1/*
2 * Copyright 2009 Jerome Glisse.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sub license, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19 * USE OR OTHER DEALINGS IN THE SOFTWARE.
20 *
21 * The above copyright notice and this permission notice (including the
22 * next paragraph) shall be included in all copies or substantial portions
23 * of the Software.
24 *
25 */
26/*
27 * Authors:
28 *    Jerome Glisse <glisse@freedesktop.org>
29 *    Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
30 *    Dave Airlie
31 */
32
33#include <linux/dma-mapping.h>
34#include <linux/iommu.h>
35#include <linux/pagemap.h>
36#include <linux/sched/task.h>
37#include <linux/sched/mm.h>
38#include <linux/seq_file.h>
39#include <linux/slab.h>
40#include <linux/swap.h>
41#include <linux/dma-buf.h>
42#include <linux/sizes.h>
43#include <linux/module.h>
44
45#include <drm/drm_drv.h>
46#include <drm/ttm/ttm_bo.h>
47#include <drm/ttm/ttm_placement.h>
48#include <drm/ttm/ttm_range_manager.h>
49#include <drm/ttm/ttm_tt.h>
50
51#include <drm/amdgpu_drm.h>
52
53#include "amdgpu.h"
54#include "amdgpu_object.h"
55#include "amdgpu_trace.h"
56#include "amdgpu_amdkfd.h"
57#include "amdgpu_sdma.h"
58#include "amdgpu_ras.h"
59#include "amdgpu_hmm.h"
60#include "amdgpu_atomfirmware.h"
61#include "amdgpu_res_cursor.h"
62#include "bif/bif_4_1_d.h"
63
64MODULE_IMPORT_NS(DMA_BUF);
65
66#define AMDGPU_TTM_VRAM_MAX_DW_READ	((size_t)128)
67
68static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
69				   struct ttm_tt *ttm,
70				   struct ttm_resource *bo_mem);
71static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
72				      struct ttm_tt *ttm);
73
74static int amdgpu_ttm_init_on_chip(struct amdgpu_device *adev,
75				    unsigned int type,
76				    uint64_t size_in_page)
77{
78	return ttm_range_man_init(&adev->mman.bdev, type,
79				  false, size_in_page);
80}
81
82/**
83 * amdgpu_evict_flags - Compute placement flags
84 *
85 * @bo: The buffer object to evict
86 * @placement: Possible destination(s) for evicted BO
87 *
88 * Fill in placement data when ttm_bo_evict() is called
89 */
90static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
91				struct ttm_placement *placement)
92{
93	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
94	struct amdgpu_bo *abo;
95	static const struct ttm_place placements = {
96		.fpfn = 0,
97		.lpfn = 0,
98		.mem_type = TTM_PL_SYSTEM,
99		.flags = 0
100	};
101
102	/* Don't handle scatter gather BOs */
103	if (bo->type == ttm_bo_type_sg) {
104		placement->num_placement = 0;
105		placement->num_busy_placement = 0;
106		return;
107	}
108
109	/* Object isn't an AMDGPU object so ignore */
110	if (!amdgpu_bo_is_amdgpu_bo(bo)) {
111		placement->placement = &placements;
112		placement->busy_placement = &placements;
113		placement->num_placement = 1;
114		placement->num_busy_placement = 1;
115		return;
116	}
117
118	abo = ttm_to_amdgpu_bo(bo);
119	if (abo->flags & AMDGPU_GEM_CREATE_DISCARDABLE) {
120		placement->num_placement = 0;
121		placement->num_busy_placement = 0;
122		return;
123	}
124
125	switch (bo->resource->mem_type) {
126	case AMDGPU_PL_GDS:
127	case AMDGPU_PL_GWS:
128	case AMDGPU_PL_OA:
129	case AMDGPU_PL_DOORBELL:
130		placement->num_placement = 0;
131		placement->num_busy_placement = 0;
132		return;
133
134	case TTM_PL_VRAM:
135		if (!adev->mman.buffer_funcs_enabled) {
136			/* Move to system memory */
137			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
138		} else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
139			   !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) &&
140			   amdgpu_res_cpu_visible(adev, bo->resource)) {
141
142			/* Try evicting to the CPU inaccessible part of VRAM
143			 * first, but only set GTT as busy placement, so this
144			 * BO will be evicted to GTT rather than causing other
145			 * BOs to be evicted from VRAM
146			 */
147			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM |
148							AMDGPU_GEM_DOMAIN_GTT |
149							AMDGPU_GEM_DOMAIN_CPU);
150			abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT;
151			abo->placements[0].lpfn = 0;
152			abo->placement.busy_placement = &abo->placements[1];
153			abo->placement.num_busy_placement = 1;
154		} else {
155			/* Move to GTT memory */
156			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT |
157							AMDGPU_GEM_DOMAIN_CPU);
158		}
159		break;
160	case TTM_PL_TT:
161	case AMDGPU_PL_PREEMPT:
162	default:
163		amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
164		break;
165	}
166	*placement = abo->placement;
167}
168
169/**
170 * amdgpu_ttm_map_buffer - Map memory into the GART windows
171 * @bo: buffer object to map
172 * @mem: memory object to map
173 * @mm_cur: range to map
174 * @window: which GART window to use
175 * @ring: DMA ring to use for the copy
176 * @tmz: if we should setup a TMZ enabled mapping
177 * @size: in number of bytes to map, out number of bytes mapped
178 * @addr: resulting address inside the MC address space
179 *
180 * Setup one of the GART windows to access a specific piece of memory or return
181 * the physical address for local memory.
182 */
183static int amdgpu_ttm_map_buffer(struct ttm_buffer_object *bo,
184				 struct ttm_resource *mem,
185				 struct amdgpu_res_cursor *mm_cur,
186				 unsigned int window, struct amdgpu_ring *ring,
187				 bool tmz, uint64_t *size, uint64_t *addr)
188{
189	struct amdgpu_device *adev = ring->adev;
190	unsigned int offset, num_pages, num_dw, num_bytes;
191	uint64_t src_addr, dst_addr;
192	struct amdgpu_job *job;
193	void *cpu_addr;
194	uint64_t flags;
195	unsigned int i;
196	int r;
197
198	BUG_ON(adev->mman.buffer_funcs->copy_max_bytes <
199	       AMDGPU_GTT_MAX_TRANSFER_SIZE * 8);
200
201	if (WARN_ON(mem->mem_type == AMDGPU_PL_PREEMPT))
202		return -EINVAL;
203
204	/* Map only what can't be accessed directly */
205	if (!tmz && mem->start != AMDGPU_BO_INVALID_OFFSET) {
206		*addr = amdgpu_ttm_domain_start(adev, mem->mem_type) +
207			mm_cur->start;
208		return 0;
209	}
210
211
212	/*
213	 * If start begins at an offset inside the page, then adjust the size
214	 * and addr accordingly
215	 */
216	offset = mm_cur->start & ~LINUX_PAGE_MASK;
217
218	num_pages = PFN_UP(*size + offset);
219	num_pages = min_t(uint32_t, num_pages, AMDGPU_GTT_MAX_TRANSFER_SIZE);
220
221	*size = min(*size, (uint64_t)num_pages * PAGE_SIZE - offset);
222
223	*addr = adev->gmc.gart_start;
224	*addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE *
225		AMDGPU_GPU_PAGE_SIZE;
226	*addr += offset;
227
228	num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
229	num_bytes = num_pages * 8 * AMDGPU_GPU_PAGES_IN_CPU_PAGE;
230
231	r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr,
232				     AMDGPU_FENCE_OWNER_UNDEFINED,
233				     num_dw * 4 + num_bytes,
234				     AMDGPU_IB_POOL_DELAYED, &job);
235	if (r)
236		return r;
237
238	src_addr = num_dw * 4;
239	src_addr += job->ibs[0].gpu_addr;
240
241	dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo);
242	dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8;
243	amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
244				dst_addr, num_bytes, false);
245
246	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
247	WARN_ON(job->ibs[0].length_dw > num_dw);
248
249	flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, mem);
250	if (tmz)
251		flags |= AMDGPU_PTE_TMZ;
252
253	cpu_addr = &job->ibs[0].ptr[num_dw];
254
255	if (mem->mem_type == TTM_PL_TT) {
256		dma_addr_t *dma_addr;
257
258		dma_addr = &bo->ttm->dma_address[mm_cur->start >> PAGE_SHIFT];
259		amdgpu_gart_map(adev, 0, num_pages, dma_addr, flags, cpu_addr);
260	} else {
261		dma_addr_t dma_address;
262
263		dma_address = mm_cur->start;
264		dma_address += adev->vm_manager.vram_base_offset;
265
266		for (i = 0; i < num_pages; ++i) {
267			amdgpu_gart_map(adev, i << PAGE_SHIFT, 1, &dma_address,
268					flags, cpu_addr);
269			dma_address += PAGE_SIZE;
270		}
271	}
272
273	dma_fence_put(amdgpu_job_submit(job));
274	return 0;
275}
276
277/**
278 * amdgpu_ttm_copy_mem_to_mem - Helper function for copy
279 * @adev: amdgpu device
280 * @src: buffer/address where to read from
281 * @dst: buffer/address where to write to
282 * @size: number of bytes to copy
283 * @tmz: if a secure copy should be used
284 * @resv: resv object to sync to
285 * @f: Returns the last fence if multiple jobs are submitted.
286 *
287 * The function copies @size bytes from {src->mem + src->offset} to
288 * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a
289 * move and different for a BO to BO copy.
290 *
291 */
292int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev,
293			       const struct amdgpu_copy_mem *src,
294			       const struct amdgpu_copy_mem *dst,
295			       uint64_t size, bool tmz,
296			       struct dma_resv *resv,
297			       struct dma_fence **f)
298{
299	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
300	struct amdgpu_res_cursor src_mm, dst_mm;
301	struct dma_fence *fence = NULL;
302	int r = 0;
303
304	if (!adev->mman.buffer_funcs_enabled) {
305		DRM_ERROR("Trying to move memory with ring turned off.\n");
306		return -EINVAL;
307	}
308
309	amdgpu_res_first(src->mem, src->offset, size, &src_mm);
310	amdgpu_res_first(dst->mem, dst->offset, size, &dst_mm);
311
312	mutex_lock(&adev->mman.gtt_window_lock);
313	while (src_mm.remaining) {
314		uint64_t from, to, cur_size;
315		struct dma_fence *next;
316
317		/* Never copy more than 256MiB at once to avoid a timeout */
318		cur_size = min3(src_mm.size, dst_mm.size, 256ULL << 20);
319
320		/* Map src to window 0 and dst to window 1. */
321		r = amdgpu_ttm_map_buffer(src->bo, src->mem, &src_mm,
322					  0, ring, tmz, &cur_size, &from);
323		if (r)
324			goto error;
325
326		r = amdgpu_ttm_map_buffer(dst->bo, dst->mem, &dst_mm,
327					  1, ring, tmz, &cur_size, &to);
328		if (r)
329			goto error;
330
331		r = amdgpu_copy_buffer(ring, from, to, cur_size,
332				       resv, &next, false, true, tmz);
333		if (r)
334			goto error;
335
336		dma_fence_put(fence);
337		fence = next;
338
339		amdgpu_res_next(&src_mm, cur_size);
340		amdgpu_res_next(&dst_mm, cur_size);
341	}
342error:
343	mutex_unlock(&adev->mman.gtt_window_lock);
344	if (f)
345		*f = dma_fence_get(fence);
346	dma_fence_put(fence);
347	return r;
348}
349
350/*
351 * amdgpu_move_blit - Copy an entire buffer to another buffer
352 *
353 * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to
354 * help move buffers to and from VRAM.
