data->num_virtual_links, dc);
220		break;
221	case DCE_VERSION_8_1:
222		res_pool = dce81_create_resource_pool(
223				init_data->num_virtual_links, dc);
224		break;
225	case DCE_VERSION_8_3:
226		res_pool = dce83_create_resource_pool(
227				init_data->num_virtual_links, dc);
228		break;
229	case DCE_VERSION_10_0:
230		res_pool = dce100_create_resource_pool(
231				init_data->num_virtual_links, dc);
232		break;
233	case DCE_VERSION_11_0:
234		res_pool = dce110_create_resource_pool(
235				init_data->num_virtual_links, dc,
236				init_data->asic_id);
237		break;
238	case DCE_VERSION_11_2:
239	case DCE_VERSION_11_22:
240		res_pool = dce112_create_resource_pool(
241				init_data->num_virtual_links, dc);
242		break;
243	case DCE_VERSION_12_0:
244	case DCE_VERSION_12_1:
245		res_pool = dce120_create_resource_pool(
246				init_data->num_virtual_links, dc);
247		break;
248
249#if defined(CONFIG_DRM_AMD_DC_FP)
250	case DCN_VERSION_1_0:
251	case DCN_VERSION_1_01:
252		res_pool = dcn10_create_resource_pool(init_data, dc);
253		break;
254	case DCN_VERSION_2_0:
255		res_pool = dcn20_create_resource_pool(init_data, dc);
256		break;
257	case DCN_VERSION_2_1:
258		res_pool = dcn21_create_resource_pool(init_data, dc);
259		break;
260	case DCN_VERSION_2_01:
261		res_pool = dcn201_create_resource_pool(init_data, dc);
262		break;
263	case DCN_VERSION_3_0:
264		res_pool = dcn30_create_resource_pool(init_data, dc);
265		break;
266	case DCN_VERSION_3_01:
267		res_pool = dcn301_create_resource_pool(init_data, dc);
268		break;
269	case DCN_VERSION_3_02:
270		res_pool = dcn302_create_resource_pool(init_data, dc);
271		break;
272	case DCN_VERSION_3_03:
273		res_pool = dcn303_create_resource_pool(init_data, dc);
274		break;
275	case DCN_VERSION_3_1:
276		res_pool = dcn31_create_resource_pool(init_data, dc);
277		break;
278	case DCN_VERSION_3_14:
279		res_pool = dcn314_create_resource_pool(init_data, dc);
280		break;
281	case DCN_VERSION_3_15:
282		res_pool = dcn315_create_resource_pool(init_data, dc);
283		break;
284	case DCN_VERSION_3_16:
285		res_pool = dcn316_create_resource_pool(init_data, dc);
286		break;
287	case DCN_VERSION_3_2:
288		res_pool = dcn32_create_resource_pool(init_data, dc);
289		break;
290	case DCN_VERSION_3_21:
291		res_pool = dcn321_create_resource_pool(init_data, dc);
292		break;
293#endif /* CONFIG_DRM_AMD_DC_FP */
294	default:
295		break;
296	}
297
298	if (res_pool != NULL) {
299		if (dc->ctx->dc_bios->fw_info_valid) {
300			res_pool->ref_clocks.xtalin_clock_inKhz =
301				dc->ctx->dc_bios->fw_info.pll_info.crystal_frequency;
302			/* initialize with firmware data first, no all
303			 * ASIC have DCCG SW component. FPGA or
304			 * simulation need initialization of
305			 * dccg_ref_clock_inKhz, dchub_ref_clock_inKhz
306			 * with xtalin_clock_inKhz
307			 */
308			res_pool->ref_clocks.dccg_ref_clock_inKhz =
309				res_pool->ref_clocks.xtalin_clock_inKhz;
310			res_pool->ref_clocks.dchub_ref_clock_inKhz =
311				res_pool->ref_clocks.xtalin_clock_inKhz;
312		} else
313			ASSERT_CRITICAL(false);
314	}
315
316	return res_pool;
317}
318
319void dc_destroy_resource_pool(struct dc  *dc)
320{
321	if (dc) {
322		if (dc->res_pool)
323			dc->res_pool->funcs->destroy(&dc->res_pool);
324
325		kfree(dc->hwseq);
326	}
327}
328
329static void update_num_audio(
330	const struct resource_straps *straps,
331	unsigned int *num_audio,
332	struct audio_support *aud_support)
333{
334	aud_support->dp_audio = true;
335	aud_support->hdmi_audio_native = false;
336	aud_support->hdmi_audio_on_dongle = false;
337
338	if (straps->hdmi_disable == 0) {
339		if (straps->dc_pinstraps_audio & 0x2) {
340			aud_support->hdmi_audio_on_dongle = true;
341			aud_support->hdmi_audio_native = true;
342		}
343	}
344
345	switch (straps->audio_stream_number) {
346	case 0: /* multi streams supported */
347		break;
348	case 1: /* multi streams not supported */
349		*num_audio = 1;
350		break;
351	default:
352		DC_ERR("DC: unexpected audio fuse!\n");
353	}
354}
355
356bool resource_construct(
357	unsigned int num_virtual_links,
358	struct dc  *dc,
359	struct resource_pool *pool,
360	const struct resource_create_funcs *create_funcs)
361{
362	struct dc_context *ctx = dc->ctx;
363	const struct resource_caps *caps = pool->res_cap;
364	int i;
365	unsigned int num_audio = caps->num_audio;
366	struct resource_straps straps = {0};
367
368	if (create_funcs->read_dce_straps)
369		create_funcs->read_dce_straps(dc->ctx, &straps);
370
371	pool->audio_count = 0;
372	if (create_funcs->create_audio) {
373		/* find the total number of streams available via the
374		 * AZALIA_F0_CODEC_PIN_CONTROL_RESPONSE_CONFIGURATION_DEFAULT
375		 * registers (one for each pin) starting from pin 1
376		 * up to the max number of audio pins.
377		 * We stop on the first pin where
378		 * PORT_CONNECTIVITY == 1 (as instructed by HW team).
379		 */
380		update_num_audio(&straps, &num_audio, &pool->audio_support);
381		for (i = 0; i < caps->num_audio; i++) {
382			struct audio *aud = create_funcs->create_audio(ctx, i);
383
384			if (aud == NULL) {
385				DC_ERR("DC: failed to create audio!\n");
386				return false;
387			}
388			if (!aud->funcs->endpoint_valid(aud)) {
389				aud->funcs->destroy(&aud);
390				break;
391			}
392			pool->audios[i] = aud;
393			pool->audio_count++;
394		}
395	}
396
397	pool->stream_enc_count = 0;
398	if (create_funcs->create_stream_encoder) {
399		for (i = 0; i < caps->num_stream_encoder; i++) {
400			pool->stream_enc[i] = create_funcs->create_stream_encoder(i, ctx);
401			if (pool->stream_enc[i] == NULL)
402				DC_ERR("DC: failed to create stream_encoder!\n");
403			pool->stream_enc_count++;
404		}
405	}
406
407	pool->hpo_dp_stream_enc_count = 0;
408	if (create_funcs->create_hpo_dp_stream_encoder) {
409		for (i = 0; i < caps->num_hpo_dp_stream_encoder; i++) {
410			pool->hpo_dp_stream_enc[i] = create_funcs->create_hpo_dp_stream_encoder(i+ENGINE_ID_HPO_DP_0, ctx);
411			if (pool->hpo_dp_stream_enc[i] == NULL)
412				DC_ERR("DC: failed to create HPO DP stream encoder!\n");
413			pool->hpo_dp_stream_enc_count++;
414
415		}
416	}
417
418	pool->hpo_dp_link_enc_count = 0;
419	if (create_funcs->create_hpo_dp_link_encoder) {
420		for (i = 0; i < caps->num_hpo_dp_link_encoder; i++) {
421			pool->hpo_dp_link_enc[i] = create_funcs->create_hpo_dp_link_encoder(i, ctx);
422			if (pool->hpo_dp_link_enc[i] == NULL)
423				DC_ERR("DC: failed to create HPO DP link encoder!\n");
424			pool->hpo_dp_link_enc_count++;
425		}
426	}
427
428	for (i = 0; i < caps->num_mpc_3dlut; i++) {
429		pool->mpc_lut[i] = dc_create_3dlut_func();
430		if (pool->mpc_lut[i] == NULL)
431			DC_ERR("DC: failed to create MPC 3dlut!\n");
432		pool->mpc_shaper[i] = dc_create_transfer_func();
433		if (pool->mpc_shaper[i] == NULL)
434			DC_ERR("DC: failed to create MPC shaper!\n");
435	}
436
437	dc->caps.dynamic_audio = false;
438	if (pool->audio_count < pool->stream_enc_count) {
439		dc->caps.dynamic_audio = true;
440	}
441	for (i = 0; i < num_virtual_links; i++) {
442		pool->stream_enc[pool->stream_enc_count] =
443			virtual_stream_encoder_create(
444					ctx, ctx->dc_bios);
445		if (pool->stream_enc[pool->stream_enc_count] == NULL) {
446			DC_ERR("DC: failed to create stream_encoder!\n");
447			return false;
448		}
449		pool->stream_enc_count++;
450	}
451
452	dc->hwseq = create_funcs->create_hwseq(ctx);
453
454	return true;
455}
456static int find_matching_clock_source(
457		const struct resource_pool *pool,
458		struct clock_source *clock_source)
459{
460
461	int i;
462
463	for (i = 0; i < pool->clk_src_count; i++) {
464		if (pool->clock_sources[i] == clock_source)
465			return i;
466	}
467	return -1;
468}
469
470void resource_unreference_clock_source(
471		struct resource_context *res_ctx,
472		const struct resource_pool *pool,
473		struct clock_source *clock_source)
474{
475	int i = find_matching_clock_source(pool, clock_source);
476
477	if (i > -1)
478		res_ctx->clock_source_ref_count[i]--;
479
480	if (pool->dp_clock_source == clock_source)
481		res_ctx->dp_clock_source_ref_count--;
482}
483
484void resource_reference_clock_source(
485		struct resource_context *res_ctx,
486		const struct resource_pool *pool,
487		struct clock_source *clock_source)
488{
489	int i = find_matching_clock_source(pool, clock_source);
490
491	if (i > -1)
492		res_ctx->clock_source_ref_count[i]++;
493
494	if (pool->dp_clock_source == clock_source)
495		res_ctx->dp_clock_source_ref_count++;
496}
497
498int resource_get_clock_source_reference(
499		struct resource_context *res_ctx,
500		const struct resource_pool *pool,
501		struct clock_source *clock_source)
502{
503	int i = find_matching_clock_source(pool, clock_source);
504
505	if (i > -1)
506		return res_ctx->clock_source_ref_count[i];
507
508	if (pool->dp_clock_source == clock_source)
509		return res_ctx->dp_clock_source_ref_count;
510
511	return -1;
512}
513
514bool resource_are_vblanks_synchronizable(
515	struct dc_stream_state *stream1,
516	struct dc_stream_state *stream2)
517{
518	uint32_t base60_refresh_rates[] = {10, 20, 5};
519	uint8_t i;
520	uint8_t rr_count = ARRAY_SIZE(base60_refresh_rates);
521	uint64_t frame_time_diff;
522
523	if (stream1->ctx->dc->config.vblank_alignment_dto_params &&
524		stream1->ctx->dc->config.vblank_alignment_max_frame_time_diff > 0 &&
525		dc_is_dp_signal(stream1->signal) &&
526		dc_is_dp_signal(stream2->signal) &&
527		false == stream1->has_non_synchronizable_pclk &&
528		false == stream2->has_non_synchronizable_pclk &&
529		stream1->timing.flags.VBLANK_SYNCHRONIZABLE &&
530		stream2->timing.flags.VBLANK_SYNCHRONIZABLE) {
531		/* disable refresh rates higher than 60Hz for now */
532		if (stream1->timing.pix_clk_100hz*100/stream1->timing.h_total/
533				stream1->timing.v_total > 60)
534			return false;
535		if (stream2->timing.pix_clk_100hz*100/stream2->timing.h_total/
536				stream2->timing.v_total > 60)
537			return false;
538		frame_time_diff = (uint64_t)10000 *
539			stream1->timing.h_total *
540			stream1->timing.v_total *
541			stream2->timing.pix_clk_100hz;
542		frame_time_diff = div_u64(frame_time_diff, stream1->timing.pix_clk_100hz);
543		frame_time_diff = div_u64(frame_time_diff, stream2->timing.h_total);
544		frame_time_diff = div_u64(frame_time_diff, stream2->timing.v_total);
545		for (i = 0; i < rr_count; i++) {
546			int64_t diff = (int64_t)div_u64(frame_time_diff * base60_refresh_rates[i], 10) - 10000;
547
548			if (diff < 0)
549				diff = -diff;
550			if (diff < stream1->ctx->dc->config.vblank_alignment_max_frame_time_diff)
551				return true;
552		}
553	}
554	return false;
555}
556
557bool resource_are_streams_timing_synchronizable(
558	struct dc_stream_state *stream1,
559	struct dc_stream_state *stream2)
560{
561	if (stream1->timing.h_total != stream2->timing.h_total)
562		return false;
563
564	if (stream1->timing.v_total != stream2->timing.v_total)
565		return false;
566
567	if (stream1->timing.h_addressable
568				!= stream2->timing.h_addressable)
569		return false;
570
571	if (stream1->timing.v_addressable
572				!= stream2->timing.v_addressable)
573		return false;
574
575	if (stream1->timing.v_front_porch
576				!= stream2->timing.v_front_porch)
577		return false;
578
579	if (stream1->timing.pix_clk_100hz
580				!= stream2->timing.pix_clk_100hz)
581		return false;
582
583	if (stream1->clamping.c_depth != stream2->clamping.c_depth)
584		return false;
585
586	if (stream1->phy_pix_clk != stream2->phy_pix_clk
587			&& (!dc_is_dp_signal(stream1->signal)
588			|| !dc_is_dp_signal(stream2->signal)))
589		return false;
590
591	if (stream1->view_format != stream2->view_format)
592		return false;
593
594	if (stream1->ignore_msa_timing_param || stream2->ignore_msa_timing_param)
595		return false;
596
597	return true;
598}
599static bool is_dp_and_hdmi_sharable(
600		struct dc_stream_state *stream1,
601		struct dc_stream_state *stream2)
602{
603	if (stream1->ctx->dc->caps.disable_dp_clk_share)
604		return false;
605
606	if (stream1->clamping.c_depth != COLOR_DEPTH_888 ||
607		stream2->clamping.c_depth != COLOR_DEPTH_888)
608		return false;
609
610	return true;
611
612}
613
614static bool is_sharable_clk_src(
615	const struct pipe_ctx *pipe_with_clk_src,
616	const struct pipe_ctx *pipe)
617{
618	if (pipe_with_clk_src->clock_source == NULL)
619		return false;
620
621	if (pipe_with_clk_src->stream->signal == SIGNAL_TYPE_VIRTUAL)
622		return false;
623
624	if (dc_is_dp_signal(pipe_with_clk_src->stream->signal) ||
625		(dc_is_dp_signal(pipe->stream->signal) &&
626		!is_dp_and_hdmi_sharable(pipe_with_clk_src->stream,
627				     pipe->stream)))
628		return false;
629
630	if (dc_is_hdmi_signal(pipe_with_clk_src->stream->signal)
631			&& dc_is_dual_link_signal(pipe->stream->signal))
632		return false;
633
634	if (dc_is_hdmi_signal(pipe->stream->signal)
635			&& dc_is_dual_link_signal(pipe_with_clk_src->stream->signal))
636		return false;
637
638	if (!resource_are_streams_timing_synchronizable(
639			pipe_with_clk_src->stream, pipe->stream))
640		return false;
641
642	return true;
643}
644
645struct clock_source *resource_find_used_clk_src_for_sharing(
646					struct resource_context *res_ctx,
647					struct pipe_ctx *pipe_ctx)
648{
649	int i;
650
651	for (i = 0; i < MAX_PIPES; i++) {
652		if (is_sharable_clk_src(&res_ctx->pipe_ctx[i], pipe_ctx))
653			return res_ctx->pipe_ctx[i].clock_source;
654	}
655
656	return NULL;
657}
658
659static enum pixel_format convert_pixel_format_to_dalsurface(
660		enum surface_pixel_format surface_pixel_format)
661{
662	enum pixel_format dal_pixel_format = PIXEL_FORMAT_UNKNOWN;
663
664	switch (surface_pixel_format) {
665	case SURFACE_PIXEL_FORMAT_GRPH_PALETA_256_COLORS:
666		dal_pixel_format = PIXEL_FORMAT_INDEX8;
667		break;
668	case SURFACE_PIXEL_FORMAT_GRPH_ARGB1555:
669		dal_pixel_format = PIXEL_FORMAT_RGB565;
670		break;
671	case SURFACE_PIXEL_FORMAT_GRPH_RGB565:
672		dal_pixel_format = PIXEL_FORMAT_RGB565;
673		break;
674	case SURFACE_PIXEL_FORMAT_GRPH_ARGB8888:
675		dal_pixel_format = PIXEL_FORMAT_ARGB8888;
676		break;
677	case SURFACE_PIXEL_FORMAT_GRPH_ABGR8888:
678		dal_pixel_format = PIXEL_FORMAT_ARGB8888;
679		break;
680	case SURFACE_PIXEL_FORMAT_GRPH_ARGB2101010:
681		dal_pixel_format = PIXEL_FORMAT_ARGB2101010;
682		break;
683	case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010:
684		dal_pixel_format = PIXEL_FORMAT_ARGB2101010;
685		break;
686	case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010_XR_BIAS:
687		dal_pixel_format = PIXEL_FORMAT_ARGB2101010_XRBIAS;
688		break;
689	case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616F:
690	case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616F:
691		dal_pixel_format = PIXEL_FORMAT_FP16;
692		break;
693	case SURFACE_PIXEL_FORMAT_VIDEO_420_YCbCr:
694	case SURFACE_PIXEL_FORMAT_VIDEO_420_YCrCb:
695		dal_pixel_format = PIXEL_FORMAT_420BPP8;
696		break;
697	case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCbCr:
698	case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCrCb:
699		dal_pixel_format = PIXEL_FORMAT_420BPP10;
700		break;
701	case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616:
702	case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616:
703	default:
704		dal_pixel_format = PIXEL_FORMAT_UNKNOWN;
705		break;
706	}
707	return dal_pixel_format;
708}
709
710static inline void get_vp_scan_direction(
711	enum dc_rotation_angle rotation,
712	bool horizontal_mirror,
713	bool *orthogonal_rotation,
714	bool *flip_vert_scan_dir,
715	bool *flip_horz_scan_dir)
716{
717	*orthogonal_rotation = false;
718	*flip_vert_scan_dir = false;
719	*flip_horz_scan_dir = false;
720	if (rotation == ROTATION_ANGLE_180) {
721		*flip_vert_scan_dir = true;
722		*flip_horz_scan_dir = true;
723	} else if (rotation == ROTATION_ANGLE_90) {
724		*orthogonal_rotation = true;
725		*flip_horz_scan_dir = true;
726	} else if (rotation == ROTATION_ANGLE_270) {
727		*orthogonal_rotation = true;
728		*flip_vert_scan_dir = true;
729	}
730
731	if (horizontal_mirror)
732		*flip_horz_scan_dir = !*flip_horz_scan_dir;
733}
734
735int resource_get_num_mpc_splits(const struct pipe_ctx *pipe)
736{
737	int mpc_split_count = 0;
738	const struct pipe_ctx *other_pipe = pipe->bottom_pipe;
739
740	while (other_pipe && other_pipe->plane_state == pipe->plane_state) {
741		mpc_split_count++;
742		other_pipe = other_pipe->bottom_pipe;
743	}
744	other_pipe = pipe->top_pipe;
745	while (other_pipe && other_pipe->plane_state == pipe->plane_state) {
746		mpc_split_count++;
747		other_pipe = other_pipe->top_pipe;
748	}
749
750	return mpc_split_count;
751}
752
753int resource_get_num_odm_splits(const struct pipe_ctx *pipe)
754{
755	int odm_split_count = 0;
756
757	pipe = resource_get_otg_master(pipe);
758
759	while (pipe->next_odm_pipe) {
760		odm_split_count++;
761		pipe = pipe->next_odm_pipe;
762	}
763	return odm_split_count;
764}
765
766static int get_odm_split_index(struct pipe_ctx *pipe_ctx)
767{
768	int index = 0;
769
770	pipe_ctx = resource_get_opp_head(pipe_ctx);
771	if (!pipe_ctx)
772		return 0;
773
774	while (pipe_ctx->prev_odm_pipe) {
775		index++;
776		pipe_ctx = pipe_ctx->prev_odm_pipe;
777	}
778
779	return index;
780}
781
782static int get_mpc_split_index(struct pipe_ctx *pipe_ctx)
783{
784	struct pipe_ctx *split_pipe = pipe_ctx->top_pipe;
785	int index = 0;
786
787	while (split_pipe && split_pipe->plane_state == pipe_ctx->plane_state) {
788		index++;
789		split_pipe = split_pipe->top_pipe;
790	}
791
792	return index;
793}
794
795/*
796 * This is a preliminary vp size calculation to allow us to check taps support.
797 * The result is completely overridden afterwards.
