1/*	$OpenBSD: rtl81x9.c,v 1.98 2020/07/10 13:26:37 patrick Exp $ */
2
3/*
4 * Copyright (c) 1997, 1998
5 *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 *    must display the following acknowledgement:
17 *	This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 *    may be used to endorse or promote products derived from this software
20 *    without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35/*
36 * Realtek 8129/8139 PCI NIC driver
37 *
38 * Supports several extremely cheap PCI 10/100 adapters based on
39 * the Realtek chipset. Datasheets can be obtained from
40 * www.realtek.com.tw.
41 *
42 * Written by Bill Paul <wpaul@ctr.columbia.edu>
43 * Electrical Engineering Department
44 * Columbia University, New York City
45 */
46
47/*
48 * The Realtek 8139 PCI NIC redefines the meaning of 'low end.' This is
49 * probably the worst PCI ethernet controller ever made, with the possible
50 * exception of the FEAST chip made by SMC. The 8139 supports bus-master
51 * DMA, but it has a terrible interface that nullifies any performance
52 * gains that bus-master DMA usually offers.
53 *
54 * For transmission, the chip offers a series of four TX descriptor
55 * registers. Each transmit frame must be in a contiguous buffer, aligned
56 * on a longword (32-bit) boundary. This means we almost always have to
57 * do mbuf copies in order to transmit a frame, except in the unlikely
58 * case where a) the packet fits into a single mbuf, and b) the packet
59 * is 32-bit aligned within the mbuf's data area. The presence of only
60 * four descriptor registers means that we can never have more than four
61 * packets queued for transmission at any one time.
62 *
63 * Reception is not much better. The driver has to allocate a single large
64 * buffer area (up to 64K in size) into which the chip will DMA received
65 * frames. Because we don't know where within this region received packets
66 * will begin or end, we have no choice but to copy data from the buffer
67 * area into mbufs in order to pass the packets up to the higher protocol
68 * levels.
69 *
70 * It's impossible given this rotten design to really achieve decent
71 * performance at 100Mbps, unless you happen to have a 400MHz PII or
72 * some equally overmuscled CPU to drive it.
73 *
74 * On the bright side, the 8139 does have a built-in PHY, although
75 * rather than using an MDIO serial interface like most other NICs, the
76 * PHY registers are directly accessible through the 8139's register
77 * space. The 8139 supports autonegotiation, as well as a 64-bit multicast
78 * filter.
79 *
80 * The 8129 chip is an older version of the 8139 that uses an external PHY
81 * chip. The 8129 has a serial MDIO interface for accessing the MII where
82 * the 8139 lets you directly access the on-board PHY registers. We need
83 * to select which interface to use depending on the chip type.
84 */
85
86#include "bpfilter.h"
87
88#include <sys/param.h>
89#include <sys/systm.h>
90#include <sys/sockio.h>
91#include <sys/mbuf.h>
92#include <sys/malloc.h>
93#include <sys/kernel.h>
94#include <sys/socket.h>
95#include <sys/device.h>
96#include <sys/timeout.h>
97
98#include <net/if.h>
99
100#include <netinet/in.h>
101#include <netinet/if_ether.h>
102
103#include <net/if_media.h>
104
105#if NBPFILTER > 0
106#include <net/bpf.h>
107#endif
108
109#include <machine/bus.h>
110
111#include <dev/mii/mii.h>
112#include <dev/mii/miivar.h>
113
114#include <dev/ic/rtl81x9reg.h>
115
116/*
117 * Various supported PHY vendors/types and their names. Note that
118 * this driver will work with pretty much any MII-compliant PHY,
119 * so failure to positively identify the chip is not a fatal error.
120 */
121
122void rl_tick(void *);
123
124int rl_encap(struct rl_softc *, struct mbuf * );
125
126void rl_rxeof(struct rl_softc *);
127void rl_txeof(struct rl_softc *);
128void rl_start(struct ifnet *);
129int rl_ioctl(struct ifnet *, u_long, caddr_t);
130void rl_init(void *);
131void rl_stop(struct rl_softc *);
132void rl_watchdog(struct ifnet *);
133int rl_ifmedia_upd(struct ifnet *);
134void rl_ifmedia_sts(struct ifnet *, struct ifmediareq *);
135
136void rl_eeprom_getword(struct rl_softc *, int, int, u_int16_t *);
137void rl_eeprom_putbyte(struct rl_softc *, int, int);
138void rl_read_eeprom(struct rl_softc *, caddr_t, int, int, int, int);
139
140void rl_mii_sync(struct rl_softc *);
141void rl_mii_send(struct rl_softc *, u_int32_t, int);
142int rl_mii_readreg(struct rl_softc *, struct rl_mii_frame *);
143int rl_mii_writereg(struct rl_softc *, struct rl_mii_frame *);
144
145int rl_miibus_readreg(struct device *, int, int);
146void rl_miibus_writereg(struct device *, int, int, int);
147void rl_miibus_statchg(struct device *);
148
149void rl_iff(struct rl_softc *);
150void rl_reset(struct rl_softc *);
151int rl_list_tx_init(struct rl_softc *);
152
153#define EE_SET(x)					\
154	CSR_WRITE_1(sc, RL_EECMD,			\
155		CSR_READ_1(sc, RL_EECMD) | x)
156
157#define EE_CLR(x)					\
158	CSR_WRITE_1(sc, RL_EECMD,			\
159		CSR_READ_1(sc, RL_EECMD) & ~x)
160
161/*
162 * Send a read command and address to the EEPROM, check for ACK.
163 */
164void
165rl_eeprom_putbyte(struct rl_softc *sc, int addr, int addr_len)
166{
167	int	d, i;
168
169	d = (RL_EECMD_READ << addr_len) | addr;
170
171	/*
172	 * Feed in each bit and strobe the clock.
173	 */
174	for (i = RL_EECMD_LEN + addr_len; i; i--) {
175		if (d & (1 << (i - 1)))
176			EE_SET(RL_EE_DATAIN);
177		else
178			EE_CLR(RL_EE_DATAIN);
179
180		DELAY(100);
181		EE_SET(RL_EE_CLK);
182		DELAY(150);
183		EE_CLR(RL_EE_CLK);
184		DELAY(100);
185	}
186}
187
188/*
189 * Read a word of data stored in the EEPROM at address 'addr.'