355 */
356static int amdgpu_move_blit(struct ttm_buffer_object *bo,
357			    bool evict,
358			    struct ttm_resource *new_mem,
359			    struct ttm_resource *old_mem)
360{
361	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
362	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
363	struct amdgpu_copy_mem src, dst;
364	struct dma_fence *fence = NULL;
365	int r;
366
367	src.bo = bo;
368	dst.bo = bo;
369	src.mem = old_mem;
370	dst.mem = new_mem;
371	src.offset = 0;
372	dst.offset = 0;
373
374	r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst,
375				       new_mem->size,
376				       amdgpu_bo_encrypted(abo),
377				       bo->base.resv, &fence);
378	if (r)
379		goto error;
380
381	/* clear the space being freed */
382	if (old_mem->mem_type == TTM_PL_VRAM &&
383	    (abo->flags & AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) {
384		struct dma_fence *wipe_fence = NULL;
385
386		r = amdgpu_fill_buffer(abo, AMDGPU_POISON, NULL, &wipe_fence,
387					false);
388		if (r) {
389			goto error;
390		} else if (wipe_fence) {
391			dma_fence_put(fence);
392			fence = wipe_fence;
393		}
394	}
395
396	/* Always block for VM page tables before committing the new location */
397	if (bo->type == ttm_bo_type_kernel)
398		r = ttm_bo_move_accel_cleanup(bo, fence, true, false, new_mem);
399	else
400		r = ttm_bo_move_accel_cleanup(bo, fence, evict, true, new_mem);
401	dma_fence_put(fence);
402	return r;
403
404error:
405	if (fence)
406		dma_fence_wait(fence, false);
407	dma_fence_put(fence);
408	return r;
409}
410
411/**
412 * amdgpu_res_cpu_visible - Check that resource can be accessed by CPU
413 * @adev: amdgpu device
414 * @res: the resource to check
415 *
416 * Returns: true if the full resource is CPU visible, false otherwise.
417 */
418bool amdgpu_res_cpu_visible(struct amdgpu_device *adev,
419			    struct ttm_resource *res)
420{
421	struct amdgpu_res_cursor cursor;
422
423	if (!res)
424		return false;
425
426	if (res->mem_type == TTM_PL_SYSTEM || res->mem_type == TTM_PL_TT ||
427	    res->mem_type == AMDGPU_PL_PREEMPT || res->mem_type == AMDGPU_PL_DOORBELL)
428		return true;
429
430	if (res->mem_type != TTM_PL_VRAM)
431		return false;
432
433	amdgpu_res_first(res, 0, res->size, &cursor);
434	while (cursor.remaining) {
435		if ((cursor.start + cursor.size) > adev->gmc.visible_vram_size)
436			return false;
437		amdgpu_res_next(&cursor, cursor.size);
438	}
439
440	return true;
441}
442
443/*
444 * amdgpu_res_copyable - Check that memory can be accessed by ttm_bo_move_memcpy
445 *
446 * Called by amdgpu_bo_move()
447 */
448static bool amdgpu_res_copyable(struct amdgpu_device *adev,
449				struct ttm_resource *mem)
450{
451	if (!amdgpu_res_cpu_visible(adev, mem))
452		return false;
453
454	/* ttm_resource_ioremap only supports contiguous memory */
455	if (mem->mem_type == TTM_PL_VRAM &&
456	    !(mem->placement & TTM_PL_FLAG_CONTIGUOUS))
457		return false;
458
459	return true;
460}
461
462/*
463 * amdgpu_bo_move - Move a buffer object to a new memory location
464 *
465 * Called by ttm_bo_handle_move_mem()
466 */
467static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict,
468			  struct ttm_operation_ctx *ctx,
469			  struct ttm_resource *new_mem,
470			  struct ttm_place *hop)
471{
472	struct amdgpu_device *adev;
473	struct amdgpu_bo *abo;
474	struct ttm_resource *old_mem = bo->resource;
475	int r;
476
477	if (new_mem->mem_type == TTM_PL_TT ||
478	    new_mem->mem_type == AMDGPU_PL_PREEMPT) {
479		r = amdgpu_ttm_backend_bind(bo->bdev, bo->ttm, new_mem);
480		if (r)
481			return r;
482	}
483
484	abo = ttm_to_amdgpu_bo(bo);
485	adev = amdgpu_ttm_adev(bo->bdev);
486
487	if (!old_mem || (old_mem->mem_type == TTM_PL_SYSTEM &&
488			 bo->ttm == NULL)) {
489		amdgpu_bo_move_notify(bo, evict, new_mem);
490		ttm_bo_move_null(bo, new_mem);
491		return 0;
492	}
493	if (old_mem->mem_type == TTM_PL_SYSTEM &&
494	    (new_mem->mem_type == TTM_PL_TT ||
495	     new_mem->mem_type == AMDGPU_PL_PREEMPT)) {
496		amdgpu_bo_move_notify(bo, evict, new_mem);
497		ttm_bo_move_null(bo, new_mem);
498		return 0;
499	}
500	if ((old_mem->mem_type == TTM_PL_TT ||
501	     old_mem->mem_type == AMDGPU_PL_PREEMPT) &&
502	    new_mem->mem_type == TTM_PL_SYSTEM) {
503		r = ttm_bo_wait_ctx(bo, ctx);
504		if (r)
505			return r;
506
507		amdgpu_ttm_backend_unbind(bo->bdev, bo->ttm);
508		amdgpu_bo_move_notify(bo, evict, new_mem);
509		ttm_resource_free(bo, &bo->resource);
510		ttm_bo_assign_mem(bo, new_mem);
511		return 0;
512	}
513
514	if (old_mem->mem_type == AMDGPU_PL_GDS ||
515	    old_mem->mem_type == AMDGPU_PL_GWS ||
516	    old_mem->mem_type == AMDGPU_PL_OA ||
517	    old_mem->mem_type == AMDGPU_PL_DOORBELL ||
518	    new_mem->mem_type == AMDGPU_PL_GDS ||
519	    new_mem->mem_type == AMDGPU_PL_GWS ||
520	    new_mem->mem_type == AMDGPU_PL_OA ||
521	    new_mem->mem_type == AMDGPU_PL_DOORBELL) {
522		/* Nothing to save here */
523		amdgpu_bo_move_notify(bo, evict, new_mem);
524		ttm_bo_move_null(bo, new_mem);
525		return 0;
526	}
527
528	if (bo->type == ttm_bo_type_device &&
529	    new_mem->mem_type == TTM_PL_VRAM &&
530	    old_mem->mem_type != TTM_PL_VRAM) {
531		/* amdgpu_bo_fault_reserve_notify will re-set this if the CPU
532		 * accesses the BO after it's moved.
533		 */
534		abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
535	}
536
537	if (adev->mman.buffer_funcs_enabled &&
538	    ((old_mem->mem_type == TTM_PL_SYSTEM &&
539	      new_mem->mem_type == TTM_PL_VRAM) ||
540	     (old_mem->mem_type == TTM_PL_VRAM &&
541	      new_mem->mem_type == TTM_PL_SYSTEM))) {
542		hop->fpfn = 0;
543		hop->lpfn = 0;
544		hop->mem_type = TTM_PL_TT;
545		hop->flags = TTM_PL_FLAG_TEMPORARY;
546		return -EMULTIHOP;
547	}
548
549	amdgpu_bo_move_notify(bo, evict, new_mem);
550	if (adev->mman.buffer_funcs_enabled)
551		r = amdgpu_move_blit(bo, evict, new_mem, old_mem);
552	else
553		r = -ENODEV;
554
555	if (r) {
556		/* Check that all memory is CPU accessible */
557		if (!amdgpu_res_copyable(adev, old_mem) ||
558		    !amdgpu_res_copyable(adev, new_mem)) {
559			pr_err("Move buffer fallback to memcpy unavailable\n");
560			return r;
561		}
562
563		r = ttm_bo_move_memcpy(bo, ctx, new_mem);
564		if (r)
565			return r;
566	}
567
568	/* update statistics after the move */
569	if (evict)
570		atomic64_inc(&adev->num_evictions);
571	atomic64_add(bo->base.size, &adev->num_bytes_moved);
572	return 0;
573}
574
575/*
576 * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault
577 *
578 * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault()
579 */
580static int amdgpu_ttm_io_mem_reserve(struct ttm_device *bdev,
581				     struct ttm_resource *mem)
582{
583	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
584
585	switch (mem->mem_type) {
586	case TTM_PL_SYSTEM:
587		/* system memory */
588		return 0;
589	case TTM_PL_TT:
590	case AMDGPU_PL_PREEMPT:
591		break;
592	case TTM_PL_VRAM:
593		mem->bus.offset = mem->start << PAGE_SHIFT;
594
595		if (adev->mman.aper_base_kaddr &&
596		    mem->placement & TTM_PL_FLAG_CONTIGUOUS)
597			mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr +
598					mem->bus.offset;
599
600		mem->bus.offset += adev->gmc.aper_base;
601		mem->bus.is_iomem = true;
602		break;
603	case AMDGPU_PL_DOORBELL:
604		mem->bus.offset = mem->start << PAGE_SHIFT;
605		mem->bus.offset += adev->doorbell.base;
606		mem->bus.is_iomem = true;
607		mem->bus.caching = ttm_uncached;
608		break;
609	default:
610		return -EINVAL;
611	}
612	return 0;
613}
614
615static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
616					   unsigned long page_offset)
617{
618	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
619	struct amdgpu_res_cursor cursor;
620
621	amdgpu_res_first(bo->resource, (u64)page_offset << PAGE_SHIFT, 0,
622			 &cursor);
623
624	if (bo->resource->mem_type == AMDGPU_PL_DOORBELL)
625		return ((uint64_t)(adev->doorbell.base + cursor.start)) >> PAGE_SHIFT;
626
627	return (adev->gmc.aper_base + cursor.start) >> PAGE_SHIFT;
628}
629
630/**
631 * amdgpu_ttm_domain_start - Returns GPU start address
632 * @adev: amdgpu device object
633 * @type: type of the memory
634 *
635 * Returns:
636 * GPU start address of a memory domain
637 */
638
639uint64_t amdgpu_ttm_domain_start(struct amdgpu_device *adev, uint32_t type)
640{
641	switch (type) {
642	case TTM_PL_TT:
643		return adev->gmc.gart_start;
644	case TTM_PL_VRAM:
645		return adev->gmc.vram_start;
646	}
647
648	return 0;
649}
650
651/*
652 * TTM backend functions.