798 */
799static void calculate_viewport_size(struct pipe_ctx *pipe_ctx)
800{
801	struct scaler_data *data = &pipe_ctx->plane_res.scl_data;
802
803	data->viewport.width = dc_fixpt_ceil(dc_fixpt_mul_int(data->ratios.horz, data->recout.width));
804	data->viewport.height = dc_fixpt_ceil(dc_fixpt_mul_int(data->ratios.vert, data->recout.height));
805	data->viewport_c.width = dc_fixpt_ceil(dc_fixpt_mul_int(data->ratios.horz_c, data->recout.width));
806	data->viewport_c.height = dc_fixpt_ceil(dc_fixpt_mul_int(data->ratios.vert_c, data->recout.height));
807	if (pipe_ctx->plane_state->rotation == ROTATION_ANGLE_90 ||
808			pipe_ctx->plane_state->rotation == ROTATION_ANGLE_270) {
809		swap(data->viewport.width, data->viewport.height);
810		swap(data->viewport_c.width, data->viewport_c.height);
811	}
812}
813
814static struct rect intersect_rec(const struct rect *r0, const struct rect *r1)
815{
816	struct rect rec;
817	int r0_x_end = r0->x + r0->width;
818	int r1_x_end = r1->x + r1->width;
819	int r0_y_end = r0->y + r0->height;
820	int r1_y_end = r1->y + r1->height;
821
822	rec.x = r0->x > r1->x ? r0->x : r1->x;
823	rec.width = r0_x_end > r1_x_end ? r1_x_end - rec.x : r0_x_end - rec.x;
824	rec.y = r0->y > r1->y ? r0->y : r1->y;
825	rec.height = r0_y_end > r1_y_end ? r1_y_end - rec.y : r0_y_end - rec.y;
826
827	/* in case that there is no intersection */
828	if (rec.width < 0 || rec.height < 0)
829		memset(&rec, 0, sizeof(rec));
830
831	return rec;
832}
833
834static struct rect shift_rec(const struct rect *rec_in, int x, int y)
835{
836	struct rect rec_out = *rec_in;
837
838	rec_out.x += x;
839	rec_out.y += y;
840
841	return rec_out;
842}
843
844static struct rect calculate_odm_slice_in_timing_active(struct pipe_ctx *pipe_ctx)
845{
846	const struct dc_stream_state *stream = pipe_ctx->stream;
847	int odm_slice_count = resource_get_num_odm_splits(pipe_ctx) + 1;
848	int odm_slice_idx = get_odm_split_index(pipe_ctx);
849	bool is_last_odm_slice = (odm_slice_idx + 1) == odm_slice_count;
850	int h_active = stream->timing.h_addressable +
851			stream->timing.h_border_left +
852			stream->timing.h_border_right;
853	int odm_slice_width = h_active / odm_slice_count;
854	struct rect odm_rec;
855
856	odm_rec.x = odm_slice_width * odm_slice_idx;
857	odm_rec.width = is_last_odm_slice ?
858			/* last slice width is the reminder of h_active */
859			h_active - odm_slice_width * (odm_slice_count - 1) :
860			/* odm slice width is the floor of h_active / count */
861			odm_slice_width;
862	odm_rec.y = 0;
863	odm_rec.height = stream->timing.v_addressable +
864			stream->timing.v_border_bottom +
865			stream->timing.v_border_top;
866
867	return odm_rec;
868}
869
870static struct rect calculate_plane_rec_in_timing_active(
871		struct pipe_ctx *pipe_ctx,
872		const struct rect *rec_in)
873{
874	/*
875	 * The following diagram shows an example where we map a 1920x1200
876	 * desktop to a 2560x1440 timing with a plane rect in the middle
877	 * of the screen. To map a plane rect from Stream Source to Timing
878	 * Active space, we first multiply stream scaling ratios (i.e 2304/1920
879	 * horizontal and 1440/1200 vertical) to the plane's x and y, then
880	 * we add stream destination offsets (i.e 128 horizontal, 0 vertical).
881	 * This will give us a plane rect's position in Timing Active. However
882	 * we have to remove the fractional. The rule is that we find left/right
883	 * and top/bottom positions and round the value to the adjacent integer.
884	 *
885	 * Stream Source Space
886	 * ------------
887	 *        __________________________________________________
888	 *       |Stream Source (1920 x 1200) ^                     |
889	 *       |                            y                     |
890	 *       |         <------- w --------|>                    |
891	 *       |          __________________V                     |
892	 *       |<-- x -->|Plane//////////////| ^                  |
893	 *       |         |(pre scale)////////| |                  |
894	 *       |         |///////////////////| |                  |
895	 *       |         |///////////////////| h                  |
896	 *       |         |///////////////////| |                  |
897	 *       |         |///////////////////| |                  |
898	 *       |         |///////////////////| V                  |
899	 *       |                                                  |
900	 *       |                                                  |
901	 *       |__________________________________________________|
902	 *
903	 *
904	 * Timing Active Space
905	 * ---------------------------------
906	 *
907	 *       Timing Active (2560 x 1440)
908	 *        __________________________________________________
909	 *       |*****|  Stteam Destination (2304 x 1440)    |*****|
910	 *       |*****|                                      |*****|
911	 *       |<128>|                                      |*****|
912	 *       |*****|     __________________               |*****|
913	 *       |*****|    |Plane/////////////|              |*****|
914	 *       |*****|    |(post scale)//////|              |*****|
915	 *       |*****|    |//////////////////|              |*****|
916	 *       |*****|    |//////////////////|              |*****|
917	 *       |*****|    |//////////////////|              |*****|
918	 *       |*****|    |//////////////////|              |*****|
919	 *       |*****|                                      |*****|
920	 *       |*****|                                      |*****|
921	 *       |*****|                                      |*****|
922	 *       |*****|______________________________________|*****|
923	 *
924	 * So the resulting formulas are shown below:
925	 *
926	 * recout_x = 128 + round(plane_x * 2304 / 1920)
927	 * recout_w = 128 + round((plane_x + plane_w) * 2304 / 1920) - recout_x
928	 * recout_y = 0 + round(plane_y * 1440 / 1280)
929	 * recout_h = 0 + round((plane_y + plane_h) * 1440 / 1200) - recout_y
930	 *
931	 * NOTE: fixed point division is not error free. To reduce errors
932	 * introduced by fixed point division, we divide only after
933	 * multiplication is complete.
934	 */
935	const struct dc_stream_state *stream = pipe_ctx->stream;
936	struct rect rec_out = {0};
937	struct fixed31_32 temp;
938
939	temp = dc_fixpt_from_fraction(rec_in->x * stream->dst.width,
940			stream->src.width);
941	rec_out.x = stream->dst.x + dc_fixpt_round(temp);
942
943	temp = dc_fixpt_from_fraction(
944			(rec_in->x + rec_in->width) * stream->dst.width,
945			stream->src.width);
946	rec_out.width = stream->dst.x + dc_fixpt_round(temp) - rec_out.x;
947
948	temp = dc_fixpt_from_fraction(rec_in->y * stream->dst.height,
949			stream->src.height);
950	rec_out.y = stream->dst.y + dc_fixpt_round(temp);
951
952	temp = dc_fixpt_from_fraction(
953			(rec_in->y + rec_in->height) * stream->dst.height,
954			stream->src.height);
955	rec_out.height = stream->dst.y + dc_fixpt_round(temp) - rec_out.y;
956
957	return rec_out;
958}
959
960static struct rect calculate_mpc_slice_in_timing_active(
961		struct pipe_ctx *pipe_ctx,
962		struct rect *plane_clip_rec)
963{
964	const struct dc_stream_state *stream = pipe_ctx->stream;
965	int mpc_slice_count = resource_get_num_mpc_splits(pipe_ctx) + 1;
966	int mpc_slice_idx = get_mpc_split_index(pipe_ctx);
967	int epimo = mpc_slice_count - plane_clip_rec->width % mpc_slice_count - 1;
968	struct rect mpc_rec;
969
970	mpc_rec.width = plane_clip_rec->width / mpc_slice_count;
971	mpc_rec.x = plane_clip_rec->x + mpc_rec.width * mpc_slice_idx;
972	mpc_rec.height = plane_clip_rec->height;
973	mpc_rec.y = plane_clip_rec->y;
974	ASSERT(mpc_slice_count == 1 ||
975			stream->view_format != VIEW_3D_FORMAT_SIDE_BY_SIDE ||
976			mpc_rec.width % 2 == 0);
977
978	/* extra pixels in the division remainder need to go to pipes after
979	 * the extra pixel index minus one(epimo) defined here as:
980	 */
981	if (mpc_slice_idx > epimo) {
982		mpc_rec.x += mpc_slice_idx - epimo - 1;
983		mpc_rec.width += 1;
984	}
985
986	if (stream->view_format == VIEW_3D_FORMAT_TOP_AND_BOTTOM) {
987		ASSERT(mpc_rec.height % 2 == 0);
988		mpc_rec.height /= 2;
989	}
990	return mpc_rec;
991}
992
993static void adjust_recout_for_visual_confirm(struct rect *recout,
994		struct pipe_ctx *pipe_ctx)
995{
996	struct dc *dc = pipe_ctx->stream->ctx->dc;
997	int dpp_offset, base_offset;
998
999	if (dc->debug.visual_confirm == VISUAL_CONFIRM_DISABLE || !pipe_ctx->plane_res.dpp)
1000		return;
1001
1002	dpp_offset = pipe_ctx->stream->timing.v_addressable / VISUAL_CONFIRM_DPP_OFFSET_DENO;
1003	dpp_offset *= pipe_ctx->plane_res.dpp->inst;
1004
1005	if ((dc->debug.visual_confirm_rect_height >= VISUAL_CONFIRM_BASE_MIN) &&
1006			dc->debug.visual_confirm_rect_height <= VISUAL_CONFIRM_BASE_MAX)
1007		base_offset = dc->debug.visual_confirm_rect_height;
1008	else
1009		base_offset = VISUAL_CONFIRM_BASE_DEFAULT;
1010
1011	recout->height -= base_offset;
1012	recout->height -= dpp_offset;
1013}
1014
1015/*
1016 * The function maps a plane clip from Stream Source Space to ODM Slice Space
1017 * and calculates the rec of the overlapping area of MPC slice of the plane
1018 * clip, ODM slice associated with the pipe context and stream destination rec.
1019 */
1020static void calculate_recout(struct pipe_ctx *pipe_ctx)
1021{
1022	/*
1023	 * A plane clip represents the desired plane size and position in Stream
1024	 * Source Space. Stream Source is the destination where all planes are
1025	 * blended (i.e. positioned, scaled and overlaid). It is a canvas where
1026	 * all planes associated with the current stream are drawn together.
1027	 * After Stream Source is completed, we will further scale and
1028	 * reposition the entire canvas of the stream source to Stream
1029	 * Destination in Timing Active Space. This could be due to display
1030	 * overscan adjustment where we will need to rescale and reposition all
1031	 * the planes so they can fit into a TV with overscan or downscale
1032	 * upscale features such as GPU scaling or VSR.
1033	 *
1034	 * This two step blending is a virtual procedure in software. In
1035	 * hardware there is no such thing as Stream Source. all planes are
1036	 * blended once in Timing Active Space. Software virtualizes a Stream
1037	 * Source space to decouple the math complicity so scaling param
1038	 * calculation focuses on one step at a time.
1039	 *
1040	 * In the following two diagrams, user applied 10% overscan adjustment
1041	 * so the Stream Source needs to be scaled down a little before mapping
1042	 * to Timing Active Space. As a result the Plane Clip is also scaled
1043	 * down by the same ratio, Plane Clip position (i.e. x and y) with
1044	 * respect to Stream Source is also scaled down. To map it in Timing
1045	 * Active Space additional x and y offsets from Stream Destination are
1046	 * added to Plane Clip as well.
1047	 *
1048	 * Stream Source Space
1049	 * ------------
1050	 *        __________________________________________________
1051	 *       |Stream Source (3840 x 2160) ^                     |
1052	 *       |                            y                     |
1053	 *       |                            |                     |
1054	 *       |          __________________V                     |
1055	 *       |<-- x -->|Plane Clip/////////|                    |
1056	 *       |         |(pre scale)////////|                    |
1057	 *       |         |///////////////////|                    |
1058	 *       |         |///////////////////|                    |
1059	 *       |         |///////////////////|                    |
1060	 *       |         |///////////////////|                    |
1061	 *       |         |///////////////////|                    |
1062	 *       |                                                  |
1063	 *       |                                                  |
1064	 *       |__________________________________________________|
1065	 *
1066	 *
1067	 * Timing Active Space (3840 x 2160)
1068	 * ---------------------------------
1069	 *
1070	 *       Timing Active
1071	 *        __________________________________________________
1072	 *       | y_____________________________________________   |
1073	 *       |x |Stream Destination (3456 x 1944)            |  |
1074	 *       |  |                                            |  |
1075	 *       |  |        __________________                  |  |
1076	 *       |  |       |Plane Clip////////|                 |  |
1077	 *       |  |       |(post scale)//////|                 |  |
1078	 *       |  |       |//////////////////|                 |  |
1079	 *       |  |       |//////////////////|                 |  |
1080	 *       |  |       |//////////////////|                 |  |
1081	 *       |  |       |//////////////////|                 |  |
1082	 *       |  |                                            |  |
1083	 *       |  |                                            |  |
1084	 *       |  |____________________________________________|  |
1085	 *       |__________________________________________________|
1086	 *
1087	 *
1088	 * In Timing Active Space a plane clip could be further sliced into
1089	 * pieces called MPC slices. Each Pipe Context is responsible for
1090	 * processing only one MPC slice so the plane processing workload can be
1091	 * distributed to multiple DPP Pipes. MPC slices could be blended
1092	 * together to a single ODM slice. Each ODM slice is responsible for
1093	 * processing a portion of Timing Active divided horizontally so the
1094	 * output pixel processing workload can be distributed to multiple OPP
1095	 * pipes. All ODM slices are mapped together in ODM block so all MPC
1096	 * slices belong to different ODM slices could be pieced together to
1097	 * form a single image in Timing Active. MPC slices must belong to
1098	 * single ODM slice. If an MPC slice goes across ODM slice boundary, it
1099	 * needs to be divided into two MPC slices one for each ODM slice.
1100	 *
1101	 * In the following diagram the output pixel processing workload is
1102	 * divided horizontally into two ODM slices one for each OPP blend tree.
1103	 * OPP0 blend tree is responsible for processing left half of Timing
1104	 * Active, while OPP2 blend tree is responsible for processing right
1105	 * half.
1106	 *
1107	 * The plane has two MPC slices. However since the right MPC slice goes
1108	 * across ODM boundary, two DPP pipes are needed one for each OPP blend
1109	 * tree. (i.e. DPP1 for OPP0 blend tree and DPP2 for OPP2 blend tree).
1110	 *
1111	 * Assuming that we have a Pipe Context associated with OPP0 and DPP1
1112	 * working on processing the plane in the diagram. We want to know the
1113	 * width and height of the shaded rectangle and its relative position
1114	 * with respect to the ODM slice0. This is called the recout of the pipe
1115	 * context.
1116	 *
1117	 * Planes can be at arbitrary size and position and there could be an
1118	 * arbitrary number of MPC and ODM slices. The algorithm needs to take
1119	 * all scenarios into account.
1120	 *
1121	 * Timing Active Space (3840 x 2160)
1122	 * ---------------------------------
1123	 *
1124	 *       Timing Active
1125	 *        __________________________________________________
1126	 *       |OPP0(ODM slice0)^        |OPP2(ODM slice1)        |
1127	 *       |                y        |                        |
1128	 *       |                |  <- w ->                        |
1129	 *       |           _____V________|____                    |
1130	 *       |          |DPP0 ^  |DPP1 |DPP2|                   |
1131	 *       |<------ x |-----|->|/////|    |                   |
1132	 *       |          |     |  |/////|    |                   |
1133	 *       |          |     h  |/////|    |                   |
1134	 *       |          |     |  |/////|    |                   |
1135	 *       |          |_____V__|/////|____|                   |
1136	 *       |                         |                        |
1137	 *       |                         |                        |
1138	 *       |                         |                        |
1139	 *       |_________________________|________________________|
1140	 *
1141	 *
1142	 */
1143	struct rect plane_clip;
1144	struct rect mpc_slice_of_plane_clip;
1145	struct rect odm_slice;
1146	struct rect overlapping_area;
1147
1148	plane_clip = calculate_plane_rec_in_timing_active(pipe_ctx,
1149			&pipe_ctx->plane_state->clip_rect);
1150	/* guard plane clip from drawing beyond stream dst here */
1151	plane_clip = intersect_rec(&plane_clip,
1152				&pipe_ctx->stream->dst);
1153	mpc_slice_of_plane_clip = calculate_mpc_slice_in_timing_active(
1154			pipe_ctx, &plane_clip);
1155	odm_slice = calculate_odm_slice_in_timing_active(pipe_ctx);
1156	overlapping_area = intersect_rec(&mpc_slice_of_plane_clip, &odm_slice);
1157	if (overlapping_area.height > 0 &&
1158			overlapping_area.width > 0) {
1159		/* shift the overlapping area so it is with respect to current
1160		 * ODM slice's position
1161		 */
1162		pipe_ctx->plane_res.scl_data.recout = shift_rec(
1163				&overlapping_area,
1164				-odm_slice.x, -odm_slice.y);
1165		adjust_recout_for_visual_confirm(
1166				&pipe_ctx->plane_res.scl_data.recout,
1167				pipe_ctx);
1168	} else {
1169		/* if there is no overlap, zero recout */
1170		memset(&pipe_ctx->plane_res.scl_data.recout, 0,
1171				sizeof(struct rect));
1172	}
1173
1174}
1175
1176static void calculate_scaling_ratios(struct pipe_ctx *pipe_ctx)
1177{
1178	const struct dc_plane_state *plane_state = pipe_ctx->plane_state;
1179	const struct dc_stream_state *stream = pipe_ctx->stream;
1180	struct rect surf_src = plane_state->src_rect;
1181	const int in_w = stream->src.width;
1182	const int in_h = stream->src.height;
1183	const int out_w = stream->dst.width;
1184	const int out_h = stream->dst.height;
1185
1186	/*Swap surf_src height and width since scaling ratios are in recout rotation*/
1187	if (pipe_ctx->plane_state->rotation == ROTATION_ANGLE_90 ||
1188			pipe_ctx->plane_state->rotation == ROTATION_ANGLE_270)
1189		swap(surf_src.height, surf_src.width);
1190
1191	pipe_ctx->plane_res.scl_data.ratios.horz = dc_fixpt_from_fraction(
1192					surf_src.width,
1193					plane_state->dst_rect.width);
1194	pipe_ctx->plane_res.scl_data.ratios.vert = dc_fixpt_from_fraction(
1195					surf_src.height,
1196					plane_state->dst_rect.height);
1197
1198	if (stream->view_format == VIEW_3D_FORMAT_SIDE_BY_SIDE)
1199		pipe_ctx->plane_res.scl_data.ratios.horz.value *= 2;
1200	else if (stream->view_format == VIEW_3D_FORMAT_TOP_AND_BOTTOM)
1201		pipe_ctx->plane_res.scl_data.ratios.vert.value *= 2;
1202
1203	pipe_ctx->plane_res.scl_data.ratios.vert.value = div64_s64(
1204		pipe_ctx->plane_res.scl_data.ratios.vert.value * in_h, out_h);
1205	pipe_ctx->plane_res.scl_data.ratios.horz.value = div64_s64(
1206		pipe_ctx->plane_res.scl_data.ratios.horz.value * in_w, out_w);
1207
1208	pipe_ctx->plane_res.scl_data.ratios.horz_c = pipe_ctx->plane_res.scl_data.ratios.horz;
1209	pipe_ctx->plane_res.scl_data.ratios.vert_c = pipe_ctx->plane_res.scl_data.ratios.vert;
1210
1211	if (pipe_ctx->plane_res.scl_data.format == PIXEL_FORMAT_420BPP8
1212			|| pipe_ctx->plane_res.scl_data.format == PIXEL_FORMAT_420BPP10) {
1213		pipe_ctx->plane_res.scl_data.ratios.horz_c.value /= 2;
1214		pipe_ctx->plane_res.scl_data.ratios.vert_c.value /= 2;
1215	}
1216	pipe_ctx->plane_res.scl_data.ratios.horz = dc_fixpt_truncate(
1217			pipe_ctx->plane_res.scl_data.ratios.horz, 19);
1218	pipe_ctx->plane_res.scl_data.ratios.vert = dc_fixpt_truncate(
1219			pipe_ctx->plane_res.scl_data.ratios.vert, 19);
1220	pipe_ctx->plane_res.scl_data.ratios.horz_c = dc_fixpt_truncate(
1221			pipe_ctx->plane_res.scl_data.ratios.horz_c, 19);
1222	pipe_ctx->plane_res.scl_data.ratios.vert_c = dc_fixpt_truncate(
1223			pipe_ctx->plane_res.scl_data.ratios.vert_c, 19);
1224}
1225
1226
1227/*
1228 * We completely calculate vp offset, size and inits here based entirely on scaling
1229 * ratios and recout for pixel perfect pipe combine.
1230 */
1231static void calculate_init_and_vp(
1232		bool flip_scan_dir,
1233		int recout_offset_within_recout_full,
1234		int recout_size,
1235		int src_size,
1236		int taps,
1237		struct fixed31_32 ratio,
1238		struct fixed31_32 *init,
1239		int *vp_offset,
1240		int *vp_size)
1241{
1242	struct fixed31_32 temp;
1243	int int_part;
1244
1245	/*
1246	 * First of the taps starts sampling pixel number <init_int_part> corresponding to recout
1247	 * pixel 1. Next recout pixel samples int part of <init + scaling ratio> and so on.
1248	 * All following calculations are based on this logic.
1249	 *
1250	 * Init calculated according to formula:
1251	 * 	init = (scaling_ratio + number_of_taps + 1) / 2
1252	 * 	init_bot = init + scaling_ratio
1253	 * 	to get pixel perfect combine add the fraction from calculating vp offset
1254	 */
1255	temp = dc_fixpt_mul_int(ratio, recout_offset_within_recout_full);
1256	*vp_offset = dc_fixpt_floor(temp);
1257	temp.value &= 0xffffffff;
1258	*init = dc_fixpt_truncate(dc_fixpt_add(dc_fixpt_div_int(
1259			dc_fixpt_add_int(ratio, taps + 1), 2), temp), 19);
1260	/*
1261	 * If viewport has non 0 offset and there are more taps than covered by init then
1262	 * we should decrease the offset and increase init so we are never sampling
1263	 * outside of viewport.