190 */
191void
192rl_eeprom_getword(struct rl_softc *sc, int addr, int addr_len,
193    u_int16_t *dest)
194{
195	int		i;
196	u_int16_t	word = 0;
197
198	/* Enter EEPROM access mode. */
199	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_PROGRAM|RL_EE_SEL);
200
201	/*
202	 * Send address of word we want to read.
203	 */
204	rl_eeprom_putbyte(sc, addr, addr_len);
205
206	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_PROGRAM|RL_EE_SEL);
207
208	/*
209	 * Start reading bits from EEPROM.
210	 */
211	for (i = 16; i > 0; i--) {
212		EE_SET(RL_EE_CLK);
213		DELAY(100);
214		if (CSR_READ_1(sc, RL_EECMD) & RL_EE_DATAOUT)
215			word |= 1 << (i - 1);
216		EE_CLR(RL_EE_CLK);
217		DELAY(100);
218	}
219
220	/* Turn off EEPROM access mode. */
221	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
222
223	*dest = word;
224}
225
226/*
227 * Read a sequence of words from the EEPROM.
228 */
229void
230rl_read_eeprom(struct rl_softc *sc, caddr_t dest, int off, int addr_len,
231    int cnt, int swap)
232{
233	int		i;
234	u_int16_t	word = 0, *ptr;
235
236	for (i = 0; i < cnt; i++) {
237		rl_eeprom_getword(sc, off + i, addr_len, &word);
238		ptr = (u_int16_t *)(dest + (i * 2));
239		if (swap)
240			*ptr = letoh16(word);
241		else
242			*ptr = word;
243	}
244}
245
246/*
247 * MII access routines are provided for the 8129, which
248 * doesn't have a built-in PHY. For the 8139, we fake things
249 * up by diverting rl_phy_readreg()/rl_phy_writereg() to the
250 * direct access PHY registers.
251 */
252#define MII_SET(x)					\
253	CSR_WRITE_1(sc, RL_MII,				\
254		CSR_READ_1(sc, RL_MII) | x)
255
256#define MII_CLR(x)					\
257	CSR_WRITE_1(sc, RL_MII,				\
258		CSR_READ_1(sc, RL_MII) & ~x)
259
260/*
261 * Sync the PHYs by setting data bit and strobing the clock 32 times.
262 */
263void
264rl_mii_sync(struct rl_softc *sc)
265{
266	int	i;
267
268	MII_SET(RL_MII_DIR|RL_MII_DATAOUT);
269
270	for (i = 0; i < 32; i++) {
271		MII_SET(RL_MII_CLK);
272		DELAY(1);
273		MII_CLR(RL_MII_CLK);
274		DELAY(1);
275	}
276}
277
278/*
279 * Clock a series of bits through the MII.
280 */
281void
282rl_mii_send(struct rl_softc *sc, u_int32_t bits, int cnt)
283{
284	int	i;
285
286	MII_CLR(RL_MII_CLK);
287
288	for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
289		if (bits & i)
290			MII_SET(RL_MII_DATAOUT);
291		else
292			MII_CLR(RL_MII_DATAOUT);
293		DELAY(1);
294		MII_CLR(RL_MII_CLK);
295		DELAY(1);
296		MII_SET(RL_MII_CLK);
297	}
298}
299
300/*
301 * Read an PHY register through the MII.
302 */
303int
304rl_mii_readreg(struct rl_softc *sc, struct rl_mii_frame *frame)
305{
306	int	i, ack, s;
307
308	s = splnet();
309
310	/*
311	 * Set up frame for RX.
312	 */
313	frame->mii_stdelim = RL_MII_STARTDELIM;
314	frame->mii_opcode = RL_MII_READOP;
315	frame->mii_turnaround = 0;
316	frame->mii_data = 0;
317
318	CSR_WRITE_2(sc, RL_MII, 0);
319
320	/*
321	 * Turn on data xmit.
322	 */
323	MII_SET(RL_MII_DIR);
324
325	rl_mii_sync(sc);
326
327	/*
328	 * Send command/address info.
329	 */
330	rl_mii_send(sc, frame->mii_stdelim, 2);
331	rl_mii_send(sc, frame->mii_opcode, 2);
332	rl_mii_send(sc, frame->mii_phyaddr, 5);
333	rl_mii_send(sc, frame->mii_regaddr, 5);
334
335	/* Idle bit */
336	MII_CLR((RL_MII_CLK|RL_MII_DATAOUT));
337	DELAY(1);
338	MII_SET(RL_MII_CLK);
339	DELAY(1);
340
341	/* Turn off xmit. */
342	MII_CLR(RL_MII_DIR);
343
344	/* Check for ack */
345	MII_CLR(RL_MII_CLK);
346	DELAY(1);
347	ack = CSR_READ_2(sc, RL_MII) & RL_MII_DATAIN;
348	MII_SET(RL_MII_CLK);
349	DELAY(1);
350
351	/*
352	 * Now try reading data bits. If the ack failed, we still
353	 * need to clock through 16 cycles to keep the PHY(s) in sync.
354	 */
355	if (ack) {
356		for(i = 0; i < 16; i++) {
357			MII_CLR(RL_MII_CLK);
358			DELAY(1);
359			MII_SET(RL_MII_CLK);
360			DELAY(1);
361		}
362		goto fail;
363	}
364
365	for (i = 0x8000; i; i >>= 1) {
366		MII_CLR(RL_MII_CLK);
367		DELAY(1);
368		if (!ack) {
369			if (CSR_READ_2(sc, RL_MII) & RL_MII_DATAIN)
370				frame->mii_data |= i;
371			DELAY(1);
372		}
373		MII_SET(RL_MII_CLK);
374		DELAY(1);
375	}
376
377fail:
378
379	MII_CLR(RL_MII_CLK);
380	DELAY(1);
381	MII_SET(RL_MII_CLK);
382	DELAY(1);
383
384	splx(s);
385
386	if (ack)
387		return(1);
388	return(0);
389}
390
391/*
392 * Write to a PHY register through the MII.