653 */
654struct amdgpu_ttm_tt {
655	struct ttm_tt	ttm;
656	struct drm_gem_object	*gobj;
657	u64			offset;
658	uint64_t		userptr;
659	struct task_struct	*usertask;
660	uint32_t		userflags;
661	bool			bound;
662	int32_t			pool_id;
663};
664
665#define ttm_to_amdgpu_ttm_tt(ptr)	container_of(ptr, struct amdgpu_ttm_tt, ttm)
666
667#ifdef CONFIG_DRM_AMDGPU_USERPTR
668/*
669 * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user
670 * memory and start HMM tracking CPU page table update
671 *
672 * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only
673 * once afterwards to stop HMM tracking
674 */
675int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct vm_page **pages,
676				 struct hmm_range **range)
677{
678	struct ttm_tt *ttm = bo->tbo.ttm;
679	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
680	unsigned long start = gtt->userptr;
681	struct vm_area_struct *vma;
682	struct mm_struct *mm;
683	bool readonly;
684	int r = 0;
685
686	/* Make sure get_user_pages_done() can cleanup gracefully */
687	*range = NULL;
688
689	mm = bo->notifier.mm;
690	if (unlikely(!mm)) {
691		DRM_DEBUG_DRIVER("BO is not registered?\n");
692		return -EFAULT;
693	}
694
695	if (!mmget_not_zero(mm)) /* Happens during process shutdown */
696		return -ESRCH;
697
698	mmap_read_lock(mm);
699	vma = vma_lookup(mm, start);
700	if (unlikely(!vma)) {
701		r = -EFAULT;
702		goto out_unlock;
703	}
704	if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) &&
705		vma->vm_file)) {
706		r = -EPERM;
707		goto out_unlock;
708	}
709
710	readonly = amdgpu_ttm_tt_is_readonly(ttm);
711	r = amdgpu_hmm_range_get_pages(&bo->notifier, start, ttm->num_pages,
712				       readonly, NULL, pages, range);
713out_unlock:
714	mmap_read_unlock(mm);
715	if (r)
716		pr_debug("failed %d to get user pages 0x%lx\n", r, start);
717
718	mmput(mm);
719
720	return r;
721}
722
723/* amdgpu_ttm_tt_discard_user_pages - Discard range and pfn array allocations
724 */
725void amdgpu_ttm_tt_discard_user_pages(struct ttm_tt *ttm,
726				      struct hmm_range *range)
727{
728	struct amdgpu_ttm_tt *gtt = (void *)ttm;
729
730	if (gtt && gtt->userptr && range)
731		amdgpu_hmm_range_get_pages_done(range);
732}
733
734/*
735 * amdgpu_ttm_tt_get_user_pages_done - stop HMM track the CPU page table change
736 * Check if the pages backing this ttm range have been invalidated
737 *
738 * Returns: true if pages are still valid
739 */
740bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm,
741				       struct hmm_range *range)
742{
743	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
744
745	if (!gtt || !gtt->userptr || !range)
746		return false;
747
748	DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%x\n",
749		gtt->userptr, ttm->num_pages);
750
751	WARN_ONCE(!range->hmm_pfns, "No user pages to check\n");
752
753	return !amdgpu_hmm_range_get_pages_done(range);
754}
755#endif
756
757/*
758 * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary.
759 *
760 * Called by amdgpu_cs_list_validate(). This creates the page list
761 * that backs user memory and will ultimately be mapped into the device
762 * address space.
763 */
764void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct vm_page **pages)
765{
766	unsigned long i;
767
768	for (i = 0; i < ttm->num_pages; ++i)
769		ttm->pages[i] = pages ? pages[i] : NULL;
770}
771
772/*
773 * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages
774 *
775 * Called by amdgpu_ttm_backend_bind()
776 **/
777static int amdgpu_ttm_tt_pin_userptr(struct ttm_device *bdev,
778				     struct ttm_tt *ttm)
779{
780	STUB();
781	return -ENOSYS;
782#ifdef notyet
783	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
784	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
785	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
786	enum dma_data_direction direction = write ?
787		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
788	int r;
789
790	/* Allocate an SG array and squash pages into it */
791	r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0,
792				      (u64)ttm->num_pages << PAGE_SHIFT,
793				      GFP_KERNEL);
794	if (r)
795		goto release_sg;
796
797	/* Map SG to device */
798	r = dma_map_sgtable(adev->dev, ttm->sg, direction, 0);
799	if (r)
800		goto release_sg;
801
802	/* convert SG to linear array of pages and dma addresses */
803	drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
804				       ttm->num_pages);
805
806	return 0;
807
808release_sg:
809	kfree(ttm->sg);
810	ttm->sg = NULL;
811	return r;
812#endif
813}
814
815/*
816 * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages
817 */
818static void amdgpu_ttm_tt_unpin_userptr(struct ttm_device *bdev,
819					struct ttm_tt *ttm)
820{
821	STUB();
822#ifdef notyet
823	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
824	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
825	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
826	enum dma_data_direction direction = write ?
827		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
828
829	/* double check that we don't free the table twice */
830	if (!ttm->sg || !ttm->sg->sgl)
831		return;
832
833	/* unmap the pages mapped to the device */
834	dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0);
835	sg_free_table(ttm->sg);
836#endif
837}
838
839/*
840 * total_pages is constructed as MQD0+CtrlStack0 + MQD1+CtrlStack1 + ...
841 * MQDn+CtrlStackn where n is the number of XCCs per partition.
842 * pages_per_xcc is the size of one MQD+CtrlStack. The first page is MQD
843 * and uses memory type default, UC. The rest of pages_per_xcc are
844 * Ctrl stack and modify their memory type to NC.
845 */
846static void amdgpu_ttm_gart_bind_gfx9_mqd(struct amdgpu_device *adev,
847				struct ttm_tt *ttm, uint64_t flags)
848{
849	struct amdgpu_ttm_tt *gtt = (void *)ttm;
850	uint64_t total_pages = ttm->num_pages;
851	int num_xcc = max(1U, adev->gfx.num_xcc_per_xcp);
852	uint64_t page_idx, pages_per_xcc;
853	int i;
854	uint64_t ctrl_flags = (flags & ~AMDGPU_PTE_MTYPE_VG10_MASK) |
855			AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC);
856
857	pages_per_xcc = total_pages;
858	do_div(pages_per_xcc, num_xcc);
859
860	for (i = 0, page_idx = 0; i < num_xcc; i++, page_idx += pages_per_xcc) {
861		/* MQD page: use default flags */
862		amdgpu_gart_bind(adev,
863				gtt->offset + (page_idx << PAGE_SHIFT),
864				1, &gtt->ttm.dma_address[page_idx], flags);
865		/*
866		 * Ctrl pages - modify the memory type to NC (ctrl_flags) from
867		 * the second page of the BO onward.
868		 */
869		amdgpu_gart_bind(adev,
870				gtt->offset + ((page_idx + 1) << PAGE_SHIFT),
871				pages_per_xcc - 1,
872				&gtt->ttm.dma_address[page_idx + 1],
873				ctrl_flags);
874	}
875}
876
877static void amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
878				 struct ttm_buffer_object *tbo,
879				 uint64_t flags)
880{
881	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo);
882	struct ttm_tt *ttm = tbo->ttm;
883	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
884
885	if (amdgpu_bo_encrypted(abo))
886		flags |= AMDGPU_PTE_TMZ;
887
888	if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) {
889		amdgpu_ttm_gart_bind_gfx9_mqd(adev, ttm, flags);
890	} else {
891		amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
892				 gtt->ttm.dma_address, flags);
893	}
894	gtt->bound = true;
895}
896
897/*
898 * amdgpu_ttm_backend_bind - Bind GTT memory
899 *
900 * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem().
901 * This handles binding GTT memory to the device address space.
902 */
903static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
904				   struct ttm_tt *ttm,
905				   struct ttm_resource *bo_mem)
906{
907	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
908	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
909	uint64_t flags;
910	int r;
911
912	if (!bo_mem)
913		return -EINVAL;
914
915	if (gtt->bound)
916		return 0;
917
918	if (gtt->userptr) {
919		r = amdgpu_ttm_tt_pin_userptr(bdev, ttm);
920		if (r) {
921			DRM_ERROR("failed to pin userptr\n");
922			return r;
923		}
924	} else if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) {
925		if (!ttm->sg) {
926			struct dma_buf_attachment *attach;
927			struct sg_table *sgt;
928
929			attach = gtt->gobj->import_attach;
930#ifdef notyet
931			sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL);
932			if (IS_ERR(sgt))
933				return PTR_ERR(sgt);
934#else
935			STUB();
936			return -ENOSYS;
937#endif
938
939			ttm->sg = sgt;
940		}
941
942		drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
943					       ttm->num_pages);
944	}
945
946	if (!ttm->num_pages) {
947		WARN(1, "nothing to bind %u pages for mreg %p back %p!\n",
948		     ttm->num_pages, bo_mem, ttm);
949	}
950
951	if (bo_mem->mem_type != TTM_PL_TT ||
952	    !amdgpu_gtt_mgr_has_gart_addr(bo_mem)) {
953		gtt->offset = AMDGPU_BO_INVALID_OFFSET;
954		return 0;
955	}
956
957	/* compute PTE flags relevant to this BO memory */
958	flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem);
959
960	/* bind pages into GART page tables */
961	gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
962	amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
963			 gtt->ttm.dma_address, flags);
964	gtt->bound = true;
965	return 0;
966}
967
968/*
969 * amdgpu_ttm_alloc_gart - Make sure buffer object is accessible either
970 * through AGP or GART aperture.
971 *
972 * If bo is accessible through AGP aperture, then use AGP aperture
973 * to access bo; otherwise allocate logical space in GART aperture
974 * and map bo to GART aperture.
975 */
976int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo)
977{
978	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
979	struct ttm_operation_ctx ctx = { false, false };
980	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(bo->ttm);
981	struct ttm_placement placement;
982	struct ttm_place placements;
983	struct ttm_resource *tmp;
984	uint64_t addr, flags;
985	int r;
986
987	if (bo->resource->start != AMDGPU_BO_INVALID_OFFSET)
988		return 0;
989
990	addr = amdgpu_gmc_agp_addr(bo);
991	if (addr != AMDGPU_BO_INVALID_OFFSET) {
992		bo->resource->start = addr >> PAGE_SHIFT;
993		return 0;
994	}
995
996	/* allocate GART space */
997	placement.num_placement = 1;
998	placement.placement = &placements;
999	placement.num_busy_placement = 1;
1000	placement.busy_placement = &placements;
1001	placements.fpfn = 0;
1002	placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT;
1003	placements.mem_type = TTM_PL_TT;
1004	placements.flags = bo->resource->placement;
1005
1006	r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx);
1007	if (unlikely(r))
1008		return r;
1009
1010	/* compute PTE flags for this buffer object */
1011	flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, tmp);
1012
1013	/* Bind pages */
1014	gtt->offset = (u64)tmp->start << PAGE_SHIFT;
1015	amdgpu_ttm_gart_bind(adev, bo, flags);
1016	amdgpu_gart_invalidate_tlb(adev);
1017	ttm_resource_free(bo, &bo->resource);
1018	ttm_bo_assign_mem(bo, tmp);
1019
1020	return 0;
1021}
1022
1023/*
1024 * amdgpu_ttm_recover_gart - Rebind GTT pages
1025 *
1026 * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to
1027 * rebind GTT pages during a GPU reset.