1264	 */
1265	int_part = dc_fixpt_floor(*init);
1266	if (int_part < taps) {
1267		int_part = taps - int_part;
1268		if (int_part > *vp_offset)
1269			int_part = *vp_offset;
1270		*vp_offset -= int_part;
1271		*init = dc_fixpt_add_int(*init, int_part);
1272	}
1273	/*
1274	 * If taps are sampling outside of viewport at end of recout and there are more pixels
1275	 * available in the surface we should increase the viewport size, regardless set vp to
1276	 * only what is used.
1277	 */
1278	temp = dc_fixpt_add(*init, dc_fixpt_mul_int(ratio, recout_size - 1));
1279	*vp_size = dc_fixpt_floor(temp);
1280	if (*vp_size + *vp_offset > src_size)
1281		*vp_size = src_size - *vp_offset;
1282
1283	/* We did all the math assuming we are scanning same direction as display does,
1284	 * however mirror/rotation changes how vp scans vs how it is offset. If scan direction
1285	 * is flipped we simply need to calculate offset from the other side of plane.
1286	 * Note that outside of viewport all scaling hardware works in recout space.
1287	 */
1288	if (flip_scan_dir)
1289		*vp_offset = src_size - *vp_offset - *vp_size;
1290}
1291
1292static void calculate_inits_and_viewports(struct pipe_ctx *pipe_ctx)
1293{
1294	const struct dc_plane_state *plane_state = pipe_ctx->plane_state;
1295	struct scaler_data *data = &pipe_ctx->plane_res.scl_data;
1296	struct rect src = plane_state->src_rect;
1297	struct rect recout_dst_in_active_timing;
1298	struct rect recout_clip_in_active_timing;
1299	struct rect recout_clip_in_recout_dst;
1300	struct rect overlap_in_active_timing;
1301	struct rect odm_slice = calculate_odm_slice_in_timing_active(pipe_ctx);
1302	int vpc_div = (data->format == PIXEL_FORMAT_420BPP8
1303				|| data->format == PIXEL_FORMAT_420BPP10) ? 2 : 1;
1304	bool orthogonal_rotation, flip_vert_scan_dir, flip_horz_scan_dir;
1305
1306	recout_clip_in_active_timing = shift_rec(
1307			&data->recout, odm_slice.x, odm_slice.y);
1308	recout_dst_in_active_timing = calculate_plane_rec_in_timing_active(
1309			pipe_ctx, &plane_state->dst_rect);
1310	overlap_in_active_timing = intersect_rec(&recout_clip_in_active_timing,
1311			&recout_dst_in_active_timing);
1312	if (overlap_in_active_timing.width > 0 &&
1313			overlap_in_active_timing.height > 0)
1314		recout_clip_in_recout_dst = shift_rec(&overlap_in_active_timing,
1315				-recout_dst_in_active_timing.x,
1316				-recout_dst_in_active_timing.y);
1317	else
1318		memset(&recout_clip_in_recout_dst, 0, sizeof(struct rect));
1319
1320	/*
1321	 * Work in recout rotation since that requires less transformations
1322	 */
1323	get_vp_scan_direction(
1324			plane_state->rotation,
1325			plane_state->horizontal_mirror,
1326			&orthogonal_rotation,
1327			&flip_vert_scan_dir,
1328			&flip_horz_scan_dir);
1329
1330	if (orthogonal_rotation) {
1331		swap(src.width, src.height);
1332		swap(flip_vert_scan_dir, flip_horz_scan_dir);
1333	}
1334
1335	calculate_init_and_vp(
1336			flip_horz_scan_dir,
1337			recout_clip_in_recout_dst.x,
1338			data->recout.width,
1339			src.width,
1340			data->taps.h_taps,
1341			data->ratios.horz,
1342			&data->inits.h,
1343			&data->viewport.x,
1344			&data->viewport.width);
1345	calculate_init_and_vp(
1346			flip_horz_scan_dir,
1347			recout_clip_in_recout_dst.x,
1348			data->recout.width,
1349			src.width / vpc_div,
1350			data->taps.h_taps_c,
1351			data->ratios.horz_c,
1352			&data->inits.h_c,
1353			&data->viewport_c.x,
1354			&data->viewport_c.width);
1355	calculate_init_and_vp(
1356			flip_vert_scan_dir,
1357			recout_clip_in_recout_dst.y,
1358			data->recout.height,
1359			src.height,
1360			data->taps.v_taps,
1361			data->ratios.vert,
1362			&data->inits.v,
1363			&data->viewport.y,
1364			&data->viewport.height);
1365	calculate_init_and_vp(
1366			flip_vert_scan_dir,
1367			recout_clip_in_recout_dst.y,
1368			data->recout.height,
1369			src.height / vpc_div,
1370			data->taps.v_taps_c,
1371			data->ratios.vert_c,
1372			&data->inits.v_c,
1373			&data->viewport_c.y,
1374			&data->viewport_c.height);
1375	if (orthogonal_rotation) {
1376		swap(data->viewport.x, data->viewport.y);
1377		swap(data->viewport.width, data->viewport.height);
1378		swap(data->viewport_c.x, data->viewport_c.y);
1379		swap(data->viewport_c.width, data->viewport_c.height);
1380	}
1381	data->viewport.x += src.x;
1382	data->viewport.y += src.y;
1383	ASSERT(src.x % vpc_div == 0 && src.y % vpc_div == 0);
1384	data->viewport_c.x += src.x / vpc_div;
1385	data->viewport_c.y += src.y / vpc_div;
1386}
1387
1388bool resource_build_scaling_params(struct pipe_ctx *pipe_ctx)
1389{
1390	const struct dc_plane_state *plane_state = pipe_ctx->plane_state;
1391	struct dc_crtc_timing *timing = &pipe_ctx->stream->timing;
1392	const struct rect odm_slice_rec = calculate_odm_slice_in_timing_active(pipe_ctx);
1393	bool res = false;
1394	DC_LOGGER_INIT(pipe_ctx->stream->ctx->logger);
1395
1396	/* Invalid input */
1397	if (!plane_state->dst_rect.width ||
1398			!plane_state->dst_rect.height ||
1399			!plane_state->src_rect.width ||
1400			!plane_state->src_rect.height) {
1401		ASSERT(0);
1402		return false;
1403	}
1404
1405	pipe_ctx->plane_res.scl_data.format = convert_pixel_format_to_dalsurface(
1406			pipe_ctx->plane_state->format);
1407
1408	/* Timing borders are part of vactive that we are also supposed to skip in addition
1409	 * to any stream dst offset. Since dm logic assumes dst is in addressable
1410	 * space we need to add the left and top borders to dst offsets temporarily.
1411	 * TODO: fix in DM, stream dst is supposed to be in vactive
1412	 */
1413	pipe_ctx->stream->dst.x += timing->h_border_left;
1414	pipe_ctx->stream->dst.y += timing->v_border_top;
1415
1416	/* Calculate H and V active size */
1417	pipe_ctx->plane_res.scl_data.h_active = odm_slice_rec.width;
1418	pipe_ctx->plane_res.scl_data.v_active = odm_slice_rec.height;
1419
1420	/* depends on h_active */
1421	calculate_recout(pipe_ctx);
1422	/* depends on pixel format */
1423	calculate_scaling_ratios(pipe_ctx);
1424	/* depends on scaling ratios and recout, does not calculate offset yet */
1425	calculate_viewport_size(pipe_ctx);
1426
1427	if (!pipe_ctx->stream->ctx->dc->config.enable_windowed_mpo_odm) {
1428		/* Stopgap for validation of ODM + MPO on one side of screen case */
1429		if (pipe_ctx->plane_res.scl_data.viewport.height < 1 ||
1430				pipe_ctx->plane_res.scl_data.viewport.width < 1)
1431			return false;
1432	}
1433
1434	/*
1435	 * LB calculations depend on vp size, h/v_active and scaling ratios
1436	 * Setting line buffer pixel depth to 24bpp yields banding
1437	 * on certain displays, such as the Sharp 4k. 36bpp is needed
1438	 * to support SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616 and
1439	 * SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616 with actual > 10 bpc
1440	 * precision on DCN display engines, but apparently not for DCE, as
1441	 * far as testing on DCE-11.2 and DCE-8 showed. Various DCE parts have
1442	 * problems: Carrizo with DCE_VERSION_11_0 does not like 36 bpp lb depth,
1443	 * neither do DCE-8 at 4k resolution, or DCE-11.2 (broken identify pixel
1444	 * passthrough). Therefore only use 36 bpp on DCN where it is actually needed.
1445	 */
1446	if (plane_state->ctx->dce_version > DCE_VERSION_MAX)
1447		pipe_ctx->plane_res.scl_data.lb_params.depth = LB_PIXEL_DEPTH_36BPP;
1448	else
1449		pipe_ctx->plane_res.scl_data.lb_params.depth = LB_PIXEL_DEPTH_30BPP;
1450
1451	pipe_ctx->plane_res.scl_data.lb_params.alpha_en = plane_state->per_pixel_alpha;
1452
1453	if (pipe_ctx->plane_res.xfm != NULL)
1454		res = pipe_ctx->plane_res.xfm->funcs->transform_get_optimal_number_of_taps(
1455				pipe_ctx->plane_res.xfm, &pipe_ctx->plane_res.scl_data, &plane_state->scaling_quality);
1456
1457	if (pipe_ctx->plane_res.dpp != NULL)
1458		res = pipe_ctx->plane_res.dpp->funcs->dpp_get_optimal_number_of_taps(
1459				pipe_ctx->plane_res.dpp, &pipe_ctx->plane_res.scl_data, &plane_state->scaling_quality);
1460
1461
1462	if (!res) {
1463		/* Try 24 bpp linebuffer */
1464		pipe_ctx->plane_res.scl_data.lb_params.depth = LB_PIXEL_DEPTH_24BPP;
1465
1466		if (pipe_ctx->plane_res.xfm != NULL)
1467			res = pipe_ctx->plane_res.xfm->funcs->transform_get_optimal_number_of_taps(
1468					pipe_ctx->plane_res.xfm,
1469					&pipe_ctx->plane_res.scl_data,
1470					&plane_state->scaling_quality);
1471
1472		if (pipe_ctx->plane_res.dpp != NULL)
1473			res = pipe_ctx->plane_res.dpp->funcs->dpp_get_optimal_number_of_taps(
1474					pipe_ctx->plane_res.dpp,
1475					&pipe_ctx->plane_res.scl_data,
1476					&plane_state->scaling_quality);
1477	}
1478
1479	/*
1480	 * Depends on recout, scaling ratios, h_active and taps
1481	 * May need to re-check lb size after this in some obscure scenario
1482	 */
1483	if (res)
1484		calculate_inits_and_viewports(pipe_ctx);
1485
1486	/*
1487	 * Handle side by side and top bottom 3d recout offsets after vp calculation
1488	 * since 3d is special and needs to calculate vp as if there is no recout offset
1489	 * This may break with rotation, good thing we aren't mixing hw rotation and 3d
1490	 */
1491	if (pipe_ctx->top_pipe && pipe_ctx->top_pipe->plane_state == plane_state) {
1492		ASSERT(plane_state->rotation == ROTATION_ANGLE_0 ||
1493			(pipe_ctx->stream->view_format != VIEW_3D_FORMAT_TOP_AND_BOTTOM &&
1494				pipe_ctx->stream->view_format != VIEW_3D_FORMAT_SIDE_BY_SIDE));
1495		if (pipe_ctx->stream->view_format == VIEW_3D_FORMAT_TOP_AND_BOTTOM)
1496			pipe_ctx->plane_res.scl_data.recout.y += pipe_ctx->plane_res.scl_data.recout.height;
1497		else if (pipe_ctx->stream->view_format == VIEW_3D_FORMAT_SIDE_BY_SIDE)
1498			pipe_ctx->plane_res.scl_data.recout.x += pipe_ctx->plane_res.scl_data.recout.width;
1499	}
1500
1501	/* Clamp minimum viewport size */
1502	if (pipe_ctx->plane_res.scl_data.viewport.height < MIN_VIEWPORT_SIZE)
1503		pipe_ctx->plane_res.scl_data.viewport.height = MIN_VIEWPORT_SIZE;
1504	if (pipe_ctx->plane_res.scl_data.viewport.width < MIN_VIEWPORT_SIZE)
1505		pipe_ctx->plane_res.scl_data.viewport.width = MIN_VIEWPORT_SIZE;
1506
1507
1508	DC_LOG_SCALER("%s pipe %d:\nViewport: height:%d width:%d x:%d y:%d  Recout: height:%d width:%d x:%d y:%d  HACTIVE:%d VACTIVE:%d\n"
1509			"src_rect: height:%d width:%d x:%d y:%d  dst_rect: height:%d width:%d x:%d y:%d  clip_rect: height:%d width:%d x:%d y:%d\n",
1510			__func__,
1511			pipe_ctx->pipe_idx,
1512			pipe_ctx->plane_res.scl_data.viewport.height,
1513			pipe_ctx->plane_res.scl_data.viewport.width,
1514			pipe_ctx->plane_res.scl_data.viewport.x,
1515			pipe_ctx->plane_res.scl_data.viewport.y,
1516			pipe_ctx->plane_res.scl_data.recout.height,
1517			pipe_ctx->plane_res.scl_data.recout.width,
1518			pipe_ctx->plane_res.scl_data.recout.x,
1519			pipe_ctx->plane_res.scl_data.recout.y,
1520			pipe_ctx->plane_res.scl_data.h_active,
1521			pipe_ctx->plane_res.scl_data.v_active,
1522			plane_state->src_rect.height,
1523			plane_state->src_rect.width,
1524			plane_state->src_rect.x,
1525			plane_state->src_rect.y,
1526			plane_state->dst_rect.height,
1527			plane_state->dst_rect.width,
1528			plane_state->dst_rect.x,
1529			plane_state->dst_rect.y,
1530			plane_state->clip_rect.height,
1531			plane_state->clip_rect.width,
1532			plane_state->clip_rect.x,
1533			plane_state->clip_rect.y);
1534
1535	pipe_ctx->stream->dst.x -= timing->h_border_left;
1536	pipe_ctx->stream->dst.y -= timing->v_border_top;
1537
1538	return res;
1539}
1540
1541
1542enum dc_status resource_build_scaling_params_for_context(
1543	const struct dc  *dc,
1544	struct dc_state *context)
1545{
1546	int i;
1547
1548	for (i = 0; i < MAX_PIPES; i++) {
1549		if (context->res_ctx.pipe_ctx[i].plane_state != NULL &&
1550				context->res_ctx.pipe_ctx[i].stream != NULL)
1551			if (!resource_build_scaling_params(&context->res_ctx.pipe_ctx[i]))
1552				return DC_FAIL_SCALING;
1553	}
1554
1555	return DC_OK;
1556}
1557
1558struct pipe_ctx *resource_find_free_secondary_pipe_legacy(
1559		struct resource_context *res_ctx,
1560		const struct resource_pool *pool,
1561		const struct pipe_ctx *primary_pipe)
1562{
1563	int i;
1564	struct pipe_ctx *secondary_pipe = NULL;
1565
1566	/*
1567	 * We add a preferred pipe mapping to avoid the chance that
1568	 * MPCCs already in use will need to be reassigned to other trees.
1569	 * For example, if we went with the strict, assign backwards logic:
1570	 *
1571	 * (State 1)
1572	 * Display A on, no surface, top pipe = 0
1573	 * Display B on, no surface, top pipe = 1
1574	 *
1575	 * (State 2)
1576	 * Display A on, no surface, top pipe = 0
1577	 * Display B on, surface enable, top pipe = 1, bottom pipe = 5
1578	 *
1579	 * (State 3)
1580	 * Display A on, surface enable, top pipe = 0, bottom pipe = 5
1581	 * Display B on, surface enable, top pipe = 1, bottom pipe = 4
1582	 *
1583	 * The state 2->3 transition requires remapping MPCC 5 from display B
1584	 * to display A.
1585	 *
1586	 * However, with the preferred pipe logic, state 2 would look like:
1587	 *
1588	 * (State 2)
1589	 * Display A on, no surface, top pipe = 0
1590	 * Display B on, surface enable, top pipe = 1, bottom pipe = 4
1591	 *
1592	 * This would then cause 2->3 to not require remapping any MPCCs.
1593	 */
1594	if (primary_pipe) {
1595		int preferred_pipe_idx = (pool->pipe_count - 1) - primary_pipe->pipe_idx;
1596		if (res_ctx->pipe_ctx[preferred_pipe_idx].stream == NULL) {
1597			secondary_pipe = &res_ctx->pipe_ctx[preferred_pipe_idx];
1598			secondary_pipe->pipe_idx = preferred_pipe_idx;
1599		}
1600	}
1601
1602	/*
1603	 * search backwards for the second pipe to keep pipe
1604	 * assignment more consistent
1605	 */
1606	if (!secondary_pipe)
1607		for (i = pool->pipe_count - 1; i >= 0; i--) {
1608			if (res_ctx->pipe_ctx[i].stream == NULL) {
1609				secondary_pipe = &res_ctx->pipe_ctx[i];
1610				secondary_pipe->pipe_idx = i;
1611				break;
1612			}
1613		}
1614
1615	return secondary_pipe;
1616}
1617
1618int resource_find_free_pipe_used_in_cur_mpc_blending_tree(
1619		const struct resource_context *cur_res_ctx,
1620		struct resource_context *new_res_ctx,
1621		const struct pipe_ctx *cur_opp_head)
1622{
1623	const struct pipe_ctx *cur_sec_dpp = cur_opp_head->bottom_pipe;
1624	struct pipe_ctx *new_pipe;
1625	int free_pipe_idx = FREE_PIPE_INDEX_NOT_FOUND;
1626
1627	while (cur_sec_dpp) {
1628		/* find a free pipe used in current opp blend tree,
1629		 * this is to avoid MPO pipe switching to different opp blending
1630		 * tree
1631		 */
1632		new_pipe = &new_res_ctx->pipe_ctx[cur_sec_dpp->pipe_idx];
1633		if (resource_is_pipe_type(new_pipe, FREE_PIPE)) {
1634			free_pipe_idx = cur_sec_dpp->pipe_idx;
1635			break;
1636		}
1637		cur_sec_dpp = cur_sec_dpp->bottom_pipe;
1638	}
1639
1640	return free_pipe_idx;
1641}
1642
1643int recource_find_free_pipe_not_used_in_cur_res_ctx(
1644		const struct resource_context *cur_res_ctx,
1645		struct resource_context *new_res_ctx,
1646		const struct resource_pool *pool)
1647{
1648	int free_pipe_idx = FREE_PIPE_INDEX_NOT_FOUND;
1649	const struct pipe_ctx *new_pipe, *cur_pipe;
1650	int i;
1651
1652	for (i = 0; i < pool->pipe_count; i++) {
1653		cur_pipe = &cur_res_ctx->pipe_ctx[i];
1654		new_pipe = &new_res_ctx->pipe_ctx[i];
1655
1656		if (resource_is_pipe_type(cur_pipe, FREE_PIPE) &&
1657				resource_is_pipe_type(new_pipe, FREE_PIPE)) {
1658			free_pipe_idx = i;
1659			break;
1660		}
1661	}
1662
1663	return free_pipe_idx;
1664}
1665
1666int resource_find_free_pipe_used_as_cur_sec_dpp_in_mpcc_combine(
1667		const struct resource_context *cur_res_ctx,
1668		struct resource_context *new_res_ctx,
1669		const struct resource_pool *pool)
1670{
1671	int free_pipe_idx = FREE_PIPE_INDEX_NOT_FOUND;
1672	const struct pipe_ctx *new_pipe, *cur_pipe;
1673	int i;
1674
1675	for (i = 0; i < pool->pipe_count; i++) {
1676		cur_pipe = &cur_res_ctx->pipe_ctx[i];
1677		new_pipe = &new_res_ctx->pipe_ctx[i];
1678
1679		if (resource_is_pipe_type(cur_pipe, DPP_PIPE) &&
1680				!resource_is_pipe_type(cur_pipe, OPP_HEAD) &&
1681				resource_is_for_mpcc_combine(cur_pipe) &&
1682				resource_is_pipe_type(new_pipe, FREE_PIPE)) {
1683			free_pipe_idx = i;
1684			break;
1685		}
1686	}
1687
1688	return free_pipe_idx;
1689}
1690
1691int resource_find_any_free_pipe(struct resource_context *new_res_ctx,
1692		const struct resource_pool *pool)
1693{
1694	int free_pipe_idx = FREE_PIPE_INDEX_NOT_FOUND;
1695	const struct pipe_ctx *new_pipe;
1696	int i;
1697
1698	for (i = 0; i < pool->pipe_count; i++) {
1699		new_pipe = &new_res_ctx->pipe_ctx[i];
1700
1701		if (resource_is_pipe_type(new_pipe, FREE_PIPE)) {
1702			free_pipe_idx = i;
1703			break;
1704		}
1705	}
1706
1707	return free_pipe_idx;
1708}
1709
1710bool resource_is_pipe_type(const struct pipe_ctx *pipe_ctx, enum pipe_type type)
1711{
1712#ifdef DBG
1713	if (pipe_ctx->stream == NULL) {
1714		/* a free pipe with dangling states */
1715		ASSERT(!pipe_ctx->plane_state);
1716		ASSERT(!pipe_ctx->prev_odm_pipe);
1717		ASSERT(!pipe_ctx->next_odm_pipe);
1718		ASSERT(!pipe_ctx->top_pipe);
1719		ASSERT(!pipe_ctx->bottom_pipe);
1720	} else if (pipe_ctx->top_pipe) {
1721		/* a secondary DPP pipe must be signed to a plane */
1722		ASSERT(pipe_ctx->plane_state)
1723	}
1724	/* Add more checks here to prevent corrupted pipe ctx. It is very hard
1725	 * to debug this issue afterwards because we can't pinpoint the code
1726	 * location causing inconsistent pipe context states.