393 */
394int
395rl_mii_writereg(struct rl_softc *sc, struct rl_mii_frame *frame)
396{
397	int	s;
398
399	s = splnet();
400	/*
401	 * Set up frame for TX.
402	 */
403
404	frame->mii_stdelim = RL_MII_STARTDELIM;
405	frame->mii_opcode = RL_MII_WRITEOP;
406	frame->mii_turnaround = RL_MII_TURNAROUND;
407
408	/*
409	 * Turn on data output.
410	 */
411	MII_SET(RL_MII_DIR);
412
413	rl_mii_sync(sc);
414
415	rl_mii_send(sc, frame->mii_stdelim, 2);
416	rl_mii_send(sc, frame->mii_opcode, 2);
417	rl_mii_send(sc, frame->mii_phyaddr, 5);
418	rl_mii_send(sc, frame->mii_regaddr, 5);
419	rl_mii_send(sc, frame->mii_turnaround, 2);
420	rl_mii_send(sc, frame->mii_data, 16);
421
422	/* Idle bit. */
423	MII_SET(RL_MII_CLK);
424	DELAY(1);
425	MII_CLR(RL_MII_CLK);
426	DELAY(1);
427
428	/*
429	 * Turn off xmit.
430	 */
431	MII_CLR(RL_MII_DIR);
432
433	splx(s);
434
435	return(0);
436}
437
438void
439rl_iff(struct rl_softc *sc)
440{
441	struct ifnet		*ifp = &sc->sc_arpcom.ac_if;
442	int			h = 0;
443	u_int32_t		hashes[2];
444	struct arpcom		*ac = &sc->sc_arpcom;
445	struct ether_multi	*enm;
446	struct ether_multistep	step;
447	u_int32_t		rxfilt;
448
449	rxfilt = CSR_READ_4(sc, RL_RXCFG);
450	rxfilt &= ~(RL_RXCFG_RX_ALLPHYS | RL_RXCFG_RX_BROAD |
451	    RL_RXCFG_RX_INDIV | RL_RXCFG_RX_MULTI);
452	ifp->if_flags &= ~IFF_ALLMULTI;
453
454	/*
455	 * Always accept frames destined to our station address.
456	 * Always accept broadcast frames.
457	 */
458	rxfilt |= RL_RXCFG_RX_INDIV | RL_RXCFG_RX_BROAD;
459
460	if (ifp->if_flags & IFF_PROMISC || ac->ac_multirangecnt > 0) {
461		ifp ->if_flags |= IFF_ALLMULTI;
462		rxfilt |= RL_RXCFG_RX_MULTI;
463		if (ifp->if_flags & IFF_PROMISC)
464			rxfilt |= RL_RXCFG_RX_ALLPHYS;
465		hashes[0] = hashes[1] = 0xFFFFFFFF;
466	} else {
467		rxfilt |= RL_RXCFG_RX_MULTI;
468		/* Program new filter. */
469		bzero(hashes, sizeof(hashes));
470
471		ETHER_FIRST_MULTI(step, ac, enm);
472		while (enm != NULL) {
473			h = ether_crc32_be(enm->enm_addrlo,
474			    ETHER_ADDR_LEN) >> 26;
475
476			if (h < 32)
477				hashes[0] |= (1 << h);
478			else
479				hashes[1] |= (1 << (h - 32));
480
481			ETHER_NEXT_MULTI(step, enm);
482		}
483	}
484
485	CSR_WRITE_4(sc, RL_MAR0, hashes[0]);
486	CSR_WRITE_4(sc, RL_MAR4, hashes[1]);
487	CSR_WRITE_4(sc, RL_RXCFG, rxfilt);
488}
489
490void
491rl_reset(struct rl_softc *sc)
492{
493	int	i;
494
495	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_RESET);
496
497	for (i = 0; i < RL_TIMEOUT; i++) {
498		DELAY(10);
499		if (!(CSR_READ_1(sc, RL_COMMAND) & RL_CMD_RESET))
500			break;
501	}
502	if (i == RL_TIMEOUT)
503		printf("%s: reset never completed!\n", sc->sc_dev.dv_xname);
504
505}
506
507/*
508 * Initialize the transmit descriptors.
509 */
510int
511rl_list_tx_init(struct rl_softc *sc)
512{
513	struct rl_chain_data	*cd = &sc->rl_cdata;
514	int			i;
515
516	for (i = 0; i < RL_TX_LIST_CNT; i++) {
517		cd->rl_tx_chain[i] = NULL;
518		CSR_WRITE_4(sc,
519		    RL_TXADDR0 + (i * sizeof(u_int32_t)), 0x0000000);
520	}
521
522	sc->rl_cdata.cur_tx = 0;
523	sc->rl_cdata.last_tx = 0;
524
525	return(0);
526}
527
528/*
529 * A frame has been uploaded: pass the resulting mbuf chain up to
530 * the higher level protocols.
531 *
532 * You know there's something wrong with a PCI bus-master chip design
533 * when you have to use m_devget().
534 *
535 * The receive operation is badly documented in the datasheet, so I'll
536 * attempt to document it here. The driver provides a buffer area and
537 * places its base address in the RX buffer start address register.
538 * The chip then begins copying frames into the RX buffer. Each frame
539 * is preceded by a 32-bit RX status word which specifies the length
540 * of the frame and certain other status bits. Each frame (starting with
541 * the status word) is also 32-bit aligned. The frame length is in the
542 * first 16 bits of the status word; the lower 15 bits correspond with
543 * the 'rx status register' mentioned in the datasheet.
544 *
545 * Note: to make the Alpha happy, the frame payload needs to be aligned
546 * on a 32-bit boundary. To achieve this, we cheat a bit by copying from
547 * the ring buffer starting at an address two bytes before the actual
548 * data location. We can then shave off the first two bytes using m_adj().
549 * The reason we do this is because m_devget() doesn't let us specify an
550 * offset into the mbuf storage space, so we have to artificially create
551 * one. The ring is allocated in such a way that there are a few unused
552 * bytes of space preceding it so that it will be safe for us to do the
553 * 2-byte backstep even if reading from the ring at offset 0.