1028 */
1029void amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo)
1030{
1031	struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev);
1032	uint64_t flags;
1033
1034	if (!tbo->ttm)
1035		return;
1036
1037	flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, tbo->resource);
1038	amdgpu_ttm_gart_bind(adev, tbo, flags);
1039}
1040
1041/*
1042 * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages
1043 *
1044 * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and
1045 * ttm_tt_destroy().
1046 */
1047static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
1048				      struct ttm_tt *ttm)
1049{
1050	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1051	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1052
1053	/* if the pages have userptr pinning then clear that first */
1054	if (gtt->userptr) {
1055		amdgpu_ttm_tt_unpin_userptr(bdev, ttm);
1056	} else if (ttm->sg && gtt->gobj->import_attach) {
1057		struct dma_buf_attachment *attach;
1058
1059		attach = gtt->gobj->import_attach;
1060#ifdef notyet
1061		dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL);
1062#else
1063		STUB();
1064#endif
1065		ttm->sg = NULL;
1066	}
1067
1068	if (!gtt->bound)
1069		return;
1070
1071	if (gtt->offset == AMDGPU_BO_INVALID_OFFSET)
1072		return;
1073
1074	/* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
1075	amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages);
1076	gtt->bound = false;
1077}
1078
1079static void amdgpu_ttm_backend_destroy(struct ttm_device *bdev,
1080				       struct ttm_tt *ttm)
1081{
1082	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1083
1084#ifdef notyet
1085	if (gtt->usertask)
1086		put_task_struct(gtt->usertask);
1087#endif
1088
1089	ttm_tt_fini(&gtt->ttm);
1090	kfree(gtt);
1091}
1092
1093/**
1094 * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO
1095 *
1096 * @bo: The buffer object to create a GTT ttm_tt object around
1097 * @page_flags: Page flags to be added to the ttm_tt object
1098 *
1099 * Called by ttm_tt_create().
1100 */
1101static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo,
1102					   uint32_t page_flags)
1103{
1104	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
1105	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1106	struct amdgpu_ttm_tt *gtt;
1107	enum ttm_caching caching;
1108
1109	gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
1110	if (!gtt)
1111		return NULL;
1112
1113	gtt->gobj = &bo->base;
1114	if (adev->gmc.mem_partitions && abo->xcp_id >= 0)
1115		gtt->pool_id = KFD_XCP_MEM_ID(adev, abo->xcp_id);
1116	else
1117		gtt->pool_id = abo->xcp_id;
1118
1119	if (abo->flags & AMDGPU_GEM_CREATE_CPU_GTT_USWC)
1120		caching = ttm_write_combined;
1121	else
1122		caching = ttm_cached;
1123
1124	/* allocate space for the uninitialized page entries */
1125	if (ttm_sg_tt_init(&gtt->ttm, bo, page_flags, caching)) {
1126		kfree(gtt);
1127		return NULL;
1128	}
1129	return &gtt->ttm;
1130}
1131
1132/*
1133 * amdgpu_ttm_tt_populate - Map GTT pages visible to the device
1134 *
1135 * Map the pages of a ttm_tt object to an address space visible
1136 * to the underlying device.
1137 */
1138static int amdgpu_ttm_tt_populate(struct ttm_device *bdev,
1139				  struct ttm_tt *ttm,
1140				  struct ttm_operation_ctx *ctx)
1141{
1142	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1143	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1144	struct ttm_pool *pool;
1145	pgoff_t i;
1146	int ret;
1147
1148	/* user pages are bound by amdgpu_ttm_tt_pin_userptr() */
1149	if (gtt->userptr) {
1150		ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
1151		if (!ttm->sg)
1152			return -ENOMEM;
1153		return 0;
1154	}
1155
1156	if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
1157		return 0;
1158
1159	if (adev->mman.ttm_pools && gtt->pool_id >= 0)
1160		pool = &adev->mman.ttm_pools[gtt->pool_id];
1161	else
1162		pool = &adev->mman.bdev.pool;
1163	ret = ttm_pool_alloc(pool, ttm, ctx);
1164	if (ret)
1165		return ret;
1166
1167#ifdef notyet
1168	for (i = 0; i < ttm->num_pages; ++i)
1169		ttm->pages[i]->mapping = bdev->dev_mapping;
1170#endif
1171
1172	return 0;
1173}
1174
1175/*
1176 * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays
1177 *
1178 * Unmaps pages of a ttm_tt object from the device address space and
1179 * unpopulates the page array backing it.
1180 */
1181static void amdgpu_ttm_tt_unpopulate(struct ttm_device *bdev,
1182				     struct ttm_tt *ttm)
1183{
1184	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1185	struct amdgpu_device *adev;
1186	struct ttm_pool *pool;
1187	pgoff_t i;
1188	struct vm_page *page;
1189
1190	amdgpu_ttm_backend_unbind(bdev, ttm);
1191
1192	if (gtt->userptr) {
1193		amdgpu_ttm_tt_set_user_pages(ttm, NULL);
1194		kfree(ttm->sg);
1195		ttm->sg = NULL;
1196		return;
1197	}
1198
1199	if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
1200		return;
1201
1202	for (i = 0; i < ttm->num_pages; ++i) {
1203		page = ttm->pages[i];
1204		if (unlikely(page == NULL))
1205			continue;
1206		pmap_page_protect(page, PROT_NONE);
1207	}
1208
1209	adev = amdgpu_ttm_adev(bdev);
1210
1211	if (adev->mman.ttm_pools && gtt->pool_id >= 0)
1212		pool = &adev->mman.ttm_pools[gtt->pool_id];
1213	else
1214		pool = &adev->mman.bdev.pool;
1215
1216	return ttm_pool_free(pool, ttm);
1217}
1218
1219/**
1220 * amdgpu_ttm_tt_get_userptr - Return the userptr GTT ttm_tt for the current
1221 * task
1222 *
1223 * @tbo: The ttm_buffer_object that contains the userptr
1224 * @user_addr:  The returned value
1225 */
1226int amdgpu_ttm_tt_get_userptr(const struct ttm_buffer_object *tbo,
1227			      uint64_t *user_addr)
1228{
1229	struct amdgpu_ttm_tt *gtt;
1230
1231	if (!tbo->ttm)
1232		return -EINVAL;
1233
1234	gtt = (void *)tbo->ttm;
1235	*user_addr = gtt->userptr;
1236	return 0;
1237}
1238
1239/**
1240 * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current
1241 * task
1242 *
1243 * @bo: The ttm_buffer_object to bind this userptr to
1244 * @addr:  The address in the current tasks VM space to use
1245 * @flags: Requirements of userptr object.
1246 *
1247 * Called by amdgpu_gem_userptr_ioctl() and kfd_ioctl_alloc_memory_of_gpu() to
1248 * bind userptr pages to current task and by kfd_ioctl_acquire_vm() to
1249 * initialize GPU VM for a KFD process.
1250 */
1251int amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object *bo,
1252			      uint64_t addr, uint32_t flags)
1253{
1254	struct amdgpu_ttm_tt *gtt;
1255
1256	if (!bo->ttm) {
1257		/* TODO: We want a separate TTM object type for userptrs */
1258		bo->ttm = amdgpu_ttm_tt_create(bo, 0);
1259		if (bo->ttm == NULL)
1260			return -ENOMEM;
1261	}
1262
1263	/* Set TTM_TT_FLAG_EXTERNAL before populate but after create. */
1264	bo->ttm->page_flags |= TTM_TT_FLAG_EXTERNAL;
1265
1266	gtt = ttm_to_amdgpu_ttm_tt(bo->ttm);
1267	gtt->userptr = addr;
1268	gtt->userflags = flags;
1269
1270#ifdef notyet
1271	if (gtt->usertask)
1272		put_task_struct(gtt->usertask);
1273	gtt->usertask = current->group_leader;
1274	get_task_struct(gtt->usertask);
1275#endif
1276
1277	return 0;
1278}
1279
1280/*
1281 * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object
1282 */
1283struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
1284{
1285	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1286
1287	if (gtt == NULL)
1288		return NULL;
1289
1290	if (gtt->usertask == NULL)
1291		return NULL;
1292
1293#ifdef notyet
1294	return gtt->usertask->mm;
1295#else
1296	STUB();
1297	return NULL;
1298#endif
1299}
1300
1301/*
1302 * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an
1303 * address range for the current task.
1304 *
1305 */
1306bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
1307				  unsigned long end, unsigned long *userptr)
1308{
1309	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1310	unsigned long size;
1311
1312	if (gtt == NULL || !gtt->userptr)
1313		return false;
1314
1315	/* Return false if no part of the ttm_tt object lies within
1316	 * the range
1317	 */
1318	size = (unsigned long)gtt->ttm.num_pages * PAGE_SIZE;
1319	if (gtt->userptr > end || gtt->userptr + size <= start)
1320		return false;
1321
1322	if (userptr)
1323		*userptr = gtt->userptr;
1324	return true;
1325}
1326
1327/*
1328 * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr?
1329 */
1330bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm)
1331{
1332	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1333
1334	if (gtt == NULL || !gtt->userptr)
1335		return false;
1336
1337	return true;
1338}
1339
1340/*
1341 * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only?
1342 */
1343bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
1344{
1345	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1346
1347	if (gtt == NULL)
1348		return false;
1349
1350	return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1351}
1352
1353/**
1354 * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object
1355 *
1356 * @ttm: The ttm_tt object to compute the flags for
1357 * @mem: The memory registry backing this ttm_tt object
1358 *
1359 * Figure out the flags to use for a VM PDE (Page Directory Entry).
1360 */
1361uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_resource *mem)
1362{
1363	uint64_t flags = 0;
1364
1365	if (mem && mem->mem_type != TTM_PL_SYSTEM)
1366		flags |= AMDGPU_PTE_VALID;
1367
1368	if (mem && (mem->mem_type == TTM_PL_TT ||
1369		    mem->mem_type == AMDGPU_PL_DOORBELL ||
1370		    mem->mem_type == AMDGPU_PL_PREEMPT)) {
1371		flags |= AMDGPU_PTE_SYSTEM;
1372
1373		if (ttm->caching == ttm_cached)
1374			flags |= AMDGPU_PTE_SNOOPED;
1375	}
1376
1377	if (mem && mem->mem_type == TTM_PL_VRAM &&
1378			mem->bus.caching == ttm_cached)
1379		flags |= AMDGPU_PTE_SNOOPED;
1380
1381	return flags;
1382}
1383
1384/**
1385 * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object
1386 *
1387 * @adev: amdgpu_device pointer
1388 * @ttm: The ttm_tt object to compute the flags for
1389 * @mem: The memory registry backing this ttm_tt object
1390 *
1391 * Figure out the flags to use for a VM PTE (Page Table Entry).