1727	 */
1728#endif
1729	switch (type) {
1730	case OTG_MASTER:
1731		return !pipe_ctx->prev_odm_pipe &&
1732				!pipe_ctx->top_pipe &&
1733				pipe_ctx->stream;
1734	case OPP_HEAD:
1735		return !pipe_ctx->top_pipe && pipe_ctx->stream;
1736	case DPP_PIPE:
1737		return pipe_ctx->plane_state && pipe_ctx->stream;
1738	case FREE_PIPE:
1739		return !pipe_ctx->plane_state && !pipe_ctx->stream;
1740	default:
1741		return false;
1742	}
1743}
1744
1745bool resource_is_for_mpcc_combine(const struct pipe_ctx *pipe_ctx)
1746{
1747	return resource_get_num_mpc_splits(pipe_ctx) > 0;
1748}
1749
1750struct pipe_ctx *resource_get_otg_master_for_stream(
1751		struct resource_context *res_ctx,
1752		struct dc_stream_state *stream)
1753{
1754	int i;
1755
1756	for (i = 0; i < MAX_PIPES; i++) {
1757		if (res_ctx->pipe_ctx[i].stream == stream &&
1758				resource_is_pipe_type(&res_ctx->pipe_ctx[i], OTG_MASTER))
1759			return &res_ctx->pipe_ctx[i];
1760	}
1761	return NULL;
1762}
1763
1764struct pipe_ctx *resource_get_otg_master(const struct pipe_ctx *pipe_ctx)
1765{
1766	struct pipe_ctx *otg_master = resource_get_opp_head(pipe_ctx);
1767
1768	while (otg_master->prev_odm_pipe)
1769		otg_master = otg_master->prev_odm_pipe;
1770	return otg_master;
1771}
1772
1773struct pipe_ctx *resource_get_opp_head(const struct pipe_ctx *pipe_ctx)
1774{
1775	struct pipe_ctx *opp_head = (struct pipe_ctx *) pipe_ctx;
1776
1777	ASSERT(!resource_is_pipe_type(opp_head, FREE_PIPE));
1778	while (opp_head->top_pipe)
1779		opp_head = opp_head->top_pipe;
1780	return opp_head;
1781}
1782
1783static struct pipe_ctx *get_tail_pipe(
1784		struct pipe_ctx *head_pipe)
1785{
1786	struct pipe_ctx *tail_pipe = head_pipe->bottom_pipe;
1787
1788	while (tail_pipe) {
1789		head_pipe = tail_pipe;
1790		tail_pipe = tail_pipe->bottom_pipe;
1791	}
1792
1793	return head_pipe;
1794}
1795
1796static int acquire_first_split_pipe(
1797		struct resource_context *res_ctx,
1798		const struct resource_pool *pool,
1799		struct dc_stream_state *stream)
1800{
1801	int i;
1802
1803	for (i = 0; i < pool->pipe_count; i++) {
1804		struct pipe_ctx *split_pipe = &res_ctx->pipe_ctx[i];
1805
1806		if (split_pipe->top_pipe &&
1807				split_pipe->top_pipe->plane_state == split_pipe->plane_state) {
1808			split_pipe->top_pipe->bottom_pipe = split_pipe->bottom_pipe;
1809			if (split_pipe->bottom_pipe)
1810				split_pipe->bottom_pipe->top_pipe = split_pipe->top_pipe;
1811
1812			if (split_pipe->top_pipe->plane_state)
1813				resource_build_scaling_params(split_pipe->top_pipe);
1814
1815			memset(split_pipe, 0, sizeof(*split_pipe));
1816			split_pipe->stream_res.tg = pool->timing_generators[i];
1817			split_pipe->plane_res.hubp = pool->hubps[i];
1818			split_pipe->plane_res.ipp = pool->ipps[i];
1819			split_pipe->plane_res.dpp = pool->dpps[i];
1820			split_pipe->stream_res.opp = pool->opps[i];
1821			split_pipe->plane_res.mpcc_inst = pool->dpps[i]->inst;
1822			split_pipe->pipe_idx = i;
1823
1824			split_pipe->stream = stream;
1825			return i;
1826		}
1827	}
1828	return UNABLE_TO_SPLIT;
1829}
1830
1831static bool add_plane_to_opp_head_pipes(struct pipe_ctx *otg_master_pipe,
1832		struct dc_plane_state *plane_state,
1833		struct dc_state *context)
1834{
1835	struct pipe_ctx *opp_head_pipe = otg_master_pipe;
1836
1837	while (opp_head_pipe) {
1838		if (opp_head_pipe->plane_state) {
1839			ASSERT(0);
1840			return false;
1841		}
1842		opp_head_pipe->plane_state = plane_state;
1843		opp_head_pipe = opp_head_pipe->next_odm_pipe;
1844	}
1845
1846	return true;
1847}
1848
1849static void insert_secondary_dpp_pipe_with_plane(struct pipe_ctx *opp_head_pipe,
1850		struct pipe_ctx *sec_pipe, struct dc_plane_state *plane_state)
1851{
1852	struct pipe_ctx *tail_pipe = get_tail_pipe(opp_head_pipe);
1853
1854	tail_pipe->bottom_pipe = sec_pipe;
1855	sec_pipe->top_pipe = tail_pipe;
1856	if (tail_pipe->prev_odm_pipe) {
1857		ASSERT(tail_pipe->prev_odm_pipe->bottom_pipe);
1858		sec_pipe->prev_odm_pipe = tail_pipe->prev_odm_pipe->bottom_pipe;
1859		tail_pipe->prev_odm_pipe->bottom_pipe->next_odm_pipe = sec_pipe;
1860	}
1861	sec_pipe->plane_state = plane_state;
1862}
1863
1864/* for each opp head pipe of an otg master pipe, acquire a secondary dpp pipe
1865 * and add the plane. So the plane is added to all MPC blend trees associated
1866 * with the otg master pipe.
1867 */
1868static bool acquire_secondary_dpp_pipes_and_add_plane(
1869		struct pipe_ctx *otg_master_pipe,
1870		struct dc_plane_state *plane_state,
1871		struct dc_state *new_ctx,
1872		struct dc_state *cur_ctx,
1873		struct resource_pool *pool)
1874{
1875	struct pipe_ctx *opp_head_pipe, *sec_pipe;
1876
1877	if (!pool->funcs->acquire_free_pipe_as_secondary_dpp_pipe)
1878		return false;
1879
1880	opp_head_pipe = otg_master_pipe;
1881	while (opp_head_pipe) {
1882		sec_pipe = pool->funcs->acquire_free_pipe_as_secondary_dpp_pipe(
1883				cur_ctx,
1884				new_ctx,
1885				pool,
1886				opp_head_pipe);
1887		if (!sec_pipe) {
1888			/* try tearing down MPCC combine */
1889			int pipe_idx = acquire_first_split_pipe(
1890					&new_ctx->res_ctx, pool,
1891					otg_master_pipe->stream);
1892
1893			if (pipe_idx >= 0)
1894				sec_pipe = &new_ctx->res_ctx.pipe_ctx[pipe_idx];
1895		}
1896
1897		if (!sec_pipe)
1898			return false;
1899
1900		insert_secondary_dpp_pipe_with_plane(opp_head_pipe, sec_pipe,
1901				plane_state);
1902		opp_head_pipe = opp_head_pipe->next_odm_pipe;
1903	}
1904	return true;
1905}
1906
1907bool dc_add_plane_to_context(
1908		const struct dc *dc,
1909		struct dc_stream_state *stream,
1910		struct dc_plane_state *plane_state,
1911		struct dc_state *context)
1912{
1913	struct resource_pool *pool = dc->res_pool;
1914	struct pipe_ctx *otg_master_pipe;
1915	struct dc_stream_status *stream_status = NULL;
1916	bool added = false;
1917
1918	stream_status = dc_stream_get_status_from_state(context, stream);
1919	if (stream_status == NULL) {
1920		dm_error("Existing stream not found; failed to attach surface!\n");
1921		goto out;
1922	} else if (stream_status->plane_count == MAX_SURFACE_NUM) {
1923		dm_error("Surface: can not attach plane_state %p! Maximum is: %d\n",
1924				plane_state, MAX_SURFACE_NUM);
1925		goto out;
1926	}
1927
1928	otg_master_pipe = resource_get_otg_master_for_stream(
1929			&context->res_ctx, stream);
1930	if (otg_master_pipe->plane_state == NULL)
1931		added = add_plane_to_opp_head_pipes(otg_master_pipe,
1932				plane_state, context);
1933	else
1934		added = acquire_secondary_dpp_pipes_and_add_plane(
1935				otg_master_pipe, plane_state, context,
1936				dc->current_state, pool);
1937	if (added) {
1938		stream_status->plane_states[stream_status->plane_count] =
1939				plane_state;
1940		stream_status->plane_count++;
1941		dc_plane_state_retain(plane_state);
1942	}
1943
1944out:
1945	return added;
1946}
1947
1948bool dc_remove_plane_from_context(
1949		const struct dc *dc,
1950		struct dc_stream_state *stream,
1951		struct dc_plane_state *plane_state,
1952		struct dc_state *context)
1953{
1954	int i;
1955	struct dc_stream_status *stream_status = NULL;
1956	struct resource_pool *pool = dc->res_pool;
1957
1958	if (!plane_state)
1959		return true;
1960
1961	for (i = 0; i < context->stream_count; i++)
1962		if (context->streams[i] == stream) {
1963			stream_status = &context->stream_status[i];
1964			break;
1965		}
1966
1967	if (stream_status == NULL) {
1968		dm_error("Existing stream not found; failed to remove plane.\n");
1969		return false;
1970	}
1971
1972	/* release pipe for plane*/
1973	for (i = pool->pipe_count - 1; i >= 0; i--) {
1974		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
1975
1976		if (pipe_ctx->plane_state == plane_state) {
1977			if (pipe_ctx->top_pipe)
1978				pipe_ctx->top_pipe->bottom_pipe = pipe_ctx->bottom_pipe;
1979
1980			/* Second condition is to avoid setting NULL to top pipe
1981			 * of tail pipe making it look like head pipe in subsequent
1982			 * deletes
1983			 */
1984			if (pipe_ctx->bottom_pipe && pipe_ctx->top_pipe)
1985				pipe_ctx->bottom_pipe->top_pipe = pipe_ctx->top_pipe;
1986
1987			/*
1988			 * For head pipe detach surfaces from pipe for tail
1989			 * pipe just zero it out
1990			 */
1991			if (!pipe_ctx->top_pipe)
1992				pipe_ctx->plane_state = NULL;
1993			else
1994				memset(pipe_ctx, 0, sizeof(*pipe_ctx));
1995		}
1996	}
1997
1998
1999	for (i = 0; i < stream_status->plane_count; i++) {
2000		if (stream_status->plane_states[i] == plane_state) {
2001			dc_plane_state_release(stream_status->plane_states[i]);
2002			break;
2003		}
2004	}
2005
2006	if (i == stream_status->plane_count) {
2007		dm_error("Existing plane_state not found; failed to detach it!\n");
2008		return false;
2009	}
2010
2011	stream_status->plane_count--;
2012
2013	/* Start at the plane we've just released, and move all the planes one index forward to "trim" the array */
2014	for (; i < stream_status->plane_count; i++)
2015		stream_status->plane_states[i] = stream_status->plane_states[i + 1];
2016
2017	stream_status->plane_states[stream_status->plane_count] = NULL;
2018
2019	return true;
2020}
2021
2022/**
2023 * dc_rem_all_planes_for_stream - Remove planes attached to the target stream.
2024 *
2025 * @dc: Current dc state.
2026 * @stream: Target stream, which we want to remove the attached plans.
2027 * @context: New context.
2028 *
2029 * Return:
2030 * Return true if DC was able to remove all planes from the target
2031 * stream, otherwise, return false.
2032 */
2033bool dc_rem_all_planes_for_stream(
2034		const struct dc *dc,
2035		struct dc_stream_state *stream,
2036		struct dc_state *context)
2037{
2038	int i, old_plane_count;
2039	struct dc_stream_status *stream_status = NULL;
2040	struct dc_plane_state *del_planes[MAX_SURFACE_NUM] = { 0 };
2041
2042	for (i = 0; i < context->stream_count; i++)
2043			if (context->streams[i] == stream) {
2044				stream_status = &context->stream_status[i];
2045				break;
2046			}
2047
2048	if (stream_status == NULL) {
2049		dm_error("Existing stream %p not found!\n", stream);
2050		return false;
2051	}
2052
2053	old_plane_count = stream_status->plane_count;
2054
2055	for (i = 0; i < old_plane_count; i++)
2056		del_planes[i] = stream_status->plane_states[i];
2057
2058	for (i = 0; i < old_plane_count; i++)
2059		if (!dc_remove_plane_from_context(dc, stream, del_planes[i], context))
2060			return false;
2061
2062	return true;
2063}
2064
2065static bool add_all_planes_for_stream(
2066		const struct dc *dc,
2067		struct dc_stream_state *stream,
2068		const struct dc_validation_set set[],
2069		int set_count,
2070		struct dc_state *context)
2071{
2072	int i, j;
2073
2074	for (i = 0; i < set_count; i++)
2075		if (set[i].stream == stream)
2076			break;
2077
2078	if (i == set_count) {
2079		dm_error("Stream %p not found in set!\n", stream);
2080		return false;
2081	}
2082
2083	for (j = 0; j < set[i].plane_count; j++)
2084		if (!dc_add_plane_to_context(dc, stream, set[i].plane_states[j], context))
2085			return false;
2086
2087	return true;
2088}
2089
2090bool dc_add_all_planes_for_stream(
2091		const struct dc *dc,
2092		struct dc_stream_state *stream,
2093		struct dc_plane_state * const *plane_states,
2094		int plane_count,
2095		struct dc_state *context)
2096{
2097	struct dc_validation_set set;
2098	int i;
2099
2100	set.stream = stream;
2101	set.plane_count = plane_count;
2102
2103	for (i = 0; i < plane_count; i++)
2104		set.plane_states[i] = plane_states[i];
2105
2106	return add_all_planes_for_stream(dc, stream, &set, 1, context);
2107}
2108
2109bool dc_is_timing_changed(struct dc_stream_state *cur_stream,
2110		       struct dc_stream_state *new_stream)
2111{
2112	if (cur_stream == NULL)
2113		return true;
2114
2115	/* If output color space is changed, need to reprogram info frames */
2116	if (cur_stream->output_color_space != new_stream->output_color_space)
2117		return true;
2118
2119	return memcmp(
2120		&cur_stream->timing,
2121		&new_stream->timing,
2122		sizeof(struct dc_crtc_timing)) != 0;
2123}
2124
2125static bool are_stream_backends_same(
2126	struct dc_stream_state *stream_a, struct dc_stream_state *stream_b)
2127{
2128	if (stream_a == stream_b)
2129		return true;
2130
2131	if (stream_a == NULL || stream_b == NULL)
2132		return false;
2133
2134	if (dc_is_timing_changed(stream_a, stream_b))
2135		return false;
2136
2137	if (stream_a->signal != stream_b->signal)
2138		return false;
2139
2140	if (stream_a->dpms_off != stream_b->dpms_off)
2141		return false;
2142
2143	return true;
2144}
2145
2146/*
2147 * dc_is_stream_unchanged() - Compare two stream states for equivalence.
2148 *
2149 * Checks if there a difference between the two states
2150 * that would require a mode change.
2151 *
2152 * Does not compare cursor position or attributes.
2153 */
2154bool dc_is_stream_unchanged(
2155	struct dc_stream_state *old_stream, struct dc_stream_state *stream)
2156{
2157
2158	if (!are_stream_backends_same(old_stream, stream))
2159		return false;
2160
2161	if (old_stream->ignore_msa_timing_param != stream->ignore_msa_timing_param)
2162		return false;
2163
2164	/*compare audio info*/
2165	if (memcmp(&old_stream->audio_info, &stream->audio_info, sizeof(stream->audio_info)) != 0)
2166		return false;
2167
2168	return true;
2169}
2170
2171/*
2172 * dc_is_stream_scaling_unchanged() - Compare scaling rectangles of two streams.
2173 */
2174bool dc_is_stream_scaling_unchanged(struct dc_stream_state *old_stream,
2175				    struct dc_stream_state *stream)
2176{
2177	if (old_stream == stream)
2178		return true;
2179
2180	if (old_stream == NULL || stream == NULL)
2181		return false;
2182
2183	if (memcmp(&old_stream->src,
2184			&stream->src,
2185			sizeof(struct rect)) != 0)
2186		return false;
2187
2188	if (memcmp(&old_stream->dst,
2189			&stream->dst,
2190			sizeof(struct rect)) != 0)
2191		return false;
2192
2193	return true;
2194}
2195
2196static void update_stream_engine_usage(
2197		struct resource_context *res_ctx,
2198		const struct resource_pool *pool,
2199		struct stream_encoder *stream_enc,
2200		bool acquired)
2201{
2202	int i;
2203
2204	for (i = 0; i < pool->stream_enc_count; i++) {
2205		if (pool->stream_enc[i] == stream_enc)
2206			res_ctx->is_stream_enc_acquired[i] = acquired;
2207	}
2208}
2209
2210static void update_hpo_dp_stream_engine_usage(
2211		struct resource_context *res_ctx,
2212		const struct resource_pool *pool,
2213		struct hpo_dp_stream_encoder *hpo_dp_stream_enc,
2214		bool acquired)
2215{
2216	int i;
2217
2218	for (i = 0; i < pool->hpo_dp_stream_enc_count; i++) {
2219		if (pool->hpo_dp_stream_enc[i] == hpo_dp_stream_enc)
2220			res_ctx->is_hpo_dp_stream_enc_acquired[i] = acquired;
2221	}
2222}
2223
2224static inline int find_acquired_hpo_dp_link_enc_for_link(
2225		const struct resource_context *res_ctx,
2226		const struct dc_link *link)
2227{
2228	int i;
2229
2230	for (i = 0; i < ARRAY_SIZE(res_ctx->hpo_dp_link_enc_to_link_idx); i++)
2231		if (res_ctx->hpo_dp_link_enc_ref_cnts[i] > 0 &&
2232				res_ctx->hpo_dp_link_enc_to_link_idx[i] == link->link_index)
2233			return i;
2234
2235	return -1;
2236}
2237
2238static inline int find_free_hpo_dp_link_enc(const struct resource_context *res_ctx,
2239		const struct resource_pool *pool)
2240{
2241	int i;
2242
2243	for (i = 0; i < ARRAY_SIZE(res_ctx->hpo_dp_link_enc_ref_cnts); i++)
2244		if (res_ctx->hpo_dp_link_enc_ref_cnts[i] == 0)
2245			break;
2246
2247	return (i < ARRAY_SIZE(res_ctx->hpo_dp_link_enc_ref_cnts) &&
2248			i < pool->hpo_dp_link_enc_count) ? i : -1;
2249}
2250
2251static inline void acquire_hpo_dp_link_enc(
2252		struct resource_context *res_ctx,
2253		unsigned int link_index,
2254		int enc_index)
2255{
2256	res_ctx->hpo_dp_link_enc_to_link_idx[enc_index] = link_index;
2257	res_ctx->hpo_dp_link_enc_ref_cnts[enc_index] = 1;
2258}
2259
2260static inline void retain_hpo_dp_link_enc(
2261		struct resource_context *res_ctx,
2262		int enc_index)
2263{
2264	res_ctx->hpo_dp_link_enc_ref_cnts[enc_index]++;
2265}
2266
2267static inline void release_hpo_dp_link_enc(
2268		struct resource_context *res_ctx,
2269		int enc_index)
2270{
2271	ASSERT(res_ctx->hpo_dp_link_enc_ref_cnts[enc_index] > 0);
2272	res_ctx->hpo_dp_link_enc_ref_cnts[enc_index]--;
2273}
2274
2275static bool add_hpo_dp_link_enc_to_ctx(struct resource_context *res_ctx,
2276		const struct resource_pool *pool,
2277		struct pipe_ctx *pipe_ctx,
2278		struct dc_stream_state *stream)
2279{
2280	int enc_index;
2281
2282	enc_index = find_acquired_hpo_dp_link_enc_for_link(res_ctx, stream->link);
2283
2284	if (enc_index >= 0) {
2285		retain_hpo_dp_link_enc(res_ctx, enc_index);
2286	} else {
2287		enc_index = find_free_hpo_dp_link_enc(res_ctx, pool);
2288		if (enc_index >= 0)
2289			acquire_hpo_dp_link_enc(res_ctx, stream->link->link_index, enc_index);
2290	}
2291
2292	if (enc_index >= 0)
2293		pipe_ctx->link_res.hpo_dp_link_enc = pool->hpo_dp_link_enc[enc_index];
2294
2295	return pipe_ctx->link_res.hpo_dp_link_enc != NULL;
2296}
2297
2298static void remove_hpo_dp_link_enc_from_ctx(struct resource_context *res_ctx,
2299		struct pipe_ctx *pipe_ctx,
2300		struct dc_stream_state *stream)
2301{
2302	int enc_index;
2303
2304	enc_index = find_acquired_hpo_dp_link_enc_for_link(res_ctx, stream->link);
2305
2306	if (enc_index >= 0) {
2307		release_hpo_dp_link_enc(res_ctx, enc_index);
2308		pipe_ctx->link_res.hpo_dp_link_enc = NULL;
2309	}
2310}
2311
2312/* TODO: release audio object */
2313void update_audio_usage(
2314		struct resource_context *res_ctx,
2315		const struct resource_pool *pool,
2316		struct audio *audio,
2317		bool acquired)
2318{
2319	int i;
2320	for (i = 0; i < pool->audio_count; i++) {
2321		if (pool->audios[i] == audio)
2322			res_ctx->is_audio_acquired[i] = acquired;
2323	}
2324}
2325
2326static int acquire_first_free_pipe(
2327		struct resource_context *res_ctx,
2328		const struct resource_pool *pool,
2329		struct dc_stream_state *stream)
2330{
2331	int i;
2332
2333	for (i = 0; i < pool->pipe_count; i++) {
2334		if (!res_ctx->pipe_ctx[i].stream) {
2335			struct pipe_ctx *pipe_ctx = &res_ctx->pipe_ctx[i];
2336
2337			pipe_ctx->stream_res.tg = pool->timing_generators[i];
2338			pipe_ctx->plane_res.mi = pool->mis[i];
2339			pipe_ctx->plane_res.hubp = pool->hubps[i];
2340			pipe_ctx->plane_res.ipp = pool->ipps[i];
2341			pipe_ctx->plane_res.xfm = pool->transforms[i];
2342			pipe_ctx->plane_res.dpp = pool->dpps[i];
2343			pipe_ctx->stream_res.opp = pool->opps[i];
2344			if (pool->dpps[i])
2345				pipe_ctx->plane_res.mpcc_inst = pool->dpps[i]->inst;
2346			pipe_ctx->pipe_idx = i;
2347
2348			if (i >= pool->timing_generator_count) {
2349				int tg_inst = pool->timing_generator_count - 1;
2350
2351				pipe_ctx->stream_res.tg = pool->timing_generators[tg_inst];
2352				pipe_ctx->stream_res.opp = pool->opps[tg_inst];
2353			}
2354
2355			pipe_ctx->stream = stream;
2356			return i;
2357		}
2358	}
2359	return -1;
2360}
2361
2362static struct hpo_dp_stream_encoder *find_first_free_match_hpo_dp_stream_enc_for_link(
2363		struct resource_context *res_ctx,
2364		const struct resource_pool *pool,
2365		struct dc_stream_state *stream)
2366{
2367	int i;
2368
2369	for (i = 0; i < pool->hpo_dp_stream_enc_count; i++) {
2370		if (!res_ctx->is_hpo_dp_stream_enc_acquired[i] &&
2371				pool->hpo_dp_stream_enc[i]) {
2372
2373			return pool->hpo_dp_stream_enc[i];
2374		}
2375	}
2376
2377	return NULL;
2378}
2379
2380static struct audio *find_first_free_audio(
2381		struct resource_context *res_ctx,
2382		const struct resource_pool *pool,
2383		enum engine_id id,
2384		enum dce_version dc_version)
2385{
2386	int i, available_audio_count;
2387
2388	available_audio_count = pool->audio_count;
2389
2390	for (i = 0; i < available_audio_count; i++) {
2391		if ((res_ctx->is_audio_acquired[i] == false) && (res_ctx->is_stream_enc_acquired[i] == true)) {
2392			/*we have enough audio endpoint, find the matching inst*/
2393			if (id != i)
2394				continue;
2395			return pool->audios[i];
2396		}
2397	}
2398
2399	/* use engine id to find free audio */
2400	if ((id < available_audio_count) && (res_ctx->is_audio_acquired[id] == false)) {
2401		return pool->audios[id];
2402	}
2403	/*not found the matching one, first come first serve*/
2404	for (i = 0; i < available_audio_count; i++) {
2405		if (res_ctx->is_audio_acquired[i] == false) {
2406			return pool->audios[i];
2407		}
2408	}
2409	return NULL;
2410}
2411
2412/*
2413 * dc_add_stream_to_ctx() - Add a new dc_stream_state to a dc_state.