554 */
555void
556rl_rxeof(struct rl_softc *sc)
557{
558	struct ifnet	*ifp = &sc->sc_arpcom.ac_if;
559	struct mbuf	*m;
560	struct mbuf_list ml = MBUF_LIST_INITIALIZER();
561	int		total_len;
562	u_int32_t	rxstat;
563	caddr_t		rxbufpos;
564	int		wrap = 0;
565	u_int16_t	cur_rx;
566	u_int16_t	limit;
567	u_int16_t	rx_bytes = 0, max_bytes;
568
569	cur_rx = (CSR_READ_2(sc, RL_CURRXADDR) + 16) % RL_RXBUFLEN;
570
571	/* Do not try to read past this point. */
572	limit = CSR_READ_2(sc, RL_CURRXBUF) % RL_RXBUFLEN;
573
574	if (limit < cur_rx)
575		max_bytes = (RL_RXBUFLEN - cur_rx) + limit;
576	else
577		max_bytes = limit - cur_rx;
578
579	while ((CSR_READ_1(sc, RL_COMMAND) & RL_CMD_EMPTY_RXBUF) == 0) {
580		bus_dmamap_sync(sc->sc_dmat, sc->sc_rx_dmamap,
581		    0, sc->sc_rx_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
582		rxbufpos = sc->rl_cdata.rl_rx_buf + cur_rx;
583		rxstat = *(u_int32_t *)rxbufpos;
584
585		/*
586		 * Here's a totally undocumented fact for you. When the
587		 * Realtek chip is in the process of copying a packet into
588		 * RAM for you, the length will be 0xfff0. If you spot a
589		 * packet header with this value, you need to stop. The
590		 * datasheet makes absolutely no mention of this and
591		 * Realtek should be shot for this.
592		 */
593		rxstat = htole32(rxstat);
594		total_len = rxstat >> 16;
595		if (total_len == RL_RXSTAT_UNFINISHED) {
596			bus_dmamap_sync(sc->sc_dmat, sc->sc_rx_dmamap,
597			    0, sc->sc_rx_dmamap->dm_mapsize,
598			    BUS_DMASYNC_PREREAD);
599			break;
600		}
601
602		if (!(rxstat & RL_RXSTAT_RXOK) ||
603		    total_len < ETHER_MIN_LEN ||
604		    total_len > ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN) {
605			ifp->if_ierrors++;
606			rl_init(sc);
607			bus_dmamap_sync(sc->sc_dmat, sc->sc_rx_dmamap,
608			    0, sc->sc_rx_dmamap->dm_mapsize,
609			    BUS_DMASYNC_PREREAD);
610			return;
611		}
612
613		/* No errors; receive the packet. */
614		rx_bytes += total_len + 4;
615
616		/*
617		 * XXX The Realtek chip includes the CRC with every
618		 * received frame, and there's no way to turn this
619		 * behavior off (at least, I can't find anything in
620		 * the manual that explains how to do it) so we have
621		 * to trim off the CRC manually.
622		 */
623		total_len -= ETHER_CRC_LEN;
624
625		/*
626		 * Avoid trying to read more bytes than we know
627		 * the chip has prepared for us.
628		 */
629		if (rx_bytes > max_bytes) {
630			bus_dmamap_sync(sc->sc_dmat, sc->sc_rx_dmamap,
631			    0, sc->sc_rx_dmamap->dm_mapsize,
632			    BUS_DMASYNC_PREREAD);
633			break;
634		}
635
636		rxbufpos = sc->rl_cdata.rl_rx_buf +
637			((cur_rx + sizeof(u_int32_t)) % RL_RXBUFLEN);
638
639		if (rxbufpos == (sc->rl_cdata.rl_rx_buf + RL_RXBUFLEN))
640			rxbufpos = sc->rl_cdata.rl_rx_buf;
641
642		wrap = (sc->rl_cdata.rl_rx_buf + RL_RXBUFLEN) - rxbufpos;
643
644		if (total_len > wrap) {
645			m = m_devget(rxbufpos, wrap, ETHER_ALIGN);
646			if (m != NULL) {
647				m_copyback(m, wrap, total_len - wrap,
648				    sc->rl_cdata.rl_rx_buf, M_NOWAIT);
649				if (m->m_pkthdr.len < total_len) {
650					m_freem(m);
651					m = NULL;
652				}
653			}
654			cur_rx = (total_len - wrap + ETHER_CRC_LEN);
655		} else {
656			m = m_devget(rxbufpos, total_len, ETHER_ALIGN);
657			cur_rx += total_len + 4 + ETHER_CRC_LEN;
658		}
659
660		/*
661		 * Round up to 32-bit boundary.
662		 */
663		cur_rx = (cur_rx + 3) & ~3;
664		CSR_WRITE_2(sc, RL_CURRXADDR, cur_rx - 16);
665
666		if (m == NULL) {
667			bus_dmamap_sync(sc->sc_dmat, sc->sc_rx_dmamap,
668			    0, sc->sc_rx_dmamap->dm_mapsize,
669			    BUS_DMASYNC_PREREAD);
670			ifp->if_ierrors++;
671			continue;
672		}
673
674		ml_enqueue(&ml, m);
675
676		bus_dmamap_sync(sc->sc_dmat, sc->sc_rx_dmamap,
677		    0, sc->sc_rx_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
678	}
679
680	if_input(ifp, &ml);
681}
682
683/*
684 * A frame was downloaded to the chip. It's safe for us to clean up
685 * the list buffers.
686 */
687void
688rl_txeof(struct rl_softc *sc)
689{
690	struct ifnet	*ifp = &sc->sc_arpcom.ac_if;
691	u_int32_t	txstat;
692
693	/*
694	 * Go through our tx list and free mbufs for those
695	 * frames that have been uploaded.
696	 */
697	do {
698		if (RL_LAST_TXMBUF(sc) == NULL)
699			break;
700		txstat = CSR_READ_4(sc, RL_LAST_TXSTAT(sc));
701		if (!(txstat & (RL_TXSTAT_TX_OK|
702		    RL_TXSTAT_TX_UNDERRUN|RL_TXSTAT_TXABRT)))
703			break;
704
705		ifp->if_collisions += (txstat & RL_TXSTAT_COLLCNT) >> 24;
706
707		bus_dmamap_sync(sc->sc_dmat, RL_LAST_TXMAP(sc),
708		    0, RL_LAST_TXMAP(sc)->dm_mapsize,
709		    BUS_DMASYNC_POSTWRITE);
710		bus_dmamap_unload(sc->sc_dmat, RL_LAST_TXMAP(sc));
711		m_freem(RL_LAST_TXMBUF(sc));
712		RL_LAST_TXMBUF(sc) = NULL;
713		/*
714		 * If there was a transmit underrun, bump the TX threshold.