1392 */
1393uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
1394				 struct ttm_resource *mem)
1395{
1396	uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem);
1397
1398	flags |= adev->gart.gart_pte_flags;
1399	flags |= AMDGPU_PTE_READABLE;
1400
1401	if (!amdgpu_ttm_tt_is_readonly(ttm))
1402		flags |= AMDGPU_PTE_WRITEABLE;
1403
1404	return flags;
1405}
1406
1407/*
1408 * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer
1409 * object.
1410 *
1411 * Return true if eviction is sensible. Called by ttm_mem_evict_first() on
1412 * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until
1413 * it can find space for a new object and by ttm_bo_force_list_clean() which is
1414 * used to clean out a memory space.
1415 */
1416static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
1417					    const struct ttm_place *place)
1418{
1419	struct dma_resv_iter resv_cursor;
1420	struct dma_fence *f;
1421
1422	if (!amdgpu_bo_is_amdgpu_bo(bo))
1423		return ttm_bo_eviction_valuable(bo, place);
1424
1425	/* Swapout? */
1426	if (bo->resource->mem_type == TTM_PL_SYSTEM)
1427		return true;
1428
1429	if (bo->type == ttm_bo_type_kernel &&
1430	    !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo)))
1431		return false;
1432
1433	/* If bo is a KFD BO, check if the bo belongs to the current process.
1434	 * If true, then return false as any KFD process needs all its BOs to
1435	 * be resident to run successfully
1436	 */
1437	dma_resv_for_each_fence(&resv_cursor, bo->base.resv,
1438				DMA_RESV_USAGE_BOOKKEEP, f) {
1439#ifdef notyet
1440		if (amdkfd_fence_check_mm(f, current->mm))
1441			return false;
1442#endif
1443	}
1444
1445	/* Preemptible BOs don't own system resources managed by the
1446	 * driver (pages, VRAM, GART space). They point to resources
1447	 * owned by someone else (e.g. pageable memory in user mode
1448	 * or a DMABuf). They are used in a preemptible context so we
1449	 * can guarantee no deadlocks and good QoS in case of MMU
1450	 * notifiers or DMABuf move notifiers from the resource owner.
1451	 */
1452	if (bo->resource->mem_type == AMDGPU_PL_PREEMPT)
1453		return false;
1454
1455	if (bo->resource->mem_type == TTM_PL_TT &&
1456	    amdgpu_bo_encrypted(ttm_to_amdgpu_bo(bo)))
1457		return false;
1458
1459	return ttm_bo_eviction_valuable(bo, place);
1460}
1461
1462static void amdgpu_ttm_vram_mm_access(struct amdgpu_device *adev, loff_t pos,
1463				      void *buf, size_t size, bool write)
1464{
1465	STUB();
1466#ifdef notyet
1467	while (size) {
1468		uint64_t aligned_pos = ALIGN_DOWN(pos, 4);
1469		uint64_t bytes = 4 - (pos & 0x3);
1470		uint32_t shift = (pos & 0x3) * 8;
1471		uint32_t mask = 0xffffffff << shift;
1472		uint32_t value = 0;
1473
1474		if (size < bytes) {
1475			mask &= 0xffffffff >> (bytes - size) * 8;
1476			bytes = size;
1477		}
1478
1479		if (mask != 0xffffffff) {
1480			amdgpu_device_mm_access(adev, aligned_pos, &value, 4, false);
1481			if (write) {
1482				value &= ~mask;
1483				value |= (*(uint32_t *)buf << shift) & mask;
1484				amdgpu_device_mm_access(adev, aligned_pos, &value, 4, true);
1485			} else {
1486				value = (value & mask) >> shift;
1487				memcpy(buf, &value, bytes);
1488			}
1489		} else {
1490			amdgpu_device_mm_access(adev, aligned_pos, buf, 4, write);
1491		}
1492
1493		pos += bytes;
1494		buf += bytes;
1495		size -= bytes;
1496	}
1497#endif
1498}
1499
1500static int amdgpu_ttm_access_memory_sdma(struct ttm_buffer_object *bo,
1501					unsigned long offset, void *buf,
1502					int len, int write)
1503{
1504	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1505	struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1506	struct amdgpu_res_cursor src_mm;
1507	struct amdgpu_job *job;
1508	struct dma_fence *fence;
1509	uint64_t src_addr, dst_addr;
1510	unsigned int num_dw;
1511	int r, idx;
1512
1513	if (len != PAGE_SIZE)
1514		return -EINVAL;
1515
1516	if (!adev->mman.sdma_access_ptr)
1517		return -EACCES;
1518
1519	if (!drm_dev_enter(adev_to_drm(adev), &idx))
1520		return -ENODEV;
1521
1522	if (write)
1523		memcpy(adev->mman.sdma_access_ptr, buf, len);
1524
1525	num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
1526	r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr,
1527				     AMDGPU_FENCE_OWNER_UNDEFINED,
1528				     num_dw * 4, AMDGPU_IB_POOL_DELAYED,
1529				     &job);
1530	if (r)
1531		goto out;
1532
1533	amdgpu_res_first(abo->tbo.resource, offset, len, &src_mm);
1534	src_addr = amdgpu_ttm_domain_start(adev, bo->resource->mem_type) +
1535		src_mm.start;
1536	dst_addr = amdgpu_bo_gpu_offset(adev->mman.sdma_access_bo);
1537	if (write)
1538		swap(src_addr, dst_addr);
1539
1540	amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, dst_addr,
1541				PAGE_SIZE, false);
1542
1543	amdgpu_ring_pad_ib(adev->mman.buffer_funcs_ring, &job->ibs[0]);
1544	WARN_ON(job->ibs[0].length_dw > num_dw);
1545
1546	fence = amdgpu_job_submit(job);
1547
1548	if (!dma_fence_wait_timeout(fence, false, adev->sdma_timeout))
1549		r = -ETIMEDOUT;
1550	dma_fence_put(fence);
1551
1552	if (!(r || write))
1553		memcpy(buf, adev->mman.sdma_access_ptr, len);
1554out:
1555	drm_dev_exit(idx);
1556	return r;
1557}
1558
1559/**
1560 * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object.
1561 *
1562 * @bo:  The buffer object to read/write
1563 * @offset:  Offset into buffer object
1564 * @buf:  Secondary buffer to write/read from
1565 * @len: Length in bytes of access
1566 * @write:  true if writing
1567 *
1568 * This is used to access VRAM that backs a buffer object via MMIO
1569 * access for debugging purposes.
1570 */
1571static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo,
1572				    unsigned long offset, void *buf, int len,
1573				    int write)
1574{
1575	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1576	struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1577	struct amdgpu_res_cursor cursor;
1578	int ret = 0;
1579
1580	if (bo->resource->mem_type != TTM_PL_VRAM)
1581		return -EIO;
1582
1583	if (amdgpu_device_has_timeouts_enabled(adev) &&
1584			!amdgpu_ttm_access_memory_sdma(bo, offset, buf, len, write))
1585		return len;
1586
1587	amdgpu_res_first(bo->resource, offset, len, &cursor);
1588	while (cursor.remaining) {
1589		size_t count, size = cursor.size;
1590		loff_t pos = cursor.start;
1591
1592		count = amdgpu_device_aper_access(adev, pos, buf, size, write);
1593		size -= count;
1594		if (size) {
1595			/* using MM to access rest vram and handle un-aligned address */
1596			pos += count;
1597			buf += count;
1598			amdgpu_ttm_vram_mm_access(adev, pos, buf, size, write);
1599		}
1600
1601		ret += cursor.size;
1602		buf += cursor.size;
1603		amdgpu_res_next(&cursor, cursor.size);
1604	}
1605
1606	return ret;
1607}
1608
1609static void
1610amdgpu_bo_delete_mem_notify(struct ttm_buffer_object *bo)
1611{
1612	amdgpu_bo_move_notify(bo, false, NULL);
1613}
1614
1615static struct ttm_device_funcs amdgpu_bo_driver = {
1616	.ttm_tt_create = &amdgpu_ttm_tt_create,
1617	.ttm_tt_populate = &amdgpu_ttm_tt_populate,
1618	.ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
1619	.ttm_tt_destroy = &amdgpu_ttm_backend_destroy,
1620	.eviction_valuable = amdgpu_ttm_bo_eviction_valuable,
1621	.evict_flags = &amdgpu_evict_flags,
1622	.move = &amdgpu_bo_move,
1623	.delete_mem_notify = &amdgpu_bo_delete_mem_notify,
1624	.release_notify = &amdgpu_bo_release_notify,
1625	.io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
1626	.io_mem_pfn = amdgpu_ttm_io_mem_pfn,
1627	.access_memory = &amdgpu_ttm_access_memory,
1628};
1629
1630/*
1631 * Firmware Reservation functions
1632 */
1633/**
1634 * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram
1635 *
1636 * @adev: amdgpu_device pointer
1637 *
1638 * free fw reserved vram if it has been reserved.
1639 */
1640static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev)
1641{
1642	amdgpu_bo_free_kernel(&adev->mman.fw_vram_usage_reserved_bo,
1643		NULL, &adev->mman.fw_vram_usage_va);
1644}
1645
1646/*
1647 * Driver Reservation functions
1648 */
1649/**
1650 * amdgpu_ttm_drv_reserve_vram_fini - free drv reserved vram
1651 *
1652 * @adev: amdgpu_device pointer
1653 *
1654 * free drv reserved vram if it has been reserved.
1655 */
1656static void amdgpu_ttm_drv_reserve_vram_fini(struct amdgpu_device *adev)
1657{
1658	amdgpu_bo_free_kernel(&adev->mman.drv_vram_usage_reserved_bo,
1659						  NULL,
1660						  &adev->mman.drv_vram_usage_va);
1661}
1662
1663/**
1664 * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw
1665 *
1666 * @adev: amdgpu_device pointer
1667 *
1668 * create bo vram reservation from fw.
1669 */
1670static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev)
1671{
1672	uint64_t vram_size = adev->gmc.visible_vram_size;
1673
1674	adev->mman.fw_vram_usage_va = NULL;
1675	adev->mman.fw_vram_usage_reserved_bo = NULL;
1676
1677	if (adev->mman.fw_vram_usage_size == 0 ||
1678	    adev->mman.fw_vram_usage_size > vram_size)
1679		return 0;
1680
1681	return amdgpu_bo_create_kernel_at(adev,
1682					  adev->mman.fw_vram_usage_start_offset,
1683					  adev->mman.fw_vram_usage_size,
1684					  &adev->mman.fw_vram_usage_reserved_bo,
1685					  &adev->mman.fw_vram_usage_va);
1686}
1687
1688/**
1689 * amdgpu_ttm_drv_reserve_vram_init - create bo vram reservation from driver
1690 *
1691 * @adev: amdgpu_device pointer
1692 *
1693 * create bo vram reservation from drv.