2414 */
2415enum dc_status dc_add_stream_to_ctx(
2416		struct dc *dc,
2417		struct dc_state *new_ctx,
2418		struct dc_stream_state *stream)
2419{
2420	enum dc_status res;
2421	DC_LOGGER_INIT(dc->ctx->logger);
2422
2423	if (new_ctx->stream_count >= dc->res_pool->timing_generator_count) {
2424		DC_LOG_WARNING("Max streams reached, can't add stream %p !\n", stream);
2425		return DC_ERROR_UNEXPECTED;
2426	}
2427
2428	new_ctx->streams[new_ctx->stream_count] = stream;
2429	dc_stream_retain(stream);
2430	new_ctx->stream_count++;
2431
2432	res = dc->res_pool->funcs->add_stream_to_ctx(dc, new_ctx, stream);
2433	if (res != DC_OK)
2434		DC_LOG_WARNING("Adding stream %p to context failed with err %d!\n", stream, res);
2435
2436	return res;
2437}
2438
2439/*
2440 * dc_remove_stream_from_ctx() - Remove a stream from a dc_state.
2441 */
2442enum dc_status dc_remove_stream_from_ctx(
2443			struct dc *dc,
2444			struct dc_state *new_ctx,
2445			struct dc_stream_state *stream)
2446{
2447	int i;
2448	struct dc_context *dc_ctx = dc->ctx;
2449	struct pipe_ctx *del_pipe = resource_get_otg_master_for_stream(&new_ctx->res_ctx, stream);
2450	struct pipe_ctx *odm_pipe;
2451
2452	if (!del_pipe) {
2453		DC_ERROR("Pipe not found for stream %p !\n", stream);
2454		return DC_ERROR_UNEXPECTED;
2455	}
2456
2457	odm_pipe = del_pipe->next_odm_pipe;
2458
2459	/* Release primary pipe */
2460	ASSERT(del_pipe->stream_res.stream_enc);
2461	update_stream_engine_usage(
2462			&new_ctx->res_ctx,
2463				dc->res_pool,
2464			del_pipe->stream_res.stream_enc,
2465			false);
2466
2467	if (dc->link_srv->dp_is_128b_132b_signal(del_pipe)) {
2468		update_hpo_dp_stream_engine_usage(
2469			&new_ctx->res_ctx, dc->res_pool,
2470			del_pipe->stream_res.hpo_dp_stream_enc,
2471			false);
2472		remove_hpo_dp_link_enc_from_ctx(&new_ctx->res_ctx, del_pipe, del_pipe->stream);
2473	}
2474
2475	if (del_pipe->stream_res.audio)
2476		update_audio_usage(
2477			&new_ctx->res_ctx,
2478			dc->res_pool,
2479			del_pipe->stream_res.audio,
2480			false);
2481
2482	resource_unreference_clock_source(&new_ctx->res_ctx,
2483					  dc->res_pool,
2484					  del_pipe->clock_source);
2485
2486	if (dc->res_pool->funcs->remove_stream_from_ctx)
2487		dc->res_pool->funcs->remove_stream_from_ctx(dc, new_ctx, stream);
2488
2489	while (odm_pipe) {
2490		struct pipe_ctx *next_odm_pipe = odm_pipe->next_odm_pipe;
2491
2492		memset(odm_pipe, 0, sizeof(*odm_pipe));
2493		odm_pipe = next_odm_pipe;
2494	}
2495	memset(del_pipe, 0, sizeof(*del_pipe));
2496
2497	for (i = 0; i < new_ctx->stream_count; i++)
2498		if (new_ctx->streams[i] == stream)
2499			break;
2500
2501	if (new_ctx->streams[i] != stream) {
2502		DC_ERROR("Context doesn't have stream %p !\n", stream);
2503		return DC_ERROR_UNEXPECTED;
2504	}
2505
2506	dc_stream_release(new_ctx->streams[i]);
2507	new_ctx->stream_count--;
2508
2509	/* Trim back arrays */
2510	for (; i < new_ctx->stream_count; i++) {
2511		new_ctx->streams[i] = new_ctx->streams[i + 1];
2512		new_ctx->stream_status[i] = new_ctx->stream_status[i + 1];
2513	}
2514
2515	new_ctx->streams[new_ctx->stream_count] = NULL;
2516	memset(
2517			&new_ctx->stream_status[new_ctx->stream_count],
2518			0,
2519			sizeof(new_ctx->stream_status[0]));
2520
2521	return DC_OK;
2522}
2523
2524static struct dc_stream_state *find_pll_sharable_stream(
2525		struct dc_stream_state *stream_needs_pll,
2526		struct dc_state *context)
2527{
2528	int i;
2529
2530	for (i = 0; i < context->stream_count; i++) {
2531		struct dc_stream_state *stream_has_pll = context->streams[i];
2532
2533		/* We are looking for non dp, non virtual stream */
2534		if (resource_are_streams_timing_synchronizable(
2535			stream_needs_pll, stream_has_pll)
2536			&& !dc_is_dp_signal(stream_has_pll->signal)
2537			&& stream_has_pll->link->connector_signal
2538			!= SIGNAL_TYPE_VIRTUAL)
2539			return stream_has_pll;
2540
2541	}
2542
2543	return NULL;
2544}
2545
2546static int get_norm_pix_clk(const struct dc_crtc_timing *timing)
2547{
2548	uint32_t pix_clk = timing->pix_clk_100hz;
2549	uint32_t normalized_pix_clk = pix_clk;
2550
2551	if (timing->pixel_encoding == PIXEL_ENCODING_YCBCR420)
2552		pix_clk /= 2;
2553	if (timing->pixel_encoding != PIXEL_ENCODING_YCBCR422) {
2554		switch (timing->display_color_depth) {
2555		case COLOR_DEPTH_666:
2556		case COLOR_DEPTH_888:
2557			normalized_pix_clk = pix_clk;
2558			break;
2559		case COLOR_DEPTH_101010:
2560			normalized_pix_clk = (pix_clk * 30) / 24;
2561			break;
2562		case COLOR_DEPTH_121212:
2563			normalized_pix_clk = (pix_clk * 36) / 24;
2564		break;
2565		case COLOR_DEPTH_161616:
2566			normalized_pix_clk = (pix_clk * 48) / 24;
2567		break;
2568		default:
2569			ASSERT(0);
2570		break;
2571		}
2572	}
2573	return normalized_pix_clk;
2574}
2575
2576static void calculate_phy_pix_clks(struct dc_stream_state *stream)
2577{
2578	/* update actual pixel clock on all streams */
2579	if (dc_is_hdmi_signal(stream->signal))
2580		stream->phy_pix_clk = get_norm_pix_clk(
2581			&stream->timing) / 10;
2582	else
2583		stream->phy_pix_clk =
2584			stream->timing.pix_clk_100hz / 10;
2585
2586	if (stream->timing.timing_3d_format == TIMING_3D_FORMAT_HW_FRAME_PACKING)
2587		stream->phy_pix_clk *= 2;
2588}
2589
2590static int acquire_resource_from_hw_enabled_state(
2591		struct resource_context *res_ctx,
2592		const struct resource_pool *pool,
2593		struct dc_stream_state *stream)
2594{
2595	struct dc_link *link = stream->link;
2596	unsigned int i, inst, tg_inst = 0;
2597	uint32_t numPipes = 1;
2598	uint32_t id_src[4] = {0};
2599
2600	/* Check for enabled DIG to identify enabled display */
2601	if (!link->link_enc->funcs->is_dig_enabled(link->link_enc))
2602		return -1;
2603
2604	inst = link->link_enc->funcs->get_dig_frontend(link->link_enc);
2605
2606	if (inst == ENGINE_ID_UNKNOWN)
2607		return -1;
2608
2609	for (i = 0; i < pool->stream_enc_count; i++) {
2610		if (pool->stream_enc[i]->id == inst) {
2611			tg_inst = pool->stream_enc[i]->funcs->dig_source_otg(
2612				pool->stream_enc[i]);
2613			break;
2614		}
2615	}
2616
2617	// tg_inst not found
2618	if (i == pool->stream_enc_count)
2619		return -1;
2620
2621	if (tg_inst >= pool->timing_generator_count)
2622		return -1;
2623
2624	if (!res_ctx->pipe_ctx[tg_inst].stream) {
2625		struct pipe_ctx *pipe_ctx = &res_ctx->pipe_ctx[tg_inst];
2626
2627		pipe_ctx->stream_res.tg = pool->timing_generators[tg_inst];
2628		id_src[0] = tg_inst;
2629
2630		if (pipe_ctx->stream_res.tg->funcs->get_optc_source)
2631			pipe_ctx->stream_res.tg->funcs->get_optc_source(pipe_ctx->stream_res.tg,
2632						&numPipes, &id_src[0], &id_src[1]);
2633
2634		if (id_src[0] == 0xf && id_src[1] == 0xf) {
2635			id_src[0] = tg_inst;
2636			numPipes = 1;
2637		}
2638
2639		for (i = 0; i < numPipes; i++) {
2640			//Check if src id invalid
2641			if (id_src[i] == 0xf)
2642				return -1;
2643
2644			pipe_ctx = &res_ctx->pipe_ctx[id_src[i]];
2645
2646			pipe_ctx->stream_res.tg = pool->timing_generators[tg_inst];
2647			pipe_ctx->plane_res.mi = pool->mis[id_src[i]];
2648			pipe_ctx->plane_res.hubp = pool->hubps[id_src[i]];
2649			pipe_ctx->plane_res.ipp = pool->ipps[id_src[i]];
2650			pipe_ctx->plane_res.xfm = pool->transforms[id_src[i]];
2651			pipe_ctx->plane_res.dpp = pool->dpps[id_src[i]];
2652			pipe_ctx->stream_res.opp = pool->opps[id_src[i]];
2653
2654			if (pool->dpps[id_src[i]]) {
2655				pipe_ctx->plane_res.mpcc_inst = pool->dpps[id_src[i]]->inst;
2656
2657				if (pool->mpc->funcs->read_mpcc_state) {
2658					struct mpcc_state s = {0};
2659
2660					pool->mpc->funcs->read_mpcc_state(pool->mpc, pipe_ctx->plane_res.mpcc_inst, &s);
2661
2662					if (s.dpp_id < MAX_MPCC)
2663						pool->mpc->mpcc_array[pipe_ctx->plane_res.mpcc_inst].dpp_id =
2664								s.dpp_id;
2665
2666					if (s.bot_mpcc_id < MAX_MPCC)
2667						pool->mpc->mpcc_array[pipe_ctx->plane_res.mpcc_inst].mpcc_bot =
2668								&pool->mpc->mpcc_array[s.bot_mpcc_id];
2669
2670					if (s.opp_id < MAX_OPP)
2671						pipe_ctx->stream_res.opp->mpc_tree_params.opp_id = s.opp_id;
2672				}
2673			}
2674			pipe_ctx->pipe_idx = id_src[i];
2675
2676			if (id_src[i] >= pool->timing_generator_count) {
2677				id_src[i] = pool->timing_generator_count - 1;
2678
2679				pipe_ctx->stream_res.tg = pool->timing_generators[id_src[i]];
2680				pipe_ctx->stream_res.opp = pool->opps[id_src[i]];
2681			}
2682
2683			pipe_ctx->stream = stream;
2684		}
2685
2686		if (numPipes == 2) {
2687			stream->apply_boot_odm_mode = dm_odm_combine_policy_2to1;
2688			res_ctx->pipe_ctx[id_src[0]].next_odm_pipe = &res_ctx->pipe_ctx[id_src[1]];
2689			res_ctx->pipe_ctx[id_src[0]].prev_odm_pipe = NULL;
2690			res_ctx->pipe_ctx[id_src[1]].next_odm_pipe = NULL;
2691			res_ctx->pipe_ctx[id_src[1]].prev_odm_pipe = &res_ctx->pipe_ctx[id_src[0]];
2692		} else
2693			stream->apply_boot_odm_mode = dm_odm_combine_mode_disabled;
2694
2695		return id_src[0];
2696	}
2697
2698	return -1;
2699}
2700
2701static void mark_seamless_boot_stream(
2702		const struct dc  *dc,
2703		struct dc_stream_state *stream)
2704{
2705	struct dc_bios *dcb = dc->ctx->dc_bios;
2706
2707	if (dc->config.allow_seamless_boot_optimization &&
2708			!dcb->funcs->is_accelerated_mode(dcb)) {
2709		if (dc_validate_boot_timing(dc, stream->sink, &stream->timing))
2710			stream->apply_seamless_boot_optimization = true;
2711	}
2712}
2713
2714enum dc_status resource_map_pool_resources(
2715		const struct dc  *dc,
2716		struct dc_state *context,
2717		struct dc_stream_state *stream)
2718{
2719	const struct resource_pool *pool = dc->res_pool;
2720	int i;
2721	struct dc_context *dc_ctx = dc->ctx;
2722	struct pipe_ctx *pipe_ctx = NULL;
2723	int pipe_idx = -1;
2724
2725	calculate_phy_pix_clks(stream);
2726
2727	mark_seamless_boot_stream(dc, stream);
2728
2729	if (stream->apply_seamless_boot_optimization) {
2730		pipe_idx = acquire_resource_from_hw_enabled_state(
2731				&context->res_ctx,
2732				pool,
2733				stream);
2734		if (pipe_idx < 0)
2735			/* hw resource was assigned to other stream */
2736			stream->apply_seamless_boot_optimization = false;
2737	}
2738
2739	if (pipe_idx < 0)
2740		/* acquire new resources */
2741		pipe_idx = acquire_first_free_pipe(&context->res_ctx, pool, stream);
2742
2743	if (pipe_idx < 0)
2744		pipe_idx = acquire_first_split_pipe(&context->res_ctx, pool, stream);
2745
2746	if (pipe_idx < 0 || context->res_ctx.pipe_ctx[pipe_idx].stream_res.tg == NULL)
2747		return DC_NO_CONTROLLER_RESOURCE;
2748
2749	pipe_ctx = &context->res_ctx.pipe_ctx[pipe_idx];
2750
2751	pipe_ctx->stream_res.stream_enc =
2752		dc->res_pool->funcs->find_first_free_match_stream_enc_for_link(
2753			&context->res_ctx, pool, stream);
2754
2755	if (!pipe_ctx->stream_res.stream_enc)
2756		return DC_NO_STREAM_ENC_RESOURCE;
2757
2758	update_stream_engine_usage(
2759		&context->res_ctx, pool,
2760		pipe_ctx->stream_res.stream_enc,
2761		true);
2762
2763	/* Allocate DP HPO Stream Encoder based on signal, hw capabilities
2764	 * and link settings
2765	 */
2766	if (dc_is_dp_signal(stream->signal)) {
2767		if (!dc->link_srv->dp_decide_link_settings(stream, &pipe_ctx->link_config.dp_link_settings))
2768			return DC_FAIL_DP_LINK_BANDWIDTH;
2769		if (dc->link_srv->dp_get_encoding_format(
2770				&pipe_ctx->link_config.dp_link_settings) == DP_128b_132b_ENCODING) {
2771			pipe_ctx->stream_res.hpo_dp_stream_enc =
2772					find_first_free_match_hpo_dp_stream_enc_for_link(
2773							&context->res_ctx, pool, stream);
2774
2775			if (!pipe_ctx->stream_res.hpo_dp_stream_enc)
2776				return DC_NO_STREAM_ENC_RESOURCE;
2777
2778			update_hpo_dp_stream_engine_usage(
2779					&context->res_ctx, pool,
2780					pipe_ctx->stream_res.hpo_dp_stream_enc,
2781					true);
2782			if (!add_hpo_dp_link_enc_to_ctx(&context->res_ctx, pool, pipe_ctx, stream))
2783				return DC_NO_LINK_ENC_RESOURCE;
2784		}
2785	}
2786
2787	/* TODO: Add check if ASIC support and EDID audio */
2788	if (!stream->converter_disable_audio &&
2789	    dc_is_audio_capable_signal(pipe_ctx->stream->signal) &&
2790	    stream->audio_info.mode_count && stream->audio_info.flags.all) {
2791		pipe_ctx->stream_res.audio = find_first_free_audio(
2792		&context->res_ctx, pool, pipe_ctx->stream_res.stream_enc->id, dc_ctx->dce_version);
2793
2794		/*
2795		 * Audio assigned in order first come first get.
2796		 * There are asics which has number of audio
2797		 * resources less then number of pipes
2798		 */
2799		if (pipe_ctx->stream_res.audio)
2800			update_audio_usage(&context->res_ctx, pool,
2801					   pipe_ctx->stream_res.audio, true);
2802	}
2803
2804	/* Add ABM to the resource if on EDP */
2805	if (pipe_ctx->stream && dc_is_embedded_signal(pipe_ctx->stream->signal)) {
2806		if (pool->abm)
2807			pipe_ctx->stream_res.abm = pool->abm;
2808		else
2809			pipe_ctx->stream_res.abm = pool->multiple_abms[pipe_ctx->stream_res.tg->inst];
2810	}
2811
2812	for (i = 0; i < context->stream_count; i++)
2813		if (context->streams[i] == stream) {
2814			context->stream_status[i].primary_otg_inst = pipe_ctx->stream_res.tg->inst;
2815			context->stream_status[i].stream_enc_inst = pipe_ctx->stream_res.stream_enc->stream_enc_inst;
2816			context->stream_status[i].audio_inst =
2817				pipe_ctx->stream_res.audio ? pipe_ctx->stream_res.audio->inst : -1;
2818
2819			return DC_OK;
2820		}
2821
2822	DC_ERROR("Stream %p not found in new ctx!\n", stream);
2823	return DC_ERROR_UNEXPECTED;
2824}
2825
2826/**
2827 * dc_resource_state_copy_construct_current() - Creates a new dc_state from existing state
2828 *
2829 * @dc: copy out of dc->current_state
2830 * @dst_ctx: copy into this
2831 *
2832 * This function makes a shallow copy of the current DC state and increments
2833 * refcounts on existing streams and planes.