715		 * Make sure not to overflow the 63 * 32byte we can address
716		 * with the 6 available bit.
717		 */
718		if ((txstat & RL_TXSTAT_TX_UNDERRUN) &&
719		    (sc->rl_txthresh < 2016))
720			sc->rl_txthresh += 32;
721		if (!ISSET(txstat, RL_TXSTAT_TX_OK)) {
722			int oldthresh;
723
724			ifp->if_oerrors++;
725			if ((txstat & RL_TXSTAT_TXABRT) ||
726			    (txstat & RL_TXSTAT_OUTOFWIN))
727				CSR_WRITE_4(sc, RL_TXCFG, RL_TXCFG_CONFIG);
728			oldthresh = sc->rl_txthresh;
729			/* error recovery */
730			rl_init(sc);
731			/* restore original threshold */
732			sc->rl_txthresh = oldthresh;
733			return;
734		}
735		RL_INC(sc->rl_cdata.last_tx);
736		ifq_clr_oactive(&ifp->if_snd);
737	} while (sc->rl_cdata.last_tx != sc->rl_cdata.cur_tx);
738
739	if (RL_LAST_TXMBUF(sc) == NULL)
740		ifp->if_timer = 0;
741	else if (ifp->if_timer == 0)
742		ifp->if_timer = 5;
743}
744
745int
746rl_intr(void *arg)
747{
748	struct rl_softc	*sc = arg;
749	struct ifnet	*ifp = &sc->sc_arpcom.ac_if;
750	int		claimed = 0;
751	u_int16_t	status;
752
753	/* Disable interrupts. */
754	CSR_WRITE_2(sc, RL_IMR, 0x0000);
755
756	for (;;) {
757		status = CSR_READ_2(sc, RL_ISR);
758		/* If the card has gone away, the read returns 0xffff. */
759		if (status == 0xffff)
760			break;
761		if (status != 0)
762			CSR_WRITE_2(sc, RL_ISR, status);
763		if ((status & RL_INTRS) == 0)
764			break;
765		if ((status & RL_ISR_RX_OK) || (status & RL_ISR_RX_ERR))
766			rl_rxeof(sc);
767		if ((status & RL_ISR_TX_OK) || (status & RL_ISR_TX_ERR))
768			rl_txeof(sc);
769		if (status & RL_ISR_SYSTEM_ERR)
770			rl_init(sc);
771		claimed = 1;
772	}
773
774	/* Re-enable interrupts. */
775	CSR_WRITE_2(sc, RL_IMR, RL_INTRS);
776
777	if (!ifq_empty(&ifp->if_snd))
778		rl_start(ifp);
779
780	return (claimed);
781}
782
783/*
784 * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
785 * pointers to the fragment pointers.
786 */
787int
788rl_encap(struct rl_softc *sc, struct mbuf *m_head)
789{
790	struct mbuf	*m_new;
791
792	/*
793	 * The Realtek is brain damaged and wants longword-aligned
794	 * TX buffers, plus we can only have one fragment buffer
795	 * per packet. We have to copy pretty much all the time.
796	 */
797	MGETHDR(m_new, M_DONTWAIT, MT_DATA);
798	if (m_new == NULL) {
799		m_freem(m_head);
800		return(1);
801	}
802	if (m_head->m_pkthdr.len > MHLEN) {
803		MCLGET(m_new, M_DONTWAIT);
804		if (!(m_new->m_flags & M_EXT)) {
805			m_freem(m_new);
806			m_freem(m_head);
807			return(1);
808		}
809	}
810	m_copydata(m_head, 0, m_head->m_pkthdr.len, mtod(m_new, caddr_t));
811	m_new->m_pkthdr.len = m_new->m_len = m_head->m_pkthdr.len;
812
813	/* Pad frames to at least 60 bytes. */
814	if (m_new->m_pkthdr.len < RL_MIN_FRAMELEN) {
815		/*
816		 * Make security-conscious people happy: zero out the
817		 * bytes in the pad area, since we don't know what
818		 * this mbuf cluster buffer's previous user might
819		 * have left in it.
820		 */
821		bzero(mtod(m_new, char *) + m_new->m_pkthdr.len,
822		    RL_MIN_FRAMELEN - m_new->m_pkthdr.len);
823		m_new->m_pkthdr.len +=
824		    (RL_MIN_FRAMELEN - m_new->m_pkthdr.len);
825		m_new->m_len = m_new->m_pkthdr.len;
826	}
827
828	if (bus_dmamap_load_mbuf(sc->sc_dmat, RL_CUR_TXMAP(sc),
829	    m_new, BUS_DMA_NOWAIT) != 0) {
830		m_freem(m_new);
831		m_freem(m_head);
832		return (1);
833	}
834	m_freem(m_head);
835
836	RL_CUR_TXMBUF(sc) = m_new;
837	bus_dmamap_sync(sc->sc_dmat, RL_CUR_TXMAP(sc), 0,
838	    RL_CUR_TXMAP(sc)->dm_mapsize, BUS_DMASYNC_PREWRITE);
839	return(0);
840}
841
842/*
843 * Main transmit routine.
844 */
845void
846rl_start(struct ifnet *ifp)
847{
848	struct rl_softc	*sc = ifp->if_softc;
849	struct mbuf	*m_head = NULL;
850	int		pkts = 0;
851
852	while (RL_CUR_TXMBUF(sc) == NULL) {
853		m_head = ifq_dequeue(&ifp->if_snd);
854		if (m_head == NULL)
855			break;
856
857		/* Pack the data into the descriptor. */
858		if (rl_encap(sc, m_head))
859			break;
860		pkts++;
861
862#if NBPFILTER > 0
863		/*
864		 * If there's a BPF listener, bounce a copy of this frame
865		 * to him.