1694 */
1695static int amdgpu_ttm_drv_reserve_vram_init(struct amdgpu_device *adev)
1696{
1697	u64 vram_size = adev->gmc.visible_vram_size;
1698
1699	adev->mman.drv_vram_usage_va = NULL;
1700	adev->mman.drv_vram_usage_reserved_bo = NULL;
1701
1702	if (adev->mman.drv_vram_usage_size == 0 ||
1703	    adev->mman.drv_vram_usage_size > vram_size)
1704		return 0;
1705
1706	return amdgpu_bo_create_kernel_at(adev,
1707					  adev->mman.drv_vram_usage_start_offset,
1708					  adev->mman.drv_vram_usage_size,
1709					  &adev->mman.drv_vram_usage_reserved_bo,
1710					  &adev->mman.drv_vram_usage_va);
1711}
1712
1713/*
1714 * Memoy training reservation functions
1715 */
1716
1717/**
1718 * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram
1719 *
1720 * @adev: amdgpu_device pointer
1721 *
1722 * free memory training reserved vram if it has been reserved.
1723 */
1724static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev)
1725{
1726	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1727
1728	ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT;
1729	amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL);
1730	ctx->c2p_bo = NULL;
1731
1732	return 0;
1733}
1734
1735static void amdgpu_ttm_training_data_block_init(struct amdgpu_device *adev,
1736						uint32_t reserve_size)
1737{
1738	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1739
1740	memset(ctx, 0, sizeof(*ctx));
1741
1742	ctx->c2p_train_data_offset =
1743		ALIGN((adev->gmc.mc_vram_size - reserve_size - SZ_1M), SZ_1M);
1744	ctx->p2c_train_data_offset =
1745		(adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET);
1746	ctx->train_data_size =
1747		GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES;
1748
1749	DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n",
1750			ctx->train_data_size,
1751			ctx->p2c_train_data_offset,
1752			ctx->c2p_train_data_offset);
1753}
1754
1755/*
1756 * reserve TMR memory at the top of VRAM which holds
1757 * IP Discovery data and is protected by PSP.
1758 */
1759static int amdgpu_ttm_reserve_tmr(struct amdgpu_device *adev)
1760{
1761	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1762	bool mem_train_support = false;
1763	uint32_t reserve_size = 0;
1764	int ret;
1765
1766	if (adev->bios && !amdgpu_sriov_vf(adev)) {
1767		if (amdgpu_atomfirmware_mem_training_supported(adev))
1768			mem_train_support = true;
1769		else
1770			DRM_DEBUG("memory training does not support!\n");
1771	}
1772
1773	/*
1774	 * Query reserved tmr size through atom firmwareinfo for Sienna_Cichlid and onwards for all
1775	 * the use cases (IP discovery/G6 memory training/profiling/diagnostic data.etc)
1776	 *
1777	 * Otherwise, fallback to legacy approach to check and reserve tmr block for ip
1778	 * discovery data and G6 memory training data respectively
1779	 */
1780	if (adev->bios)
1781		reserve_size =
1782			amdgpu_atomfirmware_get_fw_reserved_fb_size(adev);
1783
1784	if (!adev->bios && adev->ip_versions[GC_HWIP][0] == IP_VERSION(9, 4, 3))
1785		reserve_size = max(reserve_size, (uint32_t)280 << 20);
1786	else if (!reserve_size)
1787		reserve_size = DISCOVERY_TMR_OFFSET;
1788
1789	if (mem_train_support) {
1790		/* reserve vram for mem train according to TMR location */
1791		amdgpu_ttm_training_data_block_init(adev, reserve_size);
1792		ret = amdgpu_bo_create_kernel_at(adev,
1793						 ctx->c2p_train_data_offset,
1794						 ctx->train_data_size,
1795						 &ctx->c2p_bo,
1796						 NULL);
1797		if (ret) {
1798			DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret);
1799			amdgpu_ttm_training_reserve_vram_fini(adev);
1800			return ret;
1801		}
1802		ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS;
1803	}
1804
1805	if (!adev->gmc.is_app_apu) {
1806		ret = amdgpu_bo_create_kernel_at(
1807			adev, adev->gmc.real_vram_size - reserve_size,
1808			reserve_size, &adev->mman.fw_reserved_memory, NULL);
1809		if (ret) {
1810			DRM_ERROR("alloc tmr failed(%d)!\n", ret);
1811			amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory,
1812					      NULL, NULL);
1813			return ret;
1814		}
1815	} else {
1816		DRM_DEBUG_DRIVER("backdoor fw loading path for PSP TMR, no reservation needed\n");
1817	}
1818
1819	return 0;
1820}
1821
1822static int amdgpu_ttm_pools_init(struct amdgpu_device *adev)
1823{
1824	int i;
1825
1826	if (!adev->gmc.is_app_apu || !adev->gmc.num_mem_partitions)
1827		return 0;
1828
1829	adev->mman.ttm_pools = kcalloc(adev->gmc.num_mem_partitions,
1830				       sizeof(*adev->mman.ttm_pools),
1831				       GFP_KERNEL);
1832	if (!adev->mman.ttm_pools)
1833		return -ENOMEM;
1834
1835	for (i = 0; i < adev->gmc.num_mem_partitions; i++) {
1836		ttm_pool_init(&adev->mman.ttm_pools[i], adev->dev,
1837			      adev->gmc.mem_partitions[i].numa.node,
1838			      false, false);
1839	}
1840	return 0;
1841}
1842
1843static void amdgpu_ttm_pools_fini(struct amdgpu_device *adev)
1844{
1845	int i;
1846
1847	if (!adev->gmc.is_app_apu || !adev->mman.ttm_pools)
1848		return;
1849
1850	for (i = 0; i < adev->gmc.num_mem_partitions; i++)
1851		ttm_pool_fini(&adev->mman.ttm_pools[i]);
1852
1853	kfree(adev->mman.ttm_pools);
1854	adev->mman.ttm_pools = NULL;
1855}
1856
1857/*
1858 * amdgpu_ttm_init - Init the memory management (ttm) as well as various
1859 * gtt/vram related fields.
1860 *
1861 * This initializes all of the memory space pools that the TTM layer
1862 * will need such as the GTT space (system memory mapped to the device),
1863 * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which
1864 * can be mapped per VMID.
1865 */
1866int amdgpu_ttm_init(struct amdgpu_device *adev)
1867{
1868	uint64_t gtt_size;
1869	int r;
1870
1871	rw_init(&adev->mman.gtt_window_lock, "gttwin");
1872
1873	/* No others user of address space so set it to 0 */
1874#ifdef notyet
1875	r = ttm_device_init(&adev->mman.bdev, &amdgpu_bo_driver, adev->dev,
1876			       adev_to_drm(adev)->anon_inode->i_mapping,
1877			       adev_to_drm(adev)->vma_offset_manager,
1878			       adev->need_swiotlb,
1879			       dma_addressing_limited(adev->dev));
1880#else
1881	r = ttm_device_init(&adev->mman.bdev, &amdgpu_bo_driver, adev->dev,
1882			       /*adev_to_drm(adev)->anon_inode->i_mapping*/NULL,
1883			       adev_to_drm(adev)->vma_offset_manager,
1884			       adev->need_swiotlb,
1885			       dma_addressing_limited(adev->dev));
1886#endif
1887	if (r) {
1888		DRM_ERROR("failed initializing buffer object driver(%d).\n", r);
1889		return r;
1890	}
1891
1892	r = amdgpu_ttm_pools_init(adev);
1893	if (r) {
1894		DRM_ERROR("failed to init ttm pools(%d).\n", r);
1895		return r;
1896	}
1897	adev->mman.bdev.iot = adev->iot;
1898	adev->mman.bdev.memt = adev->memt;
1899	adev->mman.bdev.dmat = adev->dmat;
1900	adev->mman.initialized = true;
1901
1902	/* Initialize VRAM pool with all of VRAM divided into pages */
1903	r = amdgpu_vram_mgr_init(adev);
1904	if (r) {
1905		DRM_ERROR("Failed initializing VRAM heap.\n");
1906		return r;
1907	}
1908
1909	/* Change the size here instead of the init above so only lpfn is affected */
1910	amdgpu_ttm_set_buffer_funcs_status(adev, false);
1911#if defined(CONFIG_64BIT) && defined(__linux__)
1912#ifdef CONFIG_X86
1913	if (adev->gmc.xgmi.connected_to_cpu)
1914		adev->mman.aper_base_kaddr = ioremap_cache(adev->gmc.aper_base,
1915				adev->gmc.visible_vram_size);
1916
1917	else if (adev->gmc.is_app_apu)
1918		DRM_DEBUG_DRIVER(
1919			"No need to ioremap when real vram size is 0\n");
1920	else
1921#endif
1922		adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base,
1923				adev->gmc.visible_vram_size);
1924#else
1925	if (bus_space_map(adev->memt, adev->gmc.aper_base,
1926	    adev->gmc.visible_vram_size,
1927	    BUS_SPACE_MAP_LINEAR | BUS_SPACE_MAP_PREFETCHABLE,
1928	    &adev->mman.aper_bsh)) {
1929		adev->mman.aper_base_kaddr = NULL;
1930	} else {
1931		adev->mman.aper_base_kaddr = bus_space_vaddr(adev->memt,
1932		    adev->mman.aper_bsh);
1933	}
1934#endif
1935
1936	/*
1937	 *The reserved vram for firmware must be pinned to the specified
1938	 *place on the VRAM, so reserve it early.
1939	 */
1940	r = amdgpu_ttm_fw_reserve_vram_init(adev);
1941	if (r)
1942		return r;
1943
1944	/*
1945	 *The reserved vram for driver must be pinned to the specified
1946	 *place on the VRAM, so reserve it early.
1947	 */
1948	r = amdgpu_ttm_drv_reserve_vram_init(adev);
1949	if (r)
1950		return r;
1951
1952	/*
1953	 * only NAVI10 and onwards ASIC support for IP discovery.
1954	 * If IP discovery enabled, a block of memory should be
1955	 * reserved for IP discovey.
1956	 */
1957	if (adev->mman.discovery_bin) {
1958		r = amdgpu_ttm_reserve_tmr(adev);
1959		if (r)
1960			return r;
1961	}
1962
1963	/* allocate memory as required for VGA
1964	 * This is used for VGA emulation and pre-OS scanout buffers to
1965	 * avoid display artifacts while transitioning between pre-OS
1966	 * and driver.
1967	 */
1968	if (!adev->gmc.is_app_apu) {
1969		r = amdgpu_bo_create_kernel_at(adev, 0,
1970					       adev->mman.stolen_vga_size,
1971					       &adev->mman.stolen_vga_memory,
1972					       NULL);
1973		if (r)
1974			return r;
1975
1976		r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_vga_size,
1977					       adev->mman.stolen_extended_size,
1978					       &adev->mman.stolen_extended_memory,
1979					       NULL);
1980
1981		if (r)
1982			return r;
1983
1984		r = amdgpu_bo_create_kernel_at(adev,
1985					       adev->mman.stolen_reserved_offset,
1986					       adev->mman.stolen_reserved_size,
1987					       &adev->mman.stolen_reserved_memory,
1988					       NULL);
1989		if (r)
1990			return r;
1991	} else {
1992		DRM_DEBUG_DRIVER("Skipped stolen memory reservation\n");
1993	}
1994
1995	DRM_INFO("amdgpu: %uM of VRAM memory ready\n",
1996		 (unsigned int)(adev->gmc.real_vram_size / (1024 * 1024)));
1997
1998	/* Compute GTT size, either based on TTM limit
1999	 * or whatever the user passed on module init.