2834 */
2835void dc_resource_state_copy_construct_current(
2836		const struct dc *dc,
2837		struct dc_state *dst_ctx)
2838{
2839	dc_resource_state_copy_construct(dc->current_state, dst_ctx);
2840}
2841
2842
2843void dc_resource_state_construct(
2844		const struct dc *dc,
2845		struct dc_state *dst_ctx)
2846{
2847	dst_ctx->clk_mgr = dc->clk_mgr;
2848
2849	/* Initialise DIG link encoder resource tracking variables. */
2850	link_enc_cfg_init(dc, dst_ctx);
2851}
2852
2853
2854bool dc_resource_is_dsc_encoding_supported(const struct dc *dc)
2855{
2856	if (dc->res_pool == NULL)
2857		return false;
2858
2859	return dc->res_pool->res_cap->num_dsc > 0;
2860}
2861
2862static bool planes_changed_for_existing_stream(struct dc_state *context,
2863					       struct dc_stream_state *stream,
2864					       const struct dc_validation_set set[],
2865					       int set_count)
2866{
2867	int i, j;
2868	struct dc_stream_status *stream_status = NULL;
2869
2870	for (i = 0; i < context->stream_count; i++) {
2871		if (context->streams[i] == stream) {
2872			stream_status = &context->stream_status[i];
2873			break;
2874		}
2875	}
2876
2877	if (!stream_status)
2878		ASSERT(0);
2879
2880	for (i = 0; i < set_count; i++)
2881		if (set[i].stream == stream)
2882			break;
2883
2884	if (i == set_count)
2885		ASSERT(0);
2886
2887	if (set[i].plane_count != stream_status->plane_count)
2888		return true;
2889
2890	for (j = 0; j < set[i].plane_count; j++)
2891		if (set[i].plane_states[j] != stream_status->plane_states[j])
2892			return true;
2893
2894	return false;
2895}
2896
2897/**
2898 * dc_validate_with_context - Validate and update the potential new stream in the context object
2899 *
2900 * @dc: Used to get the current state status
2901 * @set: An array of dc_validation_set with all the current streams reference
2902 * @set_count: Total of streams
2903 * @context: New context
2904 * @fast_validate: Enable or disable fast validation
2905 *
2906 * This function updates the potential new stream in the context object. It
2907 * creates multiple lists for the add, remove, and unchanged streams. In
2908 * particular, if the unchanged streams have a plane that changed, it is
2909 * necessary to remove all planes from the unchanged streams. In summary, this
2910 * function is responsible for validating the new context.
2911 *
2912 * Return:
2913 * In case of success, return DC_OK (1), otherwise, return a DC error.
2914 */
2915enum dc_status dc_validate_with_context(struct dc *dc,
2916					const struct dc_validation_set set[],
2917					int set_count,
2918					struct dc_state *context,
2919					bool fast_validate)
2920{
2921	struct dc_stream_state *unchanged_streams[MAX_PIPES] = { 0 };
2922	struct dc_stream_state *del_streams[MAX_PIPES] = { 0 };
2923	struct dc_stream_state *add_streams[MAX_PIPES] = { 0 };
2924	int old_stream_count = context->stream_count;
2925	enum dc_status res = DC_ERROR_UNEXPECTED;
2926	int unchanged_streams_count = 0;
2927	int del_streams_count = 0;
2928	int add_streams_count = 0;
2929	bool found = false;
2930	int i, j, k;
2931
2932	DC_LOGGER_INIT(dc->ctx->logger);
2933
2934	/* First build a list of streams to be remove from current context */
2935	for (i = 0; i < old_stream_count; i++) {
2936		struct dc_stream_state *stream = context->streams[i];
2937
2938		for (j = 0; j < set_count; j++) {
2939			if (stream == set[j].stream) {
2940				found = true;
2941				break;
2942			}
2943		}
2944
2945		if (!found)
2946			del_streams[del_streams_count++] = stream;
2947
2948		found = false;
2949	}
2950
2951	/* Second, build a list of new streams */
2952	for (i = 0; i < set_count; i++) {
2953		struct dc_stream_state *stream = set[i].stream;
2954
2955		for (j = 0; j < old_stream_count; j++) {
2956			if (stream == context->streams[j]) {
2957				found = true;
2958				break;
2959			}
2960		}
2961
2962		if (!found)
2963			add_streams[add_streams_count++] = stream;
2964
2965		found = false;
2966	}
2967
2968	/* Build a list of unchanged streams which is necessary for handling
2969	 * planes change such as added, removed, and updated.
2970	 */
2971	for (i = 0; i < set_count; i++) {
2972		/* Check if stream is part of the delete list */
2973		for (j = 0; j < del_streams_count; j++) {
2974			if (set[i].stream == del_streams[j]) {
2975				found = true;
2976				break;
2977			}
2978		}
2979
2980		if (!found) {
2981			/* Check if stream is part of the add list */
2982			for (j = 0; j < add_streams_count; j++) {
2983				if (set[i].stream == add_streams[j]) {
2984					found = true;
2985					break;
2986				}
2987			}
2988		}
2989
2990		if (!found)
2991			unchanged_streams[unchanged_streams_count++] = set[i].stream;
2992
2993		found = false;
2994	}
2995
2996	/* Remove all planes for unchanged streams if planes changed */
2997	for (i = 0; i < unchanged_streams_count; i++) {
2998		if (planes_changed_for_existing_stream(context,
2999						       unchanged_streams[i],
3000						       set,
3001						       set_count)) {
3002			if (!dc_rem_all_planes_for_stream(dc,
3003							  unchanged_streams[i],
3004							  context)) {
3005				res = DC_FAIL_DETACH_SURFACES;
3006				goto fail;
3007			}
3008		}
3009	}
3010
3011	/* Remove all planes for removed streams and then remove the streams */
3012	for (i = 0; i < del_streams_count; i++) {
3013		/* Need to cpy the dwb data from the old stream in order to efc to work */
3014		if (del_streams[i]->num_wb_info > 0) {
3015			for (j = 0; j < add_streams_count; j++) {
3016				if (del_streams[i]->sink == add_streams[j]->sink) {
3017					add_streams[j]->num_wb_info = del_streams[i]->num_wb_info;
3018					for (k = 0; k < del_streams[i]->num_wb_info; k++)
3019						add_streams[j]->writeback_info[k] = del_streams[i]->writeback_info[k];
3020				}
3021			}
3022		}
3023
3024		if (!dc_rem_all_planes_for_stream(dc, del_streams[i], context)) {
3025			res = DC_FAIL_DETACH_SURFACES;
3026			goto fail;
3027		}
3028
3029		res = dc_remove_stream_from_ctx(dc, context, del_streams[i]);
3030		if (res != DC_OK)
3031			goto fail;
3032	}
3033
3034	/* Swap seamless boot stream to pipe 0 (if needed) to ensure pipe_ctx
3035	 * matches. This may change in the future if seamless_boot_stream can be
3036	 * multiple.
3037	 */
3038	for (i = 0; i < add_streams_count; i++) {
3039		mark_seamless_boot_stream(dc, add_streams[i]);
3040		if (add_streams[i]->apply_seamless_boot_optimization && i != 0) {
3041			struct dc_stream_state *temp = add_streams[0];
3042
3043			add_streams[0] = add_streams[i];
3044			add_streams[i] = temp;
3045			break;
3046		}
3047	}
3048
3049	/* Add new streams and then add all planes for the new stream */
3050	for (i = 0; i < add_streams_count; i++) {
3051		calculate_phy_pix_clks(add_streams[i]);
3052		res = dc_add_stream_to_ctx(dc, context, add_streams[i]);
3053		if (res != DC_OK)
3054			goto fail;
3055
3056		if (!add_all_planes_for_stream(dc, add_streams[i], set, set_count, context)) {
3057			res = DC_FAIL_ATTACH_SURFACES;
3058			goto fail;
3059		}
3060	}
3061
3062	/* Add all planes for unchanged streams if planes changed */
3063	for (i = 0; i < unchanged_streams_count; i++) {
3064		if (planes_changed_for_existing_stream(context,
3065						       unchanged_streams[i],
3066						       set,
3067						       set_count)) {
3068			if (!add_all_planes_for_stream(dc, unchanged_streams[i], set, set_count, context)) {
3069				res = DC_FAIL_ATTACH_SURFACES;
3070				goto fail;
3071			}
3072		}
3073	}
3074
3075	res = dc_validate_global_state(dc, context, fast_validate);
3076
3077fail:
3078	if (res != DC_OK)
3079		DC_LOG_WARNING("%s:resource validation failed, dc_status:%d\n",
3080			       __func__,
3081			       res);
3082
3083	return res;
3084}
3085
3086/**
3087 * dc_validate_global_state() - Determine if hardware can support a given state
3088 *
3089 * @dc: dc struct for this driver
3090 * @new_ctx: state to be validated
3091 * @fast_validate: set to true if only yes/no to support matters
3092 *
3093 * Checks hardware resource availability and bandwidth requirement.
3094 *
3095 * Return:
3096 * DC_OK if the result can be programmed. Otherwise, an error code.
3097 */
3098enum dc_status dc_validate_global_state(
3099		struct dc *dc,
3100		struct dc_state *new_ctx,
3101		bool fast_validate)
3102{
3103	enum dc_status result = DC_ERROR_UNEXPECTED;
3104	int i, j;
3105
3106	if (!new_ctx)
3107		return DC_ERROR_UNEXPECTED;
3108
3109	if (dc->res_pool->funcs->validate_global) {
3110		result = dc->res_pool->funcs->validate_global(dc, new_ctx);
3111		if (result != DC_OK)
3112			return result;
3113	}
3114
3115	for (i = 0; i < new_ctx->stream_count; i++) {
3116		struct dc_stream_state *stream = new_ctx->streams[i];
3117
3118		for (j = 0; j < dc->res_pool->pipe_count; j++) {
3119			struct pipe_ctx *pipe_ctx = &new_ctx->res_ctx.pipe_ctx[j];
3120
3121			if (pipe_ctx->stream != stream)
3122				continue;
3123
3124			if (dc->res_pool->funcs->patch_unknown_plane_state &&
3125					pipe_ctx->plane_state &&
3126					pipe_ctx->plane_state->tiling_info.gfx9.swizzle == DC_SW_UNKNOWN) {
3127				result = dc->res_pool->funcs->patch_unknown_plane_state(pipe_ctx->plane_state);
3128				if (result != DC_OK)
3129					return result;
3130			}
3131
3132			/* Switch to dp clock source only if there is
3133			 * no non dp stream that shares the same timing
3134			 * with the dp stream.
3135			 */
3136			if (dc_is_dp_signal(pipe_ctx->stream->signal) &&
3137				!find_pll_sharable_stream(stream, new_ctx)) {
3138
3139				resource_unreference_clock_source(
3140						&new_ctx->res_ctx,
3141						dc->res_pool,
3142						pipe_ctx->clock_source);
3143
3144				pipe_ctx->clock_source = dc->res_pool->dp_clock_source;
3145				resource_reference_clock_source(
3146						&new_ctx->res_ctx,
3147						dc->res_pool,
3148						 pipe_ctx->clock_source);
3149			}
3150		}
3151	}
3152
3153	result = resource_build_scaling_params_for_context(dc, new_ctx);
3154
3155	if (result == DC_OK)
3156		if (!dc->res_pool->funcs->validate_bandwidth(dc, new_ctx, fast_validate))
3157			result = DC_FAIL_BANDWIDTH_VALIDATE;
3158
3159	/*
3160	 * Only update link encoder to stream assignment after bandwidth validation passed.
3161	 * TODO: Split out assignment and validation.
3162	 */
3163	if (result == DC_OK && dc->res_pool->funcs->link_encs_assign && fast_validate == false)
3164		dc->res_pool->funcs->link_encs_assign(
3165			dc, new_ctx, new_ctx->streams, new_ctx->stream_count);
3166
3167	return result;
3168}
3169
3170static void patch_gamut_packet_checksum(
3171		struct dc_info_packet *gamut_packet)
3172{
3173	/* For gamut we recalc checksum */
3174	if (gamut_packet->valid) {
3175		uint8_t chk_sum = 0;
3176		uint8_t *ptr;
3177		uint8_t i;
3178
3179		/*start of the Gamut data. */
3180		ptr = &gamut_packet->sb[3];
3181
3182		for (i = 0; i <= gamut_packet->sb[1]; i++)
3183			chk_sum += ptr[i];
3184
3185		gamut_packet->sb[2] = (uint8_t) (0x100 - chk_sum);
3186	}
3187}
3188
3189static void set_avi_info_frame(
3190		struct dc_info_packet *info_packet,
3191		struct pipe_ctx *pipe_ctx)
3192{
3193	struct dc_stream_state *stream = pipe_ctx->stream;
3194	enum dc_color_space color_space = COLOR_SPACE_UNKNOWN;
3195	uint32_t pixel_encoding = 0;
3196	enum scanning_type scan_type = SCANNING_TYPE_NODATA;
3197	enum dc_aspect_ratio aspect = ASPECT_RATIO_NO_DATA;
3198	bool itc = false;
3199	uint8_t itc_value = 0;
3200	uint8_t cn0_cn1 = 0;
3201	unsigned int cn0_cn1_value = 0;
3202	uint8_t *check_sum = NULL;
3203	uint8_t byte_index = 0;
3204	union hdmi_info_packet hdmi_info;
3205	union display_content_support support = {0};
3206	unsigned int vic = pipe_ctx->stream->timing.vic;
3207	unsigned int rid = pipe_ctx->stream->timing.rid;
3208	unsigned int fr_ind = pipe_ctx->stream->timing.fr_index;
3209	enum dc_timing_3d_format format;
3210
3211	memset(&hdmi_info, 0, sizeof(union hdmi_info_packet));
3212
3213	color_space = pipe_ctx->stream->output_color_space;
3214	if (color_space == COLOR_SPACE_UNKNOWN)
3215		color_space = (stream->timing.pixel_encoding == PIXEL_ENCODING_RGB) ?
3216			COLOR_SPACE_SRGB:COLOR_SPACE_YCBCR709;
3217
3218	/* Initialize header */
3219	hdmi_info.bits.header.info_frame_type = HDMI_INFOFRAME_TYPE_AVI;
3220	/* InfoFrameVersion_3 is defined by CEA861F (Section 6.4), but shall
3221	* not be used in HDMI 2.0 (Section 10.1) */
3222	hdmi_info.bits.header.version = 2;
3223	hdmi_info.bits.header.length = HDMI_AVI_INFOFRAME_SIZE;
3224
3225	/*
3226	 * IDO-defined (Y2,Y1,Y0 = 1,1,1) shall not be used by devices built
3227	 * according to HDMI 2.0 spec (Section 10.1)
3228	 */
3229
3230	switch (stream->timing.pixel_encoding) {
3231	case PIXEL_ENCODING_YCBCR422:
3232		pixel_encoding = 1;
3233		break;
3234
3235	case PIXEL_ENCODING_YCBCR444:
3236		pixel_encoding = 2;
3237		break;
3238	case PIXEL_ENCODING_YCBCR420:
3239		pixel_encoding = 3;
3240		break;
3241
3242	case PIXEL_ENCODING_RGB:
3243	default:
3244		pixel_encoding = 0;
3245	}
3246
3247	/* Y0_Y1_Y2 : The pixel encoding */
3248	/* H14b AVI InfoFrame has extension on Y-field from 2 bits to 3 bits */
3249	hdmi_info.bits.Y0_Y1_Y2 = pixel_encoding;
3250
3251	/* A0 = 1 Active Format Information valid */
3252	hdmi_info.bits.A0 = ACTIVE_FORMAT_VALID;
3253
3254	/* B0, B1 = 3; Bar info data is valid */
3255	hdmi_info.bits.B0_B1 = BAR_INFO_BOTH_VALID;
3256
3257	hdmi_info.bits.SC0_SC1 = PICTURE_SCALING_UNIFORM;
3258
3259	/* S0, S1 : Underscan / Overscan */
3260	/* TODO: un-hardcode scan type */
3261	scan_type = SCANNING_TYPE_UNDERSCAN;
3262	hdmi_info.bits.S0_S1 = scan_type;
3263
3264	/* C0, C1 : Colorimetry */
3265	switch (color_space) {
3266	case COLOR_SPACE_YCBCR709:
3267	case COLOR_SPACE_YCBCR709_LIMITED:
3268		hdmi_info.bits.C0_C1 = COLORIMETRY_ITU709;
3269		break;
3270	case COLOR_SPACE_YCBCR601:
3271	case COLOR_SPACE_YCBCR601_LIMITED:
3272		hdmi_info.bits.C0_C1 = COLORIMETRY_ITU601;
3273		break;
3274	case COLOR_SPACE_2020_RGB_FULLRANGE:
3275	case COLOR_SPACE_2020_RGB_LIMITEDRANGE:
3276	case COLOR_SPACE_2020_YCBCR:
3277		hdmi_info.bits.EC0_EC2 = COLORIMETRYEX_BT2020RGBYCBCR;
3278		hdmi_info.bits.C0_C1   = COLORIMETRY_EXTENDED;
3279		break;
3280	case COLOR_SPACE_ADOBERGB:
3281		hdmi_info.bits.EC0_EC2 = COLORIMETRYEX_ADOBERGB;
3282		hdmi_info.bits.C0_C1   = COLORIMETRY_EXTENDED;
3283		break;
3284	case COLOR_SPACE_SRGB:
3285	default:
3286		hdmi_info.bits.C0_C1 = COLORIMETRY_NO_DATA;
3287		break;
3288	}
3289
3290	if (pixel_encoding && color_space == COLOR_SPACE_2020_YCBCR &&
3291			stream->out_transfer_func->tf == TRANSFER_FUNCTION_GAMMA22) {
3292		hdmi_info.bits.EC0_EC2 = 0;
3293		hdmi_info.bits.C0_C1 = COLORIMETRY_ITU709;
3294	}
3295
3296	/* TODO: un-hardcode aspect ratio */
3297	aspect = stream->timing.aspect_ratio;
3298
3299	switch (aspect) {
3300	case ASPECT_RATIO_4_3:
3301	case ASPECT_RATIO_16_9:
3302		hdmi_info.bits.M0_M1 = aspect;
3303		break;
3304
3305	case ASPECT_RATIO_NO_DATA:
3306	case ASPECT_RATIO_64_27:
3307	case ASPECT_RATIO_256_135:
3308	default:
3309		hdmi_info.bits.M0_M1 = 0;
3310	}
3311
3312	/* Active Format Aspect ratio - same as Picture Aspect Ratio. */
3313	hdmi_info.bits.R0_R3 = ACTIVE_FORMAT_ASPECT_RATIO_SAME_AS_PICTURE;
3314
3315	/* TODO: un-hardcode cn0_cn1 and itc */
3316
3317	cn0_cn1 = 0;
3318	cn0_cn1_value = 0;
3319
3320	itc = true;
3321	itc_value = 1;
3322
3323	support = stream->content_support;
3324
3325	if (itc) {
3326		if (!support.bits.valid_content_type) {
3327			cn0_cn1_value = 0;
3328		} else {
3329			if (cn0_cn1 == DISPLAY_CONTENT_TYPE_GRAPHICS) {
3330				if (support.bits.graphics_content == 1) {
3331					cn0_cn1_value = 0;
3332				}
3333			} else if (cn0_cn1 == DISPLAY_CONTENT_TYPE_PHOTO) {
3334				if (support.bits.photo_content == 1) {
3335					cn0_cn1_value = 1;
3336				} else {
3337					cn0_cn1_value = 0;
3338					itc_value = 0;
3339				}
3340			} else if (cn0_cn1 == DISPLAY_CONTENT_TYPE_CINEMA) {
3341				if (support.bits.cinema_content == 1) {
3342					cn0_cn1_value = 2;
3343				} else {
3344					cn0_cn1_value = 0;
3345					itc_value = 0;
3346				}
3347			} else if (cn0_cn1 == DISPLAY_CONTENT_TYPE_GAME) {
3348				if (support.bits.game_content == 1) {
3349					cn0_cn1_value = 3;
3350				} else {
3351					cn0_cn1_value = 0;
3352					itc_value = 0;
3353				}
3354			}
3355		}
3356		hdmi_info.bits.CN0_CN1 = cn0_cn1_value;
3357		hdmi_info.bits.ITC = itc_value;
3358	}
3359
3360	if (stream->qs_bit == 1) {
3361		if (color_space == COLOR_SPACE_SRGB ||
3362			color_space == COLOR_SPACE_2020_RGB_FULLRANGE)
3363			hdmi_info.bits.Q0_Q1   = RGB_QUANTIZATION_FULL_RANGE;
3364		else if (color_space == COLOR_SPACE_SRGB_LIMITED ||
3365					color_space == COLOR_SPACE_2020_RGB_LIMITEDRANGE)
3366			hdmi_info.bits.Q0_Q1   = RGB_QUANTIZATION_LIMITED_RANGE;
3367		else
3368			hdmi_info.bits.Q0_Q1   = RGB_QUANTIZATION_DEFAULT_RANGE;
3369	} else
3370		hdmi_info.bits.Q0_Q1   = RGB_QUANTIZATION_DEFAULT_RANGE;
3371
3372	/* TODO : We should handle YCC quantization */
3373	/* but we do not have matrix calculation */
3374	hdmi_info.bits.YQ0_YQ1 = YYC_QUANTIZATION_LIMITED_RANGE;
3375
3376	///VIC
3377	if (pipe_ctx->stream->timing.hdmi_vic != 0)
3378		vic = 0;
3379	format = stream->timing.timing_3d_format;
3380	/*todo, add 3DStereo support*/
3381	if (format != TIMING_3D_FORMAT_NONE) {
3382		// Based on HDMI specs hdmi vic needs to be converted to cea vic when 3D is enabled
3383		switch (pipe_ctx->stream->timing.hdmi_vic) {
3384		case 1:
3385			vic = 95;
3386			break;
3387		case 2:
3388			vic = 94;
3389			break;
3390		case 3:
3391			vic = 93;
3392			break;
3393		case 4:
3394			vic = 98;
3395			break;
3396		default:
3397			break;
3398		}
3399	}
3400	/* If VIC >= 128, the Source shall use AVI InfoFrame Version 3*/
3401	hdmi_info.bits.VIC0_VIC7 = vic;
3402	if (vic >= 128)
3403		hdmi_info.bits.header.version = 3;
3404	/* If (C1, C0)=(1, 1) and (EC2, EC1, EC0)=(1, 1, 1),
3405	 * the Source shall use 20 AVI InfoFrame Version 4
3406	 */
3407	if (hdmi_info.bits.C0_C1 == COLORIMETRY_EXTENDED &&
3408			hdmi_info.bits.EC0_EC2 == COLORIMETRYEX_RESERVED) {
3409		hdmi_info.bits.header.version = 4;
3410		hdmi_info.bits.header.length = 14;
3411	}
3412
3413	if (rid != 0 && fr_ind != 0) {
3414		hdmi_info.bits.header.version = 5;
3415		hdmi_info.bits.header.length = 15;
3416
3417		hdmi_info.bits.FR0_FR3 = fr_ind & 0xF;
3418		hdmi_info.bits.FR4 = (fr_ind >> 4) & 0x1;
3419		hdmi_info.bits.RID0_RID5 = rid;
3420	}
3421
3422	/* pixel repetition
3423	 * PR0 - PR3 start from 0 whereas pHwPathMode->mode.timing.flags.pixel
3424	 * repetition start from 1 */
3425	hdmi_info.bits.PR0_PR3 = 0;
3426
3427	/* Bar Info
3428	 * barTop:    Line Number of End of Top Bar.