866		 */
867		if (ifp->if_bpf)
868			bpf_mtap(ifp->if_bpf, RL_CUR_TXMBUF(sc),
869			    BPF_DIRECTION_OUT);
870#endif
871		/*
872		 * Transmit the frame.
873		 */
874		CSR_WRITE_4(sc, RL_CUR_TXADDR(sc),
875		    RL_CUR_TXMAP(sc)->dm_segs[0].ds_addr);
876		CSR_WRITE_4(sc, RL_CUR_TXSTAT(sc),
877		    RL_TXTHRESH(sc->rl_txthresh) |
878		    RL_CUR_TXMAP(sc)->dm_segs[0].ds_len);
879
880		RL_INC(sc->rl_cdata.cur_tx);
881
882		/*
883		 * Set a timeout in case the chip goes out to lunch.
884		 */
885		ifp->if_timer = 5;
886	}
887
888	if (pkts == 0)
889		return;
890
891	/*
892	 * We broke out of the loop because all our TX slots are
893	 * full. Mark the NIC as busy until it drains some of the
894	 * packets from the queue.
895	 */
896	if (RL_CUR_TXMBUF(sc) != NULL)
897		ifq_set_oactive(&ifp->if_snd);
898}
899
900void
901rl_init(void *xsc)
902{
903	struct rl_softc	*sc = xsc;
904	struct ifnet	*ifp = &sc->sc_arpcom.ac_if;
905	int		s;
906
907	s = splnet();
908
909	/*
910	 * Cancel pending I/O and free all RX/TX buffers.
911	 */
912	rl_stop(sc);
913
914	/* Put controller into known state. */
915	rl_reset(sc);
916
917	/*
918	 * Init our MAC address.  Even though the chipset
919	 * documentation doesn't mention it, we need to enter "Config
920	 * register write enable" mode to modify the ID registers.
921	 */
922	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_WRITECFG);
923	CSR_WRITE_RAW_4(sc, RL_IDR0,
924	    (u_int8_t *)(&sc->sc_arpcom.ac_enaddr[0]));
925	CSR_WRITE_RAW_4(sc, RL_IDR4,
926	    (u_int8_t *)(&sc->sc_arpcom.ac_enaddr[4]));
927	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
928
929	/* Init the RX buffer pointer register. */
930	CSR_WRITE_4(sc, RL_RXADDR, sc->rl_cdata.rl_rx_buf_pa);
931
932	/* Init TX descriptors. */
933	rl_list_tx_init(sc);
934
935	/*
936	 * Enable transmit and receive.
937	 */
938	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
939
940	/*
941	 * Set the initial TX and RX configuration.
942	 */
943	CSR_WRITE_4(sc, RL_TXCFG, RL_TXCFG_CONFIG);
944	CSR_WRITE_4(sc, RL_RXCFG, RL_RXCFG_CONFIG);
945
946	/*
947	 * Program promiscuous mode and multicast filters.
948	 */
949	rl_iff(sc);
950
951	/*
952	 * Enable interrupts.
953	 */
954	CSR_WRITE_2(sc, RL_IMR, RL_INTRS);
955
956	/* Set initial TX threshold */
957	sc->rl_txthresh = RL_TX_THRESH_INIT;
958
959	/* Start RX/TX process. */
960	CSR_WRITE_4(sc, RL_MISSEDPKT, 0);
961
962	/* Enable receiver and transmitter. */
963	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
964
965	mii_mediachg(&sc->sc_mii);
966
967	CSR_WRITE_1(sc, sc->rl_cfg1, RL_CFG1_DRVLOAD|RL_CFG1_FULLDUPLEX);
968
969	ifp->if_flags |= IFF_RUNNING;
970	ifq_clr_oactive(&ifp->if_snd);
971
972	splx(s);
973
974	timeout_add_sec(&sc->sc_tick_tmo, 1);
975}
976
977/*
978 * Set media options.
979 */
980int
981rl_ifmedia_upd(struct ifnet *ifp)
982{
983	struct rl_softc *sc = (struct rl_softc *)ifp->if_softc;
984
985	mii_mediachg(&sc->sc_mii);
986	return (0);
987}
988
989/*
990 * Report current media status.
991 */
992void
993rl_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
994{
995	struct rl_softc *sc = ifp->if_softc;
996
997	mii_pollstat(&sc->sc_mii);
998	ifmr->ifm_status = sc->sc_mii.mii_media_status;
999	ifmr->ifm_active = sc->sc_mii.mii_media_active;
1000}
1001
1002int
1003rl_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1004{
1005	struct rl_softc	*sc = ifp->if_softc;
1006	struct ifreq	*ifr = (struct ifreq *) data;
1007	int		s, error = 0;
1008
1009	s = splnet();
1010
1011	switch(command) {
1012	case SIOCSIFADDR:
1013		ifp->if_flags |= IFF_UP;
1014		if (!(ifp->if_flags & IFF_RUNNING))
1015			rl_init(sc);
1016		break;
1017
1018	case SIOCSIFFLAGS:
1019		if (ifp->if_flags & IFF_UP) {
1020			if (ifp->if_flags & IFF_RUNNING)
1021				error = ENETRESET;
1022			else
1023				rl_init(sc);
1024		} else {
1025			if (ifp->if_flags & IFF_RUNNING)
1026				rl_stop(sc);
1027		}
1028		break;
1029
1030	case SIOCGIFMEDIA:
1031	case SIOCSIFMEDIA:
1032		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, command);
1033		break;
1034
1035	default:
1036		error = ether_ioctl(ifp, &sc->sc_arpcom, command, data);
1037	}
1038
1039	if (error == ENETRESET) {
1040		if (ifp->if_flags & IFF_RUNNING)
1041			rl_iff(sc);
1042		error = 0;
1043	}
1044
1045	splx(s);
1046	return(error);
1047}
1048
1049void
1050rl_watchdog(struct ifnet *ifp)
1051{
1052	struct rl_softc	*sc = ifp->if_softc;
1053
1054	printf("%s: watchdog timeout\n", sc->sc_dev.dv_xname);
1055	ifp->if_oerrors++;
1056	rl_txeof(sc);
1057	rl_rxeof(sc);
1058	rl_init(sc);
1059}
1060
1061/*
1062 * Stop the adapter and free any mbufs allocated to the
1063 * RX and TX lists.