2000	 */
2001	if (amdgpu_gtt_size == -1)
2002		gtt_size = ttm_tt_pages_limit() << PAGE_SHIFT;
2003	else
2004		gtt_size = (uint64_t)amdgpu_gtt_size << 20;
2005
2006	/* Initialize GTT memory pool */
2007	r = amdgpu_gtt_mgr_init(adev, gtt_size);
2008	if (r) {
2009		DRM_ERROR("Failed initializing GTT heap.\n");
2010		return r;
2011	}
2012	DRM_INFO("amdgpu: %uM of GTT memory ready.\n",
2013		 (unsigned int)(gtt_size / (1024 * 1024)));
2014
2015	/* Initiailize doorbell pool on PCI BAR */
2016	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_DOORBELL, adev->doorbell.size / PAGE_SIZE);
2017	if (r) {
2018		DRM_ERROR("Failed initializing doorbell heap.\n");
2019		return r;
2020	}
2021
2022	/* Create a boorbell page for kernel usages */
2023	r = amdgpu_doorbell_create_kernel_doorbells(adev);
2024	if (r) {
2025		DRM_ERROR("Failed to initialize kernel doorbells.\n");
2026		return r;
2027	}
2028
2029	/* Initialize preemptible memory pool */
2030	r = amdgpu_preempt_mgr_init(adev);
2031	if (r) {
2032		DRM_ERROR("Failed initializing PREEMPT heap.\n");
2033		return r;
2034	}
2035
2036	/* Initialize various on-chip memory pools */
2037	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GDS, adev->gds.gds_size);
2038	if (r) {
2039		DRM_ERROR("Failed initializing GDS heap.\n");
2040		return r;
2041	}
2042
2043	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GWS, adev->gds.gws_size);
2044	if (r) {
2045		DRM_ERROR("Failed initializing gws heap.\n");
2046		return r;
2047	}
2048
2049	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_OA, adev->gds.oa_size);
2050	if (r) {
2051		DRM_ERROR("Failed initializing oa heap.\n");
2052		return r;
2053	}
2054	if (amdgpu_bo_create_kernel(adev, PAGE_SIZE, PAGE_SIZE,
2055				AMDGPU_GEM_DOMAIN_GTT,
2056				&adev->mman.sdma_access_bo, NULL,
2057				&adev->mman.sdma_access_ptr))
2058		DRM_WARN("Debug VRAM access will use slowpath MM access\n");
2059
2060	return 0;
2061}
2062
2063/*
2064 * amdgpu_ttm_fini - De-initialize the TTM memory pools
2065 */
2066void amdgpu_ttm_fini(struct amdgpu_device *adev)
2067{
2068	int idx;
2069
2070	if (!adev->mman.initialized)
2071		return;
2072
2073	amdgpu_ttm_pools_fini(adev);
2074
2075	amdgpu_ttm_training_reserve_vram_fini(adev);
2076	/* return the stolen vga memory back to VRAM */
2077	if (!adev->gmc.is_app_apu) {
2078		amdgpu_bo_free_kernel(&adev->mman.stolen_vga_memory, NULL, NULL);
2079		amdgpu_bo_free_kernel(&adev->mman.stolen_extended_memory, NULL, NULL);
2080		/* return the FW reserved memory back to VRAM */
2081		amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory, NULL,
2082				      NULL);
2083		if (adev->mman.stolen_reserved_size)
2084			amdgpu_bo_free_kernel(&adev->mman.stolen_reserved_memory,
2085					      NULL, NULL);
2086	}
2087	amdgpu_bo_free_kernel(&adev->mman.sdma_access_bo, NULL,
2088					&adev->mman.sdma_access_ptr);
2089	amdgpu_ttm_fw_reserve_vram_fini(adev);
2090	amdgpu_ttm_drv_reserve_vram_fini(adev);
2091
2092	if (drm_dev_enter(adev_to_drm(adev), &idx)) {
2093
2094#ifdef __linux__
2095		if (adev->mman.aper_base_kaddr)
2096			iounmap(adev->mman.aper_base_kaddr);
2097#else
2098		if (adev->mman.aper_base_kaddr)
2099			bus_space_unmap(adev->memt, adev->mman.aper_bsh,
2100			    adev->gmc.visible_vram_size);
2101#endif
2102		adev->mman.aper_base_kaddr = NULL;
2103
2104		drm_dev_exit(idx);
2105	}
2106
2107	amdgpu_vram_mgr_fini(adev);
2108	amdgpu_gtt_mgr_fini(adev);
2109	amdgpu_preempt_mgr_fini(adev);
2110	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GDS);
2111	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GWS);
2112	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_OA);
2113	ttm_device_fini(&adev->mman.bdev);
2114	adev->mman.initialized = false;
2115	DRM_INFO("amdgpu: ttm finalized\n");
2116}
2117
2118/**
2119 * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions
2120 *
2121 * @adev: amdgpu_device pointer
2122 * @enable: true when we can use buffer functions.
2123 *
2124 * Enable/disable use of buffer functions during suspend/resume. This should
2125 * only be called at bootup or when userspace isn't running.
2126 */
2127void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable)
2128{
2129	struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, TTM_PL_VRAM);
2130	uint64_t size;
2131	int r;
2132
2133	if (!adev->mman.initialized || amdgpu_in_reset(adev) ||
2134	    adev->mman.buffer_funcs_enabled == enable || adev->gmc.is_app_apu)
2135		return;
2136
2137	if (enable) {
2138		struct amdgpu_ring *ring;
2139		struct drm_gpu_scheduler *sched;
2140
2141		ring = adev->mman.buffer_funcs_ring;
2142		sched = &ring->sched;
2143		r = drm_sched_entity_init(&adev->mman.high_pr,
2144					  DRM_SCHED_PRIORITY_KERNEL, &sched,
2145					  1, NULL);
2146		if (r) {
2147			DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
2148				  r);
2149			return;
2150		}
2151
2152		r = drm_sched_entity_init(&adev->mman.low_pr,
2153					  DRM_SCHED_PRIORITY_NORMAL, &sched,
2154					  1, NULL);
2155		if (r) {
2156			DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
2157				  r);
2158			goto error_free_entity;
2159		}
2160	} else {
2161		drm_sched_entity_destroy(&adev->mman.high_pr);
2162		drm_sched_entity_destroy(&adev->mman.low_pr);
2163		dma_fence_put(man->move);
2164		man->move = NULL;
2165	}
2166
2167	/* this just adjusts TTM size idea, which sets lpfn to the correct value */
2168	if (enable)
2169		size = adev->gmc.real_vram_size;
2170	else
2171		size = adev->gmc.visible_vram_size;
2172	man->size = size;
2173	adev->mman.buffer_funcs_enabled = enable;
2174
2175	return;
2176
2177error_free_entity:
2178	drm_sched_entity_destroy(&adev->mman.high_pr);
2179}
2180
2181static int amdgpu_ttm_prepare_job(struct amdgpu_device *adev,
2182				  bool direct_submit,
2183				  unsigned int num_dw,
2184				  struct dma_resv *resv,
2185				  bool vm_needs_flush,
2186				  struct amdgpu_job **job,
2187				  bool delayed)
2188{
2189	enum amdgpu_ib_pool_type pool = direct_submit ?
2190		AMDGPU_IB_POOL_DIRECT :
2191		AMDGPU_IB_POOL_DELAYED;
2192	int r;
2193	struct drm_sched_entity *entity = delayed ? &adev->mman.low_pr :
2194						    &adev->mman.high_pr;
2195	r = amdgpu_job_alloc_with_ib(adev, entity,
2196				     AMDGPU_FENCE_OWNER_UNDEFINED,
2197				     num_dw * 4, pool, job);
2198	if (r)
2199		return r;
2200
2201	if (vm_needs_flush) {
2202		(*job)->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gmc.pdb0_bo ?
2203							adev->gmc.pdb0_bo :
2204							adev->gart.bo);
2205		(*job)->vm_needs_flush = true;
2206	}
2207	if (!resv)
2208		return 0;
2209
2210	return drm_sched_job_add_resv_dependencies(&(*job)->base, resv,
2211						   DMA_RESV_USAGE_BOOKKEEP);
2212}
2213
2214int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset,
2215		       uint64_t dst_offset, uint32_t byte_count,
2216		       struct dma_resv *resv,
2217		       struct dma_fence **fence, bool direct_submit,
2218		       bool vm_needs_flush, bool tmz)
2219{
2220	struct amdgpu_device *adev = ring->adev;
2221	unsigned int num_loops, num_dw;
2222	struct amdgpu_job *job;
2223	uint32_t max_bytes;
2224	unsigned int i;
2225	int r;
2226
2227	if (!direct_submit && !ring->sched.ready) {
2228		DRM_ERROR("Trying to move memory with ring turned off.\n");
2229		return -EINVAL;
2230	}
2231
2232	max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
2233	num_loops = DIV_ROUND_UP(byte_count, max_bytes);
2234	num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8);
2235	r = amdgpu_ttm_prepare_job(adev, direct_submit, num_dw,
2236				   resv, vm_needs_flush, &job, false);
2237	if (r)
2238		return r;
2239
2240	for (i = 0; i < num_loops; i++) {
2241		uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
2242
2243		amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
2244					dst_offset, cur_size_in_bytes, tmz);
2245
2246		src_offset += cur_size_in_bytes;
2247		dst_offset += cur_size_in_bytes;
2248		byte_count -= cur_size_in_bytes;
2249	}
2250
2251	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2252	WARN_ON(job->ibs[0].length_dw > num_dw);
2253	if (direct_submit)
2254		r = amdgpu_job_submit_direct(job, ring, fence);
2255	else
2256		*fence = amdgpu_job_submit(job);
2257	if (r)
2258		goto error_free;
2259
2260	return r;
2261
2262error_free:
2263	amdgpu_job_free(job);
2264	DRM_ERROR("Error scheduling IBs (%d)\n", r);
2265	return r;
2266}
2267
2268static int amdgpu_ttm_fill_mem(struct amdgpu_ring *ring, uint32_t src_data,
2269			       uint64_t dst_addr, uint32_t byte_count,
2270			       struct dma_resv *resv,
2271			       struct dma_fence **fence,
2272			       bool vm_needs_flush, bool delayed)
2273{
2274	struct amdgpu_device *adev = ring->adev;
2275	unsigned int num_loops, num_dw;
2276	struct amdgpu_job *job;
2277	uint32_t max_bytes;
2278	unsigned int i;
2279	int r;
2280
2281	max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
2282	num_loops = DIV_ROUND_UP_ULL(byte_count, max_bytes);
2283	num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->fill_num_dw, 8);
2284	r = amdgpu_ttm_prepare_job(adev, false, num_dw, resv, vm_needs_flush,
2285				   &job, delayed);
2286	if (r)
2287		return r;
2288
2289	for (i = 0; i < num_loops; i++) {
2290		uint32_t cur_size = min(byte_count, max_bytes);
2291
2292		amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data, dst_addr,
2293					cur_size);
2294
2295		dst_addr += cur_size;
2296		byte_count -= cur_size;
2297	}
2298
2299	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2300	WARN_ON(job->ibs[0].length_dw > num_dw);
2301	*fence = amdgpu_job_submit(job);
2302	return 0;
2303}
2304
2305int amdgpu_fill_buffer(struct amdgpu_bo *bo,
2306			uint32_t src_data,
2307			struct dma_resv *resv,
2308			struct dma_fence **f,
2309			bool delayed)
2310{
2311	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
2312	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
2313	struct dma_fence *fence = NULL;
2314	struct amdgpu_res_cursor dst;
2315	int r;
2316
2317	if (!adev->mman.buffer_funcs_enabled) {
2318		DRM_ERROR("Trying to clear memory with ring turned off.\n");
2319		return -EINVAL;
2320	}
2321
2322	amdgpu_res_first(bo->tbo.resource, 0, amdgpu_bo_size(bo), &dst);
2323
2324	mutex_lock(&adev->mman.gtt_window_lock);
2325	while (dst.remaining) {
2326		struct dma_fence *next;
2327		uint64_t cur_size, to;
2328
2329		/* Never fill more than 256MiB at once to avoid timeouts */
2330		cur_size = min(dst.size, 256ULL << 20);
2331
2332		r = amdgpu_ttm_map_buffer(&bo->tbo, bo->tbo.resource, &dst,
2333					  1, ring, false, &cur_size, &to);
2334		if (r)
2335			goto error;
2336
2337		r = amdgpu_ttm_fill_mem(ring, src_data, to, cur_size, resv,
2338					&next, true, delayed);
2339		if (r)
2340			goto error;
2341
2342		dma_fence_put(fence);
2343		fence = next;
2344
2345		amdgpu_res_next(&dst, cur_size);
2346	}
2347error:
2348	mutex_unlock(&adev->mman.gtt_window_lock);
2349	if (f)
2350		*f = dma_fence_get(fence);
2351	dma_fence_put(fence);
2352	return r;
2353}
2354
2355/**
2356 * amdgpu_ttm_evict_resources - evict memory buffers
2357 * @adev: amdgpu device object
2358 * @mem_type: evicted BO's memory type
2359 *
2360 * Evicts all @mem_type buffers on the lru list of the memory type.