3429	 * barBottom: Line Number of Start of Bottom Bar.
3430	 * barLeft:   Pixel Number of End of Left Bar.
3431	 * barRight:  Pixel Number of Start of Right Bar. */
3432	hdmi_info.bits.bar_top = stream->timing.v_border_top;
3433	hdmi_info.bits.bar_bottom = (stream->timing.v_total
3434			- stream->timing.v_border_bottom + 1);
3435	hdmi_info.bits.bar_left  = stream->timing.h_border_left;
3436	hdmi_info.bits.bar_right = (stream->timing.h_total
3437			- stream->timing.h_border_right + 1);
3438
3439    /* Additional Colorimetry Extension
3440     * Used in conduction with C0-C1 and EC0-EC2
3441     * 0 = DCI-P3 RGB (D65)
3442     * 1 = DCI-P3 RGB (theater)
3443     */
3444	hdmi_info.bits.ACE0_ACE3 = 0;
3445
3446	/* check_sum - Calculate AFMT_AVI_INFO0 ~ AFMT_AVI_INFO3 */
3447	check_sum = &hdmi_info.packet_raw_data.sb[0];
3448
3449	*check_sum = HDMI_INFOFRAME_TYPE_AVI + hdmi_info.bits.header.length + hdmi_info.bits.header.version;
3450
3451	for (byte_index = 1; byte_index <= hdmi_info.bits.header.length; byte_index++)
3452		*check_sum += hdmi_info.packet_raw_data.sb[byte_index];
3453
3454	/* one byte complement */
3455	*check_sum = (uint8_t) (0x100 - *check_sum);
3456
3457	/* Store in hw_path_mode */
3458	info_packet->hb0 = hdmi_info.packet_raw_data.hb0;
3459	info_packet->hb1 = hdmi_info.packet_raw_data.hb1;
3460	info_packet->hb2 = hdmi_info.packet_raw_data.hb2;
3461
3462	for (byte_index = 0; byte_index < sizeof(hdmi_info.packet_raw_data.sb); byte_index++)
3463		info_packet->sb[byte_index] = hdmi_info.packet_raw_data.sb[byte_index];
3464
3465	info_packet->valid = true;
3466}
3467
3468static void set_vendor_info_packet(
3469		struct dc_info_packet *info_packet,
3470		struct dc_stream_state *stream)
3471{
3472	/* SPD info packet for FreeSync */
3473
3474	/* Check if Freesync is supported. Return if false. If true,
3475	 * set the corresponding bit in the info packet
3476	 */
3477	if (!stream->vsp_infopacket.valid)
3478		return;
3479
3480	*info_packet = stream->vsp_infopacket;
3481}
3482
3483static void set_spd_info_packet(
3484		struct dc_info_packet *info_packet,
3485		struct dc_stream_state *stream)
3486{
3487	/* SPD info packet for FreeSync */
3488
3489	/* Check if Freesync is supported. Return if false. If true,
3490	 * set the corresponding bit in the info packet
3491	 */
3492	if (!stream->vrr_infopacket.valid)
3493		return;
3494
3495	*info_packet = stream->vrr_infopacket;
3496}
3497
3498static void set_hdr_static_info_packet(
3499		struct dc_info_packet *info_packet,
3500		struct dc_stream_state *stream)
3501{
3502	/* HDR Static Metadata info packet for HDR10 */
3503
3504	if (!stream->hdr_static_metadata.valid ||
3505			stream->use_dynamic_meta)
3506		return;
3507
3508	*info_packet = stream->hdr_static_metadata;
3509}
3510
3511static void set_vsc_info_packet(
3512		struct dc_info_packet *info_packet,
3513		struct dc_stream_state *stream)
3514{
3515	if (!stream->vsc_infopacket.valid)
3516		return;
3517
3518	*info_packet = stream->vsc_infopacket;
3519}
3520static void set_hfvs_info_packet(
3521		struct dc_info_packet *info_packet,
3522		struct dc_stream_state *stream)
3523{
3524	if (!stream->hfvsif_infopacket.valid)
3525		return;
3526
3527	*info_packet = stream->hfvsif_infopacket;
3528}
3529
3530static void adaptive_sync_override_dp_info_packets_sdp_line_num(
3531		const struct dc_crtc_timing *timing,
3532		struct enc_sdp_line_num *sdp_line_num,
3533		struct _vcs_dpi_display_pipe_dest_params_st *pipe_dlg_param)
3534{
3535	uint32_t asic_blank_start = 0;
3536	uint32_t asic_blank_end   = 0;
3537	uint32_t v_update = 0;
3538
3539	const struct dc_crtc_timing *tg = timing;
3540
3541	/* blank_start = frame end - front porch */
3542	asic_blank_start = tg->v_total - tg->v_front_porch;
3543
3544	/* blank_end = blank_start - active */
3545	asic_blank_end = (asic_blank_start - tg->v_border_bottom -
3546						tg->v_addressable - tg->v_border_top);
3547
3548	if (pipe_dlg_param->vstartup_start > asic_blank_end) {
3549		v_update = (tg->v_total - (pipe_dlg_param->vstartup_start - asic_blank_end));
3550		sdp_line_num->adaptive_sync_line_num_valid = true;
3551		sdp_line_num->adaptive_sync_line_num = (tg->v_total - v_update - 1);
3552	} else {
3553		sdp_line_num->adaptive_sync_line_num_valid = false;
3554		sdp_line_num->adaptive_sync_line_num = 0;
3555	}
3556}
3557
3558static void set_adaptive_sync_info_packet(
3559		struct dc_info_packet *info_packet,
3560		const struct dc_stream_state *stream,
3561		struct encoder_info_frame *info_frame,
3562		struct _vcs_dpi_display_pipe_dest_params_st *pipe_dlg_param)
3563{
3564	if (!stream->adaptive_sync_infopacket.valid)
3565		return;
3566
3567	adaptive_sync_override_dp_info_packets_sdp_line_num(
3568			&stream->timing,
3569			&info_frame->sdp_line_num,
3570			pipe_dlg_param);
3571
3572	*info_packet = stream->adaptive_sync_infopacket;
3573}
3574
3575static void set_vtem_info_packet(
3576		struct dc_info_packet *info_packet,
3577		struct dc_stream_state *stream)
3578{
3579	if (!stream->vtem_infopacket.valid)
3580		return;
3581
3582	*info_packet = stream->vtem_infopacket;
3583}
3584
3585void dc_resource_state_destruct(struct dc_state *context)
3586{
3587	int i, j;
3588
3589	for (i = 0; i < context->stream_count; i++) {
3590		for (j = 0; j < context->stream_status[i].plane_count; j++)
3591			dc_plane_state_release(
3592				context->stream_status[i].plane_states[j]);
3593
3594		context->stream_status[i].plane_count = 0;
3595		dc_stream_release(context->streams[i]);
3596		context->streams[i] = NULL;
3597	}
3598	context->stream_count = 0;
3599}
3600
3601void dc_resource_state_copy_construct(
3602		const struct dc_state *src_ctx,
3603		struct dc_state *dst_ctx)
3604{
3605	int i, j;
3606	struct kref refcount = dst_ctx->refcount;
3607
3608	*dst_ctx = *src_ctx;
3609
3610	for (i = 0; i < MAX_PIPES; i++) {
3611		struct pipe_ctx *cur_pipe = &dst_ctx->res_ctx.pipe_ctx[i];
3612
3613		if (cur_pipe->top_pipe)
3614			cur_pipe->top_pipe =  &dst_ctx->res_ctx.pipe_ctx[cur_pipe->top_pipe->pipe_idx];
3615
3616		if (cur_pipe->bottom_pipe)
3617			cur_pipe->bottom_pipe = &dst_ctx->res_ctx.pipe_ctx[cur_pipe->bottom_pipe->pipe_idx];
3618
3619		if (cur_pipe->next_odm_pipe)
3620			cur_pipe->next_odm_pipe =  &dst_ctx->res_ctx.pipe_ctx[cur_pipe->next_odm_pipe->pipe_idx];
3621
3622		if (cur_pipe->prev_odm_pipe)
3623			cur_pipe->prev_odm_pipe = &dst_ctx->res_ctx.pipe_ctx[cur_pipe->prev_odm_pipe->pipe_idx];
3624	}
3625
3626	for (i = 0; i < dst_ctx->stream_count; i++) {
3627		dc_stream_retain(dst_ctx->streams[i]);
3628		for (j = 0; j < dst_ctx->stream_status[i].plane_count; j++)
3629			dc_plane_state_retain(
3630				dst_ctx->stream_status[i].plane_states[j]);
3631	}
3632
3633	/* context refcount should not be overridden */
3634	dst_ctx->refcount = refcount;
3635
3636}
3637
3638struct clock_source *dc_resource_find_first_free_pll(
3639		struct resource_context *res_ctx,
3640		const struct resource_pool *pool)
3641{
3642	int i;
3643
3644	for (i = 0; i < pool->clk_src_count; ++i) {
3645		if (res_ctx->clock_source_ref_count[i] == 0)
3646			return pool->clock_sources[i];
3647	}
3648
3649	return NULL;
3650}
3651
3652void resource_build_info_frame(struct pipe_ctx *pipe_ctx)
3653{
3654	enum amd_signal_type signal = SIGNAL_TYPE_NONE;
3655	struct encoder_info_frame *info = &pipe_ctx->stream_res.encoder_info_frame;
3656
3657	/* default all packets to invalid */
3658	info->avi.valid = false;
3659	info->gamut.valid = false;
3660	info->vendor.valid = false;
3661	info->spd.valid = false;
3662	info->hdrsmd.valid = false;
3663	info->vsc.valid = false;
3664	info->hfvsif.valid = false;
3665	info->vtem.valid = false;
3666	info->adaptive_sync.valid = false;
3667	signal = pipe_ctx->stream->signal;
3668
3669	/* HDMi and DP have different info packets*/
3670	if (dc_is_hdmi_signal(signal)) {
3671		set_avi_info_frame(&info->avi, pipe_ctx);
3672
3673		set_vendor_info_packet(&info->vendor, pipe_ctx->stream);
3674		set_hfvs_info_packet(&info->hfvsif, pipe_ctx->stream);
3675		set_vtem_info_packet(&info->vtem, pipe_ctx->stream);
3676
3677		set_spd_info_packet(&info->spd, pipe_ctx->stream);
3678
3679		set_hdr_static_info_packet(&info->hdrsmd, pipe_ctx->stream);
3680
3681	} else if (dc_is_dp_signal(signal)) {
3682		set_vsc_info_packet(&info->vsc, pipe_ctx->stream);
3683
3684		set_spd_info_packet(&info->spd, pipe_ctx->stream);
3685
3686		set_hdr_static_info_packet(&info->hdrsmd, pipe_ctx->stream);
3687		set_adaptive_sync_info_packet(&info->adaptive_sync,
3688										pipe_ctx->stream,
3689										info,
3690										&pipe_ctx->pipe_dlg_param);
3691	}
3692
3693	patch_gamut_packet_checksum(&info->gamut);
3694}
3695
3696enum dc_status resource_map_clock_resources(
3697		const struct dc  *dc,
3698		struct dc_state *context,
3699		struct dc_stream_state *stream)
3700{
3701	/* acquire new resources */
3702	const struct resource_pool *pool = dc->res_pool;
3703	struct pipe_ctx *pipe_ctx = resource_get_otg_master_for_stream(
3704				&context->res_ctx, stream);
3705
3706	if (!pipe_ctx)
3707		return DC_ERROR_UNEXPECTED;
3708
3709	if (dc_is_dp_signal(pipe_ctx->stream->signal)
3710		|| pipe_ctx->stream->signal == SIGNAL_TYPE_VIRTUAL)
3711		pipe_ctx->clock_source = pool->dp_clock_source;
3712	else {
3713		pipe_ctx->clock_source = NULL;
3714
3715		if (!dc->config.disable_disp_pll_sharing)
3716			pipe_ctx->clock_source = resource_find_used_clk_src_for_sharing(
3717				&context->res_ctx,
3718				pipe_ctx);
3719
3720		if (pipe_ctx->clock_source == NULL)
3721			pipe_ctx->clock_source =
3722				dc_resource_find_first_free_pll(
3723					&context->res_ctx,
3724					pool);
3725	}
3726
3727	if (pipe_ctx->clock_source == NULL)
3728		return DC_NO_CLOCK_SOURCE_RESOURCE;
3729
3730	resource_reference_clock_source(
3731		&context->res_ctx, pool,
3732		pipe_ctx->clock_source);
3733
3734	return DC_OK;
3735}
3736
3737/*
3738 * Note: We need to disable output if clock sources change,
3739 * since bios does optimization and doesn't apply if changing
3740 * PHY when not already disabled.
3741 */
3742bool pipe_need_reprogram(
3743		struct pipe_ctx *pipe_ctx_old,
3744		struct pipe_ctx *pipe_ctx)
3745{
3746	if (!pipe_ctx_old->stream)
3747		return false;
3748
3749	if (pipe_ctx_old->stream->sink != pipe_ctx->stream->sink)
3750		return true;
3751
3752	if (pipe_ctx_old->stream->signal != pipe_ctx->stream->signal)
3753		return true;
3754
3755	if (pipe_ctx_old->stream_res.audio != pipe_ctx->stream_res.audio)
3756		return true;
3757
3758	if (pipe_ctx_old->clock_source != pipe_ctx->clock_source
3759			&& pipe_ctx_old->stream != pipe_ctx->stream)
3760		return true;
3761
3762	if (pipe_ctx_old->stream_res.stream_enc != pipe_ctx->stream_res.stream_enc)
3763		return true;
3764
3765	if (dc_is_timing_changed(pipe_ctx_old->stream, pipe_ctx->stream))
3766		return true;
3767
3768	if (pipe_ctx_old->stream->dpms_off != pipe_ctx->stream->dpms_off)
3769		return true;
3770
3771	if (false == pipe_ctx_old->stream->link->link_state_valid &&
3772		false == pipe_ctx_old->stream->dpms_off)
3773		return true;
3774
3775	if (pipe_ctx_old->stream_res.dsc != pipe_ctx->stream_res.dsc)
3776		return true;
3777
3778	if (pipe_ctx_old->stream_res.hpo_dp_stream_enc != pipe_ctx->stream_res.hpo_dp_stream_enc)
3779		return true;
3780	if (pipe_ctx_old->link_res.hpo_dp_link_enc != pipe_ctx->link_res.hpo_dp_link_enc)
3781		return true;
3782
3783	/* DIG link encoder resource assignment for stream changed. */
3784	if (pipe_ctx_old->stream->ctx->dc->res_pool->funcs->link_encs_assign) {
3785		bool need_reprogram = false;
3786		struct dc *dc = pipe_ctx_old->stream->ctx->dc;
3787		struct link_encoder *link_enc_prev =
3788			link_enc_cfg_get_link_enc_used_by_stream_current(dc, pipe_ctx_old->stream);
3789
3790		if (link_enc_prev != pipe_ctx->stream->link_enc)
3791			need_reprogram = true;
3792
3793		return need_reprogram;
3794	}
3795
3796	return false;
3797}
3798
3799void resource_build_bit_depth_reduction_params(struct dc_stream_state *stream,
3800		struct bit_depth_reduction_params *fmt_bit_depth)
3801{
3802	enum dc_dither_option option = stream->dither_option;
3803	enum dc_pixel_encoding pixel_encoding =
3804			stream->timing.pixel_encoding;
3805
3806	memset(fmt_bit_depth, 0, sizeof(*fmt_bit_depth));
3807
3808	if (option == DITHER_OPTION_DEFAULT) {
3809		switch (stream->timing.display_color_depth) {
3810		case COLOR_DEPTH_666:
3811			option = DITHER_OPTION_SPATIAL6;
3812			break;
3813		case COLOR_DEPTH_888:
3814			option = DITHER_OPTION_SPATIAL8;
3815			break;
3816		case COLOR_DEPTH_101010:
3817			option = DITHER_OPTION_SPATIAL10;
3818			break;
3819		default:
3820			option = DITHER_OPTION_DISABLE;
3821		}
3822	}
3823
3824	if (option == DITHER_OPTION_DISABLE)
3825		return;
3826
3827	if (option == DITHER_OPTION_TRUN6) {
3828		fmt_bit_depth->flags.TRUNCATE_ENABLED = 1;
3829		fmt_bit_depth->flags.TRUNCATE_DEPTH = 0;
3830	} else if (option == DITHER_OPTION_TRUN8 ||
3831			option == DITHER_OPTION_TRUN8_SPATIAL6 ||
3832			option == DITHER_OPTION_TRUN8_FM6) {
3833		fmt_bit_depth->flags.TRUNCATE_ENABLED = 1;
3834		fmt_bit_depth->flags.TRUNCATE_DEPTH = 1;
3835	} else if (option == DITHER_OPTION_TRUN10        ||
3836			option == DITHER_OPTION_TRUN10_SPATIAL6   ||
3837			option == DITHER_OPTION_TRUN10_SPATIAL8   ||
3838			option == DITHER_OPTION_TRUN10_FM8     ||
3839			option == DITHER_OPTION_TRUN10_FM6     ||
3840			option == DITHER_OPTION_TRUN10_SPATIAL8_FM6) {
3841		fmt_bit_depth->flags.TRUNCATE_ENABLED = 1;
3842		fmt_bit_depth->flags.TRUNCATE_DEPTH = 2;
3843	}
3844
3845	/* special case - Formatter can only reduce by 4 bits at most.
3846	 * When reducing from 12 to 6 bits,
3847	 * HW recommends we use trunc with round mode
3848	 * (if we did nothing, trunc to 10 bits would be used)
3849	 * note that any 12->10 bit reduction is ignored prior to DCE8,
3850	 * as the input was 10 bits.