1064 */
1065void
1066rl_stop(struct rl_softc *sc)
1067{
1068	struct ifnet	*ifp = &sc->sc_arpcom.ac_if;
1069	int		i;
1070
1071	ifp->if_timer = 0;
1072
1073	timeout_del(&sc->sc_tick_tmo);
1074
1075	ifp->if_flags &= ~IFF_RUNNING;
1076	ifq_clr_oactive(&ifp->if_snd);
1077
1078	CSR_WRITE_1(sc, RL_COMMAND, 0x00);
1079	CSR_WRITE_2(sc, RL_IMR, 0x0000);
1080
1081	/*
1082	 * Free the TX list buffers.
1083	 */
1084	for (i = 0; i < RL_TX_LIST_CNT; i++) {
1085		if (sc->rl_cdata.rl_tx_chain[i] != NULL) {
1086			bus_dmamap_sync(sc->sc_dmat,
1087			    sc->rl_cdata.rl_tx_dmamap[i], 0,
1088			    sc->rl_cdata.rl_tx_dmamap[i]->dm_mapsize,
1089			    BUS_DMASYNC_POSTWRITE);
1090			bus_dmamap_unload(sc->sc_dmat,
1091			    sc->rl_cdata.rl_tx_dmamap[i]);
1092			m_freem(sc->rl_cdata.rl_tx_chain[i]);
1093			sc->rl_cdata.rl_tx_chain[i] = NULL;
1094			CSR_WRITE_4(sc, RL_TXADDR0 + (i * sizeof(u_int32_t)),
1095				0x00000000);
1096		}
1097	}
1098}
1099
1100int
1101rl_attach(struct rl_softc *sc)
1102{
1103	struct ifnet	*ifp = &sc->sc_arpcom.ac_if;
1104	int		rseg, i;
1105	u_int16_t	rl_id;
1106	caddr_t		kva;
1107	int		addr_len;
1108
1109	sc->rl_cfg0 = RL_8139_CFG0;
1110	sc->rl_cfg1 = RL_8139_CFG1;
1111	sc->rl_cfg2 = 0;
1112	sc->rl_cfg3 = RL_8139_CFG3;
1113	sc->rl_cfg4 = RL_8139_CFG4;
1114	sc->rl_cfg5 = RL_8139_CFG5;
1115
1116	rl_reset(sc);
1117
1118	/*
1119	 * Check EEPROM type 9346 or 9356.
1120	 */
1121	rl_read_eeprom(sc, (caddr_t)&rl_id, RL_EE_ID, RL_EEADDR_LEN1, 1, 0);
1122	if (rl_id == 0x8129)
1123		addr_len = RL_EEADDR_LEN1;
1124	else
1125		addr_len = RL_EEADDR_LEN0;
1126
1127	/*
1128	 * Get station address.
1129	 */
1130	rl_read_eeprom(sc, (caddr_t)sc->sc_arpcom.ac_enaddr, RL_EE_EADDR,
1131	    addr_len, 3, 1);
1132
1133	printf(", address %s\n", ether_sprintf(sc->sc_arpcom.ac_enaddr));
1134
1135	if (bus_dmamem_alloc(sc->sc_dmat, RL_RXBUFLEN + 32, PAGE_SIZE, 0,
1136	    &sc->sc_rx_seg, 1, &rseg, BUS_DMA_NOWAIT | BUS_DMA_ZERO)) {
1137		printf("\n%s: can't alloc rx buffers\n", sc->sc_dev.dv_xname);
1138		return (1);
1139	}
1140	if (bus_dmamem_map(sc->sc_dmat, &sc->sc_rx_seg, rseg,
1141	    RL_RXBUFLEN + 32, &kva, BUS_DMA_NOWAIT)) {
1142		printf("%s: can't map dma buffers (%d bytes)\n",
1143		    sc->sc_dev.dv_xname, RL_RXBUFLEN + 32);
1144		bus_dmamem_free(sc->sc_dmat, &sc->sc_rx_seg, rseg);
1145		return (1);
1146	}
1147	if (bus_dmamap_create(sc->sc_dmat, RL_RXBUFLEN + 32, 1,
1148	    RL_RXBUFLEN + 32, 0, BUS_DMA_NOWAIT, &sc->sc_rx_dmamap)) {
1149		printf("%s: can't create dma map\n", sc->sc_dev.dv_xname);
1150		bus_dmamem_unmap(sc->sc_dmat, kva, RL_RXBUFLEN + 32);
1151		bus_dmamem_free(sc->sc_dmat, &sc->sc_rx_seg, rseg);
1152		return (1);
1153	}
1154	if (bus_dmamap_load(sc->sc_dmat, sc->sc_rx_dmamap, kva,
1155	    RL_RXBUFLEN + 32, NULL, BUS_DMA_NOWAIT)) {
1156		printf("%s: can't load dma map\n", sc->sc_dev.dv_xname);
1157		bus_dmamap_destroy(sc->sc_dmat, sc->sc_rx_dmamap);
1158		bus_dmamem_unmap(sc->sc_dmat, kva, RL_RXBUFLEN + 32);
1159		bus_dmamem_free(sc->sc_dmat, &sc->sc_rx_seg, rseg);
1160		return (1);
1161	}
1162	sc->rl_cdata.rl_rx_buf = kva;
1163	sc->rl_cdata.rl_rx_buf_pa = sc->sc_rx_dmamap->dm_segs[0].ds_addr;
1164
1165	bus_dmamap_sync(sc->sc_dmat, sc->sc_rx_dmamap,
1166	    0, sc->sc_rx_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1167
1168	for (i = 0; i < RL_TX_LIST_CNT; i++) {
1169		if (bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0,
1170		    BUS_DMA_NOWAIT, &sc->rl_cdata.rl_tx_dmamap[i]) != 0) {
1171			printf("%s: can't create tx maps\n",
1172			    sc->sc_dev.dv_xname);
1173			/* XXX free any allocated... */
1174			return (1);
1175		}
1176	}
1177
1178	/* Leave a few bytes before the start of the RX ring buffer. */
1179	sc->rl_cdata.rl_rx_buf_ptr = sc->rl_cdata.rl_rx_buf;
1180	sc->rl_cdata.rl_rx_buf += sizeof(u_int64_t);
1181	sc->rl_cdata.rl_rx_buf_pa += sizeof(u_int64_t);
1182
1183	ifp->if_softc = sc;
1184	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1185	ifp->if_ioctl = rl_ioctl;
1186	ifp->if_start = rl_start;
1187	ifp->if_watchdog = rl_watchdog;
1188
1189	bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
1190
1191	ifp->if_capabilities = IFCAP_VLAN_MTU;
1192
1193	timeout_set(&sc->sc_tick_tmo, rl_tick, sc);
1194
1195	/*
1196	 * Initialize our media structures and probe the MII.