2361 *
2362 * Returns:
2363 * 0 for success or a negative error code on failure.
2364 */
2365int amdgpu_ttm_evict_resources(struct amdgpu_device *adev, int mem_type)
2366{
2367	struct ttm_resource_manager *man;
2368
2369	switch (mem_type) {
2370	case TTM_PL_VRAM:
2371	case TTM_PL_TT:
2372	case AMDGPU_PL_GWS:
2373	case AMDGPU_PL_GDS:
2374	case AMDGPU_PL_OA:
2375		man = ttm_manager_type(&adev->mman.bdev, mem_type);
2376		break;
2377	default:
2378		DRM_ERROR("Trying to evict invalid memory type\n");
2379		return -EINVAL;
2380	}
2381
2382	return ttm_resource_manager_evict_all(&adev->mman.bdev, man);
2383}
2384
2385#if defined(CONFIG_DEBUG_FS)
2386
2387static int amdgpu_ttm_page_pool_show(struct seq_file *m, void *unused)
2388{
2389	struct amdgpu_device *adev = m->private;
2390
2391	return ttm_pool_debugfs(&adev->mman.bdev.pool, m);
2392}
2393
2394DEFINE_SHOW_ATTRIBUTE(amdgpu_ttm_page_pool);
2395
2396/*
2397 * amdgpu_ttm_vram_read - Linear read access to VRAM
2398 *
2399 * Accesses VRAM via MMIO for debugging purposes.
2400 */
2401static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
2402				    size_t size, loff_t *pos)
2403{
2404	struct amdgpu_device *adev = file_inode(f)->i_private;
2405	ssize_t result = 0;
2406
2407	if (size & 0x3 || *pos & 0x3)
2408		return -EINVAL;
2409
2410	if (*pos >= adev->gmc.mc_vram_size)
2411		return -ENXIO;
2412
2413	size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos));
2414	while (size) {
2415		size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4);
2416		uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ];
2417
2418		amdgpu_device_vram_access(adev, *pos, value, bytes, false);
2419		if (copy_to_user(buf, value, bytes))
2420			return -EFAULT;
2421
2422		result += bytes;
2423		buf += bytes;
2424		*pos += bytes;
2425		size -= bytes;
2426	}
2427
2428	return result;
2429}
2430
2431/*
2432 * amdgpu_ttm_vram_write - Linear write access to VRAM
2433 *
2434 * Accesses VRAM via MMIO for debugging purposes.
2435 */
2436static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf,
2437				    size_t size, loff_t *pos)
2438{
2439	struct amdgpu_device *adev = file_inode(f)->i_private;
2440	ssize_t result = 0;
2441	int r;
2442
2443	if (size & 0x3 || *pos & 0x3)
2444		return -EINVAL;
2445
2446	if (*pos >= adev->gmc.mc_vram_size)
2447		return -ENXIO;
2448
2449	while (size) {
2450		uint32_t value;
2451
2452		if (*pos >= adev->gmc.mc_vram_size)
2453			return result;
2454
2455		r = get_user(value, (uint32_t *)buf);
2456		if (r)
2457			return r;
2458
2459		amdgpu_device_mm_access(adev, *pos, &value, 4, true);
2460
2461		result += 4;
2462		buf += 4;
2463		*pos += 4;
2464		size -= 4;
2465	}
2466
2467	return result;
2468}
2469
2470static const struct file_operations amdgpu_ttm_vram_fops = {
2471	.owner = THIS_MODULE,
2472	.read = amdgpu_ttm_vram_read,
2473	.write = amdgpu_ttm_vram_write,
2474	.llseek = default_llseek,
2475};
2476
2477/*
2478 * amdgpu_iomem_read - Virtual read access to GPU mapped memory
2479 *
2480 * This function is used to read memory that has been mapped to the
2481 * GPU and the known addresses are not physical addresses but instead
2482 * bus addresses (e.g., what you'd put in an IB or ring buffer).
2483 */
2484static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf,
2485				 size_t size, loff_t *pos)
2486{
2487	struct amdgpu_device *adev = file_inode(f)->i_private;
2488	struct iommu_domain *dom;
2489	ssize_t result = 0;
2490	int r;
2491
2492	/* retrieve the IOMMU domain if any for this device */
2493	dom = iommu_get_domain_for_dev(adev->dev);
2494
2495	while (size) {
2496		phys_addr_t addr = *pos & LINUX_PAGE_MASK;
2497		loff_t off = *pos & ~LINUX_PAGE_MASK;
2498		size_t bytes = PAGE_SIZE - off;
2499		unsigned long pfn;
2500		struct vm_page *p;
2501		void *ptr;
2502
2503		bytes = min(bytes, size);
2504
2505		/* Translate the bus address to a physical address.  If
2506		 * the domain is NULL it means there is no IOMMU active
2507		 * and the address translation is the identity
2508		 */
2509		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2510
2511		pfn = addr >> PAGE_SHIFT;
2512		if (!pfn_valid(pfn))
2513			return -EPERM;
2514
2515		p = pfn_to_page(pfn);
2516#ifdef notyet
2517		if (p->mapping != adev->mman.bdev.dev_mapping)
2518			return -EPERM;
2519#else
2520		STUB();
2521#endif
2522
2523		ptr = kmap_local_page(p);
2524		r = copy_to_user(buf, ptr + off, bytes);
2525		kunmap_local(ptr);
2526		if (r)
2527			return -EFAULT;
2528
2529		size -= bytes;
2530		*pos += bytes;
2531		result += bytes;
2532	}
2533
2534	return result;
2535}
2536
2537/*
2538 * amdgpu_iomem_write - Virtual write access to GPU mapped memory
2539 *
2540 * This function is used to write memory that has been mapped to the
2541 * GPU and the known addresses are not physical addresses but instead
2542 * bus addresses (e.g., what you'd put in an IB or ring buffer).
2543 */
2544static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf,
2545				 size_t size, loff_t *pos)
2546{
2547	struct amdgpu_device *adev = file_inode(f)->i_private;
2548	struct iommu_domain *dom;
2549	ssize_t result = 0;
2550	int r;
2551
2552	dom = iommu_get_domain_for_dev(adev->dev);
2553
2554	while (size) {
2555		phys_addr_t addr = *pos & LINUX_PAGE_MASK;
2556		loff_t off = *pos & ~LINUX_PAGE_MASK;
2557		size_t bytes = PAGE_SIZE - off;
2558		unsigned long pfn;
2559		struct vm_page *p;
2560		void *ptr;
2561
2562		bytes = min(bytes, size);
2563
2564		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2565
2566		pfn = addr >> PAGE_SHIFT;
2567		if (!pfn_valid(pfn))
2568			return -EPERM;
2569
2570		p = pfn_to_page(pfn);
2571#ifdef notyet
2572		if (p->mapping != adev->mman.bdev.dev_mapping)
2573			return -EPERM;
2574#else
2575		STUB();
2576#endif
2577
2578		ptr = kmap_local_page(p);
2579		r = copy_from_user(ptr + off, buf, bytes);
2580		kunmap_local(ptr);
2581		if (r)
2582			return -EFAULT;
2583
2584		size -= bytes;
2585		*pos += bytes;
2586		result += bytes;
2587	}
2588
2589	return result;
2590}
2591
2592static const struct file_operations amdgpu_ttm_iomem_fops = {
2593	.owner = THIS_MODULE,
2594	.read = amdgpu_iomem_read,
2595	.write = amdgpu_iomem_write,
2596	.llseek = default_llseek
2597};
2598
2599#endif
2600
2601void amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
2602{
2603#if defined(CONFIG_DEBUG_FS)
2604	struct drm_minor *minor = adev_to_drm(adev)->primary;
2605	struct dentry *root = minor->debugfs_root;
2606
2607	debugfs_create_file_size("amdgpu_vram", 0444, root, adev,
2608				 &amdgpu_ttm_vram_fops, adev->gmc.mc_vram_size);
2609	debugfs_create_file("amdgpu_iomem", 0444, root, adev,
2610			    &amdgpu_ttm_iomem_fops);
2611	debugfs_create_file("ttm_page_pool", 0444, root, adev,
2612			    &amdgpu_ttm_page_pool_fops);
2613	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2614							     TTM_PL_VRAM),
2615					    root, "amdgpu_vram_mm");
2616	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2617							     TTM_PL_TT),
2618					    root, "amdgpu_gtt_mm");
2619	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2620							     AMDGPU_PL_GDS),
2621					    root, "amdgpu_gds_mm");
2622	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2623							     AMDGPU_PL_GWS),
2624					    root, "amdgpu_gws_mm");
2625	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2626							     AMDGPU_PL_OA),
2627					    root, "amdgpu_oa_mm");
2628
2629#endif
2630}
2631