3851	 */
3852	if (option == DITHER_OPTION_SPATIAL6_FRAME_RANDOM ||
3853			option == DITHER_OPTION_SPATIAL6 ||
3854			option == DITHER_OPTION_FM6) {
3855		fmt_bit_depth->flags.TRUNCATE_ENABLED = 1;
3856		fmt_bit_depth->flags.TRUNCATE_DEPTH = 2;
3857		fmt_bit_depth->flags.TRUNCATE_MODE = 1;
3858	}
3859
3860	/* spatial dither
3861	 * note that spatial modes 1-3 are never used
3862	 */
3863	if (option == DITHER_OPTION_SPATIAL6_FRAME_RANDOM            ||
3864			option == DITHER_OPTION_SPATIAL6 ||
3865			option == DITHER_OPTION_TRUN10_SPATIAL6      ||
3866			option == DITHER_OPTION_TRUN8_SPATIAL6) {
3867		fmt_bit_depth->flags.SPATIAL_DITHER_ENABLED = 1;
3868		fmt_bit_depth->flags.SPATIAL_DITHER_DEPTH = 0;
3869		fmt_bit_depth->flags.HIGHPASS_RANDOM = 1;
3870		fmt_bit_depth->flags.RGB_RANDOM =
3871				(pixel_encoding == PIXEL_ENCODING_RGB) ? 1 : 0;
3872	} else if (option == DITHER_OPTION_SPATIAL8_FRAME_RANDOM            ||
3873			option == DITHER_OPTION_SPATIAL8 ||
3874			option == DITHER_OPTION_SPATIAL8_FM6        ||
3875			option == DITHER_OPTION_TRUN10_SPATIAL8      ||
3876			option == DITHER_OPTION_TRUN10_SPATIAL8_FM6) {
3877		fmt_bit_depth->flags.SPATIAL_DITHER_ENABLED = 1;
3878		fmt_bit_depth->flags.SPATIAL_DITHER_DEPTH = 1;
3879		fmt_bit_depth->flags.HIGHPASS_RANDOM = 1;
3880		fmt_bit_depth->flags.RGB_RANDOM =
3881				(pixel_encoding == PIXEL_ENCODING_RGB) ? 1 : 0;
3882	} else if (option == DITHER_OPTION_SPATIAL10_FRAME_RANDOM ||
3883			option == DITHER_OPTION_SPATIAL10 ||
3884			option == DITHER_OPTION_SPATIAL10_FM8 ||
3885			option == DITHER_OPTION_SPATIAL10_FM6) {
3886		fmt_bit_depth->flags.SPATIAL_DITHER_ENABLED = 1;
3887		fmt_bit_depth->flags.SPATIAL_DITHER_DEPTH = 2;
3888		fmt_bit_depth->flags.HIGHPASS_RANDOM = 1;
3889		fmt_bit_depth->flags.RGB_RANDOM =
3890				(pixel_encoding == PIXEL_ENCODING_RGB) ? 1 : 0;
3891	}
3892
3893	if (option == DITHER_OPTION_SPATIAL6 ||
3894			option == DITHER_OPTION_SPATIAL8 ||
3895			option == DITHER_OPTION_SPATIAL10) {
3896		fmt_bit_depth->flags.FRAME_RANDOM = 0;
3897	} else {
3898		fmt_bit_depth->flags.FRAME_RANDOM = 1;
3899	}
3900
3901	//////////////////////
3902	//// temporal dither
3903	//////////////////////
3904	if (option == DITHER_OPTION_FM6           ||
3905			option == DITHER_OPTION_SPATIAL8_FM6     ||
3906			option == DITHER_OPTION_SPATIAL10_FM6     ||
3907			option == DITHER_OPTION_TRUN10_FM6     ||
3908			option == DITHER_OPTION_TRUN8_FM6      ||
3909			option == DITHER_OPTION_TRUN10_SPATIAL8_FM6) {
3910		fmt_bit_depth->flags.FRAME_MODULATION_ENABLED = 1;
3911		fmt_bit_depth->flags.FRAME_MODULATION_DEPTH = 0;
3912	} else if (option == DITHER_OPTION_FM8        ||
3913			option == DITHER_OPTION_SPATIAL10_FM8  ||
3914			option == DITHER_OPTION_TRUN10_FM8) {
3915		fmt_bit_depth->flags.FRAME_MODULATION_ENABLED = 1;
3916		fmt_bit_depth->flags.FRAME_MODULATION_DEPTH = 1;
3917	} else if (option == DITHER_OPTION_FM10) {
3918		fmt_bit_depth->flags.FRAME_MODULATION_ENABLED = 1;
3919		fmt_bit_depth->flags.FRAME_MODULATION_DEPTH = 2;
3920	}
3921
3922	fmt_bit_depth->pixel_encoding = pixel_encoding;
3923}
3924
3925enum dc_status dc_validate_stream(struct dc *dc, struct dc_stream_state *stream)
3926{
3927	struct dc_link *link = stream->link;
3928	struct timing_generator *tg = dc->res_pool->timing_generators[0];
3929	enum dc_status res = DC_OK;
3930
3931	calculate_phy_pix_clks(stream);
3932
3933	if (!tg->funcs->validate_timing(tg, &stream->timing))
3934		res = DC_FAIL_CONTROLLER_VALIDATE;
3935
3936	if (res == DC_OK) {
3937		if (link->ep_type == DISPLAY_ENDPOINT_PHY &&
3938				!link->link_enc->funcs->validate_output_with_stream(
3939						link->link_enc, stream))
3940			res = DC_FAIL_ENC_VALIDATE;
3941	}
3942
3943	/* TODO: validate audio ASIC caps, encoder */
3944
3945	if (res == DC_OK)
3946		res = dc->link_srv->validate_mode_timing(stream,
3947		      link,
3948		      &stream->timing);
3949
3950	return res;
3951}
3952
3953enum dc_status dc_validate_plane(struct dc *dc, const struct dc_plane_state *plane_state)
3954{
3955	enum dc_status res = DC_OK;
3956
3957	/* check if surface has invalid dimensions */
3958	if (plane_state->src_rect.width == 0 || plane_state->src_rect.height == 0 ||
3959		plane_state->dst_rect.width == 0 || plane_state->dst_rect.height == 0)
3960		return DC_FAIL_SURFACE_VALIDATE;
3961
3962	/* TODO For now validates pixel format only */
3963	if (dc->res_pool->funcs->validate_plane)
3964		return dc->res_pool->funcs->validate_plane(plane_state, &dc->caps);
3965
3966	return res;
3967}
3968
3969unsigned int resource_pixel_format_to_bpp(enum surface_pixel_format format)
3970{
3971	switch (format) {
3972	case SURFACE_PIXEL_FORMAT_GRPH_PALETA_256_COLORS:
3973		return 8;
3974	case SURFACE_PIXEL_FORMAT_VIDEO_420_YCbCr:
3975	case SURFACE_PIXEL_FORMAT_VIDEO_420_YCrCb:
3976		return 12;
3977	case SURFACE_PIXEL_FORMAT_GRPH_ARGB1555:
3978	case SURFACE_PIXEL_FORMAT_GRPH_RGB565:
3979	case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCbCr:
3980	case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCrCb:
3981		return 16;
3982	case SURFACE_PIXEL_FORMAT_GRPH_ARGB8888:
3983	case SURFACE_PIXEL_FORMAT_GRPH_ABGR8888:
3984	case SURFACE_PIXEL_FORMAT_GRPH_ARGB2101010:
3985	case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010:
3986	case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010_XR_BIAS:
3987	case SURFACE_PIXEL_FORMAT_GRPH_RGBE:
3988	case SURFACE_PIXEL_FORMAT_GRPH_RGBE_ALPHA:
3989		return 32;
3990	case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616:
3991	case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616:
3992	case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616F:
3993	case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616F:
3994		return 64;
3995	default:
3996		ASSERT_CRITICAL(false);
3997		return -1;
3998	}
3999}
4000static unsigned int get_max_audio_sample_rate(struct audio_mode *modes)
4001{
4002	if (modes) {
4003		if (modes->sample_rates.rate.RATE_192)
4004			return 192000;
4005		if (modes->sample_rates.rate.RATE_176_4)
4006			return 176400;
4007		if (modes->sample_rates.rate.RATE_96)
4008			return 96000;
4009		if (modes->sample_rates.rate.RATE_88_2)
4010			return 88200;
4011		if (modes->sample_rates.rate.RATE_48)
4012			return 48000;
4013		if (modes->sample_rates.rate.RATE_44_1)
4014			return 44100;
4015		if (modes->sample_rates.rate.RATE_32)
4016			return 32000;
4017	}
4018	/*original logic when no audio info*/
4019	return 441000;
4020}
4021
4022void get_audio_check(struct audio_info *aud_modes,
4023	struct audio_check *audio_chk)
4024{
4025	unsigned int i;
4026	unsigned int max_sample_rate = 0;
4027
4028	if (aud_modes) {
4029		audio_chk->audio_packet_type = 0x2;/*audio sample packet AP = .25 for layout0, 1 for layout1*/
4030
4031		audio_chk->max_audiosample_rate = 0;
4032		for (i = 0; i < aud_modes->mode_count; i++) {
4033			max_sample_rate = get_max_audio_sample_rate(&aud_modes->modes[i]);
4034			if (audio_chk->max_audiosample_rate < max_sample_rate)
4035				audio_chk->max_audiosample_rate = max_sample_rate;
4036			/*dts takes the same as type 2: AP = 0.25*/
4037		}
4038		/*check which one take more bandwidth*/
4039		if (audio_chk->max_audiosample_rate > 192000)
4040			audio_chk->audio_packet_type = 0x9;/*AP =1*/
4041		audio_chk->acat = 0;/*not support*/
4042	}
4043}
4044
4045static struct hpo_dp_link_encoder *get_temp_hpo_dp_link_enc(
4046		const struct resource_context *res_ctx,
4047		const struct resource_pool *const pool,
4048		const struct dc_link *link)
4049{
4050	struct hpo_dp_link_encoder *hpo_dp_link_enc = NULL;
4051	int enc_index;
4052
4053	enc_index = find_acquired_hpo_dp_link_enc_for_link(res_ctx, link);
4054
4055	if (enc_index < 0)
4056		enc_index = find_free_hpo_dp_link_enc(res_ctx, pool);
4057
4058	if (enc_index >= 0)
4059		hpo_dp_link_enc = pool->hpo_dp_link_enc[enc_index];
4060
4061	return hpo_dp_link_enc;
4062}
4063
4064bool get_temp_dp_link_res(struct dc_link *link,
4065		struct link_resource *link_res,
4066		struct dc_link_settings *link_settings)
4067{
4068	const struct dc *dc  = link->dc;
4069	const struct resource_context *res_ctx = &dc->current_state->res_ctx;
4070
4071	memset(link_res, 0, sizeof(*link_res));
4072
4073	if (dc->link_srv->dp_get_encoding_format(link_settings) == DP_128b_132b_ENCODING) {
4074		link_res->hpo_dp_link_enc = get_temp_hpo_dp_link_enc(res_ctx,
4075				dc->res_pool, link);
4076		if (!link_res->hpo_dp_link_enc)
4077			return false;
4078	}
4079	return true;
4080}
4081
4082void reset_syncd_pipes_from_disabled_pipes(struct dc *dc,
4083		struct dc_state *context)
4084{
4085	int i, j;
4086	struct pipe_ctx *pipe_ctx_old, *pipe_ctx, *pipe_ctx_syncd;
4087
4088	/* If pipe backend is reset, need to reset pipe syncd status */
4089	for (i = 0; i < dc->res_pool->pipe_count; i++) {
4090		pipe_ctx_old =	&dc->current_state->res_ctx.pipe_ctx[i];
4091		pipe_ctx = &context->res_ctx.pipe_ctx[i];
4092
4093		if (!resource_is_pipe_type(pipe_ctx_old, OTG_MASTER))
4094			continue;
4095
4096		if (!pipe_ctx->stream ||
4097				pipe_need_reprogram(pipe_ctx_old, pipe_ctx)) {
4098
4099			/* Reset all the syncd pipes from the disabled pipe */
4100			for (j = 0; j < dc->res_pool->pipe_count; j++) {
4101				pipe_ctx_syncd = &context->res_ctx.pipe_ctx[j];
4102				if ((GET_PIPE_SYNCD_FROM_PIPE(pipe_ctx_syncd) == pipe_ctx_old->pipe_idx) ||
4103					!IS_PIPE_SYNCD_VALID(pipe_ctx_syncd))
4104					SET_PIPE_SYNCD_TO_PIPE(pipe_ctx_syncd, j);
4105			}
4106		}
4107	}
4108}
4109
4110void check_syncd_pipes_for_disabled_master_pipe(struct dc *dc,
4111	struct dc_state *context,
4112	uint8_t disabled_master_pipe_idx)
4113{
4114	int i;
4115	struct pipe_ctx *pipe_ctx, *pipe_ctx_check;
4116
4117	pipe_ctx = &context->res_ctx.pipe_ctx[disabled_master_pipe_idx];
4118	if ((GET_PIPE_SYNCD_FROM_PIPE(pipe_ctx) != disabled_master_pipe_idx) ||
4119		!IS_PIPE_SYNCD_VALID(pipe_ctx))
4120		SET_PIPE_SYNCD_TO_PIPE(pipe_ctx, disabled_master_pipe_idx);
4121
4122	/* for the pipe disabled, check if any slave pipe exists and assert */
4123	for (i = 0; i < dc->res_pool->pipe_count; i++) {
4124		pipe_ctx_check = &context->res_ctx.pipe_ctx[i];
4125
4126		if ((GET_PIPE_SYNCD_FROM_PIPE(pipe_ctx_check) == disabled_master_pipe_idx) &&
4127		    IS_PIPE_SYNCD_VALID(pipe_ctx_check) && (i != disabled_master_pipe_idx)) {
4128			struct pipe_ctx *first_pipe = pipe_ctx_check;
4129
4130			while (first_pipe->prev_odm_pipe)
4131				first_pipe = first_pipe->prev_odm_pipe;
4132			/* When ODM combine is enabled, this case is expected. If the disabled pipe
4133			 * is part of the ODM tree, then we should not print an error.
4134			 * */
4135			if (first_pipe->pipe_idx == disabled_master_pipe_idx)
4136				continue;
4137
4138			DC_ERR("DC: Failure: pipe_idx[%d] syncd with disabled master pipe_idx[%d]\n",
4139				   i, disabled_master_pipe_idx);
4140		}
4141	}
4142}
4143
4144void reset_sync_context_for_pipe(const struct dc *dc,
4145	struct dc_state *context,
4146	uint8_t pipe_idx)
4147{
4148	int i;
4149	struct pipe_ctx *pipe_ctx_reset;
4150
4151	/* reset the otg sync context for the pipe and its slave pipes if any */
4152	for (i = 0; i < dc->res_pool->pipe_count; i++) {
4153		pipe_ctx_reset = &context->res_ctx.pipe_ctx[i];
4154
4155		if (((GET_PIPE_SYNCD_FROM_PIPE(pipe_ctx_reset) == pipe_idx) &&
4156			IS_PIPE_SYNCD_VALID(pipe_ctx_reset)) || (i == pipe_idx))
4157			SET_PIPE_SYNCD_TO_PIPE(pipe_ctx_reset, i);
4158	}
4159}
4160
4161uint8_t resource_transmitter_to_phy_idx(const struct dc *dc, enum transmitter transmitter)
4162{
4163	/* TODO - get transmitter to phy idx mapping from DMUB */
4164	uint8_t phy_idx = transmitter - TRANSMITTER_UNIPHY_A;
4165
4166	if (dc->ctx->dce_version == DCN_VERSION_3_1 &&
4167			dc->ctx->asic_id.hw_internal_rev == YELLOW_CARP_B0) {
4168		switch (transmitter) {
4169		case TRANSMITTER_UNIPHY_A:
4170			phy_idx = 0;
4171			break;
4172		case TRANSMITTER_UNIPHY_B:
4173			phy_idx = 1;
4174			break;
4175		case TRANSMITTER_UNIPHY_C:
4176			phy_idx = 5;
4177			break;
4178		case TRANSMITTER_UNIPHY_D:
4179			phy_idx = 6;
4180			break;
4181		case TRANSMITTER_UNIPHY_E:
4182			phy_idx = 4;
4183			break;
4184		default:
4185			phy_idx = 0;
4186			break;
4187		}
4188	}
4189
4190	return phy_idx;
4191}
4192
4193const struct link_hwss *get_link_hwss(const struct dc_link *link,
4194		const struct link_resource *link_res)
4195{
4196	/* Link_hwss is only accessible by getter function instead of accessing
4197	 * by pointers in dc with the intent to protect against breaking polymorphism.
4198	 */
4199	if (can_use_hpo_dp_link_hwss(link, link_res))
4200		/* TODO: some assumes that if decided link settings is 128b/132b
4201		 * channel coding format hpo_dp_link_enc should be used.
4202		 * Others believe that if hpo_dp_link_enc is available in link
4203		 * resource then hpo_dp_link_enc must be used. This bound between
4204		 * hpo_dp_link_enc != NULL and decided link settings is loosely coupled
4205		 * with a premise that both hpo_dp_link_enc pointer and decided link
4206		 * settings are determined based on single policy function like
4207		 * "decide_link_settings" from upper layer. This "convention"
4208		 * cannot be maintained and enforced at current level.
4209		 * Therefore a refactor is due so we can enforce a strong bound
4210		 * between those two parameters at this level.
4211		 *
4212		 * To put it simple, we want to make enforcement at low level so that
4213		 * we will not return link hwss if caller plans to do 8b/10b
4214		 * with an hpo encoder. Or we can return a very dummy one that doesn't
4215		 * do work for all functions
4216		 */
4217		return (requires_fixed_vs_pe_retimer_hpo_link_hwss(link) ?
4218				get_hpo_fixed_vs_pe_retimer_dp_link_hwss() : get_hpo_dp_link_hwss());
4219	else if (can_use_dpia_link_hwss(link, link_res))
4220		return get_dpia_link_hwss();
4221	else if (can_use_dio_link_hwss(link, link_res))
4222		return (requires_fixed_vs_pe_retimer_dio_link_hwss(link)) ?
4223				get_dio_fixed_vs_pe_retimer_link_hwss() : get_dio_link_hwss();
4224	else
4225		return get_virtual_link_hwss();
4226}
4227
4228bool is_h_timing_divisible_by_2(struct dc_stream_state *stream)
4229{
4230	bool divisible = false;
4231	uint16_t h_blank_start = 0;
4232	uint16_t h_blank_end = 0;
4233
4234	if (stream) {
4235		h_blank_start = stream->timing.h_total - stream->timing.h_front_porch;
4236		h_blank_end = h_blank_start - stream->timing.h_addressable;
4237
4238		/* HTOTAL, Hblank start/end, and Hsync start/end all must be
4239		 * divisible by 2 in order for the horizontal timing params
4240		 * to be considered divisible by 2. Hsync start is always 0.
4241		 */
4242		divisible = (stream->timing.h_total % 2 == 0) &&
4243				(h_blank_start % 2 == 0) &&
4244				(h_blank_end % 2 == 0) &&
4245				(stream->timing.h_sync_width % 2 == 0);
4246	}
4247	return divisible;
4248}
4249
4250bool dc_resource_acquire_secondary_pipe_for_mpc_odm(
4251		const struct dc *dc,
4252		struct dc_state *state,
4253		struct pipe_ctx *pri_pipe,
4254		struct pipe_ctx *sec_pipe,
4255		bool odm)
4256{
4257	int pipe_idx = sec_pipe->pipe_idx;
4258	struct pipe_ctx *sec_top, *sec_bottom, *sec_next, *sec_prev;
4259	const struct resource_pool *pool = dc->res_pool;
4260
4261	sec_top = sec_pipe->top_pipe;
4262	sec_bottom = sec_pipe->bottom_pipe;
4263	sec_next = sec_pipe->next_odm_pipe;
4264	sec_prev = sec_pipe->prev_odm_pipe;
4265
4266	*sec_pipe = *pri_pipe;
4267
4268	sec_pipe->top_pipe = sec_top;
4269	sec_pipe->bottom_pipe = sec_bottom;
4270	sec_pipe->next_odm_pipe = sec_next;
4271	sec_pipe->prev_odm_pipe = sec_prev;
4272
4273	sec_pipe->pipe_idx = pipe_idx;
4274	sec_pipe->plane_res.mi = pool->mis[pipe_idx];
4275	sec_pipe->plane_res.hubp = pool->hubps[pipe_idx];
4276	sec_pipe->plane_res.ipp = pool->ipps[pipe_idx];
4277	sec_pipe->plane_res.xfm = pool->transforms[pipe_idx];
4278	sec_pipe->plane_res.dpp = pool->dpps[pipe_idx];
4279	sec_pipe->plane_res.mpcc_inst = pool->dpps[pipe_idx]->inst;
4280	sec_pipe->stream_res.dsc = NULL;
4281	if (odm) {
4282		if (!sec_pipe->top_pipe)
4283			sec_pipe->stream_res.opp = pool->opps[pipe_idx];
4284		else
4285			sec_pipe->stream_res.opp = sec_pipe->top_pipe->stream_res.opp;
4286		if (sec_pipe->stream->timing.flags.DSC == 1) {
4287#if defined(CONFIG_DRM_AMD_DC_FP)
4288			dcn20_acquire_dsc(dc, &state->res_ctx, &sec_pipe->stream_res.dsc, pipe_idx);
4289#endif
4290			ASSERT(sec_pipe->stream_res.dsc);
4291			if (sec_pipe->stream_res.dsc == NULL)
4292				return false;
4293		}
4294#if defined(CONFIG_DRM_AMD_DC_FP)
4295		dcn20_build_mapped_resource(dc, state, sec_pipe->stream);
4296#endif
4297	}
4298
4299	return true;
4300}
4301
4302enum dc_status update_dp_encoder_resources_for_test_harness(const struct dc *dc,
4303		struct dc_state *context,
4304		struct pipe_ctx *pipe_ctx)
4305{
4306	if (dc->link_srv->dp_get_encoding_format(&pipe_ctx->link_config.dp_link_settings) == DP_128b_132b_ENCODING) {
4307		if (pipe_ctx->stream_res.hpo_dp_stream_enc == NULL) {
4308			pipe_ctx->stream_res.hpo_dp_stream_enc =
4309					find_first_free_match_hpo_dp_stream_enc_for_link(
4310							&context->res_ctx, dc->res_pool, pipe_ctx->stream);
4311
4312			if (!pipe_ctx->stream_res.hpo_dp_stream_enc)
4313				return DC_NO_STREAM_ENC_RESOURCE;
4314
4315			update_hpo_dp_stream_engine_usage(
4316					&context->res_ctx, dc->res_pool,
4317					pipe_ctx->stream_res.hpo_dp_stream_enc,
4318					true);
4319		}
4320
4321		if (pipe_ctx->link_res.hpo_dp_link_enc == NULL) {
4322			if (!add_hpo_dp_link_enc_to_ctx(&context->res_ctx, dc->res_pool, pipe_ctx, pipe_ctx->stream))
4323				return DC_NO_LINK_ENC_RESOURCE;
4324		}
4325	} else {
4326		if (pipe_ctx->stream_res.hpo_dp_stream_enc) {
4327			update_hpo_dp_stream_engine_usage(
4328					&context->res_ctx, dc->res_pool,
4329					pipe_ctx->stream_res.hpo_dp_stream_enc,
4330					false);
4331			pipe_ctx->stream_res.hpo_dp_stream_enc = NULL;
4332		}
4333		if (pipe_ctx->link_res.hpo_dp_link_enc)
4334			remove_hpo_dp_link_enc_from_ctx(&context->res_ctx, pipe_ctx, pipe_ctx->stream);
4335	}
4336
4337	return DC_OK;
4338}
4339
4340