1197	 */
1198	sc->sc_mii.mii_ifp = ifp;
1199	sc->sc_mii.mii_readreg = rl_miibus_readreg;
1200	sc->sc_mii.mii_writereg = rl_miibus_writereg;
1201	sc->sc_mii.mii_statchg = rl_miibus_statchg;
1202	ifmedia_init(&sc->sc_mii.mii_media, 0, rl_ifmedia_upd, rl_ifmedia_sts);
1203	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
1204	    MII_OFFSET_ANY, 0);
1205	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
1206		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
1207		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
1208	} else
1209		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
1210
1211	/*
1212	 * Attach us everywhere
1213	 */
1214	if_attach(ifp);
1215	ether_ifattach(ifp);
1216
1217	return (0);
1218}
1219
1220int
1221rl_activate(struct device *self, int act)
1222{
1223	struct rl_softc	*sc = (struct rl_softc *)self;
1224	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
1225	int rv = 0;
1226
1227	switch (act) {
1228	case DVACT_SUSPEND:
1229		if (ifp->if_flags & IFF_RUNNING)
1230			rl_stop(sc);
1231		rv = config_activate_children(self, act);
1232		break;
1233	case DVACT_RESUME:
1234		if (ifp->if_flags & IFF_UP)
1235			rl_init(sc);
1236		break;
1237	default:
1238		rv = config_activate_children(self, act);
1239		break;
1240	}
1241	return (rv);
1242}
1243
1244int
1245rl_miibus_readreg(struct device *self, int phy, int reg)
1246{
1247	struct rl_softc		*sc = (struct rl_softc *)self;
1248	struct rl_mii_frame	frame;
1249	u_int16_t		rl8139_reg;
1250
1251	if (sc->rl_type == RL_8139) {
1252		/*
1253		* The RTL8139 PHY is mapped into PCI registers, unfortunately
1254		* it has no phyid, or phyaddr, so assume it is phyaddr 0.
1255		*/
1256		if (phy != 0)
1257			return(0);
1258
1259		switch (reg) {
1260		case MII_BMCR:
1261			rl8139_reg = RL_BMCR;
1262			break;
1263		case MII_BMSR:
1264			rl8139_reg = RL_BMSR;
1265			break;
1266		case MII_ANAR:
1267			rl8139_reg = RL_ANAR;
1268			break;
1269		case MII_ANER:
1270			rl8139_reg = RL_ANER;
1271			break;
1272		case MII_ANLPAR:
1273			rl8139_reg = RL_LPAR;
1274			break;
1275		case RL_MEDIASTAT:
1276			return (CSR_READ_1(sc, RL_MEDIASTAT));
1277		case MII_PHYIDR1:
1278		case MII_PHYIDR2:
1279		default:
1280			return (0);
1281		}
1282		return (CSR_READ_2(sc, rl8139_reg));
1283	}
1284
1285	bzero(&frame, sizeof(frame));
1286
1287	frame.mii_phyaddr = phy;
1288	frame.mii_regaddr = reg;
1289	rl_mii_readreg(sc, &frame);
1290
1291	return(frame.mii_data);
1292}
1293
1294void
1295rl_miibus_writereg(struct device *self, int phy, int reg, int val)
1296{
1297	struct rl_softc		*sc = (struct rl_softc *)self;
1298	struct rl_mii_frame	frame;
1299	u_int16_t		rl8139_reg = 0;
1300
1301	if (sc->rl_type == RL_8139) {
1302		if (phy)
1303			return;
1304
1305		switch (reg) {
1306		case MII_BMCR:
1307			rl8139_reg = RL_BMCR;
1308			break;
1309		case MII_BMSR:
1310			rl8139_reg = RL_BMSR;
1311			break;
1312		case MII_ANAR:
1313			rl8139_reg = RL_ANAR;
1314			break;
1315		case MII_ANER:
1316			rl8139_reg = RL_ANER;
1317			break;
1318		case MII_ANLPAR:
1319			rl8139_reg = RL_LPAR;
1320			break;
1321		case MII_PHYIDR1:
1322		case MII_PHYIDR2:
1323			return;
1324		}
1325		CSR_WRITE_2(sc, rl8139_reg, val);
1326		return;
1327	}
1328
1329	bzero(&frame, sizeof(frame));
1330	frame.mii_phyaddr = phy;
1331	frame.mii_regaddr = reg;
1332	frame.mii_data = val;
1333	rl_mii_writereg(sc, &frame);
1334}
1335
1336void
1337rl_miibus_statchg(struct device *self)
1338{
1339}
1340
1341void
1342rl_tick(void *v)
1343{
1344	struct rl_softc	*sc = v;
1345	int		s;
1346
1347	s = splnet();
1348	mii_tick(&sc->sc_mii);
1349	splx(s);
1350
1351	timeout_add_sec(&sc->sc_tick_tmo, 1);
1352}
1353
1354int
1355rl_detach(struct rl_softc *sc)
1356{
1357	struct ifnet	*ifp = &sc->sc_arpcom.ac_if;
1358
1359	/* Unhook our tick handler. */
1360	timeout_del(&sc->sc_tick_tmo);
1361
1362	/* Detach any PHYs we might have. */
1363	if (LIST_FIRST(&sc->sc_mii.mii_phys) != NULL)
1364		mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
1365
1366	/* Delete any remaining media. */
1367	ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
1368
1369	ether_ifdetach(ifp);
1370	if_detach(ifp);
1371
1372	return (0);
1373}
1374
1375struct cfdriver rl_cd = {
1376	0, "rl", DV_IFNET
1377};
1378